
2=,

f9>,

s=.

*7/lL £4/QT£/$_

C A S E

SOAP HI

Vol. I Series IV

February, 1958

D. E. KNUTH

Computing Center

No. 1005

Institute of Technology
Cleveland 6, Ohio

Syntoolic Optimum Assembly Program

for the IBM 650 Data-Processing System

COMPUTING CENTER
Case Institute of Technology

Cleveland, Ohio

J

Abstract
CASE SOAP III is a modified version of SOAP II which was originally

written by Stan Poley of the Applied Science Division of IBM Service Bureau
Corp. The major changes made in the preparation of CASE SOAP III were the
addition of five-instruction-per-card output if desired and the use of
"program points" as a greater convenience in writing programs. CASE SOAP III
also offers twenty-four new pseudo operations and error correction routines
which ease the task of writing and running SOAP programs. Several of these
new pseudo-operations are included primarily to make CASE SOAP III of utility
to the users of a 650 with extra attachments. The relocatable library rou
tines have been omitted to provide room for the new material (however, ten
additional regions are available as a replacement). CASE SOAP III is also
designed for use with Compiler III (soon to be available from the Case Com
puting Center). The CASE SOAP III language is compatible with UNISAP, an
assembly program for the Uhivac (also forthcoming shortly).

Acknowledgment s
Credit should be given to the following persons who have helped

considerably; to Melvin Conway, who is responsible for the "program point"
concept; to george Haynam and Don Buyansky, for board wiring and diagrams;
to Frederick Way III, Bill Lynch, George Petznick, and Angus Bond for many
suggestions and criticisms; and to the Case Computing Center for thousands
of cards used in the creation of the program.

Donald E. Knuth
Case Computing Center
January 31, 1958

C A S E S O A P I I I

INTRODUCTION. The user of CASE SOAP III should be familiar with the
machine language instructions used in the 650. An assembly program
such as SOAP greatly simplifies the task of machine language coding
because it almost completely relieves the programmer of assigning
actual storage locations. If he wants to refer to a certain location
he gives it a symbolic name (Preferably one of high mnemonic value)
and refers to it by means of this name. For example, salary might be
stored in"WAGESw; sin x in WSIN X." The assembly program assigns
actual locations to these names and produces the actual machine lan
guage program, ^he locations chosen are optimized; that is, they
are put in the best possible place on the revolving drum for high
speed operation.

SOAP stands for Symbolic Optimum Assembly Programming and it is designed
to assemble programs for any combination equipment used in the IBM 650
Data Processing System. Although SOAP itself operates from the basic 650
having only an alphabetic device as an added attachment, it will assemble
programs written for tapes, printer, immediate access (core) storage,
indexing registers, floating point arithmetic operations, disk storage
and inquiry stations.

Machine language programs are coded in symbolic language, with one
instructions per card, and processed by SOAP. The assembled output is
then immediately reloadable as the desired machine language program.

INPUT CARD FORMAT. The Location Address (called the L-address) is punched
in columns 43 through 47. It represents the location into which the assem
bled instructions will be loaded.

The Operation Code (OP-code fills columns 48 to 50. OP-codes for the
650 may be written either as a three-letter alphabetic mnemonic or in the

-2-

standard two-digit numeric form. A complete list of the alphabetic symbol
codes to use with CASE SOAP III is given in Appendix A. When the two-digit
number is given as the operation, column 48 is left blank, while columns

The Data Address (or D-address) of the instruction to be assembled
is specified by columns 51-55. Column 56 is the "tag" associated with the
D-address, and is normally left blank unless an instruction is to be
indexed or when using the PIK device (see INDEXING, PIK).

The Instruction Address, or I-address, is specified by the five
columns 57 through 61. Column 62 is the I-address "tag" which is similar
to the D-address tag described above.

Columns 65 through 72 may be used by the programmer for up to ten
digits of comments. These columns are ignored by the SOAP program.

The sign of the instruction is specified in column 42. This column
should be blank when a positive sign is desired. Any punch in this column
will be interpreted as minus, and a negative instruction will be assembled
as a result.

Column 41 specifies card "type" and is normally left blank unless the
input card is to be treated as Type 1, 2, or 3, which are described in the
sequel.

Columns 41 through 72 are reproduced on one-per-card output (see
FORMATS, Appendix D). The remaining columns 1-40 and 73-80 are ignored by
SOAP except that columns 2, 4, and 7 should not contain 12 (Y) punches.

Summary: Column Function

49 and 50 contain the number. Examples RAL
or 65

41
42

Type
Sign
Location Address
Operation Code
Data Address
Data Address Tag
Instruction Address
Instruction Address Tag
Comments

43-47
48-50
51-55
56
57-61
62
63-72

TYPES OF ADDRESSESo The L-, D- and I-addresses each use five columns of

an input card. The left-most column of an address is called the "symbolizer

parte" There are five distinct types of addresses in SOAP language:

A0 Absolute addresses• These are four-digit numerical addresses which are

simply reproduced in the output0 An absolute address is used when the pro

grammer has a definite location in mind. For example, to reset add to the

upper the contents of the upper accumulator, the instruction RAU 8003 may

be used with the absolute D-address of 8003. Shift operations generally

use absolute D-addresses.

Rules: 1. The symbolizer part of an absolute address must be blanko

2. The remaining four columns must be filled with the numeric address.

B0 Regional addresses» A "region" of the drum is specified at the beginning

of the program by a "REG" card (see below), and locations within this region

are referred to with regional addresses. Each region has a letter or number

associated with it, and there are thus 36 available regions. For example,

region P may be the block of consecutive locations 1977-1986; the regional

address P0001 refers to the first location in region P (namely 1977); R0012

is the twelfth word of region R. Regional addresses are a convenience for

the programmer, saving him from making unnecessary calculations. They are

also useful for relocating a routine coded in regional addresses, since the

regional specification may be moved to any part of the drum.

Rules: 1. The alphabetic or numeric character which designates the

region is punched in the symbolizer part of a regional address. 2. The

remaining columns must be numeric.

Co Blank addresses. If the D = or I-address is to refer to the location of

the next instruction, this address and the L—address of the next instruction

may be left blank (provided the order of the cards is not changed when

assembling). More than half of the addresses in a typical SOAP program are

blank. This is a time-saver for the programmer and the keypuncher. Both

D- and I-addresses may be blank if they both refer to the next location.1

1. Only the D-address is optimized in this case.

-4-

Rules8 10 When either the D- or I-address is blank, the L-address of

the following instruction must be blanko 2, When neither D- nor I-address

is blank, the L-address of the following instruction must be non-blank,,

3<> The first location of a program must not be blank 0

Do Program pointso When either the D- or I-address is to refer to location

"1" which appers later, the address "IF" (1 forward) is given; to refer to

location "1" which appeared earlier in the program, the address *1B* (1

backward) is givene The location 1 would be called simply nl„M Ten program

points are available, 0-9, and each may be constantly redefined during the

course of the program0 If the program is written down on a coding form in

sequence, "IF" will always refer to the next location 1 on the coding form;

"3B" will always refer to the previous location "3" occurring on the form.

In location 1, a D- or I-address of IF may be given immediately, referring

to a future location 1D A D- or I-address of IB would still refer to the

last location 1 (not the present one), A D- or I-address of "lw will refer

to its own location,,

Rules: 1, A D- or I-address will be interpreted by SOAP as a program

point only if the symbolizer part is a number, the second column is a "B11

or an "F", and the remaining columns are blank. 20 The L-address of an

instruction will be interpreted by SOAP as a program point only if the

symbolizer part is a number and all remaining columrsare blanko1 3, A

p_ or j- address consisting of a number followed by four blanks will always

refer to its own location, regardless of what number is used or what type

of address is used in the L-address.^

E0 Symbolic addresses» Every address which is not an absolute, regional,

blank, or program point address will be interpreted as a symbolic address,

A symbolic address may be any combination of characters acceptable to the

lo A program point address of the forward or backward type appearing in the
L-address field will be interpreted as a symbolic address, but it will be
impossible to refer to it in the D- or I-addresses of any instructions since
it will be inlcrpreleu as a program poi^u ihere, (This is of use only with
t h e D U P p s e u d o - o p ; s e e A p p e n d i x C o)
20 When in drum-core mode (see DRC) this address will refer to the drum
equivalent location; when used with EQU, SYN, REP or PIK, this address will
be defined, referring to the location of the last assembled instruction,

-5-

alphabetic device (or special character attachment if it is used). A
symbolic address is given an optimum equivalent address when it is first
encountered, and succeeding use of this symbol will refer to its equivalent.

Examples of addresses:
8000 Absolute

8000 Symbolic
2F Program Point (in D- or I-address only)
2 F Symbolic
R0123 Regional
R123 Symbolic

R 123 Symbolic
Blank
Symbolic START

9
A

9
0009

40009
/0009
9B
B9
B0009

Program Point (in L-address); location of instruction (T_addr.)
Symbolic
Symbolic
Absolute
Regional
Symbolic (used only with special character device)
Program point (in D- or I-address only)
Symbolic
Regional

DATAo Constants and data are easily assembled by SOAP. Numerical data are
written using the absolute part of the 0P-, D-, and I-fields$ that is, writing
the first two digits as an absolute machine code *operation,* the next four
as an absolute D-address, and the remaining four as an absolute I-address
(thus using columns 49-50, 52-55, and 58-61),
>ALF: Alphabetic data of up to five characters per word may be assembled using
the operation code "ALF." The five characters are written in the D-address,
and the I-address is ignored. (Special characters may be used if the machine
has the special character attachment.)

Examples:
Col.: 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

O N E 0 0 0 0 0 1 0 0 0 0
- C 0 0 0 5 3 1 4 1 5 9 2 7 5 1

5 A L F S O A P 3
9 0 1 0 A L F 7 0 9

1. This equivalent can be redefined (see EQU)
-6-

The four cards on the previous page will causes 10 The number +0000010000 to

be loaded into symbolic location ONE 20 The number -3141592751 to be loaded

into the fifth location of region C 3o The number +8276617793 to be placed in

the location of program point 5 4, The number +0097909900 to be placed in
(core) location 9010o

Notes ALF is called a "pseudo~operation"; that is, it does not correspond

to any regular 650 operation code, yet it has meaning in SOAP language,, Pseudo-

operations are the programmer's means of communicating with SOAP to control the

assembly of his program,, There are a total of 27 pseudo-ops, (Each pseudo-op

is herein designated by the symbol > as its function is defined„)

AVAILABILITY Q AS SOAP begins to assemble a program, all 2000 locations of the

drum are considered "availablethat is, any of them may be chosen as the

location assigned to a symbol, program point, or blank address, As soon as

a location is chosen, however, it is made unavailable so it will not be used

twiceo Absolute addresses are not made unavailable when encountered by SOAP,"*"

The availability status of all locations can be easily controlled by the pro
grammer to his liking with several pseudo-opso

>BLRs (Block Reservation) Sequential locations between two limits are made

unavailable, regardless of their former status« The address of the first

location (called FVA, the first=*word address) is specified by the D-address

and the last-word-address (LWA) is specified in the I-address field•

Ruless 10 Both FWA and LWA must be given as absolute addresses and must

be in the range 0000-19990 20 The L-address and sign are ignoredo 3o A

single location may be reserved by letting FWA * LWAC

>BLA: (Block availability) BLA is the same as BLR except that all locations

from FWA to LWA are made available regardless of their previous status,

Examples The two cards BLR 1500 1900
BLA 1600 1602 (in that order) make locations

1500-1599 and 1603-1900 unavailable and locations 1600, 1601 and 1602 available,

lc If an absolute address is to be unavailable it should be reserved at the
beginning of assembly with a BLR cardo

JDRUI (Drum Unavailability) All 2000 locations are quickly made unavailable.

(L-, D-, and I-addresses and sign on a DRU card are ignored.) It is consider

ably faster to execute DRU followed by BLA 0000 0300 than to block reserve
0501 to 1999 with BLR.

sREG: (Regional specification) A region on the drum must be defined by a REG

card before any regional addresses in that region may be given. The number or

letter designating the region is punched in the symbolizer part of the D-

address (column 51). FWA and LWA of the region are given in the absolute part

of the D- and I-address fields, respectively, just as in BLR. (L-address and

sign are ignored.) As in BLR, all locations from FWA through LWA are made

unavailable» and should be drum addresses. A region may, however, be defined

for absolute addresses not on the drum if desired (in the core, for example.)

In this case, LWA is left blank, and no locations are reserved; FWA is then
enough to specify the region.

A region may be redefined; for example, region A might first be locations

0015 through 0017 and later be changed to 1015 through 1022. A regional address

is always assembled according to the latest REG card defining that region.

Regions with number designations are normally used by standard relocatable

routines to be used with CASE SOAP III; the programmer should confine himself

to alphabetic regions when using these routines as part of his program.

Regional addresses such as A0000 are permitted—the result is to assemble

location (FWA - 1). In the example above this would give first 0014, then

1014. A regional address A9999 will result in (FWA - 2). Similarly, regional

addresses whose equivalents are larger than LWA are also permitted and pro

perly assembled. Only locations FWA through LWA are made unavailable, however.

Examples REG P1977 1986

REG C9049

The first card defines region P starting at 1977 and reserves locations

1977 through 1986. The second card defines region C starting at core location

1. If FWA • 0000, location 9999 is assembled.

-8'

9049, and does not reserve any locations. The erroneous card

REG C9049 9050

would define region C as before but would then stop the SOAP program (see under

STOPS, 0999)0

Availability may also be "doctored" using pseudo-ops COR, DRC, and PIK

explained in Appendices B and Co

>PAT: (Punch Availability Table) SOAP ^remembers1* the availability status

of all drum locations in a 200-word table. Pseudo-op PAT causes the punching

of this table in highly readable format (see FORMATS, Appendix D)0 Available

locations are listed as 1 and unavailable, 0o The availability table may be

wholly or partially loaded as input to SOAP (merely by placing it together with

the input program) thus restoring the availability which existed at some

point of a prior assembly,,

DEFINITION OF SYMBOLS AND PROGRAM POINTSo A symbol, program point, or regional

address is thought of as being "defined" when it has a meaningful equivalent at

that point in the programe

A symbol becomes defined after its first use in a SOAP program."^" It then

remains defined until the end of the program (or until execution of the pseudo-

op SERj see below).

A forward program point such as IF defines location "1"; the program point

IF is now defined until location 1 comes along. Then "IF" is immediately un

defined until it appears again0

A backward program point such as IB becomes defined after the first instruc

tion in location 1 is assembled. Every succeeding location 1 will redefine the

meaning of "IB."

If a location 1 occurs before the use of any IF, the address IB will still

be defined in the future„ (When undefined symbols or program points appear in

the L-address of an instruction, SOAP assigns a random location,.

Regional addresses are defined by REG cards and remain defined until the

10 Within each instruction, the order of processing is location, data, instruction
address.

Z a In COR or DRC mode, SOAP picks a sequential location.

end of the program,. Absolute addresses are always defined»

PREDEFINING SYMBOLS AND PROGRAM POINTSo A symbol or program point may be given

any desired equivalent by means of pseudo-operations,,

>EQU: (Equivalence) The symbol or forward program point in the D-address is

assigned the equivalent of the I-address.

Rules: 1<> The I-address may be absolute, regional, symbolic, or a

program point, but it must be definedo The equivalent need not be in the

range 0000-1999„ Z0 If a symbol in the D-address has been previously defined

it will be redefined to the new equivalente 3„ If a program point is given

in the D-address, it must be a forward program point which is currently

undefinedo It is thus impossible to predefine a backward program point; a

forward program point, once defined, cannot be redefined until its location

appears (or pseudo-op UND is used)Q 4„ The sign (col„ 42) and the location

address must be blank„ (Operation of EQU when these fields are non-blank

is described in Appendix C„)

>SYN: (Synonym) Operation of SYN is exactly like EQU except that the I-

address equivalent is also made unavailable (without regard to its former

status)o This equivalent must be in the range 0000-1999.

Examples: EQU UPPER 8003
SYN START 1999
EQU 3F IB
EQU R R0001

f

In the first example, "UPPER" is assigned the equivalent 8003. Note that

SYN could not be used. The second card sets the equivalent of START to 1999

and makes this location unavailable„ Example ft 3 defines 3F to the same

equivalent as IB; IB must be currently defined, 3F undefined„ The last

example sets "R" to mean the same as R0001 (Region R must be defined).

EQU was used in preference to SYN in the last two examples since the address

equivalents have presumably been made unavailable already,,

>UND: (Undefine) This pseudo-op frees a program point from its defined state,

making it available for redefinition0

Rules: 1. The program point to be undefined is punched in the L-address

-10-

as a number followed by four blanks • 2. The D- and I-addresses and sign are
ignored# 3# UND undefines both forward and backward program points.

Example 1 UND

>PST: (Punch Symbol Table) Every symbol currently defined is punched,
together with its equivalent, on reloadable EQU cards. The symbol table
of a long program can be conveniently inspected for errors in keypunching,
which become obvious if unfamiliar symbols appear. PST is also necessary if
the symbol table becomes full (see CAPACITY).

Rules: 1. The D- and I-addresses and sign are ignored; the L-address
and comments are reproduced on every EQU card in the punched table. 2. When
in five-per-card punch mode (see OUTPUT), PST also has the effect of a blank
card. Normal punch mode is always restored after the table is punched.
>SER: (Syrabole Erase) The entire symbol table is erased (similar to DRU).

CAPACITY. CASE SOAP III can remember 300 symbols and their current equiv
alents. With the use of program points, more than 500 symbols will rarely, if
ever, occur. The SOAP program itself uses only 147 symbols (without program
points it would have used 508); use of program points generally halves the
number of symbols required.

If the symbol table does become full, it is possible to continue by
punching the symbol table with PST, then giving the command SER and reloading
only the symbols which are necessary for the remainder of the program.

SPEED. Assembly progresses at approximately 50 to 90 cards per minute; this
will decrease if the symbol table becomes densely packed or if few drum
locations are available. The processing of a program point is always much
faster than the processing of a symbol.

OUTPUT. The CASE SOAP III programmer has his choice of two outputs: (for
fo rma t s s ee Append ix D) .
A. Normal output. The input card is reproduced in columns 41-72 and the
assembled instruction is immediately reloadable as a single instruction load
card. One-per-card output may also be used again as SOAP input.
B. Five-per-card output. All assembled instructions are punched on five-

per-card load cards, which may be loaded with the loading routine in Appendix
E. When in five-per-card punch mode, assembly is in general much faster,
more conservative of cards, and the final program will load into the machine
much more rapidly. The disadvantages are in the lack of reuse as SOAP input
and the increased difficulty in debugging a program.
>FIV: The pseudo-op FIV will cause CASE SOAP III to punch succeeding assembled
instructions in five-per-card format. The FIV card is not reproduced in the
output.
20NE* This pseudo-op restores normal punch mode, and has the effect of a
blank card except for the printing of the transfer instruction. The ONE card
is not reproduced in the output.1 Note* PAT and PST also restore normal
punch mode after their execution.
BLANK CARD: The input deck to be processed five-per-card should be followed
by a blank card to insure that the last card will be punched (in case the
number of instructions is not a multiple of five). The blank card also gives
an optional transfer Instruction: If the console switch is set to minus, the
last instruction assembled will be 1998: 00 1999 1999 which
will automatically transfer control from the loading routine in Appendix E
to location 1999 as soon as the program is completely loaded. To use this
feature, locations 1951-1960 and 1977-1998 should be block-reserved at the
beginning of assembly (for the loading routine) and the program should start
at 1999.

The pseudo-operations BOP, PAT, PST and ONE have the same function as
a blank card (in addition to their normal functions) except ONE never prints
the optional transfer instruction.

TYPE 1 CARD. If the programmer wishes to have more than the ten columns of
an ordinary card for comments, a type 1 card may be used. SOAP will do
nothing with this card except reproduce it (if in normal punching mode).
The type 1 card may contain up to 50 characters punched in columns 43-72.

1. Unless it is redundant.

MISCELLANEOUS PSEUDO-OPS.

>OFF and ONN: After an OFF card appears, SOAP will not punch any pseudo-op

cards or type 1 cards until the pseudo-op ONN restores normal procedure.

Assembled instruction are punched as usual. Note that OFF is redundant

when in five-per-card punch mode. Most extensive use of OFF and ONN is

made when reloading the symbol table EQU cards.

>CCT: (Card Count) The card number on the one-per-card output card which

follows the CCT card is set equal to the number specified by the D-address.

(The D-address must be an absolute fourtjigit number.) For example, CCT 0000

causes SOAP to give the next card number 0000 and then to start again from

0001. (This can be used to advantage just before PST, for it will give a
count of the symbols used.)

>B0P: (Beginning of Program) SOAP will initialize itself to begin assembling

another program. This enables the operator of the machine to stack several

programs to be SOAPed on top of each other in the card hopper, and the entire

operation will proceed in one pass. BOP also has the effect of a blank card
(see BLANK CARD).1

RUNNING THE PROGRAM. The assembly deck should have the following order:

1. CASE SOAP III omitted if SOAP is already on the drum)

2. Deck to be assembled (when five-per-card is desired,

a blank card is usually placed at the end of the deck)

Due to the one pass nature of the assembly, priority for the choice of

optimum locations diminishes as assembly progresses. Therefore frequently

executed portions of the program should be placed toward the beginning of the
assembly deck.

Machine Operatorys Guide:

533 Read-Punch Unit: Insert CASE SOAP III Control Panel, place assembly

deck in read feed, ready punch hopper with blanks.

1. A A card with a zero in column 41 will have the effect of BOP except In
ts function as a blank; this card will not be reproduced in the output.

-13-

650 Consoles programmed STOP, half cycle RUN, control RUN, display
DISTRIBUTOR, overflow SENSE, error STOP. If CASE SOAP III is being
loaded, set 70 1951 8888 on storage entry switches. If SOAP is already
on the drum, set 00 1951 0000 on storage entry switches. (See BLANK
CARD for instructions on the sign of the switches.)
1. Press COMPUTER RESET 2. Press PROGRAM START 3. Press both START
keys on the 533 card reader 4. When read hopper empties, press END OF
FILE.

The availability and symbol tables may be obtained manually by
sending control to locations 0900 and 0800 respectively. The FIV
pseudo-op may be duplicated manually by transferring to location 0123;
ONE is accomplished by transferring to 0133.

A dry run of a new program may be made by inserting 00 1951 8002+
into location 1997, which suppresses all punching except that of the
availability table. SOAP will then merely check the input cards for
errors, which can be corrected before the actual SQAPing of the program
takes place.

STOPS: 0111.
0222.

0333.

0444.

0555.

0666.

0777.

0888.

0999.

-14-

Symbol table full
Drum packed; all locations unavailable (or PIK table
empty; see under PIK, Appendix C)
Invalid symbolic operation (or use of 999 or YYT
pseudo-ops without special deck—see 999, Appendix C)
Undefined regional address or REG card without
proper character in column 51
EQU, SYN, REP, or PIK with undefined address which
should have been defined (see rules for these pseudo-ops)
Blank location address when previous instruction had
no blank IK or I-address.
Filled location address when previous instruction had
blank D- or I-address; or, meaningless location (as 8492)
Occurence of undefined backward program point; or EQU,
SYN trying to redefine a defined forward program point
BLR, BLA, REG with FWA > LWA or BLR, BLA, REG, SYN
attempting to reserve location greater than 1999.

1996o See OPT, Appendix Co

ERROR CORRECTIONg On each of the programmed stops on the previous page,

the error may be corrected by removing the cards from the read hopper, clearing

the read feed, correcting the offending card (the third one out—or the

fourth last if not on End Of File) and replacing it in the read feed® Continue
with step 2 on the previous pagec

>REPs (Repeat assembly) If the previous card contained an error, rather than

the one on which SOAP is stopped, it may be corrected immediately with the

pseudo-op REP instead of reSOAPing the entire decko

Rulesg 10 The equivalent of any absolute, regional, symbolic, or program

point address in the D- or I-address of a REP card will be substituted for the

corresponding D- or X-address of the last assembled instruction0 (This

equivalent must be defined®) 20 If the-D— or I=address of the REP card is

blank the corresponding address of the last assembled instruction will be

untouchedc 3® The reassembled instruction will be loaded into the same

location as it was previously; the L-address of the REP card is ignored®

4° 7116 siEn of "the reassembled instruction will be the sign of the REP card®

5® Any number of type 1 cards and pseudo-ops (excluding of course BOP) may

intervene between the instruction to be reassembled and the REP card®

60 The instruction following REP must have a non-blank L-address®

Example: The coding HJD IF

SUBR1 STD EXIT

will stop on the second card with a 0777 stop. Suppose the programmer wished

the first instruction to read »LDD IF S0BR1." This can now be corrected by

inserting the card REP SUBR1

before the second card, and continuing with step 2 in the operator's instructions

(depressing PROGRAM START, etc.). If SUBR1 has not been defined up to this

point, checking of the output will show which address was assigned to the

incorrect blank address, say 1234. Then the card EQU SUBR1 1234 followed

by the REP card will overcome the difficulty®

Restarting after machine errorss If the 650 stops because of a bad read or a

machine validity checking error, or for any other reason, SOAP III may be

restarted by replacing the deck (beginning with the card being processed)
in the read hopper, setting 00 1951 0888 in the console switches, and con
tinuing with step 1 in the operator5s instructions® Any "harm* which
might have been done during incomplete assembly will be undone, but for
exceptional cases® (A symbol or forward program point which has just been
defined will not always be dropped from memory, however®)

EXAMPLE PROGRAM® In conclusion, we give a simple program which will prepare
a table of. F(x) * Ax + Bx + C for x • 1, 2, ®e®, 100 assuming A, B, and
C are integers and |F(x)| < 1010® The output is to contain x in word 1,
F(x) in word 2® Input as written on a SOAP coding form is shown below; the
one-per-card assembled output is given on the next page®

OATA I L.0 C. op INST CoMMETV/TS

h 12 13 In is •it 18 £0 £1 & S3 5S Si ST7 ss Si bl 6} 61 W ('c6 kl eg &\7 C 7/ 73
/ k V A M ? L £ C A L C U L A T £ F 0 X
/

E L R l f S~ 7 (D 0 R E A A £ A
R e 6 P 0 0 2 7 0 0 2 G P U bJ C H £ F "A

S £ T X R A M 0 tJ £ / F S E "T X
1 s 1 u p 0 0 0 1 T 0 t

M P Y A C A L £ u L A T £
A L 0 B F
P A IA G 0 0
M P Y P 0 0 0 1
A L 0 C
S T L P 0 0 0 2
P C P 0 0 0 1 P U bJ C H
R A F 0 0 0 1
S U P X N A X T S X M A X
N ? W 8F 7 (fi
A P 1 0 / *

* 6 7 C R F. A S £ X
/

N £ 0 0 0 o 0 0 0 0 0 / c 0 N S 7 A N T S
X M A X 0

°\
u (J 0 0 0 / 0 0

,

A

/ 0 1 0 4 0 0 0 0 J A ul-
—L J 0 1

'

C O L

-16-

* ay *-/3x ' ̂

1

1

SETX
11

EXAMPLE CALCULATE F OF X

^ ££••£? .-" ' ' £*-

BLR 1951 I960 READ AREA
/&< ̂ £/^ ' t r ~ f"6-. v
REG P0027 0028 PUNCH AREA
RAU ONE IF SET X

P0001 TO 1
CALCULATE

F

MPY A
/& a C-
ALO B
RAU 8002
MPY P0001

STL P0002

PCH P0001

RAU P0001

SUP XMAX
/wri-
NZU * 9876

AUP 101 JB INCREASE X

PUNCH

IS X MAX

1

-;0NE

XMAX

101

00

00

00

0000

0000

0000

0001

0100

0101

CONSTANTS

1
2
3

h
5
6
7

8
9
10
11

12

13

Hi

15

16

17

18

19

20

21

oootf.
y &&//
&6 3c?
£>£>o 3
C>&<*S
t>oi9
Oc>y<y
C>oo*?

6 03/
c>c> ̂ 7

Oof f

0o$?

\ oofe

0011
0030

0003
0061
0019
001*7

0005

0031

0037
0081

0039

001*3

60 0007
cil 0027
yl9 0033
/}/~o
15 0006
60 8002

0027 ao 0000

20 0028
pert
71 0027

0027

iili 001*3

"10 001*6

0011
0030
0003

0061
0019
001*7
0005

0031

0037

0081

0039

9876

0011

A& ay&o'jr* tx

yp /j' -t j. y x /4- a & f ><~ y^cuu,<^

fo £0 jCxA

fey.*/ $ y4 x t

#2* + ̂-17-
jy xf/oyc7 00 j.#
"s« j" 4+&+-L

£•? •" X Of £c '6^'
y - /ot?

~tt> —£? / >*- Crt-fZfi*AJ ; /° f =- >2<

0007 00 0000 0001
4/Dr

0031* 00 0000 0100
Wf>

001*6 00 0000 0101

- O 0 5 3
^ cr><3><=?
CO ^ O <o>o o

OO 2-

A P P E N D I X A

SYMBOLIC OPERATION CODES*

65 O-SOAP3-English
00 NOP* No operation
01 HLT Halt
02 UFA Unnormalized Floating Add
03 RTC Read Tape Check
04 RTN Read Tape Numeric
05 RTA Read Tape Alphabetic
06 WTN Write Tape Numeric
07 WTA Write Tape Alphabetic
08 LIB Load IAS Block (Core)
09 LDI Load IAS
10 AUP Add Upper
11 SUP Subtract Upper
12 Not Used
13 Not Used
14 DIV Divide
15 ALO* Add Lower
16 SLO* Subtract Lower
17 AML Add Magnitude to Lower
18 SML Subtract Magnitude Lower
19 MPY Multiply
20 STL Store Lower
21 STU Store Upper
22 SDA Store Data Address
23 SIA Store Instruction Address
24 STD Store Distributor
25 NTS No Tape Signal
26 BIN Branch Inquiry
27 SET Set Buffer Ring
28 SIB Store IAS Block
29 STI Store IAS
30 SRT Shift Right
31 SRD Shift and Round
32 FAD Floating Add
33 FSB Floating Subtract
34 FDV Floating Divide
35 SLT Shift Left
36 SCT Shift and Count
37 FAM Floating Add Magnitude
38 FSM Floating Subtract Mag*
39 FMP Floating Multiply

6 5 O-SOAP 3-English
40 NZA Non-zero Index Register A
41 BMA Branch Minus IR A
42 NZB Non-zero Index Register B
43 BMB Branch Minus IR B
44 NZU Non-zero Upper
45 NZE Non-zero Accumulator
46 BMI Branch Minus
47 BOV* Branch on Overflow
48 NZC Non-zero Index Register C
49 BMC Branch Minus IR C
50 AXA Add to IR A
51 SXA Subtract from IR A
52 AXB Add to IR B
53 SXB Subtract from IR B
54 NEF No End of File
55 RWD Rewind
56 WTM Write Tape Mark
57 BST Backspace Tape
58 AXC Add to IR C
59 SXC Subtract from IR C
60 RAU Reset Add Upper
61 RSU Reset Subtract Upper
62 Not Used
63 Not Used
64 DVR Divide and Reset
65 RAL Reset Add Lower
66 RSL Reset Subtract Lower
67 RAM Reset Add Magnitude
68 RSM Reset Subtract Magnitude
69 LDD5L0D* Load Distributor
70 RDl^RCD Read Card (Input l)
71 WRl^PCH Punch (Output l)
72 RC1 Read Conditional 1
73 RD2 Read Input Area 2
74 WR2 Write Output Area 2
75 RC2 Read Conditional 2
76 RD3" Read Input Area 3
77 WR3 Write Output Area 3
78 RC3 Read Conditional 3
79 RPY Reply

-18-

650-S0AP3-English

80 RAA Reset Add to IR A
81 RSA Reset Subtract from IR A
82 RAB Reset Add to IR B
83 RSB Reset Subtract from IR B
8J4. TLU Table LookUp
8£ SDS Seek Disk Storage
86 RDS Read Disk Storage
87 WDS Write Disk Storage
88 RAC Reset Add to IR C
89 RSC Reset Subtract from IR C

6£0-S0AP3-English

90 BDO+ Branch Distributor 10
91 BD1 Branch Distributor 1
92 BD2 Branch Distributor 2
93 BD3 Branch Distributor 3
9k BDh Branch Distributor k
95 BD5 Branch Distributor 5
96 BD6 Branch Distributor 6
97 BD7 Branch Distributor 7
98 BD8 Branch Distributor 8
99 BD9 Branch Distributor 9

* 0fs must be alphabetic O's, not numeric zeroes.
* Either 0 or zero is acceptable.

SUMMARY OF PSEUDO OPERATIONS.

Sign- Loc - OP - Data - Inst

Si

i
i

" >
i
i
nnnn
i
i

o
i
i
i
i
i
i
i
i
i

equiv
a
i

Sign

Sign a

n

(various)
meanings

ALF

OCT
COR
DRC
DRU
DUP
EQU
FIV
HED
MIX
NXT
OFF
ONE
ONN
OPT
PAT
PIK
RST
PUD
REG
REP'
SCR
SER
SYN
TRY
UND
UNP
YYY
999

XXXXX
FWA

nnnn
FWA
FWA
i

SYMBL
SYMBL
i

LWA

nnnn
i
i
i
nnnn
i

equiv
i

SYMBL
0 FWA
DA
i
i

SYMBL
i
i
i

(various)
meanings

i
i
i
i
i
i

equiv
i
i
i
nnnn
i
i
i
i
i

equiv
i
i
LWA
IA
i
i

equiv
i
i
i

i-ignored nnnn-four digit number -determines type of EQU or SYN desired
*-card does not appear in output —heading charactor -alphabetic or numeric

-19-

6£0-S0AP3-English

80 RAA Reset Add to IR A
81 RSA Reset Subtract from IR A
82 RAB Reset Add to IR B
83 RSB Reset Subtract from IR B
8U TLU Table LookUp
8£ SDS Seek Disk Storage
86 RDS Read Disk Storage
87 WDS Write Disk Storage
88 RAC Reset Add to IR C
89 RSC Reset Subtract from IR C

* 0*s must be alphabetic 0fs, not
• Either 0 or zero is acceptable#

SUMMARY OF PSEUDO OPERATIONS.

6£0-S0AP3-English
90 BD0+ Branch Distributor 10
91 BD1 Branch Distributor 1
92 BD2 Branch Distributor 2
93 BD3 Branch Distributor 3
9U BDh Branch Distributor U
9£ BD£ Branch Distributor 5
96 BD6 Branch Distributor 6
97 BD7 Branch Distributor 7
98 BD8 Branch Distributor 8
99 BD9 Branch Distributor 9

numeric zeroes.

Sign- Loc - OP - Data Inst

i i ALF XXXXX i
i i BLA FWA LWA
i i BOP i i
i i OCT nnnn i
i i COR FWA i
i nnnn DRC FWA i
i i DRU i i
i i DUP SYMBL i

Sign a EQU SYMBL equiv
i i FIV i i
i i HED e i
i i MIX i i
i i NXT nnnn nnnn
i i OFF i i
i i ONE i i
i i ONN i i
i i OPT nnnn i
i i PAT i i
i equiv PIK equiv equiv
i a PST i i
i i PUD SYMBL i
i i REG p FWA LWA

Sign i REP DA IA
i i SCR i i
i i SER i i

Sign a SYN SYMBL equiv
i i TRY i i
i n UND i i
i i UNP i i

(various) YYY (various)
meanings 999 meanings

i-ignored nnnn-four digit number -determines type of EQU or SYN desired
*-card does not appear in output -heading charactor -alphabetic or numeric

-19-

A P P E N D I X B

ADDITIONAL FEATURES OF CASE SOAP III FOR USE WITH EXTRA 650 ATTACHMENTS.

INDEXING. When the D- or I- address is to be modified by an indexing register,
the corresponding TAG column (56 or 62) is used to indicate the appropriate
indexing register. Permissible tags are A, B, and C or 1, 2, and 3.^ SOAP
will automatically add the proper multiple of 200 or 2000 to all tagged
addresses unless they are not in the range 0000-1999 or 9000-9059.

Regions in the core may be defined using a REG card with the I-address blank.

>C0R: (Core Mode) This pseudo-op causes SOAP to stop optimum programming and
begin programming sequentially. While in COR mode all drum locations are

2 considered unavailable. Every undefined address is given a sequential equiv
alent (starting with FMA), while previously defined addresses are assembled

3 as usual. FWA is punched as an absolute address in the I>-field. COR mode is
terminated by a COR card with D-address blank.

>DRC: (Drum-Core Mode) DRC is used to program sequentially on the drum, when
the program will actually be block-transferred with LDI and executed in the *
core. Rules: 1. FWA must be a core address; it is punched absolute in the
D-field. 2. The absolute drum address which corresponds to FWA is punched in
the L-field. 3. The instructions are assembled exactly as they are when in
COR mode, except that all L-addresses in the range 9000-9059 are translated
down to the corresponding drum location in the output. 4. DRC is stopped by
a DRC card with blank D-address or ary COR card. When DRC is stopped, the
translation of location addresses is stopped and all equivalents which were
assigned are the core-equivalents, not the drum equivalents.

1. The letters J, K, L, S, and T should not appear in a tag column in any case.
Other letters and numbers, except the permissible tags above and P, are
ignored.

2. This may be superseded by a P-tag (see PIK)
3. FWA need not be a core location, but if it is a drum location the sequential

equivalents assigned are not reserved. The machine will stop if a meaning
less location is encountered.

4. All drum locations used by DRC should be block-reserved at the beginning of
assembly. Symbols may be redefined to the corresponding drum addresses
after DRC with the special EQU cards described in Appendix C.

-20-

A P P E N D I X C

ADDITIONAI FEATURES OF CASE SOAP III FOR USE IN ADVANCED PROGRAMMING.

8QOX INSTRUCTIONS AND TYPE 2 CARDS. Instructions which take place in
locations 8000-8003, 8005-8007 may be optimized by using the address as
an absolute location address. Instructions which take place in eraseable
locations but do not need to be loaded into these locations may be
optimized by placing them on Type 2 cards. Type 2 carls are treated just
as ordinary cards except that they (along with 800X instructions) are not
loaded into the location specified when the output deck is loaded. (Word
1 on normal output cards is 69 1954 1953; on 800X and Type 2 cards it is
69 1954 8000. In five-per-card output the instructions do not appear at
all.)1

HEADING.
>HED: Heading is used to avoid duplicity of symbols when several programs
or several sections of a single program are to be assembled together. The
need for heading is paramount if several persons have contributed to a
program. Heading is accomplished in SOAP by the automatic insertion of a
heading character into the right-most position of symbolic addresses which
have this position blank. (When the right-most column is non-blank, the
symbol is not headed. Program points are not headed.) The heading char
acter is punched in the symbolizer part of the D-address of a HED card (it
may be ary character acceptable to the alphabetic device or special
character attachment if used) and all other columns are ignored. This

p
heading is applied to every symbol thereafter until another HED card,
appears or the program ends. To "turn off* the heading, a HED card with
no punch in column 51 may be used. If within the section head by "A* it
is desired to refer to the symbol "TAXbb" (b indicates a blank column)
which appears in a section headed by HFtt, the symbol "TAXbF* should be used.

1. Caution: No 800X or Type 2 card should be the last instruction before
a blank card, ONE, PAT, PSf, or BOP operation if five-per-card punching
is being used. If REP is to be a correction to either a TYPE 2 or an
800X instruction, it should be punched Type 2.

2. Or SCR
-21-

>PIKs PIK provides better optimization by keeping an alternate availability
table which may be entered when desiredo Suppose, for example, the programmer
wishes to place a certain number into temporary storage, and he has several
locations to choose between for this storage„ He does not know in advance
which will be placed most optimally of these* By entering these locations
into the PIK table, he can then get the one which is best suited„ The PIK
table is c used when an undefined symbol or forward program point in D— or
I-address is tagged with a "P," Locations are placed into the PIK table with
the PIK pseudo-op, which takes the equivalent of any absolute, regional,
program point, or symbolic address in any of the L-, D-, or I-addresses, and
puts it into the PIK table,, Any of these three fields may be left blank; up
to three locations can thus be put into the table per PIK card*1

In our example> suppose the programmer wants to choose between the
temporary storage locations H0LD1, H0LD2, and B0004© He first gives the
pseudo-op

H0LD1 PIK HOLD2 B0004 and then
follows with his instruction

STL 7F P where 7F was
currently undefined * Later, when he wants to bring his number back into
the lower accumulator, he instructs

HAL 7F which may
then be followed by 7 UND 9 freeing
program point 7 for future use© The equivalent assigned to 7 was removed from
the PIK table as soon as it was picked; two locations still remain in the
table„

>UNPs (Un-PIK) The entire PIK table is cleared (similar to DRU)0

An undefined address tagged with a P will take precedence over COR mode (see
Appendix B) and may thus be used to obtain a drum address during COR pro
cessing © The PIK table will accommodate a maximum of five locations in each
of the 50 drum levels, or a total of 250 locations<> If a tagged address is
given and the PIK table is empty, SOAP will stop (0222).

1© All program points must be of the forward or backward variety on a PIK
card, even when placed in the L-address© All addresses on a PIK card
must be defined© Cautiong A givenJLocation must not be entered into the
PIK table twice before clearing the table, for it may then be used
twice© The PIK table differs from the ordinary availability table in
this respect© Processing of a PIK card goes from left to right; so, for
example, if a 0555 stop occurs because of an undefined symbol in the D-
address, any address written in the L-address has already been processed
and should not be rewritten on the correction card (the I-address should
be left unaltered in this case)©

-22-

>NXT§ Another aid to optimization is the pseudo-op NXT, which specifies in

what way the next instruction is to be optimized. Occasionally an unusual

situation arises in which optimization should take place contrary to the

usual rules, The new optimizing rule for the next instruction only (specified

on a NXT card) is given in the forms

L even, D • L + aa D even, I * D + yy
L odd, D • L + f3{3 D odd, I • D + 66

where aa, {3(3, yy, 66 are two-digit numbers® The four-tJigit numbers

aapp and yy66 are punched in the absolute parts of the D- and I-address

fields, respectively. Examples; To optimize the instruction

BOV

where both D- and I-addresses are blank, (only the D-address will be optimized

by normal rules, and if the instruction takes the I-address branch, requiring

two extra word-times, an entire drum revolution will be wasted) give the pseudo-

instruction NXT 0505 0000 (the I-address

could have been anything in this case). The sample program given at the

end of the main portion of this manual may perhaps run a little faster if the

pseudo-command NXT 0000 4747 were given before the PCH

instruction,

>EQU extended; lo When the sign of an EQU card is minus, the complement

(modulo 10000) of the equivalent in the I-address is assigned to the symbol

(or program point) in the D-address,

Zo When the L-address of an EQU card is non-blank, the sum of the equivalents

of the D- and I-addresses is assigned to the symbol or program point in the

L-addressA program point in the L-address should be a forward

program point (in spite of its being in the L-address),

3, When the L-address of an EQU card is non-blank and the sign is minus,

the difference of the two equivalents, D-address minus I-address, is assigned

to the symbol or program point in the L-address,

I, Processing of EQU and SYN proceeds from right to left (I-address first, etc,)
rather than from left to right as in ordinary operations,

-23-

All equivalents are positive modulo 10000 (carries are dropped).

Exampless
EQU NEG 8002

A EQU B C
- 3F EQU 4F 0001

EQU SYMBL SYMBL
X EQU X X

In the first example, NEG is given the address equivalent 1998. The

second sets the equivalent of A to the equivalent of B plus the equivalent

of Co In the third examples the equivalent of 4F minus 1 is assigned to

program point 3F. (4F must be currently defineda 3F undefined as in or

dinary EQU.) Example number four sets SYMBL?s equivalent equal to the

complement of its former value. The last example sets X's equivalent to

twice its previous value. It must be remembered that this arithmetic is

done on the addressesa not on the values of the numbers in those addresses.

SYN is exactly like EQU extended except that the final equivalent

assigned is reserved and must be in the range 0000-1999.

LIBRARY ROUTINES. Several pseudo-ops have been included for writers of

library routines which are to be SOAPed with the programs of others.

>SCR§ (Scramble) This makes very sure that no symbols of a library

program will match symbols of another program. The constant 4040050598

is subtracted from the alphabetic representation of all symbols which

have the right-most character blank9 thus making the resulting '•symbol*

different from any that could possibly be reproduced in alphabetic

representation. (SCR is similar to HEDS only with a more complex
wheading character." It is stopped by a HED card with column 51 blank.)

All symbols under the influence of the SCR card must have a number or

letter in the symbolizer part if they are to be scrambled (to avoid

negative symbols).

D̂UP§ Groups of library subroutines often have common instructions which

should not be repeated if two similar subroutines are both used simul

taneously. DUP allows these common portions to be coded in all symbolic

decks,, but used only the first time they occur in the SOAPing.

Rules: If the symbol specified by the D-address is not in the
symbol table, procedure is normal5 if this symbol is already defined,
all succeeding cards are completely ignored by SOAP except types 1 and
3. ^he type 3 stops the effect of DUP (see below).

>OPTr This is for portions of a library routine which are optional
and can be omivtedj OPT avoids the making of several decks, sane with
and some without these portions. An absolute four-digit number, nnnn,
is punched in the D-address3 the machine will halt, displaying this
number (as OOOOOOnnnn) and 1996 in the address lights. The operator
at the console now chooses whether he wishes to include the next portion
of the program or not, by adjusting the sign of the console switches
and pushing program start. If the sign is minus or the switches are all
zero, all succeeding cards are ignored until a type 3 card comes along
as in DUP. If the switches are positive and non-zero, normal operation
occurs, and the optional portion of the program is included. The
number nnnn is used to distinguish between several OPT stops which might
occur in the same program.
Type 3 Card: A type 5 card is exactly like a type 1 except that it
stops the rejection mode which might exist because of DUP or OPT,

EXTRA PSEUDO-OPS
>999 and TIT: Additional pseudo-ops which might be found useful for
local requirements, may be easily added to the user's CASE SOAP III
deck merely by the addition of several cards Just before the last card
of the SOAP deck. Space in the symbolic operation dictionary has been
left to accommodate pseudo-ops having the call-letters 999 and Y5T. There
are approximately 15 storage locations available on the drum, 50 of them
in sequence, and the use of the more than thirty subroutines within SOAP
will facilitate coding of these routines. Examples of such additions
would be a "Block-PIKw or a block reservation or availability between
symbolic address limits, etc.

-25-

A P P E N D I X D

OUTPUT CARD FORMATS.

Normal. col. It 12 punch
cols. 1-10*69 195k 1953+
cels.l7-20tcard count
cols.21-30:2U L 8000+
cols.31-U0t instruction
col. UOs sign of instruction
cols»Ul-72rinput reproduced

Type 2 and 800X. (same as normal except cols. l-10r 69 195U 80000+)

Pseudo-ops (except ALF and REP) and types 1 and 3.

(same as normal except cols. l-10r 00 0000 8000+
cols.21-U0r blank
col. 73s 9 punch)

PST output: (same as pseudo-ops except an additional 9 punch in col. 7U)

PAT output: col. Ulr 12 punch
cols. 1-10: 00 a a+k50 (a is the drum level 00-U9 in each band)
cols.11-20: availability for a, a +50, a +100, ..., a+U50
cols.21-30: 00 a+500 a+9£0
cols.31-U0: availability for<x+£00, ..., a+9£o

cols.71-80: availability for a+1^00, ..., a+19^0

Five-per-card output:

cols. 1-6: 888888
cols. 7-10r card count
cols.11-20: 1-1
cols.21-30: 1-2
cols.31-U0r 1-3
cols.Ul-50: I—U
cols.£l-60: I-£
cols.6l-6Ur L-l
cols.65-68: L-2
cols.69-72: L-3
cols.73-76: L-lj.
cols.77-80r L-5
cols.7,10,70,80: 12 punches.

1-1 through 5 are the assembled instrue-
tions, with signs over the units digits

L-l though 5 are the locations corres
ponding to the instructions

-26-

A P P E N D I X E

Five-per-card loading routine. Uses locations 1951-1960 and 1977-1998,

All signs are positive. Console setting to load is 70 1951 8888 +

Card 1 Card 2 Card 3 Card 4
69 1951 1955 10 1955 1998 65 1957 1987 22 1980 1986
69 1952 1956 69 1982 1985 30 0002 1996 65 1989 1993
69 1953 1957 69 1951 1980 69 1980 1988 15 1978 1984
69 1954 1958 24 1989 1991 24 8888 1990 00 0001 0000
24 1997 1952 70 1997 8888 24 1991 1998 24 1988 1998
24 1998 1953 24 1979 1999 24 1987 1999 24 1986 1999
24 1999 1958 24 1982 8002 24 1996 8002 24 1993 8002
65 1954 8000 24 1985 8003 24 1980 8003 24 1978 8003

Card 5 Card 6 Card 7 Card 8
20 1989 1992 10 1957 1981 35 0004 1996 (first
30 0004 1977 16 8002 8001 70 1979 8888* card of
15 1983 1989 30 0008 1996 five-per
15 1889 0042 30 0004 1996 £X3E3E£SBE8E££ -card
24 1984 1998 24 1990 1998 24 1997 1998 load
24 1992 1999 24 1981 1999 24 1998 8001 cards)
24 1977 8002 24 1994 8002

cards)

24 1983 8003 24 1995 8003

* This I-address may be changed to transfer to another location on
non-load if desired.

All addresses in the 1800ss and 1900ss may be translated into another
band by subtracting the proper multiple of 50; the addresses in
card 1 and in word one of card 2 should be left untranslated (along
with the I-addresses of words five and six of all cards) if the
console setting is to remain the same.

All above cards must be load cards.

-27-

I N D E X

Absolute addresses...... ... 4
Acknowledgments 1
Addresses, defined and undefined 9
Addresses, types of....o*...... 4,5,6
ALF............. 6,7,19
Appendix Aooooooo....o...ooooo.o 18
Appendix B........ 20
Appendix C......... ... • 21
Appendix Do...........oo.o...... 26
Appendix E.. 27
Assembly Decko........ • 13
Availability.• «. .. 7
Availability Table......... 9,14,26

BLA 00o0000..0.0000...0.00»00.0 7,19
Blank addresses 4
Blank card 12
BLRo o o o o o . o o o e a o o.oo.oo.ao.... 7,19
BOP........ .12,13,19

Capacity. 11
OCT.... 13,19
Constants 6
COR..... 19,20
Core mode 20

D-address 3
Data...... 6,7
Defined and undefined, meaning.. 9
DRC 19,20
DRU 0........00000 8,19
Drum-core mode 20
Dry run......................... 14
D TIP 0 00. 0 0 0 .00.000.000...000 19 , 24 ,25

EQU.o o o o o o o o o o o o o o o o o e o e 10,19,23,24
Error Correction.ooo.oo.oooo 15,16
Example program............. 16,17

FIVe o e o . e e . o . o . o o o o . o o o . o o o . 12,19
Five-per-card output........ 11,12
FWA and LWA. 7

Heading......................... 21
HED o o o o o o o . o o o e o o o . e . o o o o . . . 19,21

3
................ 28
................ 20

I-address
Index
Indexing.

L-address

o o o o o o o o

Library routines.«... 8,24,25
Loading routine......... 27

Machine operation............ 13,15

NXT.......................... 19,23

OFF.................. 13,19
ONE..................... 12,19
ONN 13,19
Operation code........... 2,3,18,19
OPT...... 19,25
Optional transfer instruction... 12
Output....... 11,12
Output formats.................. 26

PAT..................... 9,12,19,26
PIK.......................... 19,22
Program points..... 5,9
Pseudo-operations............. 7,19
PST,SER. 11,12,19

REG.. 8,9,19
Regional addresses. 4
Relocatable routines.. 1,8
REP..... 15,19
Restarting.......o........... 15,16
Running the program........ 13,14,15

SCR 0000.0.0000000000000000000 19, 24
Sign of console switches........ 12
Sign on input card.............. 3
SOAP, meaning of................ 2
Speed of assembly0000000..000.00 11
Stops O O O O O O O O O O O O O O O O O O . OO O O O 14,15
Symbolic addresses........... 5,6,9
Symbol tableo000000000.000000 11,14
SINoo.oo.oooo.oooo.ooe. 10,19,23,24

T a g S o e o . 3 , 2 0 , 2 2

Transfer instruction..12
Type cards.o.oo.oooooooo.oo.oooo. 3
Type looooooo...oooooo.ooooo.oooo 12
Type 2oeeoeeeoooooooooo.o.ooo.ooo 21
Type 3 o o o o o o o o o o o o o o o o o . o o o o o o o o . 2 5

UND
UNP
IYY

o o o o o o o o o
. 10,11,19
.... 19,22

OOOOO. 0.0. 0 0 0 0 . . 0 ..0. . 0 0 . . 19,25
800X instructions... 21
999 19,25

-28-

