
f / -

I B M  7 0 1  S P E E D C  O P I N G  S  Y S  T E M  

IBM SCIENTIFIC COMPUTING SERVICE 

590 MADISON AVENUE 

NEW YORK, N. Y. 

1953 



INTRODUCTION 

The IBM 701 Speedcoding System was designed to minimize the amount of 
time spent in problem preparation. It is applicable to small computing problems 
and to many large computing problems. A description of Speedcoding is hereby 
made available in an informal fashion, from the standpoint of printing and distri­
bution, because programming for the IBM Electronic Data Processing Machines, 
Type 701 and Associated Equipment, is developing rapidly and it is advantageous 
to make changes in the system easily and informally. 

It is hardly possible to assign credit for the IBM Speedcoding System be­
cause the group in IBM which developed the system has benefited from the sugges­
tions of so many. Historically, the ingenious development of general purpose sys­
tems for the IBM Card Programmed Calculator certainly influenced the basic think­
ing. Once the IBM 701 was announced, scientists concerned with preparing for these 
machines actively considered the problem of reducing problem preparation. Many 
useful and provocative ideas in this area were discussed in Poughkeepsie, New York, 
during the week of August 25-28, 1952, when representatives from the following organiz-
tions met to consider programming ideas: Boeing Airplane Company, Douglas Air­
craft Company (El Segundo and Santa Monica), General Electric Company, Interna­
tional Business Machines Corporation, Lockheed Aircraft Corporation, Los Alamos 
Scientific Laboratory, National Bureau of Standards, U. S. Naval Ordnance Labora­
tory, U. S. Naval Ordnance Test Station (Inyokern), North American Aviation, Inc., 
United Aircraft Corporation, Bell Telephone Laboratories, RAND Corporation, U. S. 
Atomic Energy Commission. At that meeting there were specific discussions of 
systems analogous to Speedcoding. 

The group at IBM which developed the Speedcoding System undertook to do 
so after discussing such systems with Dr. Willard Bouricius, head of the 701 Plan­
ning Group at Los Alamos Scientific Laboratory. This group, under the direction 
of Mr. Bengt Carlson, had completed a program with objectives similar to those of 
Speedcoding. 

Many discussions were held with Mr. Stuart Crossman's group at United 
Aircraft, particularly with Mr. Walter Ramshaw, whose assistance was extremely 
helpful in organizing and collating information and text. 

Finally, appreciation is expressed to those at IBM who have been most 
closely associated with the Speedcoding project since its beginning in January, 
1953, These are: Mr. John Backus, who supervised the project, Mr. Harlan 
L. Herrick, Mr. Donald A. Quarles, Jr. , Mr. Sherwood Skillman, Mr. John 
Pulos, and Miss Lucy A. Siegel. The project was carried out under the general 
direction of Mr. John Sheldon. 

Cuthbert Hurd 

June 19,1953 



CONTENTS 

SECTION PAGE 

1 GENERAL 1 - 1 

2 STORAGE 2 - 1 
Electrostatic 2- 1 
Magnetic Drums 2 - 1 
Magnetic Tapes 2- 1 

3 COMPUTING 3 - 1 
Addition and Subtration 3- 3 
Multiplication . 3 - 3 
Division 3 - 4 
Elementary Arithmetic Operations - General 3 - 4 

4 CONTROL 4 - 1 
Program Counter 4- 1 
Instruction Layout 4- 2 

5 OPERATIONS 5 - 1 
OP^ Operations 5 - 1 
OP£ Operations 5 - 3 

6 ELEMENTARY MATHEMATICAL FUNCTIONS 6 - 1 

7 INPUT-OUTPUT COMPONENTS 7 - 1 
Punched Cards 7 - 1 
Instruction Card Form 7- 1 
Data Card Form 7 - 3 
Card Reader 7 - 4 
Magnetic Tape 7- 5 
Writing on Tape 7- 6 
Reading from Tape 7- 8 
Tape Skipping 7-11 
Tape Rewinding 7 - 12 
Tape Status 7 - 13 
Magnetic Drums 7 - 14 
Loading Procedures for Lengthy Programs 7-16 
Printer 7 - 18 

8 TRANSFER OPERATIONS 8 - 1 
Transfer 8 - 1 
Transfer Plus 8 - 1 
Transfer Minus 8- 2 
Transfer Zero 8 - 2 
Transfer Plus, Minus and Zero 8- 2 
Sense and Transfer 8- 3 
Other Transfer Operations 8 - 3 



SECTION PAGE 

9 ADDRESS MODIFICATION 9 - 1 
Transfer and Increase Operations 9- 2 
Transfer and Decrease Operations 9- 3 
Set R^, Set Rg, Skip Rq 9- 4 
Skip R^ Skip Rg, Skip Rq 9- 4 
Examples Involving Address Modifications 9 - 4 
Address Counter 9 - 7 
Address Modification - General 9-10 
Combined Use of Address Counter and R-quantities 9-11 

10 CHECKING 10 - 1 

11 LISTING 11 - 1 

12 TIMING 12 - 1 
Execution Time for OP} 12 - 1 
Execution Time for OP2 12 - 3 



1 - 1  

General 

SpeedCo I is the name of a system - an integrated combination of a large-
scale digital computer and a method by which that computer may readily be pro­
grammed to solve scientific and engineering problems. 

The computer used is the IBM 701. Its internal high-speed memory is on 
cathode-ray tubes and will be referred to as the "electrostatic memory". When 
the amount of storage available in the electrostatic memory is not large enough, 
magnetic drums are used to store and supply large blocks of information for 
ready access at frequent intervals. The "drum memory" is also capable of re­
taining its contents while the power is turned off, so that intermediate results 
remain available overnight when the machine is shut down. Any part of the infor­
mation on the drums may be selectively altered by SpeedCo I at any time. 

If a larger secondary memory is needed, or if information is to be filed 
away for future reference, magnetic tapes may be used instead of magnetic drums. 
Magnetic tape is a storage and input-output medium that provides compactness, 
allows rapid reading and writing and can be re-used many times. 

To achieve a greater computing efficiency, the machine works internally 
in the binary number system. The user of SpeedCo I will find, however, that 
this fact does not in any way affect the programming. During SpeedCo I opera­
tion all numbers introduced into the machine and all results printed by the ma­
chine are expressed in the decimal number system. SpeedCo I automatically 
performs all necessary conversions between the decimal and binary number 
systems. 

The programs may be written and introduced into the computer in various 
ways. Usually the instructions are key-punched on cards and read into the 
machine. If the program is to be preserved for future use, it can then be 
recorded on tape and filed away in a compact form. To prepare the machine 
for calculation the appropriate magnetic tapes are inserted in the tape units 
and the cards containing the instructions and data of the problem are placed 
in the hopper of the card reader. Pushing a button then causes the machine 
to store the program and data of the problem and start calculating. From then 
on, operation of the computer is fully automatic, with all of the components 
being under the complete control of the program, although it is possible for 
the operator to interrupt the calculation manually at any time. 

The primary unit of information handled by SpeedCo I consists of 72 
binary digits and is called a "word". 



2 - 1  

Storage 

Information may be stored in electrostatic storage, on magnetic drums, and 
on magnetic tape. The following description covers, in general terms, the nature 
and extent of each of these storage media. 

Electrostatic 

The heart of the machine is the electrostatic storage unit, through which all 
information to and from all other components of the machine must pass. Electro­
static storage consists of a bank of cathode-ray tubes. Information is stored on 
the screens of the tubes through the presence or absence of charged spots at cer­
tain locations on the screens. In this way a certain number of binary digits (or 
"bits") may be stored on each tube. SpeedCo I provides for 714 words of this 
sort of storage. 

The principal advantages of electrostatic storage over other types are the 
very small time necessary to extract information from any given location and send 
it to the computing unit and the fact that the programmer has random access to any 
electrostatic storage location. Information is lost when the power is turned off. 

Magnetic drums 

Additional storage capacity is provided by two magnetic drums. These drums 
are rotating cylinders surfaced with a material that can be magnetized locally. 
Binary digits are stored on a drum through the presence or absence of small mag­
netized areas at certain locations on the surface of the drum. Each drum has a 
storage capacity of 1024 words. Information is transmitted to and from drum stor­
age only through electrostatic storage. When such a transfer of information occurs, 
the machine is said to write on or read from the drum. 

Any part of the information on a drum can be selectively altered by SpeedCo I 
at any time. Because access to individual words on a drum is slow in relation to 
electrostatic storage access, it is more efficient to use the drums for storing large 
blocks of information. After the first word of such a block has been located, the 
remaining words are read at the rate of 400 per second. Magnetic drums will re­
tain stored information even when the power is turned off. 

Magnetic tapes 

There is also a tape storage section which includes four magnetic tape units. 
Each tape, which may be up to 1400 feet long, is wound on a reel. The tape itself 
is a non-metallic, oxide coated band one-half inch wide. Binary information is 
recorded on tape by means of magnetized spots. A block of words recorded consecu­
tively on a tape is called a "record" or a "unit record". The amount of information 
contained on each tape depends on the lengths of the individual records, since there 
is a certain amount of space between successive records to allow for starting and 
stopping the tape. It is possible to store approximately 140, 000 words on each tape. 
The machine can read or write on a tape only through the medium of electrostatic 
storage. It takes, on the average, about 10 milliseconds for the tape to accelerate 
to its reading or writing speed after which the reading or writing of a unit record 
takes place at the rate of 625 words per second. Since the tapes are removable, 
a library of standard programming and mathematical tables may be kept on tapes. 



3-1 

Computing 

The numbers handled by SpeedCo I are expressed in scientific, or floating 
point, notation. Every number read, stored, computed or printed is of the form 

F • RE 

where F is the fractional part, R is the radix of the number system used and E 
is the exponent. 

All numbers which are of direct concern to the programmer (that is, all 
numbers which are read into or printed by the machine) are expressed in the deci­
mal system. For these numbers the following relationships apply 

Note particularly that the absolute value of the decimal exponent of any 
quantity read into or printed by the ma,chine may not be greater than 236. Any 
attempt to read or print an exponent which does not fall in this range will re­
sult in an automatic machine stop. 

The fractional part F is a ten decimal digit fraction. Hence the maximum 
precision attainable by SpeedCo I is one part in 10^ „ 

Numbers which do not come to the direct attention of the programmer (that 
is, numbers handled inside the machine) are expressed in binary. For these 
numbers the corresponding relationships are 

1. R = 2 

2. Q< <131, 071 

As has been pointed out above the necessary conversions between the decimal 
information read into and printed by the machine and the binary information used 
inside the machine are performed automatically by SpeedCo I. Note however that 
SpeedCo I permits the binary quantities inside the machine a much greater mag­
nitude range than is permitted those quantities which are to be converted to decimal 
and printed. In this connection it is the programmer's responsibility to refrain 
from attempting to print any quantity whose decimal exponent is larger, in absolute 
value, than 236. 



3-2 

Numbers stored in the various memory organs of the machine are stored 
as follows 

E 

35 
#• 

17 + 1 8 -

72 Bits 

Bit positions Item 

1 Sign of the quanitity 
2 - 3 6  F r a c t i o n a l  p a r t  

37 Sign of the exponent 
38 - 54 Exponent 
55 - 72 These bit positions are not used 

Since three and one-third bits are about equivalent in information content to 
one decimal digit, the 35 bits allotted to the fractional part are more than adequate 
to preserve the precision of the ten decimal digit input quantities. 

Each portion of the electrostatic memory which is capable of storing a word 
is called a "storage location" or a "memory cell". These locations are numbered. 
The number associated with any particular location is called its "address". In 
SpeedCo I the 714 locations available to the programmer are numbered from 300 
to 1013 inclusive. 

In describing a program, it is frequently necessary to refer to a particular 
location in memory. These references are often conveniently abbreviated by 
referring merely to the address itself. For instance, the phrase "x is stored 
at A" is customarily used in place of the more precise phrase "the quantity x is 
located in that memory cell whose address is the integer A". The same phrase 
is often further abbreviated to 

L (x) - A 

Similarly, it is also frequently necessary to refer to the word stored in a 
particular memory cell. This word is usually referred to as "the contents of 
A" or "the quantity at a" where in both cases the precise phrase abbreviated is 
"the quantity located in that memory cell whose address is the integer A". The 
symbolic abbreviation used here is 

Q (A) = x 

In order to cause SpeedCo I to carry out a numerical calculation the pro­
grammer must supply four pieces of information. The first of these, which is 
referred to as "OPj", tells the machine which numerical operation it is to per­
form. The second and third, which are designated "A" and "B", are the addresses 
in electrostatic storage, of the two operands. The fourth, "C", is the address of 
the electrostatic memory cell in which the result is to be stored. 



3-3 

This information having been supplied, SpeedCo I then selects the two num­
bers located at memory cells A and B, performs upon them the operation OPj, 
and sends the result to electrostatic memory cell C where it is stored in place 
of the previous contents of C. 

The following paragraphs described in general terms the elementary 
arithmetic operations. The actual methods and instructions necessary for 
performing these operations are explained later. 

Addition and subtraction 

The addition operation is performed as follows. 

The exponent at A is compared with the exponent at B. If these exponents 
are not equal, the fractional part associated with the smaller exponent is shifted 
to the right as many binary places as are necessary to make the two exponents 
equal. 

The fractional parts are then added algebraically. Next the machine checks 
the fractional part of the result. If the absolute value of this fractional part is 
in the range equal to or greater than one-half and less than one the fractional 
part and the exponent are stored at C. If this absolute value falls outside this 
range, however, the fractional part itself is shifted to the left or right as nec­
essary to restore it to this range and the exponent is modified accordingly. The 
new fractional part and exponent are then stored at C. In the case where the two 
operands are exactly equal and of opposite sign no shifting takes place, zero is 
stored as the fractional part of the result and the exponent of the operands becomes 
the exponent of the result. 

Subtraction proceeds in exactly the same way except, of course, that the 
fractional part at B is algebraically subtracted from the fractional part at A, 

Both addition and subtraction may also be performed, if the programmer 
so desires, using the absolute value of the quantity at B in conjunction with either 
the algebraic or the absolute value of the quantity at A. 

The above six operations are all subject to the restriction that they cannot 
be correctly performed upon operands whose decimal exponents differ by more 
than 76. 

Multiplication 

Two computations are performed. In one the fractional part at A is multi­
plied by the fractional part at B. In the other the exponent at A is added to the 
exponent at B. The absolute value of the product of the fractional parts is then 
checked. 

If this absolute value is equal to or greater than one-half, the product of 
the fractional parts is then the fractional part of the product, and the sum of the 
exponents is the exponent of the product. These numbers are therefore stored at 
C. If on the other hand, however, the absolute value of the product of the frac­
tional parts is less than one-half, the fractional part of the product is obtained 
by doubling the product of the fractional parts, and the exponent of the product 
is formed by reducing the sum of the exponents by one. These modifications hav -
ing been made, the result is then stored at C. 



3-4 

Two multiplication operations are available. The one forms the product 
with its correct algebraic sign. The other forms the negative of the product. 

Division 

Here also two computations are performed. In one, one-half of the frac­
tional part at A is divided by the fractional part at B to obtain a 35 bit rounded 
quotient. In the other the exponent at B is subtracted from the exponent at A. 
The absolute value of the quotient of the fractional parts is then checked. If this 
absolute value is less than one-half, the fractional part of the quotient is taken 
as twice the quotient of the fractional parts, and the difference of the exponents 
is the exponent of the quotient. If on the other hand, however, the absolute value 
of the quotient of the fractional parts is greater than or equal to one-half, the 
fractional part of the quotient is taken as the quotient of the fractional parts, and 
the exponent of the quotient is formed by increasing the difference of the exponents 
by one. These modifications having been made, the result is then stored at C. 

Two division operations are available. The one forms the quotient with its 
correct algebraic sign. The other forms the negative of the quotient. 

If during any division operation the fractional part of the divisor happens 
to be zero the calculator will stop and a signal light called the Divide-Check light 
will light up on the operator's panel. 

Elementary arithmetic operations-General 

Note that each of the above ten operations takes two numbers already ex­
pressed in the standard floating binary form previously specified, performs 
upon them the desired elementary arithmetic operations, and then adjusts the 
result so that it too is in the standard form. 

Note also that the result returned to memory by any one of these operations 
is not rounded, except in the case of division, where either a 35-bit or a 34-bit 
rounded quotient is obtained. 



4-1 

Control 

SpeedCo I is a "stored program" system in which the programmer's in­
structions to the machine are all stored in the machine's memory before the 
calculation begins. The procedure leading to this result is as follows 

1. The programmer analyzes his problem and breaks its solution down 
into the basic steps of which SpeedCo I is capable. 

2. By means of an alphamerical code, determined by the design of 
SpeedCo I, he translates these steps into a form which can be inter­
preted by the machine. Each of these steps, which will hereafter 
be referred to as an "instruction", is then stored in the machine's 
memory. 

3. Data necessary for the solution of the problem are also stored in 
the memory of the machine. 

4. Upon completion of this storing process calculation automatically 
begins with the execution of the instruction which is at that time in 
electrostatic memory cell 300. From this point on the machine 
operates without any further intervention on the part of the pro­
grammer, automatically locating and executing all succeeding 
instructions of the program. 

A complete analysis of the SpeedCo I instruction system follows. 

Program counter 

The numerical representation of an instruction occupies the space of one 
word in memory. SpeedCo I instructions may temporarily be stored on drums 
or tape, but at the time they are to be used, they must be in electrostatic stor­
age. 

A program contains a set of instructions, usually to be executed in sequence, 
which will cause the machine to compute a desired result. These instructions are 
ordinarily introduced into consecutively-numbered storage locations in the order 
in which they are to be executed. The reasons for this follow. 

Each time an operation is to be performed, the machine looks up the instruc­
tion in electrostatic memory, executies it, and then goes back to the memory for 
the next instruction. The order in which instructions are executed is controlled 
by the "program counter". This counter contains the address of the instruction 
currently being executed. After each execution, the number in this counter is 
automatically increased by one. Consequently, the machine automatically takes 
its next instruction from that electrostatic storage location whose address is one 
higher than the address of the cell from which the current instruction was obtained. 
In this way the machine continues to execute instructions in the sequence in which 
they were stored in memory. 



4-2 

This normal sequence of instructions can be altered by means of certain 
"transfer" operations explained below. By means of these operations, any 
electrostatic storage location from 300 to 1013 inclusive can be designated as 
the source of the next instruction. The transfer operation used accomplishes 
this result by placing into the program counter the address of the designated 
storage location. Following this, the machine looks up and executes the instruc­
tion in the designated memory cell; thereafter execution of the program proceeds 
sequentially from this new electrostatic storage location. Under these circum­
stances, a "transfer of control" is said to have occurred. 

An important observation with regard to stored program technique should 
be noted. Instructions are stored in the machine just like numerical data; the 
only distinction between the two is the way in which they are interpreted by the 
machine. Hence the addresses which are part of SpeedCo I instructions may be 
modified while they are in the machine through the use of special operations. 
Thus, one part of a program may modify another instruction of the same program 
by directing the machine to compute a new address, or new addresses, for the 
instruction which is to be modified. 

A further consequence of the fact that both data and instructions are stored 
in the machine's memory in the form of binary words is that if, for any reason, 
a transfer operation enters the address of a piece of data into the program counter, 
the data at that location will be interpreted as if it were an instruction. Exactly 
what will happen when SpeedCo I attempts to execute this "instruction" is in gen­
eral quote unpredictable, but certainly such mis-use of a transfer operation is 
bound to result in erroneous calculations. 

A further difficulty of somewhat the same sort will arise if a transfer op­
eration enters any address from 0 to 299 or 1014 to 1023, into the program 
counter, During SpeedCo I operation these electrostatic storage regions are always 
occupied by a block of control information. If it were not for this control infor­
mation the 701 would operate under the guidance of its own built-in control circuits 
only, and would therefore behave as a fixed point binary calculator. It is the 
combination of the built-in 701 circuitry and the control information stored in 
electrostatic memory cells 0 to 299 and 1014 to 1023 which enables SpeedCo I 
to read and print in the decimal system, to calculate on a floating point basis and 
to perform those other SpeedCo I operations which are not part of the machine's 
built-in order code. Because this control information has been stored in these 
electrostatic locations it is necessary that SpeedCo I programs beso written as 
to use only those memory cells with addresses from 300 to 1013 inclusive. In 
particular, a transfer operation which enters any number not in this interval, 300 
to 1013, into the program counter, is always in error, since it will cause the 
control information at that location to be interpreted as if it were an instruction. 
Here too it is impossible to predict exactly what will happen when SpeedCo I 
attempts to execute this "instruction", but it is again true that the results will 
be erroneous. 

Instruction Layout 

Each operation which SpeedCo I can execute is assigned an alphabetical code 
designation and a numerical code designation. The alphabetical designations have 
been chosen on a mnemonic basis, and consist of combinations of from two to 
five letters each. These alphabetical designations are solely a programming con­
venience, however, since the calculator is not able to recognize them. If the 
programmer has prepared his program using these alphabetical designations, 



4-3 

his instruction cards must first be processed on standard IBM sorting and gang 
punching equipment* The effect of this preliminary processing will be to punch 
in the cards of his instruction deck the numerical code designations which cor­
respond to the various alphabetical code designations used in his program. This 
having been accomplished, the instruction cards are then ready to be loaded by 
SpeedCo 1, since it is the numerical designations which the machine uses to 
identify the desired operations. 

If the programmer is willing to forego the mnemonic advantages of the 
alphabetical code, there is no reason why he cannot prepare his program en­
tirely in numerical form, specifying each desired operation by giving its num­
erical designation. 

This procedure has the advantage that it makes unnecessary the prelim­
inary sorting and gang punching operations referred to above. 

Each numerical code designation is a three digit integer. The complete 
list of all SpeedCo I operations, together with their alphabetical and numerical 
code designations, appears in the section entitled "Operations". 

In general each SpeedCo I instruction may specify two distinct operations 
which are referred to as "OPi" and "OP2". A summary of the OP. operations 
is as follows: elementary arithmetic operations, computation of square root, 
evaluation of elementary trigonometric and exponential functions, transfers of 
information between tapes or drums and electrostatic, and final result printing. 

The addresses A, B and C are used in connection with, the OP^ operations. 

It is frequently very desirable to be able to execute the same series of 
instructions a number of times, each time increasing ox decreasing any or all 
of the addresses A, B and/or C by one. As will be explained in the section en­
titled "Address Modification", SpeedCo I provides a very convenient means of 
accomplishing this purpose. In order to designate which, addresses (if any) 
should be so modified, the programmer includes in each instruction a quantity 
called the "R - code". 

In addition to the above information, each instruction (in all but a few 
exceptional cases which will be pointed out later) can also call for an 0p£ op­
eration. 

A summary of the OP2 operations is as follows: conditional and uncondition­
al transfers of control, address modification operations, and error checking op­
erations . 

Each instruction also contains an address portion designated "D". The D 
address is used in connection with almost all OP£ operations. 

Finally, every instruction contains a portion designated "L". The num­
bers coded here, together with the positions of certain switches on the operator's 
panel, control a detailed listing of the entire program - instructions, inter­
mediate results and final results. This feature is extremely helpful in "tracking 
down" programming errors when the program is first being tested. 



4-4 

Instructions stored in the various memory organs of the machine are 
stored as follows 

-0 R OPx OP2 D 0 L, 

l |+-3# 12 ^—8 10 *|l |* 10 ^ 10 ^2 I4" 3^ 10* 

72 Bits 

Bit positions Item 

1 Sign of instruction (automatically 
supplied by SpeedCo I) 

2 Always zero 

3 - 5  R - code 

6 Always zero 

7 - 1 8  OPl 

19 - 26 OP2 
27 - 36 D 

37 Always zero 

38 - 47 A 

48 - 57 B 

58 - 59 Always zero 

(M
 

vO
 1 o
 

vO
 L, 

63 - 72 C 



5-1 

Operations 

The following is a list of all SpeedCo I operations. For convenient 
reference, the descriptions are given in abbreviated form. Complete 
description of all of these operations appear in other sections. 

OP| Operations 

Alphabetical Numerical Name 
Code Code 

ADD 658 Add 
SUB 696 Subtract 
ADDAB 699 Add absolute 
ABADD 703 Absolute add 
SUBAB 707 Subtract absolute 
ABSUB 711 Absolute subtract 
MPY 715 Multiply 
NGMPY 731 Negative multiply 
DIY 734 Divide 
NGDIY 748 Negative divide 
SQRT 782 Square root 
SINE 780 Sine 
ARTAN 781 Arc tangent 
EXP 783 Exponential 
LN 784 Logarithm 

WRTPJ 532 Write tape J 
WRTPK 533 Write tape K 
WRTPL 534 Write tape L 
WRTPM 535 Write tape M 

RFTPJ 435 Read forward tape J 
RFTPK 437 Read forward tape K 
RFTPL 439 Read forward tape L 
RFTPM 441 Read forward tape M 

RBTPJ 416 Read backward tape J 
RBTPK 417 Read backward tape K 
RBTPL 418 Read backward tape L 
RBTPM 419 Read backward tape M 

SFTPJ 556 Skip forward tape J 
SFTPK 557 Skip forward tape K 
SFTPL 558 Skip forward tape L 
SFTPM 559 Skip forward tape M 

Description 

Q (A) + Q (B) » Q (C) 
Q (A) - Q (B) - Q (C) 
Q (A) + | Q (B) j a Q (C) 
| Q (A) I i- IQ (B) | - Q(C) 
Q (A) - I Q (B) | » Q (C) 
| Q (A) | - |Q(B)l» Q (C) 

[Q (Afl • [p <b0 - Q (c> 
__r Q (A)3 ' CQ (B)3 • Q (C) 

I P  ( A S ^ . C Q J B O  -  Q ( C )  t  
R (Afl - G> (bQ = Q (C) 

s / Q  ( A )  = Q ( C >  
sin . (Q (A)j * Q (C) 
tan"' (Q (A)J - Q (C) 

efcjA3 r- Q (C) 
log e[Q (A)) * Q (C) 

The block of information 
stored in electrostatic cells 
A to B is written on the des­
ignated tape. The most recent 
previous instruction affecting 
the same tape must be either 
WRITE or REWIND 

The first B-A+l words of the 
next block of information stored 
on the designated tape are read 
and stored in electrostatic cells 
A to B. (Note 1, Note 3, Note 4) 

The first B-A + l words of the 
preceding block of information 
stored on the designated tape 
are read and stored in electro­
static cells A to B (Note 2, Note 
Note 5) 
The designated tape is advanced 
(without being read) to the end of 
the next block of information. 
(Note 1, Note 4) 



5-2 
OP| Operations (Continued) 

Alphabetical Numerical Name 
Code Code 

SBTPJ 546 Skip backward tape J 
SBTPK 547 Skip backward tape K 
SBTPL 548 Skip backward tape L 
SBTPM 549 Skip backward tape M 
RWTPJ 572 Rewind tape J 
RWTPK 574 Rewind tape K 
RWTPL 576 Rewind tape L 
RWTPM 578 Rewind tape M 

EFTPJ 564 End file tape J 
EFTPK 566 End file tape K 
EFTPL 568 End file tape L 
EFTPM 570 End file tape M 

WRDRP 497 Write drum P 
WRDRQ 498 Write drum Q 

RFDRP 526 Read forward drum P 
RFDRQ 528 Read forward drum Q 

PRINT 580 Print 

NOOP 

Note 1 : 

Note 2 : 

Note 3 : 

Note 4 : 

7 51 No operation 

Description 

The designated tape is backspaced 
(without being read) to the beginning 
of the preceding block of informa­
tion. (Note 2, Note 5) 
The designated tape is rewound to 
its starting position. The most re­
cent previous instruction affecting 
the same tape may have been any­
thing except WRITE. 
The next 6 inches of the designated 
tape are erased. This erased 
length identifies the end of the tape 
during future tape reading operations. 
The most recent previous instruc­
tion affecting the same tape must 
be WRITE. 

The block of information stored 
in electrostatic cells A to B is 
written on the designated drum 
starting at drum address C. The 
writing process is then automatic­
ally checked. If any errors are de­
tected the program skips the next 
two instructions. 
The block of information stored on 
the designated drum starting at 
drum address C is read and stored 
in electrostatic cells A to B. 
The block of data stored in electro­
static cells A to B is printed. For 
identification purposes the C address 
and a line number are printed at 
the left end of each line of the re­
port. 

The most recent previous instruction affecting the same tape must 
be either READ FORWARD, READ BACKWARD, SKIP FORWARD, 
SKIP BACKWARD or REWIND. 

The most recent previous instruction affecting the same tape must 
be either READ FORWARD, READ BACKWARD, SKIP FORWARD, 
SKIP BACKWARD or END FILE. 

If the recomputed check sum fails to agree with the check sum on 
the tape, the program skips the next two instructions. 

If the designated tape is already at the end-of-file gap when this 
instruction is given, the program skips the next instruction. 

Note 5 : If the designated tape is already at the beginning-of-file gap when 
this instruction is given, the program skips the next instruction. 



5-3 

OP 7 Operations 

Alphabetical Numerical 
Code Code 

TR 104 

Name 

Transfer 

Description 

Control is unconditionally 
transferred to electrostatic 
cell D. 

TRPL 

TRMN 

TRZ 

SNTRP 
SNTRQ 

TIA 
TIB 
TIC 
TIAB 
TIBC 
TIAC 
TIABC 

109 

115 

112  

117 
120 

128 
126 
125 
130 
127 
129 
131 

Transfer plus 

Transfer minus 

Transfer zero 

Sense and transfer P 
Sense and transfer Q 

Transfer 
Transfer 
Transfer 
Transfer 
Transfer 
Transfer 
Transfer 

and increase 
and increase 
and increase 
and increase 
and increase 
and increase 
and increase 

rb 
S"c 
Rfte 
R BC 
R * c  
RABC. 

Control is transferred to 
electrostatic cell D if Q (C) 
is positive. 

Control is transferred to 
electrostatic cell D if Q (C) 
is negative. 

Control is transferred to 
electrostatic cell D if the 
fractional part of Q (C) 
is zero. 

Control is transferred to 
electrostatic cell D if op­
erator's panel sense switch 
P (or Q) is down. (These 
sense switches, P and Q, 
are numbered 4 and 5 res­
pectively, on the operator's 
panel.) 

R^ , Rg and R^ are 
quantities stored in electro­
static which can be used to 
modify the addresses A, B 
and C respectively. Execu­
tion of one of these instruc­
tions increases each of the 
designated R - quantities by 
one and transfers control to 
electrostatic cell D. 

TDA 
TDB 
TDC 
TDAB 
TDBC 
TDAC 
TDABC 

SETRA 
SETRB 
SETRC 

SKRA 
SKRB 
SKRC 

135 
133 
132 
137 
134 
136 
138 

139 
250 
145 

152 
159 
162 

Transfer and decrease 
Transfer and decrease R^ 
Transfer and decrease R^ 
Transfer and decrease Rfl(j 
Transfer and decrease R 
Transfer and decrease R ̂  
Transfer and deer ease R 

Set R ft 
Set R £ 
Set R(^ 

Same as the corresponding 
"Transfer and increase" op­
erations except that each of 
the designated R-quantities 
is decreased by one. 

The designated R-quantity is 
replaced by the D address. 

Skip R^ 
Skip R ^ 
Skip R ^ 

The program skips the next 
instruction if the designated 
R-quantity is equal to the D 
address. 



5-4 

OP2 Operations 

Alphabetical Numerical Name 
Code Code 

RADDA 199 Reset and add A 
RADDB 202 Reset and add B 
RADDC 205 Reset and add C 
RADDD 208 Reset and add D 

ADDA 177 Add A 
ADDB 184 Add B 
ADDC 190 Add C 
ADDD 193 Add D 

SUBA 211 Subtract A 
SUBB 216 Subtract B 
SUBC 221 Subtract C 
SUBD 226 Subtract D 

STA 251 Store A 
STB 252 Store B 
STC 235 Store C 
STD 244 Store D 

SKIP 165 Skip 

PRCH 232 Prepare check 

STCH 253 Start check 

ECHTR 254 End check and transfer 

Description 

The designated address of the 
instruction located at D is 
added into the address counter 
after this counter has been re­
set to zero. 

The designated address of the 
instruction located at D is 
added to the contents of the 
address counter. 

The designated address of the 
instruction located at D is 
subtracted from the contents 
of the address counter. 

The designated address of the 
instruction located at D is re­
placed by the contents of the 
address counter. 

The program skips the next 
instruction if the D address is 
equal to the contents of the ad­
dress counter. 

This operation must always be 
given prior to the first use of 
the "Start Check" operation. 

This operation causes the in­
struction of which it is a part 
to become the first instruction 
in a "checking loop", that is, 
in a sequence of instructions 
which will be performed twice 
to check for machine errors. 

This operation causes the in­
struction of which it is a part 
to become the last instruction 
in a checking loop. The first 
time it is encountered it causes 
a transfer to D, where D is 
usually the location of the pre­
ceding "Start check" operation. 
The second time it is encount­
ered it compares the results of 
the two passes through the 
loop. If the results are the 
same the next instruction is 
skipped. If there is a dis­
crepancy this skip does not 
occur. 



5-5 

OP2 Operations 

Alphabetical Numerical Name 
Code Code 

STOP 123 Stop and transfer 

Description 

Upon encountering this in­
struction the calculator stops. 
If it is then restarted by the 
operator, the first instruction 
executed is a transfer of con­
trol to D. At the time of the 
stop, the address D is visible 
{ in binary ) on the accumu­
lator register lights on the 
operator's panel. 

000 No Operation 
( Note that the alphabetical code for no OP| is NOOP and for no OP2 is simply a 

blank. ) 



6-1 

Elementary Mathematical Functions 

SpeedCo I provides for the direct computation of the following elementary 
mathematical functions: square root, sine, arc tangent, exponential and natural 
logarithm. 

For each of these operations the programmer must specify the appropriate 
alphabetical or numerical OPj code, the address A of the independent variable, 
and the address C at which the result is to be stored. These instructions do not 
require the specification of a B address; hence the number coded there is im­
material. 

The present available set of these five elementary functions is designed to 
give at least seven significant decimal digits of accuracy. For details as to the 
range of the argument and accuracy of approximation, see the appendix. 

Problems may arise where the accuracy provided is inadequate. In such 
cases it is possible to modify the SpeedCo I control information to obtain greater 
accuracy. Such modifications may, however, increase the storage requirements 
for this control information. 

i 
Hence the programmer must balance the advantages of greater precision 

against the disadvantage that the electrostatic storage capacity may decrease 
from the 714 words now available with the present approximations. 

Descriptions of alternative sets of approximations will be added to the 
appendix as they become available. 



7 -1  

Input - Output Components 

The card reader, printer, magnetic tapes and magnetic drums are all 
classified as input-output components of the machine, because they all share 
the common property of being able to automatically receive information from, 
or transmit information to, electrostatic storage. In fact, it must be remem­
bered that, whenever information is transmitted from one component of the 
machine to another, it must pass through electrostatic storage. 

Any machine component capable of automatically transmitting informa­
tion both to and from electrostatic (such as tapes and drums) may be regarded 
as an auxiliary storage (as distinguished from the electrostatic "working stor­
age"). However, the common input-output terminology will be used in this 
section. 

The computer has full automatic control over all input-output components. 
As will be seen from what follows, this control is exercised by means of the 
stored program. 

Punched Cards 

SpeedCo I uses punched cards as its primary input medium because of their 
great flexibility and because of the availability of apparatus for key-punching, 
verifying, and duplicating. Errors in key-punching are easily detected and cor­
rected. Input data may readily be prepared on several key-punches simultaneously, 
and the cards may then be collected for entry into the computer. Cards are partic­
ularly desirable when one wants to have manual access to a file since they can 
easily be separated, and their contents may be printed on them. 

Instruction card form 

PROGRAM 
c  c  ALPHA­

BETIC 
OPl 

R  
C  A B C ALPHA­

BETIC 
OPl 

D 
L  
C  NU­

MERIC 
OPl 

NU­
MERIC 

OPl 
REMARKS LABEL R  O  L  

ALPHA­
BETIC 
OPl 

o  D  E l  
ADDRESS ADDRESS ADDRESS 

ALPHA­
BETIC 

OPl ADDRESS O  D  E  

NU­
MERIC 

OPl 

NU­
MERIC 

OPl 
REMARKS 

0 0 0 0 0 0 0 0  0  0  0  0  1 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0 0  0 0 0  0  0  0  0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  a  
1  2  1  4  S  •  7  1  1 1 0  1 1  1 2  1 1  4  1 5  1 0  1 7  1 0  1 0  2 1  2 1  2 2  2 1  2 4  2 9  2 0  2 7  a 2 9  3 0  3 1  3 2  3314 3 5  3 0  3 7  3 0  3 0  4 0  4 1  4 2  4 1  4 4  4 5  4 0  4 7  4 0  4 0  5 0  5 1  5 2  5 3  5 4  5 5  50S7S0 50 n01C2C3 04 05 00 C7nfl0 10 71 72 71 74 79 71 77 70 79 00 
1 1 1 1 1 1 1 1  1 1 1 1  1 1 1 1 1  1  1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1 1  1 1 1 1  1  1  1  1  1  1  1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  o  

2 2 2 2 2 2 2 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 2 2  2 2 2  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  5 

3 3 3 3 3 3 3 3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3 3 3  3 3 3  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  1  

4 4 4 4 4 4 4 4  4  4  4 4  4  4 4 4  4  4  4 4 4 4  4  4  4 4  4 4  4  4  4  4  4 4  4  4  4  4  4  4  4  4 4  4 4 4  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  

5 5 5 5 5 5 5 5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5 5 5  5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5  
s  
z  ,  

6 0 6 6 0 0 6 6  6  6  6  0  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6 6 6  6 6 6  6 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 0 6 6 6 6 6 6 6 6  
H  a  1  c  1  

7 7 7 7 7 7 7 7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7 7 7  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7  z  

0 0 0 0 0 0 6 6  0  8  6  0  8  0  8  8  8  8  8  8  8  8  0  8  8  8  8  0  0  8  8  8  8  8  8  8  8  8  8  8  0 8 8  0 8 8  0 6 8 8 8 8 0 0 0 8 8 8 8 8 6 0 8 8 0 0 0 8 0 8 8  u  

9 9 9 0 9 9 9 9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9 9 9  9 9 9  9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9  1 2  1 4  9  1 7  1  1  1 0  1 1  1 2  1 1  1 5  1 0  1 7  1 0  1 9  2 0  2 1  2 2  2 3  2 4  2 5  2 0  2 7  2 0  2 9  3 0  3 1  1 2  3 3  3 4  835 17X30 40 41 4243 441 4 9  4 0  4 7  4 0  4 0  9 0  5 1  5 2  5 3  5 4  5 5  5S 57 5i9ilOI1l2l3l4 45Mt7MM70 71 72 73 74 75 79 77 7t79IG lure 3 0321 



7-2 

SpeedCo I instructions are initially entered into the calculator by means 
of punched cards, one instruction being punched per card. The punching fields 
are as follows. 

Card Columns 

1 - 7 

9 
10-13 

14 
15-19 
20  

21-24 

25-28 

29-32 

33-34 
35-39 
40-43 

44 

45 
46-48 
49-51 
52-55 
56-80 

Symbol Description 

Not used by SpeedCo I. 
Must never have zero and one punch 
simultaneously. 
Must always be blank. 

Location Electrostatic memory location at which the 
instruction is to be stored. 
Always punched zero. 

OP^ Alphabetical code designation for OPj. 
R The digit coded here controls which of the 

addresses A, B and C are to be increased by 
RA> rB and RC respectively. 

A Address in electrostatic storage of the 
first operand. 

B Address in electrostatic storage of the 
second operand. 

C Address in electrostatic memory at which 
the result is to be stored. 
Always punched zero. 

OP2 Alphabetical code designation for OPo. 
D Address used in connection with the OP2 

operation. 
L This digit, taken in conjunction with the 

positions of the three list switches labeled 
1, 2, and 3 on the operator's panel, con­
trols a detailed listing of instructions and 
results. 
Not used by SpeedCo I. 

OP. Numerical code designation for OP^. 
OP2 Numerical code designation for OP2 . 

Always punched zero. 
Not used by SpeedCo I. 

Note that the instruction card form provides space for both the alphabetical 
and the numercial OPj and OP^ code designations. If the program has been 
written using the alphabetical (designations the following procedure applies. The 
alphabetical designations are key-punched from the programmer's manuscript into 
card columns 15-19 and 35 - 39. After the key-punching has been verified a 
sort and gang-punch process is carried out which punches the corresponding 
numerical designations into columns 46-48 and 49-51. 



7-3 

If on the other hand the program was written using the numerical 
designations for OPj and OP2, all that is necessary is that these numerical 
designations be key-punched and verified. In this case the alphabetical fields 
(columns 15 - 19 and 35 - 39) are left blank and no sorting and gang-punching 
operations are necessary. 

It is important to note that the 701 is controlled by the numerical code 
punching only, the alphabetical punching being unintelligible to the machine. 
For this reason SpeedCo I instruction cards should never be fed into the 701 
with only the alphabetical OP^ and OP2 code designations punched. 

It is also important to note that all columns except those specifically de­
signated to be blank or not used and except the alphabetical operation codes 
must have a single numerical punch. 

Data card form 

IDENTIFICATION 

0 0 0 0 0 0 0 0  
U l t l l H  
11111111 
2 2 2 2 2 2 2 2  

3 3 3 3 3 3 3 3  

4 4 4 4 4 4 4 4  

5 5 5 5 5 5 5 5  

6 6 0 6 0 0 6 6  
7 7 7 7 7 7 7 7  

0 8 0 0 0 0 0 0  

9 9 0 9 9 9 0 0  1 2 3 « s • 7 1 

FIRST 

-OCATION 

0 0 0 0 
10 11 12 13 

3  3  3  3  

4 4  4 4  

5  5  5  5  

6  6  6  6  

7  7  7  7  

8 8 8 8 
9  9  9  9  n 11 

Ni 

0 0 0 0 0 0 0 0 0 0  
14 IS I117 IIII 20 21 22 23 

0 0 0  
24 25 20 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
2 2 2 2 2 2 2 2 2 2 2 2 2 2  

3 3 3 3 3 3 3 3 3 3  

4 4 4 4 4 4 4 4 4 4  

5 5 5 5 5 5 5 5 5 5  

6 6 6 6 6 6 6 6 6 6  

7 7 7 7 7 7 7 7 7 7 7  

0 8 8 8 8 8 0 0 8 0  
9 9 9 9 9 9 9 9 9 9  

1 1 1 
0 0 0 0 0 0 0 0 0 0  
27 21 21 30 31 32 33 34 35 30 

1 1 1 1 1 1 1 1 1 1  
2 2 2  

3 3 3  

4 4 4  

5 5 5  

6 6 6  

7 7  

808 
9 9 9  

N2 

0 0 0  
37 30 30 

1 1 1 
2 2 2 2 2 2 2 2 2 2  

3 3 3 3 3 3 3 3 3 3  

4 4 4 4 4 4 4 4 4 4  

5 5 5 5 5 5 5 5 5 5  

6 6 6 6 6 6 6 6 6 6  

7 7 7 7 7 7 7 7 7 7  

8 8 0 8 8 8 8 8 8 0  
9 9 9 9 9 9 9 9 9 9  

0 0 0 0 0 
40 41 42 43 44 

1111 
2 2 2  

3 3 3  

4 4 4  

5 5 5  

6 6 6  

7 7 7  

888 
9 9 9  

2 2 2 2 2 

3  3  3  3  3  

4  4  4  4  4  

5  5  5  5  5  

6 6 6 6 6 

7  7  7  7  7  

8 8 8 8 8 
9  9  9  9  9  

0 0 0 0 0 
41 47 41 41 50 

111111 
2 2 2 2 2 

3  3  3  3  3  

4  4 4  4 4  

5  5  5  5  5  

6 6 6 6 6 

7  7  7  7  7  

8 8 8 8 8 

9  9  9  9  9  
12 I3M 15 10 17 II II 20 21 22 23 24 25 20 27 20 9 30 31 S3334353I 37 30 3II4141 42Q 44 40 4I 47 4I4I3I 51 S253S4 59 3l 57 5iani1l2l3l4B>naM7l 71 72 73 74 75 70 77 71 71 

0 0 0  
51 52 53 

1 1 1 
0 0 0 0 0 0 0 0 0 0  
54S5a57aaan oo 

11111 
2 2 2  

3 3 3  

4 4 4  

5 5 5  

6 6 6  

7 7 7  

8 8 8  

9 9 9  

N 4 

1 1 1 
2 2 2 2 

3  3  3  3  

4  4  4  4  

5  5  5  5  

7  7  7  7  

8  8  8  8  

9  9  9  9  

2  2  2  2  

3  3  3  3  

4  4  4  4  

5  5  5  5  

6  6  6  6  

7  7  7  7  7  

0 8 8 8 

9  9  9  9  

1 1 1 
2 2 2  

3 3 3  

4 4 4  

5 5 5  

6 6 6  

7 7  

88 8 
9 9 9  

N5 

O O O O O O O O O O  
Ilaal071 72 73 74 75 7l 

1 1 1 1 1 1 1 1 1 1  
2 2 2 2 2 2 2 2 2 2  

3 3 3 3 3 3 3 3 3 3  

4 4 4 4 4 4 4 4 4 4  

5 5 5 5 5 5 5 5 5 5  

6 6 6 6 6 6 6 6 6 6 6  

7 7 7 7 7 7 7 7 7 7 7  

8 8 8 8 8 0 8 8 8 8 8  
9 9 9 9 9 9 9 9 9 9 9  

77 71 71 1 

1 1 1 
2 2 2  

3 3 3  

4 4 4  

5 5 5  

6 6  

7 7  

88 
9 9  

Data are initially entered into the calculator by means of punched cards, 
five or fewer pieces of data being punched per card. The punching fields are 
as follows. 



7-4 

Card Columns Symbol Description 

1 _ 7  N o t  u s e d  b y  S p e e d C o  I .  
8 Always double-punched zero and one. 
9 Always punched eight. 
1 0 - 1 3  L o c a t i o n  E l e c t r o s t a t i c  m e m o r y  l o c a t i o n  a t  w h i c h  

the first piece of data on the card is to 
be stored. The remaining four pieces of 
data will be stored in the next n consecu­
tively-numbered locations, where n = 0, 
1, 2, 3 or 4 depending upon whether the 
word count is 1, 2, 3, 4 or 5 respectively. 

14 - 23 Nj First fractional part. 
24 - 26 n ^ First exponent. 
27 - 36 N£ Second fractional part. 
37 - 39 n£ Second exponent. 
40 - 44, ) N3 Third fractional part. (In punching F3 
46 - 50 ) column 45 must be skipped since this 

card column is not read by SpeedCo I). 
51-53 n3 Third exponent. 
54 - 63 N4 Fourth fractional part. 
64 - 66 n^. Fourth exponent. 
67 - 76 Ng Fifth fractional part. 
77 - 79 n3 Fifth exponent. 
80 Word count Number of pieces of data on the card 

( = 1, 2, 3, 4 or 5). 

A sign must be specified for each fractional part and each exponent. In 
each case the sign is punched over the least significant digit of the fractional 
part or exponent to which it applies. A "12" punch means plus and an "11" 
punch means minus. If the word count is less than 5 the irrelevant signs need 
not be punched, but the card itself must be filled out with zeros, or at least some 
single numerical punch for each irrelevant column. 

In no case may the absolute value of an exponent exceed 236. 
Card Reader 

The process of loading the data and instructions of a program into the 
calculator is carried out as follows. The data and instruction cards are key­
punched and verified and any necessary sort-and-gang-punch operations are 
performed. The programmer will be supplied with a certain constant deck of 
cards labelled "SPEED CODING I". (This deck will contain all of the control in­
formation necessary to cause the 701 to operate according to the SpeedCo I system. 
The last card of this deck will be labelled "Transfer Control Card. ") From this 
constant deck and his own variable deck he will make up a single deck by inserting 
his variable deck between the last and the next to the last card of the constant deck, 
and adding three blank cards after the last card of the constant deck. The resulting 
deck is then placed in the hopper of the card reader, and the card reader start 
button is depressed to ready the card reader. The calculator is then started by 
pressing the load button on the operator's panel. No further manual intervention 
is necessary, subsequent operation being entirely automatic. The cards in the 
hopper feed through the card reader and the information on them is transmitted 
to electrostatic storage. SpeedCo I then directs and controls the conversion of 
the decimal information read from the cards. In the case of instruction cards, 
the information is converted to binary and assembled in the standard binary in­
struction form given in the section entitled "Control". In the case of data cards, 



7-5 

the conversion process involves not only the change from decimal to binary, 
but also includes the change from the powers-of-ten punched on the cards to 
the powers-of-two employed within the calculator. This converted data is then 
assembled in the standard floating binary number form given in the section 
entitled "Computing". In both cases the converted information is stored in 
electrostatic at the designated locations. The execution of the problem then 
automatically begins with the execution of the instruction which is stored at 
location 300. 

During this read-in process the card reader operates at the rate of 150 
cards per minute. Hence data is read and converted at the rate of 750 numbers 
per minute, while the rate for instructions is 150 per minute. 

All calculations made in the process of converting the decimal information 
on the cards to the required binary form are automatically checked. Any dis­
crepancy causes the machine to stop and give an error indication. 

Magnetic tape 

Magnetic tapes may be used either as a high-capacity long-term memory 
or as input from a previous problem that had stored its results on tape. Input 
data from cards, including programs, can be transcribed by the computer on 
tape to conserve storage space or to save time when the data must be repeatedly 
entered into the computer. 

There are four tape units designated by the letters J, K, L and M. Each 
contains a magnetic tape of any length up to 1400 feet. After the tape has been 
placed in motion, it can read or write information at the rate of 625 words per 
second. 

Information is recorded on tape in six channels that run parallel to the 
length of the tape. A bit of information is represented by a magnetized spot in 
a channel. A set of six bits recorded in a line perpendicular to the six channels 
will be referred to as a "group" of bits. Twelve groups recorded serially on a 
tape are needed to store one binary word of 72 bits. 

A seventh channel on the tape serves to check the reading and writing in 
the other six channels by the so-called "redundancy check" principle. That is, 
either a 0 or a 1 is recorded in the seventh channel so that across the seven 
channels there is an odd number of l's in each set of seven bits. When the tape 
is read, the number of l's is automatically checked. If the number is even, 
the calculator stops, and a signal light on the operator's panel called the "tape-
check" light is turned on. 

If the number of l's is odd (as it should be when correct), the machine 
continues the reading process. It should be emphasized that the operation of 
this seventh channel is completely automatic and requires no attention whatever 
on the part of the programmer. 

A schematic diagram of how a word of 72 bits is recorded on tape is shown 
below. Each x denotes a binary 1 or 0 recorded in that position on the tape. The 
72 bits recorded in the six recording channels represent the full word. The tape 
moves in the direction of the arrow. The group numbered 1 contains the first 
six bits of the word. The remaining eleven groups contain the following bits of 
the word in groups of six. Thus, group 2 contains bits 7 through 12 of the word, 
etc. 



7-6 

* 

Redundancy channel X X X X X X X X X X X X 

X X X X X X X X X X X X 

X X X X X X X X X X X X 

SIX \ X X X X X X X X X X X X 

RECORDING -{ 
CHANNELS X X X X X X X X X X X X 

X X X X X X X X X X X X 

X X X X X X X X X X X X 

12 11 10 9 8 7 6 5 4 3 2 1 

Writing on tape 

The general procedure for writing a file of information on tape is as follows. 
A WRITE TAPE instruction is given. This instruction causes the selected tape to 
be started in motion and causes it to record, as one unit record, the information 
stored in that block of consecutively-numbered electrostatic memory cells which 
begins at cell A and ends at cell B. 

For example, consider the following WRITE TAPE instruction. 

opl A B C 

WRTPK 0301 0387 -

This instruction will cause the block of information stored in electrostatic cells 
301 to 387 inclusive to be written, as a unit record, on tape K. 

The writing process requires that all previous magnetic marks be erased 
from that portion of the tape being written on. To accomplish this, an erasing 
apparatus precedes the recording apparatus by approximately two inches. As the 
tape moves under the impetus of the WRITE TAPE instruction the erasing apparatus 
is continually active, while the recording apparatus does not operate until told to 
do so by SpeedCo I, 

If the WRITE TAPE instruction is given when the tape unit is in the rewound 
condition (i. e., in position to write a file of records), the actual writing on tape 
is delayed eight-tenths of a second. The erase circuits, however, are functioning 
during this time, and there results a blank portion of tape called the "beginning-of-
file gap". 



7-7 

As soon as the be ginning-of-file gap has been written the recording process 
begins. The selected tape unit takes the word located at A and records it on the 
tape as 12 six-bit groups in the manner shown in the diagram above. Next the 
word at A 4-1 is recorded. This is followed immediately by the recording of the 
word at A+2. This process continues until the word located at B has been recorded. 

During this process two other operations have also been taking place. First, 
as each group of bits was recorded on tape the corresponding redundancy bit was 
automatically computed and recorded. Second, as the successive words of the rec­
ord being written were selected from electrostatic a calculation was carried on 
which resulted in the formation of a weighted sum of all of the binary information 
which comprises the record. This sum (called the "check sum") is then automati­
cally recorded on the tape immediately behind the word taken from location B„ 

Note that the length of the unit record is variable, the number of words 
recorded being given by the expression B - A 4 1. This number of words and their 
associated check sum having been written, the tape unit automatically disconnects 
itself from the calculator and stops. Because of the time necessary for the tape 
to come to a complete stop and the two-inch distance between the erase head and 
writing head, there results a small section of erased tape. The gap caused by 
this erasure is called an "end-of-record" gap. 

Note that the WRITE TAPE instruction makes no use of the address C and 
hence any number coded in the C address field is irrelevant to the execution of the 
instruction. 

The first unit record of the file has now been written. To write a second 
unit record, a second WRITE TAPE instruction is programmed. In this way a 
series of records may be recorded. Note again that the records may be of 
variable size if desired. 

The complete recording on a tape consists of a number of unit records that 
make up a file of information. 

Tapes can be re-used many times, and a new file can be written over an old 
file, the old one being erased in the process. Each time a new file is written, it 
is started at the beginning of the tape, and only one usable file of unit records can 
be on a tape at one time. Different files, however, will have different lengths, 
so that there is a possibility that beyond the last record of the most recenf recordfile, 
there may be bits left over from a previous use of the tape. These residual bits 
of information may not be properly spaced with respect to the record just written. 
This may result in an error on a later reading of the new record. To avoid having 
to erase the entire tape every time, and for certain control purposes to be mentioned 
later, an instruction called END FILE TAPE has been provided. This instruction, 
which must be given after writing any file, erases a further section of tape after 
the last unit record. The section of tape erased in this way is called an "end-of-
file gap". 

For example, in order to end a file of records just written on tape K, the 
following instruction should be given 

OP, 

EFTPK 



7-8 

In this instruction the addresses A, B and C are irrelevant to the execution 
of the instruction. 

The diagram below shows schematically how a typical file of information is 
recorded on tape. The arrow designates the forward direction of tape motion. 
Writing can be done only when the tape is moving forward. A beginning-of-file 
gap is followed by a number of unit records with intervening end-of-record gaps. 
Note that these gaps are of a fixed length regardless of the lengths of the unit 
records themselves. Finally, an end-of-file gap appears after the last unit 
record. Note, too, that the machine operates so that the lengths of the two gaps 
at each end of a file are equal to each other, but are longer than the intervening 
end-of-record gaps. 

> 
END-OF-RECORD GAPS 

To recapitulate, there are three kinds of gaps in the recording of informa-

1. The normal spacing between successive groups of six bits within a 
unit record. 

2. The longer gap between unit records. This gap is long enough to 
allow the tape to start and stop between records. 

3. The still longer gaps at the ends of the file. 

Reading from tape 

The general procedure for reading a file of information from tape is as 
follows. Assume that the tape is in position to read the first unit record of the 
file. A READ FORWARD TAPE instruction is given. This instruction causes 
the selected tape to be started in motion and causes it to transmit the first B - A+ 1 
words of the first unit record to electrostatic memory where they are stored in 
that block of consecutively - numbered memory cells which begins at cell A and 
ends at cell B. 

For example, consider the following READ FORWARD TAPE instruction: 

OPX A B C 

RFTPK 0851 0885 -



7-9 

If the first unit record of the file contains 35 words (in establishing the 
number of words in a unit record on tape, the check sum is not included in the 
count), this instruction will cause those 35 words to be read from tape K and 
stored blockwise in electrostatic memory cells 851 to 885 inclusive. If on the 
other hand the first unit record contains more than 35 words, this instruction 
will cause the first 35 of these words to be read from the tape and stored in 
the designated memory cells. 

In detail, the read forward process proceeds as follows. The selected 
tape transmits the first word to electrostatic memory where it is stored at A. 
Next the second word is transmitted and stored at Arl. This is followed immed­
iately by the transmittal of the third word and its storage at A*-2. This process 
continues until the word to be stored at B has been transmitted and recorded in 
electrostatic. 

During this process two other operations have also been taking place. 
First, as each group of bits was read from the tape the corresponding redundancy 
bit was also read and checked. Any discrepancy in this redundancy check will 
stop the calculator and light the tape-check light. 

Second, as the successive words of the record being read were trans­
mitted to electrostatic the check sum was recomputed and compared with the 
check sum read from the tape. Any discrepancy in this comparison will cause 
the calculator to ignore the next two instructions of the program and skip to 
the third instruction following the READ FORWARD TAPE instruction. 

It should be emphasized that both of these checking procedures are carried 
out for the entire unit record being read, even in those cases where only part of 
the record is being stored in electrostatic. In such cases the storing process 
is discontinued after the ( B - A-) 1) st word has been read and stored, but the 
tape unit continues transmitting until all words of the unit record, including the 
check sum, have been transmitted. During this latter phase, when the words 
being read from tape are not being stored in electrostatic, the redundancy check 
process and the check sum calculation still continue. Hence if the calculator 
does not stop, and if it does not skip the two instructions following the READ 
FORWARD TAPE instruction, the programmer is assured that the tape writing 
and reading process has been correctly performed. 

Note also that since the reading process is always continued to the end of 
the record, even when only part of the record is stored in electrostatic, the tape 
always stops at the end-of-record gap which concludes the record just read. 

Inasmuch as the READ FORWARD TAPE instruction makes no use of 
the address C any number coded in the C address field is irrelevant to the execu­
tion of the instruction. 

If for any reason the A and B addresses of a READ FORWARD TAPE in­
struction are so chosen that B - AH=1 is larger than the number of words in the 
record being read, the calculator will stop and a signal light on the operator's 
panel called the "copy-check" light will be turned on. 



7 - 10  

The process described above reads the first unit record of the file. The 
remaining records of the file may be read in the same way. After the last unit 
record of the file has been read, the tape is positioned at the end-of-file gap. 

If at this time another READ FORWARD TAPE instruction is given, the 
designated tape unit starts up and attempts to read another unit record. Instead 
of a unit record, however, it finds the end-of-file gap. This causes the calculator 
to ignore the next instruction of the program and skip to the second instruction 
following the READ FORWARD TAPE instruction. The programmer may then 
take advantage of this automatic skip to go into a new phase of the program. This 
end-of-file skip cannot be obtained from a blank tape; at least one unit record 
must be written on the tape to distinguish the normal space at the start of the 
file from the end-of-file gap obtained by use of the END FILE TAPE instruction. 

It should be emphasized, however, that this is not the only function of the 
end-of-file gap (see section entitled "Writing on Tape"). Even if the program 
is so written as to make no use whatever of the end-of-file skip feature, it is 
still necessary to give an END FILE TAPE instruction after writing a file on tape. 

Whenever a SpeedCo I instruction specifies READ FORWARD TAPE as 
its OPj part, its OP2 part must be left blank. The two skip features (check 
sum discrepancy skip and end-of-file skip) make it impossible for SpeedCo I 
to operate correctly if any OP2 operation is called for in the same instruction 
with the OPj operation READ FORWARD TAPE. 

In certain types of programs it is convenient to be able to read the unit 
records which make up a file on tape in the reverse order from the order in 
which they are written. In order to facilitate such tape reading programs the 
READ BACKWARD TAPE instruction has been provided as part of SpeedCo I. 

The READ BACKWARD TAPE instruction is very similar to the READ 
FORWARD TAPE instruction. 

They differ only in the following respects. When READ BACKWARD TAPE 
is given, the designated tape is first backspaced one unit record. During this back­
spacing no reading, checking or storing takes place. The unit record is then read 
in the forward direction and checked, exactly as in the READ FORWARD TAPE 
case. The designated tape then backspaces once more, again without reading, 
checking or storing. After execution of the READ BACKWARD TAPE instruction 
the tape stops at the end-of-record gap which precedes, on the tape, the unit 
record just read. 

For example, assume that the tape to be read is stopped at the end-of-
record gap between the fourth and fifth unit records on the tape. The instruction 
READ FORWARD TAPE will read and store the fifth record and the tape will stop 
at the end-of-r ecord gap between the fifth and sixth unit records. If the instruc­
tion given had been a READ BACKWARD TAPE instruction, however, the fourth 
record would have been read and stored and the tape would have stopped at the 
end-of-record gap between the third and fourth unit records. 



7 -11  

Note that the addresses A and B have the same significance in the instruc­
tion READ BACKWARD TAPE as they have in the instruction READ FORWARD 
TAPE. Thus the instruction READ BACKWARD TAPE causes B - A-fl words to 
be transmitted to electrostatic and stored in cells A through B. If the unit record 
contains more than this number of words, only the first B - A + l words of the 
record are stored in electrostatic (where "first" is used in the sense "first written' 

The redundancy check process and the check sum calculation are carried 
out for the entire unit record involved, even though only part of the record may 
be stored. 

If any discrepancy is detected in the redundancy check the calculator will 
stop and the tape-check light will be turned on. If the recomputed check sum fails 
to agree with the check sum read from the tape, the calculator will skip the next 
two instructions. 

If A and B are so chosen that B - A+l exceeds the number of words in the 
record being read, the calculator will stop and the copy-check light will be turned 
on. 

In all three of the above cases the error is detected during the second (or 
read forward) phase of the READ BACKWARD TAPE instruction. For this reason 
the tape comes to rest, not at the end-of-record gap which precedes the record 
read, but at the end-of-record gap which follows the record read. The final back­
spacing which is normally part of the READ BACKWARD TAPE instruction does 
not take place when one of these three error conditions is encountered. 

The C address of the READ BACKWARD TAPE instruction is irrelevant 
to the execution of the instruction. 

When reading a tape backward, an end-of-file gap is recognized just as 
in reading forward. After the unit record at the beginning of the file has been 
read backward, the tape will be positioned at the beginning-of-file gap. A fur­
ther READ BACKWARD TAPE instruction causes the tape unit to treat the be­
ginning-of-file gap as if it were an end-of-file gap and the calculator skips the 
next instruction. 

Because of the skip features of the operation READ BACKWARD TAPE, 
no OP2 operation may be called for in any SpeedCo I instruction which specifies 
READ BACKWARD TAPE as its OPj part. 

Tape skipping 

Cases will frequently arise where the unit records of a file on a tape must 
be read in a more or less random order. The instructions READ FORWARD 
TAPE and READ BACKWARD TAPE do not by themselves conveniently permit 
such tape reading since the instruction READ FORWARD TAPE reads only the 
record which immediately follows the end-of-record gap at which the tape is 
stopped, while the instruction READ BACKWARD TAPE reads only the record 
which immediately precedes this same end-of-record gap. In order to facilitate 
random tape reading, therefore, the instructions SKIP FORWARD TAPE and 
SKIP BACKWARD TAPE have been provided. 



7-12  

The instruction SKIP FORWARD TAPE advances the designated tape one 
unit record, the tape stopping at the end-of-record gap following the one at which 
it was stopped when the instruction was given. No reading or checking is per­
formed. 

The instruction SKIP BACKWARD TAPE backspaces the designated tape 
one unit record, the tape stopping at the end-of-record gap preceding the one 
at which it was stopped when the instruction was given. Again, no reading or 
checking is performed. 

For example, suppose that the last operation involving tape K was a 
READ BACKWARD TAPE K instruction which read and stored the fifth unit 
record of the file. Tape K is therefore stopped at the end-of-record gap be­
tween the fourth and fifth records. If the next record to be read is the second, 
the programmer could accomplish this by giving the instruction SKIP BACKWARD 
TAPE K two times, followed by the instruction READ BACKWARD TAPE K. 

The two SKIP BACKWARD TAPE K instructions would backspace tape K 
to the end-of-record gap between the second and third records and the READ 
BACKWARD TAPE K instruction would read and store the second record, the 
tape finally stopping at the end-of-record gap between the first and second 
records. 

The instructions SKIP FORWARD TAPE and SKIP BACKWARD TAPE 
both embody an end-of-file skip feature. If SKIP FORWARD TAPE is given 
when the designated tape is stopped at the end-of-file gap, or if SKIP BACK­
WARD TAPE is given when the tape is stopped at the beginning-of-file gap, 
the calculator ignores the next instruction and proceeds immediately to the 
execution of the second instruction following the tape skip instruction. 

No OPo operation may be called for in any SpeedCo I instruction which 
specifies SKIP FORWARD TAPE or SKIP BACKWARD TAPE as its OPj part. 

The A, B and C addresses of the instructions SKIP FORWARD TAPE and 
SKIP BACKWARD TAPE are irrelevant to the execution of the instructions. 

After the instruction SKIP FORWARD TAPE or SKIP BACKWARD TAPE 
has been given and interpreted and the actual tape motion has begun, the cal­
culator proceeds with the interpretation and execution of the following instructions 
of the program without waiting for the tape to come to a stop. If a subsequent 
instruction calls for the same tape while it is still in motion, the program is 
automatically delayed until the tape stops. 

Tape rewinding 

The instruction REWIND TAPE is used to cause the designated tape to 
return to the starting point of its file of records. 

When writing a file of unit records on a tape, the instruction REWIND 
TAPE should not be given until after the instruction END FILE TAPE has been 
used to properly terminate the file. 



7 -13  

The A, B and C addresses of the instruction REWIND TAPE are irrelevant 
to the execution of the instruction. 

After the instruction REWIND TAPE has caused the rewinding action to 
begin the calculator proceeds to the following instructions of the program with­
out waiting for the tape to stop. If a subsequent instruction calls for the same 
tape before the actual rewinding is complete, the program is then automatically 
delayed until the tape comes to a stop. 

Tape status 

It is not possible both to read and write on a single passage of a tape in 
one direction through the tape unit. If information is being written on a tape, 
the file should first be completed by writing an end-of-file gap before the infor­
mation is read. The tape can then be read backward immediately, or it can be 
rewound and then read in the forward direction. When a tape has been used for 
reading, it must first be rewound before any new information can be written on it. 

There are circuits associated with each tape unit that remember whether 
the tape is being read or written. When the circuits are set up for reading, the 
tape unit is said to be in "read status"; when the circuits are set up for writing, 
the tape unit is said to be in "write status". If the tape unit is in neither read 
status nor write status, it is said to be in "neutral status". 

When a tape unit is in read status, it may be used only for reading and 
skipping; when in write status, it may be used only for writing. If the instruc­
tion WRITE TAPE is given for a tape unit that is in read status, the instruction 
is not executed, the calculator stops, and the copy-check light is turned on. 
Similarly, if any one of the instructions READ FORWARD TAPE, READ BACK­
WARD TAPE, SKIP FORWARD TAPE or SKIP BACKWARD TAPE is given for 
a tape unit that is in write status,, the instruction is not executed, the calculator 
stops, and the copy-check, light is turned on. 

If the instruction END FILE TAPE is given for a tape unit that is in 
read status the instruction is not executed and the tape remains stationary. 

Any write, read or skip instructions will be executed in the normal man­
ner if the tape called for is in neutral status. After the execution of a normal 
write instruction the tape unit used will be left in write status. After the exe­
cution of a normal read or skip instruction the tape unit used will be left in read 
status. Irrespective of its previous status, the execution of a rewind instruc­
tion will always restore a tape unit to neutral status. An END FILE TAPE in­
struction will return the tape to neutral status only if it was originally in write 
status. 

The table below shows the status which will result when each one of 
the tape instructions is given under all possible conditions. 

Resulting status if original status was; 

Instruction Read Neutral Write 

Read Forward Tape 
Read Backward Tape 
Skip Forward Tape 

Read 
Read 
Read 

Read 
Read 
Read 

Write * 
Write * 
Write * 



7-14 

Resulting status if original status was 

Instruction Read Neutral Write 

Skip Backward Tape 
Write Tape 
End File Tape 
Rewind Tape 

Read * 
Read ® 
Neutral 

Read Read 
Write 
Neutral 
Neutral 

Write * 
Write 
Neutral 
Neutral 

* Instruction not executed. Copy-check stop. 
©Instruction not executed. No copy-check stop. 

REWIND TAPE will be executed with the tape unit in any status. However, 
REWIND TAPE should not be given while the unit is in write status. END FILE 
TAPE, which resets the tape unit to neutral, should always precede REWIND TAPE 
in those cases where the tape was originally in write status. 

A REWIND TAPE instruction must always be given before one can write 
on a tape previously in read status, even after reading backward all the way to 
the beginning-of-file gap. 

Once a tape has been rewound, further REWIND TAPE instructions may 
be given, but they will be ignored as long as the tape remains rewound. 

After an end-of-file gap has been written, the tape unit will be in neutral 
status. At this point the programmer must not give any of the instructions READ 
FORWARD TAPE, SKIP FORWARD TAPE, WRITE TAPE or END FILE TAPE 
(each of which would move the tape further forward) although the neutral status 
would permit such meaningless action. Only READ BACKWARD TAPE, SKIP BACK­
WARD TAPE or REWIND TAPE can follow END FILE TAPE. 

When a tape is being read or skipped in the forward direction and the end-
of-file gap has once been sensed, no further READ FORWARD TAPE or SKIP FOR­
WARD TAPE instructions (which would move the tape further forward) should be 
given. Only READ BACKWARD TAPE, SKIP BACKWARD TAPE or REWIND TAPE 
can follow the detection of an end-of-file gap. Similarly, after sensing the begin­
ning-of-file gap on reading or skipping backward, or after giving the instruction 
REWIND TAPE, the programmer must not give READ BACKWARD TAPE or SKIP 
BACKWARD TAPE. 

Magnetic drums 

The magnetic drum storage is divided into two blocks of 1024 words each, 
with addresses consisting of the integers from 0 to 1023. Each block will be re­
ferred to as a drum. The two drums are designated by the letters P and Q. These 
drums provide an auxiliary memory that is, for many purposes, more accessible 
than tape memory. Individual words on a drum can be selectively altered at any 
time. Drums are used to a large extent for storing tables of data and sections of 
long programs that may not fit into the electrostatic memory. 

Information is usually recorded on the drum as blocks of words called 
unit records. The words of a unit record are stored in locations with consecutive 
addresses, although the first word of a record may be placed at any drum address. 



7-15 

The following paragraphs describe the process of writing a unit record 
on a drum. 

A WRITE DRUM instruction is given. This causes the designated drum 
to be connected to the calculator and causes it to record, as one unit record, the 
information stored in that block of consecutively - numbered electrostatic memory 
cells which begins at cell A and ends at cell B. The first word of the unit record 
is written on the drum at drum address C and the last word is written at drum 
address CtB - A. 

For example, consider the following WRITE DRUM instruction. 

opl A B C 

WRDRQ 0947 1014 0032 

This instruction will cause the block of information stored in electrostatic 
cells 947 to 1014 inclusive to be written on drum Q as a unit record beginning 
at drum address 32 and ending at drum address 99. 

The instruction WRITE DRUM also includes a checking feature which 
operates as follows. After the block of information from electrostatic has been 
written on the drum, and before the calculator goes on to the next instruction of 
the program, the information just written on the drum is read back into electro­
static and checked, word for word, against the information originally in electro­
static. If there is no discrepancy, the calculator proceeds to the interpretation 
and execution of the next instruction of the program. If, on the other hand, the 
calculator detects any discrepancy between the original information and the 
information read back from the drum, the next two instructions of the program 
are ignored and the calculator skips to the third instruction following the WRITE 
DRUM instruction. Hence if the calculator does not skip the two instructions 
following the WRITE DRUM instruction, the programmer is assured that the 
drum writing process has been correctly performed. 

Because of this skip feature no OP-, operation may be called for in any 
SpeedCo I instruction which specifies WRITE DRUM as its OPj part. 

The drum reading operation is very similar. It is carried out as follows. 
A READ FORWARD DRUM instruction is given. This causes the designated 
drum to be connected to the calculator and causes it to transmit to electrostatic 
that block of B - A+-1 words which is stored on the drum beginning at drum ad­
dress C. 

Upon its transmittal to electrostatic, this information is stored in that 
block of consecutively - numbered electrostatic memory cells which beings at 
cell A and ends at cell B. 



7-16 

For example, consider the following READ FORWARD DRUM instruc­
tion 

OPx A B C 

RFDRQ 0811 0820 0041 

This instruction will cause the block of information stored on drum Q 
beginning at drum address 41 and ending at drum address 50 to be transmitted 
to electrostatic and stored in electrostatic cells 811 to 820 inclusive. 

No checking features are included in the drum reading operation. 

Note that a unit record written on a drum does not preserve its identity 
as a unit record, there being no end-of-record gaps to mark its beginning and 
end. For instance, the information read in the above READ FORWARD DRUM 
example would be the 10th through the 19th words of the unit record written in 
the preceding WRITE DRUM example, unless another WRITE DRUM instruc­
tion involving this region of the drum had intervened. 

If only a single word is to be written or read, the electrostatic address 
of this word must be used as both the A and the B addresses of the instruction 
concerned. 

Drum reading and writing are not restricted by any considerations cor­
responding to the status limitations which affect tape reading and writing, nor 
is there anything in drum reading and writing which corresponds to the end-of-
file features of tape reading and writing. 

The programmer must not attempt to read or write beyond drum address 
1023. For example, it is not possible to write a 7 word record beginning at drum 
address 1022 and ending at drum address 4. 

Loading procedures for lengthy programs 

In the section entitled "Card Reader" a procedure is described for loading 
short programs into the calculator* This procedure does not apply, however, to 
programs which involve more than 714 words of instructions and data. In such 
cases, the additional storage capacity of tapes or drums must be utilized. This 
is done in the following way. 

During the writing of the program the programmer subdivides it into a 
number of blocks, each of which requires no more than 714 words of storage to 
accommodate all of its input data, its instructions, its output data and any 
"erasable storage" needed to temporarily retain intermediate results. 

The punched cards which contain the instructions and data of the problem 
are then grouped in blocks in the same way, the cards of each block being 
separated from those of the next block by means of a control card. This con­
trol card contains information which completely specifies a tape writing or drum 
writing operation. 



7-17 

The layout of the loading control card is as follows: 

Card Columns Description 

I - 7  N o t  u s e d  b y  S p e e d C o  I .  
8 Must not be punched with zero and 

one simultaneously. 
9 Always punched nine, 
10 Always punched zero. 
I I - 1 4  E l e c t r o s t a t i c  s t o r a g e  a d d r e s s  o f  f i r s t  

word of unit record to be written 
on tape or drum. 

15 Always punched zero. 
16 - 19 Electrostatic storage address of last 

word of unit record to be written 
on tape or drum. 

20 Always punched zero. 
2 1 - 2 4  D r u m  a d d r e s s  o f  f i r s t  w o r d  o f  u n i t  

record to be written on drum. 
(In case tape writing is specified, 
the field is irrelevant but must 
be filled out with zeros). 

25 - 28 Always punched zero. 
29 Tape or drum identification: J, K, 

L or M for tape; P or Q for drum. 
30 - 80 Not used by SpeedCo I. 

With one important exception, the loading process is the same as in the 
simpler case already described. That is, the programmer inserts his variable 
deck of instruction, data and loading control cards between the last and the next 
to the last cards of the constant deck labelled "SPEEDCODING I", adds three 
blanks, puts this resulting deck in the hopper of the card reader, depresses the 
start button of the card reader and the load button on the operator's panel. 

The loading action is now as follows. The first block of data and in­
structions are read by the card reader and stored in the designated electrostatic 
memory locations. The first control card is then read, the card reader stops, 
and the information of the first block is taken from electrostatic and written as 
a unit record on the designated tape or drum. The card reader then automatically 
resumes operation, and the instructions and data of the second block are read, 
converted and stored in electrostatic. The second control card then stops the 
card reader again and causes the information of the second block to be written 
on the designated tape or drum. The card reader then resumes operation. 
This process continues until all blocks except the last have been dealt with. 
The last block is then read in, converted, and stored in electrostatic memory, 
following which execution of the program begins with the execution of the in­
struction which is then stored at location 300. 

Inasmuch as the first instruction executed is one of those in the last 
block loaded, the deck of cards fed through the card reader must be arranged 
with this in mind. 



7-18 

The important exception mentioned, above in this kind of loading is 
the fact that if any of the loading control cards have specified, tape writing, 
the specified tapes should first be given an END FILE TAPE instruction 
and a REWIND TAPE instruction if the programmer desires to begin read­
ing these tapes from the beginning-of-file in his problem, or merely an 
END FILE TAPE instruction if he desires to begin reading backwards. 
These preparatory tape instructions must be provided by the program it­
self unless the programmer desires merely to continue writing on the tapes 
in question after the loading process is completed and his program begins 
execution. 

The actual sequence of tape events in any SpeedCo I loading is as 
follows. All four tapes are always rewound, regardless, before any instruc­
tion cards, data cards, or loading control cards are read by the card reader. 
If no loading cards pertaining to tapes are contained in the programmer's 
deck, the tapes stay in this rewound, neutral status until they are first used 
by the program. If any loading cards pertaining to tapes are contained in 
this deck, the effect on the tapes is exactly the same as though a WRITE TAPE 
instruction had been executed as many times as there are such loading control 
cards, and in the same order as they occur in the deck. 

The above process may easily be modified to accommodate the case of 
a lengthy program which is to be executed using the same instructions, but 
not the same data, many times in, the future. In this event a significant time 
saving will usually be achieved if the instructions are transferred from cards 
to tape once for all, and are thereafter loaded, from tape. If this is done the 
loading process for future runs will be to put the program tape on the correct 
tape unit and load the data by means of the card reader. The only other require­
ment is that a few special instruction cards be loaded along with the data cards. 
After the data and these special cards have been read, converted and stored in 
electrostatic, the calculation will begin with a tape reading operation. As a 
result of this operation, the first block of the program will be read from the tape 
into electrostatic. The calculation then, begins, in normal fashion, with the 
execution of the instruction which has been stored in location 300 by the tape 
reading operation just completed,. 

PRINTER 

The final results of SpeedCo I are printed on a line printer which prints 
at the rate of 150 lines per minute. Five results and a line identification num­
ber print on each line, so that numbers are printed at the rate of 750 per minute. 

The general, procedure for printing a unit record is as follows. A 
PRINT instruction is given. This causes the printer to be connected to the cal­
culator and causes it to print, as one unit record, the results stored in that 
block of consecutively - numbered, electrostatic memory cells which begins at 
cell A and ends at cell B. The results are printed, five numbers to the line. 
An identification number prints opposite each line of results. This number is 
automatically computed using the formula 100 C + n, where C is the number 
coded as the C address of the PRINT instruction and n is the number of the line 
in the block. 



7-19 

For example, consider the following PRINT instruction. 

opI A B C 

PRINT 0461 0473 0407 

This instruction will cause the block of results stored in electrostatic 
cells 461 to 473 inclusive to be printed and identified as follows. 

Identification Results 

407 01 Q(46l) Q(462) Q(463) Q(464) Q(465) 
407 02 Q(466) Q(467) Q(468) Q(469) Q(470) 
407 03 Q(471) Q(472) Q(473) 

The results are printed in floating decimal. The conversion from the 
floating binary information within the calculator to the floating decimal informa­
tion printed is performed automatically by SpeedCo I. Once the conversion has 
been performed SpeedCo I checks the process by reconverting the decimal informa­
tion to binary and comparing the results with the original binary information. The 
mechanical action of the printer is also automatically checked. After the type 
mechanism has been physically set up to print a line, it transmits to the calculator 
a series of signals which indicate what characters the type wheels are positioned 
to print. SpeedCo I then compares this information with the set up signals pre­
viously sent by the calculator to the printer. If either of these two comparison 
checks reveals any discrepancy, the calculator stops and gives an error indication. 
Hence if the PRINT operation is concluded without this error indication arising, 
the programmer is assured that the information printed is the true decimal equiva­
lent of the binary unit record specified. 

The checking procedure is incomplete in only one respect. The print 
mechanism does not send back to the calculator any indication of the signs it 
prints - hence if there is an error in the algebraic sign of a quantity printed, 
no error indication will be given. 

It is very important that the programmer remember that the absolute 
value of the decimal exponent of any quantity to be printed may never exceed 



8 - 1  

Transfer Operations 

One of the very important advantages of a stored program calculator is the 
ease with which it can be controlled to carry out the instructions stored in its 
memory in some order other than the order in which they appear there. By use 
of the various operations available in SpeedCo I, for instance, the programmer 
may cause the calculator to repeat a designated sequence of instructions a speci­
fied number of times, or to repeat the sequence as often as is necessary to 
produce a specified result, or to choose between two or more alternate procedures 
depending upon the sign or the size of a computed quantity, or to depart in various 
other ways from its normal routine of executing instructions in the order in which 
they are stored. 

These transfers of control are effected, as is explained in the section en­
titled "Control", by placing into the program counter the address of some 
instruction other than the one which immediately follows the current instruction. 
Since it is the program counter which controls which instruction is to be executed 
next the program therefore does not continue in the usual sequential manner, but 
instead transfers control to the new location given. 

The following transfer instructions are available. They are all OF& 
operations. 

Transfer (TR) 

When the program encounters this instruction the number coded in its D 
address field is placed into the program counter, so that the instruction located 
at D is the next instruction executed. 

For example, consider the following transfer instruction. 

LOG OPA D 

0487 TR 0811 

In this case the program will execute the OP, - A - B - C portion of the instruc­
tion located at 487, and will then enter the number 811 into the program counter. 
As a result the next instruction executed will be the one stored at 811, following 
which the program will be executed sequentially from this new location until an­
other transfer operation is encountered. 

Transfer plus (TRPL) 

When the program encounters this instruction the number coded in its D 
address field is placed into the program counter if and only if the quantity computed 
and stored at C by the OPj - A - B - C part of the same instruction is positive. 

For example, consider the following instruction 

J-OC OP| A B C OP* D 

0519 ABSUB 0684 0832 0712 TRPL 0498 



8 = 2 

This instruction will cause the calculator to compute the value of | Q (684)j -
j Q (832)| . This result will then be stored at location 712. If this result was 

positive, the next instruction executed will be the instruction located in cell 
498. If on the other hand this result was negative, the next instruction executed 
will be the instruction located in cell 520. 

Transfer minus (TRMN) 

When the program encounters this instruction the number coded in its D 
address field is placed into the program counter if and only if the quantity com­
puted and stored by the OP, - A - B - C part of the same instruction is negative. 
Hence if the result at C is negative, control transfers to D whereas if it is positive 
the program continues sequentially. 

Transfer zero (TRZ) 

When the program encounters this instruction the number coded in its D 
address field is placed into the program counter if and only if the fractional part 
of the quantity computed and stored by the OPj - A - B - C part of the same in­
struction is equal to zero. 

For example, consider the following instruction. 

LOC OP, A B C OP2 D 

0519 ABSUB 0684 0832 0712 TRZ 0498 

This instruction will cause the calculator to compute the value of | Q (684) | -
[ Q (832) | . This result will then be stored at location 712. If the fractional 

part of this result was equal to zero, the next instruction executed will be the 
instruction located in cell 498. If on the other hand this fractional part was 
non-zero, the next instruction executed will be the instruction located in cell 
520. 

Transfer plus, minus and zero 

The operations TRANSFER PLUS, TRANSFER MINUS and TRANSFER ZERO 
are all conditional transfer operations whose effect depends upon the value of the 
quantity computed and stored at C. For this reason no one of these instructions 
should be given as part of a SpeedCo I instruction which does not, during its OPj 
- A - B - C part, compute and store a number at C. 

A situation may arise when the programmer wishes to determine both 
whether a computed result is zero or non-zero, and also whether the same corn-
puted result is positive or negative. Suppose for example that a transfer is to 
occur if the difference between two numbers (x and y) is greater than or equal to 
zero, but is not to take place if this difference is less than zero. The following 
pair of instructions illustrates one of several possible methods of accomplishing 
this result; 

LOC OP, A B C OP2 

f SUB L(x) L(y) L(x-y) TRZ 

f + 1  SUB L(x) H y )  L(x-y) TRPL 



8-3 

If x - y is zero, a transfer to g will occur as a result of instruction f. If x - y 
is non-zero, this transfer will not occur and instruction f+1 will be executed 
next. Here the instruction is repeated, except that OP2 is a TRANSFER PJLUS. 
Hence if x - y is positive a transfer to g will take place. Thus the combination 
of instructions f and f+ 1 results in a transfer to g if x - y is equal to or greater 
than zero, whereas if x - y is non-zero and negative the program continues 
sequentially with instruction f +2. 

Sense and transfer (SNTRP, SNTRQ) 

These two operations are also conditional transfer operations. Each of 
them is associated with a switch on the operator's panel called a sense switch. 
Sense switch P and Q are labelled "4" and "5" respectively on the operator's 
panel. If the designated switch is in the on position when SENSE AND TRANSFER 
is given, control is transferred to the location specified by the D address of the 
SENSE AND TRANSFER instruction. If on the other hand, however, the switch 
is in the off position the transfer does not take place. 

These operations are intended primarily to permit the operator to 
modify the action of the program manually while it is stored in the machine. For 
instance, it might be desirable in a program which includes an iterative process 
of some sort, to print the results of every iteration in some cases and to omit 
iterative result printing entirely in others. This could be accomplished as 
follows. Let the PRINT instruction which prints the results of each iteration be 
located in cell f. Then in the OP^ operation field of instruction f - 1 code the in­
struction SENSE AND TRANSFER P (or Q) and in the D address field of the same 
instruction code the address f+1. Then if the designated sense switch is off, 
printing will take place at the end of each iteration whereas if the switch is on, 
printing will be omitted. 

Other transfer operations 

In addition to the operations described above, SpeedCo I includes two other 
types of transfer instructions called TRANSFER AND INCREASE and TRANSFER 
AND DECREASE. These instructions are explained in the section entitled "Address 
Modification". 



Address Modification 

9-1 

In order to realize fully the advantages of stored program calculation, 
it is necessary that means be provided to modify the addresses of the program 
while the program is being executed. This requirement arises in the fact that 
in a great many problems the solution is quite repetitious in form, the same 
sequence of instructions being executed over and over, each time operating 
upon different data. In order to facilitate solution of this very typical sort of 
problem, SpeedCo I provides several means for modifying the address parts 
of stored instructions as the calculation proceeds. 

One of these modification features involves the use of three non-
negative quantities designated Ra » RB > and Rc which are stored as part 
of the SpeedCo I control information. These R - quantities serve as increments 
which may selectively be added to the A, B and/or C addresses of designated 
instructions of the program. 

Whenever such an addition takes place it occurs during the time that 
the instruction concerned is being interpreted, and prior to the time of its 
execution. Thus the effective address is not the address stored as part of 
the instruction, but is the stored address increased by the corresponding R -
quantity. 

It is most important that the programmer bear in mind that the address 
of the instruction, as stored, is not changed by this incrementing process. 
While it is true that the result of executing such an incremented instruction 
is precisely the same as if the stored instruction had been changed in storage 
and then executed, as stated above the actual situation is that the change is 
made during the process of interpreting the instruction. 

Whether none, one, two or all three of the possible additions takes 
place in the case of any particular instruction is determined by the value the 
programmer assigns to the R - code for that instruction, where the R —Code 
is a single digit punched in column 20 of the instruction card. The following 
table indicates the effect of each possible value of the R - Code. 

R - code value Effective addresses 

0 A B C 

1 A B C + Rc 

2 A B + Rb C 

3 A B 4 Rb C + 

4 A + Ra B c 
5 A + Ra B C + Rc 

6 A 4 Ra B + Rb C 

7 A + ra B + Rb C + Rc 



9-2 

Consider for example the following instruction 

opi A B C 

ADD 0410 0563 0741 

Assume that the R - quantities stored at the time this instruction is encountered 
are 

R = 0007 R„ = 0019 R,~ = 0104 
A B ^ 

Then the following table indicates what action will take place for each possible 
value of R 

R Action 

0 Q(410) 4- Q(563) = Q(741) 

1 Q(410) Q(563) Q(845) 

2 Q(410) -f Q(582) Q(741) 

3 Q(410) + Q(582) Q(845) 

4 Q(417) 4- Q(563) = Q(741) 

5 Q(417) + Q(563) Q(845) 

6 Q(417) + Q(582) = Q(741) 

7 Q(417) Q(582) = Q(845) 

TRANSFER AND INCREASE Operations 

SpeedCo I provides seven OP2 operations known as TRANSFER AND 
INCREASE operationso Typical of these is the instruction TRANSFER AND 
INCREASE Rq„ When the program encounters this instruction the number 
coded in its D address field is placed into the program counter and the quantity 
R^ is increased by one. 

In normal usage a TRANSFER AND INCREASE instruction transfers 
control back to the beginning of a sequence of instructions which has just been 
executed, meanwhile modifying any or all of the three R - quantities so that 
during the next execution of this same sequence of instructions the data operated 
upon will be located in cells immediately adjacent to the cells which contain the 
data used during the first execution. 



9 -3  

These seven operations are the following 

Name Abbreviation 

TRANSFER AND INCREASE RC TIC 

TRANSFER AND INCREASE RB TIB 

TRANSFER AND INCREASE RBC TIBC 

TRANSFER AND INCREASE RA TLA 

TRANSFER AND INCREASE RAC TIAC 

TRANSFER AND INCREASE RAB TIAB 

TRANSFER AND INCREASE RABC TIABC 

When any one of the instructions in this group is encountered the designated R -
quantity or quantities are increased by one and control is transferred to 

TRANSFER AND DECREASE Operations 

SpeedCo I provides seven OP2 operations known as TRANSFER AND 
DECREASE operations. These operations are very simila'r to the TRANSFER 
AND INCREASE operations explained above. The only difference is that, as 
the name implies, the designated R - quantity or quantities are decreased by 
one each time one of these instructions is executed. 

These seven operations are the following 

Name Abbreviation 

TRANSFER AND DECREASE R C TDC 

TRANSFER AND DECREASE RB TDB 

TRANSFER AND DECREASE RBC TDBC 

TRANSFER AND DECREASE RA TDA 

TRANSFER AND DECREASE RAC TDAC 

TRANSFER AND DECREASE RAB TDAB 

TRANSFER AND DECREASE RABC TDABC 



9-4 

When any one of the instructions in this group is encountered the 
designated R - quantity or quantities are decreased by one and control is 
transferred to D. If an attempt is made to decrease any of the R - quantities 
below zero, an automatic error stop will occur. 

SET R , SET R . SET R 
A B* C 

Through the use of the TRANSFER AND INCREASE and TRANSFER 
AND DECREASE instructions the quantities Rj\.s Rn and R c can be increased 
or decreased one unit at a time. It is often desirable, however, to change 
these R - quantities by more than unity. For instance, if the program re­
quires more than one independent use of the R - quantities it will usually be 
necessary to reset them to zero after the first use and prior to the second. 
The OP^ operations SET R^, SET R-g and SET RQ have been provided for 
this purpose. When any one of these instructions is encountered the designated 
R - quantity is replaced by the number coded in the D address field of the 
instruction. It is of cqurse impossible to set any of the R - quantities to a 
negative value, since D is not provided with a sign. 

SKIP R. , SKIP R„, SKIP R„ A B* C 

The normal use of a TRANSFER AND INCREASE instruction forms 
what is called a "loop" in the program. Each time the TRANSFER AND IN­
CREASE instruction is encountered the designated R - quantities are increased 
by one and control is transferred back to an earlier instruction of the program. 
Obviously, however, some means must be provided to stop this process after 
the loop has been repeated the required number of times. It is for this purpose 
that the OP2 operations SKIP R^, SKIP Rg and SKIP RQ have been provided. 
When any one of these instructions is encountered, the designated R - quantity 
is compared with the number coded in the D address field of the instruction. 
If these two numbers are equal, the calculator ignores the next instruction of 
the program entirely and proceeds directly to the interpretation and execution 
of the second instruction following the SKIP instruction. If, however, the 
numbers compared are unequal, this skip does not take place. 

In making use of this instruction it is important to bear in mind that 
the execution of the OPj - A - B - C part of a SpeedCo I instruction always 
precedes the execution of the OP2 - D part of that same instruction. 

Examples involving address modifications 

A rather simple example of the use of the above instructions is given 
below. 

Assume that it is necessary to compute the sum of 34 quantities which 
are stored in locations 688 through 721 and to store the sum in cell 945. Assume 
further that cell 1013 contains the number zero and that instruction 416 is the 
next instruction to be executed. The following sequence of instructions could be 
used for this purpose. 



9-5 

LOC OPi R A B C OP2 D 

0416 ADD 0 1013 1013 0945 SETRA 0000 

0417 ADD 4 0688 0945 0945 SKRA 0033 

0418 NOOP 0 0000. 0000 0000 TIA 0417 

1. Instruction 416 initializes the operation by first resetting the previous 
contents of 945 to zero and then resetting to zero. 

2. Since the R- code for instruction 417 is a 4, the effective A address for 
this instruction will be A+R^. During the first execution of instruction 
417, R» = 0. Hence the effective A address is 688. The quantity at 688 
is therefore added to zero and the sum is stored in 945. The 33 in the D 
field is then compared with R^ and since theyare unequal no skip occurs. 
Instruction 418 then increases RA to one and transfers control back to 417. 

3. During the second execution of instruction 417, R^ s 1 and therefore the 
effective A address is 688+1 - 689. Hence the quantity at 689 is added 
to the contents of 945 and the sum is stored in 945. Since 33^- 1, no 
skip occurs and instruction 418 increases R^ to 2 and transfers control 
back to 417. 

4. During the third execution of instruction 417, R^ a 2 and therefore the 
effective A address is 688+2 = 690. Hence the quantity at 690 is added 
to the contents of 945 and the sum is stored in 945. Since 33^2, no skip 
occurs and instruction 418 increases R^ to 3 and transfers control back 
to 417. 

5. Instructions 417 and 418 thus form a loop. During the nth execution of 
this loop, R^ a n - 1 and therefore the effective A address is 688+(n - 1). 
Hence the quantity stored in this cell is added to the contents of 945 (which 
at this point contains the sum of the quantities stored in the first n - 1 
cells) and the sum is stored in 945. The 33 in the D field of instruction 
417 is then compared with R^. If these numbers are unequal, RA is in­
creased from n - 1 to n and control is transferred back to 417. 

6. During the 34th execution of the loop, R^ = 33 and therefore the effective 
A address is 688+33 • 721. Hence the quantity at 721 is added to the con­
tents of 945 and the final result is stored in 945. The 33 in the D field of 
instruction 417 is then compared with Rj^ and since R^ now equals 33 the 
skip occurs, control transfers to 419 and the next phase of the calculation 
begins. 

Another somewhat more complex example of the use of these techniques 
is the following matrix multiplication problem. 

Assume that it is necessary to postmultiply the matrix A of order 18 x 20 by 
the matrix B of order 20 x 16. Let the elements of A be stored in electrostatic 
cells 500 through 859 in the order aj i' ai 2' al 3' ' * °' al 20 a2 1' a2 2' 
a2, 3' * * •' a2, 20' a3, 1» a3, 2» &3, 20>* — -» a18, i, a18>'2, ai8j'3, 
a18, 20 and let the elements of the first column of B be stored in electrostatic 
cells 900 through 919 in the order bj^ ,, b2 j, b3 j, ..., b2Q .. The remaining 
columns of B will be assumed to have been written on tape J, each column com­
prising one unit record. Let the electrostatic storage cells set aside for the 
elements of each successive column of the product be those with addresses run­
ning from 950 through 967. Two cells of erasable storage are requiredj let 



9-6 

them be 1000 and 1001. Let the contents of 1013 be zero. Assume that tape J 
is in read (or neutral) status and that it is stopped at the beginning-of-file gap; 
also that tape K is in write (or neutral) status and stopped at the same place. 
Finally, assume that RA = Rg = Rq = 0 and that instruction 354 is the next in­
struction to be executed. 

The following sequence of instructions could be used for this purpose. 

LOC OPl R A B c OP2 D 

0354 ADD 0 1013 1013 1 0 0 0  ! - -

0355 MPY 6 0500 0900 1001 SKRB 0020 

0356 ADD 0 1000 1001 1000 TIAB 0355 

0357 ADD 1 1013 1000 0950 SETRB 0000 

0358 ADD 0 1013 1013 1000 SKRC 0017 

0359 NOOP 0 0000 0000 0000 TIC 0355 

0360 NOOP 0 0000 0000 0000 SETRC 0000 

0361 WRTPK 0 0950 0967 0000 SETRA 0000 

0362 RFTPJ 0 0900 0919 0000 - — 

0363 NOOP 0 0000 0000 0000 TR 0355 

0364 EFTPK 0 0000 0000 0000 TR 0366 

0365 SBTPJ 0 0000 0000 0000 STOP 0362 

1. Instruction 354 resets 1000, the location at which each successive element 
of C will be accumulated. 

2. Instructions 355 and 356 form a loop which evaluates the successive elements 
of C. In the case of c^ for instance, the first execution of this loop places 
the product a^ j b, , into ce^ 1000 and changes Rj^ and Rg from 0 to 1. The 
second execution of*this loop then computes a ^ 2 2 1' adds ^ to the contents 
of 1000, stores the sum in 1000 and changes R^ and B from 1 to 2. The 
third execution of this loop then computes a-^ 3 b , adds it to the contents 
of 1000, stores the sum in 1000 and changes arid RB from 2 to 3. This 
continues until the loop has been executed 20 times. During the 20th cycle 
al 20 ^20 1 *S comPu*ec*> added to the contents of 1000 and the sum (cj^ ^) 
is stored in 1000. In addition RA and Rg are changed from 19 to 20. Control 
then transfers back to 355 and an irrelevant multiplication of a 2 1 by the 
contents of cell 920 takes place. The SKIP Rg instruction next transfers 
control to instruction 357 which transfers c^ 3 from cell 1000 to cell 950 
and resets Rg to zero. Instruction 358 resets cell 1000 to zero. Instruc­
tion 359 changes Rc from 0 to 1 and transfers control back to 355. 



9-7 

3. The loop which consists of instructions 355 and 356 is then executed 20 
times forming C^ ^ in cell 1000. Instruction 357 next transfers C2( j 
from cell 1000 to'cell 951 and again resets Rg to zero. Instruction 
358 then resets cell 1000 to zero. Instruction 359 changes RQ from 1 
to 2 and returns control to 355. 

4. Since the matrix A has 18 rows this larger loop (instructions 355 through 
359) must be executed 18 times in order to compute the first column of 
C. During the 18th execution of this loop RQ = 17. Hence instruction 358 
this time causes a skip to instruction 360 which resets RQ to zero. In­
struction 361 then writes the completed first column of C on tape K and 
resets R^ to zero. Instruction 362 reads the second column of the matrix 
B into the same block of electrostatic cells previously occupied by the 
first column of B. Instruction 363 transfers control back to 355. 

5. From here on the process is completely cyclic. Termination occurs 
when all 16 columns of B have been processed. At that time instruction 
362 attempts to read the 17th column of B from tape J. Since there is 
nothing there to read an end-of-file skip occurs which transfers control 
to 364. Instruction 364 writes an end-of-file gap on tape K and transfers 
control to 366 where the next phase of the calculation begins. 

6. If during any of the executions of the instruction READ FORWARD TAPE 
J the recomputed check sum fails to agree with the check sum read from 
the tape, two instructions are skipped, thus transferring control to 365. 
The OP^ part of this instruction causes the tape to backspace to the start 
of the record just read. The OP2 part of this instruction being a STOP 
AND TRANSFER instruction, the calculator then stops. If it is manually 
restarted, control will transfer to 362 and the calculator will again attempt 
to read the record whose check sum failed. If the original error was a 
random tape reading error, the program will continue in normal fashion. 
If not, the calculator will stop again. In this latter event a tape writing 
error is indicated, and the calculations which initially wrote the successive 
columns of B on tape J should be repeated. 

Address Counter 

The preceding sections deal with address modifications accomplished by 
means of the R-quantities. As was emphasized in the above, the use of this 
method of address modification means that the addresses of the stored in­
structions are not changed, since the incrementing process takes place after 
the machine has begun to interpret the instruction and before it is executed. 

The programmer is not limited, however, to this method of address modi­
fication. SpeedCo I also provides a counter called the "address" counter. 
Fixed point addition and subtraction may be carried out in this counter, the 
operands being addresses and address increments. It should be noted that when 
this method of address modification is used the addresses of the stored instruc­
tions are changed in memory. 



9-8 

The address counter is capable of adding to or subtracting from its 
contents a number taken from the A, B, C or D address field of any SpeedCo I 
instruction which happens to be in electrostatic at the time. This counter is 
also capable, as a single programmed operation, of resetting itself to zero 
and then adding. Finally, the contents of the address counter can be stored 
in the A, B, C or D address field of any SpeedCo I instruction which is at that 
time in electrostatic. 

The address counter may contain any integer in the range from 
t 13 1, 071 to+131,07]» When the program controls this counter to store its contents 
in the A, B, C or D address field of a designated instruction, however, what 
is actually stored is the absolute value of the contents modulo 1024. Hence 
in order to determine what will be stored from the address counter at any 
given time, the absolute value of the contents of this counter must be reduced 
by the largest integral multiple of 1024 which leaves a positive remainder 
less than 1024. It is this remainder which will be stored. The following tabu­
lation gives a few typical cases. 

Address Counter Reads Quantity Stored is 

0308 + 0308 

- 1003 1- 1003 

d~ 1348 + 0324 

- 1888 d" 0864 

+ 2348 -t 0300 

The following 16 OP£ operations control the functioning of the address 
counter. 

Four operations cause the address counter to reset itself to zero and 
to add the A, B, C or D address of a designated instruction. They are 

RESET AND ADD A (RADDA) 

RESET AND ADD B (RADDB) 

RESET AND ADD C (RADDC) 

RESET AND ADD D (RADDD) 

The instruction RESET AND ADD A, for example, will cause the con­
tents of the address counter to be replaced by the A address of that instruction 
whose location is given in the D field of the RESET AND ADD A instruction. 



9-9 

Four operations cause the address counter to add to its contents the 
A, B, C or D address of a designated instruction. They are 

ADD A (ADDA) 

ADD B (ADDB) 

ADD C (ADDC) 

ADD D (ADDD) 

The instruction ADD B, for example, will cause the address counter 
to add to its contents the B address of that instruction whose location is given 
in the D field of the ADD B instruction. 

Four operations cause the address counter to subtract from its contents 
the A, B, C or D address of a designated instruction. They are 

SUBTRACT A (SUBA) 

SUBTRACT B (SUBB) 

SUBTRACT C (SUBC) 

SUBTRACT D (SUBD) 

The instruction SUBTRACT C, for example, will cause the address 
counter to subtract from its contents the C address of that instruction whose 
location is given in the D field of the SUBTRACT C instruction. 

Finally, four operations cause the absolute value (modulo 1024) of 
the contents of the address counter to be stored in the A, B, C or D address 
field of a designated instruction. They are 

STORE A (STA) 

STORE B (STB) 

STORE C (STC) 

STORE D (STD) 

The instruction STORE B, for example, will cause the absolute value 
(modulo 1024) of the contents of the address counter to be stored as the B ad­
dress of that instruction whose location is given in the D field of the STORE 
B instruction» 

As an example of the use of the address counter, suppose that, start­
ing with the execution of instruction 428, it is necessary to modify the matrix 
multiplication coding given above in order to permit the postmultiplication of 
a 12 x 17 matrix by a 17 x 13 matrix. This requires that the D address of in­
struction 355 be changed from 20 to 17 and that the D address of instruction 
358 be changed from 17 to 12-1 - 11. The following sequence of instructions 
would accomplish this. 



9 - 1 0  

LOG O
 

HJ »—• R A B c OP2 D 

0428 NOOP 0 0017 0006 0000 RADDA 0428 

0429 XXXXX X XXXX XXXX XXXX STD 0355 

0430 xxxxx X XXXX XXXX XXXX SUBB 0428 

0431 XXXXX X XXXX XXXX XXXX | STD 0358 

Instruction 428 replaces the previous contents of the address counter 
by 17, the A address of instruction 428. Instruction 429 stores this value (17) 
as the D address of instruction 355. Instruction 430 subtracts 6 from the con­
tents of the address counter; the 6 being obtained from the B field of instruction 
428. Instruction 431 stores the difference (11) as the D address of instruction 
358. 

In the above example the necessary constants are stored as the A and 
B addresses of the NOOP operation located at 428. However, it is usually not 
necessary to code special NOOP operations for this purpose. In most programs 
a considerable number of the instructions will have blank OP2 - D parts. Con­
stants (such as 17 and 6 in the above example) can be coded as D addresses of 
such instructions, the OP2 field in those cases being left blank. Any tape in­
structions (which always involve at least one irrelevant field) can also be used 
for this purpose. 

Address modification by means of the address counter and its associated 
instructions may readily be used to create program loops. Here again means 
have been provided to terminate the repetition of such a loop after it has been 
executed the required number of times. The instruction which controls this 
termination is the OP^ operation SKIP. When the SKIP instruction is encoun­
tered, the calculator compares the D address of the SKIP instruction with the 
absolute value of the contents of the address counter. If these two numbers 
are equal, the calculator ignores the next instruction of the program and pro­
ceeds directly to the interpretation and execution of the second instruction fol­
lowing the SKIP instruction. If on the other hand the two numbers are unequal, 
the program continues in the usual sequential fashion. 

Address Modification - General 

In employing address modification techniques (either the R-quantity 
method or the address counter method) the programmer must guard carefully 
against the possibility of computing a modified address which is less than 300 
or greater than 1013. If for any reason the program should compute an ad­
dress in the range from 0 to 299 inclusive, or from 1014 to 1023 inclusive, 
and should then execute the instruction of which this address is a part, the 
results are certain to be incorrect, since these regions of electrostatic are 
occupied by SpeedCo I control information and not by data or instructions of 
the program. 



9-11 

Combined Use of Address Counter and R-quantities 

In many cases it will be found very desirable to be able to reset and 
add to, add to, or subtract from the address counter one of the quantities R^, 
Rg, or Rq, or conversely to able to replace RA» RR* or RC by the contents 
of the address counter. SpeedCo I does not directly provide for performing 
these manipulations by special logical operations, but they can be effected by 
judicious use of the previously described operations and the location 0025, 
which contains key control information associated with the R-quantities and 
may (only in the cases given below) be regarded as an instruction location. 

LOC OP? D 

f RADDX 0025 

The above instruction at f replaces the contents of the address counter 
by the quantity R^ (where X = A, B or C). This operation is of particular 
value in case it is desired to save the number Rx for later use. 

LOC OP2 D 

g ADDX 0025 

The above instruction at g adds the quantity Rx to the contents of the 

LOC OP2 D 

h SUBX 0025 

The above instruction at h subtracts the quantity Rj^. from the contents 
of the address counter. 

To perform the reverse operation of replacing one of the R-quantities 
by the absolute value (modulo 1024) of the contents of the address counter, one 
may use the following idea: 

LOC OP2 D 

f STD f+1 
f + 1 SETRX (N) 

Suppose the absolute value (modulo 1024) of the contents of the address 
counter is N. Thus the execution of the above instruction at f results in stor­
ing N, as indicated, in the D-field of the instruction at f-f-1, which is then 
executed and results in setting Rx to the value N, as required. 

An example of the use of these instructions would be in a case where 
it is desired to replace R^ by a completely new value for a different logical 
use, but at the same time to save the present value of R^v Suppose that 
the present value of R^ is 800, and consider the following set of instructions. 



9 - 1 2  

LOC OP2 D 

0500 RADDA 0025 
0501 STD 0600 
0502 SETRA 0000 

0600 SETRA (0800) 

The effect of the above instruction at 500 is to store the value 800 of 
R-A in. the address counter. The instruction at 501 then stores this value 800 
as the D-address in a SETRA instruction, to be used much later in the pro­
gram. Instruction 502 then changes the value of Ra from 800 to 0. The 
program then continues, making use of this new value of Ra perhaps a 
completely new logical purpose, and when instruction 600 is executed, the 
old value 800 of Ra is restored. Note that the address counter is also free 
for completely new logical functions after the execution of the instruction at 
501. 



1 0 - 1  

Checking 

In addition to those checking features which are an integral part of certain 
of the input-output instructions, SpeedCo I provides means for obtaining a gen­
eral over-all check of any part of the program. This check is based upon the 
principle of performing the computations twice and comparing the results. The 
determination as to what part, if any, of the program is to be checked in this 
way is entirely up to the programmer. He may use this checking feature to check 
the entire program, or he may use it only for certain parts of the program, or 
he may elect not to use it at all. 

This checking feature involves the use of the following OP2 operations. 

At some time prior to the first use of this checking feature, or at the 
beginning of the program if the entire program is to be checked, the instruction 
PREPARE CHECK must be given. This instruction has the effect of initializing 
certain portions of the SpeedCo I control information. This initializing has to 
take place before any checking can be done. Note that the instruction PREPARE 
CHECK ordinarily need not be given more than once in any one program, even 
in those cases where the checking feature is used only intermittently, with 
checked portions of the program alternating with unchecked portions. For the 
exception to this rule, see the last paragraph of this section. Note also that the 
instruction PREPARE CHECK makes no use of the D address. Hence the num­
ber coded there is irrelevant. 

The instructions START CHECK and END CHECK AND TRANSFER occur 
in pairs. A START CHECK instruction marks the beginning of a checking loop 
and the following END CHECK AND TRANSFER instruction marks the end of the 
same loop. The calculations included in this loop are performed twice, in 
order to check for errors. 

In detail, the procedure is as follows. The instruction START CHECK is 
coded as the OP2 part of a SpeedCo I instruction. (Note that the instruction 
START CHECK makes no use of the D address. Hence any number coded there 
is irrelevant. ) When the calculator encounters this SpeedCo I instruction, the 
presence of the START CHECK operation causes the calculator not only to store 
the computed result for that instruction in location C, but also to reset to zero 
a counter called "check counter 1" and to enter the same result into this counter. 
From this point on in the calculation every computed result is not only stored 
in the desired location C in the usual way, but is also added into check counter 1. 
This addition into check counter 1 is not floating point addition, however. For 
reasons of speed and convenience this addition is carried out in fixed point 
fashion, each floating point number being treated as if it were two fixed point 
numbers, the exponents being added in along with the fractional parts. Thus 
while the quantity accumulated has no mathematical or physical significance, 
it is a function of all of the computed results which enter into its composition, 
and hence it may be used as a check sum. 

This check summing process continues until the calculator encounters 
a SpeedCo I instruction which has the operation END CHECK AND TRANSFER 
as its OP2 part. The presence of this END CHECK AND TRANSFER operation 
causes the computed result for that instruction to be the last result added into 
check counter 1. Control then transfers to the location specified in the D field 
of this instruction. 

PREPARE CHECK 
START CHECK 
END CHECK AND TRANSFER 

(PRCH) 
(STCH) 
(ECHTR) 



10-2 

In many cases this would be the location of the preceding START CHECK operation. 
(Cases will arise where certain initializing operations will have to be performed 
before control can be returned to the location of the START CHECK instruction; 
these will be discussed below). In the present case, however the calculator trans­
fers control back to the location of the preceding START CHECK operation and all 
of the instructions of the checking loop except for the operation PRINT are then 
executed a second time. At the start of this second execution, check counter 2 
is reset to zero and during this second execution a check sum is accumulated in 
check counter 2. When the END CHECK AND TRANSFER instruction is encountered 
the second time, the calculator compares the contents of check counters 1 and 2. 
If they are equal the calculator ignores the next instruction of the program and pro­
ceeds directly to the interpretation and execution of the second instruction follow­
ing the END CHECK AND TRANSFER instruction. If there is any disagreement, 
however, this skip does not take place and the instruction following the END CHECK 
AND TRANSFER instruction is interpreted and executed in the usual way. 

Consider, for example, the following short checking loop. 

LOC OPl R A B c OP2 D 

0379 MPY 0 L(x) L(x) 0400 STCH 0 

0380 MPY 0 My) My) 0401 

0381 ADD 0 0400 0401 0402 

0382 SQRT 0 0402 0000 0403 ECHTR 0379 

0383 NOOP 0 0000 0000 0000 STOP 0379 

Instruction 379 computes x^ and starts the check summing pro££dui£_in check 
counter 1. Instructions 380-382 compute y^, x^+ y2 and \J x£+ y and continue the check 
summing in check counter 1. The END CHECK AND TRANSFER operation in 
instruction 382 then transfers control back to 379. The same four operations 
are repeated, but this time the check sum accumulates in check counter 2. 
The second execution of instruction 382 causes the two check sums to be com­
pared. If they agree, control skips to 384 and the next phase of the program 
begins. If there is any disagreement, instruction 383 is not skipped and the 
calculator stops. If it is restarted manually the entire process described 
above will be repeated. 

Note that this process checks only those instructions which compute and 
store a result at C. Drum reading instructions, for instance, are not directly 
checked by this process, although if the program is so written as to consist of 
an unbroken series of checking loops then, the drum reading instructions will 
be indirectly checked, since the data read will enter into calculations which 
produce the check sums. 



10-3 

In many cases the D address of the END CHECK AND TRANSFER instruction 
cannot be the location of the preceding START CHECK instruction. For example 
suppose that one of the instructions of the checking loop has the OPx part READ 
FORWARD TAPE M, One of the effects of this instruction is to move the tape for­
ward one unit record. Hence the second execution of the checking loop would not 
produce the same results as the first, since a different unit record would be read. 
The tape must therefore be backspaced before the second pass through the check­
ing loop begins. 

Certain types of address modifications also preclude the direct repetition of 
a checking loop. Suppose, for instance, that at the start of the first pass through 
the loop, R 3 » 17 and that as a result of thirteen TRANSFER AND INCREASE R 
instructions within the loop the final value of Rg is 30. Then Rg must be reset 
to 17 before the second pass is begun. 

The above adjustments could be programmed as follows. 

LOG OPx ABC OP2 D 

f xxxxx xxxx xxxx xxxx 

• 

• 

STCH 0000 

0480 xxxxx xxxx 

« 

xxxx xxxx 

.% 

ECHTR 0483 

0481 NOOP 0000 0000 0000 STOP 0483 

0482 NOOP 0000 0000 0000 TR 0486 

0483 SBTPM 0000 0000 0000 _ 
0484 NOOP 0000 0000 0000 SETRB 0017 

0485 NOOP 0000 0000 0000 TR f 

Assume that during the first execution of the loop, tape M is moved forward 
one unit record and Rg changes from 17 to 30. Instruction 480 then transfers 
control to 483. Instruction 483 backspaces tape M to its original position. Instruc­
tion 484 resets Rfito 17, its original value. Instruction 485 transfers control back 
to f, and the second pass through the loop begins. At the end of the second pass the 
two check sums are compared. If they agree control skips to instruction 482 which 
in turn transfers control to 486 where the next phase of the program begins. If the 
check sums do not agree, however, the skip does not take place, instruction 481 is 
executed, and the calculator stops. If it is manually restarted control transfers to 
483, conditions are initialized once more and the entire process is repeated. 



10-4 

It is important to note that, should any such initializing sequence require 
the performance of numerical calculations, the results of these calculations 
will not become part of either check sum. SpeedCo I recognizes that calculations 
performed after an END CHECK AND TRANSFER instruction and before a START 
CHECK instruction do not belong to the checking loop, and therefore does not add 
such results into either check counter. 

Two simple rules which must be remembered in using the three checking 
operations, PREPARE CHECK, START CHECK AND TRANSFER, and END 
CHECK are the following: 

1. If an END CHECK is being executed, the last executed 
checking operation must have been a START CHECK AND 
TRANSFER. 

2. If a START CHECK AND TRANSFER is being executed, 
the last executed checking operation must have been either 
an END CHECK or a PREPARE CHECK. 

Rule 2 is particularly pertinent in case the programmer has arranged a 
transfer operation out of a checked loop, that is, between a START CHECK 
AND TRANSFER and an END CHECK. He might wish to do this, for example, 
on a tape end-of-file or tape error condition. In such a case it is essential to 
give a PREPARE CHECK before the execution of the next START CHECK. 



1 1 -

Li sting 

Listing is the process of printing, in complete detail, all of the pertinent 
information concerning one or more instructions of a program while the pro­
gram is being executed. The SpeedCo I listing operation prints on a single line 
the following information for each instruction listed, from left to right in the 
order shown: 

1. Location of the instruction 
2. Alphabetical OP^ code 
3. R - code 
4. A address 
5. B address 
6. C address 
7. Alphabetical OP£ code 
8. D address 
9. L - code 

10. Contents of the address counter 
11. R. 
12. R B 
13. RC 
14. Contents of A 
15. Contents of B 
16. Contents of C 

All numerical information is printed in the decimal number system. 

The actual listing process will not be completely concurrent with the ex­
ecution of the instruction being listed. Instead the information will gradually 
be stored up on a drum until a block of information corresponding to ten instruc­
tions has been accumulated. At this point the program will be temporarily 
interrupted and the printing will take place. As only blocks of ten lines are 
listed it will sometimes be necessary to artificially continue the program be­
yond the natural stopping point in order to list all lines desired. 

It is very important to remember that the above information listed for any 
one particular instruction pertains to the status of the program after the OPj of 
that instruction has been completely executed, but before the execution of the 
OP2 of the instruction has been commenced. 

If any item is irrelevant (for example, the contents of A, B and C in a no 
OPj or tape or drum instruction), the field corresponding to this item will be 
blank. 

If OPj of the listed instruction is SUB, the negative of the contents of B 
will be printed instead of the contents of B. The other exceptions are as follows: 

|Q(A)( and |Q(B)| are listed for ABADD 
|Q(A)| and~[Q(B)j are listed for ABSUB 
|Q(B)j is listed for ADDAB 

— | Q(B) | is listed for SUBAB 
- Q(A) is listed for NGMPY and NGDIV 



1 1 - 2  

If the exponent part of Q(A), Q(B) or Q(C) is greater in absolute value than 
236, the corresponding listed information for the value will be O for the fractional 
part and plus or minus 999, depending on whether the exponent is plus or minus, 
respectively. 

Listing is not intended as a means of printing results, but is instead an 
aid in debugging new, unchecked programs. 

When the complete program is being listed, the large volume of printed 
output required slows the calculator down to an effective speed of only about 75 
instructions per minute. The listing process is selective, however. It is 
possible to so code the problem that, depending on sense switch settings, the 
information for only some of the instructions executed will be printed. This de­
crease in the volume of printed output will bring about a corresponding increase 
in the effective calculating speed during listing. No listing will ever take place 
for instructions being executed the second time around a checked loop (see 
section 10 on CHECKING). 

Whether the information for any particular instruction will be printed is 
determined by the number coded in its L field and by the position of the cor­
responding operator's panel sense switch. The L - code of an instruction may 
be 0, 3 or 6. These three codes are associated with the three sense switches 
labelled 1, 2, 3 respectively on the operator's panel. When the "0" switch is 
in the on position the information for every instruction with a zero in its L 
field will be printed. When the "0" switch is off the information for such in­
structions will not be printed. The listing of instructions with a 3 or a 6 in 
their L fields is similarly controlled by the "3" and the "6" switches. 



1 2 - 1  

Timing 

The average and maximum times required for the complete execution 
of each of the SpeedCo I OPj and OP2 operations, except for the elementary-
functions SQRT, EXP, LN, SINE and ARTAN, are listed below. (For the execu­
tion time of the elementary functions, see the Appendix). 

The OPi and OP2 times for each instruction are completely independ­
ent, so the programmer may compute the time required for the complete execution 
of any instruction by simply adding the OP2 time to the OPl time, unless the OP2 
is no operation, in which case the complete instruction time is simply the OPj 
time. Note, however, that unlike NOOP2» the OPl operation NOOP requires a 
non-zero time. 

Execution Time for OPj 

OPj 

ADD 
SUB 
ADDAB 
ABADD 
SUBAB 
ABSUB 
MPY 
NGMPY 
DIV 
NGDIY 

WRTP( ) 

RFTP( ) 

RBTP( ) 

Average Time 
(milliseconds) 

4. 200 
4. 368 
4. 428 
4. 656 
4. 428 
4. 656 
3. 546 
3. 714 
3. 666 
3. 834 

14. 000+ (1. 600)(B-A-i-l) 
904. 000+ (1. 600)(B-A+1) 

Maximum Time 
(milliseconds) 

19.272 
19. 440 
19.500 
19.728 
19.500 
19.728 
3. 552 
3. 720 
3. 720 
3. 888 

19. 000+(l. 600)(B-A + 1) 
1204. 000+(1. 600)(B-A+1) 

Condition 

14. 000+ (1. 600)(n) 19. 000+(l. 600)(n) 
24. 000+ (1. 600)(n) 31. 000+(l. 600)(n) 

904. 000+ (1. 600)(n) 1504. 000*(1. 600)(n) 
where n = number of words in the unit record. 

57. 000 + (4. 800)(n) 76. 000+(4. 800)(n) 
67. 000 + (4. 800)(n) 88. 000+(4. 800)(n) 

946. 000+(4. 800)(n) 1260. 000+(4. 800)(n) 
where n = number of words in the unit record. 

SFTP( ) 14. 000 (see Note 1) 
24. 000 (see Note 1) 

904. 000 (see Note 1) 

SBTP( ) 14. 000 (see Note 1) 
24. 000 (see Note 1) 

904. 000 (see Note 1) 

19.000 (see Note 1) 
31.000 (see Note 1) 

1504. 000 (see Note 1) 

19.000 (see Note 1) 
31.000 (see Note 1) 

1204.000 (see Note 1) 



1 2 - 2  

Average Time 
OP1 (milliseconds) 

RWTF( ) 2. 832 (see Note 2) 
EFTP( ) 2. 832 (see Note 2) 
WRDR( ) 103. 072+(5. JL20)(B-A+1) 
RFDR( ) 53. 072+(2. 560)(B-A+1) 
PRINT 1663. 000+{400. OO0)(I) 

where I = smallest integer 
2. 896 

NOOP 2. 736 

Maximum Time 
(milliseconds) Condition 

2. 832 (see Note 2) 
2. 832 (see Note 2) 

144. 382+(5. 120)(B-A+1) 
73. 727-K2. 560)(B-A+ 1) 

1683. 000+(400. 000)(I) 6 
than or equal to (1/5)(B-A4" 1) 

2 .896  7  

2. 736 

Condition 1 
The most recent previous instruction affecting the same tape has been 

WRTP( ). 

Condition 2 
The most recent previous instruction affecting the same tape has been 

RWTP{ ). 

Condition 3 
The most recent previous instruction affecting the same tape has been 

RFTP( ) or SFTP( ). 

Condition 4 
The most recent previous instruction affecting the same tape has been 

RBTP( ) or SBTP( ). 

Condition 5 
The most recent previous instruction affecting the same tape has been 

EFTP( ). 

Condition 6 
The PRINT instruction is not being executed for the second time around 

a checking loop. 

Condition 7 
The PRINT instruction is being executed for the second time around a 

checking loop. 

Note 1 
These times must be amended if the next instruction to be executed affecting 

the same tape occurs sooner than a certain time. The tape unit will be disconnected 
from the calculator after the times given, and the program will proceed, but an auto­
matic delay will occur if the calculator is required to perform a function involving the 
same tape before the tape has skipped entirely over the unit record. If this delay 
occurs, the amount which must be added to the times given will be, in milliseconds, 
(1. 600)(n) -t, where n is the number of words in the unit record being skipped and t is 
the time elapsed between the time the tape unit disconnects and the beginning of the 
execution of the next instruction affecting the same tape. 

Note 2 
Here also these times must be amended if the next instruction to be executed 

affecting the same tape occurs sooner than a certain time. The tape will be disconnected 
from the calculator after the times given, and the actual physical rewinding or end-of-
file writing will take place simultaneously with the execution of the following instructions, 



12-3 

unless these physical functions are not completed before an instruction affecting 
the same tape is reached in the program. In this case there will be an auto­
matic delay, the amount of which can be computed by using the following facts: 

a) The check sum for each unit record occupies a half word of space. 
b) Each word in a unit record occupies 3/25 inches of tape. 
c) The tape length of the unit record gap is one inch. 
d) The tape length of the beginning-of-file gap is 72 inches. 
e) The tape length of the end-of-file gap is 72 inches. 
f) The tapes move at a rate of 75 inches per second of time. 

Thus it requires 72/75 = 0. 96 seconds for the calculator to write the end-of-file 
gap, so if the time consumed after an EFTP( ) operation before reaching the next 
instruction affecting the same tape is more than 0. 96 seconds, there will be no 
extra loss of time. Or suppose a tape file consists of 100 unit records of ten 
words each. The tape length for this file in inches would be 2* 72 + Q00* (10+ * 3/25 
+ 99- 1 = 369;therefore the time required to rewind this file would be 369/75 = 4. 920 
seconds. If the next instruction affecting the same tape occurs sooner than this time, 
there will be a delay until this time interval has been completed. 

Execution Time for OP? 

OPg Time (milliseconds) 

TR 0.768 
TRPL 0.876 or 0. 648 (for plus or minus condition, respectively) 
TRMN 0.924 or 0. 696 (for minus or plus condition, respectively) 
TRZ 0.876 or 0. 648 (for zero or non-zero condition, respectively) 
SNTRP 0. 864 or 0. 588 (for on or off condition, respectively) 
SNTRQ 0. 864 or 0. 588 (for on or off condition, respectively) 
TIA 2.256 
TIB 2.256 
TIC 2.256 
TIAB 2.256 
TIBC 2.256 
TIAC 2.256 
TIABC 2.256 
TDA 2. 880 
TDB 3.036 
TDC 2. 880 
TDAB 3.036 
TDBC 3. 036 
TDAC 2. 880 
TDABC 3.036 
SETRA 2.160 
SETRB 2. 328 
SETRC 2.280 
SKRA 0. 984 or 0. 756 (for equal or non-equal condition, respectively) 
SKRB 1. 032 or 0.804 (for equal or non-equal condition, respectively) 
SKRC 1.032 or 0. 804 (for equal or non-equal condition, respectively) 



12-4 

OP?. Time (milliseconds) 

RADDA 1.560 
RADDB 1.656 
RADDC 1.656 
RADDD 1.320 
ADDA 1.392 
ADDB 1.488 
ADDC 1.488 
ADDD 1.152 
SUBA 1. 548 
SUBB 1.644 
SUBC 1.644 
SUBD 1. 152 
STA 1.596 
STB 1.740 
STC 1.656 
STD 1,368 
SKIP 0. 984 or 0. 756 (for equal or non-equal condition, respectively) 
PRCH 0.660 
STCH 1. 440 or 1. 596 (for first or second time, respectively) 
ECHTR 1. 368 or 1, 260 (for first or second, time, respectively) 
STOP 0,816 
no operation 0. 000 

The above information should be adequate to give the programmer a means 
of computing the machine time necessary for the execution of his program, exclusive 
of listing time and initial loading time. 

In listing, the average and maximum times required per instruction listed 
are 1. 325 seconds and 1. 370 seconds, respectively. 

The machine time necessary for the initial loading of instructions and 
data from punched cards to electostatic storage, tapes, and/or drums is almost 
entirely a function of the number of cards to be loaded. 

Only one instruction can be loaded on an instruction card but up to five 
floating decimal numbers can be loaded on a data card, all at the regular card read­
ing speed of 150 cards per minute, or 0. 4 seconds per card, unless a loading con­
trol card intervenes, which may stop the card reader to give the calculator time 
enough to load the specified data and/or instructions on the specified tape or drum. 
The maximum time the card reader may stop is about two seconds and should 
average about 0. 6 seconds. (For small blocks to be loaded on tapes or drums it 
may not stop at all). 

The amount of machine time consumed in reading the constant deck labelled 
"SPEEDCODING I", which must always be used with the variable program cards 
(see pages 7-4 and 7-17) is either about 55 seconds or about two seconds, depending 
upon which of the two possible constant decks is used (one deck will consist of about 
130 cards and will be used in case the two drums set aside for storage of the con­
trol information which constitutes the SpeedCo I system do not already contain this 
information; the other deck will consist of two cards and will be used in case the 
two drums do already contain the required information, which should always be the 
case if these two drums have not been used since the last SpeedCo problem was run 
on the calculator). 



12  

Hence the programmer can approximate the loading time, in seconds, 
by the formula 

(0. 4)(n) + (0. 6)(c)+e 
where 

n = total number of instruction, data, and loading control cards, 
c = total number of loading control cards. 
e = 2 or 55 depending upon whether the SpeedCo I system is or 

is not already on the two special drums, respectively. 



Appendix - 1 

Elementary Functions - Set 1 

The names and important characteristics of the presently used set (Set 1) 
of elementary function operations are listed below. 

Square Root (SQRT) 
This operation uses the usual Newton iteration technique to compute l/Q(A) 

to at least 9 significant decimal digits for any value of Q(A) for which the absolute 
value of the decimal exponent part does not exceed 39, 456. Any larger exponent 
will give completely meaningless results. If the fractional part of Q(A) is negative, 
the value obtained fromVQ(A) will be the same as that obtained for Q(A) * 0, namely 
0 for the fractional part and the least integer greater than or equal to one-half the 
exponent part of Q(A) for the exponent part. 

Average Time: 8. 2 milliseconds 
Maximum Time: 9.016 milliseconds 

Sine (SINE) 
This operation uses a series approximation to compute sin Q(A). Since it 

is necessary that the argument in the series lie between - 77/2 and + 7T!2, the ori­
ginal argument Q(A) is first reduced to an equivalent argument lying in this inter­
val. This reduction of angle results in a loss of significance in the argument of 
about n decimal places, where n = absolute value of the decimal exponent part of 
Q(A). The series approximation itself gives an accuracy of at least 8 decimal 
places. Hence the final result sin Q(A) is accurate to about 8 decimal places if 
n ^3, and is accurate to about 10-n decimal places if 2 < n< 11. If 10c n<77, the 
result obtained for sin Q(A) will be 0 for the fractional part and+7 for the binary 
exponent part (i. e. , about -j-2 for the decimal exponent). This result is also ob­
tained for any Q(A) whose fractional part is 0. For n>76, the result will gener­
ally be meaningless. 

Average Time: 13 milliseconds 
Maximum Time: 25.416 milliseconds 

Inverse Tangent (ARTAN) 

This operation uses a series approximation to compute the principal value 
of arctan Q(A) to at least 7 decimal places for any value of Q(A) for which the 
absolute value of the decimal exponent part of Q(A) does not exceed 76. For 
larger values of the exponent the result will generally be meaningless. 

Average Time: 13 milliseconds 
Maximum Time: 27. 648 milliseconds 



Appendix - 2 

Exponential (EXP) 
This operation uses a series approximation to compute exp (Q(A)) to at least 

8 significant decimal digits. Since the output of the program provides only for deci­
mal exponents up to± 39, 456, the argument Q(A) should be small enough so that 
exp (Q(A))<10 39, 456^ which means roughly that the decimal exponent part of Q(A) 
should not be larger than 5. The smallest allowable negative value of the input ex­
ponent is-76. For smaller negative exponents, the result will generally be mean­
ingless. 

Average Time: 13 milliseconds 
Maximum Time: 14. 040 milliseconds 

Natural Logarithm (LN) 
This operation uses a binary digit generation method to compute loge Q(A). 

The highest allowable absolute value for the decimal exponent part of Q(A) is 39, 456. 
Any larger value will give completely meaningless results. If the exponent part of 
the result obtained is non-positive (i.e. if |loge Q(A)j <1 1, which is equivalent to 
the condition l/e<Q(A)<e), the result is accurate to at least nine decimal places. 
If the exponent part of the result is positive, the result is accurate to at least nine 
significant decimal digits. If the fractional part of Q(A) is 0, the result obtained is 
the same as if the binary fractional part of Q(A) had been the value 1/2 (hence the 
result obtained would be approximately (loge 10) times the decimal exponent part 
of Q(A)). If the fractional part of Q(A) is negative, the result obtained is the same 
as if the fractional part had been positive. 

Average Time: 
Maximum Time: 

33 milliseconds 
55. 836 milliseconds 


