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There are several corrections to be made to the Technical Summary. 

On page 28, the first two instances of "GNUMAKE" should change to read 
"GNU EMACS." 

Page 67 includes a discussion of "quashing." In this discussion, there are two references 
to quash_never." The second instance should be "quash_false." 

Sorry for any inconvenience this may have caused. 
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PART ONE 

I N T R O D U C T I O N  T O  T H E  K S R 1  

INTRODUCTION 

The high performance KSR1 family of general purpose, highly parallel, standards based com­

puter systems runs a broad range of mainstream applications, ranging from numerically intensive 

computation, to on-line transaction processing (OLTP) and database management and inquiry. The 

KSR1 differs from conventional mainframes and supercomputers in that it incorporates the scal­

ability and power of highly parallel processing. The KSR1 can be differentiated from the class of 

massively parallel processors (MPPs) because it uniquely provides the superior performance and 

ease of use of the shared memory programming model in a scalable, highly parallel computer. In 

essence, the KSR1 combines the scalability and lower cost of highly parallel processing — across 

an entire spectrum of computing power, mass storage, and I/O bandwidth — with the higher per­

formance, ease of use and familiarity of the shared memory programming model that has been an 

industry standard for three decades. The use of shared memory enables a standards based open 

environment. 

THE NEED FOR HIGHER PERFORMANCE COMPUTING 

Since the 1970s, the demand for more computer power has increased significantly among large 

users of numerically intensive, OLTP and database applications. To date, this need has typically 

been met by mainframes for OLTP and database applications and by vector supercomputers for 

numerically intensive tasks. 

The proliferation and complexity of the data generated by personal computers, workstations, 

electronic cash registers, and other high speed electronic devices has significantly exceeded the 

capabilities of the enterprise-wide computing resources of many organizations. For these compa­

nies to provide competitive products and services they must find new ways of keeping up with the 

increasing volume and use of data. The immediate processing of available and requested data 

requires organizations to move from historical batch processing environments to on-line comput­

ing. Current mainframe systems of most corporations have limited power and capability to support 

this substantial change in requirements and data usage. 

In the fields of science and engineering, the demand for more computing power is driven by a 

greatly increased emphasis on computational modeling to develop and verify engineering solutions 

and by an increased focus on highly challenging basic and applied scientific problems requiring a 

seemingly unlimited amount of numerically intensive computation. The basic extension of human 

knowledge in many scientific areas can only be addressed by the application of high performance 

computing resources. Examples abound in both basic and applied sciences: innovations in material 

science (including semiconductor and superconductor design); the mapping of the human genome; 

pharmaceutical design; speech recognition; and advanced oil and gas recovery. 

Visualization is applicable to both commercial and technical applications. The capacity of 

modern high performance computers to help people "see" or visualize things provides vivid and 

compelling examples of the increasing need for more computing power, whether the purpose 

involves intellectual investigation or entertainment. A single earth satellite can produce the require­

ment to organize, store, and analyze a Terabyte (1 billion bytes) of data each day. The spectacular 

special effects produced by contemporary movie-makers require computer systems to handle up to 

1.8 Gigabytes (1,800,000,000) of visual data per second of finished film footage. The theme parks 
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of the future will require high performance computers to conjure up virtual reality for their audi­

ences. 
In all these seemingly disparate applications, the common thread is the growing need for ever-

higher levels of computer performance. Progress in the computational science laboratories has 

been rapid in recent years, but extensions of that progress from the lab to the real world of applica­

tions have not yet achieved success on a widespread basis. Several different computer architectures 

have demonstrated the ability to achieve very high speed and power, but only in narrow and spe­

cialized areas. 
Large users, ironically, are most often limited in their options. An example may be seen in the 

area of fourth generation languages (4GL) software development tools. A small firm, whose busi­

ness makes only limited demands on computer power and speed, can effectively select a 4GL and 

build a satisfactory application in weeks or months, at a relatively low cost of development and with 

a high expectation of good results. This option is not open, however, to the very largest companies, 

whose demands already tax the speed and power of their computer systems. Fourth generation lan­

guages are relatively inefficient and become an issue for large users whose systems are already at 

capacity. The ideal computer system for such large users is one that can provide so much power 

that the user is no longer constrained by the relative inefficiency of the 4GL and can thus benefit 

from the reduced costs of application software development and maintenance. 

Over the past two decades, system designers have approached the development of high-pow­

ered computers in two basic ways. 

TRADITIONAL MAINFRAMES AND SUPERCOMPUTERS 

Mainframes have typically been the workhorses of the data processing departments of major 

corporations worldwide. They are primarily used for database intensive and on-line transaction 

processing applications during business hours and for batch processing large updates to the corpo­

ration's database at night. At the high end of the performance spectrum a number of mainframes 

working concurrently are required to meet the ever expanding needs of the world's largest users 

(airlines, banks, brokerage, insurance). Before the development of "vectors" in the 1970s, main­

frames were also used for scientific computing. 

The first supercomputers involved the use of one (or, at most, a few) of the fastest processors 

that could be obtained by increasing the packing density, minimizing switching times, heavily pipe­

lining the system, and employing vector processing techniques, which apply a small set of program 

instructions repeatedly to multiple data elements. Vector processing has proven to be highly effec­

tive for certain numerically intensive applications, but much less so for more commercial uses such 

as OLTP or database. With the introduction of vector supercomputers began the somewhat artificial 

distinction between the uses of supercomputers and mainframes. The vector supercomputers were 

seen as useful primarily for numerically intensive applications, such as those found in the technical 

areas of science and engineering. Non-vectorized mainframes were seen as better for commercial 
applications. 

This partly arbitrary distinction, which became conventional wisdom, was further bolstered by 

the comparative difficulty of programming supercomputers, whose sheer computational speed was 

achieved at substantial cost. By contrast, sequentially-processing mainframes traded off a portion 

of their own theoretically maximum computational speed through the adoption of virtual memory 
techniques to facilitate their programmability. 
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The development of the concept of virtual memory,' a landmark achievement in computer sci­

ence, provided a way to free programmers from the unnecessary burdens of memory storage and 

allocation by separating the notion of address from physical location in the memory. Its incorpora­

tion into the design of mainframes in the early 1970s, can arguably be said to have helped create the 

computer revolution. 
The sheer computational speed of sequential-processing vector supercomputers has led to the 

development of a considerable body of specialized program code, much of it written in Fortran, but 

virtually all of it confined to applications in the scientific and engineering communities. To date, 

traditional supercomputers have found no place in the compute intensive applications of the com­

mercial arenas of OLTP, database management and decision support. 

Moreover, even within the confines of science and engineering, incremental improvements in 

hardware speed and power have proven ever more costly. This class of machine is now widely rec­

ognized to be approaching fundamental limits, such as the speed of light, the laws of thermodynam­

ics and architectural constraints on the number of processors. 

THE MASSIVELY PARALLEL PROCESSORS (MPPs) 

In the 1980s, the first massively parallel processors (MPPs) began to appear, with the single 

goal of achieving far greater computational power at greatly improved price/performance ratios. 

The concept behind massively parallel processing is to employ large numbers of low cost proces­

sors to provide performance far beyond that of mainframes and supercomputers. 

However, in actual practice, MPPs have experienced limited market acceptance. The chief rea­

son for the rapidly diminishing expectations has been that the distributed memory architecture of 

the MPPs, while very scalable, does not support conventional shared memory programming. 

Because of the high cost of developing software for MPPs, most such systems have typically 

been used for only one or a few applications. Although some large-scale users have developed tech­

nical and engineering software for certain applications, the majority of third-party software compa­

nies have not found it practical to port applications to these computers. 

In addition, MPPs have been basically designed to operate in batch processing mode. The use 

of such systems to support large networks of interactive terminals, workstations, or single-user 

desktop computers operating in OLTP or interactive mode has proven to be inefficient and expen­

sive. Even at sites where MPPs have met with some computational success, it is common to find 

other conventional systems functioning as servers to handle I/O or communications. 

The difficulty of porting existing programs; the absence of a conventional, standards based and 

familiar software development environment; the lack of widely available third-party application 

programs; and the restriction in operating modalities — all these factors have combined to restrict 

acceptance of MPPs. Although a number of approaches have been tried by the various suppliers of 

MPPs, simple solutions to the seemingly intractable difficulties encountered with MPPs have 

eluded all but the most dedicated (primarily government) segment of the market. 

Kilburn, T., Edwards, D.B.G., Lanigan, M.J., and Sumner, F.H. "One-level Storage System;" IRE 
Transactions, EC-11, Vol. 2, pps. 223-235, April, 1962. 



COMPUTING IN THE CONTEMPORARY WORLD 

Whether employed for science, engineering, or commercial purposes, most contemporary com­

puter centers resemble, in basic ways, the hypothetical site described in Figure 1. Large computer 

centers today are characterized by their use of various systems functioning as servers to accomplish 

some specific purpose within the overall hardware/software assemblage. 

FIGURE 1 Typical Heterogeneous Computer Center 
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Contemporary servers fall into four basic types, depending on the functionality assigned to 

them within the overall site architecture: 

1. The compute server —The compute server is the core of the overall system, and it is 
responsible for the actual computational task. This is the sole function to which tradi­
tional supercomputers and traditional MPPs can be assigned. 

2. The data/storage server — Another computer in the overall system, the data/storage 
server, is assigned to manage the movement and storage of large volumes of data across 
and through a multiplicity of disks and storage devices. Mainframes and dedicated 
servers are used for this purpose. 

3. The access/communications server — Still another system, the access/communica­
tions server, is responsible for all user access and communications into and out of the 
overall configuration. At complicated, modern sites, the demands upon this server may 
range from handling the I/O of a variety of devices, each with its own specifications 
and requirements, to the management of sophisticated networks. Specialized access 
servers and sometimes minicomputers are used to manage user access. 
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4. The visualization server — A relatively new development, but increasingly common 
at contemporary computer centers is the visualization server. This server is tasked to 
allow the users to envision the data or computations in ways that allow the human eye 
and mind to perceive their significance. Clusters of workstations are most often used 
for this purpose. 

INTRODUCING THE KSR1 HIGHLY PARALLEL PROCESSOR 

The KSR1 is a highly parallel open standards based system specifically designed to function as 

any one of the servers described above, as any combination of them, or as all of them simulta­

neously, while providing a system-wide parallel processing capability. The KSR1 performs the 

multiplicity of jobs ordinarily assigned to the various servers, simultaneously and in the face of the 

vastly differing circumstances and requirements that the tasks themselves may exhibit from 

moment to moment in real time. The KSR1 provides production-level parallel computing power, 

all of it scalable, with the familiar shared-memory programming model that is the contemporary 

industry standard. The use of shared memory enables a standards based, open environment [O/S, 

communications, languages and applications]. 

See Part Five, Architecture and Theory of Operation, for full details of the architecture of the 

KSR1 and its capabilities. 

INTRODUCING ALLCACHE™ 

The patented ALLCACHE memory system is the enabling technology at the heart of the KSR1, 

a major innovation that allows the system to provide scalable, highly parallel processing power on 

a system-wide basis, whether the standard of measurement is sheer computational speed, I/O band­

width, data throughput, or visualization. ALLCACHE merges the concept of virtual memory with 

the modern power of highly parallel processing to give the KSR1 unprecedented applicability. 

ALLCACHE is precisely that — all cache memory that re-creates the time-honored standard 

of virtual memory for the contemporary parallel programmer. ALLCACHE returns the tasks of 

dynamic storage allocation and management to the hardware, relieving programmers of tasks they 

have not been compelled to do since the mid-1960s. 

Figure 2 on the following page illustrates the ALLCACHE concept. When processor A first 

references the address X, hardware in the ALLCACHE memory system examines that processor's 

local cache to see if the requested address is already stored there. If processor B's local cache con­

tains address X, the processor request is satisfied without any request to the ALLCACHE Engine. 

If not, the ALLCACHE Engine hardware locates another local cache (for example, local cache A) 

where the address and data exist. The ALLCACHE Engine moves addresses and their associated 

data to the point of reference on demand. There is no fixed physical location for an "address" within 

the ALLCACHE memory system, and this physically eliminates main memory. 

ALLCACHE is the first memory architecture to deliver the conventional, sequentially consis­

tent shared memory programming model in a highly parallel computer. Thus it combines the mem­

ory model used by traditional mainframes and supercomputers with the scalability of highly parallel 

systems. Scalability allows users to add computer resources in incremental and cost-effective steps, 

without changes in software and without performance degradation. The entire KSR 1 system imple­

ments sequential consistency to guarantee that a program will behave in a manner most intuitive to 

its programmer. The result of a program executed on the KSR1 is significantly faster but otherwise 

equivalent to the execution of the program on a conventional, multi-tasking single processor, which 
carries out its tasks in sequential fashion. 
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FIGURE 2 ALLCACHE™ Memory System 

LOGICAL VIEW PHYSICAL REALIZATION 
SINGLE ADDRESS SPACE 

64-bit superscalar processors 64-blt superscalar processors 

This fundamental improvement in the way that highly parallel processors can be programmed 

will serve as the basis for the next major wave in hardware architecture. Just as appearance of mini­

computers in the late 1960s and supercomputers in the 1970s affected the history of mainframes, 

highly parallel processors that may be programmed as conventional systems will give rise to the 

computer industry depicted in Figure 3. 

FIGURE 3 Major Hardware Computing Waves 
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The combination of the KSR1 highly parallel processor, its ALLCACHE memory system and 

a number of innovative features that take maximum advantage of the best qualities of both tradi­

tional programming methodologies and the cost-effective speed and power of highly parallel pro­

cessing technology advances is described in detail in the following pages. 
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Patent 5,055,999 

The following quotations are extracted 
from U.S. Patent No. 5,055,999, assigned to 
Kendall Square Research, 8 October 1991, for 
"MULTIPROCESSOR DIGITAL DATA 
PROCESSING SYSTEM." This patent, 
which describes the heart of the idea to cast the 
solution to the memory management problem 
of highly parallel processors in silicon for the 
first time, is the foundation concept underly­
ing the architecture of the KSR1 system. 

. . .  . A  s y s t e m  o f  t h e  t y p e  p r o v i d e d  b y  t h e  
invention does not require a main memory ele­
ment, i.e., a memory element coupled to and 
shared by the system's many processors. 
Rather, data maintained by the system is dis­
tributed, both on exclusive and shared basis, 
among the memory elements associated with 
those processors. 

. . .  . t h e  p r o c e s s i n g  c e l l s  i n c l u d e  c e n t r a l  
processing units coupled with memory ele­
ments, each including a physical data and 
control signal store, a directory, and a control 
element. 

a controller coupled with each mem­
ory monitors the cell's internal bus and 
responds to local processor requests by com­
paring the request with descriptors listed in 
the corresponding directory. 

a memory management unit facili­
tates. .. transfer of information. 

. . . .  D a t a  m o v e m e n t  b e t w e e n  p r o c e s s i n g  
cells is governed by a protocol involving com­
parative evaluation of each access request 
with the access state associated with the 
requested item. 

. . . .  T h e  c a c h e s  o f  a  K S R  s y s t e m  c a n  b e  
used by system software as part of a multi­
level storage system. In such a system, physi­
cal memory is multiplexed over a large 
address space via demand paging. 

. . . .  A  s y s t e m  o f  t h e  t y p e  d e s c r i b e d . . .  

. . . .  p r o v i d e s  i m p r o v e d  m u l t i p r o c e s s i n g  
capability with reduced bus and memory con­
tention. 

. . . .  T h e  d y n a m i c  a l l o c a t i o n  o f  e x c l u s i v e  
data copies to processors requiring exclusive 
access, as well as the sharing of data copies 
required concurrently by multiple processors 
reduces bus traffic and data access delays. 

. . . .  U t i l i z a t i o n  o f  a  h a r d w a r e - e n f o r c e d  
access protocol further reduces bus and mem­
ory contention, while simultaneously 
decreasing software overhead required to 
maintain data coherency. 

. . . .  T h e  i n t e r c o n n e c t i o n  o f  i n f o r m a t i o n  
transfer domain segments permits localiza­
tion of data access, transfer and update 
requests. 

These and other aspects of the inven­
tion are evident. 
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PART TWO 

D E P L O Y I N G  T H E  K S R 1  

INTRODUCTION 

Access, computation, data storage, visualization — these are the four functions performed by 

modern computer centers. Yet, at most modem centers, the four tasks are often assigned to different 

types of systems, creating the heterogeneous computer environments so common today. 

By contrast, the KSR1, with its high performance capabilities and its patented ALLCACHE 

memory system, can serve in any of the four roles, in any combination of them, or in all of them at 

the same time. The KSR1 is truly general purpose in nature, and it provides a homogeneous com­

puting environment with unlimited scalability. 

FIGURE 4 Homogeneous Computing Environment with Unlimited Scalability 
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KSR1 AS A COMPUTE SERVER 

In the specific arena of computational speed and power, the KSR1 provides users of high per­

formance systems with an escape from the dilemma posed by the limited choice of architectures 

previously available. Prior to the introduction of the KSR1, users requiring high performance com­

puting were restricted to the choice of supercomputers or mainframes on the one hand or massively 

parallel processors (MPPs) on the other. Mainframes and supercomputers permit a conventional 

programming environment, but are intrinsically limited in performance and bear a very high cost of 

computation. The MPP architectures, by comparison, offer high performance at a lower cost of 

computation, but have proven to be very difficult or impractical to program for most applications 

and have not been generally effective in multi-user, multi-application environments. 

TABLE 1 

PROCESSOR 
CONFIGURATIONS 

PEAK 
MIPS 

PEAK 
MFLOPS 

MEMORY 
(MBYTES) 

MAX. DISK 
CAPACITY 
(GBYTES) 

MAX. I/O 
CAPACITY 
MBYTES/SEC 

KSR1-8 320 320 256 210 210 

KSR1-16 640 640 512 450 450 

KSR1-32 1,280 1,280 1,024 450 450 

KSR 1-64 2,560 2,560 2,048 900 900 

KSR1-128 5,120 5,120 4,096 1,800 1,800 

KSR 1-256 10,240 10,240 8,192 3,600 3,600 

KSR1-512 20,480 20,480 16,384 7,200 7,200 

KSR1-1088 43,520 43,520 34,816 15,300 15,300 

The KSR1 offers an alternative to this dilemma by presenting a clear third path to high perfor­

mance computing. The KSR1 provides users with a scalable family of computer systems (see Table 

1 for configuration examples) which combine: the very high levels of performance and lower costs 

of computation inherent in parallel processing, with the high performance and ease-of-use of con­

ventional shared memory programming, and the benefits of industry standards. These standards 

include OS, databases, communications, languages and applications. 

On conventional MPPs the program must explicitly manage memory allocation and memory 

movement. On a KSR1, the ALLCACHE Engine embedded in hardware automatically manages 

memory allocation and movement relieving the program of these chores, delivering higher perfor­

mance and ease of programming. Therefore programs explicitly written for message passing mas­

sively parallel computers will run faster on a KSR1 due to the higher efficiency of shared memory. 

The ALLCACHE memory system architecture implements a sequentially consistent shared 

address space programming model, masking the physical distribution of local caches of memory. 

ALLCACHE automates the addressing and location of memory, so that programmers may be less 

concerned with the location of data while developing or porting programs to the KSR1. 

ALLCACHE automatically moves an address requested by a processor to the 32 MByte local 

cache memory associated with that particular processor. Thus it exploits the "locality of reference" 

property of address reference sequences. (Programs and data, once referenced, are likely to be ref­

erenced again.) ALLCACHE keeps memory traffic close to the processor that is using the data, 

which is the key to the scalability of current and future products of Kendall Square Research. 
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Each KSR1 ALLCACHE Processor, Router and Directory cell (APRD) consists of a 64-bit 

superscalar processor, a 32 MByte local cache memory and a portion of the ALLCACHE Engine 

responsible for finding addresses and their contents and relocating them to the local cache of the 

processor requiring them, while maintaining sequential consistency among all the local caches 

within the system. (See Part Five, Architecture and Theory of Operation, for detailed information.) 

When taken as a whole, the collection of local caches behaves as a single shared address space. 

The KSR1 processor employs 64-bit address, 64-bit integer, and 64-bit floating point data types, 

and it can perform arithmetic operations on IEEE standard 64-bit floating point numbers at a peak 

rate of 40 MFLOPS. To reduce memory traffic, each APRD has large register sets: 64 floating point 

registers, 32 integer registers and 32 address registers. 

The KSR1 architecture allows it to perform work on a variety of jobs simultaneously, unlike 

traditional supercomputers and MPPs. Large scale users at a number of supercomputer centers have 

recently observed surprising patterns of workloads and user behavior/requests that indicate that a 

majority of user programs may require only a relatively short compile and execution runtime on the 

supercomputer, yet may be compelled to wait in queue for extended periods of time while larger 

programs are executed. 

In these analyses of typical patterns of user demands upon CPU usage and performance, most 

requests are of a relatively low order of complexity or CPU time consumption. This has led to the 

use of clustered workstations to accommodate user demands. However, this approach has all the 

limitations of multicomputers, namely programming complexity, enormous operations complexity, 

poor load balancing and lack of scalability. 

The KSR1 provides a far more expeditious and efficient solution, because it handles multiple 

jobs of widely varying sizes and requirements simultaneously ranging from uni-processing to mas­
sively parallel processing. 
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KSR1 AS A COMMUNICATIONS SERVER 

The KSR1 is ideally suited to the communications management task. The high performance 

network, graphics and I/O connections of the KSR1 are both scalable and flexible. Peripheral 

capacity and effective bandwidth increase in step with the addition of central processing power to 

achieve a constantly balanced system. 
The KSR1 permits interactive, batch, database and realtime applications to be run simulta­

neously, because the system is designed to support multiple user interaction models. All users are 

allowed transparent access to networks and devices, regardless of different network topologies and 

the varying levels of intelligence that may exist on the user interface devices (e.g., terminals and 

workstations). The KSR1 can simultaneously support the entire classical spectrum of user interac­

tions: 

• Distributed file — allows sharing of files between KSR1 systems, user interface devices 
and other computers 

• Interactive interface — allows real-time access to information 

• Batch processing — allows submission of jobs to be ran without user interaction 

• Client/server model — allows processing of a transaction on a single machine or split 
across multiple machines 

Different users on the KSR1 interact with the system in ways that are already familiar and com­

fortable, including graphic and window-based interfaces. 

Physical I/O connections to the KSR1 are of two basic types, depending on the performance 

level requirements: 

• Direct adapter connections. The processor uses special adapters to connect with high 
performance and frequently used I/O interfaces such as the multiple channel disk, Fiber 
Distributed Data Interface (FDDI), Ethernet and the High Performance Parallel Interface 
(HiPPI); 

• General Purpose I/O System (GPIOS) connections. The GPIOS provides convenient 
access to other networks and devices. The I/O subsystem provides industry-standard 
hardware (initially VME IEEE 1014 through the special VCC adapter) and the UNIX 
System V software environment to allow straightforward customization of applications. 
This cost-effective approach allows access to a wide variety of third-party hardware and 
software interfaces. 

In a KSR1 system, software applications' access to the hardware can be device-independent 

and, if necessary, network-independent. This approach serves to protect user development invest­

ment as new networks and devices become available. Figure 5 on the following page shows con­

nections between KSR1 systems and external devices. 

APRD cells in the KSR1 system support 30 MBytes/sec transfers to external sources and users 

of data. Each 32-cell Processor Module can accommodate up to 15 I/O adapters. A KSR1-32 con­

figured with 32 APRD cells thus achieves an aggregate I/O rate of 450 MBytes/sec (30 MBytes/sec 

x 15 adapters) and very high throughput with parallel I/O. A KSR1-1088 has an aggregate I/O 

capacity of 15,300 MBytes/sec. 
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FIGURE 5 Scalable I/O Bandwidth Combined with Standards 
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Adapters connect the APRD cell to specific I/O adapters: 

• Multiple Channel Disk (MCD) — adapter supports disk arrays (RAID) that use five 
differential SCSI channels for connection to the mass storage subsystem; 

• Multiple Channel Ethernet (MCE) — adapter with four Ethernet controllers for terminal 
and workstation servers; 

• Multiple Channel FDDI (MCF) — adapter with two FDD1 X3T9.5 controllers for 
connection to processors, terminal servers and workstations; 

• VME Channel Controller (VCC) — adapter with an interface to the VME backplane. This 
gives users an open interface for insertion of the many peripheral and I/O boards which 
comply with IEEE 1014. The VCC adapter supports networking and an easy pathway for 
the customization of specific user requirements; 

• Single Channel HiPPI (SCH) — adapter for HiPPI X3T9.3 connections supports both 100 
and 200 MBytes/sec transfer rates. 

Application access to either direct adapters or GPIOS is entirely transparent. For example, 

access to NFS files is independent of the physical connection type chosen. Transparency of access, 

which is network-independent, allows for future changes in network media or even protocol stacks. 
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The network connections supported on KSR1 high performance systems include: 

• SNA 3270, 3770/RJE and LU6.2 over serial lines and X.25 

• X.25 

• X.29, X.28 and X.3 

• FDDI 

• Ethernet 

• TCP/IP and NFS over Ethernet FDDI and X.25 

• Serial lines 
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KSR1 AS A STORAGE SERVER 

The KSR1 is an ideal system for the management of mass storage for groups, departments or 

an entire enterprise. Mass storage tasks include on-line updates via transaction processing (OLTP), 

file and archival storage and the maintenance and querying of complex databases. The KSR1 archi­

tecture achieves scalable performance as a storage, transaction and database server through a 

combination of two methods: reduction of disk I/O requirements by use of caching and scalable 

disk I/O. 
An important principle in increasing I/O performance is to complete the operation using pri­

mary (main) memory. Main memory is 10,000 times faster (microseconds vs. 10s of milliseconds) 

than the time to access secondary (disk or tape) storage. The ALLCACHE memory system and 64 

bit addressing of the KSR1 processor are fundamental to enabling operations which require physi­

cal disk I/O. On most systems physical disk I/O can be satisfied within ALLCACHE through a 

technique called single level store or mapped files.1 

The second principle in increasing I/O performance is scalability in random access rates (typi­

cally required for OLTP and paging) and high bandwidths (typically required for complex database 

queries and file transfers). Although steadily improving access latency and transfer rates of mass 

storage devices have not kept pace with processing speeds, the size, power requirements and costs 

of mass storage devices are improving dramatically, allowing the deployment of redundant arrays 

of inexpensive disks (RAID). 
Three distinct forces drive the trend toward the concept of multiple smaller disks under intelli­

gent control as the optimum means of mass storage: 

1. Economic: The use of PC and workstation technologies provide improved price/perfor­

mance. 

2. Reliability: The approach provides tolerance for individual disk failure. Expedients as 
simple as parity, ECC2 and mirroring suggest seamless data integrity in an environment 

(e.g., OLTP) in which seconds of downtime may be unacceptable. 

3. Performance: The use of many small disks allows parallel operations. The basic approach 
allows different mapping schemes and arrays to take full advantage of classical trade-offs: 
increase the number of actuators to increase the number of random seeks per second (e.g., 
OLTP); or spread the file across multiple disks to increase the I/O bandwidth (e.g., large-

scale simulations in technical applications or complex database queries). 

The KSR1 system combining a large shared memory, scalable I/O access rates and bandwidth, 

modular packaging of disk arrays, battery backup power system and a UNIX based operating sys­

tem, incorporating RAID software, is capable of managing a broad spectrum of storage require­

ments. 

1. Duby, R.C., J.B. Dennis, "Virtual Memory, Processes, and Sharing in Multics," Communications of 
the ACM, 11,5, May 1968, pp. 306-312. 

2. Error Correction Code 
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KSR1 FOR VISUALIZATION 

Visualization is a new and fast growing area of computing. Its application is far reaching and 

spans areas as diverse as oil exploration, consumer purchasing patterns, and weather forecasting. 

Evolving from the simple graphs and charts of the past, true visualization gives the user tools to map 

any aspect of the data such as color, shape, density, motion and even sound in an exploratory envi­

ronment. 
As visualization needs grow beyond the capacity of the workstation, the same crippling archi­

tectural bottlenecks of mainframes and workstation clusters limit expansion of visualization capac­

ity as they limit computation, communications and storage. Visualization is a demanding server 

application since it combines the need for large databases of 3D structures or scanned images, very 

high bandwidth communication to send many multi-megabyte pictures to a remote display device 

and very high computation rates to compute the motion of the millions of objects that make up a 

complex scene. 
ALLCACHE provides a significant performance improvement for high end visualization, 

graphics rendering and image processing. With conventional multi-computers, whether a distrib­

uted cluster of workstations or message passing MPPs, it is necessary to rewrite the graphics or 

image processing programs, often from scratch, as a set of independent communicating tasks. 

With ALLCACHE, existing visualization applications can be ported intact with only minor 

modifications. In graphics rendering and image processing in particular, a small portion of the code 

does most of the computational work, only this part needs to be tuned for parallel execution. 

Another important benefit derived from ALLCACHE is the improvement in performance that 

comes with memory allocation and memory movement being handled by the hardware rather than 

by message passing software. 

Graphics Rendering 
The KSR1 supports a native port of the OpenGL Graphics Library, an industry standard, three-

dimensional graphics Application Programming Interface (API). This library includes facilities for 

drawing geometric objects, text, pixel operations, curves and surfaces, object hierarchies and 

objects for picking and selecting. 
Direct display of rendered graphics from the KSR1 to a color monitor is accomplished via a 

HiPPI framestore at full resolution and at animation rates up to 170 MBytes per second. Lower res­

olution views or animations at non-realtime frame rates may be sent to a workstation over Ethernet, 

using KSR1 graphics compression architecture. (See the section below on "Networked Graphics" 

for more information.) 
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Scientific and Commercial Visualization 
The KSR1 will support the Iris Explorer Visual Application Environment. Iris Explorer is a 

visualization product whose architecture has been designed specifically for maximum efficiency in 

a client-server environment. The user interface at the front end of Explorer, which resides on many 

popular graphics workstations, will communicate with the KSR1 parent over the network. Unlike 

earlier visualization applications, control of the modules' execution is distributed, rather than cen­

tralized at the level of the workstation. This design will leverage the full power of the KSR1 highly 

parallel processor in building very large visualization models. 
Explorer is an application-building software system that provides tools to introduce and inte­

grate visualization capabilities with an existing application. The package includes execution mod­

ules for numerical analysis, feature analysis, image processing, geometric representation and 

rendering. A visual programming model is used to interconnect the various modules. The system 

provides tools which create data filters but require no programming to add user-supplied modules. 

Explorer is designed to support the following types of users: application developers who wish 

to add visualization capabilities to their applications; programmers whose function is to support 

groups of researchers; computational scientists whose primary task is to develop large-scale algo­

rithms for high-order simulations; scientists who wish to simulate complex phenomena and explore 

the resulting parameter space visually; and business strategists who wish to analyze more com­

pletely complex sets of data. 

Networked Graphics 
The extremely high computational performance of the KSR1, combined with its massive I/O 

capacity and throughput, make possible a new computing paradigm for visualization. The KSR1 

provides the means by which the power of the world's fastest computers can be brought down to the 

user's networked PC or X-terminal. The KSR1 is designed to stimulate progress toward the next 

evolutionary step in the development of the basic graphics model, from the current stage where 

polygons are drawn at a high performance graphics workstation, to a model that more closely 

resembles teleconferencing. 
While the KSR1 can inherently provide solutions such as HiPPI framestores for high-end ani­

mation requirements, Kendall Square Research has continued to focus attention on the problems 

involved in providing graphics over conventional LANs to PCs and workstations. To this end, the 

KSR1 graphics architecture is organized to render animation sequences interactively to a software 

framestore in the KSR1, then to use advanced image compression to forward the images across the 

current-era network. While implementing JPEG (and, in the future, MPEG) for compatibility with 

emerging compression standards, Kendall Square has also adopted newer video compression 

schemes based on wavelet transforms and vector quantification. This provides both high quality 

displayed images for sharp edged computer graphics as well as faster decompression by software 

in workstations, PCs and X-terminals. 
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The graphics capabilities of the KSR1 conform to the de facto industry standards of the present 

day, and work continues to exploit the unique advantages of the KSR1 architecture while maintain­

ing conformity. For example, Kendall Square's implementation of OpenGL will provide for paral­

lel execution of entire frames in an animation, as well as fast-rendering of a single frame with 

parallel processing. The OpenGL implementation on the KSR1 will be optimized to leverage the 

advantage of high performance floating point capabilities for optimum image quality. For instance, 

rasterizing is accomplished by stochastic point sampling, rather than the conventional method of 

integer rasterization. 
The KSR1 will meet the demanding needs of the visualization server for both technical and 

commercial applications. 
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PART THREE 

S U P P O R T  F O R  T E C H N I C A L  
A P P L I C A T I O N S  

IDEAL FOR NUMERICALLY INTENSIVE PROCESSING 

The KSR1 provides a completely integrated programming and development environment for 

applications, including all the software engineering features inherent in the UNIX operating system, 

along with an extensive set of programming languages and compilers, including Fortran, C, C++, 

Cobol, and assembly language. Numerous enhancements by Kendall Square, such as the addition 

of full screen debugging facilities, profiling tools, and utilities such as GNUMAKE, assures a pro­

ductive environment for software development. For applications that require database management 

capabilities, the KSR1 supports the industry-leading DBMS software, ORACLE7. (See Part Four 

for details on database software.) 

The software environment addresses the special requirements of multiprocessor parallel pro­

gramming and makes the KSR1 an ideal platform for numerically intensive processing. It provides 

tools for examining the state of all the processors involved in an application simultaneously, and for 

analyzing the complex dynamical interaction of multiple processes. The Fortran compilation sys­

tem incorporates advanced application parallelization technology. For database applications, the 

implementation of query decomposition in the relational database enables seamless parallel 

speedup on transaction-intensive applications. 

BENEFITS OF THE SHARED MEMORY PROGRAMMING MODEL 

The benefits of shared memory multiprocessors1 are high performance and a conventional pro­

gramming model (including virtual memory). When compared to multicomputers, the higher per­

formance of shared memory has two benefits, efficiency and flexibility. Processor communication 

is more efficient because with shared memory, hardware automatically manages memory alloca­

tion, coherency and data movement transparently. In contrast, communication between processors 

within a multicomputer requires software to explicitly manage memory allocation, coherency and 

data movement. 

The implicit nature of sharing an address space on a shared memory multiprocessor results in 

a flexible environment which dynamically moves only those addresses required by program execu­

tion between processors. In contrast, on a multicomputer, the exact details of all data movement 

must be specified statically at compile time. Attempts to build a more flexible environment on a 

multicomputer by emulating a shared address space in software2 have resulted in lower perfor­

mance on shared memory applications, since the shared memory primitives are in software. Thus, 

the most computationally efficient algorithms can be chosen to execute on a shared memory archi­

tecture such as the KSR1, while only explicit algorithms with rigid, static behavior execute effi­

ciently on a multicomputer. 

The shared memory programming model represents huge investments in existing programs and 

programmer training. Whether it is the development of new applications or the migration of exist­

ing codes from other shared memory systems, the KSR1 is the first large scale parallel system that 

Bell, C. Gordon. "Multis: A New Class of Multiprocessor Computers;" Science, Vol. 228, pps. 462-
467, 26 April 1985. 
Li, Kai and Hudak, Paul. "Memory Coherence in Shared Virtual Memory Systems;" Proceedings of 
the 5th Annual ACM Symposium on Principles of Distributed Computing, pps. 229-239, August 
1986. 
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preserves these investments while providing scalable performance for a broad range of applications. 

Existing codes can be migrated with minimal code changes. Starting with a port to a single proces­

sor, the application can be incrementally optimized and parallelized with data allocation and data 

sharing, transparently handled by the ALLCACHE memory system. A single, uniform address 

space of 1 Terabyte (1TB) is accessible to all processors. The system hardware handles data sharing 

among the processors, without resorting to the complexity of message-passing protocols. (See Part 

Four for further details.) 
Thus users are not forced to rewrite their applications in data-parallel syntax or insert message 

passing calls to achieve parallel speedups. The parallel speedup is often achieved automatically 

(see section on Compilers and Languages below), or requires minimal modifications of the code. 

Not only can applications be ported easily to the KSR1, but because the KSR1 is programmed as a 

shared memory system, the resulting code remains portable from the KSR1 to other systems. Port­

ability from the KSR1 greatly reduces the cost of maintaining applications across a number of plat­

forms.1 

BENEFITS OF INCREMENTAL OPTIMIZATION 

During the migration process, a programmer is concerned with the following issues: 

• Does the application port with minimal source code modifications? 

• Does the performance of the application scale with the number of pthreads that participate 
in its execution? 

On a KSR1, applications (whether previously parallelized or not) will run with no modification 

and depending on the previous level of parallelization some degree of parallelization will automat­

ically be achieved. This is enabled by supporting the language extensions of several other vendors 

and the shared memory programming environment. The second question, scalability, has two 

aspects; scalability of memory size and scalability of performance. The user gets the benefit of scal­

ability of memory size immediately because the ALLCACHE memory system transparently 

migrates addresses to the local cache processor being referenced. Data which has not been recently 

accessed is migrated to local caches that have excess capacity. 

From the point of view of the application, local caches are treated as one large shared memory 

with its inherent aggregate storage capacity. This ability for a user to execute large applications on 

a single cell of the KSR1 sharply distinguishes the system from large scale message passing sys­
tems. 

Since ALLCACHE handles data allocation and data sharing chores transparently, the KSR1 is 

ideally suited for incremental improvements of performance by restructuring only the key portions 

of the code. 

Alternative architectures do not lend themselves to incremental optimization, as they must be 

completely rewritten. Data allocation and data sharing must be explicitly managed by the program­

mer. Only after the entire application is parallelized can the user run large problems that require the 
aggregate memory size of several processors. 

1. S. Picano, E. Brooks, and J. Hoag, "Programming Costs of Explicit Memory Localization on a 
Large Scale Shared Memory Multiprocessor", Albuquerque, NM: Proceedings of Supercomputing 
'91, November, 1991. 
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IMPLEMENTING NEW ALGORITHMS 

New algorithm development is easier with the shared memory programming environment. A 

programmer need not be constrained by having to first master data parallel programming techniques 

or message passing protocols. New algorithms can be "dropped-in without rewriting the entire 

application, or being concerned over global data structures. This is illustrated in the examples at 

the end of this chapter. 

PARALLEL PROGRAMMING ENVIRONMENT 

The KSR OS facilitates technical and commercial applications including OLTP, relational data­

base management and decision support. 
The architecture enables single or multiple applications which mix technical and commercial 

characteristics to execute efficiently on a single KSR1 system as shown in Figure 6. 

FIGURE 6 KSR1 System Software 

DUSTY DECK 

I Automatic 
KAP — parallel — C++ 

directives 

Programmer 
FORTRAN — provides 

parallel 
directives 

I 
C 

I 
SPC 

1 
PRESTO™ 

1 
PROCESSOR SET MANAGER 

1 
PTHREADS 

KSR OS 

COBOL 

FORTRAN -*• 

Allocates parallel 
regions to pthreads 

Allocates pthreads 
to Processor Cells 

KSR QUERY DECOMPOSER 

The various languages are shown interfacing to lower level software layers. For example, the 

Fortran compiler, using automatic and programmer generated directives, creates parallel units of 

work, or ptasks. The number of ptasks created may be set at the time of compilation, or dynamically 

determined at runtime, based on user directives. The KSR1 runtime environment, PRESTO™, 

maps ptasks to pthreads. Pthreadsx are POSIX-compliant lightweight processes that are scheduled 

by the KSR OS on available processors. Pthreads may be accessed by the programmer through the 

pthreads library calls, or through compiler directives which are replaced with calls to the pthreads 

library by the compiler. Pthreads provide a low-level interface to the operating system — thereby 

adding little overhead. 

1. IEEE Technical Committee on Operating Systems, "Threads Extension for Portable Operating Sys­
tems", draft P1003.4a/D4, 1990. 
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The execution of a parallel Fortran program consists of the execution of one or more teams of 

pthreads. A "team" is a group of pthreads with a team identification number. Its behavior is as fol­

lows: 

• A single pthread, called the program master, begins execution at the start of the program. 

• When a pthread encounters a begin-parallel-directive, that pthread summons a team. The 
pthread that summons the team assumes the role of team leader. The other pthreads are the 
team members. 

• Each parallel directive can take a team identification number as a parameter. If this 
parameter is specified, the designated team will execute the parallel segment. If no team is 
specified, the KSR Fortran runtime system, PRESTO, will designate a team to execute the 
parallel segment, creating a new team if needed. 

• Each pthread in a team executes a portion of the work in the parallel segment. Together, 
the members execute all of it. 

• When all the pthreads in the team reach the end-parallel-directive, the team is usually 
disbanded, its members are returned to the idle pool, and the team leader continues 
execution from the statement following the end of the parallel directive. Creation and 
disbanding of a team does not imply creation and destruction of pthreads: only the 
grouping of pthreads and the assignment of team identification numbers occur upon 
creation and disbanding of team operations. Teams that execute within an affinity region 
are not disbanded, until the end of the affinity region itself. Teams created explicitly by the 
user are not disbanded until the user explicitly disbands them. 

Parallelization of technical applications is achieved by inserting parallelization directives in the 

source code. A preprocessor, KSR KAP, is available for source code analysis and automatic gen­

eration of compiler directives. While the compiler and KSR KAP are capable of automatic paral­

lelization of applications, higher performance can sometimes be obtained with programmer 

assistance via compiler directives. These directives are described in more detail below. Message 

passing libraries are also provided as a convenience for some users, primarily for compatibility rea­

sons, but not of necessity to the porting strategies themselves. Users will obtain higher performance 
by programming the KSR1 as a shared-memory system. 

COMPILERS AND LANGUAGES 

KSR FORTRAN 

KSR Fortran lets programmers develop and port code from other systems quickly and easily. It 

adheres to the ANSI X3.9-1978 (Fortran 77) standard, and supports several popular extensions of 

the language present in standard Fortran 77 compilers such as the VAX/VMS, IBM VS, and Cray 

compilers. In order to maintain portability of the code from the KSR1, Kendall Square has not 

introduced any language extensions of its own to aid parallelization, rather it delivers the capability 
of constructs like "PARALLEL REGION" with simple compiler directives. 

The KSR Fortran compiler provides optimizations seen in mature compilers1, including: 

• strength reduction 

• loop invariant code motion 

• common sub-expression elimination 

1. M. Wolfe, Optimizing Supercompilers for Supercomputers, Cambridge, MA, the MIT Press, 1989. 
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constant folding 

register allocation by graph coloring 

instruction scheduling/branch delay filling 

peephole optimization to minimize register-to-register moves, loads, and stores 

argument-passing in registers 

multi-level loop unrolling 

There is ample hardware support to enable aggressive optimization, including a large set of reg­

isters, extensive pipelining, multiple instruction launch and chaining of operations. 

FORTRAN EXTENSIONS 
Some of the extensions beyond Fortran 77 that are included in KSR Fortran include: 

Additional Data Types 

INTEGER* 1, INTEGER*2, INTEGER*4, INTEGER*8 
LOGICAL* 1, LOGICAL*2, LOGICAL * 4, LOGICAL *8 
REAL*8 COMPLEX* 16, DOUBLE COMPLEX 

Bit Operations With Byte Addressability 

Bit Field Manipulations 
Bit Subfields 
Bit Processing 
Bit Constants 

Dynamic Allocation Of Variables 

Interlanguage Procedure Calls 

The C Language 

The KSR1 system supports C and offers an efficient C language compiler. The KSR C compiler 

conforms to the ANSI standard defined in ANSI X3.159-1989 (ANSI C). Parallelization of C codes 

is accomplished with manual insertion of pthread calls. Simple Parallel C (SPC) comprises higher-

level subroutines that provide the same functionality as the Fortran parallelization directives 

described above. 

C++ Compiler 

C++ is an object-oriented language derived from C. On the KSR1 system, programs written in 

C++ may be run by compiling them with the C-Front pre-compiler. 

C++ is a superset of the C language that provides flexible and efficient facilities for defining 

new "types." The key concept in C++ is *class* which is a user-defined type. Classes provide data 

hiding, guaranteed initialization of data, implicit type conversion for user-defined types, dynamic 

typing, user-controlled memory management and mechanisms for overloading operators. 

PARALLELIZATION CONSTRUCTS 

The KSR1 Fortran compiler provides a powerful set of parallel processing capabilities. These 

include the ability to share variables and common blocks, and procedures for specification of par­

allel execution of code fragments. 

Major parallel constructs include parallel regions, parallel sections and tile families which com­

prise the KSR1 high-level interface to pthreads. Each of these high-level interface directives is 
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specified with begin/end-parallel-directive pairs surrounding the code fragments that may be exe­

cuted in parallel. 

• Parallel region - Execute multiple instances of a code fragment in parallel. 

• Parallel sections - Execute multiple code fragments in parallel. Parallel sections in the text 
of a Fortran program are also denoted by a begin/end-parallel-directive pair. 

• Tiles - Loop parallelization in KSR Fortran is achieved by tiling, in which the iteration 
space defined by a Fortran do loop nest is decomposed into tiles, or groups of loop 
iterations. The group of tiles that make up a loop nest is called a tile family. The tile 
directive specifies the loop indices over which tiling is to occur. These indices define an 
iterative space. For example, in Figure 7 the indices i, j and k define the iteration space. A 
point in this iteration space corresponds to unique values of the loop indices i, j and k. 

FIGURE 7 Iteration Space and Data Space 
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subroutine matrixmultiply (a,b,c,n,m,p) 
integer n,m,p 
real a(n,p) ,  b(p,m), c(n,m) 

c*ksr* tile (i , j)  
do i  = 1,n 

do j  = l ,m 
do k = 1, p 

c(i,j) = c (i ,  j) + a(i,k) * b(k,j) 
end do 

end do 
end do 

c*ksr* end t i le 
end 

Rather than have a pthread for each iteration, a tile directive creates groups of iterations that 

will be executed together. This increases the granularity of the parallel computation and minimizes 

scheduling overhead. 

The tile directive causes the iteration space to be partitioned into rectilinear sub-spaces called 

tiles, each of which contains enough loop iterations to create a reasonable amount of work for one 
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processor. Each tile is executed by a pthread, and each pthread may execute on a different proces­

sor. Numerous processors can execute the same loop nest, with each processor working on a sepa­

rate tile simultaneously. There may be more tiles than pthreads, so that a given pthread may execute 

more than one tile. 
The tile directive can specify parameters giving the user a broad range of control options. In 

the example presented in Figure 8, the runtime system determines the tile size and how they are allo­

cated to pthreads, but the directives could have included additional tile parameters to control these 

choices. 

Major Tiling Strategies 
The four distinct tiling strategies available to the programmer are outlined below. These fall 

into two major categories: static, as exemplified by slice, mod, wave, and dynamic as exemplified 

by grab. Depending upon the tiling strategy employed, each pthread will execute one or more tiles. 

slice 
The compiler simply slices the iteration space so that iterations are divided equally among the 

pthreads, where each pthread is to execute one tile. This strategy is the simplest and has the lowest 

overhead and is the default strategy adopted by the compilation system 

FIGURE 8 Slice Strategy 
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c*ksr* tiled, j) NUMBER OF PTHREADS IN TEAM: 3 

do j = 1,100 
do i  = 1,100 

ad, j) = b(i,  j) 

end do 

TILE SIZE: i DIMENSION = 
j DIMENSION = 

TOTAL TILES IN TILE FAMILY: 

TILES PER PTHREAD: 

100 
34 or 32 

3 

1 

end do 
c*ksr* end tile 

mod 
Assigns tiles to pthreads using a modulo mapping: tiles for which the tile number modulo the 

numbers of pthreads is the same are executed sequentially by the same pthread. There may be more 

tiles than pthreads, and thus each pthread may execute more than one tile. The compilation system 

chooses this strategy when data affinity must be maintained across a loop nest (as specified by the 

directive, affinity region) and the bounds of the iteration space vary dynamically. 
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FIGURE 9 Modulo Strategy 
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c*ksr* affinity region (i :1,100,j :1,100) TILE FAMILY FIRST SECOND 
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do ; 
t i led,  j)  
= 1,100 NUMBER OF PTHREADS IN TEAM: 3 3 

do i  = 1,100 TILE SIZE: i DIMENSION = 100 20 
ad, j  ) b(i , j)  j DIMENSION = 1 50 

end 
end do 

do 
TOTAL TILES IN TILE FAMILY: 100 50 

c*ksr* end t i le TILES PER PTHREAD: 33 or 34 17 or 16 
c*ksr* t i le(i , j)  

do ;  = 1,50 
do i  = 1,2 0 

a(i , j)  
end do 

b(i , j)  + 1 

end do 
c*ksr* end t i le 
c*ksr* end affinity region 

wave 
The compilation system chooses this strategy when data dependencies impose ordering require­

ments. Typically there are more tiles than pthreads, and they will be executed in a wavefront man­

ner, with synchronization that ensures program correctness. Assignment of tiles to their execution 

pthreads is done as in the modulo strategy. 
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FIGURE 10 Wavefront Strategy 
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c*ksr* tile(i,j , order= (i , j)) 
do j = 1,99 

do i = 1,99 
a (i,j) = a(i + l,j+1) 

end do 
end do 

c*ksr* end tile 

NUMBER OF PTHREADS IN TEAM: 

TILE SIZE: i DIMENSION = 
j DIMENSION = 

TOTAL TILES IN TILE FAMILY: 

TILES PER PTHREAD: 

32 or 3 
32 or 3 

16 

8 for pthread 1, 
4 each for pthreads 2 arid 3 

grab 
The grab strategy can adjust to an unbalanced load during execution of a tile family. With this 

strategy pthreads are assigned to tiles on a first come, first serve basis. 

FIGURE 11 Grab Strategy 
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PTHREAD IN THE TEAM IS FREE, 
IT EXECUTES THE NEXT TILE. 

c*ksr* tile (i, j , strategy = grab) NUMBER OF PTHREADS IN TEAM: 3 
do j = 1,100 TILE SIZE: i DIMENSION = 100 

do i = 1,100 j DIMENSION = 1 

a (i, j ) = b (i, j ) TOTAL TILES IN TILE FAMILY: 100 

end do TILES PER PTHREAD: 0-100 

end do 

c*ksr* end tile 
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The directives that invoke particular tiling strategies are simple to insert, yet are powerful in 

their impact. On message passing systems, the equivalent functionality requires dozens of lines of 

user code. 
If the user chooses not to specify a tile strategy, the compilation system and the run-time system 

do so, as follows: 

• the wave strategy is used for tile families with ordering requirements 

• the mod strategy is used when data affinity must be maintained 

• the slice strategy is the default 

KSR OS 
The operating system of the KSR1, known as the KSR OS, is a UNIX operating system based 

on OSF/1 and is fully compatible with AT&T System V.2 and System V.3 and with Berkeley 

4.3BSD and 4.4BSD. The Application Environment Specification (AES) is functionally complete, 

integrating the specifications of the major standards organizations, including ANSI C, FIPS 15-1, 

POSIX 1003.1 and XPG3. 

The Unix shell, or command interpreter, has a built-in high-level language that allows the user 

to combine or pipeline programs without the need for compilation or recoding. Several standard 

shells are offered - including the C shell, tsch, and the Bourne shell. 

KSR OS includes the standard set of UNIX text editors (vi, ed, and ex), as well as the GNU-

MAKE screen editor. GNUMAKE provides an advanced set of editing capabilities that can be cus­

tomized and extended by the user, with built-in help facilities that make it easy to use. 

KSR OS also provides facilities for software development, including Revision Control System 

(RCS) and GNUMAKE. RCS supports the management of large development projects, in which 

many programmers are collaborating and where multiple versions of programs must be maintained. 

RCS manages the process of revising text files such as source code and documentation. It maintains 

a complete revision history, automates storage and retrieval of multiple versions of a program, pro­

vides release and configuration control, and controls programmer access to the source code. 

GNUMAKE, a utility for maintaining consistency between program source and object mod­

ules, keeps track of the interdependencies between program elements so that when changes are 

made, modified source modules are automatically recompiled. A Kendall Square enhancement of 

GNUMAKE, known as parallelmake, automatically spreads compilations over multiple processors, 

taking a fraction of the time required on a single processor. 

The udb debugger, which mns under the X Window System, or in a terminal mode, is a source 

level debugger designed for multiprocessors. A multiple-window display allows the programmer 

to track independent pthreads of execution, to set break points with mouse ("point and click") input, 

and to use pop-up menus for tracing program variables, call structures, or stack frames. The user 

can call on the integrated, context-sensitive, on-line help facility. Moreover, the command interface 

of udb is a superset of standard UNIX debuggers, such as dbx, so that minimal retraining is required 
for its use. 

Without changing the standard user interface or file system, KSR OS gives users access to the 

powerful ALLCACHE shared memory system, the extensive address space, and scalable I/O and 

the large number of processors that may be configured in a KSR1. 

The KSR OS environment also includes support for window-oriented user interfaces, built 

around industry standards, such as X-Windows and Motif. 
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Numerous extensions have been added to provide support for high-performance applications 

and for administrative functions. 

A partial list of the KSR OS extensions to UNIX that facilitate operations in a highly parallel 

system environment is given below: 

• KSR OS multi-threads the operating system to allow multiple processors to execute the 
same operating system code simultaneously. 

• The I/O system supports parallel access for all read/write file system operations. 

• Disk striping allows the construction of extremely large logical files over large numbers of 
physical disks. Data parity helps to maintain data integrity on logical disks. Files of up to 
1 Terabyte are supported, and users are allowed to customize their file system for different 
types of file access. 

• To reduce contention and data movement, the scheduler in KSR OS supports multiple-run 
queues, with the result that the operating system can sustain a simultaneous mix of jobs 
from high-performance OLTP to high-performance numerical computations. 

• Process management facilities automatically group system resources, as appropriate. Cell 
and ALLCACHE Engine affinities are used to associate processes with a particular cell or 
ALLCACHE Engine:0, to maintain a favorable cache footprint. 

A batch facility provides capabilities usually lacking in UNIX. Users can submit job requests 

specifying a minimum and maximum number of processor cells. The batch facility also supports 

other common batch-scheduling functions, including resource limits, allocation of I/O devices, and 
job status notification.1 

KSR OS includes additional capabilities to ensure data integrity and high system availability: 

Disk parity, to allow the on-line replacement of components 

A check-point and restart facility for job recovery after unexpected interruptions 

Environment monitoring to help detect unsafe operating conditions 

On-line diagnostic facilities to help identify, report and deconfigure failing hardware 
components 

On-line maintenance 

Error logging 

Committed data recovery in conjunction with database management software 

Automatic system restart upon condition of a processor interconnect failure, with reduction 
of performance limited to the failed component so that operations may continue to the 
extent possible. The failed element need not be replaced immediately. 

Single Level Store/Mapped Files 
An important technique to increase I/O performance is to complete the operation using main 

memory and virtual memory hardware. Scalability and performance are significantly increased 

since the time to access primary (main) memory is 10,000 times faster (microseconds vs. 10s of mil­

liseconds) than the time to access secondary (disk) storage. Other techniques such as software man­

aged file caches are still 100-1000 times slower than main memory. The ALLCACHE memory 

system and 64 bit addressing of the KSR1 processor are fundamental to enabling operations which 

The batch facility is derived from the Network Queueing System developed by NASA/Ames. 
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require physical disk I/O on most systems to be satisfied within ALLCACHE through a technique 

called single level store or mapped files. 
On conventional mainframes, virtual address space is used to reference data and programs that 

have been copied explicitly from disk into a temporary region of virtual memory. The user's pro­

gram moved the data and programs explicitly into the virtual address space with I/O commands that 

used a separate addressing scheme for the disk. Single level storage extends the concept of virtual 

memory to all storage. Files are never copied into virtual storage, as no explicit disk I/O is done by 

the program. A single address space (rather than one for memory and one for disks) is used to 

address all storage, both data and files. Thus, processor memory reference instructions are used to 

access files directly as data. Performance is accelerated, because the standard memory hierarchy is 

used to cache most recently accessed files. 
Single level store requires virtual memory addressability of greater than 32 bits and scalable 

memory architecture to cache recently accessed portions of files. The KSR1 architecture uniquely 

meets these requirements in a scalable manner. The KSR1 processor and ALLCACHE meet the 

first requirement through native 64 bit addressing and meet the second requirement through hard­

ware based hierarchical caches. ALLCACHE provides a scalable single level store by efficiently 

representing the most recently accessed portions of files (a sparse representation of the virtual 

address space) within a size and performance scalable physical memory. 

FIGURE 12 Mapped Files vs. Conventional File Access 
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1. Duby, R.C., J.B. Dennis, "Virtual Memory, Processes, and Sharing in Multics," Communications of 
the ACM, 11, 5, May 1968, pp. 306-312. 
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Mass Storage 
The KSR OS overlaps computing and I/O operations by means of asynchronous I/O. For exam­

ple: 

• A job can start several I/O operations through asynchronous I/O. 

• A process can poll I/O operations or wait for an operating system signal on completion, 
whichever is more expeditious. 

• The file system uses a read-ahead/write-behind feature. 

System Administration 
Processors can be divided into processor sets, and a given process can be restricted to one or 

more particular processor sets. For example, one processor set might be designated for interactive 

use, a second set for batch queue purposes, and a third set for a particular application. Processor 

sets can be altered manually or automatically by system administration commands without inter­

rupting operations. 

Scheduler 
The KSR OS scheduler is hierarchical in nature and corresponds to the way the system itself is 

physically constructed. The scheduler is symmetrical and runs on each processor, rather than via a 

single master. It balances the load between processors and between processes with a single proces­

sor. For multi-threaded processes, processors can be added to or removed from an on-going process 

without disruption of the process' execution. 

RUN-TIME ENVIRONMENT 

The KSR1 runtime environment is called PRESTO. As seen in Figure 6 on page 21, the 

PRESTO environment is available to programs written in Fortran, C and C++. Its primary function 

is to provide a high-level interface between lightweight pthreads and the user application. The 

underlying POSIX-compliant pthread library contains primitives for the synchronization and man­

agement of pthreads, locks and barriers. PRESTO constructs are executed by teams of pthreads 

with a master responsible for executing the serial code before and after the parallel construct is 

encountered. PRESTO dynamically resizes the tile shape based on loop length and the number of 

operations per loop trip, and the number of pthreads assigned for the job. 

It should be noted that PRESTO ensures load balance within a job, namely optimal assignment 

of tiles to pthreads. Load balance among processes on processors is handled by the OS scheduler. 
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PORTING CODES TO THE KSR1 

Two examples of scientific/engineering applications are described: 

Example 1: Automatic Parallelization 

The first example is based on a code from "Programming Parallel Processors" by Robert G. 

Babb, Addison-Wesley (1988). The following code computes an approximation to Pi by using the 

rectangle rule on an integral representation of Pi. As Babb shows in the text book, even this simple 

example exposes the "flavor" of parallel programming environments. The critical component of the 
code is the three-statement DO 100 loop. 

c 
C  -  -  P i  -  P r o g r a m  l o o p s  o v e r  s l i c e s  i n  i n t e r v a l ,  s u m m i n g  
C  -  -  a r e a  o f  e a c h  s l i c e  
C  

r e a l  t t l ( 2 )  ,  t t 2 ( 2 )  
i n t e g e r  i n t r v l s ,  c u t  
r e a l  s u m a l l ,  w i d t h ,  f ,  x  

C  
f  ( x )  =  4  .  /  ( 1 .  +  x  *  x )  

C  
r e a d ( * , * )  i n t r v l s  
t 2  =  e t i m e ( t t l )  

C  
C  -  -  C o m p u t e  w i d t h  o f  c u t s  
C  

w i d t h  =  1  .  /  i n t r v l s  
s u m a l l  =  0 . 0  

C  
C  -  -  L o o p  o v e r  i n t e r v a l ,  s u m m i n g  a r e a s  
C  

d o  1 0 0  c u t  =  1 ,  i n t r v l s  
s u m a l l  =  s u m a l l  +  w i d t h  *  f ( ( c u t  -  . 5 )  *  w i d t h )  

1 0 0  c o n t i n u e  
C  
C  -  -  F i n i s h  o v e r a l l  t i m i n g  a n d  w r i t e  r e s u l t s  
C  

t l  =  e t i m e ( t t 2 )  
w r i t e  ( 6 ,  * )  ' T i m e  i n  m a i n  = ' ,  t l  -  t 2 , ' ,  s u m  =  •  ,  s u m a l l  
w r i t e ( 6 ,  * )  ' E r r o r  = ' ,  s u m a l l  -  3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6  
s t o p  
e n d  

On the KSR1, the critical loop is automatically parallelized by KSR KAP. No source code mod­
ifications are required. The command line for creating an executable is: 

f 7 7  - k a p  - p a r a  - 0 2  - o  p i  p i . f  - l p r e s t o .  

The switches -para and -lpresto link parallel libraries, and the switch -02 tells the compiler to 
use the highest optimization. 

The compilation gives, together with an executable "pi," an intermediate Fortran file, pi.cmp: 

K S R  K A P  1 2 . 0 0  k 0 9 1 9 5 9  9 2 0 2 0 6 p o l r 2  2 3 - M a r - 1 9 9 2  1 7 - 5 2 - 1 0  
C  
C  -  -  P i  -  P r o g r a m  l o o p s  o v e r  s l i c e s  i n  i n t e r v a l ,  s u m m i n g  
C  -  -  a r e a  o f  e a c h  s l i c e  
C  

R E A L  T T 1 ( 2  )  ,  T T 2 ( 2 )  
i n t e g e r  i n t r v l s ,  c u t  
r e a l  s u m a l l ,  w i d t h ,  f ,  x  
S A V E  I N T R V L S  

C  
F ( X )  =  4  .  /  ( X  *  X  +  1 .  )  

C  
R E A D  ( * ,  * )  I N T R V L S  
t 2  =  e t i m e ( t t 1 )  

C  
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C -  -  Compute width of cuts 

C 
WIDTH = 1.  /  INTRVLS 
SUMALL = 0 .  

C 
C -  -  Loop over interval,  summing areas 

C 
C*KSR* TILE (CUT, REDUCTION= (SUMALL) ) 

DO 2 CUT=1,INTRVLS 
SUMALL = SUMALL + WIDTH * F((CUT - .5) * WIDTH) 

2 CONTINUE 
C*KSR* END TILE 
C 
C -  -  Finish overall  t iming and write results  

C 
t l  = et ime(tt2) 
WRITE (6,  *) 'Time in main = ' ,  Tl -  T2, ' ,  sum =' ,  SUMALL 
WRITE (6,  *) 'Error =' ,  SUMALL -  3.14159265358979323846 

stop 

end 

It is this intermediate file (pi.cmp) that is actually read by the Fortran compiler. The preproces­

sor also yields a pi.out listing that describes in detail its optimization decisions. 

The main function of the preprocessor is to introduce tiling directives, recognizable by the 

string C*KSR*. 

With the directive, 

C*KSR* TILE (CUT, REDUCTION= (SUMALL) ) ,  

KSR KAP indicates to the compiler that CUT is the tiling index and that the SUMALL is a 

reduction variable. Each processor accumulated a private partial sum and adds it to the global sum, 

thus minimizing data contention and movement. 
In codes that are parallelized manually, the desired number of processors is usually introduced 

as a variable. The 'Pi' source, however, contains no parallel construct; the desired level of parallel­

ism is communicated to the program via a Unix environment variable (PL_NUM_THREADS). 

The observed speedup is close to linear (see Figure 13). 

FIGURE 13 Speed up of the "Pi" Code With Automatic Parallelization 
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Example 2: Incremental Optimization of the AMBER System of Codes 

The AMBER system of codes was developed at the University of California, San Francisco, by 

Peter Kollman and Associates. AMBER is written predominantly in FORTRAN 77. It performs 

molecular dynamics and energy calculations on biological systems. Implementation of the 

AMBER module, MINMD, used for molecular dynamics and energy minimization is described 

below. The implementation included an initial port to a single processor, performance optimization 

on the single cell and subsequent parallelization and performance optimization for a KSR1-32. 

The methodology used for porting the 110,000 lines of code is described in the following sec­

tions. Section I provides some background on energy minimization and the conventions used in 

porting to the KSR1. A description of porting and optimization for a single processor is reported 

in Section II and the parallelization effort is discussed in Section III. 

I. Energy Minimization 

Energy minimization is a technique in which the energy of a molecular system is minimized as 

a function of the molecular or atomic coordinates. The potential energy function and its gradients 

(the forces) are iteratively computed for sample configurations, until the change in energy is mini­

mized. The potential energy function used in AMBER includes contributions from bonded atomic 

pairs, angular dependent atomic triplets, dihedral angular dependent quartets of atoms and non-

bonded or long-range atomic pairs. 

On the KSR1 the individual subroutines from module MINMD were compiled using a Make­
file. The Makefile issued the following commands: 

cat file_name.f I / l ib/cpp -P -DKSR1 > file_name_.F 
til -c -e -r8 file_name_.F 

where "cpp" is the C-language preprocessor, that also can be used prior to FORTRAN compi­

lation. The -DKSR1 option to "cpp" ensures the portability of the code between the KSR1 and any 

other Unix based computer, as all code modifications were enclosed within "cpp" directives. The 
following example illustrates the use of these directives: 

#ifdef KSR1 
modified code 

#else 
original code 

#endif 

The "-e" option to the compiler allows for Fortran source lines to extend beyond the 72nd col­

umn and the "-r8" option declares all real variables to have 64 bit precision. MINMD contains rou­

tines to time individual sections of the code. These timing data were used to improve the single cell 

performance and to isolate areas of the code that would benefit from parallelization. 
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II. Single Cell Performance 
Improvements in the single cell performance were realized by reducing the storage of unneces­

sary temporary arrays and redundant loops, and combining many divide and square-root operations 

used in the computation of the forces. The superscalar nature of the KSR1 reduces the need for the 

temporary storage arrays that enhance performance on vector machines. In addition, the KSR1 

hardware computes 1.0/sqrt(r_squared) in a single hardware operation. For example, in the original 

code, the interatomic distances were first stored as arrays, XWIJ(I), YWIJ(I), ZWIJ(I) and RWIJ(I), 

where I is the loop index (atom number) and the arrays were the X, Y and Z components of the dis­

tance and the resultant radial distances. The arrays were then used in another loop to compute: 

RWIJ(I) = XWIJ (I) * * 2 + YWIJ (I) **2 + ZWIJ (I) * * 2 

and subsequently used to compute 1.0/SQRT(RWIJ(I)). These steps were combined into a scalar 

operation (i.e. non-array) and the multiple loops were coalesced into a single step as. 

RWIJ = 1.0/ SQRT (XWI J* *2 + YWI J* * 2+ZWIJ**2) 

eliminating the need for the four storage arrays and reducing the chance of cache misses. 

The energy minimization of triostin intercalculated in d(CGTACG)_2 molecule with 554 atoms 

was computed on a single processor. The output from AMBER produced a summary ot the execu­

tion time for each of the subroutines and for sections of the computation. The force routines 

(NONBOND, EPHI and ANGL) account for 98% of the total time. Therefore these are the routines 

that were the focus of the parallelization effort. 

III. Parallelization 
Two different types of parallelism are utilized, known as PARALLEL REGIONS and PARAL­

LEL SECTIONS. In PARALLEL REGIONS a single instantiation of a code is computed multiple 

times in parallel, while in PARALLEL SECTIONS, multiple groups of code are computed simul­

taneously. 
The number of available processors is subdivided into three sets. The first set contains one 

pthread that is used to compute the bonded and angular dependent interactions. The second set con­

tains between 1 and 3 pthreads which are used to compute the dihedral interactions. The third set 

contains all of the remaining pthreads and is used to compute the nonbonded interactions. The exact 

number of pthreads per set is dependent on the total number of processors that are being used. 

These parallel constructs were nested as follows: 

C*KSR J  

C*KSR* 

C * KSR* 
C*KSR< 

C*KSR* 
C * KSR* 
C*KSR" 

C * KSR J  

C*KSR J  

Parallel Sections 
Section! Section 1 
< compute bonded contributions > 
< compute angular contributions > 
Section! Section 2 

Parallel Region (numthreads = iphi_procs) 
< compute dihedral contributions > 
End Parallel Region 

Section! Section 3 
Parallel Region (numthreads = inb_procs) 
< compute non-bonded contributions > 
End Parallel Region 

End Parallel Sections 
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In the preceding pseudocode, the parallel sections 1, 2 and 3 are computed simultaneously. 

Within sections 2 and 3, iphi_procs and inb_procs processors were used to compute the dihedral 

forces and the non-bonded forces respectively. The individual contributions to the total force from 

the nonbond, angle and dihedral interactions, are combined after the parallel section. 

Fewer than 500 lines of source code had to be modified to enable a fully functional high-per­

formance implementation of AMBER on the KSR1. 
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T H M O S T  U T I F U L J-tL N G 

I: 
i* 



W E  C A N  E X P E R I E N C E  I S  T H E  
O F  A L L  T R U E  A R T  A N D  S C I E N C E . "  

A L B E R T  E I N S T E I N  





2 4  P H O T O G R A P H S  I N  S E Q U E N C E :  T H E  K S R 1  i s  D E S I G N E D  A S  A  F U L L Y  M O D U L A R  S Y S T E M  D O W N  T O  T H E  C O M P O N E N T  

L E V E L .  T H I S  A L L O W S  C U S T O M E R S  T O  C O N F I G U R E  K S R 1  S Y S T E M S  W I T H  V I R T U A L L Y  A N Y  C O M B I N A T I O N  O F  D I S K  D R I V E S ,  

P O W E R  M O D U L E S  O R  P R O C E S S O R S .  C O M P O N E N T S  C A N  B E  A D D E D  O R  C H A N G E D  A S  T H E  N E E D  F O R  M E M O R Y ,  

C O M P U T A T I O N A L  P O W E R ,  O R  R E D U N D A N C Y  D I C T A T E .  M O D U L A R I T Y  I S  A N  I M P O R T A N T  A T T R I B U T E  O F  S C A L A B I L I T Y .  



C E N T E R  S P R E A D :  T H I S  K S R 1 - 2 5 6  I S  A  M U L T I - T O W E R  C O M P U T E R  C O N F I G U R E D  W I T H  2 5 6  P R O C E S S O R S  P R O V I D I N G  

1 0 , 2 4 0  P E A K  M F L O P S ,  8 , 1 9 2  M B Y T E S  O F  M E M O R Y ,  A  M A X I M U M  D I S K  C A P A C I T Y  O F  3 , 6 0 0  G B Y T E S  A N D  3 , 6 0 0  

M B Y T E S / S E C .  O F  I / O  C A P A C I T Y ,  T H E  T O W E R  G R O U P S  A R E  C O N N E C T E D  B Y  A  C A B L E  T R A Y  W H I C H  C O N T A I N S  T H E  
I N T E R S Y S T E M  N E T W O R K I N G  A N D  E L E C T R I C A L  W I R I N G .  N O  S P E C I A L  C O O L I N G  O R  F L O O R I N G  A R E  R E Q U I R E D .  







PART FOUR 

S U P P O R T  F O R  C O M M E R C I A L  
A P P L I C A T I O N S  

IDEAL FOR DATABASE PROCESSING 

Very large commercial applications test the abilities of a system to handle many different chal­

lenges simultaneously — data management, I/O, computation, network access and visualization. 

The KSR1 system is the first highly parallel computer architected from the beginning to meet the 

needs of commercial users. 
At the heart of the machine, the KSR1 ALLCACHE memory system brings dramatic and sub­

stantial benefits to database processing. It supports: 

• Loading large databases into memory, with data accessible to all processors simultaneously 

• Automatic migration of copies of frequently referenced indices and lookup tables 

• Deployment of conventional, industry standard database management software 

• High performance inherent in the shared memory programming model 

When ALLCACHE is combined with the process-scheduling capabilities of KSR OS, the high-

performance and scalable I/O subsystem, and the automatic KSR Query Decomposer, the result is 

a unique environment where, transparently to the developer and end-user: 

• On-line transactions can be run in parallel at unprecedented throughput rates 

• Decision support queries can be decomposed, parallelized and very rapidly executed 

CRITICAL ISSUES FOR COMMERCIAL USERS 

The KSR1 is the ideal high performance computer for users in industries such as banking and 

financial services, insurance, information services, telecommunications and cable, consumer and 

packaged goods and transportation. Users with large scale applications have focused on the issues 

below: 

WORKLOAD 

Large and continually-increasing data volumes 

Very high transaction volumes per unit of time 

Rapid processing of complex queries 

High performance for all categories of database processing 

Virtually unlimited scalability 
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ADMINISTRATION 
High availability for production usage 

Ability to mix and control processing categories 

Complex processing cycles (extract, cleanup, merge) 

Familiar application development approaches 

Preservation of investment in legacy data and applications 

Effective coexistence with the existing DP environment 

Across the spectrum of database workloads, the underlying parallelism and memory manage­

ment architecture of the KSR1 manifest themselves in previously unattainable performance and 

practically unlimited scalability, while maintaining conventional ease-of-use for developers and 

end users. In the database software offering, these benefits are combined with a strong emphasis 

on standards, openness and co-existence with customers' legacy systems. 

Table 1 below illustrates the differences between decision support and on-line transaction pro­

cessing (OLTP) workloads. As a rule, large numbers of short transactions that modify the database 

characterize OLTP. In contrast, lesser numbers of longer-running queries that must read and ana­

lyze data characterize decision support applications. The KSR1 serves as a platform for both modes 

of operation, either singly or in combination. 

TABLE 2 

CATEGORY DECISION SUPPORT OLTP 

Type of access Read-only Reads and writes 

Complexity Medium to high Low to medium 

Number of joins Medium to high Low 

Data intensity High Medium 

Query selectivity Low High 

I/O access patterns Mainly sequential Random 

Transaction volumes 10-200K queries/day 10-1000 TPS or more 

Application level high availability and database integrity is provided through component redun­

dancy, committed data recovery and fast system restart. The KSR1 maintains highly available fea­

tures throughout the system. (See Part Five for greater detail.) A key objective underlying the 

KSR1 is to ensure that it will rapidly restart, with data integrity guaranteed at all times. Redundant 

support and on-line replacement are available throughout the system in Processor Modules, the disk 

subsystem, the power system and I/O subsystem. 

BROAD COMMERCIAL SOFTWARE OFFERING 

The KSR1 system software facilitates both commercial applications and technical applications. 

The software architecture is shown in Figure 14. This architecture enables single or multiple appli­

cations with mixed commercial and technical characteristics to execute efficiently on a single KSR 1 

system. 
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FIGURE 14 KSR1 System Software 
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KSR QUERY DECOMPOSER 

The KSR1 system offers application developers a widely-deployed, state-of-the-art relational 

database management system (ORACLE7); a proven, UNIX-based transaction monitor for high-

volume OLTP (TUXEDO/T); and a range of familiar database application development software 

that includes COBOL, fourth generation languages (4GLs), CASE and GUI tools, Fortran and C.1 

In addition to supporting ORACLE, TUXEDO and COBOL, Kendall Square has added signif­

icant value to the software while maintaining standard interfaces and languages. The innovative 

KSR Query Decomposer works with ORACLE to parallelize decision support queries automati­

cally. The KSR OS process scheduler enables a huge degree of parallelism for transaction process­

ing, aided by parallelism in TUXEDO internal data structures. COBOL benefits greatly from the 

ability of the KSR1 to ran large numbers of application instances, and to parallelize the processing 

of the database and network requests that they generate. 

Each of the major areas for commercial applications is described in more detail below. 

THE ORACLE DBMS 

ORACLE is a comprehensive DBMS, with a strong client/server orientation. ORACLE7 fea­

tures high performance data access, sophisticated query processing, complete data integrity 

enforcement, and heterogeneous and distributed database processing. It is well-known in the com­

mercial world for full application portability, industrial strength application development tools and 
wide database connectivity. 

Contributing to its high performance are ORACLE7's query optimization based on database 

statistics; row-level locking to minimize data contention; flexible matching of client processes to 

1. Support for Fortran, C and C++ languages are described in Part Three, Support for Technical 
Applications. 
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server processes; fast commit, group commit and deferred write technologies; data partitioning and 

multi-table clustering; and multi-instance capabilities (Parallel Server). Oracle supports very large 

databases as well as binary large objects (e.g., image data). Database integrity is enforced through 

multi-user concurrency control, transaction management and recovery, declarative referential integ­

rity, triggers and stored procedures. 

ORACLE7's full tool set includes 3rd and 4th-generation languages, graphical and character-

based form and report generators, CASE tools, application generators and end-user tools. On the 

KSR1, precompilers and runtime libraries for COBOL, Fortran, C and C++ programs allow them 

to call the DBMS directly. 

Commercial applications previously developed with the ORACLE tool set on other hardware 

platforms are directly portable to the KSR1, and the reverse is true as well. Currently, more than 

1,000 third-party applications and tools have been developed on ORACLE, covering such fields as 

accounting, business planning and control, CASE, financial management, human resources, insur­

ance, materials management, project management, sales/marketing and telemarketing. Oracle 

Financials and Oracle Core Manufacturing applications are available directly from the Oracle Cor­

poration. 

Gateways to other databases are enabled by interfaces to a wide array of networks, such as IBM 

SNA, TCP/IP, LAN Manager, NFS, IBM channel connect and HiPPI. On top of this networking 

capability runs ORACLE software for on-line connection to DB2, SQL/DS, RMS, Teradata and 

TurboIMAGE, as well as copies of ORACLE running on other platforms. 

Access to heterogeneous data sources is also provided by loading flat-file extracts from sources 

such as VSAM files, IDMS, IMS, DATACOM, Model 204, ADABAS, Sybase SQL Server and 

INFORMIX. ORACLE has a fast and flexible bulk loader well suited to applications demanding 

large or frequent extracts from other environments. 

DECISION SUPPORT - KSR QUERY DECOMPOSER 

The KSR Query Decomposer works transparently in conjunction with the underlying 

ORACLE7 relational database management system to greatly speed the execution of decision 

support queries. Such queries are typically data-intensive and expensive to run, requiring that major 

portions of one or more relational tables be scanned by the DBMS. Generated by applications or 

by on-line users, they sweep sequentially across the database to detect trends, make comparisons 

across years or quarters, summarize results for product lines or regions, and so on. They typically 

require combining information from multiple tables, and often include sorting, grouping, averaging, 

counting, and otherwise aggregating large amounts of data. The data returned may be further 

analyzed, for example in a spreadsheet or statistical package, or the user or program may generate 

follow-up queries in an iterative fashion. The sample queries below illustrate the difference 

between OLTP and decision support. 

OLTP— Short-running queries Decision Support — Long-running queries 

SELECT ACCT_BALANCE 
FROM ACCT 
WHERE ACCT_NO = 23586 

SELECT ACCT. ACCT_NO , 
AVG (XACTION. AMT) 

FROM ACCT, XACTION 
WHERE ACCT.REGION = "Northeast" 
AND ACCT. BALANCE<1000 
AND ACCT.ACCT_NO = XACTION. ACCT_NO 
GROUP BY ACCT 
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By their nature, decision support queries place a heavy load on computer system resources. 

They are less predictable than simpler queries, and may well interfere with the smooth processing 

of mission-critical OLTP loads if done concurrently. Every database administrator (DBA) is famil­

iar with the "killer query" which - however innocently intended - brings a system to its knees. 

HOW THE KSR QUERY DECOMPOSER WORKS 

In order to maximize parallel reads from disks for decision support queries, all large database 

tables are partitioned physically over multiple disks by the DBA, using straightforward ORACLE 

data definition language (DDL) commands. There may be tens or hundreds of partitions for a given 

table, which can be populated randomly or via a hash function that scatters tuples into small clus­

ters. These partitioning techniques were originally developed to spread out OLTP "hotspots," or fre­

quently accessed portions of tables, but they are well suited to supporting the KSR Query 

Decomposer. 

When an application, tool, or user first submits a query to ORACLE, it is intercepted by the 

Query Decomposer at a common processing point (see figure below). Queries that will not benefit 

from decomposition are simply passed through to ORACLE unchanged; those that do are trans­

formed. Based primarily on the data access strategy selected by the ORACLE query optimizer, the 

Query Decomposer generates a number of subqueries to match the underlying physical data parti­

tions of one of the partitioned tables, called the "driving" table. Decisions made automatically 

include: the number of subqueries, the choice of the driving table, the minor query transformations 

to handle aggregate functions and the method of combining subquery results. Each subquery looks 

very much like the original query, with minor transformations that include an additional condition 

to restrict it to just one partition of the driving table. 

Flow of Processing with KSR Query Decomposer 

QUERY 

The subqueries are submitted in parallel to ORACLE over multiple, coordinated connections 

established by the Query Decomposer, so that they see a consistent view of the database. All of the 

subqueries are executed in parallel, each accessing only its own part of the driving table, and doing 

further joins as required. Since partitions are approximately equal in size, initial partition scans are 

unaffected by data skew. Taking advantage of the ALLCACHE memory system, common lookup 
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1 

tables and index pages are only brought in once from disk, and are shared among subqueries when 

needed. 

Subquery results are combined inside of the Query Decomposer, and returned to the applica­ B= 

tion, tool, or user which submitted the original query. If the original query called for grouped or p-
sorted data, so will the subqueries, and the Query Decomposer will correctly combine their results. 

This effectively gives the user a parallel sorting capability for decision support queries. Aggregate 
SS= 

functions such as maximum, count and average are also correctly computed when subquery results m 
are combined. 

ttC 

Two sample queries are shown below, one straightforward and the other requiring additional 
ip 

query transformation on the part of the Query Decomposer. 
E 

Sample Query #1 
•= 

Assume department (dept) and employee (emp) tables are partitioned into 
B= 

multiple files across disks. Assume there is an index on dept.deptno, with none on u. 
emp.title. The initial query is: 

SELECT empname, empno, deptloc 
FROM emp, dept •-
WHERE emp.deptno = dept.deptno 

AND emp.title = 'MTS' 

The ORACLE7 query optimizer reports that it will use a nested loop join with E 
emp as the outer table and dept as the inner one. In other words, its data access 

IB" 
strategy is: 

IBZ 
Loop through all emp tuples; 
for each emp tuple meeting the condition on emp.title IE 

use index on dept.deptno to access 
corresponding dept tuple; IE 

The ith subquery generated by the Query Decomposer is below, with "i" and IE 
"i+1" replaced by actual values: "i+1" replaced by actual values: 

IE 
SELECT empname, empno, deptloc 
FROM emp, dept IE 
WHERE emp.deptno - dept.deptno 
AND emp.title = 'MTS' IE 
AND emp.rowid >= 'O.O.i' AND emp.rowid <'0.0.i+1' AND emp.rowid >= 'O.O.i' AND emp.rowid <'0.0.i+1' 

IE 
Each subquery executes against a different partition of emp, based on 

ORACLE'S interpretation of the two conditions on emp.rowid. Subquery results are IE 

combined by the Query Decomposer using a Union All operation. IE 

IE 

IE 

IE 

IE 

*= 
iqj 
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Sample Query #2 

The assumptions are as in Sample Query #1. The initial query is: 

SELECT deptno, AVG( salary) 
FROM emp 
GROUP BY deptno 

The ith subquery generated is: 

SELECT deptno, SUM (salary), COUNT (salary) 
FROM emp 
WHERE emp.rowid >= 'O.O.i' AND emp.rowid <'0.0.i+l' 
GROUP BY deptno 

As before, each subquery executes against a different partition of emp. The 

Query Decomposer creates a two-column temporary table (with columns sum_col 

and count_col) which is filled once for each deptno with SUM(salary), 

COUNT(salary) tuples. There is at most one such tuple for each partition. 

Subquery results are combined, calculating average salaries with the following 

query which is executed once against the temporary table for each deptno: 

SELECT (SUM (sum_col) / SUM (count_col) ) 
FROM temporary table 

APPLICATION DEVELOPMENT WITH THE QUERY DECOMPOSER 

The decomposition process is transparent to the developer and end-user, except for the substan­

tial performance improvement it brings. Queries do not need to be modified, and existing ORACLE 

applications do not need to be re-written to use this powerful facility. The Query Decomposer 

works transparently on queries once submitted. 

Conceptual and logical database designs are unchanged. When use of the Query Decomposer 

is planned, the physical database design is slightly different in two areas: 

• Large tables should be partitioned across disks by the DBA, with one table partition per 
disk drive. 

• Hash clusters, supported in ORACLE7, are an effective design approach for use with the 
Query Decomposer. If tables are relatively static in size, hash clustering may be used with 
small, hash buckets (we call this combination "scatter clustering"), and with a secondary 
index built whose initial fields are the same as those used in calculating the hash key. This 
combination maximizes I/O parallelism for subqueries, while minimizing total I/Os. 
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F 

ON-LINE TRANSACTION PROCESSING 

The KSR1 provides an ideal environment for OLTP, featuring: 
gg= 

• Very large physical memory and enormous virtual address space (1 Terabyte per process) 

• Large numbers of MIPs, disks and broad I/O bandwidth, with nearly unlimited scalability m 
• Disk arrays, disk striping and data partitioning to maximize bandwidth 

•= 
• Disk mirroring for enhanced reliability and faster read performance 

•= 
• Broad connectivity in heterogeneous environments 

•= 
• Dynamic processor scheduling by the KSR OS e 
• Fault-tolerant database processing (via ORACLE7) B= 
• Application level high availability and database integrity through component redundancy, nz 

database committed data recovery and fast system restart database committed data recovery and fast system restart 
e 

In the KSR1, the multiple transactions of an OLTP load are each assigned to processes which, 

in turn, are adaptively assigned by KSR OS to the processors available; therefore, throughput scales 

with the number of processors. B= 
The shared memory architecture of the KSR1 leverages locality of reference on such occasions _ 

by migrating copies of subpages to the processors that have referenced them. For typical OLTP 

loads, the top-level index pages and smaller look-up tables are generally present in local cache E 
memory when needed. g-

The KSR Distributed Lock Manager coordinates multiple instances of ORACLE (Parallel 

Server), to support scalability of OLTP load processing within the DBMS itself. 

e 
E 
E 

E 
E 
IE 
IE 
IE 
IE 
IE 
IE 
IE 
E 
E 

imJ 
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TUXEDO TRANSACTION MONITOR 

For very high-volume OLTP applications, Kendall Square has ported and enhanced the TUX­

EDO 4.2 Enterprise Transaction Processing components from UNIX System Laboratories. These 

include the TUXEDO/T transaction monitor and the TUXEDO/D access method: they provide a 

modular, industrial-strength environment for developing client/server, OLTP applications. 

TUXEDO/T provides the services of traditional mainframe-class OLTP systems while support­

ing modularity and heterogeneity of software and hardware. Based on the distributed client/server 

model, TUXEDO/T provides communication services, including device support for PCs or work­

stations not part of the /T system, distributed two-phase commit, distribution of services within 

local- or wide-area networks, name services and online administration and maintenance services. 

TUXEDO/T can be called from COBOL, C, C++ and ORACLE application clients, and can 

use ORACLE, /D and other servers. For client and server programs, /T employs the standard ATMI 

interface adopted by X/Open. 

Neither clients nor servers need reside on the KSR1 itself. For example, TUXEDO System/WS 

supports the use of ATMI's client-side functionality on the KSR1 from PCs (under MS-DOS) and 

workstations (under UNIX). TUXEDO System/Host allows OLTP applications on the KSR1 to use 

ATMI to access and update data in a proprietary MVC/CICS environment, using LU6.2, SNA Link, 

VTAM and NCP. CICS application programs need only minimal modification to be used as /T 

devices. 

In /T, facilities for the operation, administration and maintenance of production OLTP applica­

tions begin with application definition and configuration management and go on to include dynamic 

reconfiguration of servers, automatic recovery, application security, data-dependent routing and 

load-balancing among servers. 

In addition to the performance gains of an underlying DBMS optimized for the KSR1 system, 

fT itself takes advantage of the parallelism of the system. Multiple service requests from the same 

client can execute in parallel, with service processes allocated to different processors. Requests with 

the highest priorities are serviced before those of lower priorities. Kendall Square has enhanced the 

central fT Bulletin Board as well for parallel performance. 

TUXEDO/D is a transaction-oriented access method that provides secure, concurrent access to 

files, optionally establishing records and fields within files. To ensure database integrity, it provides 

two phase locking, atomic commit, logging and recovery. Although used primarily as a file access 

method on the KSR 1, /D supports interactive SQL via a command interpreter interface and embed­

ded SQL for the C programming language. 

File types used by /D include hashed files, heaps, FIFO (sequential) files and indexed files. Two 

types of indices are available: B-tree files and inverted indices. 
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COBOL 

The KSR COBOL compiler is based on MicroFocus COBOL/2 1.2, a broadly-used and com­

plete language for business application development, compatible with ANSI standards and IBM 

COBOL. It includes development tools, conversion tools, utilities, and a run-time library including 

C-ISAM support for COBOL INDEXED files. 

The MicroFocus COBOL/2 product set consists of several core tools for program compilation 

and execution, and an assortment of development tools and utilities which are used to ease the pro­

cess of COBOL development and to aid in porting applications. For developers currently using 

MicroFocus COBOL on other platforms, the COBOL environment on the KSR1 is familiar. Devel­

opers using other versions of COBOL will find MicroFocus COBOL on the KSR1 to be a complete 

development environment. 

The MicroFocus COBOL/2 compiler (version 1.2) is a certified, high-level ANSI COBOL85 

compiler, which also complies with the X/Open standard. It has also been certified at high-level 

ANSI 74 and can be used at this level through a compiler switch. The compiler is source-code-com­

patible with several other dialects of COBOL, including IBM OS/VS, IBM VS COBOL II, Ryan-

McFarland RM/COBOL and Data General Interactive COBOL VI.2. 

The output of the compiler is intermediate code whose format is compatible with COBOL/2 on 

any platform. This intermediate code can be executed by the COBOL/2 Run Time System and is 

used by ANIMATOR, the COBOL/2 source level debugger. The compiler intermediate-code out­

put also serves as the input to the Native Code Generator (NCG). 

The COBOL/2 NCG is essentially the second pass of the compiler and produces highly-opti­

mized object code for the KSR1 processor. Output of the NCG is an assembler code representation 

of the COBOL program, which is then code-scheduled and assembled to an executable object. 

The Dialog System productivity tool aids developers to produce screen layouts and keyboard 

dialogs. In addition, two different generators (Forms-2 and SCREENS) assist interactive creation 

and testing of screen-based applications. Both automatically generate screen-handling code. 
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PART FIVE 

A R C H I T E C T U R E  
A N D  T H E O R Y  O F  O P E R A T I O N  

OVERVIEW 

The KSR1 is a highly parallel computer system scalable from 8 to 1,088 processors (and more 

in future generations), which is programmed as a shared memory multi-processor. Kendall Square 

Research's patented ALLCACHE memory system is the key that provides the user with the high 

performance, programming simplicity and familiarity associated with conventional shared memory 

computers. 
The major phyla of highly parallel MIMD computers are distinguished by their basic computa­

tional models: shared memory or message passing systems. As the computing model for a general 

purpose computing resource, shared memory offers important advantages: 

• Shared memory provides a higher performing and more flexible means of communicating 

between threads executing on different processors. Shared memory is a more general 

communications model than message passing because shared memory can be used as a 

means of exchanging messages (by reading and writing a shared message buffer) or directly 

as a shared respository. In general, exchanging messages in shared memory will be faster 

than the mechanisms in message passing systems because no system software is involved. 

In addition, the shared memory can be used directly. For example, one thread can read the 

values of array elements written by another thread. Experience has shown that direct use 

of shared memory is often the most straightforward way to adapt previously serial codes to 

run on parallel systems. 

• Shared memory allows the use of conventional methods of memory management. General 

purpose machines used as shared computing resources must provide run-time mechanisms 

for mapping program-specific addresses into system addresses. For 25 years these 

mechanisms have been refined in the context of shared memory and they work effectively. 

Today there are no effective means for providing global memory management in the 

context of message passing (e.g., explicitly distributed memory) systems. Hence message 

passing systems have been employed as single user systems or as partitioned systems — 

but not general purpose shared computing resources. The current solution to this problem 

is the creation of a shared memory programming model implemented via software on a 

message passing hardware base. Such mechanisms are at least two orders of magnitude 

slower than hardware based solutions like ALLCACHE. 
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THE KSR1 MEMORY SYSTEM 

The KSR1 shared memory programming model is made possible by a patented new architec­

tural technique called ALLCACHE. It does for distributed memory what virtual memory did for 

hierarchical memory — it replaces the complexity and rigidity of the physical mechanism with a 

uniform address space, now shared by a set of processors. As in a conventional system, hardware 

and software maps this space into physical devices. The KSR1 ALLCACHE hardware manages 

this address space across physically distributed memory, and achieves this programming simplicity 

without sacrificing the major benefit of distributed memory — scalability. (See Table 1, Part Two, 

page 10.) 

The memory models of earlier MPP computer architectures raised problems for programmers 

reminiscent of the difficulties of storage management in the 1960s. 

Three decades ago, storage management via overlay structures was an integral part of the job 

of writing a program. Of necessity, programmers attacked the task with a static analysis of the 

memory requirements of a single program. 

Advances in programming practice and system architectures, however, gradually rendered 

static storage management impractical. The goals of machine independence and re-use of modular 

program elements, and the use of very complex algorithms characterized by data structures of 

widely varying size and shape were inconsistent with static, programmer-controlled storage man­

agement. In addition, the introduction of system environments in which computers were organized 

for simultaneous use by several programs made it impossible for the author of a single program to 

predict accurately the time-varying storage requirements of the entire system. 

These factors ultimately led to the adoption of virtual memory as a near-universal feature of 

storage management in modem computer architectures. Virtual memory makes storage manage­

ment dynamic and largely automatic. It permits programmers to write applications with a storage 

abstraction that is simple and powerful — a single uniform address space. System hardware and 

software map this space into physical devices. Other parallel processing architectures reprise these 

early storage management issues with a new twist. All of the MPP systems that have been intro­

duced have distributed memories. That is, the physical memory comprises a set of memory units, 

each connected to a unique processor. The processor-memory pairs are interconnected by a net­

work. Distributed memories have been universal among massively parallel machines because they 

provide the only known means of implementing completely scalable access to memory — access 

whose bandwidth increases in direct proportion to the number of processors. 

In these MPP systems, the task of managing the movement of codes and data among these dis­

tributed memory units belongs to the programmer. The job is similar in style to the task of manag­

ing the migration of data back and forth between primary and secondary storage prior to the 

introduction of virtual memory but it is much more complex. As before, programmers need to be 

concerned about exactly what will fit where and what to remove to make room for something new. 

Now, however, there are thousands of memory units to deal with instead of just two or three. Par­

allel systems of this type are "multi-computers" — sets of network connected independent comput­

ers.1 In contrast the KSR1 and all of today's mainframe computers are "multi-processors" - single 

computers with multiple processors sharing memory symmetrically. 

1. Bell, C. Gordon, "Ultracomputers A Teraflop Before Its Time," Communication of the ACM, 
August 1992/Vol. 35 No. 8. 

48 



FIGURE 15 Multicomputer versus Multiprocessor 
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COMPLEXITY IS LEFT TO SOFTWARE COMPLEXITY IS IN THE HARDWARE 

THE ALLCACHE SOLUTION 

ALLCACHE memory system provides programmers with a uniform 264 byte1 address space 

for instructions and data. This space is called System Virtual Address space (SVA). The contents 

of SVA locations are physically stored in a distributed fashion. 

ALLCACHE implements a sequentially consistent shared address space programming model 

because such consistency is the strongest requirement for shared-memory coherence, and this form 

of implementation guarantees that a program will behave in the most intuitive manner to the pro­

grammer: e.g., the result of program execution on a multiprocessor is equivalent to the execution 

of the program on a single processor with multi-tasking. In this context, the formal definition of 
"sequential consistency" is:2 

"A system is sequentially consistent if the result of any execution is 
the same as if the operations of all the processors were executed in 
some sequential order, and the operations of each individual proces­
sor appear in this sequence in the order specified by its program." 

Note that any ordering scheme other than a sequentially consistent programming model inher­

ently requires both the explicit specification of the sharing and a legal time order of access. 

1. The KSR1 implements a 240byte (1 terabyte) address space utilizing 64 bit pointers. Future gener­
ations will implement the full 264 byte address space of the ALLCACHE memory architecture. 

2. Lamport, Leslie: "How to Make a Multiprocessor Computer That Correctly Executes Multiprocess 
Programs," IEEE Transactions on Computers, C-28, No. 9 (September 1979), pps. 690-691. 
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ALLCACHE physically comprises a set of memory arrays called local caches, each capable of 

storing 32 MByte. There is one local cache for each processor in the system. Hardware mecha­

nisms (the ALLCACHE Engine described below) cause SVA addresses and their contents to mate­

rialize in the local cache of a processor when the address is referenced by that processor. The 

address and data remain at that local cache until the space is required for something else. 

As its name suggests, the ALLCACHE behavior is like that of familiar caches: data moves to 

the point of reference on demand. However, unlike the typical cache architecture (called "SOME-

CACHE" memory), the source for the data which materializes in a local cache is not main memory 

but rather another local cache. In fact, all of the memory in the machine consists of large, commu­

nicating, local caches — the main memory of the machine is identical to the collection of local 

caches. See Figure 16. 

FIGURE 16 ALLCACHE Memory System 
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ALLCACHE: DATA MOVES TO THE POINT OF REFERENCE ON DEMAND. THERE IS 
NO FIXED PHYSICAL LOCATION FOR AN "ADDRESS" WITHIN ALLCACHE MEMORY. 

The address and data that materialize in local cache B in response to a reference by processor 

B may continue to reside simultaneously in other local caches. Consistency is maintained by dis­

tinguishing the type of reference made by processor B: 

1. If the data will be modified by B, the local cache will receive the one and only instance of 
an address and its data. 

2. If the data will be read but not modified by B, the local cache will receive a copy of the 
address and its data. 

When processor B first references the address X, ALLCACHE examines that processor's local 

cache to see if the requested location is already stored there. If processor B's local cache contains 

address X, the processor request is satisfied without any request to the ALLCACHE Engine. If not, 

the ALLCACHE Engine hardware locates another local cache (e.g., local cache A) where the 

address and data exist. 
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If the processor request being serviced is a read request (for example, to load the value into a 

register) then the ALLCACHE Engine will copy the address and data from local cache A into local 

cache B. The amount of data copied will be 128 bytes, called a subpage1. At the end of this oper­

ation the subpage will reside at both A and B. If the processor request is a write request (for exam­

ple, to store the contents of a register into this location) then the ALLCACHE Engine will remove 

the copy of the subpage from local cache A as well as from any other local caches where it may 

exist before copying it into local cache B. Thus the ALLCACHE Engine is responsible for finding 

and copying subpages stored in local caches and for maintaining consistency by eliminating old 

copies when new contents are stored. 
In order to maintain consistency, the ALLCACHE Engine records state information about the 

subpages it has stored. These states are specific to the physical instance of a subpage within a par­

ticular local cache. Four states are required to describe the basic operation of the ALLCACHE 

Engine:2 

• Exclusive (owner): This is the only valid copy of the subpage in the set of local caches. 

• Copy: Two or more valid copies of the subpage exist among the set of local caches. 

• Non-exclusive (owner): When multiple copies exist, one copy is always flagged as the non­

exclusive owner. 

• Invalid: Memory is currently allocated for this subpage at this local cache but the contents 

are not valid and will not be used. 

None of these states are explicitly visible to the programmer. They are used as internal book­

keeping by the ALLCACHE Engine. 
The ALLCACHE Engine manages a directory that determines which one or more local caches 

contain an instance of each subpage. This directory is physically stored in a distributed and com­

pressed form but its logical function is illustrated in Figure 17 on the following page. The directory 

is logically a matrix consisting of a row for each subpage and a column for each local cache. Each 

entry in the matrix is either empty, to indicate that the corresponding subpage is not present in the 

local cache, or it contains a "state" designator. A non-empty state designator means that a spot for 

a copy of this subpage is currently allocated in the corresponding local cache, and the state value 

indicates what operations the memory system is allowed to perform on the particular copy. This 

matrix is a very sparse representation of the mapping, because nearly all elements will be empty. 

The ALLCACHE Engine implementation actually stores this matrix by column and compresses out 

all of the empty elements. More details of the ALLCACHE Engine implementation will be pre­

sented later in this section. 

ALLCACHE stores data in units of pages and subpages. Pages contain 16 KB (2 bytes), divided 
into 128 subpages of 128 (27) bytes. The unit of allocation in local caches is a page, and each page 
of SVA space is either entirely represented in the system or not represented at all. The unit of trans­
fer and sharing between local caches is a subpage. Each local cache has room for 2,048 (211) pages 
or a total of 32 MByte (225 bytes). When a processor references an address not found in its local 
cache, ALLCACHE memory first makes room for it there by allocating a page. The contents of the 
newly allocated page are filled as needed, one subpage at a time. 
Additional states, including, Atomic state (see Synchronization Primitives below) are actually used 
in the implementation of ALLCACHE. 
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FIGURE 17 Logical Organization ofALLCACHE Engine Directory 
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The ALLCACHE Engine manipulates the directory in response to load and store instructions 
from processors. For a load instruction, if a copy exists in the requesting processor's local cache, 
the load request can be satisfied without any interaction at all with the ALLCACHE Engine. If a 
copy does not exist in the local cache, the local cache sends a request packet to the ALLCACHE 
Engine. The ALLCACHE Engine then delivers a response packet containing a copy from any other 
local cache which has a valid copy, as illustrated in Figure 18 on the following page. For example, 
Processor B issues a request for a copy to the ALLCACHE Engine. The ALLCACHE Engine 
routes the request to a local cache in which a copy exists (for instance, the local cache associated 
with Processor A). Local cache A responds to the ALLCACHE Engine, which in turn passes the 
copy back to the local cache of the requesting processor and automatically updates the ALLCACHE 
directory and the local cache directory to indicate that a copy of the subpage now exists in the local 
cache associated with Processor B. Had the subpage been in Exclusive (owner) state within some 
local cache (C, for example) at the time of the reference, the ALLCACHE Engine would create the 
requested copy and change the owner's state to Non-exclusive (owner). 
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FIGURE 18 ALLCACHE Engine Operations - LOAD Instructions 
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Note that the program that issues the load or store has no knowledge of the respective physical 

locations of the local caches. The ALLCACHE Engine transparently manages the routing, based 

on the subpage address and the directory. Memory allocation is handled by the respective local 

caches. 
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For a store instruction, if a subpage exists in the local cache in Exclusive (owner) state at the 

time of the request, the store can be satisfied locally without any interaction with the ALLCACHE 

Engine. If the requestor's local cache state is empty or invalid, the ALLCACHE Engine will move 

the subpage from the Exclusive (owner) to the requestor in Exclusive (owner) state (Figure 19). In 

cases where multiple copies are involved, the effect is for the ALLCACHE Engine to move the 

ownership to the requestor's local cache in exclusive owner state and to invalidate all other copies. 

The ALLCACHE Engine moves ownership to the requestor and invalidates all other copies (to 

make the new ownership exclusive) in a single operation. 

FIGURE 19 ALLCACHE Engine Operations - Multiple Copies 
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HIERARCHICAL ORGANIZATION OF THE ALLCACHE ENGINE 

The KSR1 architecture exploits locality of reference by organizing a number of ALLCACHE 

Engines in a hierarchy (Figure 20). At the lowest and most heavily populated level of this hierarchy 

are ALLCACHE Group:0s (AG:0s), each of which is the combination of ALLCACHE Engine:0s 

and the complete set of local caches associated with them. 
At the next level of the hierarchy, the family of all AG:0s, combined with their associated ALL-

CACHE Engine:Is, are the ALLCACHE Group:Is (AG: Is) and so on, to a potentially unlimited 

number of levels. 
An ALLCACHE Engine:0 includes the directory which maps from addresses into the set of 

local caches within its group. An ALLCACHE Engine: 1 includes the directory which maps from 

addresses into its constituent set of ALLCACHE Group:0s. Higher level ALLCACHE Groups are 

hierarchically constructed in the same manner.. 

FIGURE 20 Hierarchical Organization of the ALLCACHE Engine 
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The initial KSR1 system implements two levels of ALLCACHE Engine hierarchy. The ALL-

CACHE Engine is constructed with a fat-tree1 topology2, so that the bandwidth increases at each 

level of ALLCACHE Engine (the next section will further discuss the theoretical aspects of a fat-

tree as they apply to the ALLCACHE Engine). For the KSR1, ALLCACHE Engine:0 has a band­

width of 1 GB/sec and ALLCACHE Engine: 1 has a bandwidth of 1, 2 or 4 GB/sec. For example a 

KSR1 -1088 consists of 34 ALLCACHE Group:0s, each consisting of 32 processors and their asso­

ciated local caches. As we shall see, due to locality of reference, the effective ALLCACHE Engine 

bandwidth is asymptotic to the aggregate ALLCACHE Engine:0 bandwidth of 34 GB/sec. 

1. Leiserson, Charles E. "Fat-Trees: Universal Networks for Hardware-Efficient Supercomputing;" 
IEEE Transactions on Computers, Vol. C-34, No. 10, pps. 892-901, October, 1985. 

2. See Part Five, section on scalability for a discussion of fat-tree topology. 
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The hierarchical ALLCACHE Engine handles simultaneous independent requests and simulta­

neous requests to the same address in parallel. 

Figure 21 illustrates the path of a request and response through the hierarchy of ALLCACHE 

Engines. A request initiated at a processor will move up through the levels of the hierarchy until it 

reaches an ALLCACHE Group which contains a directory entry in the appropriate state for the 

desired subpage address. The request then moves down through the levels of the hierarchy to the 

location of the subpage. The response reverses this path to return to the requestor. 

For example, consider a request initiated at processor cell B, for a subpage which hierarchically 

first appears in the directory at ALLCACHE Engine:2.1. The request is first moved into ALL-

CACHE Engine:0.1 where the address is not found. It is then moved on to ALLCACHE Engine: 1.1 

where the address is not found either. Finally the request is routed to ALLCACHE Engine:2.1, 

where the address is found to be in ALLCACHE Group: 1.2. It is then routed to ALLCACHE 

Engine: 1.2 which finds that the address is in ALLCACHE Engine:0.3. The request packet is then 

routed to ALLCACHE Engine:0.3 which routes it to the local cache at processor A. The maximum 

length of the request path is proportional to the log of the number of processors. 

FIGURE 21 Hierarchical Organization of the ALLCACHE Engine — Search Path Through the Hierarchy 
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A crucial characteristic of the hierarchical structure is that it allows the KSR1 to exploit hierar­

chical locality of reference. The hierarchical structure of the ALLCACHE Engine exploits this 

characteristic by moving referenced subpages to a local cache and by satisfying data references 

from nearby copies of a subpage whenever possible. In the example in Figure 22 on the following 

page, the first reference by processor B to the subpage in processor A needs to travel through ALL-

CACHE Engine:2.1 to find the designated subpage. The second reference to the same subpage by 

processor C finds the data closer as does a subsequent reference to the same subpage by processor 

D. 
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FIGURE 22 Hierarchical Organization of the ALLCACHE Engine — Exploits Hierarchical Locality of Reference 
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Locality — The Key to Scalability 
While the fat-tree topology of the KSR1 ensures maximization of bandwidth, the inherent abil­

ity of the ALLCACHE memory system to exploit locality of reference achieves the second major 

goal of scalability — reduction of the bandwidth requirement itself. 

Locality is the key to the achievement of a scalable interconnect bandwidth in which the band­

width requirement itself scales more slowly than the delivered bandwidth. Three reasons may be 

cited: 

• Because communication speeds are fundamentally limited by the speed of light, 

communications should be kept as close as possible to the processor. 

• Communication time is also affected by the number of switches through which messages 

or data must pass. Thus path lengths should be minimized. 

• Communication should stay within as small a subsystem as possible to avoid congestion.1 

The ALLCACHE Engine exploits locality - both the usual serial locality of reference and its 

image in parallel programs, parallel locality. 
Locality of reference refers to a property of a program in which near future memory references 

are likely to reference memory locations nearby the addresses of recent past references. The most 

important memory architecture innovations of the last thirty years, virtual memory and cache mem­

ories, are designed to exploit this program behavior. The phenomenon is so pronounced in most 

programs that even small caches with a few tens of kilobytes of memory will exhibit hit rates of 

over 98%. 

1. Leiserson, Charles E. "VLSI Theory and Parallel Supercomputing;" Pasadena, CA: Proceedings of 
the 1989 Decennial Caltech Conference, March, 1989. 
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Parallel locality refers to a related property of parallel programs. The best predictor of future 

memory references by a thread of a parallel program is that thread's own recent memory reference 

pattern - in other words, the usual serial locality of reference applies to the serial pieces of a parallel 

program. But the next best predictor of future memory references is the recent memory reference 

pattern of related threads. This phenomenon of common reference patterns for related threads is 
called parallel locality. 

Both serial locality of reference and parallel locality are exploited by the ALLCACHE memory 

system. A KSR1 has a large cache, 32 MByte, designed to exploit serial locality of reference. The 

hierarchical structure of the ALLCACHE Engine, combined with the scheduling algorithms of KSR 

OS, provide the means to exploit parallel locality. The KSR scheduler will allocate a set of related 

threads to execute in the same ALLCACHE EngineiO whenever possible. Thus, each thread of a 

parallel program gains a benefit from the parallel memory referencing activity of related threads: 

an address not found in a thread's local cache is likely to be found in the same branch of the ALL-

CACHE hierarchy no matter how many other branches there may be. Communication will then 

stay within as small a subsystem as possible, avoiding congestion. Although a fat-tree can deliver 

scalable bandwidth, ALLCACHE does not require that the bisection bandwidth scale in linear fash­
ion to keep step with the number of processors. 

Both types of locality are usually present in programs to a substantial extent without any effort 

on the part of the programmer. Programmers can increase locality by careful design of data struc­

tures and processing flow, much as they do in writing certain programs for virtual memory 

machines. KSR compilers and the KSR OS use a number of techniques to automatically increase 
locality. 

Another way to look at this phenomenon is as a hierarchy of "working sets." For each proces­

sor, the addresses most likely to require reference lie in the closest and smallest working set, which 

is realized in the local cache of that processor. The next most likely addresses to be referenced lie 

in the ALLCACHE Group:0 (AG:0) working set, which is realized as the aggregate of the local 
caches of the AG:0. 

Taken together, the local caches of all processors in a given ALLCACHE Group, e.g., "AG:N," 

form an AG:N cache, which holds the working set for that "AG:N." Processors with an AG.N share 

addresses without any communication outside their own ALLCACHE Group. Thus the hierarchical 

nature of the ALLCACHE Engines and ALLCACHE Groups allows the distributed local caches to 

form, collectively, a hierarchy of caches corresponding to the hierarchy of AGs. The KSR1 imple­
ments two levels of ALLCACHE Groups: 

Level of Hierarchy Working Set Size 
Local Cache 

AG:0 Cache 

AG:1 Cache 

32 MByte 

1 GByte 

34 GByte 
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Figure 23 provides an illustration of the hierarchical organization of the ALLC ACHE Engine. 

FIGURE 23 Hierarchical Organization of ALLCACHE Engine 

HIERARCHY OF WORKING SETS (CACHES) 

EXPLOITS HIERARCHICAL LOCALITY OF REFERENCE 

OPTIMIZING LOCALITY OF REFERENCE 

Locality of reference is present in programs to a substantial extent, usually without any con­

scious effort on the part of the programmer. Programmers can increase locality of reference by opti­

mizing memory-reference patterns with this property in mind. KSR compilers use a number of 

techniques to increase locality of reference automatically. 
The KSR1 also incorporates a number of features designed to assist programmers in their 

efforts to optimize locality of reference on a customized basis. Each is described below: 

Event Monitor Unit (EMU) 
Each KSR1 processor contains an event monitor unit (EMU) designed to log various types 

of local memory events and intervals. The job of the EMU is to count events and elapsed time 

related to memory system activities that are not otherwise directly visible to the processor. 

The types of events that are logged include local cache hits/misses and how far in the hier­

archy a request had to travel to be satisfied. The EMU also accumulates the number of processor 

cycles involved in such events. These counters can be read at the appropriate points in the applica­

tion code, to help characterize loop nests or other sections of code. Since the events to be logged 

are counted by hardware, the measurement overhead is extremely low. Because the events are mon­

itored on an individual-processor basis, an extremely clear picture can be created to facilitate the 

customized parallelization of applications and the optimizing of locality of reference. 

Prefetch 
Prefetch is an instruction that allows memory activity to go on in parallel with computation, by 

planning for data needs in advance rather than stalling the processor to wait for needed data. The 
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prefetch instruction requests the memory system to move a subpage into the local cache of the 

requesting processor, thus allowing the memory system to fetch data before it is needed. The pro­ IP 
cessor that issues the prefetch instruction does not need to wait for this operation to be completed; BP 
it continues executing until it needs to load or store the prefetched address. If the prefetch is issued 

far enough in advance, the desired address will have already arrived in the local cache, and mini­ BC 
mum latency will be incurred in accessing it. KSR1 compilers automatically insert prefetches in fir 
certain types of code sequences. Programmers may also request prefetches explicitly by means of 

an intrinsic function. 

Poststore 
Any program that executes a store can use the poststore instruction to ask the memory system «= 

to broadcast the new value to other local caches that may need it. Local caches in which the corre­ T" 
sponding page is allocated already (and in which the subpage state is, necessarily, invalid) take a 

•+— 

read-only copy of the subpage. Poststore instructions allow a processor to broadcast data needed BEZ 
by one or more other processors at the earliest possible time the data is available, and before the BP 
other processors have to request the data. 

Like prefetch, poststore is controlled by the processor that writes the data. Programmers can fis= 
explicitly request poststores with an intrinsic function. B= 

The Benefits of Locality •= 
The KSR1 ALLCACHE Groups form a hierarchy of cache working sets, with increasing mag­

nitude at each succeeding level. The ability to hold a larger working set at each level effectively 

reduces the bandwidth requirement of communications to the next higher level, by satisfying most KZ 
references without the need to communicate with the next-higher AG. — 

From the point of view of the requesting processor, the possible locations of the desired subpage 

will fall into just four categories: 

• The processor subcache (see below), BZ 

• The local cache, 
•= 

• A cache on the same ALLCACHE Engine :0, BP 

• Or a cache on a different ALLCACHE Engine:0. 

Within each of these categories, the cache-refill times are always identical. KZ 
For some operations (those requiring read-only data) only the location of the closest cache con­ KZ 

taining the data is relevant. Because any copy of the subpage will satisfy the request, ALLCACHE KZ 
memory automatically chooses the closest copy. For other operations (such as a store instruction) 

which require a subpage in exclusive state, the location of the farthest local cache containing a copy BP 
of the subpage is relevant. To put one copy of the subpage into exclusive state, all other read-only BP 
copies must be marked invalid, so the farthest of these determines the total cache-refill time of the copies must be marked invalid, so the farthest of these determines the total cache-refill time of the 

BP operation. 

Processor Subcache BP 
One additional element incorporated in the design of the ALLCACHE memory system remains BP 

to be considered: each processor contains a 0.5 MByte memory array, called a subcache, which •h-
always contains a subset of the addresses and data stored in that processor's local cache. Half of 

each subcache is used for data and half for instructions. This is the only level of the memory hier­ Bt= 

archy that distinguishes between instructions and data in storage. Subcaches are managed entirely 

by hardware. Even though a processor's subcache is small compared with the rest of memory, the 

L 
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great majority of memory references can be satisfied from the subcache. This is another conse­

quence of locality of reference. Table 3 provides the approximate cache-refill times, measured in 

clock cycles, involved in completing memory system operations, as a function of the type of oper­

ation and the location of the required data. 

TABLE 3 Cache Fill Times 

Operation 
Required 

Which 
Cache is 
Relevant? Working Set 

Working 
Set Size 

Cache-
Refill 
Time 
(cycles) 

Cache-
Refill 
Time With 
Prefetch 

Load(copy) Closest Local subcache .5 Mbyte 2 2 

Load(copy) Closest Local cache 32 Mbyte 20 20 

Load(copy) Closest Same AG:0 1 Gbyte 150 20 

Load (copy) Closest Different AG:0 34 Gbyte 570 20 

Store (exclusive) Farthest Local subcache .5 Mbyte 0 0 

Store (exclusive) Farthest Local cache 32 Mbyte 20 20 

Store (exclusive) Farthest Same AG:0 1 Gbyte 150 20 

Store (exclusive) Farthest Different AG:0 34 Gbyte 570 20 

Any NA Not in any cache 
— page fault 

= 400,000a 

a. Conventional virtual memory page fault time, which corresponds to disk access time. 

SYNCHRONIZATION PRIMITIVES 

There are times when two or more processors need to synchronize their access to memory loca­

tions. The ALLCACHE memory system supports this requirement through instructions which lock 

and unlock subpages. These instructions can be used to implement any multi-processor synchroni­

zation function including data locks, barriers, critical regions and condition variables. (All of these 

forms of synchronization and others are available via KSR compilers, libraries and OS calls.) 

The development of the KSR1 synchronization primitives was influenced by two primary con­

siderations: 

1. Scalability. To support a large number of cooperating processors, the KSR1 is designed to 
provide extremely efficient access to concurrent data structures. 

The KSR1 supports this efficient access by means of fine grained (subpage) data locking. 
This technique may be viewed in contrast with critical section synchronization, in which a 
single lock prevents more than one processor from executing the "critical section" of the 
code between the locks. An alternative version of the critical section approach involves the 
use of a single lock to control concurrent access to all elements of a data structure. With 
either version of the critical section synchronization technique, concurrent accesses to dif­
ferent elements of the data structure are serialized. A large portion of contention in past 
parallel systems has been artificial, a result of the "false contention" that is a by-product of 
these critical section synchronization techniques. 

By comparison, with synchronization by means of fine grained data locking, concurrent 
access to different elements of the data structure can occur in parallel. Fine grained data 
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locking enables a programming model that minimizes contention. Fine grained data lock­
ing lowers the probability of contention, because concurrency for each element of the data 
structure is managed independently. Contention only results when multiple processors 
must gain atomic access to the same element(s) of the data structure. 

Z A single set ofhieh performance primitives made directly available to user applications in 
an unprivileged manner. The KSR1 synchronization primitives execute with low overhead 
when contention is not present, as well as when it is. The no-contention case is especially 
significant, because most accesses to individual elements using fine grained data locking 
are contention free. Thus the application only pays for the overhead of synchronization for 
concurrent access when contention actually exists. 

Synchronization and data movement are achieved in parallel, in a single operation. 

Because the synchronization primitives are part of the memory system state, locked data 
structures can migrate transparently between processors or processes. Locking state is 

recorded as part of the backing store state. 

Complex atomic updates, such as fetch-and-add or linked-list queue manipulation, can be 

built by using the basic primitives. 

The underlying memory-system primitives that make possible the higher level abstractions are 

the following: 
Setting locks. A "lock" in ALLCACHE is achieved by setting a subpage to the Atomic 
state. (Like Exclusive state, Atomic state indicates the subpage is the only valid instance 
of this address in any local cache. But Atomic state also provides a flag that allows multiple 
processors to synchronize their access to a subpage.) A program may do this by issuing a 
get or get-and-wait instruction specifying the address of the desired subpage. Both instruc­
tions will cause the ALLCACHE Engine to find the subpage and — if the page is not in 
Atomic state — return it to the requesting processor in Atomic state. In the process the 
ALLCACHE Engine will ensure that all other copies of the subpage are set Invalid. 

If the subpage is already in Atomic state, it will not be returned to the requestor immedi­
ately. Instead, the request will return to the requestor with an indicator that the subpage was 
found in the Atomic state. At this point, if the instruction involved was get, the ALL-
CACHE memory system returns an already Atomic condition to the processor and the issu­
ing program will decide what to do. The software might try again immediately or go on to 
something else and try again later. If the instruction involved was get-and-wait, the pro­
cessor will stall until the requested subpage arrives. (As a rale, get-and-wait is used for 
locks which are expected to be held very briefly.) 

Releasing locks. A program removes Atomic state from a subpage by issuing the release 
instruction. When this instruction is issued, the subpage state is changed to Exclusive. If 
a get-and-wait has attempted to access this subpage while it was in the Atomic state, the 
effect of the release instruction will be to send the newly released subpage into the ALL-
CACHE Engine, through which it will be routed to any waiting processor(s). 

INSIDE THE ALLCACHE ENGINE 

The assignment of the ALLCACHE Engine is to resolve references to addresses that are not 

found in the requestor's local cache (or are found there but not with the proper subpage state). The 

ALLCACHE Engine must find the indicated address in the set of local caches and return it to the 

requestor's local cache in an appropriate state. The ALLCACHE Engine also must leave the sub-
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page states of other local caches consistent with the state returned to the requestor. For example, if 

the subpage is returned to the requestor in Exclusive (owner) state, that subpage must be in Invalid 

state in all other local caches where it is allocated. 

FIGURE 24 AT J.CACHE Engine is a Slotted, Pipelined Packet Router (ALLCACHE Engine:0 Shown) 

III Bl 
Slotted, packetized rotating pipeline 
Packet: 128 Bytes data, 16 Bytes header 
Data Transfer: 8 Megapackets/sec, 1 Gbyte/sec 
Each Cell Interconnect or ARD contributes stages to pipeline 

Multiple packets in flight 
Pipelined directory and data transfer 

[ALLCACHE ROUTER DIRECTORY 
Section of ALLCACHE Engine 
pipeline & directory for AE:0 

1 CELL INTERCONNECT j 
Section of ALLCACHE Engine 
pipeline & directory for Local Cache 

I LOCAL CACHE 
Directory & data storage 

The ALLCACHE EngineiO (see Figure 24) is a series of point-to-point connections between the 

APRD (see below for more detailed information) cell interconnect and the ARD, used to intercon­

nect hierarchies of the ALLCACHE Engines (see below). The ALLCACHE Engine pipeline pro­

vides a parallel pipelined directory and transport mechanism. Each APRD cell interconnect 

consists of a local cache directory and stages of the ALLCACHE Engine pipeline. The cell inter­

connect imposes a logical structure of rotating slots. Each slot contains a packet consisting of a 16 

byte header and a 128 byte subpage of data. As the number of APRDs or ARDs increases, the num­

ber of slots, packet carrying capacity and directory lookup parallelism also increases. The point to 

point nature makes it component and technology scalable from an electrical point of view. 

An ALLCACHE Engine:0 handles a request in the following manner. If the local cache cannot 

satisfy a local processor request, a request packet is inserted into the pipeline. As the request packet 

passes each Cell Interconnect, that Cell Interconnect checks to see if the subpage is present in its 

local cache. If the Cell Interconnect has a copy of the subpage in the appropriate state, it extracts 

the request and then inserts a response onto the pipeline. The response then travels to the original 

requesting APRD, where the packet is extracted. As the packet is traveling around the pipeline, the 

directories of each local cache are updated appropriately. 
The ARD cell is responsible for connections to the next higher level of the ALLCACHE Engine 

hierarchy. An ARD cell contains a portion of the ALLCACHE Engine pipeline and a directory with 

an entry for every subpage allocated on every local cache throughout the entirety of the ALL-

CACHE EngineiO. When a request packet reaches an ARD, it is moved to the next cell on ALL-

CACHE EngineiO if the directory in the ARD indicates that the requested subpage is within 
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ALLCACHE EnginerO. Otherwise, the packet is routed up to the next higher level in the ALL-

CACHE Engine hierarchy. 

The ALLCACHE Engine: 1 consists entirely of ARDs and operates in the same manner as an 

ALLCACHE Engine:0. 

THE KSR1 PROCESSOR 

FIGURE 25 KSR1APRD Cell 
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The KSR1 processor is implemented in four 1.2 micron CMOS chips. 

One of these chips, called the Cell Execution Unit or CEU, is the basic control unit of the pro­

cessor. On each clock cycle it fetches two instructions from memory. Certain instructions (loads, 

stores, branches, address arithmetic) will be executed directly by the CEU; others will be executed 

by a co-processor for execution. The CEU is responsible for all instructions dealing with memory. 

These instructions operate on 40 bit addresses. The KSR1 architecture actually envisions a 64 bit 

address (pointers are stored as 64 bit quantities) but, due to implementation constraints, the current 

address size is 40 bits — and that is clearly sufficient for 1088 processor systems being built at this 
time. The CEU has 32 address registers, each 40 bits wide. 

The CEU operates with three co-execution units. 

The FPU (floating point unit) executes arithmetic operations on IEEE floating point format val­

ues. The FPU has 64 registers each 64 bits wide, supporting linked triad instructions in which two 

floating point operations are initiated from a single instruction, giving a peak floating point rate of 

40 MFLOPS. Sustained floating point performance depends on the application. For example: 6.6 

MFLOPS (Livermore Loops harmonic mean); 15 MFLOPS (100 x 100 LINPACK); 28 MFLOPS 
(FFT); and 32 MFLOPS (Matrix Multiply). 

IPU (integer and logical operations unit) — This chip performs arithmetic and logical opera­
tions on 64 bit integers stored in 32 registers (each 64 bits wide). 
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XIU (external I/O unit) — This chip provides a 30 MBytes/sec pathway to peripheral devices. 

Since there is an XIU on every APRD cell, large systems can be configured with very high aggre­

gate bandwidth to disk drives, networks, display devices and other peripherals. 
Note the very large number of registers provided by the processor — a total of 128 in the CEU, 

FPU and IPU plus 64 special I/O control and data registers in the XIU. The large register set makes 

it possible for the compilers to unroll loops and, in general, to keep operands in registers for as long 

as they are needed, thereby reducing the requirements for load and store operations. 

All functional units of a KSR1 processor are pipelined so that an operation can be started in 

each functional unit on each clock cycle, even if the result of the previous operation is not yet avail­

able. Of course, the result of an operation cannot be used until that operation is complete. There­

fore, KSR compilers ensure that the correct number of clocks elapse between the initiation of one 

instruction and the initiation of another instruction, which depend on the result of the first instruc­

tion. 
Figure 26 is a functional diagram of the KSR1 processor. The processor is connected to mem­

ory by two buses, one for instructions and one for data. Both are 64 bits wide. The 64 bit instruction 

bus is used to fetch a pair of 32 bit instructions on each clock cycle. 

• Instruction-1 of the pair is an address calculation, branch, memory instruction or I/O 

operation (to be executed by the CEU or XIU). 

• Instruction-2 of the pair is a floating point or integer arithmetic operation or a logical 

operation (to be executed by the FPU or IPU). 

FIGURE 26 KSR1 Instruction Execution Model 
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A typical block of assembler code for a KSR1 processor appears in Figure 27. It contains two 

columns, one consisting primarily of loads and stores, the other mainly arithmetic operations. 

Memory references are being overlapped with computations. 

FIGURE 27 KSR1 Processor — Typical Block of Assembler Code 

f a d d 8 . t r  % f  8 ,  % f l O ,  % f  8  
f a d d 8 . t r  % f  7  ,  % f  9 ,  % f 7  
i t s t e q 8  0 ,  % i l O  
a d d 8 . n t r  2 ,  % i 3 1 ,  %  i 3 1  

I i 3 :  
i t s t e q 8  4 ,  % i 9  
s u b 8 . n t r  % i 9 ,  4 ,  % i 9  
a d d 8 . n t r  3 1 ,  %  1 3 1 ,  % i 3 1  
f m u l 8 . t r  % f O ,  % f  1 5 ,  % f  1 4  
f m a s 8 . t r  % f l .  % f l l ,  % f  1 4  
f m u l 8 . t r  % f O ,  % f l l ,  % f  1 3  
f m a d 8 . t r  % f l ,  % f  1 5 ,  % f  1 3  
f m u l 8 . t r  % f O ,  % f  6 ,  % f l O  
f m a s 8 . t r  % f l ,  % f  5 ,  % f l O  
f m u l 8 . t r  % f O ,  % f  5 ,  % f  9  
f m a d 8 . t r  % f l ,  % f  6 ,  % f  9  
f a d d 8 . t r  % f  1 3 ,  % f 1 8 ,  % f 1 3  
f  i n o p  
f a d d 8 . t r  % f l O ,  % f  6 ,  % f l O  
f a d d 8 . t r  % f  9 ,  % f  5 ,  % f  9  
f a d d 8 . t r  % f  1 4 ,  % f 1 9 ,  % f 1 4  
f m u l 8 . t r  % f O ,  % f  7 ,  % f l l  
f m a d 8 . t r  % f l ,  % f  8 ,  % f l l  
f m u l 8 . t r  % f O ,  % f  8 ,  % f  1 2  

b c c . q n  @ c i t s t ,  . L 5  
s t 8  % f 8 ,  - 1 6 ( % c 6 )  
s t 8  % f 7 ,  - 8  ( % c 6 )  
b c s . q t  @ c i t s t ,  . L 2  

l d 8  3 2 ( % c 7 ) ,  % f 1 5  
l d 8  4 0 ( % c 7 ) ,  % f l l  
l d 8  0 ( % c 7 ) ,  % f 6  
l d 8  8 ( % c 7 ) ,  % f 5  
l d 8  1 6 ( % c 7 ) ,  % f 8  
l d 8  2 4 ( % c 7 ) ,  % f 7  
l d 8 . e x  4 0 ( % c 6 ) ,  % f 1 8  
l d 8 . e x  2 4 ( % c 6 ) ,  % f 1 6  
l d 8 . e x  1 6 ( % c 6 ) ,  % f 1 7  
l d 8 . e x  8 ( % c 6 ) ,  % f 5  
l d 8 . e x  0 ( % c 6 ) ,  % f 6  
l d 8 . e x  3 2 ( % c 6 ) ,  % f  1 9  
l d 8 . e x  4 8 ( % c 6 ) ,  % f 2 1  
l d 8 . e x  5 6 ( % c 6 ) ,  % f 2 0  
l d 8  4 8 ( % c 7 ) ,  % f 5  
l d 8  5 6 ( % c 7 ) ,  % f 6  
s a d d 8 . n t r  0 ,  % c 6 ,  6 4 ,  % c 6  
s t 8  % f 9 ,  - 5 6 ( % c 6 )  
s a d d 8 . n t r  0 ,  % c 7 ,  6 4 ,  % c 7  

KSR1 instructions fall into six classes: 

• Memory reference instructions 

• Execute instructions 

• Control flow instructions 

• Memory control instructions 

• I/O instructions for the XIU 

• Inserted instructions 

Memory reference instructions (loads and stores) move data between memory and the registers 

of the processor. Consider, for example, the following KSR1 load instruction: 

ld8 60 (%cl2), %f16 

The instruction says to load eight bytes (one full word) into floating point register %fl6 (one of 

64 floating point registers). The eight bytes to be loaded begin at an address designated by the 

expression 60 (%cl2). The address is computed by taking the value in the 40 bit address register 

%cl2 (one of 32 address registers) and adding the displacement 60. 

This address is called a context address (CA). CAs refer to locations within a process address 

space. CAs are translated into a system-wide address called a system virtual address (SVA) by map­

ping hardware in the CEU. CA to SVA translation provides the means by which the system can 
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control sharing of the address space, supporting sharing simply where desired and preventing inad­

vertent sharing. 
As one can see in the example in Figure 27, loads and stores may appear one after another in 

the text of a program. Since each load and store moves eight bytes between registers and memory 

and they occur at the rate of 20 million per second, the memory bandwidth of each processor is 160 

MBytes/sec. 

Execute instructions (arithmetic, logical and type conversion operations) typically operate on 

the data in two source registers and place results in a third register. For example: 

add8.tr %il, %i22, %il7 

This instruction adds the eight byte integer in the integer register %il to the eight byte integer 

in %i22 and puts the result in %il7. The processor's three register operations eliminate the need to 

copy or reload registers which is common in other architectures. 

Control flow instructions (branches and jumps) cause the processor to branch out of its sequen­

tial flow instruction execution. For example: 

beq. qt %cl, %c9, .+32 

This instruction tells the processor to branch out of its sequential flow if the contents of register 

%cl equal the contents of %c9. If so, execution jumps to the instruction at the address computed 

by adding 32 to the current program counter. 

The "qt" in the instruction determines its "quashing" behavior. A branch instruction takes two 

cycles to complete. The two instruction pairs immediately after the branch in the text of the pro­

gram will have begun execution by the time the branch is completed. The quashing control tells the 

processor what to do with the results of those instructions. The instruction can specify one of three 

actions: 

quash_never (qn) — always retain the results of these instructions 

quash_true (qt) — retain the results if the result of the test is true 

quash_never (qn) — retain the results if the result of the test is false 

The flexible quashing behavior of the KSR1 provides the compilers with a means of scheduling 

code so that there is very little cost to branches and jumps in program flow. 

Memory control instructions provide hardware primitives for interprocessor synchronization as 

well as instructions for controlling the behavior of the memory system. 

I/O instructions control the actions of the XIU in transmitting and receiving data from I/O 

devices. (See Part Two for details on I/O capacity.) 

Inserted instructions are sequences of operations forced into a program's flow by a co­

processor. The XIU uses inserted load and store instructions to accomplish DMA transfers from/to 

an I/O device to/from memory. The memory system uses inserted instructions to maintain coher­

ence between a processor's sub-cache and the rest of memory. Inserted instructions provide a very 

general technique for interfacing new co-processors with the rest of the KSR1 architecture. 
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AVAILABILITY AND RELIABILITY 

The KSR1 family of computers is designed to achieve very high levels of availability through 

a combination of techniques whose net effect is to make service interruptions rare and recovery 

times short. 

The high availability features of Kendall Square computers revolve around seven themes. 

1. Reliable components — The use of custom CMOS lowers component count and allows 
low-power operation. 

2. Ubiquitous fault detection — Component failures are detected through extensive checks for 
internal consistency. Detected failures are reported to system software to initiate recovery 
procedures. 

3. Data redundancy — KSR1 systems employ redundant storage of data both in RAM (always 
present) and on disk (configurable) to protect against loss of information if memory com­
ponents fail. 

4. Component redundancy — KSR1 systems are built from large numbers of identical com­
ponents. The system is designed to be able to operate with only a subset of its components 
in operation. 

5. Fault isolation — KSR1 systems employ a number of techniques to ensure that a failing 
component, either hardware or software, can be isolated from the healthy remainder of the 
system. These techniques will often permit a system to "ride through" a failure without 
requiring a restart. 

6. Fast restart — Some component failures require a system restart for recovery. In these cir­
cumstances, systems will rapidly restart with no loss of committed data. 

7. On line maintenance — Portions of a KSR 1 system can be deconfigured under system oper­
ator control for maintenance, while the remainder of the system stays on line. Since mem­
ory is viewed symmetrically by all processors, KSR OS can migrate processors from the 
portion of the KSR1 which is being deconfigured to the remainder of the system. 

The overall availability strategy is illustrated in Figure 28 on the following page. When a fail­

ure occurs, the first job for the system is to detect it, so that remedial action can be taken. Each 

failure is attributed to some system component. Depending on the nature of the component that 

failed and the role that it is playing in the system (e.g., if it is a memory device, what data is stored 
there) one of three recovery options is chosen: 

• Whenever possible, the system continues operation with no interruption to any executing 

process. This option relies upon data redundancy if a memory device has been lost. 

• If completely interruption free recovery is not possible, then the system will aim for a 

recovery plan in which processes which had been employing the failed component must be 

restarted but other processes continue unaffected. 

• If neither of these courses is possible, then the system is restarted very rapidly and database 

recovery and checkpoint/restart techniques are employed to ensure that no committed data 
has been lost. 
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FIGURE 28 KSR1 High Availability Strategy 
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Mirrored disks, RAID Operation with a subset of hard­
ware and software components 
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Reliable Components 
Several key component technologies are employed to increase the underlying reliability of the 

system. The use of custom-designed CMOS serves to reduce component count and achieves lower 

power dissipation per component. Modern tape automated bonding (TAB) packaging contributes 

to efficient cooling. TAB packaging allows heat from the die to be conducted directly to the inner 

plane of the printed circuit board. 
All major components of the KSR1 are designed for very high reliability. Among the system's 

major components only two basic types predominate: the APRD cells (a processor with its local 

cache) and disk drawers. Each has been engineered with reliability in mind. For example, DRAMs 

used on the APRD are protected by error correcting code that makes unrecoverable memory failures 

extremely rare. For mass storage, the KSR1 employs disk drives of very high reliability, and field 

configurations of the KSR1 allow for two-way mirroring of all disks and other RAID strategies. 

With this approach, the only occasion on which disk failures become visible to an application in the 

field is the rare instance when a disk fails while its partner is also unavailable. 

Error Detection 
KSR1 hardware provides extensive checking for errors. All faults, including those which are 

corrected transparently by hardware, are reported to system software. Fault detection is supported 

on a consistent basis, in the following manner: 
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The Exoskeleton of the KSR1 

The KSR1 system was designed both to 
augment functionality and to convey a visual 
impression of innovation. It is in keeping with 
the unique achievement of the patented ALL-
CACHE memory system — embedding vir­
tual memory in silicon 

Unlike conventionally-appearing super­
computers and mainframes, the KSR1 appears 
to have no external skin, no vast slabs of 
painted metal, no opaqueness at all to prevent 
the eye from penetrating the internal workings 
of the system. The KSR1 is a series of hand­
some, vertically turreted panels connected to 
each other only by a canopy under which a per­
son may easily walk. The modularity of the 
KSR1 is immediately seen in its external pack­
aging. 

Those familiar with the appearance of tra­
ditional mainframes and supercomputers in a 
laboratory or business environment are imme­
diately struck by the lack of gunmetal sidings. 
Here for the first time is a major computer sys­

tem that permits people to walk about within 
its working innards. 

To service a KSR1 in the field, one sim­
ply "walks" into the system. The traditional 
rackmount has given way to a new functional 
modularity, and one whose careful air-cooled 
design yields the practical benefits of a small 
footprint and an energy demand that is minus­
cule in comparison to traditional mainframes 
or supercomputers. For instance, an IBM ES/ 
9000-620 requires 796 square feet of floor 
space without peripherals and has a power 
supply demanding 65,000 watts. A compara­
ble KSR1 with 16 processors uses but 68 
square feet with peripherals and requires but 
2,000 watts. 

• All DRAMs are ECC protected. Single-bit errors are correctable, and software-assisted 

memory scrubbing is used to minimize the probability of multiple-bit errors. If the single-

bit error rate for an APRD exceeds a threshold, the unit should be replaced. 

• All other RAM is parity-protected to detect errors. This includes all visible and transparent 

locations. 

• All data transfers over interconnects and buses are at least parity protected. The 

interconnection between ALLCACHE Engine:0 and ALLCACHE Engine: 1 is further 

protected by a guaranteed transport mechanism. 

• The memory-system protocol detects logical inconsistencies. For example, inconsistencies 

in memory-system state — such as dual-subpage ownership or inappropriate commands — 

are detected. 

• Memory-system faults are confined by a flag within each descriptor, which records that the 

descriptor or the data which it describes might have been damaged. 

• Request time-outs are used by memory-system requestors to detect missing responses. 

• The disk subsystem optionally provides redundancy to handle disk drive and most device-

controller failures. This is accomplished by a parity and checksum technique which 

tolerates a single failure across each array of five disk drives. In addition, an error-
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correcting code allows small burst errors to be corrected by the device controller. If 

correctable errors for a disk drive exceed a threshold, the disk drive should be replaced. 

• Some system-software faults are detected by individual watchdog timers and heart beat 

monitors on each APRD cell. 

Using these mechanisms, the system can rapidly detect the occurrence of errors and isolate 

them to particular failing components. 

Data Redundancy 
KSR1 systems can often tolerate the failure of data storage devices and continue operation 

without interruption to any executing process through the use of data redundancy. Data redundancy 

provides the system with an alternative source for data that was stored on the now inaccessible 

device. The alternative source is used as both the means to satisfy the data needs of the executing 

process and as the means to recreate redundancy when the failed device is replaced (if necessary). 

Data redundancy arises in three places in KSR1: 

• ECC protection of DRAMs. This mechanism employs redundancy to reconstruct the 

contents of a single failed bit in a word. 

• Mirrored disks. KSR1 users can choose to store the contents of logical volumes on two or 

three physical disk drives. System software manages the synchronization of these devices 

and automatically reconstructs the contents of a failed disk after replacement. Mirrored 

disks also perform better than single disks on read accesses by providing two or three disk 

arms which can access the same logical device simultaneously. 

• RAID3. Another available method for implementing data redundancy on disk storage is 

configuring the disk drivers to perform RAID3 functionality. This method is designed for 

large block data transfers. It stripes logical blocks across four disk drives and stores a parity 

bit computed from these four drives on a fifth drive. This method is more cost effective 

than mirrored disks, but does not perform as well for short random references. 

Component Redundancy 
Highly parallel systems offer the potential for high system availability unmatched by earlier 

architectures. Since parallel systems are built from large numbers of identical components, they 

can be engineered to operate with some of those components out of service. The KSR1 exploits 

this potential. Since all processors view memory symmetrically and programs reference memory 

addresses, not processors, the KSR1 operates effectively with a subset of its processors, a subset of 

its disk modules, even a subset of its interconnect and power system. 

The interconnect system of a KSR1 is a hierarchy of ALLCACHE Engines. Each ALLCACHE 

Engine is built as a set of independent sub-ALLCACHE Engines, so that the failure of a single com­

ponent results only in the breaking of a single sub-ALLCACHE Engine communication line. When 

a failure does occur, a portion of the ALLCACHE Engine's bandwidth is lost temporarily (because 

of the loss of the sub-ALLCACHE Engine itself). But connectivity is not lost. The failure of a sin­

gle sub-unit component does not prevent continued communications among the other ALLCACHE 

Engines, since none are classical descendants of the broken component. ALLCACHE Engine:0s 

have two sub-ALLCACHE Engines. ALLCACHE Engine: Is can be configured to have two, four, 

or eight sub-ALLCACHE Engines. 
The KSR1 power system is modular in its design and is intended to provide continuous opera­

tions. Each Power Module provides 300 volts DC to the various electronic modules (such as the 
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modules of ALLCACHE Engine: 1, ALLCACHE Group:0, etc.) which regulate their own power as 

appropriate to their needs. Each Power Module is equipped with battery back-up which stores suf­

ficient energy to deliver its rated capacity for five minutes when external power is interrupted. This 

is enough time to survive most power failures and provides the interval needed to switch to a gen­

erator or other alternative power source. The power system signals KSR OS toward the end of the 

battery coverage period, so that the system may be shut down gracefully if need be. 

Fault Isolation 
The KSR1 system confines the effects of a component failure to as small a population of users 

as possible. This effect is achieved through a combination of hardware and software techniques. 

Hardware faults are detected, reported and recorded in special registers in each local cache. If 

a memory system fault is detected, this register records the addresses of any pages which may have 

been damaged. Fault containment is achieved by preventing subsequent access (and any movement 

of the data within the system) to the damaged pages by signaling that a fault has been previously 

detected. 

Fast Restart 
Some failures will require system restart for recovery and KSR1 systems are capable of rapid 

restarts, to ensure that no committed data is lost. 

When a system is restarted, the boot process examines the state of all components for correct 

operation. This process includes examination of configuration data left behind during the previous 

run. These records often identify the failing device even when simple tests conducted at restart do 

not. 

At restart, the DBMS processes its re-do log to ensure that all committed transactions are 

reflected in the database and that uncommitted transactions leave no traces in the database. The 

DBMS can be configured to make this recovery process arbitrarily short. The KSR OS can be con­

figured with a log based file system which can be rapidly restarted with no loss of information. 
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PART SIX 

A  B R I E F  H I S T O R Y  O F  

M U L T I P R O C E S S O R  R E S E A R C H  

Throughout the Technical Summary, we have presented the patented ALLCACHE memory 

system as the only known, practicable way to achieve scalability in a highly parallel processing sys­

tem while retaining the familiar shared-memory programming model. Until the advent of the 

KSR1, architectures that provided the shared-memory programming model generally exhibited one 

of two major deficiencies - either they were not scalable or they did not support memory coherency. 

This is a review of the state of the art prior to the introduction of the KSR1. 

VIRTUAL MEMORY 

The most fundamental influence on the KSR1 architecture was the development of virtual 

memory and its ability to present a single address space model to the programmer and to automat­

ically exploit locality. 
The property of locality is a program's preference for a subset of its address space over a given 

period of time. Exploiting locality in the construction of computers (for example, short intercon­

nections on or between chips), as well as exploiting locality in program behavior, has been a pri­

mary factor in enhancing computer performance. To understand the relevance of locality and single 

address space to parallel computing, one must go back in history 30 years when the magnitude and 

complexity of storage management on uni-processors caused programming difficulties similar to 

those experienced today on MPPs. 
In 1961, the designers of the Atlas Computer at the University of Manchester in the UK, pro­

vided an elegant solution to the problems of storage management through the invention of virtual 

memory.1 Their invention has profoundly influenced the course of computing. 

Simply stated, virtual memory moves the responsibility of managing memory from the appli­

cation to the computer hardware and systems software, by applying the notion that the "address" is 

a concept distinct from the physical location of its corresponding data. Programming is simplified, 

because applications are written with one simple and powerful abstraction - a single address space. 

Virtual memory provides excellent performance by dynamically exploiting "the property of local­

ity, which is exhibited to varying degrees by all practical programs."2 

Virtual memory is fundamental to the architecture and programming of all modern mainframes, 

mini-computers and workstations. Cache memory, a more recent invention, is based on the ideas 

of virtual memory and locality, and cache is now present on all computers from mainframes to PCs 

(both RISC and CISC processors). The concept of single level store3, or mapping files directly into 

the single address space, is also a direct descendant of the concepts of virtual memory. Modem 

computer systems depend on locality to extract maximum performance, from single mainframes to 

networks of workstations paging across a LAN, to fileservers. 

1. Kilburn, T., Edwards, D.B.G., Lanigan, M.J., and Sumner, F.H. "One-level Storage System;" IRE 
Transactions, EC-11, Vol.2, pps. 223-235, April, 1962. 

2. Denning, Peter J. "On Modeling Program Behavior;" Arlington, VA: AFIPS Press: Proceedings, 
Spring Joint Computer Conference, Vol. 40, pps. 937-944, 1972. 

3. Organic, E.I., "The Multics System: An Examination of Its Structure," Cambridge, MA: MIT Press, 
1972. 
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KSR1 ALLCACHE extends the concept of virtual memory to highly parallel processing for the 

first time, thus providing all the benefits of virtual memory, including high performance, ease of 

programming and scalability. 

NON-SCALABLE SHARED MEMORY ARCHITECTURES 

The first research multiprocessor was C.mmp.1 It consisted of 16 processors with an optional 

cache, connected through a crossbar to 16 shared memory modules. The cache was designed and 

prototyped, but never used because of cache coherence problems. 

The problem of cache coherence on a multiprocessor was first solved in 1981 by Synapse.2 The 

Synapse architecture consisted of as many as 28 processors and four memory modules on a shared 

bus. The basic innovation of Synapse was to introduce the concept of ownership, distributed direc­

tories and bus monitoring (later dubbed "snooping") as a way to solve the cache coherence problem. 

Coherence algorithms, based on the concept of ownership, reduced bus traffic significantly. But, as 

a rule, bus-based multiprocessors proved to be scalable only to a maximum of 20 to 30 processors 

on a single bus. Encore Computer Corp. and Sequent Computer have developed similar bus-based 

multiprocessors. 

SCALABILITY 

Architectures based on distributed processors and their associated memory units have been the 

most common solutions to the scalability problem. In this distributed processor/memory approach, 

the aggregate memory bandwidth theoretically increases in direct proportion to the number of pro­
cessors. 

Distributed parallel computers can generally be classified into two distinct categories: 

• Multicomputer - with a separate address space for each processor/memory pair. 

• Multiprocessors - with a single address space.4 

Because the preferred programming model is shared memory, the major issue soon arises 

whether to provide the primitives necessary to support shared memory in the hardware, the soft­

ware, or in some combination of the two. How these primitives are implemented has significant 
influence on a number of system design issues, including: 

• support of sequential consistency 

• granularity of sharing 

• efficiency of the coherency implementation (bandwidth, cache refill time, processor 
overhead, cost) 

• scalability 

A genuinely scalable design must, however, take into consideration both component and gen­

erational scalability. Component scalability can best be illustrated by the simple addition of pro-

1. Wulf, William A. and Bell, C. Gordon. "C.mmp-A multi-miniprocessor;" Proceedings, AFIPS 1972 
Fall Joint Computer Conference, 41, pp. 765-777, 1972. 

2. Frank, Steven J. "Tightly Coupled Multiprocessor System Speeds Memory Access Times;" Elec­
tronics, pps. 164-169, 1984. 

3. Seitz, Charles L. "Concurrent Architectures;" Morgan Kaufmann: Frontiers VLSI and Parallel 
Computation, Suaya R. and Birtwhistle, G., eds., pps. 21-23, 1990. 

4. Bell, C. Gordon. "Multis: A New Class of Multiprocessor Computers;" Science, Vol. 228, pps. 462-
467, 26 April 1985. 
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cessing, memory, interconnect and I/O resources to a system; the system's capacity for work scales 

in an upward fashion with the increase in the number of components employed. 

Generational scalability, by contrast, is measured by how these resources scale as the underly­

ing technology itself (e.g., transistor devices packaging) improves over time. In this context, tech­

nological scaling means the increase in the capacity of the architecture for work as implementations 

move from one underlying technology generation to the next. For example, the frequency of buses 

does not significantly improve with the evolution of integrated-circuit technology. The maximum 

frequency of bus operations is electrically limited by the speed of light and the number of devices 

connected to the bus. By contrast, an implementation with short point-to-point connections, such 

as that employed in the KSR1, provides frequency of operations limited only by the underlying inte­

grated-circuit technology, and it will improve directly as the technology itself improves. 

One widely accepted working definition of scalability suggests two distinct considerations with 

respect to the scaling of the interconnect architecture:' 

• Scaling of delivered bandwidth 

• A bandwidth requirement that itself increases more slowly than the delivered bandwidth of 

the system 

In this regard, much interest has recently developed in a family of routing networks called fat-

trees, whose properties include universality and the potential to exploit locality of reference.- From 

a theoretical standpoint, fat-trees can be shown to be a nearly universal network scheme; a fat-tree 

routing network of any given size is always nearly the best possible network of that particular size. 

The image conveyed by the notion of the fat-tree is metaphorically accurate. Like real trees, 

fat-trees get thicker the farther one gets from the leaves. In the analogy, the processors are the 

leaves and the tree's internal nodes are its switches. Communication bandwidth increases as one 

goes down the tree, from the leaves, to the branches, to the trunk, toward the roots. 

For a given amount of communications hardware, a fat-tree topology can simulate every other 

possible network built with an equivalent amount of hardware, using only slightly more time (a 

polylogarithmic factor greater). More importantly, the bandwidth of a fat-tree can be varied inde­

pendent of the number of processors. The tree topology of the network also transparently imple­

ments bandwidth load balancing. 
Other networks described in the literature - such as hypercube, multistage interconnection net­

works (MINS), or meshes - do not demonstrate the combination of universality, locality, bandwidth 

variability or load balancing characteristics of the fat-tree. 
The KSR1 hierarchy of ALLCACHE Engines described in these pages employs the fat-tree 

topology, with a span at each level of 32. The basic architecture can be extended to an arbitrary 

number of levels. 

1. Scott, Steven L. "A Cache Coherence Mechanism for Scalable, Shared-Memory Multiprocessors;" 
Proceedings of International Symposium on Shared Memory Multiprocessing, pps. 49-59, April, 
1991. 

2. Leiserson, Charles E. "Fat-Trees: Universal Networks for Hardware-Efficient Supercomputing;" 
TF.F.F. Transactions on Computers, Vol. C-34, No. 10, pps. 892-901, October, 1985. 
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LOCALITY OF REFERENCE 

Locality of reference has been shown in recent literature1 to be the key to achieving scalable 

interconnect bandwidth whose feature is that the actual bandwidth requirement increases less 

slowly than the bandwidth delivered. Three design guidelines emerge from this consideration: 

• Because communication is limited in a fundamental way by the speed of light, the 
architecture should be designed in such a way that most communication is kept as close as 
possible to the referencing processor. 

• Communication time is influenced by the number of switches through which messages and 
data must pass. 

• Communications should be maintained within as small a subsystem as possible to reduce 
congestion in the overall system. 

All three points highlight the significance of locality of reference, which suggests that the char­

acteristic of locality - measured and defined in terms of "working sets"2 - is a key to bandwidth 

requirements that do not increase as rapidly as the bandwidth available. 

A working set may be defined as a collection of addresses which have been referenced recently 

(and, therefore, from a statistical standpoint, are apt to be referenced again within a short period of 

time). When combined with the patented ALLCACHE memory system, which has the fundamental 

ability to exploit locality of reference, the fat-tree topology of the KSR1 provides a system that 

meets the criterion of bandwidth requirements that increase more slowly than bandwidth delivered. 

The hierarchy of ALLCACHE Groups, formed from local caches interconnected by a hierarchy 

of ALLCACHE Engines, establish a corresponding hierarchy of working sets whose magnitude 

increases collectively at each successively higher level of system organization. Because most ref­

erences may be satisfied from within the level where the reference request was itself issued, the 

effective demand on communications bandwidth to the next higher level is, in actual practice, 

reduced. 

Although a fat-tree topology can deliver scalable bandwidth, the KSR1 system does not require 

that the bisection bandwidth scale in linear fashion, because the combination of a fat-tree network 

of ALLCACHE Engines and the caching behavior of the memory system itself serve to reduce the 

bandwidth requirements in the first place. 

The ordering enforced by the fat-tree topological structure also simplifies the maintenance of 

coherency and allows the implementation of sequential consistency with little performance loss. 

Sequential consistency conveys the most intuitive impression to the programmer, and sequential 

consistency itself is derived from the fact that the system behaves as if it were executing all opera­

tions on a single processor.3 To the programmer, the appearance is that of the familiar single-pro­

cessor/multi-tasking model. 

Leiserson, Charles E. "VLSI Theory and Parallel Supercomputing;" Pasadena, CA: Proceedings of 
the 1989 Decennial Caltech Conference, March, 1989. 
Denning, Peter J. "Working Sets Past and Present;" IEEE Transactions on Software Engineering, 
SE-6, pps. 64-84, January, 1980 
Lamport, Leslie, "How to Make a Multiprocessor Computer that Correctly Executes Multiprocess 
Programs," IEEE Transactions on Computers, Vol.C-28, No. 9, Sept. 1979 
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DISTRIBUTED ARCHITECTURES WITH SOFTWARE IMPLEMENTATIONS OF 
SHARED MEMORY 

The major phyla of highly parallel computers today may be differentiated by their basic com­

putational models: shared memory versus message passing systems. Multicomputers are typically 

programmed using a message passing model, rather than shared memory. Several multicomputer 

architectures have been proposed and built on the basis of the message passing model, including the 

Cosmic Cube1, IPSC and the J Machine.2 In addition, a number of research projects have designed 

and prototyped a shared virtual memory software layer on a multicomputer, including Ivy3 and 

Mether4. Although the programming model was improved, these various efforts brought a number 

of significant problems to the surface. Four particular difficulties with these approaches have 

emerged: 

• Software-based implementations of shared memory are two to three orders of magnitude 
lower in performance than hardware implementations. 

• Searching and directory functions are much slower when managed at the software level. 

• Sequential consistency is extremely difficult to achieve in software alone, and sequential 
consistency is a key to the user-friendly impressions conveyed by the system - it behaves 
as if it were a single-processor/multitasking machine. 

• The grain size in all the software-based implementations of shared memory has been the 
complete page. The granularity should be smaller to avoid false sharing and provide fast 
cache-refill times for data movement. 

SHARED MEMORY DISTRIBUTED ARCHITECTURES WITHOUT 
COHERENCY 

Two of the key concepts of scalability are the distributed and hierarchical organization of the 

multiprocessor. The Cm* was the first computer of this type.5 The basic building block of Cm* 

was a processor-memory pair called a computer module (Cm). The local memory associated with 

each processor formed the shared memory for the system. The Cedar project was similar in concept 

to Cm*. NYU Ultracomputer, RP3 and the BBN Butterfly were other non-hierarchical, distributed 

memory multiprocessors. None of these architectures fully exploited locality of reference. 

In all these systems, because addresses had fixed physical locations, the programmer was com­

pelled to copy data to local addresses to optimize performance. Coherency also had to be managed 

explicitly within the program. 

All these systems adopted shared memory as a syntactic convention, mapping a portion of each 

processing cell's local memory into a global address space. However, non-local accesses invariably 

had a longer latency than local references, and these systems had no way to adjust automatically to 

the addressing pattern of a program. Such adjustments were left, instead, to the application pro­

grammer. 

1. Seitz, Charles L. "The Cosmic Cube;" Communications of the ACM, 28-1, pps. 22-33, January, 
1985. 

2. Dally, William L. "The J-Machine: A Fine-Grain Concurrent Computer;" MIT VLSI Memo 89-
532, May, 1989. 

3. Li, Kai and Hudak, Paul. "Memory Coherence in Shared Virtual Memory Systems;" Proceedings of 
the 5th Annual ACM Symposium on Principles of Distributed Computing, pps. 229-239, August, 
1986. 

4. Minnich, Ronald G. and Farber, David J. "The Mether System: Distributed Shared Memory for 
SunOS 4.0;" (private communication). 

5. Swan, R., Fuller, S., and Siewiorek, D. "Cm*- A modular, multi-microprocessor;" Proceedings 
AFIPS 1977 Fall Joint Computer Conference, 46, pps. 637-644, 1977. 
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In essence, these machines were similar in programing style and performance to message pass­

ers: blocks of data had to be copied from global space to a processor's local space, manipulated 

there and then written back. Management of the contents of the local memory and the maintenance 

of coherence between data in local memory and data in global space were relegated back to the 

application programmer as well.1 In this sense, this entire class of machines achieved the form of 

shared memory but never its substance. 

SHARED MEMORY AS A NETWORK ABSTRACTION 

Memnet and Capnet are distributed, virtual, shared memory architectures aimed at using shared 

memory as a network abstraction for high performance communications.2 

The Memnet programming model involves coherent shared memory.3 Memnet was imple­

mented in the form of multiple processor nodes communicating over an insertion-modification 

token ring. Each node is connected to the ring through a dual-ported memory, which is managed 

as a cache by hardware. Each computing node references this cache as part of the real memory 

space from the local bus. The interfaces communicate over the ring to maintain coherency, using a 

broadcast-based ownership coherency protocol. Data is transferred and coherency maintained on 

"chunks" of 32 bytes. 

The ring provided several advantages over bus-based systems: 

1. Buses suffer from decreased bandwidth as the length of the bus is increased to raise the 

number of computing nodes. By comparison, ring bandwidth does not decrease as addi­

tional nodes are added. 

2. Rings provide an absolute upper boundary on the time of network access. 

3. The topology of the ring allows ordering to be maintained and a pseudo broadcast capabil­

ity, which simplifies the management of coherency. 

The KSR1 uses a ring to implement the ALLCACHE Engine hierarchy, for the same reasons as 

Memnet, but with the addition of the concept of distributed directories. While ring latency does 

increase as processors are added to the configuration and may be quantified as 0(N), this is not sig­

nificant for small N. Because the KSR1 is based on a fat-tree hierarchy of ALLCACHE Engines, 

if the ring size of ALLCACHE Engine:n is r, the overall latency grows as 0(logrN). 

Another advantage of a ring over a bus is the enhancement of "generational scaling." As 

described before, this is the increase in an architecture's capacity for work as the underlying tech­

nology evolves and improves from one generation to the next. Bus frequency will not be signifi­

cantly augmented by improvements in integrated circuit technology, because the maximum 

frequency of bus operations is fundamentally limited by the laws of physics. By contrast, however, 

for a ring implementation with short point-to-point connections, such as that in the architecture of 

the KSR1,4 the only limit on the frequency of operations resides in the underlying technology and 

1. Picano, S., Brooks, E., and Hoag, J. "Programming Costs of Explicit Memory Localization on a 
Large Scale Shared Memory Multiprocessor;" Albuquerque, NM: Proceedings of Supercomputing 
'91, pps. 36-45 November 1991. 

2. Delp, Gary, Farber, David, Minnich, Ronald et al. "Memory as a Network Abstraction;" IEEE Network, 
July, 1991. 

3. Delp, Gary. "The Architecture and Implementation of Memnet: A High-Speed Shared Memory Com­
puter Communication Network;" Ph.D. thesis, University of Delaware, 1988. 

4. The ALLCACHE Engine implementation uses short point-to-point connections. When longer connec­
tions are used, such as in Memnet, multiple bits can be in flight between nodes in a pipelined manner. 
As increased numbers of transistors become available with the technological scaling of CMOS, the same 
technique may be used on shorter connections. 
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will improve as the technology itself evolves and improves. In addition, the ring's point-to-point 

connections map well into CMOS and optical technologies.1 

Because it bypassed the layered communication protocol and message passing, Memnet dem­

onstrated a factor of up to 1,000 speedup for distributed system interaction. But the major inhibition 

of Memnet was its flat ring topology, which limited scalability. From an implementation point of 

view, the cache directories did not scale [growing at the rate of 0(N2)] because the entire shared 

address space was mapped onto each node. 

CapNet2 is a proposal by Tarn and Farber to improve the scalability of Memnet and to explore 

the possibilities of implementing the shared memory paradigm across a wide area. Three key issues 

are listed as critical to the attainment of these goals: 

• Memory hierarchy, 

• Translation of virtual shared address to physical address, 

• Maintenance of cache coherency. 

All of these issues are directly addressed by the KSR1 ALLCACHE memory architecture. In 

point of fact, the proposed CapNet solutions are similar to those already implemented in the KSR1. 

CapNet consists of a number of processors (or possibly clusters of processors) interconnected by a 

switching network. Memory requests are routed according to the system's virtual shared address. 

Each switch keeps a page table that indicates the outgoing path in the network to the owner of a 

page (chunk). Thus page location information is distributed across the network. The current page 

location is always maintained within the network because the page tables in the switches are mod­

ified as pages move in the network. The proponents of CapNet point out that this type of architec­

ture results in the minimum number of messages and no broadcast. This minimizes latency for wide 

area implementations, where latency is governed by physical distances. 

CapNet has identified the following major research and implementation issues: 

• Providing proof of correctness in light of high system concurrency and dynamic movement 
of addresses, 

• Avoiding degeneration (how to guarantee forward progress), 

• Handling page table overflows, 

• Maintaining memory coherency. 

Solutions to each of these issues are embodied in the implementation of the KSR1. 

The basic notion of CapNet, that memory requests are to be routed based on virtual shared 

address, is essentially a subset of the ALLCACHE memory architecture. The heart of ALLCACHE 

memory is the concept from virtual memory that "address" (we call it "System Virtual Address" or 

SVA) is distinct from "physical location." In the KSR1, there is no fixed home (physical location) 

for an "address" within ALLCACHE. A "System Virtual Address" (SVA) migrates to the point of 
reference on demand. 

The ALLCACHE Engine consists of ARD (ALLCACHE Router and Directory) cards that 

route SVA requests dynamically to the point of reference. The ALLCACHE Engine is guaranteed 

to have sufficient capacity to hold all of the requests that the number of configured processors can 

have in progress at any one time. This remains true whether the pending requests are for the same 

1. CMOS technology is fastest for short point-to-point connections. 
2. Tam, Ming and Farber, David. "CAPNET - An Approach to Ultra High Speed Network;" Proceedings 

IEEE International Conference on Communications '90, 1990. 
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or different addresses, and even if the addresses are currently moving in the network. The coher­

ency protocol for this level of operation has been formally verified. 

The CapNet proposal suggests that a tree structure network guarantees forward progress. Expe­

rience with the KSR1 has shown that the ordering enforced by the tree-structured network also sig­

nificantly simplifies the problem of maintaining coherence, especially with regard to multiple 

simultaneous requests in the network for a single address. 

The CapNet notion that the current location of a virtual shared address is maintained by 

switches within the interconnect network is a subset of the ALLCACHE Engine concept. The ALL-

CACHE Engine implementation has solved many of the research issues identified in the CapNet 

proposal. 

The pages described by an ALLCACHE Engine are bounded, because the directory at that level 

of the hierarchy includes all pages described by its descendants. This is in sharp contrast to CapNet, 

which is required to store logical pointers to other owners, leading to the possibility of overflow. In 

the KSR1, the ALLCACHE Engine directory is not required to store logical pointers to other own­

ers of all other pages. An overflow event is impossible in the ALLCACHE architecture. 

OTHER CACHE-ORIENTED, SHARED MEMORY, SCALABLE COMPUTERS 

The Alewife1 and Dash2 research projects share a common goal and with the KSR1: develop­

ment of a scalable, shared memory multiprocessor. Both projects depend primarily on caching to 

achieve scalability. Despite these apparent similarities, there are many differences among the 
efforts. 

Where ALLCACHE memory system uses a fat-tree topology to interconnect nodes, both Ale-

wife and Dash use a 2D mesh network. (The advantages of the fat-tree approach have been 
described earlier.) 

In the case of Alewife, each node corresponds to a single processor, while, in Dash, each cor­
responds to a cluster of four processors. 

The KSR1 and Alewife both support a sequentially consistent memory model, in contrast to 

Dash, which supports only a form of weak consistency called "release consistency." The approach 

taken by Dash introduces a new task for the programmer: specifying which memory accesses 
require sequential consistency. 

Alewife uses a directory based cache coherence protocol, which is implemented as a combina­

tion of hardware and software techniques. Dash also uses a directory based scheme, but one that is 

entirely implemented in hardware. By comparison to the KSR1 ALLCACHE memory system, 

there are three considerations that may be enumerated as inhibiting the scalability of Alewife (issues 

1-3 below), and two issues (2 and 3 below) which would seem to limit the scalability of Dash: 

1. The Alewife hardware directly supports only a small number of copies of an address. For 

any greater number of copies, system software must intervene. Thus, for the common case 

of an application with a high degree of read-only sharing, Alewife performance falls off sig­

nificantly. By contrast, the KSR1 ALLCACHE approach handles an unlimited number of 
copies in hardware. 

1. Chaiken, David, Kubiatowicz, John and Agarwal, Anant. "LimitLESS Directories: A Scalable Cache 
Coherence Scheme;" Proceedings of the 4th International Conference on Architectural Support for Pro­
gramming Languages and Operating Systems, pps. 224-234, April 1991. 

2. Lenoski, Daniel, Laudon, James, Gharachorloo, Kourosh, Wolf-Dietrich Weber, Gupta, Anoop, and Hen-
nessy, John. "Overview and Status of the Stanford DASH Multiprocessor;" Proceedings of the 5th 
Annual ACM Symposium on Principles of Distributed Computing, pps. 229-239, April, 1991. 
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2. Alewife and Dash are "somecache" architectures that have a fixed home for addresses. In 

addition to the caches (whose constituent addresses change dynamically), both Alewife and 

Dash employ ordinary memory modules (whose constituent addresses are fixed). These 

modules provide a "home" storage location for all addresses. The location of an address s 

home is determined statistically from the address, not dynamically according to program 

behavior. Local cache misses are resolved by referencing the home memory module. By 

way of contrast, in the KSR1 ALLCACHE memory system, there is no fixed home for an 

address, all instances of an address move on demand and programmers need not be cogni­

zant of the "home" locations to optimize locality. The concept of a "home' location leads 

to the problem of "de-scaling" discussed in detail below. 

3. Neither Alewife nor Dash guarantees forward progress, because a processor is not guaran­

teed fair access to an address with high contention. By comparison, the KSR1 fat-tree hier­

archy and ring topology within its ALLCACHE Engines guarantee fair access to addresses 

with high contention. 

THE DE-SCALING TEST 

Determining the potential scalability of a plausible computer architecture is often fraught with 

difficulty unless extensive experimentation can be done. However, it is often easier to test for de­

scaling behavior given only an abstract description of an architecture. A proposed architecture can 

be said to exhibit de-scaling behavior if a fixed size parallel program performs worse as the machine 

gets bigger. A truly scalable architecture must not manifest de-scaling behavior. 

The de-scaling test may be conducted as follows: 

• Consider a parallel program executing on a computer of fixed size. Set the degree of 
parallelization to a level appropriate to that size of machine and to the application. 

• Now expand the computer, adding processing elements, interconnect capacity and other 
components. Run the same program as before at the same degree of parallelization. 

• What has happened to execution times? These will not improve with the second test 
because the degree of parallelization has not been increased. However, performance may 
degrade because of the increased scale of the computer. This is de-scaling behavior, and 
any architecture that manifests it while the system is properly used has inherent limits to 
scalability. 

All highly parallel systems will exhibit some degree of de-scaling behavior unless programs 

exhibit parallel locality. (But, as we shall see, some architectures manifest de-scaling propensities 

even when programs exhibit parallel locality.) In all highly parallel systems, the distance between 

an arbitrarily chosen pair of processing elements grows monotonically with the count of processing 

elements. Thus, if communicating threads of a program are assigned to arbitrary processing ele­

ments, communication time will rise with the system scale, and de-scaling will result. To avoid de­

scaling, programs must exhibit parallel locality: rather than scheduling communicating threads on 

arbitrary processors, the work must be scheduled on "nearby processors." The distance between 

"nearby processors" does not grow with system size. 

ALLCACHE memory is designed to exploit parallel locality. If related threads of a parallel pro­

gram are scheduled for execution within the same branch of the ALLCACHE hierarchy, then local 

cache misses will be resolved with that branch, regardless of how many other branches there may 

be to the system. Thus ALLCACHE does not exhibit de-scaling behavior. 
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By comparison, de-scaling is manifest in "somecache" architectures such as Dash and Alewife. 

Although their basic objectives are the same, there remains one crucial difference - both Alewife 

and Dash use conventional memory to provide a "home" for addresses. Local cache misses are 

resolved by referencing the home memory module, and the location of home is not adjusted dynam­

ically with the behavior of programs. The average distance from a processor experiencing a local 

cache miss and the home memory module where that reference will be resolved is equal to the aver­

age distance between an arbitrary pair of processing elements in the system - and this condition will 

grow as the size of the system does. As a result, "somecache" systems exhibit de-scaling behavior, 

even when applications demonstrate parallel locality. Shared memory distributed architectures, 

such as that embodied in Cm*, will also manifest de-scaling behavior. 

ALLCACHE is the only highly parallel, shared memory architecture that avoids de-scaling. 

82 



© 1992 KENDALL SQUARE RESEARCH CORPORATION. ALLCACHE, KSR, KSR1 AND PRESTO ARE TRADEMARKS OF KENDALL 

SQUARE RESEARCH CORPORATION. ORACLE IS A REGISTERED TRADEMARK OF ORACLE CORPORATION. OSF/L MOTIF IS A 

TRADEMARK OF OPEN SOFTWARE FOUNDATION INC. AT&T IS A REGISTERED TRADEMARK OF AMERICAN TELEPHONE & 

TELEGRAPH COMPANY. UNIX is A REGISTERED TRADEMARK OF UNIX SYSTEMS LABORATORIES. IBM is A REGISTERED 

TRADEMARK OF INTERNATIONAL BUSINESS MACHINES CORPORATION. SNA IS A TRADEMARK OF INTERNATIONAL BUSINESS 
MACHINES CORPORATION. ETHERNET IS A REGISTERED TRADEMARK OF XEROX CORPORATION. 





" K E N D A L L  S Q U A R E ' S  S U C J E S S  I S  T I E D  T O  T H E  C H A L L E N G E S  Y O U  F A C E ;  

T O  S U P P L Y  T H E  W O R L D  W I T H  B E T T E R  P R O D U C T S  A N D  S E R V I C E S .  T H E S E  

C H A L L E N G E S  M A Y  B E  P A R T  O F  T H E  S C I E N T I F I C  G R A N D  C H A L L E N G E S  

S E T  F O R T H  B Y  T H E  F E D E R A L  H I G H  P E R F O R M A N C E  C O M P U T I N G  A N D  

% 

C O M M U N I C A T I O N S  P R O G R A M  O R ,  T H E Y  M A Y  B E  T H E  C O M M E R C I A L  

G R A N D  C H A L L E N G E S  F A C I N G  A E R O S P A C E ,  C H E M I C A L ,  B A N K I N G ,  

T E L E C O M M U N I C A T I O N ,  P H A R M A C E U T I C A L ,  A I R L I N E ,  I N S U R A N C E ,  

P E T R O L E U M  A N D  O T H E R  I N D U S T R I E S .  I N  B O T H  A R E A S  K E N D A L L  S Q U A R E  

I S  D E T E R M I N E D  T O  H E L P  B Y  O F F E R I N G  T H E  F U N C T I O N A L I T Y  A N D  

P E R F O R M A N C E  Y O U  D E M A N D  A T  A  U N I T  C O S T  T H A T  M A K E S  O U R  

S Y S T E M S  T H E  I N E V I T A B L E  C H O I C E .  O U R  V I S I O N  F O R  T H E  F U T U R E  I S  

S I M P L E :  A  N E W  K I N D  O F  P A R T N E R S H I P  W I T H  C U S T O M E R S ,  D R I V E N  
If ' i '!»! :p 

B Y  T H E I R  R E Q U I R E M E N T S  A N D  O U R  A B I L I T Y  T O  S U P P L Y  A  C O N T I N -
2 - m m H » H H 

U I N G  S T R E A M  O F  T E C H N I C A L  I N N O V A T I O N  T O  M E E T  T H E I R  N E E D S . "  

H E N R Y  B U R K H A R D T  I I I  




