
S MANUAL
Instructo Paper Computer

INSTRUCTO/McGraw-Hill

Output A Output B

Program Storage

Dedications and Acknowledgments

This work is dedicated to a small group of people who are in many ways
responsible for its creation.
To my Mom and Dad, who somehow managed to guide me through the
younger years of my life, and made sure that I at least finished high school at
a time when I cared less.
To my dear wife, Helene, whose limitless capacity to absorb written material
was not only instrumental in my coming to Lower Moreland Middle School,
but in my locating Instructo/McGraw-Hill as a publisher for this work.

To my children, Freddy and Diane, who often wonder what Dad is writing
about most of the time.
To the administrators of Lower Moreland Middle School, in Huntingdon
Valley, Pennsylvania, who have afforded me the degree of academic freedom
necessary to create a work such as this, and to Dr. Barbara Flexer, a colleague
of mine, who inspired me through our many mathematical discussions, and
who did a great deal of proofreading on some of the early manuscripts.

MANUAL

Written and Developed by
Fred C. Matt

INSTRUCTO/McGraw-Hill ffii
Paoli, Pennsylvania 19301 l«RII

ERRATA

The operation of the Paper Computer is not affected by the incorrect page numbers printed
your Operator's Manual.

The correct page numbers are circled below.

P3Q6 3 Program instructions, using the Mnemonic List, will direct
the operator through various exercises which will result in
meaningful information being printed on one of the Output
vtrinc Fnr mnrp detailed step by step directions, see

pagfs9 and 10 irythis book.

3. Cut five 1'//' strips from an 8V2" * 11" blank sheet of paper
or use the strips provided on pa(fe 15.1j)sert one each in
the slots of Input B, Register A, Register B, Output A,
Output B. (See diagram.)

a Program (Programs are located on pag(fs 17 to]
24) <y)d a Main Storage Unit sheet (pa^e: 13)'
computer by using four paper clips as showrTbhltfw. (The
Program page must be folded in half lengthwise.)

page 9 RUNNING A PRACTICE PROGRAM — STEP BY STEP

To learn how your computer operates, follow the directions
below, checking off each one as you complete it. Before you
begin, cut out or repro^uce-^oauiiip'e copies are desired), the
Mnemonic List (pa^es 11 and 12)yThe Mnemonic List should
be kept with the computer tor easy reference.

1. Cut out or reproduce pa(qe1TFpld it in half and
clip Practice Program A inft fheProgram Storage
Unit of your computer. Read the directions at the
top of the program and return here to check off this
step before you continue.

Page 10 25. Run Practice Program B. If you have trouble doing
Program B, check the Flow Chart on &£ge 8, ofthe
TO RUN IPC directions on this pageV • —

Page 17 Practice Program A
Practice Program A gives you an opportunity to see just
how easy it is to operate your paper computer. Fold this
page down the middle so only Practice Program A
shows, and place it in the Program Storage Unit of your
computer. Then, go back to where you were on jpgge \

CONTENTS

Introduction to Instructo Paper Computer (IPC) 3

Overview of IPC 3

Assembly Directions for IPC 3

About Electronic Computers and IPC 4-7

IPC Operation Flow Chart 8

Running a Practice Program — Step by Step 9-10

Mnemonic List 11-12

Main Storage Unit Sheets 13-14

Input, Output and Register Tapes 15

Programs 17-24

How to Write a Computer Program for IPC 25-31

Suggestions for Future Paper Computer Programs 32-34

Answers to Programs 35-39

Project Editor/Manager — Eileen F. Moyer

Editor — Carole F. Charters

Graphic Designer — Carole Smith

Copyright © 1979 by Instructo/McGraw-Hill, Inc.
ISBN 07-530136-9

INTRODUCTION TO INSTRUCTO PAPER
COMPUTER (IPC)

Welcome to what may be your first experience with
computers and computer programming. What you are about
to learn will be challenging and rewarding. If you learn it well,
and if you really understand how to program and operate IPC,
then you will be ready to start learning about the real
electronic machines that control so much of the world we live
in. Their operation is not so different from that of your
Paper Computer. Their main advantage is that they can do
millions of operations each second with very few, if any,
errors.

In the world of the future most people will be computer
literate. It will be important for people to know how to operate
and use computers, because computers will affect all aspects
of our lives. The future is yours, and this computer is a first
step toward computer literacy.

OVERVIEW OF IPC
IPC has been designed to give students an educational tool

with which they can use basic skills to learn how computers
function.

This manual will be your guide to understanding how IPC
operates. The components of the manual include Programs,
Mnemonic List, detailed step by step operating procedures
and flow chart giving a simplified explanation.

Also included are Main Storage Unit sheet, Register tapes
and information about electronic computers. All pages may be
reproduced for class distribution, or cut out for use by an
individual.

Beginners will need the Mnemonic List to operate the
computer. As the operator becomes more familiar with IPC,
the Mnemonic List will become less necessary.

Program instructions, using the Mnemonic List, will direct
the operator through various exercises which will result in
meaningful information being printed on one of the Output
strips. For more detailed step by step directions, see
pages 7 and 8 in this book.

To assemble IPC follow directions below.

ASSEMBLY DIRECTIONS FOR IPC
1. Carefully separate the nine slides which are attached to

your computer.
2. Place the slides in the computer as shown in the diagram

below. Bend up the bottoms of the Jump Switch slides.
3. Cut five 1 W strips from an 8V,V x 11" blank sheet of paper

or use the strips provided on page 13. Insert one each in
the slots of Input B, Register A, Register B, Output A,
Output B. (See diagram.)

4. Attach a Program (Programs are located on pages 15 to
22) and a Main Storage Unit sheet (page 11) to the
computer by using four paper clips as shown below. (The
Program page must be folded in half lengthwise.)

page 3

ABOUT ELECTRONIC COMPUTERS AND IPC
Your computer can do almost anything a real electronic

computer can do, but it works using pencil and paper instead
of electricity and integrated electronic circuits. The following
four pages will tell you how the components and operations of
real computers compare to IPC.

Complicated devices, like automobiles, televisions, rockets
and computers, are made from many separate units, all
working together. In an automobile, for example, the fuel
system brings gasoline to the carburetor; the carburetor then
produces a mixture of air and gasoline which the motor burns
for fuel; the motor turns to produce mechanical power; and the
transmission decides how this power is used to turn the
wheels of the car. A car also has a suspension system, a
cooling system and an electrical system, to name just a few.
An automobile is made up of many separate systems; each
having its own special job which contributes to the smooth
operation of the machine.

When a machine is made up of many separate units, it is said
to have a modular design. Most electronic computers have a
modular design, as they consist of many separate units, all
working together through a complex system of
interconnecting wires. Some of these wires are part of the
control and timing system which tells each unit exactly when
to do its job. Other wires are part of the power system, for they
carry electrical energy to the electronic components in the
various units. Still other wires are grouped together into a
system called data busses.

Data busses carry alphabetic and numeric information
between the units of a computer just like roads carry
automobiles between towns.

Your Instructo Paper Computer has a modular
design, but only the data busses are shown between the

units. The other interconnecting wires are left to your
imagination. Figure A is a simple diagram which
describes the modular design of IPC.

Look at your computer and notice that the Inputs,
Outputs, Registers, Compare Unit and Storage Units
are connected by a network of lines. These lines are the
data busses, and the seven dots on them show where
two lines connect. When two lines cross but do not
connect, there is no dot at the intersection.

Many data busses are like one way streets, allowing
information to flow in only one direction. On your
computer these directions are shown by arrows at the
ends of the busses. Notice, for instance, that
information can only flow into the Main Storage Unit
from Input A, Input B, Register A or Register B, as these
are the only four units connected to the Input of the
Main Storage Unit. Notice, too, that data cannot go from
any Input to the Compare Unit because there is no
connecting data bus between these units. Data cannot
go from an Output to a Register either, because it would
flow against the arrow under the Output. The pattern of
data flow for your computer is shown in the chart below.
Verify the flow pattern by following the data busses and
arrows between the units.

Data Flow

From Input A or Input B — »> To Storage Units

From Register A or To Storage Units or
Register B Compare Unit

To Register A, Register B,
From Storage Units Compare Unit,

Output A or Output B

Figure A

Input Units Storage Units Output Units

page 4

Storage Units The storage units of a large computer are
actually a collection of millions of identical storage cells or
locations. Each storage location has the ability to store and
remember a small amount of alphabetic or numeric
information. Every storage location has its own numeric
address by which it can be identified. Information travels to
and from the storage units of a computer through the data
busses. The entire process is generally governed by the
computer program.

Program Storage Unit Your computer has 100
storage locations, numbered from 00 to 99. The first 90
locations, numbered from 00 to 89, make up what is
called the Program Storage Unit. It is located on the left
side of your Paper Computer, and it looks likethefigure
below when a program is in place.

Notice that storage location 00 contains program
instruction step LDRA, 31. Storage location 01 contains
the instruction STRA, 90. Storage location 02 has the
instruction ADDA, 42, and so on.

Main Storage Unit On the right side of your
computer there are ten rectangular boxes numbered
from 90 to 99. These boxes, or storage locations, are
shown below. They make up what is called the Main
Storage Unit of IPC. You can store information in any
of these ten Main Storage locations by writing the
information in the appropriate box after crossing out
any old information that might have been there. Notice
that Main Storage location 90 contains the number 74,
and location 96 contains the word HELLO. Main
Storage location 92 had contained the number 349, but
that was crossed out when the number 17 was stored at

\e/
74

\95)

\sy

A
\92)

W 17
[97/

\93/ [98/

\94/ [99/

Inputs Computers are made to solve problems, but they
must be given enough information to know exactly what the
problem is and how to solve it. An input device provides a way
of entering information into the storage units of a computer. It
is similar to the way your eyes and ears feed information into
your brain. The zero through nine buttons of a small calculator
act as its input devices, while large computers rely on special
typewriters, magnetic tape and punched card readers, etc.
Information may be entered into some computers by talking to
them.

Your computer has two Inputs. Input A works like the
zero through nine buttons on a small calculator, while
Input B operates like the magnetic tape reader of the
larger machines.

Outputs Once a computer has solved a problem, it must
have a way to communicate the answer. It does so by using an
output device which provides a means of getting information
out of the storage units. The outputs of a calculator are the
small lights where numeric answers are displayed. Your voice
is an output for your brain. High speed printers and television
displays are common output devices on large computers.
Many computers can actually talk quite well in several
languages.

Your computer has two Outputs. They are called
Output A and Output B. IPC will give you a message and
some information by instructing you to write certain
words and numbers on the strips of paper showing
through the windows of the Outputs. When your
computer stops running a program, you can pull up the
Output strips and read the message, obtaining the
answer to the problem the computer solved.

Program Step Indicator A computer program is actually a
step by step set of instructions which tells the computer
exactly what to do. The program is created by a person called
a programmer.

In your computer, the program is stored in the
Program Storage Unit, starting at storage location 00
and ending somewhere before storage location 90,
depending upon how long the program is. When the
computer operates, it follows the program one step at a
time doing a specific task at each step. The Program
Step Indicator tells exactly what step of the program the
computer is doing at any given time.

Registers During the operation of any computer there are
countless arithmetic operations going on inside, and these
operations almost always involve the movement of data from
one unit to another. Information moving out of the storage
units, for instance, can travel over the data busses and be
loaded into small storage devices called registers in the
arithmetic and logic unit of the machine. Once in the register,
the data can be added to, subtracted from, compared to, etc.,
another number in a specified storage location. When the
arithmetic operations are complete, the results are put into the
register and sent over the data busses to be stored in the
storage units for future use.

page 5

Sample Program

00 LDRA, 31
01 STRA, 90
02 ADDA, 42
03 MULA, 37
04 LDRB, 42
05 JJC1.13
06 DIVB, 90
07 STRB, 92

IPC has two registers. They are Register A and
Register B, and either of them can be loaded with the
information contained in any specified storage location.
To load information into a register from a storage
location, determine what data is in that storage location
and write the same information on the paper strip of the
register, pulling up the paper strip to clear any
previously written data. To store information from the
register into a storage location, first determine what
data is in the register, then write the same information in
the specified storage location, erasing or crossing out
any other data that might have been there.

Compare Unit In the operation of a computer it is
frequently necessary to determine whether or not some
number is greater than (>), equal to (—), or less than (<)
some other number.

The Compare Unit of your computer is designed to do
this. When a number in either Register AorRegister B is
compared to a number in some designated storage
location (SS), the result will show on the slides of the
Compare Unit. This result can then be used in a
decision-making process that can change the number
in the Program Step Indicator and alter the sequence in
which the computer follows its program.

Jump Switches Three Jump Switches are located
on the left side of your computer and are lettered A, B
and C. Each of the switches can be set to the number 0
or 1. It is easy to see from the chart below that exactly
eight different settings of the three Jump Switches are
possible.

Jump Switches

program instruction, however, the computer can
test the setting of the Jump Switches and change the
number in the Program Step Indicator accordingly.

Certain programs, then, can be controlled to do
different things depending upon the setting of the Jump
Switches. For example, one program may be used to
calculate the area of a triangle if the Jump Switches are
set one way, while a different setting of the Jump
Switches can cause the same program to calculate the
area of a rectangle. In this way, it is possible to make one
program do at least eight different things by setting the
Jump Switches in different ways.

Index Counter The ability of a computer to search
sequentially through a list of data, or to use a table of numbers
in order, is referred to as indexing. Only the more advanced
machines have this ability.

Such a feature is built into your computer in the form
of an Index Counter which can be incremented,
decremented, and tested for zero by special program
instructions. Many repetitive or sequential processes
can easily be done using the Index Counter.

Start/Stop Switch Pushing the Start/Stop Switch of a
computer causes it to start following the program instructions
located in the Program Storage Unit. The program steps are
completed one at a time at the locations shown by the
Program Step Indicator.

Pushing the Start/Stop Switch while a computer is running
causes it to complete the program instruction step in
progress, and then to stop.

If you want to stop your computer in the middle of a
program and continue at a later time, follow the
directions below.

1. Complete the program instruction step you are
doing.

2. Set the Program Step Indicator to the next
program step.

3. Record the necessary information on a Program
Restart Record like the one shown below.

A B c

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

• •••
Program Restart Record

Input B Register A Regis

H" ••• Reg B SS

To understand the use of the Jump Switches you must
remember that a computer simply follows a set of
instructions called the computer program, one step at a
time, in order. Remember also that the Program Step
Indicator keeps track of these instructions and tells
which one is being done at any given time. With a special
page 6

To restart an unfinished program, start your computer
and continue the program exactly where you stopped
earlier, as shown on the Program Restart Record which
you filled out.

Reset/Clear Switch Most computers have a method of
resetting the machine and clearing out old data before
running a new program.

When you reset and clear IPC you should do the
following five things:

1. Set the Program Step Indicator to 00.
2. Set the Index Counter to 00.
3. Set Registers A and B to 0.
4. Set the Compare Unit slides to = .
5. Clear Output A and Output B.

Operating IPC The computer program should be
placed in the Program Storage Unit before your
computer is turned on.

After a program has been loaded into the machine,
operation begins by pushing the Reset/Clear Switch,
and then the Start/Stop Switch.

Once the Start/Stop Switch is activated follow these
four steps:

1. Look atthe number in the Program Step Indicator,
go to that location in the Program Storage Unit,
and see what program instruction step is stored
there.

2. Determine exactly what that program instruction
step instructs you to do and do it.

3. Add one to the count in the Program Step
Indicator, unless the program instruction step
required you to do otherwise.

4. Repeat the three steps above until directed to
stop. By that time some meaningful information
should have been printed on one or both of the
Output tapes. Pull up the tape(s) and read the
information.

The exact procedure is shown on the flow chart on the
following page. Start at the top of the chart and go
through itafew times.Then you will bereadyto runyour
first practice program.

page 7

RUNNING A PRACTICE PROGRAM — STEP BY STEP

To learn how your computer operates, follow the directions
below, checking off each one as you complete it. Before you
begin, cut out or reproduce (if multiple copies are desired), the
Mnemonic List (pages 9 and 10). The Mnemonic List should be
kept with the computer for easy reference.

1. Cut out or reproduce page 15. Fold it in half and
clip Practice Program A into the Program Storage
Unit of your computer. Read the directions at the
top of the program and return here to check off this
step before you continue.

2. Before the computer is used it must be reset and
cleared of old data. Make sure the Program Step
Indicator and Index Counter are set to 00, both of
the Compare Unit slides read =, Registers A and B
are set at 0, and Outputs A and B are clear.

3. Push the Start/Stop Switch to begin the operation
of your computer.

4. Remember that when a computer operates it
simply follows a set of instructions, one at a time,
in some order. This set of instructions is called the
computer program, and on your computer it is
located in the Program Storage Unit starting at
location 00, and possibly using the entirestorage
unit up to location 89. Notice that Practice
Program A, now in your computer, occupies only
twenty-three storage locations, since it starts at
location 00 and ends at location 22.

5. You have started your computer and you should
notice that the Program Step Indicator contains
the number 00. This tells you to look in location 00
of the Program Storage Unit where you should find
the program instruction step LDRA, 13. Verify this
for yourself.

6. Now you must find out exactly what LDRA, 13
means and do what is required to the units of the
computer. To do this, look up LDR*, SS on the
Mnemonic List. The t stands for an A or a B and
the SS represents any storage location address
from 00to99. In LDRA, 13, then, the * standsforan
A, and the SS equals 13. The entire instruction
reads, "Load Register A with the contents of
storage location 13." Storage location 13, on this
program, contains a 4.

7. You should have written a 4 in Register A. Since
the program instruction step did not require you
to alter the reading in the Program Step Indicator,
simply add one to its count, making the new
reading 01.

8. Repeat the procedure. Look at the number in the
Program Step Indicator, and go to that storage
location to see what program instruction step is
there. Since the Program Step Indicator now reads
01, go to storage location 01 and see what is there.

9. Location 01 contains the program instruction step
MULA, 14. Look up MUL*, SS on the Mnemonic
List and do what is required. Keep in mind that *
means either A or B, and SS is any storage location

number from 00 to 99. For MULA, 14, the equals
A and the SS is 14. This instruction reads,

"Multiply the number in Register A by the number
in storage location 14." There is a 6 in storage
location 14.

_ 10. Since the 4 that had been in Register A was
multiplied by the 6 that is in storage location 14,
the product 24 should now be in Register A. The
program instruction step did not tell you to change
the number in the Program Step Indicator, so add
one to its count, making the new reading 02.

_11. The Program Step Indicator now reads 02. Look
at storage location 02 where you should find the
program instruction step SUBA, 15.

_ 12. Look up SUB*, SS and figure out what you must
do. If you are correct, there should be a zero in
Register A when this program instruction step is
finished.

_ 13. Like the other program instruction steps you've
done so far, SUB*, SS does nothing to the count in
the Program Step Indicator, so just increase the
count by one before you continue.

_ 14. The Program Step Indicator should now read 03.
Look in storage location 03 where you should find
JAZE, 09.

_15. Every computer instruction that starts with the
letter J is called a "jump instruction." Each jump
instruction has the ability to alter the number in the
Program Step Indicator, causing the computer to
jump over a group of program instruction steps.
Since you are now working with the instruction in
location 03, look up J*ZE, SS and follow the
requirements given before returning to check off
this direction.

. 16. Since there was a zero in Register A when you did
JAZE, 09, the Program Step Indicator should now
read 09. Go to location 09 and verify that PROA, 17
is stored there.

_ 17. Look up PRO*, SS. Do what is required, andfinish
this program instruction step by adding one to the
count in the Program Step Indicator.

. 18. The Program Step Indicator now reads 10, so look
in storage location 10 where you should find
PROA, 18. Do what is required and finish the
program instruction step by adding one to the
count in the Program Step Indicator.

. 19. The Program Step Indicator now reads 11, where
you should find another PRO*, SS type instruct­
ion. Do what is required and finish the program
instruction step by adding one to the count in the
Program Step Indicator.

20. The Program Step Indicator now reads 12. Look in
storage location 12, determine what is to be done,
and do it.

(over)
page 9

21. The Program Step Indicator should still read 12,
but the computer was directed to stop operating.
There should be meaningful information on the
output tape. Pull up the tape. The message on
Output A should read as follows:

HELLO
l-M-A

COMPUTER

22. In the program you just ran, 4 and 6 were multi­
plied together and 24 was subtracted from the
product, leaving a zero in Register A. The program
instruction step, JAZE, 09 (jump to 09 if there is a
zero in Register A), caused the program to jump to
09 because there was a zero in Register A, and the
message "Hello l-M-A Computer" printed on
Output A. The portion of the program that was
jumped over was never done.

Run Practice Program A again. This time, make an error in
the arithmetic. Notice the difference in the output message.

23. Much of the power of a computer lies in its ability
to make decisions. In IPC these decisions are
made by the jump instructions. IPC is able to
check the numbers in its registers and make a
decision. To indicate a computational error in
Practice Program A, the error message, "you
goofed, try again" was printed.

24. Load Practice Program B into the Program
Storage Unit of your computer. You should find
the program on the same page that is now in your
computer.

25. Run Practice Program B. If you have trouble doing
Program B, check the Flow Chart on page 6, or the
TO RUN IPC directions on this page.

TO RUN IPC

1. Select and load a program into the Program Storage Unit.
2. Reset and clear the computer.
3. Start the computer.
4. Look in the storage location indicated by the Program Step

Indicator to see what program instruction step is stored there.
5. Determine what the program instruction step tells you to do and

do it.
6. Add one to the count in the Program Step Indicator unless told to

do otherwise.
7. Repeat the steps above until directed to stop.

page 10

MNEMONIC LIST
(with code explanations)

mnemonic ni-m'an-ik adj. Intended to assist memory

The Program Directions for IPC are written in a
mnemonic code to make the information easy to
remember.

SS is a placeholder for any storage location
number from 00 to 99.

Example: Program reads Mnemonic Code reads
\ }

00 ENIA, 90 00 ENIA, SS

When IN is used in place of the SS number it
means that the SS number should be taken
from the Index Counter,
e.g. 00 JUMP, IN means jump to the storage
location shown in the Index Counter.

* is a placeholder for A or B or C or I
as designated in Program Directions.

Example: Program reads Mnemonic Code reads

00 ENIA, 90 00 ENI*, SS

is a placeholder for 0 or 1 on the Jump Switches
as designated in Program Directions.

Example: Program reads Mnemonic Code reads

' ? 00 JJB1, 18 00 JJ #, SS

When a program requires you to do an Enter, Load, Print
or Store instruction, the information should be written
by hand into the designated unit.

(over)
page 11

Mnemonic Explanation
Code

ADD*, SS Add to the number in Register *(A or B)
the number in storage location SS.

CPR*, SS Compare the number in Register *(A or
B) to the number in storage location SS.
(Set Compare Unit to < or = or>.)

DIV*, SS Divide the number in Register *(A or B)
by the number in storage location SS.
Write the quotient in Register *(A or B).
Write the remainder in the other
Register.

DRT*, SS Replace the number in Reenter *(A or
B) by its digital root. (SS is not used.)

DVD*, SS Divide the decimal number in Register
*(A or B) by the decimal number in
storage location SS. Write the quotient
in the same Register.

ENI*, SS Enter information from Input *(A or B)
into storage location SS. (The Input tape
must be raised to the next number if
Input B is used.)

EXP*, SS Raise the number in Register *(A or B)
to the exponent, or power, in storage
location SS.

INDA, SS Add to the number in the Index Counter
the number in storage location SS.

INDL, SS Load the Index Counter with the number
in storage location SS.

INDS, SS Subtract from the number in the Index
Counter the number in storage location
SS.

JIBD, SS Jump to SS if there is data showing in
the window of Input B.

JJ*#, SS Jump to SS if Jump Switch *(A or B or
C) is set to the number #(0 or 1).

JUMP, SS Jump to SS. (Set the Program Step
Indicator to the number SS.)

J*EQ, SS Jump to SS if Register *(A or B) on the
Compare Unit is equal.

J*GT, SS Jump to SS if Register *(A or B) on the
Compare Unit is greater than.

J*LT, SS Jump to SS if Register *(A or B) on the
Compare Unit is less than.

J*NE, SS Jump to SS if Register *(A or B) on the
Compare Unit is not equal.

J*NG, SS Jump to SS if Register *(A or B) on the
Compare Unit is not greater than.

Mnemonic Explanation
Code

J*NL, SS Jump to SS if Register *(A or B) on the
Compare Unit is not less than.

J*NZ, SS Jump to SS if the unit indicated by *
does not equal 0. *(A or B) means
Register A or B; *(I) means Index
Counter.

J*ZE, SS Jump to SS if the unit indicated by *
equals 0. *(A or B) means Register A or
B; *(I) means Index Counter.

LDR*, SS Load Register *(A or B) with the
contents of storage location SS.

MUL*, SS Multiply the number in Register *(A or
B) by the number in storage location SS.

NOOP, SS No operation. Just add one to the
Program Step Indicator. (SS is not
used.)

PAB*, SS Print a mixed fraction on Output *(A or
B). The whole number comes from
Register A, the numerator from Register
B, and the denominator from storage
location SS.

PBA*, SS Print a mixed fraction on Output *(A or
B). The whole number comes from
Register B, the numerator from Register
A, and the denominator from storage
location SS.

PRO*, SS Print on Output *(A or B) the informa­
tion in storage location SS.

REV*, SS Reverse the number digits in Register
*(A or B). (SS is not used.)
Example: (543 becomes 345.)

SJ*#, SS Set Jump Switch *(A or B or C) to the
number #(0 or 1). (SS is not used.)

SQT*, SS Replace the number in Register *(A or
B) by its square root. (SS is not used.)

STOP, SS Set the Program Step Indicator to the
number SS and stop.

STR*, SS Store the contents of Register *(A or B)
into storage location SS.

SUB*, SS Subtract from the number in Register
*(A or B) the number in storage location
SS.

SWAP, SS Swap (exchange) the numbers in
Register A and Register B. (SS is not
used.)

page 12

\90/ \95,

\91) \96,

\92/ \9J/

\93/

\94/ ^1

page 13

\90/

\9y \96/

\97/

\94/

page 14

0 JZ
£ O Q.-Q
3 c = 0
13 -C
0- £
CO W
5 .9-O "O to

3 O) o

II
S 5 <D

3 Q-
o 0

- ^
3 CO

f I
51
~ 3

CO O

0

2 ^ = 5
3 E —
Q. 0 tl>
^ i co
8 S g
0 Q- "O
£ 2 - 5 5

o o
"" T?

>» Q- to Cw H— C O CO C ^ 0
S i t « <0 *
w e t :
^ i§

i «i
iS i s
< : 2 P- 3 °

O (0
OC m o UJ -O -p

5 E t 111 CO t:
en 9- cd i_ CO
O
< .C .52

to .3

to K- ~ to 5 O fl>
CL 0) o |_ 10 _
D
O E % o 2
D to ® a <2 °-
7 J a ^ r •» r~>

page 15

Practice Program A
Practice Program A gives you an opportunity toseejust
how easy it is to operate your paper computer. Fold this
page down the middle so only Practice Program A
shows, and place it in the Program Storage Unit of your
computer. Then, go back to where you were on page 7.

Storage Location (SS)

00 LDRA, 13
01 MULA, 14
02 SUBA, 15
03 JAZE, 09
04 PROA, 20
05 PROA, 16
06 PROA, 21
07 PROA, 19
08 STOP, 08
09 PROA, 17
10 PROA, 18
11 PROA, 22
12 STOP, 12
13 4
14 6
15 24
16 GOOFED
17 HELLO
18 l-M-A
19 AGAIN
20 YOU
21 TRY
22 COMPUTER

Practice Program B
Write down a secret number from 000 to 999. Then form
a new number by mixing up your secret number. Follow
these six steps. The number 726 will be used as an
example to show how each of the steps below is used.

1. Double the hundreds digit. (726) 2x 7 = 14
2. Add three to the results. (726) 14 + 3 = 17
3. Multiply that answer by five. (726) 5 x 17 = 85
4. Add on the tens digit of your original secret number.

(726) 85 + 2 = 87
5. Multiply this by ten. (726) 10 x 87 = 870
6. Finish forming this new number by adding on the

ones digit of your original secret number.
(726) 870 + 6 = 876
The new number is 876.

Pick your own secret number and mix it up according to
the six steps above. Then, by running the program be­
low and entering only your new number and your age,
the paper computer will be able to tell you the original
secret number that you named.

Storage Location (SS)

00 ENIA, 93 Enter new number.
01 LDRB, 93
02 ENIA, 97 Enter your age.
03 SUBB, 97
04 LDRA, 13
05 SUBA, 97
06 STRA, 97
07 SUBB, 97
08 STRB, 93
09 PROB, 93
10 PROB, 14
11 PROB, 15
12 STOP, 12
13 150
14 IS YOUR
15 NUMBER

page 17

Program #1 This is a simple practice exercise. If done
correctly, Output A should read as follows:

TESTING
1
2
3

THE END
If a mistake is made in the arithmetic or the comparing,
then the program will jump to an error routine and print
the word ERROR on Output B.

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

PROA, 21
LDRA, 20
STRA, 93
PROA, 93
LDRB, 20
ADDB, 20
STRB, 91
PROA, 91
STRA, 94
ADDB, 94
STRB, 94
PROA, 94
CPRA, 91
J ALT, 16
PROB, 22
STOP, 15
CPRB, 91
JBGT, 19
JUMP, 14
JUMP, 24
1
TESTING
ERROR
THE END
PROA, 23
STOP, 25

Program #2 This program will print several important
dates from the history of the United States. When
finished, check your dates.

00 LDRA, 38
01 MULA, 39
02 STRA, 90
03 PROA, 36
04 PROA, 90
05 ADDA, 40
06 STRA, 91
07 PROA, 33
08 PROA, 91
09 ADDA, 41
10 STRA, 92
11 PROA, 34
12 PROA, 92
13 LDRB, 42
14 MULB, 39
15 STRB, 94
16 ADDB, 92
17 STRB, 97
18 PROA, 37
19 PROA, 97
20 ADDB, 94
21 STRB, 99
22 PROA, 32
23 PROA, 99
24 LDRA, 38
25 MULA, 42
26 SUBA, 90
27 SUBA, 39
28 STRA, 97
29 PROA, 35
30 PROA, 97
31 STOP, 31
32 GOLD RUSH
33 PHILADELPHIA
34 INDEPENDENCE
35 CIVIL WAR
36 COLUMBUS
37 BRITISH WAR
38 373
39 4
40 190
41 94
42 9

page 18

Program #3 This is a program testing your ability to
add, subtract, multiply and divide. If you make no errors,
the word CORRECT will print on Output A. If you make
an error, such as forgetting to indicate the remainder
after dividing, the computer will print the word ERROR
on Output A. In that case, reset the computer and run
the program again.

Program #4 Pick one of the faces below and answer
the following questions by setting a Jump Switch to 1 for
YES, or 0 for NO.

Jump Switch A: Does it have a beard?
Jump Switch B: Does it have teeth?
Jump Switch C: Does it have hair?

00 LDRA, 19
01 ADDA, 20
02 LDRB, 21
03 STRA, 98
04 SUBB, 22
05 CPRB, 98
06 JBNE, 13
07 MULB, 19
08 DIVB, 20
09 STRB, 91
10 ADDA, 91
11 CPRA, 23
12 JAEQ, 15
13 PROA, 26
14 STOP, 14
15 PROA, 25
16 PROA, 24
17 PROA, 27
18 STOP, 18
19 47
20 13
21 183
22 123
23 228
24 U-R-A
25 CORRECT
26 ERROR
27 GENIUS

page 19

Run the program and the computer will tell you which
face you chose. £

J J BO, 07
JJC1, 14
J J AO, 05
PROA, 11
JUMP, 18
PROA, 12 <
JJB1, 18 *
JJCO, 22
J J AO, 17
PROA, 32
JUMP, 18
WEIRDO
IKE
DROOP
JJA1, 29
PROA, 13
JUMP, 18
PROA, 25
PROA, 20
STOP, 19
IS THE ONE
GRORF
J J AO, 27
PROA, 26
JUMP, 18
FLIPI
GRUNGE
PROA, 21
JUMP, 18
PROA, 31
JJC1, 18
RALPH
BONE

Program #5 This is a program showing how a person
is able to enter information into the storage units of a
computer. It works exactly like the 0 to 9 buttons on a
small calculator. Program step 00 asks you to enter any
number, N, from Input A, and to place that number into
storage position 90.
The computer will then calculate the first three nonzero
multiples of the number N and print them on Output B.
If you enter a 5, for instance, Output B will print the
numbers 5, 10, 15.

00 ENIA, 90 Enter N
01 ADDA, 90
02 STRA, 91
03 PROB, 91
04 ADDB, 08
05 CPRB, 09
06 JBLT, 01
07 STOP, 07
08 1
09 3

Program #6 Computers often seem able to read your
mind. Forthis program writedown any numberfrom Oto
I09. Then divide your number first by 10, and then by 11,
to determine what the remainders are in each case. By
using only these remainders (let's call them R10 and
R11), the computer can tell you the number you thought
of.
R 10 = The remainder when your number is divided by

10.
R 11 = The remainder when your number is divided by

11.

00 ENIA, 90 Enter R10
01 ENIA, 91 Enter R11
02 LDRA, 90
03 MULA, 14
04 LDRB, 91
05 MULB, 15
06 STRB, 90
07 ADDA, 90
08 DIVA, 16
09 STRB, 99
10 PROB, 17
11 PROB, 18
12 PROB, 99
13 STOP, 13
14 11
15 100
16 110
17 YOUR
18 NUMBER IS

page 20

Program #7 This program will show you one of the
uses for Inputs A and B by calculating the average of a
set of numbers entered one at a time from Input B. To do
this, first list the numbers to be averaged on a 11/2 by 11
inch strip of paper. Then install the strip through the
slots of Input B so that the first number of the list shows
through the window. When you run the program, step 00
will require you to enter the number of numbers listed
on the Input B strip. Afterwards, the average will print on
Output A. Use this program to average the number sets
below.

N = The number of numbers listed on the Input B strip.

00 ENIA, 97 Enter N
01 ENIB, 90
02 ADDA, 90
03 ADDB, 13
04 CPRB, 97
05 JBLT, 01
06 DIVA, 97
07 PROA, 12
08 CPRB, 14
09 JBEQ, 15
10 PABA, 97
11 STOP, 11
12 AVERAGE IS
13 1
14 0
15 STRA, 99
16 PROA, 99
17 STOP, 17

Determine the average of each number set shown below
by writing each list on an Input B strip and running the
program.

(8, 6, 33, 5)

(18, 31, 40, 77, 64, 83)

Program #8 The commutative and the associative laws
of multiplication can be used to show that a group of
numbers can be multiplied together in any order to
produce the same answer. Three different numbers, for
instance, can be arranged and multiplied in six ways as
shown:

1 x 2 x 3 1 x 3 x 2
2 x 1 x 3 2 x 3 x 1
3 x 1 x 2 3 x 2 x 1

This program is designed to determine how many
possible ways there are to arrange and multiply a set of
(N) different numbers together. Run the program
several times, in each case using an N-number from the
chart shown below. Check youranswers on scrap paper
and fill in the blank boxes of the chart.
N = The number of numbers in the set.

00 ENIA, 92 Enter N
01 LDRA, 17
02 STRA, 90
03 ADDA, 17
04 LDRB, 18
05 MULA, 90
06 CPRB, 92
07 JBEQ, 11
08 ADDB, 17
09 STRB, 90
10 JUMP, 05
11 STRA, 91
12 PROA, 91
13 PROA, 19
14 PROA, 92
15 PROA, 20
16 STOP, 16
17 1
18 2
19 WA YS TO X
20 NUMBERS

N 2 3 4 5

WAYS
TO

X

(31, 92, 47, 37, 15, 83, 26)

(142, 301, 195, 247, 290) _

page 21

Program #9 If N is a placeholder representing
some number of points, then how many straight line
segments can be produced by connecting the N points
together in every possible way? Four points, for
instance, can be connected together with six line seg­
ments as shown below.

Run this program several times, in each case using one
of the N-numbers shown in the chart and filling in the
blanks with the answers printed on Output A. Test each
answer with a drawing.

N = The number of points to be connected.

00 ENIA, 90 Enter N
01 LDRA, 90
02 MULA, 90
03 SUBA, 90
04 DIVA, 13
05 STRA, 91
06 PROA, 90
07 PROA, 14
08 PROA, 15
09 PROA, 91
10 PROA, 16
11 PROA, 17
12 STOP, 12
13 2
14 POINTS
15 PRODUCE
16 LINE
17 SEGMENTS

Program #10 If N is a symbol used to represent
some counting number, and if the number is entered
into storage position 90, then this program will calculate
the sum of all the numbers from 1 to N.

N = Any counting number

Sum = 1+ 2 + 3+ 4... + N

For example, if N = 7, then:
Sum = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28

Run this program several times, in each case using one
of the N-numbers shown in the chart and filling in the
blanks with the answers printed on Output A. Check
your sums with a calculator.

00 ENIA, 90 Enter N
01 LDRA, 90
02 MULA, 90
03 ADDA, 90
04 DIVA, 13
05 STRA, 91
06 PROA, 11
07 PROA, 90
08 PROA, 12
09 PROA, 91
10 STOP, 10
11 SUM OF 1st
12 NUMBERS IS
13 2

N SUM

4

8

12

23

40

73

100

N LINE
SEG.

2

3

4

5

6

12

37
page 22

Program #11 Program 10 calculated the sum of all the
numbers from one up to any other number N. This pro­
gram is more powerful, for if N1 and N2 are used to
represent any two counting numbers, then the sum of all
the numbers from N1 to N2can be found. For example, if
N1 = 7 and N2 = 13, then:
Sum = 7 + 8 + 9 + 10 + 11 + 12 + 13 = 70

Run this program several times to answer the problems
shown below.

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

ENIA, 95
ENIA, 96
LDRA, 95
CPRA, 96
JAGT, 25
MULA, 95
STRA, 97
LDRA, 96
MULA, 96
SUBA, 97
ADDA, 95
ADDA, 96
DIVA, 24
STRA, 97
PROA, 21
PROA, 95
PROA, 22
PROA, 96
PROA, 23
PROA, 97
STOP, 20
SUM FROM
TO
EQUALS
2
LDRB, 96
STRA, 96
STRB, 95
LDRA, 95
JUMP, 05

Enter N1
Enter N2

11
12
13
14
15
16

+17

26
27
28

+41

63
64
65

+99

Program #12 Mathematicians often study special lists
of numbers, searching for patterns which might be use­
ful in explaining the many phenomena in the world
around us. The famous Fibonacci number sequence,
for instance, closely describes how some trees add on
new branches, how pine cones grow, and how certain
characteristics are passed along from parents to their
children. This program will print a list of all the
Fibonacci numbers under one hundred. After running
the program, transfer the numbers from Output A to the
spaces provided below. There are hundreds of patterns
in these numbers. Can you discover a few for yourself?

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

PROA, 16
PROA, 17
LDRA, 14
STRA, 95
STRA, 96
PROA, 95
LDRB, 96
CPRB, 15
JBGT, 13
ADDA, 95
STRA, 96
STRB, 95
JUMP, 05
STOP, 13
1
100
FIBONACCI
NUMBERS

Write the first eleven Fibonacci numbers below.

42 + 41 + 40 + 39 . . . + 30 =

page 23

Program #13 The Index Counter of your computer can
be incremented, decremented, or loaded with any
number, all under control of the program. The Index
Counter can also be tested to see if it is zero or not; this
is done with a special jump instruction. The Index
Counter is used in this program to compute the value of
N e .

N =s Any number
e= Any whole number exponent of N
Example: If N = 5 and e = 3, then:

53= 5 x 5 x 5= 125

Run this program several times, in each case entering
the values of N and e from one of the examples shown
below. Fill in the blanks with the answers printed on
Output A. Check your answers.

00 ENIA, 96 Enter N
01 ENIA, 97 Enter e
02 INDL, 97
03 LDRA, 15
04 JIZE, 08
05 INDS, 15
06 MULA, 96
07 JUMP, 04
08 STRA, 90
09 PROA, 96
10 PROA, 16
11 PROA, 97
12 PROA, 17
13 PROA, 90
14 STOP, 14
15 1
16 EXPONENT
17 EQUALS

Program #14 Notice how the Index Counter is used in
this program to determine if a number is prime. The
Index Counter will allow the number to be divided by
certain prime numbers in storage, one at a time, in order.
By doing so this program can test any number less than
1369 for being prime or composite. Use your computer
to test each N-number in the chart and tell if it is prime
or composite by putting a P or a C in each of the blank
spaces. Then check your answers with a prime number
list.
N = Any number less than 1369.

00 ENIA, 90 Enter N
01 INDL, 33
02 LDRA, 90
03 DIVA, IN
04 CPRB, 19
05 JBEQ, 14
06 INDA, 20
07 LDRA, IN
08 MULA, IN
09 CPRA, 90
10 JANG, 02
11 PROA, 90
12 PROA, 18
13 STOP, 13
14 PROA, 90
15 PROA, 17
16 STOP, 16
17 IS COMPOSITE
18 IS PRIME
19 0
20 1
21 2
22 3
23 5
24 7
25 11
26 13
27 17
28 19
29 23
30 29
31 31
32 37
33 21

532 = 763 =

491° = 124 =

page 24

N P/C

11

18

29

39

91

201

211

319

How to Write a Computer Program for IPC
Creating a computer program can be a challenging and satisfying experience, and it is hoped that you will share these
feelings as you follow the development of the two sample computer programs below.

Super Simple Sample Program Number One

Step #1 Describe the problem you wish to program in terms that you understand.

Example: Given any whole number N, a program will be created to add together the first N even
numbers. For example, N=3 implies that the sum of the first three even numbers is desired.
Since 2 is the first even number, 4 is the second, and 6 is the third, the required sum is
12: (2 + 4 + 6 =12).

Step #2 Describe the problem in mathematical terms. This usually involves finding a formula or an algorithm that
can become a step by step procedure leading to the solution of the problem. If you already have a formula and simply
want to write a program for it, go directly to step #3. If you would like to follow the derivation of a formula, continue
below.

Example continued: Thefirsteven number is 2. The sum of the first two even numbers is 6: (2 + 4= 6).Thesum
of the first three even numbers of 12: (2 + 4 + 6 = 12), and so on. Shown in chart form,
some interesting patterns appear which lead to the desired formula.

N
Nth even
number

Sum of the first
N even numbers

An easy pattern
for the sums

1 2 2 2 = 1 x 2

2 4 2 + 4 s 6 6 = 2 x 3

3 6 2 + 4 + 6 = 12 12 = 3 x 4

4 8 2 + 4 + 6 + 8 = 20 20 = 4 x 5

5 10 2 + 4 + 6 + 8 + 1 0 = 3 0 30 = 5 x 6

N 2N 2 + 4 + 6... + 2N = ? Sum =N (N + 1)

Mathematically, the patterns in the chart show that the sum of the first N even numbers can be represented by the
following formula:

Sum = N (N + 1)

The validity of the formula is demonstrated by the partitions of the rectangular arrays below.

2 + 4 +

* * j *
* * *

6 +

•

•

8

•

•

"20 4 x 5— 20

• * *
• • •

•
•

A
•

• • • • * * • * * •
• • • • • QL * *

• y

page 25

Step #3 Assemble the step by step algorithm, or the formula, into a set of mnemonic program instruction steps which
precisely describes the operations to be done. When completed, this list will become the computer program.

Example continued: In this example, a list of mnemonic program instruction steps must be created to describe
the formula , , ..

Sum of the first N even numbers = N (N + 1).

A method to enter the number N, a way to print the answer and a way to stop the computer
when the job is completed must also be included.

00 ENIA, 95 Computer programs always start at storage location 00. In this case,
the first step will allow you to enter the number N into storage
location 95.

01 LDRA, 95 This loads the number N into Register A.

02 ADDA, ?? The quantity (N + 1) will be formed by adding 1 to the number N
already in Register A. The 1 will be stored somewhere in the Program
Storage Unit, but the exact location will not be determined until the
program length is known. Until that time, two question marks will be
used to represent the unknown storage location.

03 MULA, 95 Multiply the contents of Register A by the number N. This completes
the formula n (N + 1).

04 STRA, 99 Store the quantity N (N + 1) so it can be printed on an output.

Sum of first
3

even numbers is
12

05 PROA, ?? Program steps 05 to 08 will print a
06 PROA, 95 message like the sample at the right. The ??
07 PROA, ?? of steps 05 and 07 will locate the words
08 PROA, 99 "Sum of first" and "even numbers is", but

the exact locations will be unknown until the
length of the program is determined. The "3"
in the message is printed by step 06, and is really the number N,
which was entered into storage location 95 at the beginning. The "12"
in the message is the answer that was stored in location 99 by program
instruction step 04.

09 STOP, 09 Remember that the computer will continue to run unless told to stop.

10 1 Three data entries were used for this program, and each of them must
11 Sum of first be assigned a place in the Program Storage Unit. Since the working
12 even part of this program ends at 09, locations 10, 11 and 12 can be used

numbers is to store the three entries.

02 ADDA, 10 Program instruction steps 02, 05 and 07 can now be completed,
05 PROA, 11 since each of the data entries has been assigned to a specific storage
07 PROA, 12 location.

page 26

"W

Step #4 Write the complete program and some simple directions on its use.

If N is a whole number, then this program will calculate thesum
of the first N even numbers.

Example: N = 5 will determine the sum of the first five
even numbers. (2 + 4 + 6 + 8 + 10 = 30)

00 ENIA, 95 (Enter N)

01 LDRA, 95

02 ADDA, 10

03 MULA, 95

04 STRA, 99

05 PROA, 11

06 PROA, 95

07 PROA, 12

08 PROA, 99

09 STOP, 09

10 1

11 Sum of first

12 even numbers is

Sample Program Number Two

The progression of the following program, also shown step by step, will show you how to develop and write a more
involved computer program.

Step #1 Describe the problem you wish to program in terms that you understand.

Example: Suppose one were to build a triangular array out of
matchsticks and number the horizontal rows
as shown.

Let the problem be that of determining either
the number of little triangles formed by the
matches, orthe actual number of matches above
any given line. If N is allowed to represent any
line number, then the problem translates to
determining either the number of small triangles
above the Nth line, or the number of matches
above the Nth line. AAA,

AAAA.
AAAAA

AAAAAA
page 27

Step #2 Describe the problem in mathematical terms. This usually amounts to finding a formula or an algorithm that
can become a step by step procedure leading to the solution of the problem. If you already have a formula and simply
want to write a program for it, then go directly to step #3. If you would like to follow the derivation of a formula,

continue below.
Example continued: Consider the number of small triangles the matches form above the Nth line of the

array. There are none above line 0, one above line 1, four above line 2, etc. Often,
when relationships are studied in chart form, patterns appear which are otherwise
obscured.

Line
number

Number of
triangles

above line
One observable pattern Another pattern

N T

1 1 1 1 x 1

2 4 1 + 3 2 x 2

3 9 1 + 3 + 5 3 x 3

4 16 1 +3 + 5 + 7 4 x 4

5 25 1 + 3 + 5 + 7 + 9 5 x 5

N ? 1 + 3 + 5 + 7 ... + (2N-1) N x N

Mathematically, the number of small triangles (T) above line N equals N2.
T - N x N o r T = N 2

The number of matches above the Nth line can be determined in much the same way, although it is a bit more
involved. Notice that there are no matches above line 0, two above line 1, seven above line 2, and so on. Again,
certain patterns appear as shown in the following chart.

Line
number

Number of
matches

above line
One observable pattern Another pattern

N M

0 0 0 x 0 + 0 0 x 0 + 0

1 2 1 x 1 + 1 1 x 1 + 1

2 7 2 x 2 + 1 + 2 2 x 2 + 3

3 15 3 x 3 + 1 + 2 + 3 3 x 3 + 6

4 26 4 x 4 + 1 + 2 + 3 + 4 4 x 4 + 1 0

5 40 5 x 5 + 1 + 2 + 3 + 4 + 5 5 x 5 + 1 5

N ? N x N + 1 + 2 + 3 . . . + N N x N + ?

The sequence 0, 1, 3, 6, 10, 15... may not seem to have a pattern, but close examination will show these numbers to
be the famous triangle numbers which come from the formula

N (N + 1)

2

page 28

This formula will replace the question mark in the lower right hand section of the second chart on the previous page.
With this substitution, the chart shows that

N (N + 1)
M = (N x N) + — — ' .

« k„ N2 + N 2 N2 N2 + N 2 N2 + N2 + N Or, M = N2 + —-— = ——- + —-— =
2 2 2 2

Finally it becomes clear that the number of matches, M, above the Nth line is represented by

3N2 + N M =

Step #3 Assemble the step by step algorithm or the formula into a set of mnemonic program instruction steps which
precisely describes the operations to be done. When completed, this list will become the computer program.

Example continued: In this example we wish to create a list of mnemonic program instruction steps to
completely describe the two formulas below.

Number of triangles above the Nth line = N2

3
Number of matches above the Nth line = —

Furthermore, a method must be provided to enter the number N into the computer, and to print the answer on the
output when finished. The computer must also be told to stop at the appropriate time. Let's start.

00 ENIA, 90 Computer programs always start in storage location 00. In this case, the
first step will allow you to enter the line number N into storage
location 90.

01 LDRA, 90 This puts the number N into Register A.

02 MULA, 90 This forms the number N2 in Register A.

03 JJA1, ?? The number of trianglesaboveline N equals N2, and that number is now
in Register A. Let's say that if Jump Switch A is set to 1 it means: find the
number of small triangles formed. In that case, an output message like "9
triangles above line 3" would be printed. The location to which the
program will jump, ??, will be determined later.

04 MULA, ?? If the program gets to step 04, it didn't jump in step 03; therefore, Jump
Switch A must not have been set to 1. In this case, it means that the
number of matches above the Nth line is desired, and that requires the
formula

3 N2 + N

2

Remember that N2 is already in Register A, so the computer must next
form 3 N2. The 3 used in this multiplication will be located somewhere
in the program at a location to be determined later.

page 29

05 ADDA, 90 Register A will contain 3 N2 + N when this step is done.

06 DIVA,?? Register A now contains 3 N2 +N which must be divided by 2 to complete
the formula describing the number of matches above the Nth line. The
2 used for the division will be stored at a location which will be
determined later.

07 STRA, 91 Register A now has the answer which must be stored and printed on the
output.

08 PROA, 91 Suppose the message to be printed looks like the
09 PROA,?? sample at the right. Remember that the "15" in this
10 PROA,?? case is the answer that was stored in storage
11 PROA, 90 location 91 in step 07, while the "3" is the line

number N which was entered into storage location
90 at the start. The ?? in step 09 represents the
location of the word "matches," while the ?? in step
10 locates the words "above line."

15
matches

above line
3

12 STOP, 12 Remember that the computer will continue to run unless told to stop.

03 JJA1, 13 Recall that step 03 said JJA1, ?? because the location ?? was not known
before. Since the first part of the program ends at location 12, the second
part can start at 13, so complete step 03 to read JJA1, 13.

13 STRA, 91 The program can only get to step 13 by jumping
14 PROA, 91 from step 03. If this happens the number of triangles
15 PROA, ?? is required and an output like the one at the right is

appropriate. The ?? in step 15 will locate the word
"triangles."

9
triangles

above line
3

16 JUMP, 10 Go back and look at steps 10, 11 and 12. These three steps will
complete the output message, so let's jump back to 10 and use them
again.

17 2
18 3
19 matches
20 triangles
21 above line

Five data entries were used in this program, and each of them must be
assigned a place in the Program Storage Unit. The assignments at the
left represent one possibility.

04 MULA, 18
06 DIVA, 17
09 PROA, 19
10 PROA, 21
15 PROA, 20

After the data entries have been assigned to some storage location,
steps 04, 06, 09, 10 and 15 can be completed.

page 30

Step #4 Write the complete program, along with some simple directions on its use.

If N represents a line number
in a triangular array of matches
as shown at the right, then this
program will calculate either
the number of small triangles
formed above the Nth line if
Jump Switch A is set to 1, or
the number of matches above
the Nth line if Jump Switch A
is set to 0.

A,
AA,

AAA,
00 ENIA, 90 Enter N
01 LDRA.90
02 MULA, 90
03 JJA1, 13
04 MULA, 18
05 ADDA, 90
06 DIVA, 17
07 STRA, 91
08 PROA, 91
09 PROA, 19
10 PROA, 21
11 PROA, 90
12 STOP, 12
13 STRA, 91
14 PROA, 91
15 PROA, 20
16 JUMP, 10
17 2
18 3
19 matches
20 triangles
21 above line

page 31

Suggestions for Future Paper Computer Programs
One could spend a lifetime working with the seemingly endless properties of the Fibonacci numbers which were
partly produced by Program #12.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ...

a. The sum of any ten consecutive Fibonacci numbers equals eleven times the seventh number of the list.

Example: 5 + 8 + 13 + 21 + 34 + 55 + 89 + 144 + 233 + 377 - 979
89 x 11 = 979

b. The sum of the first N Fibonacci numbers is one less than the (N + 2)th Fibonacci number.

Example: 1 + 1 + 2 + 3 + 5 + 8+13 = 33
13 is the seventh Fibonacci number, so the sum must be one less than the (7 + 2)th Fibonacci
number which is 34. 33 = 34 - 1 as predicted.

c. The square of any Fibonacci number is one more or less than the product of the numbers next to it in the
sequence.
Examples: 3, 5, 8 5 x 5 = 25 3 x 8 = 24

5, 8, 13 8 x 8 = 64 5 x 13 = 65

21 34, 55 34 x 34 = 1156 21 x 55 = 1155

d. Every 3rd Fibonacci number is evenly divisible by 2.
Every 4th Fibonacci number is evenly divisible by 3.
Every 5th Fibonacci number is evenly divisible by 5.
Every 6th Fibonacci number is evenly divisible by 8.
Every 7th Fibonacci number is evenly divisible by 13, and so on.

e. The number of clockwise and counter clockwise spirals in a pine cone are usually consecutive Fibonacci
numbers: (3, 5), (5, 8), (8, 13).

Lucas, and other generalized Fibonacci type number sequences, have similar interesting properties. Write a
program to calculate the general Fibonacci sequence described by

a, b, (a + b), (a + 2b), (2a + 3b), (3a + 5b), (5a + 8b) ...

where a and b are any two numbers entered into the Paper Computer on the first few program steps. The program
will be similar to Program #12 in this book. The number sequence thus produced on the output tape of the Paper
Computer will make an interesting and stimulating topic for a class lesson.

Example: If a = 2 and b = 4, the sequence produced would be
2, 4, 6, 10, 16, 26, 42, 68, 110, 178 ...

Just to maintain your interest, you might notice that the sum of the first N term of this sequence is four less than
the (N + 2)th term.

Example: 2 + 4 + 6+10 + 16 + 26 + 42 = 106
42 is the sixth term of the sequence; 110 is the eighth.
110 - 4 = 106

2. Write a program to calculate the diameter, circumference and area of a circle by having an ENIA, SS instruction
step for entering only the radius of the circle.

diameter = 2r circumference = 2lTr area = Tfr2

3. Write a program to calculate the area or the perimeter of a rectangle, depending upon the setting of a jump switch.
Two ENIA, SS instruction steps will be needed: one to enter the length of the rectangle, the other to enter the
width. If the area is calculated, a multiplication must be performed. If the perimeter is needed, the width and length
must be added together and doubled. The idea can be expanded to include both areas and perimeters of triangles,
trapezoids, regular polygons, etc.

page 32

Write a program to calculate the volume or surface area of a common solid using any of the well known formulas.

Solid Surface Area Volume Terms

Cube 6 h2 h3 h = height

Rectangular
Prism

2 (hw + hi + wl) h w 1
h = height
w = width

1 = length

Sphere 4trr2 41f r3

3
r = radius

When the difference between any two consecutive numbers of a sequence is the same, the sequence is said to be
an arithmetic sequence.

3, 7, 11, 15, 19, 23, 27 is an arithmetic sequence.

F = 3 means that the first term is 3.
L = 27 means that the last term is 27.
d = 4 means that the arithmetic difference between the terms is 4.
n = 7 means that only 7 terms of the sequence have been written, or are under consideration.

The following formulas apply to arithmetic sequences, and each can be built into an interesting program for the
Paper Computer.

L = F + (n - 1)d

Example: Seven terms of the arithmetic sequence above are shown. The first term is 3, and the difference
is 4. Therefore, the last term must be

L = 3 +(7-1)4 = 3 + 6x4 = 3 + 24 = 27.

The sum, S, of the terms of an arithmetic sequence is given by

s _ n (F + L) or n (2F + d(n - 1))

2 2

Example: Seven terms of the arithmetic sequence above are shown. The first term is 3, and the difference
is 4. The sum of these terms must, therefore, be

s_ 7 (2 x 3 + 4 (7 - 1)) _ 7 (6 + 24) = 7 x 30 = 210^ = 1Q5

2 2 2 2

Or, using the first formula,

s = 7 (3 + 27) = 7 x 30 = 210 _ 1Q,.

2 2 2 '

Check it for yourself: 3 + 7 + 11 +15+19 + 23+ 27 = 105.

The number of surfaces (F), the number of edges (E), and the number of vertex points (V) of any simple solid
(those with no holes in them) are related by Euler's function: V + F = E + 2. This formula makes an interesting
computer program by calculating any one of the three variables F, E or V after entering the other two. For example,
a simple cube has six surfaces and eight vertex points, so it must have

E = V + F - 2 = 8 + 6 - 2 = 1 4 - 2 = 1 2 e d g e s .

page 33

A tent in the shape of a square pyramid will have four sides and a bottom (F = 5) and eight seams where it is sewn
together (E = 8). It must, therefore, have

V = E + 2 - F = 8 + 2 - 5 = 1 0 - 5 = 5 vertex points where the sides meet.

The four vertex points on the bottom are for the tent pegs; the other vertex point at the top is for the center tent
pole.

7. Write a program to separate the first ten or so numbers into primes or composites. Print the prime numbers on
Output A, and the composites on Output B.

8 Write a program to keep track of one person s bank account. Let the input of a positive number represent a
deposit, while negative inputted numbers represent withdrawals. Check for the condition where a customertries
to withdraw more money than is in the account. Make the program calculate and add interest to the balance when
run with Jump Switch A set to 1.

9. Create a conversion program which converts miles, yards or feet to inches, depending upon the setting of the
Jump Switches. For instance, if Jump Switch B = 1, it could mean that the number entered at Input A represents a
quantity in yards which requires a multiplication by 36 to convert it to inches. A similar program can be written for
temperature conversion between centigrade and Fahrenheit, between weights for ounces, pounds, tons, etc., and
between many other types of units. A program to convert English and metric systems of measurements will
require multiplication by decimal numbers.

10. The average cost of driving an automobile one mile, and the average miles per gallon obtained by that automo­
bile are given by the formulas below.

M - M
Cost per mile = —*— Miles per gallon = — -

M - M 9
2 1

where, M = the mileage reading when you fill the car's fuel tank
1

M = the mileage reading when you fill it up the next time
2

$ = the cost of the second fill up

g = the number of gallons of fuel used at the second filling.

The formulas above not only make an interesting program, but they make a very useful and practical one.

page 34

ANSWERS TO PROGRAMS

Program #1 Storage Register A Register B Output A

w

~w
2

X 5

0

1
0

1
2
3

um/

Testing

1

2

3
The End

V

Program #2 Storage Register A Register B Output A

im

1362

\5/
1776

IcT

iF

o
373
1992
1662

1776
373

3357
1365
1361
vyvs

0

9
36

1312

1316

W

Cdunfc

1102
Philadelphia

1682
Independent
1776

British War
1812

Gdd Rae>h
1093
Civil War
1861

Storage Register A Register B Output A

w

21b
O

97
0

103
V!!/

60
(oO
12

60

2620

226

yv

216

Correct
U-R-A
(jemue

page 35

Program #4 As an example for Program #4, suppose that the
Jump Switches are set as shown below. If so, the readings of
the Program Step Indicator and the message of Output A are
shown at the right.

Jump Switch A = 1
Jump Switch B = 0
Jump Switch C = 1

Program
Step

Indicator
00
01
14
29
30
18
19

Output A

Rolph
15 theone

Vy/

Program #5 As an example for Program
#5, suppose you enter a 6. The units of your
Paper Computer would appear as shown at
the right.

Storage

6 W
Register A

0
6

12-

\%/

Register B Output B

0

1
2
3

YAJ

6
12
18

Program #6 As an example for Program
#6, the number 73 will be used as the secret
number. The calculations for R10 and R11
for this number are shown below. The units
of the Paper Computer are shown at the
right.

Storage Register A Register B Output B

10)73
10

6
11173

66
1

7
R10 R11

O

3
33

733
6

VA1

0
7

700
73

V\f

your
number

is

73

Program #7 Program #7 operates differently depending upon whether or not the division in step 06 has a zero
remainder. The first set of answers below shows what will happen when four numbers are entered which produce
a zero remainder. The second set of answers shows the results when entering six numbers which produce a
nonzero remainder.

Storage Register A Register B Input B Output A

5 0

0
0

1
8
6

Avenogp 6

13

4
14
47

2
3

33
5

13
52
13

4
f)

W/V

For N = 6: Storage Register A Register B Input B Output A

Îf3
77
6

0
1&
49
89

166
230
313
52

V\j^

0
1
2
3
4
5

6

1

16
31
00

77
64

83

yy*V

Average b

52i

Program #8 This program asks you to use
the commutative and associative laws to mix
up a group of numbers in as many ways as
possible. Your Paper Computer will tell you
how many ways there are. The answers for a
set of three numbers (N = 3) are given below.

Suppose the three numbers were 7,
16, 4. Then the six ways to multiply them
together are:

Storage Register A Register B Output A

7 x 16 x 4
7 x 4 x 16

1 6 x 7 x 4
1 6 x 4 x 7

4 x 7 x 1 6
4 x16 x 7

*3
77
6

"77
8

0

1
8
2
6

V\j

0
2
3

6
mp to X

3
numDers

vvv

Program #9 This program will tell you how
many line segments can be produced by
connecting together a set of N points in
every possible way. If you try to demon­
strate this by drawing a set of points and
connecting them, it is easiest to count the
line segments if you make sure that no more
than two points are on the same line
segment. The answers for N = 4 are given
at the right.

Storage Register A Register B Output A

"77
4
77

6

0

4
16
12
6

o
0

ly/-

4
Points

Produce
6

Une
Segments
y/v

page 37

Program #10 The answers for Program
#10 with N = 7 are shown at the
right.

Storage

7
"W

~w~
28

Register A

~o~

7
W
5b
28

\Ajvsi

Register B

0
vyv

Output A

SumcfF

7
Numbers

is
2S

yv

Program #11 The answers for Program #11
with N1 = 7 and N2 = 13 are shown at the
right.

Storage

7

13

. Vs/

Register A

7
49

13
It69
120
127
110
70

vyv

Register B

~0~
0

Output A

Sum from

7
ft)

13
equals

70

Program #12 The Fibonacci numbers as
produced by Program #12 are shown at the
right.

Storage

page 38

Register A

0
1
2
3
5
8
13
21
24
55
&\
m

Register B

0
1
2
3
5
8
13
21
34
55

m
lyy

Output A

Fibonoco
Numbers

1
1

2
3
5
Q
13
21
34
55
89

VJvJO

Program #13 The answers at the right will
show you how the Index Counter operates
to calculate 5 to the exponent 3.

Storage

125

~W
v3

Index
Counter

00
03
02
01
00

Register A Output A

0

1
5

25

125
lyvJ

5
exponent

3
equate

125

Program #14 Here is what Program #14 would do if 31 were entered for N, and if 27 were entered for N.

ForN = 31: Storage Register A Register B Output A

31

Index Counter
00
21
22
23
24

O
31
15
5
<7

31
10
5
25
31
b
7

0
1
1
1

yv

31
Is Prime

V

For N = 27: Storage Register A Register B Output A

27

Index Counter
00
21
22

O
27
13
3
<?

27

0
1
o
VN

27
16

.ompas

vv

page 39

•

Photo by Gary Rowe

Fred C. Matt is presently a mathematics teacher and Chairman of the Math
Department of Lower Moreland Middle School in Huntingdon Valley,
Pennsylvania.

He received an Associate in Technology Degree in Electronics from the
Technical Institute of Temple University, a B.A. in Physics from Temple
University, an M.A. in Mathematics from The Pennsylvania State University
and has done postgraduate work in Mathematics Education and Management.

In addition, Mr. Matt has an extensive background in computer technology
and engineering, and has been an industrial instructor of computer physics
and electronics.

He has lectured numerous groups on teaching academically talented
students in mathematics.

In his spare time, Mr Matt plays the guitar, goes backpacking and camping,
is a leader with the Boy and Girl Scouts, travels to locations important in U.S.
history and constructs numerous machines and equipment from recycled
found materials.

ISBN 07-530136-9

