&SRI=ARC 18=NOVe75 20320 33522
33522

NLS Programmers® Guide
Content AnalyZer
L10 Language

Command Meta Language
NDDT

Augmentation Research Center

22 NOV 75

Stanford Research Institute
333 Ravenswood Avenue
Menlo park, California 94025

. NLS Programmers’ Guide

sSent to COM
printfile,

18=NOV=T75,
NDN

rRemove

journal

&SRI=ARC 18=NOV=75 20:20 33522
ARC 33522 Rev, 22 NOV 75

directives before using this as a

page {

&SRI=ARC 18=NOV«75 20:20 33522
.w(’. 33522 Rev. 22 NOV 75 NLS Programmers’ Guide

page {i

SSRI=ARC 18=NOV=75 20320 33522
.NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Table of Contents

TABLE OF CONTENTS

INTNODUCTIUNCQDIl'o..ln'o..tcl'.l.'ol'.oc!l..l.'l'.!."‘.ll.z

PART DNE: Content Analyzer PatterNS,secccccescscscsssosrensed

Section 1: lntroduction....-........-o...-.-.-.-......'3A
Section 2: palternso..'-oo-----'--.oo-..--.onoo-ooo-ooosB
Section 3: Examples of Content Analyzer Patterns,,,...s3C
Section 4: USing the CONtent ANAlYZer,.eseessessessssss3D

PART TWO: Introduction to L10 Programming.esseceesvresssccsstd

Section 1: Content Analyzer ProdramS,sessveesseresveenedA
INtrodUCtiON, s ovesasinsinsosnnsshssssessnsvesseesenseesdil

Program StrUCturP.......--.....--......-...--....-..4A2

Procedure Struc{”re-.-.o.o-o.o-ooo--ooco.-.--osvto-04A3
P.xaﬂ‘pIE:.....'.'.'....‘........"...............'.'.4A4
peclaration Stateﬂents..............................4A5

. Body Of the Procedure,,seeesevessnesassrescvenssgnastAb

Programming 51Y193 File StrUCture.nooo0-.'.|010'00014A7
Using Content ANAlyzZer ProOGramS,,.,esessesssssesssssIAB
Prﬂblems.-.-.-...-...-...-.--.-----..--.....--..--..4A9
Section 2% Content Analyzer Programs: Modifying,,,,...«4B
In'roduc(lon..431
String ConsStruUction,cessersesnsnessssssssssssrennsnsiBe
Example=o--vvloo-to-uo...o-vo'ooon'ooc-t.--ooc.vvvoo4n3
More Than One Change per statement,,,...,...........484
controlling which Statements are Modified,..eesevessdB5
486

Problpmsnln!‘vota'..'..Qvlntulll.ll'o.il--o.'t..'l.l

PART THREES Basic L10 Programmingesenscesessscossenansnssned

Section 1: The User Program Environment.ceseeesssnvsseedA
[ntrodUCtIOF.-.........-.................-...-......5A1
The Sequence Lenerator..........--.....-.--..-.-.--05A2
Content Analyzer Fllters...'oicloooonlI.-'Q.O!'ll...5A3
The Portrayal FOrmatter,,sesevessvsssansorensnssssnassdpd

Section 23 BrOQraN S tIUCEUTE o5 i'sasacsnrasntsnsneentsnesB
AN NLS user program consists of the following,,,,,.,5B1
An example Ot a simple L10 program,,.ceeessessessese2?B2

Section 33 Declarations,,,.eeeeesvssscavsvssscssnssvesss>C
IDIIOGUCtIOn.-......-..---.--...-..-.--c.-..-o.---.oSC1
VOrLables, s oisnesssasvoprsbasnsetssssnvosssatsasgspspedcsd
SXMple Variahles.......-.-.................-.-......5C3

. TN R e R O SR R A S e e (]
Text polnters...'..'.'...'...'l'.'...-......"."'.'SCS

~ page {ii

&SRI=ARC 18=NOV=75 20320 33522

.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
Table of Contents

Strinqsnnoocouc-oon-ono--t-t..-.no-oo-oc.occt..ocnvoSCG
Referenced VariabIQS.c.UQOl--oo-oc.--olo.--ono.ocooosc-’
peclaring Many variables in One Statement,,,,eesesss+5C8
Declarinq Locals'......'.-...‘....;.'.......".'....SC9
Settion 43 StAteMeNntS’ ., secssnue/tnsonsesssrgvanensesssoD
IntTOAUCLION, s o vessnrsrassnnetninssrversavusesnsusisdds
B T R A L N o 3 L i Tk A
RUMP Statementlﬂi'l..lI.lCCl'.Il...ll'l‘..ll.'...'..503
IF SLatementy e cesesatoresnsnessonsrevessanssassesssIs
CASE StateMeNnt s sovnsesesstnmessssgsesyersssensnsgnensdDo
LUOP Statement.....'.'..'......"........'.....'....506
WHILE,..FG Statement.l.ll'l'llI"'l'l."lll'."..‘I.SD.’
”NTIL,.,FC Statement,.,,.....,.....,..........,.....SDG
DO, . UNTIL/DO,, ,WHILE Statement,,,ceceeeesenssaesssesdD?
FORI.'I)G Statementl"'ttviittl.OO0.‘.""0.!.0‘!'!050!0
BFGIN...E"D State"ent--o-o-oo-ooto-ou-ov.o.-ooonontSDll
FXIT Statement"Il'l"'....l..l.!'..IIO.......'l..’lle?
RLPEAT Statement.......,..,.....,....,..,.......,..5013
DIVIDE Stdtemento-.oca.-ov-o-oo-.a.-.-cn.-oﬁ.o.--'osold
PROCEDURE CALL Statement,.cesesesssesssvesnvenssssedDlS
RE:TUPN sratement".l'l""...lI'..".'l'.l."'..l--5016
‘ GOTO Statement.-...-.-.-.-.-...-......-......-.--..5917
NULL Statempntl.‘.ll...‘..'.l'llll.'lll....".-l."5[)18
Section 5% l'_x[‘!‘8551°ns.................................5E
Inttoductlon...........,..........,..........,..,...SEI
PR ANt LV OB Se a s e b oo tainsssnessenseyssipssnnnesphnyedbs
nperatchOCOOl.00..l.'vn-'....l0'.0."".'.0".0..005F3

o Y B Y R g L o S A oy G M oA P TP
section 6: String Test and ManipulatioN,,eeeesssanvsassdF
IntrodUCtionl.I."O'l'l........DQ'....."I'I..C...IISFI
current character Position (CCPDS),seesvecesssanssesdF?
Flr}D b'atpment'.........'......'.......,.......'.'..SF3
F]'JD patter')s.'......'........"....................SF‘
Strinq Ccrstruction..'.............'........,.._....5?‘5
Exarnple=...-.-.....-...-.-...-...........-...-...-..5F6
More Than 0One Change per StAtemMeNt,,.ceossseossesessdf?
Text Pointer COMPAriSONS,.eseesvssensessesensnspnnsedfB
Section 7t Invocation of USer FilLersS,,.eeesecessseesssdC
Introauctlon"llI'lll'lll'.l.'.l'l"‘.'..lilll.....ls(;‘
Programs S\)bSYSte'r"oininth.0'0-'.'-.0'-0...Q:Q'QO!SGz
Examples Of USer Programs ,,.viesesessssdoinesisesegso03

: SSRI=ARC 18=NOV=75 20320 33522
.NI‘S Programmers’ Guide ARC 33522 Rev, 22 NOV 75
Table of Contents

PART POUP: InteracltVe L10 Pfoqfamminq.....................6

Section 1: Introduction..........-.......-...-.......--6A
Section 2: cCommand Meta Language (CHML)..eeesecascnssesssbB
IhtrOdUCtion.-.-'-...-.....-....'..-.--......-.-..--651
Program Structur?.........-............-.....-.----.682
SuhsVSYGWS.........-.....-.............-.......-.-..653
Rules....'."'.l‘.l'..'."."'.....'...........'....684
Ueclarﬂticns.-.-.-.......-.-...............-.-.-...-585
CNIJ Fle"‘,nts...........'....................,..'....696
Sample CNMI Proura"..--.--o-o-o-ovo----lo-..ov-o-.-.-687
Section 3: L310 Execution ProcedureS,,eeeesesssssesssesebC
Section 4: Additional L10 CapabilitieS.eeecnssescesnssebD
Introductloh.........-...-...-....-..........-...-..601
Moving Around Within NLS Filesovoo'--cuo-o.n-ounc-'-602
Calling NLS Commands,.,,.._.....,...........,.,.....603
Gpeninc Files'.'.....'...'..'........'."....'..'...604
Displaying MessSages,,sesvseesssvsrsscscnsessssrsnssnssdDS
setting Up for Display Refreshing,,scececsessssnssssbDb
(‘thEr l;set‘)l procedureS'..l.'..'.......'.'..'."..'.607
Globals of lnterESt..........-.--..........-.c.-....ﬁoﬂ
. section 5: Creating and using Attachable Subsystems,,,,bE

PART FIVE: Advanced Programming TopiCS.ssecesssevrssescsesse?

Section 1: Error Handlind we SIGNALS-.ooo-oooctcoo-n-v07A
Secfion 2: ND(‘T DthQQInO.....................-o.o.-.-o-'a
Introductlon.....-.-...-.-.-...........-.-.---...-..751
ACCGSS!nq ”D01o--n.-.o.o--o.--.c--------..-00---.-..782
NDDT Address Expr9551°ns¢-’.¢-ono.---to'.n-'.'ooon.o783
Single=wWord Varlables.,.............................754
string VariablPS.........-......-.-.-........-.--...755
ReCOl’dS....c.............-.......-..--.-.....-.o-...756
Built in NDDT symbolsc.'-.totoot!.ol.--!oonltto'.v.o7b7
SEECial character commands.............'.--o.-.....-788
Traces and brEak901ntS...-...-.................-.-..759
L10 Procedures........,,......................,....7810
Symbols'.--i'.-|o'vooc-o...-¢oto|.u-o----o.'n'coto.’al‘
Scanning for Content........-..-..-...-....-....--.7512
section 3: Writing CML Parsefunctions,,eevsscsnsersssselC
Section 4: Calculator Capahllities....................c7D
IntrOductlonovuootgguo..-vao..oqon.o'Qct.o-cql.'..i!’D’
converting String to Double=pPrecision Floating,,,,,,7D2
converting Floating pPoint to Strinq........-.-.-o-..703
Calculations with Foating Polntqtac-...0-0.0.'!'.!.0704

_NPQQE v

&SRI=ARC 18=NOVe75 20320 33522

‘APC 33522 Rev, 22 NOV 75 NLS Proarammers’ Guide
Table of Contents

Section 53 Fields and ReCOTdS,,sscesesssesssnseessspassslb
Section 6: Stacks and RiINUS,..eeecevveancsssccsssvassnnanlf
Section 7: Using the Sequence GeNEraAtOT.essssseosessssns !l
Intro’juctlon...'.,......,.........,....,,.......,...761
CORROUt NG B R L ar s s ot erssssraiasonsnneson
Sequence WOIK AL€8, sisssssnsiasnssessessssssesnsenesel O3
Displaying SErINGS . (s serrenssvessosnssesesnsanssneselCd
UBING SeqUONEe R Tl ta st s et egiosssiesrssiedtveeensenitod
Section 8: Conditional CompilinG.cseescecesvesessnssnssnelH

ASCII 7=BIT CHARACTER CODES,.yssesssesssncessresssssccescened

page vi

‘]NLS Programmers® Guide

Introduction

&SRI=ARC 18=NOV=75 20:20

ARC 33522 Rev, 22 NOV 75

INTRODUCTION

NLS provides a variety of commands for file manipulation and
viewing, Editing commands allow the user to insert and change the
text in a file, Viewing commands (viewspecs) allow the user to
control how the system prints or displays the file, Line
truncation and control of statement numbers are examples of these

viewing facilities, .

Occasionally one may need more sophisticated view controls than
those available with the viewing features of NLS,

For example, one may
contain a particular

Or one might want to
informatjon found {n

want to
word or

see one
several

see only those statements that
phrase,

line of text that compacts the
longer statements,

Dne might also wish to perform a series of routine editing
operations without specifying each of the NLS commands over and
over again, or build commands for specific applications,

User=written prcgrams may tailer the presentation of the
information in a file to particular needs, Experienced users may
write programs that edit files automatically.

User=written programs currently must be coded in ARC’S
procedure=oriented programming language, L10, NLS itself is coded
in L10, 110 is a highelevel language which must be compiled into
machine~readaple instructions,
Programs whicn interact with users additionally use a language
developed at ARC called command Meta Language (CML), described in
Part Four of this document,

This document describes L10,

This document describes three general types of programs:

~=s5imple filters that control what is portrayed on the user’s
teletype or display (Parts One and Two).

==programs that may modify the statements as they decide
whether to print them (Parts Two and Three),

==those that, like commands,
the job and interact with the user (Part Four),

are explicitly given control of

User proarams that control what material is portrayed take

2a

2b

2b1

2b2

2c

24

2e

2f

2£)

2€2

2f3

page {

33522

‘ARC 33522 Rev, 22 NOV 75

&SRI=ARC 18=NOV=75 20220 33522

effect when NLS presents a seguence of statements in response
to a command like Print (or Jump in DNLS),

In processing such a command, NLS looks at a sequence of
statements, examining each statement to see if it satisfies
the viewspecs then in force, At this point NLS may pass the
statement to & user=written program to see {f it satisfies
the requirements specified in that program, If the user
program returns a value of TRUE, the (passed) statement is
printed and the next statement in the sequence is tested; {f
FALSE, NLS Just goes on to the next statement,

While the program is examining the statement to decide whether
or not to print it, it may modify the contents of the
statement, Such a program can do anything the user can do with
NLS commands,

For more comrplex tasks, a user program function as a
special=purpose subsystem naving (in addjition to the may
supervisor commands) one or more commands, 0Once such a program
is loaded, it can be used just like any of the standard
subsystems, (The MESSAGE program is an example,)

This document is divided into five parts:

Part One i{s intended for the general user,

It is a primer on content Analyzer patterns, allowing the
NLS user to set up simple yet powerful filters whrough which
he may view and edit files, This does not involve learning
the 110 langyage nor programming, This section can stand
alone, and the general (if somewhat experienced) NLS user
should find it very useful,

Part Two is intended for the peainning programmer,

It presents a hasty overview of L10 programming, with enough
tools to write simple programs, This is intended as an
introduction for the beginning user programmer, who we
assume is reasonably familiar with NLS (its commands,
subsysterns, and capabilities) and has some aptitude for
programming,

Part Three is a more complete presentation of L10,
It is intended to acqauaint a potential L10 programmer with

enougn of the language and NLS environment to satisfy most
requirements for automated editing programs, Many of the

NLS Programmers’ Guide
Introduction

2f4

2fda

2£5

2£6
29

291

2gla

292

&SRI=ARC 18=NOVe75 20320 33522
NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75

Introduction

concepts in Part Two are repeated in Part Three so that {t
may stand alone as an intermediate programmer’s reference
guide, This is the section in whieh to begin looking for
answers to specific questions,

Part Four presents more advanced L10 tools and an introduction
to CML, alleowing command syntax specification,

This should give the programmer the ability to write
programs which work across files, which move through files
in other than the standard seqguential order, and which
interact with the user, It allows the programmer to build
user~attachable subsystems with commands looking very much
like standard NLS facilities,

Part Five presents a number of subjects of interest to the
advanced L10 progammer,

We suggest that those who are new to L10 begin by acquiring a
thorough understanding of Part One, Then Part Two should be
studied one section at a time, pausing between sections to try
out the concepts presented by actually writing patterns or
programs that put the new ideas to experimental use, Actual
experience is of at least as much valve as this tutorial,
Tutorial guidance should be requested from ARC through your
architect, 1If you have problems at any point, you should get
help from ARC before proceeding to the next section,

For examples of user programs which serve a variety of needs,
examine the attachable subsystems in the <PROGRAMS> directory and
thelir descriptions in Help, For information about commands
mentioned, ask for the programming subsystem with the NLS Help
command,

293a

294

294a

295

296

2h

page 3

LSRI=ARC 18=NOV=75 20:20 33522

.APC 33522 Rev, 22 NOV 75 NLS Programmers® Guide
Part One: Introduction

page 4

SSRI=ARC 18=NOV=75 203120 33522
‘NLS Programmers® Guide ARC 33522 Rey, 22 NOV 75
Part One: Introduction

PART ONE: Content Analyzer Patterns 3
Section 1: Introduction 3a

content analysis patterns cannot affect the format in which a

statement is printed, nor can they edit a file, They can only

determine whether a statement should be printed at all, They are,

in a sense, a filter through which you may view the file, More

complex tasks can be accomplished through programs, as described

later in this document, 3Jal

The content Analyzer filter is created by typinag in (or selecting

from the text in a file) a string of a special form which

describes those statements which will pass through the filter,

This string is called the "Content Analyzer Pattern", Each

statement is checked against the pattern before it is printed;

only statements that are described by the pattern will be printed, 3a2

.SOW‘E guick examples of Content Analyzer Patterns: 3a3

*C LD *) will show all statements whose first character {s an
open parenthesis, then any number of letters or digits, tnen a
close parenthesis, 3aila

{"blan") will show all statements with the string "blap"
somewhere in them, 3aib

SINCE (3=JUN=75 00:00) will show all statements edited Since
June 3, 1975 jaic

The next part of this section will describe the elements which

make up content Analyzer patterns, followed by some examples, The
final subject of this section is how to put them to use, 3ad

page 5

&SRI=ARC 1B=NDV=75 20320 33522

’ARC 33522 Rev, 22 WOV 75 NLS Programmers’ Guide
Part One: Patterns

Section 2; Patterns 3b

Elements of Content Analyzer Patterns b1

Content Analyzer Patterns describe certain things the system

must check before printing a statement, It may check one or a

series of things, Each test is called an element; the many

possible elements will be described below, ibla

The Content Analyzer searches a statement from the
beginning, character by character, for described elements,
As it encounters each element of the pattern, the Content
Analyzer checks the statement for the occurrence of that
element; if the test fails, the whole statement is failed
(unless there was an "or" condition, as described later) and
not printed; if the test is passed, an imaocinary marker
moves on to the next character in the statement, and the
next test in the pattern is considered,

pattern i{s "LD", the imaginary marker will move over the
next character and go on to test the next element of the
pattern cnly if the next character is a letter or a digit;
otherwise the whole statement fails to pass the filter,

. For example, if the next element in the Content Analyzer

The pattern may include any sequence of the following elements;

the Content Analyzer moves the marker through the statement

checking for each element of the Pattern in turn: 3blb

Literal string elements ibic
‘c == the given character (e,g9, a lower case C)

"string" == the given string (may include non=printing
characters, such as spaces)

Character class elements ibild
CH == any character

I, == lowercase or uppercase letter

D == digit

UL == uppercase letter

LL == lowercase letter

&SRI=ARC 18=NOV=75 20320 33522
‘ NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part One: Patterns

ULD == uppercase letter, or diait

LLD == lowercase letter, or digit

LD == lowercase or uppercase letter, or digit

NLD == not & letter nor digit

PT == any printing character (letters, digits, punctuation)

NP == any non=printing character (e,a, Spaces. control
characters)

Special non=printing character elements 3ble
SP == 3 space
TAB == tab Character
CR == 3 carriage return

. LF == line feed character

EOL == TENEX EOL (end of line) character
ALT == altmode character

Special elements ibif

ENDCHR == beginning and end of every NLS statement; can't
scan past it; not considered a character

TRUE == {5 true without checking anything in statement (used
with OR constrycts, as described below)

iD= id ==« statement created by user whose ident {s given
10# id == statement not created by user whose ident is given

BEFORE (dwt) == statement edited before given date and time

SINCE (d=t) == statement edited since given date and time
E,Q, BEFORE (1 OCT 1974 00:00)

The date and time must both appear in the parentheses,
. It accepts almost any reasonable date and time syntax,

page 7

.ARC 33522 Rev, 22 NOV 75

&SRI=ARC 18=NOV=75 20320 33522
NLS Programmers” Guide

Part One: Patterns
Examrples of valid dates:
17=APR=74 17 APRIL 74
APR=17=74 17/571974
APR 17 74 5/17/174
APRIL 17, 1974
Examples of valid times:
1212213 1234:56
1234 1:156AM
1:56=EST 1200N00N
16:30 (i.e, 4:30 PM)
12:00:00AM (i,e, midnignht)
11:59:59AM=EST (i,e, late morning)
12:00:01AM (i,e, early morning)
3blg

Scan direction
< == set scan direction to the left
> == set scan direction to the riaht

The default, ree-initialized for each new statement, is

scan to the right from before the first character in the

staterent (beginning to end),

Modifyinc Elerents

Several operators can modify any of the elements except the
"special elewents":

NUMBER == multiple occurrences

A number preceding any element other than one of the

nspecial elements" means that the test will succeed only {f
it finds exactly that many occurrences of the element, 1If

there aren’t that many, the statement will be rejected,

Even though there may be more, it will stop after that many

and go on to check the next element in the pattern,
3UL, means three upper case letters

$§ == range of Occurrences

A dollar sign (s) preceding any element other than the
"Special elements" means "any number of occurrences of",

page 8

3b2

3b2a

3b2b

3b2c

Part

&SRI=ARC 1B=NOV=75 20:20 33522

‘NI.S Programmers’® Guide ARC 33522 Rev, 22 NOV 75
One: patctterns

This may inClude Zero occurrences, It is good practice to
put the element itself in parentheses,

s(*=) means any number of dashes
A numper in front of the dollar sian sets a lower limit,
3s§(D) means three or more digits

A number after the dollar sign sets an upper 1imit for the
search, It will stop after that number and then check for
the next element in the pattern, even if it could have found
more,

$3(LD) means from zero to three letters or digits

587(FT) means from 5 to 7 (inclusive) printing
characters

-= floating scan 3b2d

To do other than a character by character check, you may
enclose an element or series of elements in sauare brackets
{]. The Content Analyzer will scan a statement until the
element(s) ils found, (If the element is not in square
brackets, the whole statement fails if the very next
character or string fails the test of the next element,)
this test will reject the statement if it can‘’t find the
element anywhere in the statement, If it succeeds, it will
leave the marker for the next test just after the string
satisfying the contents of the sauare brackets,

"start" means check to see if the next five characters
ares s t ar¢t,

["start") means scan until it finds the string: s t ar
ts

{3p] nmeans scan until it finds three digits,

(3p *:] means scan until {t finds three digits followed
by a colon

== pegation 3b2e

If an element is preceded by a minus sign =, the statement
will pass that test if the element does not occur,

page 9

| &SRI=ARC 18=NOV=75 20320 33522
. ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
Part One: patterns

«LD means anything other than a letter or digit, such as
punctuation, invisibles, etc,

NOT == negation

NOT will be TRUE 1f the element or group of elements
enclosed in parentheses followina the NOT is false,

NOT LD will pass if the next character 1s neither a
letter nor a digit,

Combinina Elerents

Yoy may put together any number of any of these elements to
form a pattern, They may be combined in any order, Spaces
within the pattern are ignored (except in literal strings) so
they may be used to make reading easier for you,

e,g, I1SPFT (", ,NLS3" 1sD) =SP

i,e, one or more printing characters, then scan for ,NLS;
. followed by one or more digits, then check that the next
character is not a space

More sophisticated patterns can by written by using the Eoolean
logical expression features of L10, cCombinations of elements
may in turn be treated as single elements, to be modified or
combined usina loagical operators,

Generally, an expression i{s executed left to right, The
followinag cperations are done in the given order:

()

/

NOT

AND

OR

Parentheses (and square brackets for floating scans) may be
used to group elements, It is good practice to use
parenthesis liberally,

/ means "either or"; the bracketed element, consisting of
. two or more alternatives, will be true if either (any)
element is true,

padge 10

3b2f

3b3

3b3a

3b3b

3b3c

3b3d

3b3e

&SRI=ARC 1B=NOV=75 20320 33522
‘ NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75

Part One: patterns

(3D L 7/ 4D) means elther three digits and a letter or
four diaits,

Since the slash is executed before NOT, NOT D / *h will be
true if the next character is NEITHER a digit nor the letter
"h*, It is the same as NOT (D/’h),

Sometimes you may want want the Scan to pass Your marker
over something if it happens to be there (an optional
element), "TRUE" is true without testing the statement, 1If
the other tests fail, the imaginary marker is not moved,

(b / TRUE) 1looks for a digit and passes the imaginary
marker over it, TIf the next character is not a digit, it
will just go on to the next test element in the pattern
without moving the marker and without failing the test,
(This test always passes,)

i.,e, It is used to scan past somethina(s) which may or
may not be there,

. Since expressions are executed from left to right, it does
no Good to have TRUE as the first option, (If {t i{s first,
the test will immediately pass without trying to scan over
any elements,)

AND

AND means both of the two separated groups of elements must
be true for the statement to pass,

SINCE (3/6/73 00:00) AND ID#NDM means statements written
since March 6, 1973 by someone other than NpM,

OR

OR means the test will be true if either of the separated
elements is true, It does the same thing as slash, but
after "AND" and "NODT"™ have been executed, allowing greater
flexibility,

D AND LLD OR UL means the same as (D AND LLD) OR UL
D AND LLD /7 UL means the same as D AND (LLD /7 UL)

while such patterns are correct and succinct, parentheses
make for much clearer patterns, Elements within

. parentheses are taken as a qroup; the group will be true
only it the statement passes all the requirements of the

3b3f

3b3g

page 11

&SRI=ARC 18«NOV=75 20:20 33522

.MC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
Part One: Ppatterns

aroup, It is a4 good {dea to use parentheses Whenever
there might be any anmkiguity,

page |12

Sectjon 3:

&SRI=ARC 18=NOV=75 20:20 33522

. NLS Programmers’ Guide ARC 33522
Part Dne: Exarples of Content Analyzer Patterns

D 28LD 7 ("CA"] / ("Content Analyzer"])

Rev, 22

Examples of Content AnalyzZer Patterns

This patterr will match and pass any of three types of NLS

statements?

those beginning with a numerical digit followed by

at least two characters which may be either letters or digits,
or statements with either of the strings "CA" or "Content

Analyzer"

anywhere in the statement,

NOote the use of the square brackets to permit a floating
scan == a search for a pattern anywhere in the statement,

Note a

1sc the use of the slash for alternatives,

BEFORE (25=JAN=72 12:00)

This pattern will match those statements created or modified
before noon on 25 January 1972,

. (ID = HGL) OR (ID = NDM)

This pattern will match all Statements created or modified by
Users with the identifiers "HGL" or "NDM",

[(2L (SP/TRUE) / 2D) D ‘= 4D)

NOV 75

3c

3ci

3cla

3c2

3c2a
3c3

3c3a

ica

This pattern will match characters in gthe form of phone nymbers
in 8 statement, Numbers matehed may havVe an
alphabet ic exchange followed by an optional space (note the use
of the TRUE construction to accomplish this) or a numerical

anywhere

exchange,

Examples include DA 6=6200, DA6=6200, and 326=6200,

(ENDCHR) < "cba"

This will

to the end ¢f the statement,

and check

pass those statements ending with "abc",

It will go

for the characters "cba", Note that since you are

scanning backwards, to find "abc" you must look for

Since the
the very

"cba" is not enclosed in sgquare brackets,
last characters {n the statement,

"cba",
it must be

3c4a

3¢5

change the scan direction to left,

3c5a

page 13

&§SRI=ARC 18=NOVe75 20320 33522

.ARC 33522 Rev, 22 NOV 75 NLS Programmers® Guide
Part One; Using the Content Analyzer

Section 43 VUsing the Content Analyzer 3d
Content Analyzer FPatterns may be entered in two ways: 3d1
1) From the BASE subsystem, use the command: 3dla

Set Content (pattern) To PATTERN OK
2) From the FPRUGRAMS subhsystem, use the command: 3dib
Compile Content (pattern) PATTERN OK

0K means "Command Accept", a control=D or,
in TNLS (by default) a carriage return,

In either case: 342
1) patterns may be typed in from the keyboard, or 3d2a
' 2) they may be text in a file, 3d42b

In this case, the pattern will be read from the first
character addressed and continue until it finds a semicolon
(3;) s0 ycu must put a semicolon at the end of the pattern
(in the file),

Viewspec i must be on (i,e, Content Analyzer off) when entering
a pattern, 3d2c¢

Entering a Content Analyzer Pattern does two things: 343

1) compiles a small user program from the characters in the |
pattern, and 3d3a

2) takes that program and "institutes" it as the current
content Analyzer filter proaram, deinstituting any previous
pattern,

"Instituting" a proaram means selecting it as the one to
take effect when the Content Analyzer is turned on, You may
have more than one program compiled but only one instituted,

when a pattern is deinstituted, it still exists in your
program buffer space and may be instituted again at any time
with the command in the PROGRAMS subsystem:

' Institute Program PROGRAM=NAME (as) Content (analyzer) OK

page 14

SSRI=ARC 18«NOV=75 20320 33522
‘ NLS Programmers® Guide ARC 33522 Rey, 22 NOV 75
Part One: Using the Content Analyzer

The programs may be refered to by number instead of
name, They are numbered sequentially, the first
entered being number 1,

All the programs you have compiled and the one you have
institutec may be listed with the command in the PROGRAMS
subsystem:?

Show Status (of programs buffer) 0K

Programs may build up in Your program buffer, To clear the
program buffer, use the PROGRAMS subsystem command:

Delete All (programs in buffer) OK

We recommend thar you do this before each new pattern,
unless vou specifically want to preServe previous
patterns,

To invoke the Content Analyzer: 3d4

. When viewspec i is on, the instituted Content AnalYZer program
(1f any) will check every statement before it is printed (or
displayed), 3Jd4a

I1f a statement does not pass all of the requirements of the
content Analyzer proagram, it will not be printed,

I1n DNLS., it no statements from the tOop of the screen
onward through the file pass the content Analyzer filter,
the word "Empty" will be displayed,

Note: You will not see the normal structure since one
statement may pass the Content Analyzer although its source
does not, Viewspec m (statement numbers on) will help you
determine the position of the statement in the file,

when viewspec K is on, the instituted Content Analyzer filter

will check until it finds one statement that passes the

requirements of the pattern, Then, the rest of the output

(branch, plex, display screen, etc,) will be printed without

checking the Content Analyzer, 3d4b

When viewspec J is on, no Content Analyzer searching {s done,
This is the default state; every statement in the output
(branch, plex, display screen, etc,) will be printed, Note
. that i, j, and Kk are mutually exclusive, 3d4c

page 15

&SRI=ARC 18=NOV=75 20320 33522
.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
part One: Using the Content Analyzer

Notes on the use of Content Analyzer filters; 345

Some NLS cormmands are always affected by the current viewspecs
(including 1,3, or x): 3d5a

Qutput
Jump (in DNLS)
Print (in TNLS)

Most NLS cormands ignore the Content AnalyZer in their editing,

The following BASE subsystem commands offer the option of

specifying viewspecs, or "Filters", (which may turn on the

content Analyzer) which apply only for the purpose of that one
command ancd affect what statements the command works on (only

those statements which pass the filter will be copied, moved,

etc,; structure will be adjusted): 3d5b

Copy

' Delete

Move
Substitute

At this point, it would pe wise to practice until you become

profjcient at Content Analyzer patterns, You might bedin by

trying to use some of the patterns given in the above examples,

and then try writing a few patterns of your own, These patterns

are both a useful NLS tool and a basic component of many L10

programs, We further recommend that you contact ARC via your

architect before you begin the next part, 346

‘ NLS Programmers?’
Part Two: Content Analyzer Programs

PART TWO:

Section 1:

Introduction

Guide

&SRI=ARC 18«NOV=75 20:20 33522

ARC 33522 Rev, 22

Introduction to L10 Proagramming

Content Analyzer Programs

When you specity a content Analyzer Pattern, the PROGRAMS
subsystem constructs a program which looks for the pattern in
each statement and only displays the statement if the pattern
Yyou can gain more control and do more

matching succeeds,
things if you

buyild the program yourself,

The program will be

used just like the simple pattern program and has many of the
Programs are written in NLS just like any
They then can be converted to executable code
a compiler, 1This code resides (or is loaded) in your

sam
oth
by

programs buffer spacej

e limftations,
or ‘text '£iles

it can be instituted as the current

Content Analyzer filter program like a Content Analyzer

Pat

tern,

. Program Structure

If vyou specify a Content Analyzer Pattern.,
program that 1o0oks 1ike this (with the word "pattern" standing
whatever you typed in)g;

for

PROGRAM name

(name) PROCEDURE;

NOV 75

4a

4al

4ala

4a2

NLS compiles a small

IF FIND pattern THEN RETURN(TRUE) ELSE RETURN(FALSE);

END

FINISH

L10 proarams must begin with a header statement, the word
PROGRAM (all caps) followed by the name of the first procedure

to be executed (all lowere-case),

the

program, If the program is being compiled into a file (to

be described at the end of this section),

be substituted for

PROGRAM first
or
FILE deldir

the word PROGRAM,

E,9,

the word FILE should

4a2a

This name is also the name of

4a2b

page 17

&SRI=ARC 18=NOV=75 20320 33522
‘ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
pPart Two: Content Analyzer Programs

(Note: the Content AnalyZer compiler makes up a program
name consisting of UP#!XxXxx, where

is a seguential number, the first pattern being number
one, and

xXxxx 1s the first five characters of your pattern,)
E,g, UP1!SLDI[F

The body of a progranm consists of a series of DECLARATION

statements and PROCEDURES (in any order) which are blocks of
instructions, In the above case, the program consisted of only

one small procedure and no declarations, When the program is

loaded into your programs buffer space, the declarations

reserve space in the system to store information (variables),

when the program is used as a content Analyzer filter program,

the first procedure is called for each statement, It may in

turn call other procedures and access varlables in the program

or in the NLS system, E,gq, 4a2c

. DECLARE X%» Yr 2 ; (described below)
(first) PROCEDURE 3

The end of the program is delimited by the word "FINISH" (in
all upper case), The compiler stops at that point, so any text
after that in the NLS source file will be ifanored, 4a2d

Comments may be enclosed in percent signs (%) anywhere in the
proaram, even in the middle of 110 statements, The L10
compiler will ianore them, 4ale

Except within literal strings, variable names and special L10
words, spaces are ignored, It is Good practjice to use them
liberally sc that your program will be easy to read, Also, NLS
file structure is ignored; statements will be read
sequentially, regdardless of their level, Structure is,
however, very valuable in making the program readable, and it
is good practice to use it in close correlation to the
program’s logical structure, For instance, the programmer
usually makes each of the elements of a program (declarations,
procedures, and FINISH) separate statements, below the header
statement in file structure, This point will be discussed
further later,

we have file which looks something like:

So far.,

&SRI=ARC 18=NOV=75 20320 33522

PROGRAM pamel

DECLARE 4,

DECLARE .., 3
(namel) FROCEDURE ;
(name2) PRUCEDURE ;

FINISH

Procedure Structure

Each procedure must begin with its header statement, This
header statement is a name enclosed in parentheses followed by
the word PROCEDURE, and terminated by a semicolon, E,qg,

(name) PROCEDURE 3
The pody of the procedure may consist of Local declarations,
then L10 statements, An L10 statement {s any program
instruction, terminated by a semicolon, The body must at some
point return control to the procedure that called it, All this
will be further discussed later,

The procedure must end with the terminal statement?

END,

NLS Programmers”® Guide ARC 33522 Rev, 22 NOV 75
Part Two: Content Analyzer Programs

4a3

4aia

4aib

daic

page 19

ESRI=ARC 18«NOV=75 20:20 33522
‘ ARC 33522 Rev, 22 NOV 75 NLS Programmers® Guide
part Two: Content Analyzer Programs

Example (the actual L10 statements in this example will become

clear as you read on): 4a4
PROGRAM compare % Content analyzer, Displays statement if
first two visibles are the same, % 4ada

sreserve space for ("declare") four text pointers named
"pt1" throudh "ptd"%
DECLARE TEXT POINTER pti, pt2, pt3, ptd;
sreserve 100 characters of space for each of two string
variables named "visi1" and "vis2",%
DECLARE STRING vis1([100), vis2(100);
(compare) PROCEDURE 3
%$if find two visibles, set pointers arouynd first two
visibles (strings of printing characters)$%
IF FIND SNP “ptl 1SPT "pt2 sNP “pt3 1SPT “pt4 THEN
BEGIN
$put visibles in strings%
“visis _ ptl pt2 ;
#vis2s% _ pt3 pté ;
g§compare contents of strings, return and display
the statement if {denticals
' IF #visi® = #vis2# THEN RETURN(TRUE):
END;
$otherwise, return and don’t display$:
RETURN (FALSE) 3
END,
FINISH

Declaration Statements 4a5

As you may have guessed from the above example, Content
Analyzer precgrams can manipulate variables (like text pointers
and strings), while patterns cannot, 4a5a

Text Pointers 4a5b

A text pecinter points to a particular location within an NLS
statement (or into a string, as described later),

The text pointer points between two characters in a
staterent, By puttinc the pointers between characters, a
single pointer can be used to mark both the end of one
string and the peginning of the string starting with the
néxt character,

Text pointers are declared with the following peclaration

' statement:

page 20

&SRI=ARC 18=NOVe75 20:20 33522
NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
Part Two: Content Analyzer Programs

DECLARE TEXT POUINTER name ;
Strings 4a5c¢c

String variables hold text, When they are declared, the
maximum number of characters 1is set,

To declare a strings
DECLARE STRING name([num)

num is the maximum number of characters allowed for the
string,

Elql
DECLARE STRING 1stringl100]);

declares a string named "lstring" with a maximum length
of 100 characters and a current length of 0 characters

‘ (it’s empty),

you can refer to the contents of a string variable by
surrounding the name with asterisks, E,q,

#lstring# {s the string stored in the variable named
"lstring",

(Refering to lstring without the asterisks represents
only the first computer word of the string, This is
rarely needed,)

you can put the text between two text pointers in a string
variable with the L10 statement:

#lstring* . ptri ptr2 ;

where ptri and ptr2 are the names of previously declared
and set text pointers, and lstring is a previously
declared string variable,

These variables will retain their value from one statement to
the next, (0Other types of variables and their use will be

discussed in detail in Part Three, Section 3, 4a5d
Body of the Procedure 4a6
RETURN Statement 4aba

page 21

.ARC 33522 Rev, 22 NOV 7%

&SRI=ARC 18«NOV=75 20120 33522

No matter what it does, every procedure must return control
to the procedure that called it, The statement which does
this is the RETURN statement, E,Q,

RETURN 3

A RETURN statement may pass Vvalues to the procedure that
called jt, The values must be enclosed in parentheses after
the word RETURN, E,q9,

RETURN (1,23,47)

A Content Analyzer program must return ejitner a value of
TRUE or of FALSE, 1If it returns the value TRUE (1), the
statement will be printed; if {t returns FALSE (0), the
statement will not be printed, 1I,e,

RETURN (TRUE); will print the statement
RETURN (FALSE); will not print the statement

The RETURN statement often is at the end of a procedure, but
it need not be, For example, in the middle of the procedure
you may want to either RETURN or go on depending on the
result of a test,

Other than the reguirement of a RETURN statement, the body of
the procedure is entirely a function of the purpose of the
procedure, A few of the many possible statements will be
described here; others will be introduced in part Three of this
document ,

FIND Statement

One of the most useful statements for Content Analyzer
programs 1s the FIND statement, The FIND statement
specifies a content Analyzer pattern to be tested against
the statement, and text pointers to be manipulated and set,
starting from the Current Character position (that invisible
marker refered to in Section 1), 1If the test succeeds, the
character position is moved past the last character read,
1£f at any point the test fails, the character position is
left at the position prior to the FIND statement, The
values of text pointers set in the statement prior to the
falling element will remain as set; others of course will
not be changed,

FIND pattern ;

page 22

NLS Programmers® Guide
Part Two: Content Apnalyzer Programs

4a6b

jaé6c

&SRI=ARC 18=NOV=75 20120 33522
‘NI.S Programmers’ Guide ARC 33522 Rev, 22 NOV 75
Part Two: Content Analyzer Programs

The Current Character Position is initialized to BEFORE THE
FIRST CHARACTER, and the scan direction is initialized to
left to RIGHT, FOR EACH NEW STATEMENT passed to the content
Analyzer proagram,

Any simple Content Analyzer pattern (as describe above) is
valid in a FIND statement,

In addition, the following elements can be incorporated in
the pattern:

#stringnames
the contents of the string variable

ptr

store current scan position into the text pointer
specified by ptr, the name of a declared text pointer

. —=NUM ptr

back Up the specified text pointer by the specified
number (NUM) of characters, If NUM is not specified,
1 will be assumed, Backup is in the direction
opposite to the current scan direction,

ptr

set current character position to this position, ptr
is the name of a previously set text pointer,

SF(ptr)
The Current Character Position is set to the front of
the statement in which the text pojinter ptr {s set and
scan direction is set from left to riaght,

SE(ptr)
The Current Character Positjon is set to the end of

the statement in which the text pojinter ptr is set and
scan direction is set from right to left,

page 23

&SRI=ARC 18=NOV«75 20320 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
Part Two: Content Analyzer Programs

BETWEEN ptrl ptr2 (pattern)

Search limited to between positions specified, ptr is
a previously set text pointer; the two must be in the
sare statement or string, Current Character pPosition
is set to first position before the pattern is tested,

EeGos
BETWEEN pt1 pt2 (2D (,]) SNP)
FINDS may be uUsed as expressions as well a5 free=standing
statements, I1f used as an expression, for example {n IF
statements, it has the value TRUE if all pattern elements

within it are true and the value FALSE if any one of the
elements is false, E,qg,

IF FIND pattern THEN ...,
Complicated example:

IF FIND “sf gNP °(s(LD/’«) *) [", " wustr#) SE(sf) sNP
s THEN RETURN(TRUE) ELSE RETURN(FALSE)}

IF Statement 4a6d
IF causes execution of a statement if a tested expression {s
TRUE, 1If it 1s FALSE and the optional ELSE part is present,
the statement following the ELSE is executed, Control then
passes to the statement immediately following the IF
statement,
IF testexp THEN statement 3
IF testeXp THEN statementi ELSE statement2 ;
The statements within the IF statement can be any valid L10
statement, but are not followed by the usual semicolon; the
whole 1F statement is one L10 statement and is followed by a
semicolon,
E.q9,
IF FIND (5D) THEN RETURN(FALSE) ELSE RETURN(TRUE) ;
Programming Style; File Structure 4a7

The compiler which converts your NLS text to code ignores NLS
file structure, This allows you to use structure to make your

page 24

&SRI=ARC 18=NOV=75 20§20 33522
. NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
Part Two: Content Analyzer Programs

proaram text easier to read and understand, Logical use of

structure often facilitates the actual programming task as

well, Some conventions have developed at ARC in this respect,
although flexinility is essential, These should seem obvious

and logical to you, 4ala

All declarations and PROCEDURE statements should be one
level below the PROGRAM statement,

All local declarations (not vet described) and code should
be one level below the PROCEDURE statement,

It is good style, and makes for much easier programming, to
list what youy want to do as comment statements (in percent
signs) at the level below the PROCEDURE statement, Then you
can go back and fill in the code that accomplishes the task
described in each comment statement, The code should go one
level below the comment,

It is also worthwhile to put comments in individual
. statements whose purpose is not obvious,

We will later describe how to block a series of statements
where one is required, These blocks should go a level below
the statement of which they are a part,

File structure shoculd follow the logical structure of the
program as closely as possible, E,q,

IF FIND ([5D)
THEN RETURN(TRUE)
ELSE RETURN(FALSE):
Using Content Analyzer Programs 438

Once the content Analyzer program has been written (in an NLS
file), there are two steps in using it, First, the program
must be "compiled," i,e, translated into machine=readable code;
the compiled code is "loaded" into a space reserved for user

programs (the user programs buffer), Secondly, the loaded
program must be "instituted" as the current Content Analyzer

* program, 4a8a
There are two ways to compile and load a program: 4a8b
. 1) You may compile a program and load it into your programs

page 25

&SRI=ARC 18=NOV=75 20320 33522

.Anc 33522 Rev, 22 NOV 75 NLS Proarammers’ Guide
part Two: Content Analyzer Programs

buffer all in one operation, 1In this case, the progranm
header statement must have the werd PROGRAM in {t, When the
user resets his job or logs off, the compiled code will
disappear,

First, enter the Programs subsystem with the command:
Goto Programs OK

Then you may compile the program with the command:
Compile L10 (user program at) SOURCE 0K

SOURCE is the NLS file address of the PROGRAM
statement,

2) you may compile a program into a TENEX code file and then .
load it into your buffer in a separate operation, The
program can then be loaded from the file into your user
programs buffer at any time without recompiling, The header
statement must use the word FILE instead of PROGRAM, Use
' the PRNOGRAMS subsystem command:

Compile File (at) SOURCE (using) L10 (to file) FILENAME
0K

The FILENAME must be the same as the program’s name,

The code file is called a REL (RELocatable code) file,
Whenever you wish to load the proaram code into the user
programs buffer, use the PROGRAMS subsystem command:

Leoad Proaram (fije) FILENAME OK

once a compiled program has been loaded (by either route), it
must be instituted, This is done with the PROGRAMS subsystem
command: 4a8c

Institute Program PROGRAM=NAME (as) Content (analyzer
program) OK

The named program will be instituted as the current Content
Analyzer filter, and any previously instituted program will
be deinstituted (but will remain in the buffer),

Again, the progrars in the buffer are numbered, the first in
' being nurber one, You may use the number instead of the
program’s name as a shorthand for PROGRAM=NAME,

page 26

&SRI=ARC 18=NOVe75 20120 33522

‘m.s Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Two: Content Analyzer Prodarams

ro invoke the Content Analyzer using whatever program is
currently instituted, use the viewspec i, 3, or k, as described

in pPart One, Section 4 (344), 4a8d
Problems 4a9
Given these few constructs, vYou should now pe able to write a
number of useful Content Analyzer programs, Try programming
the followina: 4a9a
1) Show those statements which have a number somewhere in
the first 20 characters,
2) Show those statements where the first visible in the
statement {s repeated somewnere in the statement,
page 27

Y e —

&SRI=ARC 18=NOVe75 20320 33522

.nkc 33522 Rev, 22 KOV 75 NLS Programmers’ Guide
part Two: Content Analyzer Programs

Sample solutions: 4a9b
Problem |

PROGRAM number
DECLARE TEXT POINTER ptri, ptr2 3
(nurber) PROCEDURE ;
FIND “ptri $20CH "ptr2 ;
IF FIND BETWEEN ptri ptr2 ([D))
THEN RETURN(TRUE)
ELSE RETURN(FALSE);
END,
FINISH

Alternate Solution to Problem 1: Content Analyzer Filter
§20CH < (D)

Problem 2

PROGRAM Vis
. DECLARE TEXT POINTER ptri, ptr2 ;
DECLARE STRING str(500)
(vis) PROCEDURE 3
FIND $NP ®"ptri 1SPT “ptr2 ;
astr* . ptrl ptr2 ;
IF FIND ptr2 (NP #str* NP]
THEN RETURN (TRUE)
ELSE RETURN(FALSE):;
END,
FINISH

pacge 28

&SRI=ARC 18«NOV=75 20:20 33522

Section 2: Content Analyzer Programsi Modifying Statements

Introduction

Ccontent Analyzer programs may edit the statements as well as
decide whether or not they are printed, They are very useful
where a series of editing operations has to be dope time and
time again, This section will introduce you to these
capabilities, All these constructs will be covered in detail
in Part Three,

A Content Analyzer program has several limitations, It can
manipulate only one file and it can look at statements only in
sequential order (as they appear in the file), It cannot back
up and re-examine previous statements, nor can it skip ahead to
other parts of the file, 1t cannot interact with the user,
part Four provides the tools to overcome these limitations,

String Construction

Statements and the contents of string variables may be modified
by either of the following two statements:

ST Ptr .. Stringlist
The whole statement in which the text pointer named "ptr"
resides will be replaced by the string list (to be
described in a minute).

ST ptr ptr .. stringlist ;

The part of the statement from the first ptr to the
second ptr will be replaced by the string list,

ptr may be a previously set text pointer or SF(ptr) or
SE(ptr),

The content of string varifables may be replaced with the string
assignment statement:

sstringname* _ strinaglist ;

The string 1ist (stringlist) may be any series of string
designators, separated by commas, The string designators may
be any of the following (other possibilities to be described
later):

NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
Part Two: Content Analyzer Programs: Modifying Statements

4b

4b1

4bla

4bib

4b2

4b2a

4b2b

4b2c

page 29

a string constant, e,g, "ABC" or ‘w
ptr ptr

the text between two text pointers previously set in
either a statement or a string

#strinaname%

a string name in asterisks, refering to the contents of
the string

E,g,.:

ST pl p2 o #*string# ;
or
ST pl . SF(p1) pl, #string¥, p2 SE(p2)?

(Note: these have exactly the same meaning,)

‘ Example:

PROGRAM delsp % Content analyzer, Deletes all leading
spaces from statements, %
sreserve space for ("declare") a text pointer named "pt"s
DECLARE TEXT POINTER pt;
(delsp) FROCEDURE 3
$if any leading spaces, scan past them and set pointer%
IF FIND 18SP *“pt THEN
$replace statement with text from pointer to
statement enadg
ST pt _ pt SE(pt);
$return, don’t display anythings
RETURN (FALSE) ;
END,
FINISH

More Than One Change per Statement
Part of a text pointer is a character count, This count stays
the same until the text pointer is again set (to some other
position), even though the statement has been edited, 1If, for
example, yoy have the statement
abcdefa

. and i{f yvou have set a pointer between the "d" and the "e", it
will always point between the fourth and fifth characters in

&SRI=ARC 18=-NOV=75 20320 33522

.APC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
Part Two: Content Analyzer Programs: Modifying Statements

4b2d

4b3

4bla

4b4

4bda

&SRI=ARC 18=NOV=75 20:20 33522

.NL.S programmers’ Guide ARC 33522 Rev, 22 NOV 75
part Two: cContent Analyzer Programs: Modifying Statements

the statement, If yoy then delete the character na", your

pointer will be between the "e" and the "f", now the fourth and

fifth characters, For this reason, you should beagin a series

of edits with the last one in the statement and work backwards
through the statement, 4b4b

controlling Which Statements are Modified 4b5

In TNLS, the Content Analyzer program will pe called for

commands which construct a printout of the file (print and

putput), The program will run on eyery statement for which it

is called (e,a, every statement in the pbranch during a Print

Branch command) which pass all the other viewspecs, 0Once you

have written, compiled, and instituted a program which does

some editing operation, the Print command is the easiest way to

run the program on a statement, branch, plex, Or group, 4b5a

In DNLS, the system will call the Content Analyzer program
whenever the display i{s recreated (e,g, viewspec F and the Jump
commands), and also for the Output commands, If the program
returns TRUE, it will only run on enough statements to £1{11 the
. screen, It is safer to have prodrafms that edit the file return
FALSE, Then when you set viewspec {, it will run on all
statements from the top of the display on, and when it is done
it will display the word “"Empty", At that point, change to
viewspec § and recreate the display with viewspec F, then all
statements including the changes will pbe displayed, You can
control which statements are edited with level viewspecs and
the branch only (g) or plex only (1) viewspecs, and by
positioning the top of your window, 4b5b

After havine run your program on a file, you may wish to Update
to permanently incorporate the changes in the file, It is wise
to Update before you run the program so that, if the program
does something unexpected, you can Delete Modifications and

retyrn to a good file, 4b5¢c
Problems 4b6
Try writing the following proarams? 4bb6a

1) Remove any invisibles from the end Of each statement,

2) Make the first word a statement name surrouynded by
parentheses,

page 31

&SRI=ARC 18=

.ARC 33522 Rey, 22 NOV 75 NLS Programmers’ Guide
Fart Two: Content Analyzer Prodrams: Modifying Statements

Sample solutions:
Problem 1

PROGRAM endinv

DECLARE TEXT POINTER ptr 3

(endinv) PRCCEDURE ;
IF FIND “ptr SE(ptr) 1sSNP ®ptr

THEN ST ptr . SF(ptr) ptr ;

RETURN (FALSE) 3
END,

FINISH

Problem 2

PROGRAM makename
DECLARE TEXT POINTER ptri, ptr2 ;
(makename) PROCEDURE 3
IF FIND SNP “ptri 1SLD “ptr2
THEN ST ptrl - (., Ptri ptr2, *), ptr2

RETURN(FALSE)
’ END,

FINISH

page 32

NOV=75 20320 33522

4b6b

SE(ptr2);

&SRI=ARC 18=NOV=75 20:20 33522
NLS Proagrammers® Guide ARC 33522 Rev, 22 NOV 75
Part Three: The User Program Environment

PART THREE: Basic L10 Programming

Section 1: The User Program Environment

Introduction

User=written content Analyzer programs are called in the
process of creating a view of an NLS file e,a,, with a Print
command in TNLS, with any of the OQutput commands, and with the
Jump command in DNLS,

The sequence generator provides statements one at 3 time;
the Content Analyzer may then check each one, Finally, the
formatter prints it or puts it on the screen,

Thus if cne had a user Content Ahalyzer program compiled and
instituted, one coyld have a printout made containing only
those statements in the file satisfying the pattern,

Attachable subsystems are independent of this portrayal
process:, although they are welcome to make use of it, They
consist of commands, which may utilize all the powers of NLS,

The Sequence Generator

In the portrayal process, the seguence generator 10oks at
statements cne at a time, beginning at the point specified by
the user, It observes viewspecs like level truncation in
determining which statements tO pass on to the formatter, Wwhen
the sequence denerator finds a statement that passes all the
viewspec reguirements, it sends the statement to the formatter
and waits tc be called again for the next statement in the
sequence,

For example, the viewspecs may indicate that only the first
line of statements in the two highest levels are to be
output, The cdefault NLS sequence generator will produce
pointers only to those statements passing the structural
filters; the formatter will then truncate the text to only
the first line before {t displays or prints the statement,

Content Analyzer Filters

One of the viewspecs that the sequence generator pays attention
to is "i" =« the viewspec that indicates whether a user Content
Analyzer filter is to be applied to the statement, If this

5a

5al

S5ala

Salb

5a2

5a2a

5a3

page 33

&SRI=ARC 18+=NOV=75 20:20 33522
.ARC 33522 Rev, 22 NOV 75 NLS Programmers® Guide
Part Three: The User Program Environment

viewspec is on, the seqguence generator passes control to a user
content Analyzer proaram, which looks at the statement and
decides whether it should be included in the sequence, If the
statement passes the Content Analyzer (i,e, the user program
returns a value of TRUE), the seguence generator sends the
statement tc the formatter; otherwise, it processes the next
statement in the seauence and sends it to the user Content
Analyzer preocgram for verification, (The particular user
program chosen as a filter is determined by what program is
Instituted as the current Content Analyzer program, as
described below,) 5a3a

In the process of examining a statement and deciding whether
or not it should be printed, the Content Analyzer program
may edit the text of the statement, These edits appear in
the partial copy, just as if the user had made them himself,
This provides a powerful mechanism for automatic editing,

In DNLS, if you display any statements, the program will

stop after f£111ing the screen, 1f you are not displaying

any statements, the program will run on either the whole
. file, a plex (viewspec 1), or a branch (viewspec g), These ‘

along with level clipping viewspecs give one precise control

over what statements in the file will be passed to the

program,

The Portrayal Formatter 5a4
The formatter arranges text passed to it by the seguence
generator in the style specifjed by other viewspecs, The
formatter observes viewspecs such as line truncation, lenagth

and indenting; it also formats the text in accord with the
reacuirements of the output device,

page 34

&SRI=ARC 18=NOV=75 20320 33522

.NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
part Three: Program Structure

Section 2: Program Structure 5b

An NLS user program consists of the following elements, which must
be arranced in a definite manner with strict adherence to

syntactic punctuation: 5b1
The header = Sbla
a statement consisting of the word PROGRAM, followed by the
name of a8 procedure in the proaram, Program execution will
peain with a call to the procedure with this name,
PROGRAM nanme
The FROGRAM statement may have a statement name in
parentheses; {t will be ignored,
rhe word FILE should be substituted for the word PROGRAM if
the code is to be compiled into a file to be saved,
‘ The FILE statement may have a statement name; if so, that
name will be used as the code=g¢jle symbol, You must not
follow the word FILE with a name if there is a statement
name preceding FILE,
S5blb

The body =
consists of declarations and procedures in any order:

1) declaration statements which specify information
about the data to be processed by the procedures in the
proaram and enter the data identifiers in the program®s
symbol table, terminated by a semicolon, E,g,

DECLARE XoV:2
DECLARE STRING test(500] ;
REF x,» 23

peclaration statements will be covered in section 3
(5¢).

2) procedures which specify certain execution tasks,
gach procedure must consist of:

the procedure name enclosed in parentheses followed by

. the word PROCEDURE and optionally an argument list
containing names of variables that are passed by the

page 35

&SRI=ARC 18=NOVe75 20320 33522

.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
part Three: Program Structure

calling procedure for referencing within the called
procedure, This statement must be terminated by a
sericolon, E,q,

(name) PROCEDURE 3
(name) PROCEDURE (paraml, param2) ;

You should always include a comment in the
procedure statement breifly summarizing the
function of the procedure,

the body of the procedure which may consist of LOCAL,
REF, and Li0 statements,

LOCAL and REF declarations within a procedure must
préecede executable code, They will be covered in
Section 3 (5¢),

L10 statements will be covered in Sections 4 and 5

(5d) (5e),
' A RETURN statement must be included at some
point, to pass contrel back to the calling
procedure, :

the statement that terminates the procedure (note the
final period):

END,
The program terminal statement = 5bic
FINISH
Note: this is a siagnal to the compiler to stop
compilationy it does not mean stop eXeCcution, Any text
after that in the NLS source file will be ignored,
Notes on Prograr Writing Style 5p2
Except for within literal strings, variaple names, and special
L10 reserved words, spaces are iagnored, It is good practice to
use them lirerally so that yvour program will be easy to read, 5b2a
comments may be enclosed in percent signs (%) wherever spaces
are allowed, They will be ignored by the compiler, 1t is good

. practice to use the level below the procedure statement for
comments, filling in the code that executes the commented

page 36

&SRI=ARC 18=NOV=75 20320 33522

. NLS Programmers® Guide ARC 33522 Rey, 22 NOV 75
Part Three: Program Structure

function at the level below the comment, It is also wise to
add comments to any individual statements whose function is not
obvious, particularly calls on other procedures, Sh2b

You may find it convenient to add a comment to the FILE
statement includina the information needed by the Compile
File comrand, E,q,

FILE program & (L10,) to (directory,program,subsys,) %

Also, NLS file structure is icgnored, Structure is, however,

very valuable in making the program readable, and it is good

practice to use it in close correlation to the program’s

logical structure, 5b2c

An example of a simple L10 program is provided here, The reader
should easily understand this program after nhaving studjed this

document, 5b3
PROGRAM delsp % content analyzer, Deletes all leading
spaces from statements, % 5b3a
. sreserve space for ("declare") a text pointer named "pt"%

DECLARE TEXT POINTER pt:
(delsp) FROCEDURE
%1f any leadinc spaces, Scan past them and set pointers
IF FIND 18SF *"pt THEN
2replace statement holding pt with text from
pointer to statement end$
ST pt . pt SE(pt);
sreturn, dont displavs
RETURN (FALSE)
END,
FINISH

page 37

&SRI=ARC 18=NOV=75 203220 33522
.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
part Three: Declarations

Section 3; Declarations 5¢

Introduction 5¢1

L10 declarations provide information to the compiler about the

data that is to be accessed; they are not executed, Every

variable uysed in the proagram must be declared somewhere in the

system (either in your program or in the NLS system), 5¢la

There are a number of types of variables available, each with

its own declaration statement; the most freguently used are

discussed here, (Complete documentation is available in the

L10 Reference Guide == 7052,) 5¢cib

Variables 5¢2

Six types of variables are described in this document: simple,
constants, arrays, text pointers, strings, and referenced,
Each is represented by an identifier, some unique lowercase
name, FEach can be declared on three levels: local, @lobal, or
' external, 5c2a

Local Variakles 5¢2b

A local variable is Known and accessible only to the .
procedure {n which {t appears, Loca) varjables must appear

in a procedure argument list or be declared in a procedure’s

LOCAL declaration statements (to be explained below), Any

LOCAL declarations must precede the executable statements in

a procedure,

Local variables in the different procedures may have the
same name without conflict, A global variable may not be
declared as a local variable and a procedure name may be
used as neither, 1In such cases the name is considered to be
multiply defined and a compilation error results,

Global Variacles

Global variables are defined in the program®s DECLARE
statements, Variables specified in these declarations are
outside any procedure and may be used by all procedures in
the program,

External Variables

page 38

&SRI=ARC 18=NOV=75 20:20 33522

NLS Procrammers® Guide ARC 33522 Rev, 22 NOV 75
part Three: Declarations

External variaples are defined in the program®s DECLARE
statements or in the NLS system program,

Variables specified in these declarations may be used by all
procedures anywhere in the system, HMany externals are
defined as part of the NLS system; user programs have
complete access to these, Since other procedures may access
the same variable, the user programmer must be very careful
about changing their values,

Simple vVariables 5¢3

simple variables represent one computer word, or 36 bits, of

memory, Each bit is either on or off, allowing binary numbers

to be stored in words, Each word can hold up to five ASCII

7«bit characters, a single number, Or may be divided into

fields and hold more than one number, 5c3a

peclaring a variable allocates a word in the computer to
hold the contents of the variable, The variable name refers
to the contents of that word, One may refer to the address
of that computer word by preceding the variable name by a
dollar sign (S),

For example, if one has declared a simple variable called
"num", one may put the number three in that variable with
the statement:

NUR o 3.3
One may add two to a variable with the statement:

num o num % 2 3

One may Put the address of nur into a variaple called
addr with the statement:

Aaddr . Snum ;

nne may refer to predefined flelds in any variable by
¢ollowing the name of the variable with a period, then the
field name, For example, the fields RH and LH are globally
defined to be the riaght and left half (18 bits) of the word
respectively; e,q,

num.LK - 2 ?
num.RH o~ 3

page 39

&SRI=ARC 18=NOV=75 20:20 33522

‘ARC 33522 Rey, 22 NOV 75 NLS Programmers® Guide
Part Three: Declarations

Fields may be defined by the user with RECORD statements
(described in Section 5 of Part Five), Additionally, you
may refer to systeme=defined fields (e,9, RH), They divide
words into fields by numbers of bits, so they may refer to
any declared word, For example, the field "LH" refers to
the lefte-most 18 bits in any 36~bit word,

I1f vou assian a full word to a field of n bits within a
word, the rightemost n bits will be assigned to the fileld
in the destination word; the rest of the destination word
will be untouched,

1f you assian a field with a word to a full word, it will
be right=justified within the destination word; the
remaining bits in the destination word (to the left of
the assigned bits) will be set to zero,

Declaring Simple Global Variables S5c3b

DECLARE name ;

. "name" is the name of the variable, It must pe all
lower=case letters or digits, and must begin with a
letter,

Eth

DECLARE X1 3

optionally, the user may specify the initial value of the
variable being declared, If a simple variable 1is not
initialized at the program level, for safety it should be
initialized in the first executed procedure in which it
appears,

DECLARE name = exp @

exp is the initial value of name, It may be any of the
following:

= a numeric constant optionally preceded by a minus
sign (=)

= a string, up to five characters, enclosed in

guctation marks

. - another variable name previously defined in a SET

page 40

&SRI=ARC 18=NOV=75 20:20 33522

. NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Three: Declarations

statement (described below), causina the latter’s
value to be assianed

Examples:
DECLARE x2=53
%$x2 contains the value 5%
DECLARE x3="0UT";
ax3 contains the word OUTS
DECLARE xx=x4:

$x4 nas previously been declared in a SET
statement$

Formal parameters (passed to a procedure) are allocated as
local simple variables, then initialized whenever the procedure

is called, witnin the called procedure, they should be treated
. as simple variables, 5cic
Constants 5c4

Yoy may declare a (simple) variable to be a constant value with
the statement: S5cda

SET namel=exp

where names and expressions are as descriped apove for
{nitjialjzing symple varjables,

constants take no memory, They may be refered to just like
simple variables, except the name must be preceded by a dollar
sign (§)., They may not be changed by the program, E,Q, Scé4b

after the declaration:
SET var = 4 ;
the assignment:
num . Svar
will assian the value 4 to the variable num,

Arravs 5¢5

Multisword (one=dimensional) array variables may be declared;
computer words within them may be accessed by indexing the
variable name, ihe index follows the variable name, and is

&SRI~ARC 18=NOVe75 20320 33522

.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
Part Three: peclarations

enclosed in square brackets (], The first word of the array
need not be indexed, The index of the first word is zero, so
if we have declared a ten element array named "blah": 5c5a

blah 1is the first word of the array

blah{1]l 1is the second word of the array

blah[9] 1is the last word of the array

Declaring Global Array Variables 5¢5b

DPECLARE namelnunm] 3
num is the number of elements in the array {f the array
is not being initialized, It must, of course, be an
integer,

EeQe
DECLARE sam(10);

. declares an array named "sam" containing 10 elements,
pptionally, the user may specify the initial value of each
element cf the array, If array values are not initialized

at the program level, for safety they should be initialized
in the first executed procedure in which the array is used,

DECLARE name = (numi, num2, ees) }

nur is the initial value of each element of the array,
The number of constants implicitly defines the nuymber
of elements in the array, They may be any of the
constants allowed for simple variables,

Note: there 1s a one=to=one correspondence between the '
first constant and the first element, the second constant
and the second element, etc,

Examples?
DECLARE numbs=(1,2,3);

declares an array named numbs containing 3 elements
which are initialized such that:

numbs = 1
. numbs(1] = 2
numbs(2) = 3

&SRI=ARC 18=NOV=75 20320 33522

DECLARE motley=(10,58blan);

declares an array named motley containing 2
elements which are initialized such that:

motley = 10

motley(1] = Sblah = the address of the variable
"blah"

Text Pointers

A text pointer {s an L10 feature used in string manipulation
constructions, It {s a two=word entity which provides
information for pointing to particular locations within text,
whether in string variables or in NLS statements,

The text pointer points between two characters in a
statement or string, By putting the pointers between
characters a4 single pointer can be used to mark both the end
of one substring and the beginning of the supstring starting
with the neXt character, thereby simplifying the string
manipulation algorithms and the way one thinks about
strings,

A text pointer consists of two words: a string identifier and a
character count, Assume vou have declared a text pointer named
"Dt 'ﬂ

pt refers to the first word of the text pointer, The first
word, called an "stid," contains three system=defined
fields:

stfile == the file number (if an NLS statement)

stastr == a bi{t indicating string, not an NLS statement
stpsid ==~ the psid of the statement; every statement has
a unigue number (psid) attached to it,

The stid is the basic handle on a statement in L10, It
is often useqd alone, Since it {5 a single=word value, it
may be stored in a simple variable and passed easily
between procedures, and is used by many routines to
specify a statement or string,

1f an stid is used without being properly set, the
run~time error message "fst entry nonexistant" may
result,

NLS Programmers?’ Guide ARC 33522 Rey, 22 NOV 75
Part Three: Declarations

5¢6

5cba

5¢6b

page 43

&SRI=ARC 18«NOV=75 20320 33522

. ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
Part Three: Declarations

ptf1) refers to the second word of the text pointer, The
second werd contains a character count, with the first
position peing 1 (before the first character),
For example, one might have the following series of
assiagnment statements which fi11 the three fields of the
first word and the second word with data, with pt being the
name of a declared text pointer:
pt.,stfile . fileno;
gfileno is a simple variable with a number in it%
pt.stastr .. FALSE;
%$a statement, not a string%
pt,stpsid - oriain;

%all origin statements have the psid = 2; origin is a
. glebal variable with the value 2 in it%

pElt) & 1t

sthe word one after pt (i,e, the character count) qets
1, the beginning of the statement$

1t is important that stid’s be initialized properly to avoid
errors, Jlext pointers may be most easily initialized by
setting them in a FIND statement (see Section 6),

Declaring Text Pointers 5che
DECLARE TEXT POINTER pt 3

The names pl, p2, p3, p4, and p5 are glopally declared and
reserved for system use,

Strings 5¢7
string varisbles are a serles of words holding text, when they
are declared, the maximum number of characters is set, The
first word contains the two globally defined flelds: S5c7a

M == the maximum number of characters the string can hold
I, == the actyal number of characters currently in the string

‘ The next series of words (as many as are required by the

page 44

&SRI=ARC 18=NOV=75 20:20 33522
NLS Proagrammers® Guide ARC 33522 Rev, 22 NOV 75
Part Three: Declarations

maximum string size) hold the actual characters, five per word,
in ASCII 7=bit code, 5¢7b

#str* refers to the contents of the string variable "str",
str refers to the first word of the string variable "str";
typically this is only useful in combination with the two
fields "M" and "L":

str,M refers to the maximum declared length of the
string variable "str" (an integer),

str,L refers to the current length of the string stored
in the string variable "str" (an integer),

Declaring Strinas 5cilc
The DECLARE STRING enables the user to declare a global
string variable by initializing the string and/or declaring
fts maximum character length,
To declare a string:

DECLARE STRING. name(num] ;

num is the maximuym nymber of characters allowed for
the string

Since the maximum statement lenath is 2000 characters,
voy should not need to declare a string greater than
2000 characters long,

EeQ,
DECLARE STRING 1stringl(100);
declares a string named "lstring" with a maximum
length of 100 characters and a current length of 0
characters

70 declare and initialize a strinag:

DECLARE STRING name="Any strinag of text"

The length of the literal string defines the maximum
length of the string variable,

E.Q,

page 45

&SRI=ARC 18=NOV=75 20:20 33522

‘ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
Part Three: Declarations

DECLARE STRING message="RED ALERT";

declares the string message, with an actual and
maximum length of 9 characters and contains the text
"RED ALERT"

REF: Referencec Variables 5c8
Reference Declarations 5c8a

After a simple variable has been declared, the REF statement
can define it to represent some other variable, A
referenced variable holds the address of another declared
variable of anv type, Whenever the referenced variable is
mentioned, L10 will operate on the other variable instead,
as if it were declared in that procedure and named at that
point,

This is useful when youy wish a procedure to Know about a
mylti=-word variable, 1In procedure calls, you are only
allowed to pass sinagle=word parameters, If vou wish a

. called procedure to use or operate on a text pointer, array,
or string, you may pass the address of that multie=word
variable, Then, in the called procedure, you must REF the
formal parameter receiving that address, From then on in ,
the called procedure, when you refer to the REFed parameter, :
you are actually operating on the multi=word variable
declared in some other procedure to which the local REFed
variable points, i,e, on the variable at the address
contained in the REFed parameter,

Example:
1f the simple variable "loc" in the current procedure
has been REFed and contains the address of the string
"str" local to the calling procedure, then operations
on loc actually operate on the string in str:

smes#® . 410CH;
smes gets the string in str%

#loc* _ "corpuscle";

%Str gets the string "corpuscle"$

‘ similarly, you cannot return multi-word variables from a
called procedure, I1f vou wish a procedure to return a

page 46

SSRI=ARC 18=NOV=75 20320 33522
.NLS pProgrammers® Guide ARC 33522 Rev, 22 NOV 75
Part Three: Declarations

string, vou must declare the string as a local in the
CALLING procedure, pass its address to a REFed variable in
the called procedure, Then the called procedure can modify
the string as if it were local (and return nothing), The
modifications will be made in the actual string variable,

Unreferencing FEFed Variables Sc8b

Dne may refer to the actual contents (an address) of a REFed
varjable (i,e, "unref" it) by preceding the referenced
variable name with an ampersand (&), If, for example, an
address was passed to a REFed variable, and you wish now to
pass that address on to another procedure, you can "unref"
it, i,e, access the actual content (the address of some
variable),

E«Q, if X has been REFed and holds the address of y:
CA
. $z gets the CONTENTS of Y%
% o BX .3
$2 gets the ADDRESS of y%

This construct miaht be used, for example, if one procedure
has been passed the address of a string, operates on it,
then wisheés to pass (the address of) that string on to

another procedure that it calls,

This can be a tricky concept; it may be worthwhile to review
this section carefully,

REFing Simple Variables Sc8c
once a simple variable has been declared (as a 9lobal,
local, or parameter), it may be REFed with the L10
declaration statement:
REF var
It will be a reference from then on in that procedure, and
you must always use the ampersand to refer to its actual
contents: the address of the variable it references,

‘ Note that the REF statement does not allocate storage; it
just sets an attribute of an existing variable,

page 47

&SRI=ARC 18=NOV=75 20320 33522

.ARC 33522 Rev, 22 NOV 75 NLS Programmers’

Guide

part Three: Declarations

1£ you wish to use a variable that is not REFed as {f it
were REFed, enclose it in square brackets (1], E,g, assume
the simple variable "astr" holds the address of a string
variable put was NOT REFed:

#[astrl* refers to the contents of the string variable
whose address is in astr,

Note on Programming Style

you should always REF locals and parameters which hold the
address of something to be accessed (even if that variable
is only uysed to pass the address on to another procedure),

Declarina Many Variables in nNne Statement

One may avoid putting several individual declarations of

varjables in a series by putting variables of simjlar type,

inftialized or not, in a list in one statement following a

single DECLARE, separated by commas and terminated by the usual

semicolon, Array and simple varibles may be put together in
. one statement,

Examples:

DECLARE x, v(10), z = (1, 2, =5);
DECLARE TEXT POINTER tp, sf, pPtl, pt2 ;
DECLARE STRING 1string(100), message="RED ALERT" ;

Declarina Locals

Proaram level declarations (DECLARE and REF) and procedures may
appear in any order, However, procedure level declarations
(LOCAL and REF inside a procedure) must appear before any
executable statements in the procedure, The different types of
variables may be declared in any order, but a variable must be
declared before it can be REFed,

Whenever possible, LOCALsS should be used instead of globals,
It makes for a cleaner program if vou pass parameters among
procedures rather than depend on global variables to
transmit information,

With one exception, a local variable declaration statement is
just the sare as a alobal with the word "LOCAL" substituted for
the word "DECLARE", The one exceprtion is that LOCAL

. declarations can not initialize the variables,

page 48

5c8d

5¢9

5¢c9a

5¢c10

5¢10a

5¢10b

SSRI=ARC 18=NOV=75 20:20 33522

NLS Programmers® Guide
Part Three: Declarations

Examples:
LOCAL var, flag, levell12) :
LOCAL TEXT POINTER tp, pt, sf ;
LOCAL STRING test(100), out(2000) ;

When a procedure is called by another procedure, the calling

procedure may pass one=word parameters, The procedure receives

these values in simple local variables declared i{n the

PROCEDURE statement’s parameter list, For example, two locals

will automatically be declared and set to the passed values
whenever the procedure "procname" is called:

(procname) PROCEDURE (varl, var2) g

var] and var2 must not be declared again in a LOCAL

statement, They may, however, be REFed by a REF statement,

as discussed above, and used throughout the procedure,
The statement which calls procname may look like:

procname (locvar, 2)

varl will be initialized to the value of the variable
"locvar" and var2 will get the value 2,

peclaring Externals

Externals are declared just like globals, with one exception,
The word DECLARE must be followed by the word EXTERNAL, E,Q,

SET EXTERNAL one=1, two=2 ;

DECLARE EXTERNAL a, b(10), c=5 ;

DECLARE EXTERNAL TEXT POINTER exptril, exptr2 ;
DECLARE EXTERNAL STRING exstr(100) ;

REF specifications mav not be external to the program,

ARC 33522 Rev, 22 NOV 75

5¢10c

5cii

5cita

Scitb

page 49

§SRI=ARC 18=NOV=75 20:20 33522
. ARC 33522 Rey, 22 NOV 75 NLS Proarammers’ Guide
Part Three: Declarations

Accessina Reaisters 5¢c12

The user may access machine registers (the same length as other
words, i,e, 36 bits) by naming them with the declaration: 5¢12a

REGISTER name = regnum ;
or
REGISTER namel=regnuml, name2=regnum?2 ;

The declared names will then represent the registers to which

they are attached, You may then access or assign values to

their content, On TENEX, the user programmer may use the first

seyen registers, registers 0 through 6, (Reaisters 7 through

15 are reserved for system use,) E,qg, 5c12b

REGISTER r0=0, ri=1, r2=2, r3=3, rd4=4, r5=5, r6s=6 ;

The names used in the aboVe example are used most often by '
convention, |
Reaisters must be ysed very carefully! They are typically used
. when calling TENEX JSYS (see section 4), Many L10 constructs :
and proceduyres use the registers; you should assign their
content to a variable immediately after the JSYS call i{f you
wish to save {t, 5c12c

page 50

Introduction

&SRI=ARC 18=NOV=75 20:20 33522
NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Three: Statements

Section 4: Statements 5d

5d1

This section will describe some of the types of statements with
which one can build a procedure, The term "expression" (often
abbreviated to "exp") will be used in this section, and will be

explained in detail in Section 5 (5e), 5dia
Assignment 5d2

In the assignment statement, the expression on the right side

of the "_" is evaluated and stored in the variable on the left

side of the statement, 5d2a
Var .. exp
where var = any qlobal, local, referenced or unreferenced
variable,

One may make a series of assianments in one statement by

enclosing the list of variables and the list of expressions in

parentheses, The order of evaluation of the expressions is

left to right, The expressions are evaluated and pressed onto

a stack; after all are evaluated they are popped from the stack

and stored in the variables, 5d2b

(varl, var2es eee) = (€xplr €XP27 oee)

Naturally, the number of expressions must equa) the number
of variables,

Example:
(ay b) « (C+d, a=b)

The expression c+d is eyvajuated and stacked, the
expression a-b is evaluated and stacked, the value of a=b
is popped from the stack and stored into b, and finally,
the value of c+d is popped and stored into a, It is
equivalent to:

terpl o c+d
temp2 .. a»b
b o~ ténp2
a . templ

- .

page 51

|
|
|
|
|

&SRI=ARC 18=NOVe=75 20320
NLS Programmers’ Guide

ARC 33522 Rev, 22 NOV 75

Part Three: Statements

One may assian a single value to a series of variables by
stringing the assignments together:

varl . var2 . var3d . exp }

The assignment will be made from right to l1eft, varl, var2,
and var3 will all be given the value of the expression,

Example:
8D it 0%
Both @ and b w11l be given the vajlue zero, This type of
staterent can be useful in initializing a series of
variables at the beginning of a procedure,
BUMP Statement
The BUMP statement will add one to a variable:
BUMP var
This is equivalent to:
var .. var + 1
BUMP DOWN will subtract one from a variable:
BUMP DOWN var
This is equivalent to:
VAY . 'van s’} §
You may BUMP more than one variable in a Single statement:
BUMP vari, var2, vard,,,, ?
BUMgrDﬂhN varl, var2, vard,,.. !
IF Statement
This form causes eXecution of a statement if a tested
expression is TRUE, It the expression i{s FALSE and tnpe
optional ELSE part is present, the statement following the ELSE

is executed, Control then passes to the statement immediately
following the 1F statement,

page 52

5d2c¢

5d3

5d3a

5d3b

Sdic

5d4

5d4a

33522

&SRI=ARC 18=NOV=75 20320 33522
. NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Three: Statements

IF testexp THEN statement ;
IF testexp THEN statementl ELSE statement2 ;

The statements within the IF statement can be any statement,

but are not followed by the usual semicolon; the whole IF

statement is treated like one statement and followed by the
semicolon, 5d4b

EvQs 5d4c
IF y=z THEN y.y+1 ELSE y.zZ }

In some cases, complex nested IFs may be simpler {f rewritten
as a CASE statement, 5d4d

CASE Statement 5d5

This form is similar to the IF statement except that it causes
one of a serjes of statements to be executed depending on the
. result of a series of tests, 5d5a

CASE testexp UF
relop exp ! statement
relop exp i statement ;
relop exp & statement ;

ENDCASE Sstatement j

where relop = any relational or interval operator (>=, <, =,
IN, etc,) see Section 5 (5e3c) and (5e3d),

The CASE statement provides a means of executing one statement
out of many, The expression after the word "CASE" is evaluated
and the result left in a reaister, This 1is used as the
leftwhand side of the binary relations at the beginning Oof the
various cases, FEach expression is evaluated and compared
according te the relational operator to the CASE expression,

1f the relationship is TRUE, the statement is executed, If the
relationship 15 FALSE, the next expression and relatonal
operator will be tried, It none of the relations is satisfied,
the statement following the word "ENDCASE" will be executed,
control then passes to the statement following the CASE

statement 5d5b
‘ Note that the relop and expressions are followed by a colon,
and the statements are terminated with the usual semicolon,

page 53

As a point of style, the conditions of the CASE statement

should be put one level below the CASE statement in the source

(text) file, The statements (if they are more than one line)

may be put one level below the condition, 5d5d

pPage 54

&SRI=ARC 18=NOVe75 20:20 33522

‘ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide -

Part Three: Statements

The word ENDCASE {s not followed by a colon, In ENDCASE,
the statement may be left out == this is the equivalent of
having a NULL statement there; nothing will happen,

Example:

CASE ¢ OF
= ai %executed {f ¢ = a%
X - V3
> bt sexecuted {if ¢ > b%
(X ¥) = (X+Y, X=y)3
ENDCASE g%executed otherwises
V - X3

CASE char OF
= D: %1f char = the code for a digitg
char .. "1
= UL: %1if char = the code for an upper~case letters
char .. ‘0
ENDCASE; %otherwise nothingg

Several relations rmay be listed at the start of a single case;
they should be separated by commas, The statement will be
executed if any of the relations is satisfied, 5d5¢

CASE testexp OF
relop exp: statement 3
relop exp, relop exp: statement ;
relop exp, relop exp, relop exp: statement 3

.
ENDCASE statement ;
Example: ,

CASE ¢ OF
=a, <d: %executed if ¢c=a or c<dg
X - VY
>b, =d: %executed if c>b or c=d%
(X,V) o (X4Y,x*V);
ENDCASE %executed otherwiseg
Y - X3

&SRI=ARC 18=NOV=75 20120 33522
. NLS Programmers® Guide ARC 33522 Rev. 22 NOV 75
Part Three: Statements

LOOP Statement 5d6
The statement following the word "LOOP" is repeatedly executed
until control leaves by means of some transfer instruction
within the 1loop, 5d6a
LOOP statement;
where statement = any eXecutable L10 statement
Example:

LOOP IF a>=b THEN EXIT LOOP ELSE a - a+l ;

(It is assumed that a and b have been initia)lized before
entering the loop,)

The EXIT construction is described below, It is extremely
impertant to carefully provide for exiting a loop,

. WHILE,,,DO Statement 5d7
This statement causes & statement to be repeatedly executed as
lona as the expression immediately following the word WHILE has
a logical value of TRUE or control has not been passed out of
the D0 loop by EXIT LOOP (described below), 5d7a
WHILE exp DO statement ;
exXxp {s evaluvated and if TRUE the statement following the word
pDD is executed; exp is then reevaluated and the statement
continually executed until exp is FALSE, Then control will
pass to the next statement, 5d7b

For example, if you want to £1i11 out a string with spaces
through the 20th character position, you could:

WHILE str,L < 20 DO #str# _ #str#, SP; fwhat’s already
there, then & Spaceg

remember that the first word of every string variable has
two globally defined fields:

L == actual length of contents of strina variable
M == maximur length of string variable

‘ The WHILE construct is equivalent to: s5d7c

page 55

&SRI=ARC 18=NOVe75 20320 33522
.ARC 33522 Rey, 22 NDV 75 NLS Programmers’ Guide
part Three: Statements

Loop
IF NCT exp THEN EXIT LOOP
ELSE statement
UNTIL,,..PO Statement 5d8
This statement is similar to the WHILE,,,DO statement except
that statement followina the DO is executed until exp is TRUE,
As long as exp has a logical value of FALSE the statement will
be executed repeatedly, 5dBa
UNTIL exp DO statement ;
Example:

UNTTIL a>b DO a . a+1 ;

The UNTIL construct is eguivalent to: 5d8b
Loop
. IF exe THEN EXIT LOOP ELSE statement
p0, ., ,UNTIL/DO,,,.WHILE Statement 5d9

These statements are like the preceding statements, except that
the logical test is made after the statement has been executed
rather than before, Sd%a
p0 statement UNTIL exp:
DO statement WHILE exp;
Thus the specified statement is always executed at least once
(the first time, before the test is made), For example, this
DO,, .UNTIL: 5d9b
DO arraylvar] o 0 UNTIL (var := var = {) = 0 ;
and this n0,,.WHILE: 5d9c
DO array(var) . 0 WHILE (var := var = 1) > 0 ;

are both eguivalent to: 5d49d

Loop
BEGIN

. arraylvar] — 0 3

page 56 '

NLS Programmers® Guide
Part Three: Statements

&SRI=ARC 18=NOV=75 20320 33522

IF (var 3= var =« 1) = 0 THEN EXIT LOOP ;
END3

FOR,,,.D0 Statement

The FOR statement causes the repeated execution of the
statement following "po" until a specific terminal value {s

reached,
FOR var UP UNTIL relop exp DO statement;

(UP will be assumed {f left out,)

FOR var DOWN UNTIL relop exp DO statement;

where
var = the variable whose value is incremented or
decremented each time the FOR statement {s

executed

relop = any relational operator (described in Seic)
exp = when combined with relop, determines whether
or not another iteration of the FOR statement

will be performed, It {s recomputed on each
iteration,

E.a, FOR 4 UP UNTIL > 7 DO a _ a + t(i] 3

Optionally, the user may initialize the variable and may
increment it by other than the default of one,

FOR var . expl UP exp2 UNTIL relop exp3 DD statements
FOR var .. expl DOWN exp2 UNTIL relop exp3 pO statement;

where

expl = an optional initial valuye for var, If expl is not
specified, the current value of var is used,

eXp2 = an optional value by ¥Which var will be incremented

(if UP specified) or decremented ({f DOWN specifjed), If

exp?2 is not specified, a value of one will be assumed,
Note that exp2 and exp3 are recomputed on each iteration,

Example:

ARC 33522 Rey, 22 NOV 75

5d10

Sdi10a

5d10b

5d10c¢

page 57

ESRI=ARC 1B=NOVe75 20320 33522
.ARC 33522 Rev, 22 NOV 75 NLS Programmers® Guide

Part Three: Statements

FOR K w N UP K/2 UNTIL > m#3 DO x(K] - K3
is equivalent to

Ko DY
LOCP
BEGIN
IF Kk >n#3 THEN EXIT LOOP;
X k] kS
K w K '+ K121
END;

BEGIN,, .,END Statement 5d11

The BEGIN,..END construction enables the user to group several
statements into one syntactic statement entity, A BEGIN.,.END
construction of any length is valid where one statement is

reauired, S5dila

BEGIN statement ; statement ;3 ... END 3
Example:

IF a >= b#Cc THEN
REGIN
a.lbs
Cad+5;
END

ELSE
BEGIN
a.C}
b.G+2;
C.hb¥ds7
END

Note the use Of NLS file structure to clarify the logic and
separate the blocks, plocks should always be put one level
below the statement of which they are a part,

EXIT Statement 5d12

The EXIT statement transfers control (forward) out of CASE or
iterative statements, A CASE statement can be left with an

EXIT CASE statement, All of the iterative statements (LOOP,

WHILE, UNTIL, DO, FOR) céan be exited by the EXIT LOOP

statement, EXIT and EXIT LOOP have the same meaning, 5d12a

SSRI=ARC 18=NOV=75 20320 33522
‘Nl,s programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Three: Statements

EXIT LOCP num or EXIT num
EXIT CASE num

where num is an optional integer, The optional number
(num) specifies the number of lexical levels of CASE or
iterative statements respectively that are to be exited
(e,a, if loops are nested within loops), If a number is
not given then ¢4 is assumed,

Examples:

LOOP
REGIN
TF test THEN EXITj
$the EXIT will branch out of the LOOP%

DR)

END;

UNTIL something DO
'I’ BEGIN
WHILE testl DO
BEGIN
LA N)
IF test2 THEN EXIT;
%the EXIT will branch out of the WHILE%
L A B LN)

END 3

L B B
END;
UNTIL something DO
BEGIN
WHILE testil DO
BEGIN
IF test2 THEN EXIT 2;
$the EXIT 2 will branch out of the UNTILS
LR B)

END;

END

page 59

&SRI=ARC 18=NOV=75 20320 33522

‘ARC 33522 Rey, 22 NOV 75 NLS Programmers’ Guide
Part Three: Statements

CASE exp OF
=something:
BEGIN

LI N
IF test THEN EXIT CASE;
$the EXIT will branch out of the CASES%

END}

REPEAT Statement 5d13
The REPEAT statement transfers control (backward) to the front
of CASE or iterative statements, The optional number has the
same meaning as in the EXIT statement, REPEAT and REPEAT CASE
have the sare meaning, Sd13a
REPEAT LCOP num

REPEAT CASE num (exp) or REPEAT num (exp)

. If an expression is given in parentheses with the REPEAT CASE, |
then it is evaluyated and ysed in place of the expression given ’
at the head of the specified CASE statement, If the expression
is not given, then the one at the head of the CASE statement {is
reevaluated, 5d13b

Examples: 5d13c

CASE expl OF
=something:
BEGIN
LA B B L
IF test]l THEN REPEAT;
$REPEAT with a reevaluated expl%
PR R
IF test2 THEN REPEAT(exp2):;
$SREPEAT with exp2%

LR RN RN

END;

ENDCASE

page 60

&SRI=ARC 18=NOV=75 20320 33522

.NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Three: Statements

LOOP
BEGIN
LR L B
IF test THEN REPEAT LOOP;
%REPEAT LOOP will go to the top of the LOOP%

END3
DIVIDE Statement 5d14
The divide statement permits both the guotient and remainder of
an integer division to be saved, The syntax for the divide
statement is as follows: 5d14a

DIV expl / exp2 , quotient , remainder :

Quotient and remainder are variable names in which the
respective values will be saved after the division, 5d14b

E.Q,

. DIV a /by, ayr 3

a will be set to a/b to the greatest integer with r
getting the remainder

Floating point calculations are described in Part Five, Section
4, Sdldc

PROCEDURE CALL Statement 5d15

Procedure calls direct program control to the procedure

specified, A procedure call occurs when the name of the

procedure is followed by parentheses, 1If the procedure

requires that arguments be passed, they should be included in

the parentheses, separated by commas, Sdi15a

procname (eXpe €XPsr o9e) ¢
where procname = the name of a procedure
exp = any valid 10 expression (explained in Section 5),
The set of expressions separated by commas is the
argument 1list for the procedure,
The argument list consists of a number of expressions separated

‘ by commas, The number of arguments should equal the number of
formal parareters for the procedure, The argument expressions

rage 61

SSRI=ARC 18=NOVe75 20:20 33522
.APC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
Part Three: Statements

are evaluated in order from left to right, Each expression
(parameter) must evaluate to a one~=word value, The values will
be assigned to the formal parameters of the called procedure, 5d15b

To pass an array, text pointer, string, or any multi=word
parameter, the programmer may pass the address of the first
word of the variable, then REF the receiving local in the
called precedure,

For example, one may pass an stid directly, but to pass a
text pojnter, vyou must pass the address of the text pointer
and REF the receiving parameter, Remember that a dollar
sign (s) preceding a variable represents the address of that
variable,

The procedure may return one or more values, The first value
is returned as the value of the procedure call, Therefore, if
only one value is returned, one might say: 5d15¢c

a .. proc (b) 3
. In this context, the procedure call is an expression,

I1f more than one value is returned by the called procedure, one
must specify a list cf variables in which to store them, The
list of variables for multiple results is separated from the
list of argqument expressions by a colon, The number of
locations fer results need not equal the number of results
actvally returned, 1If there are more locations than results,
then the extra locations get an undefined value, If there are
more results than locations, the extra results are simply lost,
The first RETURN value is still taken only as the value Of the
procedure call,

5d15d

VAT = procname (eXp, €eXpPs ,¢¢ : VAry VAT, oe90) }

Example:

1f procedure "proc" ends with the statement

RETURN (a,b,c)

then the statement

g . proc(ir,s);

. results in (g9,r,s) - (a,b,c),

page 62

&SRI=ARC 18=NOV=75 20320 33522

NLS Programmers’ Guide ARC 33522 Rey, 22 NOV 75
Part Three: Statements

A procedure call may just exist as a statement alone without
returning a valye, Not all procedures require parameters, but

the parentheses are mandatory in order to distinguish a

procedure call from other constructs, 5d15e

E,3, lda();

I1f a block of instructions are used repeatedly, or are

duplicated in different sections of a program, it is often wise

to make them a separate procedure and simply call the procedure

when appropriate, 5d15¢f

1t is considered good style to "modularize" the functions of
your proqQram as much as possible, where each procedure
represents a function which will be performed no matter
which procedure called it, This implies very limited use of
global variables and careful definition of the procedure
interface,

Procedures should not be made to long, nor have complex
nested loops, (Uften breakinag the code into a number Of
shorter procedures will make the program clearer and easier
to debug,

A procedure may recursively call itself, Each call will have

its own unicue set of local variables, This may be useful if a
procedure is built to handle a general case as well as a

specific case or number of cases, The general case may call

that same procedure for the specific case after some

manipulations, 5d15qg

A areat many procedures are part of the NLS system and are

avallable to your procarams, A list of them is available in the

file <NLS,XPROCS,> or <NLS,SYSGD,>, SYSGD lists 1inks to the

source code, S0 that you can examine the procedure in detail to

see just what it expects as arguments and what {t returns, 5d15h

page 63

&SRI=ARC 18=NOV=75 20320 33522
‘ ARC 33522 Rev, 22 NOV 75 NLS Programmers® Guide
Part Three: Statements

RETURN Statement 5d16
This statement causes a procedure to return control to the
procedure which called it, Optionally, it may pass the calling
procedure an arbitrary number of results, The order of
evaluation of results is from left to riaoht, S5d16a
RETURN ;
RETURN (eXpPs ©XPjy ,4.) ?
E,Q, 5d16b

RETURN (TRUE, a+b)
RETURN (getnmf(stid))

GOTOD Statement 5d17
Any statement may be labeled; one puts the desired label (a
string of lewer case letters and digits) in parentheses and
‘ followed by a colon at the beainning of a statement, S5d17a
(label): statement ;
- 85 5d17b

(there): a . b ¢+ ¢ 3

GOTOD provides for unconditional transfer of control to a new
location, 5d17c¢

GOTO label ;

E.q,

GOTO there

GOTO statements make reading and debugging your prodgram
difficult and are not considered good style; they can uysually
be eliminated by use of procedure calls and the iterative

statements,

NULL Statement

The NULL statement may be uUsed as a convenience to the
programmer, It does nothinag, 5d18a

. NULL ;

&SRI=ARC 18=NOV=75 20:20 33522
.NLS Proarammers’® Guide ARC 33522 Rev, 22 NOV 75
Part Three: Statements

Example;

CASE exp OF
=0, =1: NULL;
ENDCASE v-1:;

JsYS Call and Assembly Language Statement

The use of these capabilities should be limited to system
programmers, Assembly language code makes user programs
difficult to understand and to maintain as the executive
underlyina NLS changes over time, L10 procedures are available
to accomplish most of the tasks one might want to do with a
JSYS, System programmers should refer to the TENEX JSYS manual
for a description of the avallable JSYS’s,

Assembly language statements may be included in the L10 code by
preceding the statement with an exclamation=point (!), E,q,

IPUSH s,Jjfn ;

A TENEX JSYS may be invoked with a statement similar to the
procedure call statement; the name of the JSYS must be preceded
by an exclamation=point:

IJSYSNAME (redl, reg2,,..) ?

The arguments in the parentheses are evaluated and loaded into
the registers before the Jsys is invoked, The first argument

will be put in register one, the second in register two, etc,

Up to eight arguments may be given,

Like a procedure call, multiple results may be received, They
will be taken in order from the registers, (See <13510,3c> for
a description of user JSYS calls,

Some JSYS return to the assembly~language line of Code (not the
L10 statement) one beyond the normal return location, With
such JSYS, you may use the SKIP construct to test if {t has
done So¢

IF SKIP !JSYS(arglyeee) THEN ,.¢4e

In using SKIP, vou may not receive multiple results directly,
but must read the reagisters into globals (see 5¢l2),

5d19

5d19a

5d19b

5d19c

5d419d

5d19e

5d19¢

5d19g

page 65

&SRI=ARC 18=NOV=75 20320 33522

‘ARC 33522 Rey, 22 NOV 75 NLS Programmers® Guide
part Three: Expressions

Section 5; Expressions Se

Introduction 5el
This section will describe the composition of the expressions,
which are an intearal part of many of the statements described
in Section 4, 5ela
Primitives 5e2
Primitives are the basic units which are used as the operands
of L10 expressions, There are many types of elements that can
be used as 10 primitives; each type returns a value which is
used in the evaluation of an expression, 5e2a
Each of the following is a valid primitive: 5e2b
a constant (see below)
any valid variable name, refering to the contents (of the
. first word, if not indexed) of that variable

the contents of a string variable, refered to as #var#

a dollar sign (s) followed by a variable name, referinag to
the address of the variable

a procedyre call which returns at least one value
the first (leftmost) value returned is the value of the
procedure call; other values may be stored in other
variables as described in Section 4,

an assignment (see below) i

classes of characters; described in Sections 1 of Part One

MIN (exp, eXp, ,,.) the minimum of the expressions

MAX (exps, €XPs +4.) the maximum of the expressions

TRUE has the value 1

FALSE has the value 0

. VALUE (astring) given the address of a string containing a
decimal number, has the value of the number

page 66

&SRI=ARC 18=NOV=75 20:20 33522

.NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
Part Three: Expressions

VALUE (astring, num) given the address of a4 string
containing a number and the base of that number, has the
value of the number (allows other than base«ten numbers)

READC (see below)

CCPOS (see below)

FIND
used to test text patterns and load text pointers for use
in string construction (see Section 6); returns the value

TRUE or FALSE depending on whether or not all the string
tests within it succeed,

POS
POS textpointer! relop textpointer?2
may be used to compare two text pointers, If the POS
construction is not used, only the first words of the
pointers (the stid®*s) will be compared, 1f a pointer is
before another, it is considered less than the other
pointer,
E,a,
POS pt1 = pt2
POS first >= last
Constants 5e2c

A constant may be either a number or a literal constant,

There are Several ways in which numeric values may be
represented, A sequence of digits alone (or followed by a
p) is interpreted as base ten, If followed by a B then {t
is interpreted as base eight, A scale factor may be diven
atter the B for octal numbers or after a D for decimal
numbers, The scale factor is equivalent to adding that many
zeros to the oriainal number,

Examples:

64 = 1008

182

144B = 100 102

page 67

&SRI=ARC 18=NOVe75 20320 33522

.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
Part Three: Expressions

Literals may be used as constants as they are represented
internally by numeric values, The following are valid
literal censtants:

=any single character preceded by an apostrophe
e,0, ‘a represents the code for 1418,
=the following synonyms for commonly used characters:

ENDCHR == endcharacter as returned by READC
SP == space
ALT == Tenex’s vVersion of altmode or escape (=33B)
CR == carriage return
LF == line feed
EOL == Tenex EOL character
TAE == tab
BC == backspace character
BW == backspace word
C, == center dot
CA == Command Accept
' CDh == Command Delete

Assignments Se2d
An assignment can be used as a value in an expression,

The form a - b has the effect of storing b into a and has
the value of b as the value of the assignment,

Another form of the assignment statement is:
a s b
This will store b into a, but have the old value of a as
the value of the assignment when used as a primitive in

an expression,

For example,

Do (BT 3E: B) 3

The vajlue of b will be put in a, The assiagnment will
get the old value of a, which is then put in b, This
transposes the values of a and b, (The parentheses
are not really necessary,)

‘ READC = ENDCHR S5e2e

NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
Part Threei Expressions

CCPOS Se2f

&SRI=ARC 18=NOV=75 20:20 33522

The primitive READC {s a special construction for reading
characters from NLS statements or strings,

A character is read from the current character position
in the scan direction set by the last CCPOS statement or
string analysis FIND statement or expression, CCPOS and
FIND are explained in detail in Section 6 of this
document,

Attempts tO read off the end of a string in either
direction result in a special "endcharacter" being
returned and the character position not beina moved,
This endcharacter is included in the set of characters
for which system mneumonics are provided and may be
referenced by the identifier "ENDCHR",

For example, to sequentially process the characters of
a strina:

CCPDS #str#;
UNTIL (char . READC) = ENDCHR DD process(char);

(Note: READC may also be used as a statement if it {s
desired to read and simply discard a character),

when used¢ as a primitive, CCpP0OS has as its value the index
of the character to the right of the current character
position, I1f str = vglarp", then after CCPOS #»strs, the
value of CCPOS is 1 and after CCP(OS SE(#str¥*) the value of
CCPOS is 6 (one greater than the length of the string),

CCPOS is more commonly used as a statement to set the
current character position for use jn text pattern matching,
This is discussed in detaill in Section 6,

CCPDS may be useful as an index to sequentially process the
first n characters of a string (assumed to have at least n
characters),

page 69

&SRI=ARC 18=N0OV=75 20320 33522

.ARC 33522 Rev, 22 NOV 75 NLS Proarammers® Guide
Part Three: Expressions

Example!?
CCPOS SF(#str#);
$CCPOS new has the index value of one, the front of
the string%
UNTIL CCPOS > n DO process(READC):
$READC reads the next character and increments
CCFOS%
Operators 5e3
Primitives may be combined with operators to form expressions,
Four types of operators will be described here: arithmetic,
relational, interval, and logical, 5e3a
Arithmetic Cperators 5eib
+ (in front of a number) == positive value
« (in frent of a number) == negative valuye
. 4+ == addition
= == suybtraction
== multiplication
/ == integer division (remainder not saved)

MOD == a MOD b gives the remainder of a / b

.V == (O0F) a ,V b => bit pattern which has 1°s where either
a or b contains 1, 0 elsewhere

X == (XOR) a .X b => pit pattern which has 1°s where either
a holds 1 and b contains 0, or a contains 0 and b contains
1, 0 elsewhere

+A == (AND) @ ,A b => bit pattern which has 1°s where both a
and b contaln 1, 0 elsewhere

Relational Cperators 5e3c
A relational operator is used in an expression to compare

one quantity with another, The expression is evaluated for
a loaical value, 1If true, its value is 1; if false, its

‘ value is 0,

&SRI=ARC 18=NOV=75 20:20 33522
‘m.s Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Three: Expressjions

Operator Meanina Example

= equal to 4+1 = 342 (TRUE, =1)
8 not equal to 648 (TRUE, =1)
< less than 6<8 (TRUE, =1)
<= less than or

equal to 8<=6 (FALSE, =0)
> greater than 3>8 (FALSE, =0)
>= greater than or

egual to 8>=6 (TRUE, =1)

NOT <other=relational=operator>
6 NOT > 8 (TRUE, =1)

Interval Operators S5eid

The interval operators permit one to check whether the value
of a primitive falls in or out of a particular interval,

IN (primitive, primitive) IN (primitive, primitive)

The value {s tested to see whether or not {t lies within a
. particular interva)l, Facnh side of the interval may be

"open® or "closed", Thus the values which determine the

boundaries may be included in the interval (by using a

square bracket) or excluded (by using parentheses),

Examples

x IN [(1,100)

is the same as

(x >=1) AND (x < 100)

page 71

&SRI=ARC 18-NOVe75 20320 33522

.nuc 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
Part Three: Expressions

Logical Overators 5e3e

Every nureric value also has a logical value, A numeric
value not egqual to zero has a logical value of TRUE; a
numeric value egual to zero has a logical value of FALSE,

0r
a ORb = TRUE {f a = TRUE or if b = TRUE
= FALSE {f a = FALSE and if b = FALSE
AND
4 AND b = TRUE {if a = TRUE and if b = TRUE
= FALSE if a = FALSE or if b = FALSE
NOT
NOT a = TRUE {f a = FALSE
= FALSE if a = TRUE
I
.Expressions 524 |
Introduction Seda

AD expression is any constant, variable, special expression
form, or combination of these joined by operators and
parentheses as necessary to denote the order in which
operations are to be performed,

gExamples of assigning an expression to a variable:
var . 03
var .. var + 2 ;
var . P0S ptr1 >= ptr2 ;
var - (a > b) OR (a IN [c, d]) ;
Liberal use of parentheses is highly recommended,
Special L10 expressions are:

= the FIND expression which is used for string
manipulation, and

= the conditional IF and CASE expressions which may be
used to give alternative values to expressions depending
on tests made in the expressions,

SSRI=ARC 18=NOV=75 20320 33522

NLS Programmers’ Guide ARC 33522 Rev, 22
pPart Three: Expressions

Expressions are used where the syntax requires a value,
while certain of these forms are similar syntactically to
L10 statements, when used as an expression they always have
values (see below),

Order of Operator Execution=-= Binding Precedence

The order of performing individual operations within an
equation is determined by the hierarchy of operator
execution (or binding precedence) and the use of
parentheses,

Operations Of the same heirarchy are performed from left to
right in an expression, Operaticns in parentheses are
performed before operations not in parentheses,

The order of execution of operators (from first to last) is
as follows:

unary =, unary +

relational tests (e,g.,¢ >=, <=, >, <, =, #, IN, OUT)
NOT relational tests (e,q,, NOT >)

NOT

AND

OR

Conditional Expressions

The two conditional constructs (IF and CASE) can be used as
expressions as well as statements, As expressions, they
must return a value,

IF Expressions

IF testexp THEN expi ELSE exp2

NOV 75

5e4b

Sedc

page 73

&SRI=ARC 18=NOVe75 20320 33522

‘ARC 33522 Rev, 22 NOV 75 NLS Programmers® Guide

part Three: Expressions

testexp is tested for its logical value, If testexp is
TRUE then expi will pe evaluated, If it is FALSE, then
exp?2 is evaluated,

Therefore, the result of this entire expression is EITHER
the result of expi or exp2,

Example:

Y- IF % IN(1,3) THEN x ELSE 4j;
$1f x =1, 2, or 3, then y.x; otherwise y_4%

CASE Expression

page 74

This form is similar to the above except that it causes
any one of a series of expressions to be evaluated and
used as the result of the entire expression,

relop exp
relop exp
relop exp 3 exp

CASE testexp OF

ENDCASE exp

where relop = any relational or interval operator (>=,
<, =, IN, etc, See above (5e3c) and (5e4d)

In the above, the testexp is evaluated and ysed with the
operator relops and their respective exps to test for a
value of TRUE or FALSE, If TRUE in any instance, the
companion expression to the right of the colon is
execyted and taken to be the value of the whole
expression, A value of FALSE for all tests causes the
next relop in the CASE expression to be tested against
the testexp, If all relops are FALSE, the ENDCASE

‘expression is taken to be the value of the whole

expression,
Note that ENDCASE cannot be null; it must have a valuye,
As with the CASE statement, any number of cases may be

specifjied, and each case may include more than one relop
and expression, separated by commas,

. NLS Programmers’ Guide
Part Three: Expression

Example;

Yy - CASE X
=51
ENDCASE

Value of X

2

w

- g 3 B

String Expressions

s

OF
X+1;
X427}
X3
X#23

Valye of y

3

NG

&SRI=ARC 18=NOV=75 20320 33522
Rev, 22 NOV 75

ARC 33522

L10 also provides several expression forms Which are used

for string manjpulatjon and evaluation,
in Ssection 6 of this document,

. manipulation statement forms as expressions,
be necessary to prevent ambiguities,

These are discussed
When using string
parentheses may

5ed4d

page 75

&SRI=ARC 18=NOVe=75 20320 33522

.ARC 33522 Rev, 22 NOV 75 NLS Programmers® Guide
part Three: String Test and Manipulation

Section 63 String Test and Manipulation 5f

Introduction 5¢1

This section describes statements which allow complex string

analysis andé construction, The three basic elements of string
manipulation discussed here are the Current Character Position
(CCPOS) and text pointers which allow the user to delimit

substrings within a string (or statement), patterns that cause

the system to search the string for specific occurrences of

text and set up pointers to various textual elements, and

actual string construction, Sfla

current Character Position (CCPOS) 5£2

The Current Character Position is similar to the TNLS CM
(Control Marker) in that it specifies the location in the
string at which subsequent operations are to begin, All Li0
string tests start their search from the Current Character
position, 1In Content Analyzer programs, it is inftialized to
. the BEGINNING OF EACH NEW STATEMENT, For each new statement,
the scan direction is initialized to LEFT TO RIGHT, It is
moved throuch the statement or through strings by FIND
expressions, It may be set to a particular position {n a
statement Or string by the L10 statement: 5f2a

CCPOS pos

pos is a position in a statement or string that may be
expressed as any of the following: 5f2b

A previously declared and set text pointer,
1f a text pointer is oiven after CCPOS, then the
character position is set to that location, A text
pointer points between two characters in a string,
e,9, CCPOS ptl ;

String Front == Jleft of the first character

SF(stspec)

when sF is specified, Ccp0s will be set before the first
character of the statement or strina variable specified

‘ by stspec,

page 76

&SRI=ARC 18=NOV=7S5 20320 33522

NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Three: String Test and Manjpulation

stspec is a string specification that may be expressed as

- an stid (e,g, the first computer word of a
previously declared text pointer), or

= a previously declared string name enclosed in
asterisks,

Examples:

CCPOS SF(ptl)

%$ptl1 is a text pointers
CCPOS SF(stid)

$stid is an stid%
CCFOS SF(#str«) ;

$str (s a string%

string End == riaht of the last character

SE(stspec)

When SE is specified scanning will take place from right
to 1eft, and CCPOS will be set after tnhe last character
of the statement or string variable specified by stspec,

A string (#stringname#) is given after CcP0S, The position
is moved to the beginning of that string,

Indexing the stringname (by Specifying [exp)) simply
specifjes a partjcular position within the string, Thus
#str#(3) puts the Current Character Position between the
second and third characters of the string "str", If the
scan direction is left to right, then the third character
will be read next, If the direction is rianht to left,
then the second will be read next,

F_."J.
CCPLS #strxl3) ;

1f no indexing is given, then the position is set to the
left of the first character in the string, This is
equivalent to an index of 1,

Feq,

CCPOS #str# ;

page 77

.ARC 33522 Rey, 22 NOV 75

page 78

means the same as
CCFOS SF(#strw);

Setting the current character position with the CCP0OS statement
also sets the scan direction to forward (left=to-right), except
if the SE construct is used,

FIND Statement

The FIND statement specifies a string pattern to be tested
against a statement or string variable, and text pointers to be
manjipulated and set, starting from the Current Character
Position, 1If the test succeeds the character position is moved
past the last character read, If the test fails the character
position is left at the position prior to the FIND statement,
The values of text pointers set in the statement prior to the
failing elerment will remain as set; others of course will not
be changed,

FIND pattern ;

FINDs may be used as expressions as well as free~standing
elements, If used as an expression, for example in IF
statements, it has the value TRUE if all pattern elements
within it are true and the value FALSE if any one of the
elements is false,

E,q,
IF FIND pattern THEN ,,,
It is good practice to use FIND as an expression with the

appropriate error conditions if the FIND fails, TIf the FIND
fails, text pointers may not be set as expected,

FIND Patterns

A string pattern may be any valid combination of the following
logjcal operators, testing arguments, and other non=testing
parameters (note the identity with Content Analyzer Patterns):

&SRI=ARC 1R=NOV=75 20:20
NLS Programmers’ Guide
Part Three:; String Test and Manipulation

5f2c

5¢€3

5f3a

5£3b

S5fic

5£3d

5£4

33522

NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Three:

Pattern Matching Arguments== 5f4b
(each of these can be TRUE or FALSE)

5
string constant, e,3, "ABC"

character class

(elements)

&SRI=ARC 18=NOV=75 20320 33522 |

String Test and Manipulation

or any character, preceded by an apostrophy

It should be noted that if the scan direction is set
right=to=left the string constant pattern should be
reversed, In the above example, one would have to
search for "CBA",

Any of the system defined mnemonics, as described in
the last section (5e2c), such as "SP" or "CR", are
also valid,

loock for a character of a specific class; if found, =
TRUE, otherwise FALSE,

Character classes:?

CH == any character

L == lowercase Or uppercase letter
UL == uppercase letter

LL == lowercase letter

D == diait

LD == lowercase or uppercase letter or diait
NLD == not a letter or digit

ULD =« uppercase letter or digit
LLD == lowercase letter or digit
PT == printing character

NP == nonprinting character

Example:
char = LD

is TRUE if the variable char contains a value
which is a letter or a digit,

lock tor an occurrence of the pattern specified by the
elements, If found, = TRUE, otherwise FALSE,
Elements may be any pattern; the parentheses serve to

page 79 J

&SRI=ARC 18=NDVe75 20320 33522
.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
pPart Threes String Test and Manipulation

arcup the elements so0 as to be treated as a single
element in any of the following elements,

~element

TRUE only if the strina constant or character class
elerent following the dash does not occur,

NOT element

TRUE only if the element or group of elements
following the NOT does not occur,

[elements)

TRUE if the pattern specified by the elements can be
found anywhere in the remainder of the string,
elements may be any pattern; the squarebrackets also
aroup the elements so as to be treated as a single
elerment, It first searches from cyrrent position, If
the search failed, then the current position is

. incremented by one and the pattern is tried again,
Incrementing and searching continues until the end of
the string, The value of the search is FALSE if the
testing string entity is not matched before the end of
the string is reached,

NUM element

find (exactly) the specified number of occurrences of
the element,

EeQo
3(LD) means three letters or digits

NUM1 § NUMZ2 element

Tests for a range of occurrences of the element
specified, 1f the element is found at least NUMI
times and at most NUM2 times, the value of the test is
TRUE ,

Either numper is optional, The default value for

NUM1 {s zero, The default value for NUM2 {s 10000,

Thus a construction of the form "s3(CH)" would

‘ search for any number of characters (including
zero) up to and including three,

&SRI=ARC 18=NOV=75 20:20 33522
.M,s Programmers® Guide ARC 33522 Rey, 22 NOV 75
part Three: sString Test and Manipulation

Examples;
254(UL) == from two to four upper=case letters
§10(SP) == up to ten Spaces

1s(*,) == one or more periods
ID = user=ident
ID # user=ident

if the string being tested is the text of an NLS
statement then ident of the user who created or last
edited the statement is tested by this construction;
if ccros is in a string, you will get the error
nstring treated as statement"

FT var

TRUE 1f the variable holds a value of TRUE (non=zero),

. SINCE datim

{f the string being tested is the text of an NLS
statement, this test is TRUg if the statement was
created or modified after the date and time (datim,
see below) specifled,

BEFORE datim
if the string being tested is the text of an NLS
statement, this test is TRUE if the statement was

created or modified before the date anhad time (datim,
see below) specified,

page 81

&SRI=ARC 18=NOV=75 20320 33522

‘ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
part Three: String Test and Manipulation

Acceptable dates and times follow the forms permitted
by the TENEX system’s IDTIM JSYS described in detail
in the TENEX JSYS manual, It accepts "most any
reasonable date and time syntax,"

Examples of valid dates:

17=APR=70
APR=17=70

APR 17 70

17 APRIL 70
17/5/1970
5/17/170

APRIL 17, 1970

Examples of valid times (zero assumed {f time left
cut):

1812313

1234

1234:56
' 1:56AN

1:156=EST |

1200N00N ,

16330 (4:30 PM)

12:00300AM (midnight)

11:59:59AM=EST (late morning)

12:00:01AM (early morning)

Examples:

BEFORE (MAR 19, 73 16:49)
SINCE (25-JUL=73 2130:00)

These may not appear in Content Analysis patterns, but are
valid elements {n FIND statements {n any programi

#stringname»
the contents of the string variable

BETWEEN pos pos (element)
Search limited to hetween positions specified, pos is
a previously set text pointer; the two must be in the

sare statement or string, Scan character position is
set to first position before the pattern is tested

&SRI=ARC 18=NOV=75 20:20 33522
.NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
Part Three: String Test and Manipulation

(This is not an unanchored scan unless square brackets
are used within the parentheses,).,

Fc‘;o
BETWEEN pt1 pt2 (2D [,] SNP)
Logical Operatorse== 5fdc

These corbine and delimit aroups of patterns, Each compound
group is considered to be a3 single pattern with the value
TRUE or FALSE, . The character position will be reset to {ts
position before encounterna the group before a new group is
tested, I[f text pointers are set within a test pattern and
the pattern is not TRUE, the values of those text pointers
are reset to the values they had before the test was made,
(See examples below,)

/
AND

&

Ihese logical concatenators bind in the order in which
they are listed, 1I,e,

a / b AND ¢
means the same as
(a /7 b) AND ¢
Other Elements== Sf4d
These do not involve tests; rather, they involve some
execution action, They are always TRUE for the purposes of
pattern matching tests,
These may appear in simple Content Analysis Patterns:
<
set scan direction to the left
In this case, care should be taken to specify

patterns in reverse, that is in the order which the
computer will scan the text,

. set scan direction to the riaht

page 83

&SRI=ARC 18«=NOV=75 20320 33522

‘ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
pPart Three; String Test and Manipulation

TRUE

has no effect; it is generally used at the end of OR
when a value of TRUE is desired even {f all tests
fallc

ENDCHR

Attempts to read off the end of a string in either
direction result in a special "endcharacter" being
returned and the character position is not moved,

This endcharacter is included in the set of characters
for which system mneumonics are provided and may be
referenced by the identifier "ENDCHR",

These may not appear in simple Content Analysis Patterns,
but may in FIND statements:

pos

pos is a previously set text pointer, or an SE(pos) or

. SF(pos) construction, Set current character position
to this position, 1If the Sg pointer is used, set scan
direction from right to left, 1If the SF pointer is
used, set scan direction from left to riaght,

F.c,

FIND X; $sets CCPOS to position of previously set
text pointer x%

* 1D

store current scan position into the textpointer
specified by the identifier

-~ [NUNM) ID

back up the specified text pointer by the specified
nurber (NUM) of characters, Default value for NUM {s
one, Backup is in the opposite direction of the
current scan direction,

FS var
FR var
‘ FS will set the variable to TRUE (1), FR will reset
the varjable to FALSE (0),

&SRI~ARC 18=NOV=75 20320 33522
. NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Three: String Test and Manipulation

String Construction 5£5
One may modify an NLS statement or a string with the statement: 5f5a
ST pos . stringlist ;

The whole statement or string in which pos resides will
be replaced by the string list,

ST pos pos .. stringlist
The part of the statement or string from the first pos to
the second pos will be replaced by the string list,
"pos" may be a previously set text pointer or the
SF(pos)/SE(pos) construction,

There are two additional ways of modifying the contents of a
string variacles 5£f5b

ST #stringname#(exp TO exp)] -~ stringlist ;

means the same as
. sstringnames#(exp T0D exp)] . stringlist ;

The string from the first position to the second position
will be replaced by the string list, The
square~bracketed range is entirely optional; {f it {is
left off, the whole strinag will be replaced,

Note that the "ST" {s optional when assigning a
stringlist to the contents of a string varjable, The
staterent then resembles any simple assignment statement,
1.e,
#stringname® _ strinalist ;
The strinag list (stringlist) may be any series of string
designators, separated by commas, The sString designators may
be any of the followina: 5£5¢
the word NULL
represents a zero lenath (empty) string
string constant, e,g, "ABC" or *w

part of any string or statement, denoted either by

page 85

SRI=ARC 18=NOV=75 20320 33522

.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
part Three: String Test and Manipulation

two text pointers previously set in either a statement or
a string

pos DOS
a string name in asterisks, refering to the whole string
sstringname#

a string name in asterisks followed by an index, refering
to a character in the string

sstringname#[exp)
(The index of the first character is one,)

a string name in asterisks followed by two indices,
referinag to a substring of the string

#strinaname*fexp 10 exp)

' A construction of the form #strx({ TO j) refers to
the substring starting with the ith character in
the string up and including the jth character,

Examples:

#str*(7 To 10) is the four character substring
starting with the 7th character of str,

#str#(i TO str,L) is the string str without the
first i=1 characters, ({ is a declared
variable,)

+ substring
substring capitalized
= substrinag
substring in lower case
exp
value of a general 110 expression taken as a character;
i,e,, the character with the ASCII code value (see chart

‘ at end of document) equivalent to the value of the
expression

page 86

&SRI=ARC 18=NOV=75 20320 33522
'NLS programmers® Guide ARC 33522 Rev, 22 NOV 75
part Three: Strina Test and Manipulation

STRING (expl, exp2);

gives a strinag which represents the value of the
expression expl as a signed decimal nuymber, 1f the
seconé expression is present, a number of that base {s
produced instead of a decimal number,

E.q,

STRING (3#2) is the same as the string "e"
or
STRING (14,8) is the same as the string "16"

Examples: 5f£5d

ST pl p2 - *string#;
does the same as
ST pl o SF(pl) pl, #string#, p2 SE(p2);

assuming pl and p2 have been set somewhere in the same
statement, The latter reads "replace the statement

. holding p! with the text from the beginning of the
statement to pl, the contents of string, then the text
from p2 to the end of the statement,"

#st#(low TO high) _ "string";
does the same as
¥ste . #ste[1 TO lowel], "string", #stx[high+l TO st, L)}

assuming low and hiagh are declared simple variables,
Example: 5f6

Let a "word" be defined as an arbitrary number of letters and

digits, The text pointer "t" is set before or after some

character in the word, The two statements in this example

delete the word which holds the text pointer "t", and {f there

is a space on the right of the word, it is also deleted.

Otherwise, it there is space on the left of the word it is

deleted, 5f6a

The text pointers ptril and ptr2 are used to delimit the left
and rignht respectjvely of the string to be deleted, 5f6b

IF (FIND t < SLD ®ptri > SLD (SP "ptr2 / “ptr2 ptrl < (SP *"ptri

/ TRUE))) THEN
. ST ptr1l ptr2 - NULL; 5¢6¢C

page 87

&SRI=ARC 18=NOVe75 20320 33522
. ARC 33522 Rev, 22 KDV 75 NLS Programmers’ Guide
Part Three: String Test and Manipulation

The reader should work through this example until it {is clear
that it really behaves as advertised, 5f6d

More Than One Cchange per Statement 5¢£7

The second word of a text pointer, the character count, Stays

the same until the text pointer is again set to some other

position (as does the first word), even though the statement

has been edited, 1I1f, for example, you have the statement 5f7a

abcdefqg
/\

and if you have set a pointer between the "4" and the "e", it
will always point between the fourth and fifth characters in
the statement; the second word of the text pointer holds the
number 5, If you then delete the character "a", your pointer
will be between the "e" and the "f", 5f7b

bcdefg

& ¥
For this reason, you probably want to do a series of edits
beginning with the last one in the statement and working

backwards, S5flc
Text Pointer comparisons 5¢8
This may be used to compare two text pointers, S5f8a
POS ptl = pt2;
)
>
<
>=
<=

ptl and pt2 are a text pointers,

NOT may precede any of the relational operators, TIf the
pointers refer to different statements then all relations
between them are FALSE except "not egual" which is written &
or NOT=, 1f the pointers refer to the same statement, then
the truth of the relation is decided on the basis of their
location within the statement,

‘ A pointer closer to the front of the statement is "less
than" a peointer closer to the end,

page BR

&SRI=ARC 18=NOV=75 20320 33522
.NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
Part Three: Invocation of User Filters

Section 7: 1Invocation of User Filters 59

Introduction 591

The content analyzer filters described in this document may be
imposed through the NLS PROGRAMS subsystem, 5gla

IIser=-attachable subsystems may be written for more complex
tasks, This type of user prograr and NLS procedures which
may be accesséd by them will be discussed in Part Four,
with such a program, however, the user will still make use
of the commands in the NLS PROGRAMS subsystem,

This section describes NLS commands which are used to compile,
institute and execute user programs and filters, 5alb

Compilation==
is the process by which a set of instructions in a
progranm is translated from the L10 language written in an
. NLS scurce file into object code, which the computer can
use to execute those instructions,

Loading=e~

is the process which copies the compiled instructions
into the userw=programs buffer,

Institutione==
is the process by Which a compiled and loaded Content
Analyzer program i{s desjgnated as the current Content
Analyzer filter,

This section additionally presents examples of the use of the
L10 programming langquage, They do not make use Of any

constructions not explained so far in this manual, 5glc
Programs Subsystem 5q2
Introduction 592a

The PROGRAMS subsystem provides several facilities for the
processing of user written programs and filters, It is
entered by using the NLS command:?

. Goto Programs OK

page 89

ESRI=ARC 18=NOV#75 20:20 33522
.ARC 33522 Rev, 22 NOV 75 NLS Programmers’® Guide
part Three: Invocation of User Filters

This subsystem enables the user to compile L10 user programs
as well as Content Analyzer patterns, control how these are
arranged internally for different uses, define how programs
are used, and to see the status of user programs,

PROGRAMS subsystem commands 592b

After entering the PRUGRAMS subsystem, You may use one of
the folleowing commands:

sShow Status of programs buffer
This command prints out information concerning active
user programs and filters which have been loaded and/or
instituted:
Shew Status (of programs buffer) OK
When this command is eXecuted the system will print:
== the names of all the programs in the user programs
. bufter, including those generated for simple Content

Analysis patterns, starting with the first program
loaded,

== the remaining free space in the buffer, The buffer
contains the compiled code for all the current
compiled progranms,

== the current Content Analyzer Program or "None"

== the current user Sequence Generator program or
chnell

== the user sort Key program or "None"
Compile
L10 Program
This command compiles the program specified,
Compile L10 (user program at) ADDRESS 0K

ADDRESS is the address of the first statement of the
program,

. This command causes the program specified to be

page 90

&SRI=ARC 18=NOV=75 20320 33522
.NLS programmers* Guide ARC 33522 Rev, 22 NOV 75
part Three: 1Invocation of User Filters

corpiled and loaded into the user program buffer in a
single operation, The program is not instituted,

The name of the program is the visible following
the word PROGRAM, ADDRESS points to the PROGRAM
statement,

The program may be instituted by the appropriate
commands,

File

The user program buffer is cleared whenever the uyser
resets Oor logs out of the system, If yoy have a long
program which will be used periodically, you may wish
to save the compiled code in a TENEX file, 1It can
then be retrieved with the Load Program command, The
command to compile the code into a TENEX file is3

Compile File (at) ADDRESS (using) L10 OK (to file)
FILENAME DK

The FILENAME must be the same as the program name,
The program will then be compiled and stored in the
TENEX file of the given name (with the extension REL,
unless otherwise specified), The uyser may then load
it at any time,

Before doing this, the programmer must replace the
word PROGRAM at the head of the program with the word
FILE,

Content Analyzer Pattern

This command allows the user to specify a Content
Analyzer pattern as a Content Analyzer filter,

Compile Content (analyzer filter) ADDRESS 0K

The pattern must begin Wwith the first visible after
the ADDRESS, or at tphat point vou may type {t in, it
will read the pattern up to a semicolon, so bhe sure to
insert a semicolon where you want it to stop,

When this command is executed, the pattern specified
is compiled into the buffer, AND it is automatically
instituted as the Content Analyzer filter,

page 91

&SRI=ARC 18=NOVe75 20320 33522

‘ARC 33522 Rey, 22 NOV 75 NLS Programmers’ Guide
part Three: 1Invocation of User Filters

Procedure
This command compiles a single procedure,
Compile Procedure (at) ADDRESS OK
ADDRESS is the address of the PROCEDURE statement,

This command causes the procedure specified to be
corpiled and loaded into the user program buffer in a
single operation,

1f a procedure of the same name has already been
loaded (in the user programs buffer or in the NLS
system), the old procedure will be replaced, 1,e,
any calls to that procedure name will invoke the
newly compiled procedure,

Error Message during Compilation

"SYNTAX ERROR" messages include the type of error, the

’ location of the line of assembly code that caused
trouble, and a few characters of the NLS source code,
The last of these characters is the one which caused
the error, In some cases this may be misleading, when
a previous error (e,q, a8 missing guote or percent
sign) caused trouble later in the compilation,

"ext & local" == a symbol was used as both an
external or global and a local variable in the
file, If a variable is not declared in the
program, the compiler assumes it is a system
EXTERNAL, TIf it is later used as a LOCAL, an error
will result,

"field too large" == a3 field may not be defined as
more than 36 bits,

"sides not equal" == in a multiple assignment
statement, the sides must have the same number of
values, e,q, (3,b,€) = (X,¥,2);

"not REF or POINTER" == an ampersand (&) was used
on a variable not REFed or declared as a POINTER
(not described in this document),

. "8 args max" == you may not pass more than eight
arguments in a JSYS call,

page 92

&SRI=ARC 18=NDV=75 20:20 33522

NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75

Part Three:

Invocation of User Filters

"SYSTEM ERROR" messaages also include the type of
error, the location of the line of assembly code that
caused trouble, and a few characters of the NLS source
code,

"EOF READ" == the compiler hit the end of the NLS
file before it read a FINISH statement, (This may
happen if you don’t have viewspecs set to all
lines, all levels,)

"HASH TABLE FULL" == you have used too many Symbols
in the file, Each file is limited to approximately
2000 symbols,

"RACKUP TOD FAR" == a3 symbol or a literal string
(text within gquotes) has too many characters in it.
They are limited to 148 characters,

"SYMBOL TD0D LONG" == as above, a symbol has too
many characters in {t,

"INPUT T00 LONG" == as above, a literal string has
too many characters in it,

"S,S, FULL" == as above, a symbol has too many
characters in {t,

"1/0 ERROR" == & number has too many digits in it,

"LIT TABLE FULL" == the file has too many literal
str{ngs and numbers,

"PUSHDOWN OVERFLOW" means that one of the stacks that
the compiler uses overflowed, Look for an L10
statement containing too many parentheses or
particularly complex constructions, You may have to
break some statements into multiple statements,

"Boolean as operand" == you used an expression as a
parameter or in a RETURN statement, This is NOT an
errors but only a warning of unusual (though in may
cases good) programming practice,
I1f you include the L10 statement
NOMESS

at the beainning of the file, at the same level as

page 93

r—

&SRI=ARC 1B=NOV=75 20:20 33522

.APC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
pPart Three: Invocation of User Filters

global declarations (i,e, not within a procedure),
this warning will not be printed, Errors will be
printed as usual,

When the compilation is finished, it will list the
nurber of errors and wait for a Command Accept to
continye, You should then search for the error in the
NLS source code file, correct it, and recompile pefore
attempting to use the prodram,

Errors involving undefined variables will be reported
when you attempt to load the program, Of course any
code using these variables will cauyse execution
errors,

1f vou include the L10 statement
LIST 3

anywhere in the code, all the undefined symbols at
' that point i{n the compilation w{ll be printed,

The Compile Procedure command will generate |

undetined variable errors legitimately if the

procedure refers to global variables, |
|

1f the addition of your program to the user programs
buffer reguires more than the maximum space allotted
for user programs (either in number of pages or number
of symbols), you will get a "format error" upon
loading, (1f youy have any other programs loaded, use
the "Delete All" command prior to loading,)

NppT (described in Part Five, Section 2) will help you
trace run~time errors to errors in the NLS source
code,

Load Program

A prescompiled program existing as a REL file may be
loadeé into the program buffer with the command:

Load Program FILENAME OK .

page 94

&SRI=ARC 18=NOVe=75 20:20

33522

NLS Programmers*® Guide ARC 33522 Rey, 22 NOV 75

Part Three?:

Invocation of User Filters

1f the FILENAME is specified without specifying an
extension nare, this command will search the connected
directory, tnen the <PROGRAMS> directory, for the
following extensions:

REL == it will simply load the REL file

CA == it will load the program and institute it as the
current content analvzer program

SK == it will load the program and institute it as the
current sort key extractor program

SG == it will load the program and institute it as the
current sequence generator program

SURSYS == {t will load the program and then 100k for a
file of the same name with extension CML; if both are
successtylly loaded, they will be treated as a single
program

CML == it will load the program and then try to attach
it as a subsystem

PROC=REP == {t will load the program and then try to
replace an existing procedure of the same name as the
TENEX code file py the first procedure in loaded
program

Sort Key extractor and seguence generator programs are
more complex and are generally limited to experienced
L10 programmers,

FILENAME is the name of the TENEX code file, not the name
of the prodaram,

If any variables are undefined, they will be rerorted
upon loading, The program should not be used until those
variables are declared somewhere,

Delete

All

This command clears all programs from the user program
buffer, All programs are deinstituted and the buffer
is marked as empty,

page 95

&SRI=ARC 18=NOV=75 20320 33522

.ARC 33522 Rey, 22 NOV 75 NLS Programmers’ Guide
part Three: 1Invocation of User Filters

pelete All (programs in puffer) 0K

The user programs buffer shares memory with data pages
for files which the user has open, therefore
increasing the size of the user programs buffer
decreases the amount of space avallable for file data
with a possible slowdown in response for that user,
The buffer size is increased automatically as needed,
This command also resets the buffer size to the
original B pages (saving system storage space),

Last
This command deletes the most recently loaded program
in the buffer, The program is deinstituted {f
instituted and its space in the buffer marked as free,
pelete Last (program in buffer) OK

Run Program

. This command transfers control to the specified proaram,
This type of program is used very little, having been
substantially replaced by user=attachable subsystems, as
described in Part Four,

Run Program PROGNAME OK
Run Program NUMBER 0K

PROGNAME {s the name of a program which had peen
previocusly compjiled, That i{s, PROGNAME must be in the
buffer when this command i{s executed,

Instead of PROGNAME, the user may spéecify the prodram to
be run by its number, This first program loaded into the
buffer is number one,

Institute Progranm
This command enables the user to designate a program in
the buffer as the current Content Analyzer, Sequence
Generator, or Sort Key extractor prodram,

Institute Program PROGNAME OK (as) type OK

where type is one of the following:
. Content (analyzer)

page 96

&SRI=ARC 18=NOV=75 20:20 33522

.NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
Part Three: Invocation of User Filters

Sort (key extractor)
Sequence (generator)

I1f no type is specified, Content analyzer will be
assuymed,

Instead of PROGNAME the user may specify the program
to be instituted by number, The first program loaded
into the buffer is number one,

If a program has already been instituted {n that
capacity, it will be deinstituted (but not removed from
the buffer),

Deinstitute Program

This command deactivates the indicated program, but does
not remove it from the buffer, It may be reinstituted at
any timre,

. Deinstitute type 0K

where type is one of the following:
Content (analyzer)
Sort (kKey extractor)
Seguence (generator)

Assemble File

Files written in TreewsMeta can be assembled directly from
the NLS source file with the Assemble File command, This
aspect of NLS proaramming will not be described in this
document,

paage 97

&SRI=ARC 1B=NOV=75 20220 33522

.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
part Three:; Invocation of User Filters

Examples of User Programs 593

The following are examples of user programs which selectively

edit statements in an NLS file on the basis of text matched

against the pattern, For examples of L10 programming problenms,

you may find out how the standard NLS commands work by tracing

them through, beginning with <NLS, SYNTAX, 2>, A table of

contents to all the global NLS routines is available to the

user in <NLS, SYSGD, 1>, 5¢3a

Example 1 == Content Analyzer program 5g3b

PROGRAM cutname § removes the text and delimiters () of NLS
statement names in parentheses from the beginning of each
statement%
DECLARE TEXT POINTER sfj
(outname)PROCEDURE;
IF FIND *C (")) *sf THEN %found and set pointer after

nareg
BEGIN
f$replace stmnt by everything after pojinter$g
' ST sf . sf SE(sf);

$display statement$
RETURN(TRUE) ;
END
fothervwise don’t display statements
ELSE RETURN(FALSE);
END,
FINISH

Example 2 -« COntent Analyzer program 5a3c

PROGRAM changed $This program checks to see {f a statement
was written after a certain date, 1f it was, the string
"(CHANGED]" will be put at the front of the statement,$%
(changed) PROCEDURE
LOCAL TEXT POINTER pt 3
$rermember, CCPOS {s initialized to the beginning of
each new statementsg
IF FIND "pt SINCE (25=JAN=72 12:00) THEN
$the substring of zero length is replaced with
"[CHANGEDI"%
ST pt pt .. "(CHANGED]";
RETURN(FALSE) ;
END,
FINISH

&SRI=ARC 18=N0OV=75 20:20 33522
.NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
part Four: Introduction

PART FOUR: Interactive L10 Programming 6
Section 1: Introduction 6a

For many programming applications, it is sufficient to accept

statements one at a time from the sequence generator and assume as

an initial character position the beainning of the statement (a

Content Analvzer program as described above), For more complex
applications, vou may have to write programs which skip around

files, between files, and interact with the user, These are not

called by the sequence generator but "Attached" and then used like
standard NLS subsystems, holding one or more commands, All the
capabilities described above are available to such progranms, 6al

There are two parts to every user-attachable subsystem: 6a2

1) the L10 execution routines which do the file manipulations,

and fhaz2a
. 2) the command syntax, specified in a language called Command

Meta Language (CML), describing the user interface of each

command in the user attachable subsystenm, 6a2b

These two parts are two separate programs, compiled separately
into two REL files, The two programs are loaded in ynison and
together comprise the subsystem, 6a3

Like L10, source programs for the CML compiler are free form NLS

files, Comments may be uUsed WhereVer a4 blank i{s permitted and the
structure of the source file is ignored by the compiler, CML

source programs are compiled into REIL files with the Compile File
command in the FPRUGRAMS subsystem, CML is the compiler name for

the CML compiler, 6a4

The REL file name of the CML code should have the extension

"eml", The RgL file name of the corresponding L10 execution
procedures should have the same first name as the CML code

file, and should have the extension "subsys." If these

conventions are followed, the Load Program command in the

PROGRAMS subsystem will automatically load both parts of the

user subsystem and attach it, making it available for use, The
user’s subsystem may then be invoked by using the Goto or

Execute commands, 6ada

.The CML program describes the command words, noise words,
selection requests, etc, that make up an NLS command, The CML

page 99

&SRI=ARC 18=NOVe75 20320 33522
.ARC 33522 Rev, 22 KOV 75 NLS Programmers’ Guide
Part Four: Introduction

code interacts with the user when he enters the subsystem and as

he specifies commands, 1In the process of interacting with the

user, the CML code may call one or a number of 10 execution

procedures which "do the work," 6as

CML automatically provides prompting, questionmark, and

<CTRL=S> facilities, The CML syntax specification applies to

both TNLS and DNLS (unless restricted by the programmer to one

or the other), and will conform to all user options with

respect to prompting and to recognition and completion modes, haba

The next section will describe CML, and how to design the user
interface, Section 3 explains the requirements of the L10

procedures which CML calls, The remainder to part Four discusses
additional L10 capabilities useful in the context of attachable
subsystems, 6ab

paqgﬁlr 00

ESRI=ARC 18=NOV=75 20320 33522

NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Four: Command Meta Language (CML)

Section 2: Command Meta Language (CML) 6b

6bl

Introduction

This section describes the command Meta Language (CHML), CML
allows the specification of the user {interface to commands,
The CML program (the grammar) may call L10 procedures of a
certain type (described in the next section), The programs
written in CML are similar in structure to L10 programs,
Typically, a CML and an L10 program are used in unison as a
user attachable subsystem, A more technical presentation of

CML may be found in <20438,>, 6bla
Program Structure 6b2
The basic CML program structure i{s much like that of L10
programs, The program begins with a "FILE" statement (as does
an L10 program) of the form: fb2a
FILE name
where nare is the name of the program code (in lowercase
letters and numbers, beginning with a letter); it must be a
unique symbol, different from the FILE name of the L10 code
file,
The program ends with the statement (like L10): 6b2b
FINISH
within the program, one may have a series (in any order) of
declarations, rules, and subsystems, 6b2c

as in 110, all variables used in the program must be
declared somewhere in the system, Other values and
attributes must also be declared in CML,

Rules are defined sequences of the CML elements described
below, Rule names can be placed anywhere {n a CML command
specification, wWhen a rule is called within a command, it
is almost as if the CM], elements represented by that rule
were inserted at that point in the command, This allows the
definition of general interactions that may be of use in a
number of commands or points in a command,

Each program usually represents one or more subsystems, A
subsyster may include one or more commands, Fach command {s

page 101

&SRI=ARC 18=N0OV=75 20320 33522
.ARC 33522 Rev, 22 NDV 75 NLS Programmers’ Guide
Part Four: Command Meta Language (CML)

a rule itself, It may optionally include rules to be
performed upon entering or leaving the subsystem, (One
enters a subsystem with the Goto or Execute commands, and
leaves with the Quit command,) A subsystem may also include
general rules defined throughout the subsystem,

Each of these parts of the CML prodram will be described
independently, The CML elements which make up rules will also

be described, 6b2d
Suybsystems 6b3
A CML program holds declarations, general rules which apply
throughout the program, and subsystems (usually only one), 6b3a
The Subsystem begins with a statement of the form: 6b3b

SUBSYSTEM name KEYWORD "NAME"

where nare is the internal name of the subsystem (primarily
for debucging purposes) and NAME is the name which the user

. must specify (in a Goto or Execute command) to access
commands in the subsystem,

These two names may be the same but they must be unique,
different from the FILE names of the CML and L10 files,

A subsystem ends with the statementg 6b3c
END,
Within the subsystem, you may have any number of rules, 6b3d

A rule as described below will be known throughout the
subsyster, but not outside the subsystem,

A rule preceded by the word "COMMAND" will be avallable as a
command in the subsystem, It should begin with a command
word elerent, E,qg,:

COMMAND zshow = "SHOW"!L2!
ent .. ("EXAMPLE"/"SAMPLE")
CONFIRM
proc (ent)

A rule preceded by the word "INITIALIZATION" will be
‘ executed whenever the subsystem is entered (either with a
Goto or an Execute command from another subsystem), E,g9,:

page 102

&SRI=ARC 18=NOVe75 20:20 33522
NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75

Part Four: Command Meta Language (CML)

INITIALIZATION example =
preci (ent)
proc2 (ent)

A rule preceded by the word "TERMINATION" will be executed
whenever the sybsystem is left (with a Goto or Quit command
from this subsystem),

A rule preceded by the word "RENTRY" will be executed
whenever the subsystem is reentered (either with a Quit
command from another subsystem, having left this one with a
Gotor, or upon completing an Execute of a command in another
subsyster from this subsystem),

Preceding a rule with the ahove modifiers does not prevent
calling that rule from within another rule,

Rules

A CML rule is a defined series of elements, each of which
represents cne piece of the interaction with the user or system
actiocn, The elements will be described below, The name of a
rule (defined to be the given series of CML elements) may be
used in other rules, When the name of a rule appears in
another rule, the CML code which it represents will be executed
at that point,

A rule takes the form:
name = elementi element2 elementd ,,, element ;

where "name" is any unidue name (lowercase letters and
numbers, beginning with a letter),

Alternative elements (where the user has a choice) are
indicated by a slash (/) in the expression, Parentheses
should be used to group elements, particularly when
alternative loaic and nestina of alternatives is involved,
E.Q,

name = (elementl / element2 element3) element4d ;

NOte that, by use of parentheses, an alternative may
include more than one element,

Elements grouped in square brackets are options, and the
user must type the option character <CTRL=u> to access them,
E,Q,

6ble

6b4

6bda

6bdb

page 103

&SRI=ARC 18~NOV=75 20820 33522

.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
part Four: Command Meta Language (CML)

name = elementl [element?2 element3] elementd 3
E.q,

zinsert = "INSERT" ent_("WORD"/"CHARACTER") <"at">
dest.DSEL(ent) xins(dest);

A number of elements may be included in a single rule, (I1f you
exceed the maximum, you will get a "stack overflow" error at
run-time,) Elements are NOT separated by any delimiter
character (except by spaces or the source file structure), The
entire rule is terminated by a semicolon,

The return value of elements may be assigned to CML variables
(single=worc as in L10), using a left~arrow (.) in the form:

variable . element

The variacle must have been declared, as described below,

content is passed to any routine, It must be initialized in
the rule which passes it to a routine (not just in other rules
called from the aiven rule, even though other rules may
subseguently set it to another value), (I1f you fail to do so,
you will get the run=time error "reference to undefined
interpreter variable,")

. A variable must be initialized by such an assignment before its

Names on the left side of an assianment are assumed to be
variables; cther names in CML rules are assumed to be CML
rules,

peclarations

peclarations are used to associate names with their CML
function, A number of types of names may be used in CML
programs,

Variables

Whenever a procedure is called from CML, CML creates a
ten=word record, The address of the record is passed to the
procedure, which may put information in any of the ten
words, 7The procedure usually returns the address of its
record,

page 104

6b4c

6bdd

6bde

6bAaf

6b4dg

6b5

6b5a

6b5b

&SRI=ARC 18=NOV=75 20320 33522
. NLS Programmers® Guide ARC 33522 Rey, 22 NOV 75
Part Four: Command Meta Language (CML)

A CML variable is a cell which holds the address of a CML
record, By this mechanism, up to ten words of information
may be handled with a single parameter by passing the
address of the first word of the record, A variable may be
declared with the statement:

PECLARE VARIABLE name ;
or
DECLARE name

where "name" {s any unigue name (lowercase letters and
numbers, beainning with a letter),

You may declare any number of variables {n a single
statement, i,€,:

DECLARE VARTABLE namel, name2,,.,. !
or
PECLARE namel, name2,,., !

many CML variables have been declared for use anywhere in

‘ the system, and may be used freely in user attachable
supsystemrs (without peing declared py the user programmer),
Some commonly used variable names are;

ent naméil level param
dent dest filtre param2
sent source Vs param3
port fromwhom literal paramd
External Variables 6b5¢

As {n L10, external variableS are variables which are made
avajlable to any procedure anywnhere {n the NLS system,
(simple variables are only known in the file in which they
are declared,) 0One or more may be declared with a statement
of the form:

DECLARE EXTERNAL nameil, name2,,.. }
Parsefunctions 6b5d
An L10 function which processes input and supplies a prompt
string is called a "parsefunction," The name of the
procedure must be declared as a parsefunction for CML to
request a profipt string whenever the procedure is called,

‘ DECLARE PARSEFUNCTION namel, name2,... !

page 10%

&SRI=ARC 18=NOV=75 20320 33522

.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
part Four: Command Meta Language (CML)

More detajled informatjon about the nature of parsefunctions
will be cffered below,

Command Words 6b5e

A command word is a word specified as part of a command
(e,g, "Insert" or "wWword" in the Insert Word command); it is
specified in accordance with each user’s recognition scheme
(often recognized after the first character), A declaration
may assiagn a value to a command word, to be passed to an L10
procedure which needs to Know which command word was chosen
by the user,

DECLARE COMMAND WORD "WORD1"=100, "WORD2"=101,,,. ?

The value must be a positive decimal integer, less than
511, (This limit may have to be changed to 255 {n future
versiocns of NLS,)

More than one command word may have the same value
(unless Of course the L10 procedure must distinguish the
. user’s choice between the two),

A command word that has not been declared may be included in
the syntax; it will have no value though, 0Only those
command words which are assianed a value and then passed to
an L10 procedure rust be declared, Many command words have
been declared for use in the NLS system, It is considered
good practice to use command words already known to users
when possible, and to use the same values for those words as
declared in NLS, Section 5 offers a set of declarations,
includine all the system defined command wordsj it can be
copied as the foundation for a CML program,

You may not use command words identical to the names of
the L10 or CML files, to the name of the subsystem, nor
to any variable names, |

CML Elements

The CML elerents described here are the building blocks of
rules, which describe interactions with the user,

Command Word Reccagnition

The appearance of a command word element in a rule means
. that the user must specify that (or an alternative command
word) at that point in the command specification,

&SRI=ARC 18=NOV=75 203120 33522

NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Four: Command Meta Lanquage (CML)

In the CML description, each command word is represented
by its full text, The algorithm used to match a user’s
typed input against any list of alternative command words
is known as "recognitifon," Each individual’s command
word recognition mode will determine what characters the
user must type to specify the command word, This is
handled automatically by the command interpreter,

As the user specifies a command, the command words (and
noise words described below) are echoed in a line at the
top of the DNLS screen, or printed in TNLS, This is
called the "command feedback line,"

Command word elements must be uppercase words enclosed in
double=quotes (""); e,qa,

"Ihstp‘lll
Command words optionally may be followed by one Oor more
qualifiers which modify the recognition process, separated
by Spaces and enclosed in exclamation points, The
qualifiers are:

NOTT == not available in TNLS

NOTD == not available in DNLS

L2 == second level (some recognition modes differentiate

first from second level command words, e,g, second level

are preceded by a space)

number == explicit value for command word; supercedes any
value assigned by a DECLARE COMMAND WORD

For example:
"SET"1L2!

"PRINT"INOTD!
"EXAMPLEWORD"!L2 104!

page 107

&SRI=ARC 18=N0OVe75 20320 33522
.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
Part Four: Command Meta Language (CML)

The address of records holding declared command word values
may be assigned te CML variables so0 that subseguent routines
can be passed the user’s choice, e,q,

ent . "CHARACTER"
or
ent o ("CHARACTER"™ / "WORD")

then
xprocedure (ent)

Remember that, like all other CML assignments, the
variacle recejves the address of a record which holds the
inforration, When the content of this variable (the
address of the record) is passed to a procedure, the
procecure must REF its receiving variable to access the
contents of the record, the value,

This value will be assigned as above even {f the command
word {s ftollowed by ather CML elements; e,g,

' ent - ("CHARACTER" param_FALSE / "WORD" <"at">
param LSEL(#"WORD"))

ent will get the valye of the command word CHARACTER
or the value of the command word WnRkp, The
appropriate actions will happen after the user chooses
the command word,

You may wish to pass this value without forcing the user to
type the command word, This address may be assigned by
preceding the command word by a poundssign (#),

ent . #"CHARACTER"

will assign the address of the declared command word
value without forcing the user to type the command word

Selection Recognition 6b6C
Selections are input from users pointing to places in files
or tvping in strings of text, The three types of selection
routines available in CML, with their respective command
prompts, are:

DSEL == destination selection

‘I’ B/A

page 108

&SRI=ARC 1B=NOV=75 20:20 33522
.NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Four: Command Meta Language (CML)

SSEL == Source selection
B/A/IT)

LSEL =~ literal selection
B/T1/(A)

where B = bug (not available in TNLS), A = Dynamic
Address Element (any serjes of NLS addressing elements),
and T = typein from keyboard,

Each of these predefined selection routines prompts the user
and receives the input,

The selection routines must be passed the address of a
recordéd holding the value of a noun command word
(character, word, statement, plex, etc,)., The command
word enclosed in douyble=guotes and preceded by a
pound=sign (%) is equivalent to the address of a record
. holding the declared value of that command word, e,9,:

DSEL(#"CHARACTER")

Or Yyou may have assigned the address of the valye of a
previously selected command word to & CML variable, then
pass the content of the variable, e,q9,:

ent - "CHARACTER"
DSEL(ent)

CML will prompt the user for the appropriate input, If
more than one selection is necessary (e,d9, to specify
both ends of a group or string of text), they will prompt
for both automatically, They will delimit the
appropriate entity automatically (e,g, both ends of a
word will be found from a single selection),

The routine will return the address of a CML record

holding two text pointers in the first four words,

delimiting the beginning and end of the entity selected,
for string entities within statements

words 1«-2: txt ptr before first character of string
words 3=4: txt ptr after last character of string

. for types "STATEMENT" and "BRANCH"

page 109

&SRI=ARC 18=NOV=75 20320 33522
‘ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
part Four: Command Meta Language (CML)

words 1=2: txt ptr before first character of
statement

words 3=4: txt ptr after last character of
statement

for types "GROUP" and "PLEX"
words 1=2: txt ptr before first character of first
statement
words 3=4: txt ptr before first character of last
statement

for type "WINDOW"

word 1: address of display area
word 2: x and y screen coordinates

One usually assigns the returned address of this record
to a CML variable, e,q,:

. dest - DSEL(8"STATEMENT")
Other Recognizers 6bbed

other prespecified input routines are available, each
prompting for and receiving a type of input from the user:

VIEWSPECS == takes no argument and returns the address of
a CML record helding:

word 1! updated viewspec word 1
word 2: updated viewspec word 2
words 3«73 used for collecting characters from user

LEVADy == takes no argument and returns the address of a
CML record holding:

word 1: level adjust count
(up = +1, same = 0, down = =1, up two levels = 42,

etec,)
words 2=7: used for collecting characters from user

page 110

&SRI=ARC 1B=NOV=75 20:20 33522
. NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
part Four: Command Meta Language (CML)

CONFIRM == wajits for user to type confirmation character
(a Command Accept, Insert, or Repeat character); it takes
no argument ané returns the address of a CML record
holding the confirmation code in word 1,

These values are rarely used, since subsequent
functions are handled automatically by the command
parser, For reference, they are:

1
2
3

Command Accept
Insert
Repeat

DUMMY -« does nothing but always TRUE; may be used to
allow elements to be skiped, e,q,?

("UPTTON" somprocedure() / DUMMY) CONFIRM

allows the user to specify "Option" before the
CONFIRM, or skip it and just type a CONFIRM,

. CML, Constants 6bbe

TRUE == holds the address of a CML record whose first word
nas the value TRUE (i.e, 1)

FALSE == holds the address of a CML record whose first word
nas the value FALSE (i.,e, 0)

L10 procedure Calls 6b6f
L10 procedures may be called at any point in the rule by
including the name of some routine followed by its parameter
list enclosed in parentheses, (The next section describes
the special requirements of L10 procedures called from CML,)
E.Q,

procedurename (paraml, param2,,,.)
Parameters may include CML variables (whose content is
passed), the CML elements TRUE, FALSE or NULL, or the #
construct (see "Selection Recognition") representing the
address of a command word value,

Helpful Procedures in building CML logic:

‘ {sdnls() == returns TRUE if DNLS, elSe FALSE

page 111

&SRI=ARC 18=NOVe75 20320 33522

.APC 33522 Rev, 22 NOV 75 NLS Programmers® Guide
Part Four: Command Meta Language (CML)

istnls() == returns TRUE if TNLS, else FALSE
true() == returns TRUE
false() == returns FALSE

abort() == abort command as if user typed a Command
Delete

Parsefunctions 6b6Qg

Procedures which are declared as PARSEFUNCTIONS examine the
information beina typed by the user during command
specification (characters going into the input buffer), CML
places adaitional reguirements on L10 procedures declared as
parsefunctions, as described in the next section, They may
be called from CML like any other L10 procedure, The
following parsefunctions are avalilable as part of the
running system; they of course must be declared as
parsefunctions in any prodram which uses them as such?

. answ() == if the next character in the input buffer is a
CONFIEM, option character, or the letter "y", it reads
the character (out of the input buffer) and returns TRUE;
else it reads the next character and returns FALSE

answer() == reads next character; 1ike answ, but returns
the address of a CML record whose first word holds either
the value TRUE (1) or the value FALSE(0)

lookansw() == if next character is a CONFIRM, option
character, or the letter "y", returns TRUE and leaves
next character in buffer; else returns FALSE and reads
character

myloockansw() == if next character is a CONFIRM, option |
character, or the letter "y", returns TRUE; else returns
FALSE; leaves next character in buffer

readconfirm() == if next character a CONFIRM character,
reads and returns TRUE; else leaves character in buffer
and returns FALSE

lookconfirm() =« {f next character is a CONFIRM, returns
TRUE; else returns FALSE; leaves next character in buffer

‘ readbua() == 1f next character a Command Accept

page 112

&SRI=ARC 18=NOV=75 20:20 33522

NLS Programmers’® Gulde ARC 33522 Rev, 22 NOV 75
part Four: Command Meta Language (CML)

character, reads and returns TRUE; else leaves character
in buffer and returns FALSE

lookbug() == {f next character i{s a Command Accept,
returns TRUE; else returns FALSE; leaves next character
in buffer

notcal() == {if next character NOT a Command Accept
character, reads and returns TRUE; else leaves Command
Accept character in buffer and returns FALSE

readoption() == {f next character an option character,
reads and returns TRUE; else leaves character in buffer
and returns FALSE

readrepeat() == if next character a repeat character,
reads and returns TRUE; else leaves character in buffer
and returns FALSE

lookrpt() == if next character is a REPEAT, returns TRUE;
else returns FALSE; leaves next character in buffer

sp() == if next character a space, reads and returns
TRUE; else leaves character in buffer and returns FALSE

lookback() == if next character is a back=arrow (=),
returns TRUE; else returns FALSE; leaves next character
in buffer

looknym() =~ if next character is a digit, returns TRUE;
else returns fFALSE; leaves next character in buffer

page 113

&SRI=ARC 1B=NOV=75 20320 33522

‘ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide

part Four: Command Meta Language (CML)

Parsefunctions may appedar as alternatives to recoagnizers,
However, they must precede any non=failing recognizers in

the list of alternatives, E,9,:
(lockconfirm() / "APPEND" / "FILE") CONFIRM
== this example either will accept a CONFIRM or will

accept a specification of the command word APPEND or FILE
followed by a CONFIRM,

Feedback 6bbh

Noise words between command words are very helpful to the
user learning a new command, Any string of text may be
added to the command feedback l1ine by enclosing the text in
parentheses and within angleebrackets in a rule, E,q,

<"Text of nolse words">
The last noise word string on the command feedpack line (in
DNLS) may be replaced with a new string by placing three
dots befere the first doubles=quote, e,q,:

<,.."new noise words">

The last noise word string can be erased (in DNLS) with the
procedure call:

clearname()

The entire command feedback line can be cleared (in DNLS)
with the CML element:

CLEAR

A few characters of the noise word will follow the command
word in the system’s response to a guestionmark if:

1) the noise word immedjately follows the command word,
and

2) the command word is not being assigned to a variable
(it may however be part of a list of alternatives being
assiagned),

E,a, the noise words in the CML below will show in the
systers response to a questionmark:
ent .. ("FILE" <"name"> / "STATEMENT" <"at">)

page 114

&SRI=ARC 18=NDV=75 20220 33522

Loops

A looping facility permits repetition of a different rule
uyntil an exit condition is met, The rule is evaluated and
then the expression following the UNTIL keyword is
evaluated, If the expression returns TRUE, then the loop is
exited and the next element of the rule is evaluated, 1f
the expression returns FALSE, then the named rule is invoked
once again,

PERFORM rulename UNTIL (exp)

where rulename is the name 0f the rule to be repeatedly
executed and exp {s an expressjon of CML elements which
evaluates to TRUE or FALSE,

Ee«Q,

PERFORM rulename UNTIL (<"Finished?"> answ())
Nested loops (loops within rules called by a PERFORM
element) are not currently allowed, Backspacing through

executed loops requires special treatment not described
here,

NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
part Four: Command Meta Lanauagde (CML)

6bb i

&SRI=ARC 18«NOV=75 20:20 33522
.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
part Fourt: Command Meta Language (CML)

sample CML Progranm 6b7

The following sample program should help illustrate the use of

the CML language for describing NLS commands, For more

exhaustive examples, look at the CML specification for the

standard NLS commands, in <NLS,SYNTAX,>, An example of a

problem treatment can often be found by thinking of an NLS

command which is similar, 6b7a

FILE sampleprogram % <CML,> to <sample,rel,> % 6b7b
DECLARE what, whom, where 3
DECLARE COMMAND WORD
"GLUE" = 1,
"PASTE" = 2,
"CRAYONS" = 3,
"PENS" = 4,
"PENCILS" = S ;3
SUBSYSTENM sample KEYWORD "SAMPLE"
objects =
"GLUE"
/ "PASTE"
. / writinathings ;
writingthings =
"CRAYONS"
/ "PENS"
/ "PENCILS"!L2! ;
COMMAND Zuse = "USE"
what . writingthings
CLEAR
<"to draw a pretty"> whom
("PICTURE" <"of Aunt Mary">
/ "SKETCH" <"of your dog">
)
CONFIRM
% call execution routine process the USE command %
xuse(what, whom)
COMMAND ztake = "TAKE"
what - objects
<"out of your">
where . ("EARS"!1! / "NOSE"!2! 7/ "MOUTH"13!)
<"PLEASE!!">

CONFIRM
xtake (what, where)
END,
FINISH
. Given this sample CML, the user might specify the command: 6b7c

page 116

&SRI=ARC 18=NOV=75 20:20 33522
' NLS Programmers‘ Gulde ARC 33522 Rev, 22 NOV 75
Part Four: Command Meta Language (CML)

"Use Pens
(to draw pretty) Sketech (of your dog) <DK>"

"Take Crayons (out of your) Mouth (PLEASE!l!) <QK>"

The executicn routines called from CML typically have names
beginning with the letter "x", 6b7d

page 117

F_________________________————————————————————————————————_____________,

.ARC 33522 Rev, 22 NOV 75

&SRI=ARC 18#NOV=75 20:20 33522

Section 3: L10 Execution Procedures

The CMIL, prograr interacts with the user and gathers informationg;
it subsequently calls one or more L10 procedures, The procedure
CML calls must meet certain requirements, described in this
section, Because of these requirements, typically the execution
routine is written as an interface to a number of other L10
procedures performing the actual functions, This way the function
routines can be written independent of which command or procedure
calls them, This section will describe the requirements of
procedures called from CML, The next section offers additional
L10 capabilities in this environment,

CML can be in one of four states as it parses a command based on
the syntax described in your CVL program (known as the
"parsemode"):

1) parsing: recognition state where input text is compared
with arammatical constructs in CML progranm

2) backup: the user has typed a backspace, or a procedure call
has returned FALSE; CML backs up through previously specified
elements of the CML code, calling each in backup mode, to
before the last CML alternative (not necessarily equivalent to
user input element; maybe through the entire command, aborting
the command)

3) cleanyp: the yser has typed a Command Delete, or the
command has been completed (including any execution procedure
calls); CML backs up through all previously specified elements
of the CML code; each procedure is again called, this time in
"cleanup" mcde

4) parsehelp: (used only with parsefunctions) before calling
a parsefunction in “parsing" mode, the procedure is called in
"parsehelp" mode to solicit a user prompt string,

5) parsegmark: (used only with parsefunctions) when the user
types a questjonmark, the procedure js called in "parsegmark"
mode to solicit a guestionmark string,

When CML calls a procedure, it automatically passes two extra
implicit parameters before the parameters the programmmer
specifies:

The first parameter 1s the address of a CML record reserved for
use by that procedure, The record is initially empty (or

page 118

NLS Programmers’ Guide
Part Four: L10 Execution Procedures

6cC

6c1

6c2

6c2a

6c2b

6c2¢

6c2d

6c2e

6c3

&SRI=ARC 18=NOV=75 20:20 33522
‘”LS Programmers® Gulde ARC 33522 Rey, 22 NOV 75
part Four: L10 Execution Procedures

tilled with garbage), The execution procedure may £fill the ten
words of the record by receiving the address in a REFed
parameter variable and then indexing into the array, 6c3a

CML, considers the procedure to have returned TRUE {if it
returns the address of the CML record; otherwise the return
is considered FALSE, When a procedure returns FALSE, CML
will bAck up, cdalling that and previous procedures in
"backup" mode, until another branch in the command syntax
logic is found or until the entire command has been aborted,

The second parameter is a value (not an address of a record)
representing the parse mode, Whenever CML encounters a

procedyre call in the syntax (in any mode) it calls the

procedure, passing it the value of the parsemode, 6c3b

Typically, the execution routine should only perform its
primary function in the parsemode "parsing", In "backup"
and "cleanup", it may reset any 9lobals or state information
it may have affected while in the parsemode "parsing," The
names of the modes (see above) are globals to which you may

. compare the value received in the second parameter, AN
execution routine typically consists of a large CASE
statement, e,q,

CASE parsemode 0OF

parsing:
BEGIN

.
END;

backup, = cleanup:
BEGIN

.
.
END3
ENDCASE

Calls on procedures declared as parsefunctions pass a third

implicit parameter, the address of a string in which to put the
prompt, They are called in the parsemode "parsehelp" for the

strinag before being called in the parsemode "parsing", or in
parsemode "parsegmark" when the user types a questionmark, 6cic

. CML passes the parameters specified in the call after the two

page 119

&SRI=ARC 18=NOVe75 20320 33522
.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
Part Four: L10 Execution Procedures

or three system supplied parameters, Remember that these
parameters will always be the address of a record holding the
information, s0 the receiving variable must be REFed, The
format of the record itself is determined by the routine that

filled it, 6c3d
For example, if the CML procedure call looked as tollows} 6c4
xprocedure (paraml, param2) 6cda

then the L10 execution procedure would receive parameters as
follows: 6¢c5

(xprocedure) PROCEDURE (result, parsemode, parameterti,
parameter?) ; 6cS5a

All parameters except the parsemode should he REFed in the
execution procedure, 6hCS5b

page 120

&SRI=ARC 18=NOV=75 20320 33522

’ NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
part Four: Additional L10O Capabjilities

Section 4: Additional L10 Capabilities 6d

Introduction 6d1
The attachable subsystems have access to the full capabilities
of the NLS environment, This section will describe some
capabilities not discussed in the context of Content Analyzer
programs, Further capabilities will be discussed in Part Five, 6dla

Movinag Around Within NLS Files 642

Generally, at least one simple variable or a text pointer will

have to be declared to hold the statement identifier (stid) of

the current statement, (The first word of a text pointer is an
stid.,) Assume the gimple variable with the name "stid" has

been declared for the purpose of the followina discussion, 6d2a

In the NLS file system, two basic pointers are Kept with each
statement: to the substatement and to the successor, 6d2b

. 1f there is no substatement, the substatement=pointer will
point to the statement itself,

The procedure getsup returns the stid of the
substatement, To do something to the substatement {f
there is one:

IF (stid 3= getsub(stid)) & stid THEN somethinG,.,?

stid is given the value of the supstatement=pointer,
then the old value of stid {is compared to the new, It
they are the same, then there is no substructure, If
they are different, you have the stid of the
substatement and can operate on 1it,

If there is no successor (at the tail of a plex): the

successor=pointer will point to the statement uP from the
statement (i,e, the statement toO which the current statement

is a sub),

The procedure getsuc returns the stid of the successor
(or up),

To move to the successor:

. stid .. getsuc(stid);

page 121

SSRI=ARC 18=NOV=75 20:20 33522
.ARC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
Part Four: Additjonal L10 Capabjilities

Given these two basjic procedures, @ number of other procCedures
have been written and are part of the NLS system, All of the
following procedures take an stid as their only parameter, and
do nothing but return a value, usually a stid, If the end of
the file is encountered, these procedures return the alobal
value "endfil", 6d2c
getup(stid) == returns the stid of the up
getprd(stid) == returns stid of the predecessor
getnxt(stid) == returns stid of next statement Or endfil
getbck(stid) == returns the stid of the back or endfil
gethed(stid) == returns stid of the head of the plex
getail(stid) == returns stid of the tail of the plex

getend(stid) == returns the stid of the end of the tail of

’ the plex

getftl(stid) == returns TRUE if stid is tail of plex, else
FALSE

getjev(stid) == returns)jeve] of statement

Once you have the stid of a statement, you may operate on it as
in content Analyzer programs, E.QG,. 6d2d

FIND SF(stid) sNP “ptr,,.
Another common operation is to access the statement (file) in
which the CM (Oor bua) was at the time of the last Command
Accept (or other commrand terminator), This is stored in the
system, and can be accessed with the following procedure call: 6d2e
stid o lecwpl) 3

Then, 1f you wish to set the stpsid to the oriain of that
file, youy could say:;

stid,stpsid _ origin ; %origin i{s a global with the
stpsid of the origin statement in it%

The following procedures may also assist you in moving around

. files: 6d2f

page 122

§SRI=ARC 18=NOV=75 20:20 33522
'NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
part Four: hAdéitional L10G Capabilities

caddexp(aptri,aptr2,da,startptr) == given the addresses of
two text pointers surrounding an NLS address expression, the
address c¢f a display area, and the address of a text pointer
representing the starting position: caddexp will evaluate
the address expression with respect to the starting
position, and update the start pointer to the new location,

This procedure will follow file returns, links, etc,,
opening files as necessary, Remember to close any open
files when you are done with them (see 6d4 below),

The procedure lda() returns the address of the display
area which held the bug at the time of the last Command
Accept; it may be used as the third parameter of caddexp,
E,g,

cadoexp(sptri, Sptr2, lda(), Ssptr) ;

namingrp(stidl,stid2,astring,levels) == given two stids
representing 4 group, the address of & string holding the
name, and a number representing levels of depth below the

. stids*: returns stid of the statement with the given name in
the group specified by the stids, 0Only searches through
given nurber of levels below stid level, (If the stids are
the same, will search the branch,)

page 123

i
| SSRI=ARC 18=NOVe=75 20320 33522
|

‘ARC 33522 Rev, 22 KOV 75 NLS Proorammers’ Guide
part Four: Additional L10 Capabilities

lookup(ptr,string,type) == given the address of a text
pointer, the address of a string, and a type, will do a
variety of searches (in the process destroys string and
changes pointer), type may be one of the followina:

nametyp == non=sequential search for statement of name
given in string; returns stid and sets pointer to stid or
else returns endfil in both places

nxtnare == like name, also a nonwsequential search, but
starts from place in file ring to which ptr points

seqname == starting with the statement following the one
refered to by the ptr, does a sequential search of the
file for the given name; returns stid or endfil in
pointer

contnt == does a sequential search of the file, beginning
with the character followina the pointer, for a statement
with the content of the string; returns stid or endfil in

. pointer

contls == same as contnt, but looks only in statement
holding pointer

wordtyp == same as contnt, but looks for word given in
string

sid == pass an SID instead of the address of the string;
searches for statement with that SID and returns in
pointer and as procedure value the stid or endfil

Calling NLS Comrmands 6d3

A program may execute any of the standard NLS commands by

calling the same procedure that the system executjon routines

call for each command, These procedures are called the "core"
procedures, They are listed in <NLS,XPROCS,> and in

<NLSsSYSGDs>, Their names begin with the letter "c", generally
followed by three initials of each command word, e,d, Insert
Statement could be executed by calling the procedure "cinssta", 6d3a

| Usually the reguired arguments can be discovered bY knowing the -
| command and by 1ooking at XPROCS and/or SYSGD, For example, i
l the formal parameters to the procedure "cinssta" are
(stid,rlevent,tpl,tp2), As one might guess from the command
. syntax, the procedure wants a target stid, the value of level
) adjustment (up = +1, same = 0, down = -1, etc), and the address

page 124

&SRI=ARC 18=NOV=75 20:20 33522
NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75

Part Four: Addjtional L10 Capabilities

of two text pointers surrounding the string of text to be
inserted,

Much can be learned by looking at the code of the core
proceduyre, You can see what procedures it {n turn calls to
discover how the command is actually performed, BAut most
importantly, you can find out what the procedure returns, The
RETURN statement for "cinssta" look like:

RETURN(stid);

from which it can pe inferred that the procedure returns the
stid of the newly created statement,

When you are not sure what the arguments mean, a good way to
find out is to see where the command parser picks up the
information, You can follow through the parsing of a command
by beainning with <NLS,SYNTAX,>, the actual NLS CML code,

Tracing a cemmand from <NLS,SYNTAX,> {s also valuable {in
finding out how the system performs an operation which you
would like yocur program to do, For example, {f you wish to
parse a 1ink and open the given file, you might learn how to do
it by following the Jump to Link command through,

Opening Files

When yoy ask the uyser for an address or bud, you don’t have to
open the file; yoy have a handle on it with the stid the user
gives you, There may be times, however, when you wish your
program to open & file not specified by the user, There is a
procedure which does this:

open (3fn, astring);

You should pass zero as the jfn, and the address of a string
containing the name of the flle to astring, This procedure
will return the file number, If the file is not already open,
it will open 1t, It will also fill out the string with the
complete file name if you do not specify the directory or
version number,

If the f£ile does not exist, open calls the procedure "err",
which generates a signal of the value "errsig," Signals are
discussed in Part rive,

The usual sequence of steps to open a file is as follows:

6d3b

6dic

6d3d

6d3e

6d3f

6d4

6dda

6d4b

6ddc

page 125

&SRI=ARC 18=NOV=75 20320 33522
.ARC 33522 Rev, 22 NOV 75 NLS Programmers® Gulde
part Four: Additional L10 Capabilities

$"stid" has been declared as a simple variable or text
peinter%

stid _ orgstid; %oragstid is a global with all zeros except
in the stpsid field, where it has the stpsid of the origin
statement (the same for every fille)%

#str* _ "<dirname>filename,nls"; %str is of coyrse a
declared string variable%

stid,stfile _ open (0,8str);

Note that the procedure "open" requires a TENEX file name, The
| procedure "Inbfls" converts links to TENEX file names: 6d4d

} Inbfls (linkstr, linkparseblock, filenamestr)

P&ss the address of the string holding the link as the first
parameter, 2ero for the second parameter (used if 1ink
already parsed), and the address of a string to receive the

' filename as the third parameter,

The procedure returns the host number in case the 1link
includes a site name, This value might pe compared to the
following globals:

lhostn == the number of the local host

utilhost == the number of Office~1

archost == the number of the ARC machine (BBENeTENEX=H)
For example, you night use the procedure as follows:

CASE Inbfls(&linkstr,0,sfilename) OF

= lhostn: NULL}

ENDCASE err(notyet)

At the end of your program, you should close any files that you
have opened, Use the procedures: 6dde

close (filnum);

E.g,
. close (stid,stfile);

page 126

&SRI=ARC 18=NOV=75 20320 33522
. NLS Programmers’ Guide ARC 33522 Rey, 22 NOV 75
Part Four: Additional L10 Capabilities

Displaying Messages 6d5

The following procedures may be of use in displaying messages,
In all cases, the appropriate actions will occur in TNLS as
well as DNLS, although these descriptions are oriented to DNLS, 6d5a

dismes(type, astring) == teletype window
where type is one of the following:

0 == clear teletype window (no address need be passed)
1 == add text in string whose address is passed as a
new line in the teletype window

2 == add text in string whose address is passed as a
new line in the teletype window for about 3 seconds,
then clear window

n == any number >=1000 represents the number of
milliseconds the message {s to be displayed before the
teletype window {s cleared,

In TNLS, type = 1, 2, and >=1000 all simply print the
. string starting on a new line,

fbctl(type, astring) == literal display window
where type is one of the following:

typenulllit == begin empty literal display (replacing
file window), no string address passed

fbaddlit == add string whose address is passed to
current literal g4isplay

addcalit == add "Type <CA> to continuye," to current
literal display. then wait for <CA> or <CD>, then
restore file window

typelit == start literal display with string, then
wait for user input, then restore file window

foendlit == add string to current literal display,
then wait for user input, then restore file window

typecalit == start literal display with string, add
"Type <CA> to continue,", then wait for <CA> or <CD>,
then restore file window

. The literal display replaces the file window on the

&SRI=ARC 18=NOV=75 20220 33522
’APC 33522 Rev, 22 NOV 75 NLS Programmers’ Guide
part Four: Additional L10 Capabilities

sCreen, or is simply printed in TNLS, For example, it is
used by the Show File Status command,

dn(astring) == name display

add string whose address is passed to command feedback
line, enclosed in gquotes

setting Up for Display Refresnhing 6d6

The command parseér calls the procedure "cmdfinish" after

completina and cleaning up every command, If certain

parameters are set properly, "cmdfinish" will automatically

update the user’s screen (primarily of concern in DNLS), You

may also move a different statement to the top of the window

(i,e, jump) vefore updating the screen, bdba

To refresh the screen after editing a file: 6d6b

The procedure "dpset" sets up parameters for refreshing the
sCreen after a command, If "dpset" is properly used, the

' screen will automatically be refreshed after the command
(i,e, CML will call "recred" if necessary), One should look
for the most efficient way to make the proper changes,

The procedure "dpset" must be called BEFORE any changes
are made in the file, This is so that the display
reformatter will have something with which to compare
when looking to see what has been changed,
The procedure call should look as follows:

dpset (type, stidl, stid2, stopstid) 3

There are a number of globals which may be passed for
ntypeng

dsprfmt == rewrite the content of one or two
statements

stidl == the stid of the statement that has been
changed

stid2 == the stid of another statement that has
been changed, or "endfil"

. stopstid == ignored, pass it "endfil"

page 128

&SRI=ARC 18=NOV=75 20:20 33522

NLS Programmers*® Guide ARC 33522 Rev, 22 NOV 75

Part Four:

dspstrc == if file restructuring occured beginning at
at one or two places; doesn’t rewrite content of
statements; will add new statements in a structure

dsprfst == rewrites content of oneé Or two Statements,
then looks for structural changes thereatter

Additional L10 Capabilities |

stidl == the stid of the statement where a
structural change begins

stid2 =« the stid of where another structural
change begins, or "endfil"

stopstid == the stid of the statement after which
it can stop changing the screen (whether change
began with stidl or stid2); the procedure "dpstp"
may be of service here; if you cannot figure out
where it should stop, pass it "endfil" (go till end
of window)

stidl -« the stid of the statement where a set of
changes begins

stid2 == the stid of where another set of changes
begins, or "endfil"

stopstid == the stid of the statement after which
it can stop changing the sCreen (whether change
pegan with stidl or stid2); the procedure "dpstp"
may be of service here; if you cannot figure out
where it should stop, pass it "endfil" (go till end
of window)

dspipf == jymp command in one window only, no editing

stid]l =« the stid of the statement to be at the top
of the screen; see below for other parameters which
must be set

stid2 ==-"endfil"

stopstid == "endfil"

page 129

SSRI=ARC 18=NOVe75 20320 33522
.ARC 33522 Rey, 22 NOV 75 NLS Programmers’ Guide
part Four: Additional L10 Capabilities

dspyes == completelyY refresh all windows holding one
or either ot two files specified

stidl == the stid of a statement in the file where
changes will be made

stid2 == the stid of a statement in the file where
another set of changes will be made, or "endfil"

stopstid == "endfil"
dspno == do no display refreshing
stidl =« "endfil"
stid2 == "endfil”
stopstid == "endfil"
dspallf == refresh the entire screen

. stidl =« "endf{l"

stid2 =« "enafil"

stopstid == "endfil"

The procedure "gpstp", when pasSed an Stid, returns the stia
of the next statement in the fjile at the same or a higher
level, 7This can be used as the stopstid in "dpset” if
structural changes are occuring such that you don‘’t know a
priori what the last statement changed will be,

To change the positicn of a window (Jump): 6dé6ec

The global "cSpupcdate" should be set to the address of the
display area descriptor for the window You want changed,

INn TNLS, it is always the address contained in the global
"tda".

If you wish to change the view in the window which held
the bug at the time of the last CONFIRM, you may use the
staterent;

cspupdate _ 1da();

' . This also works for TKLS,

page 130

&SRI=ARC 18=NOVe75 20320 33522
NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
part Four: Additional L10 Capabilities

Once cspupdate is set, any of the globals described below
will replace the appropriate field in the display area
descriptor upon completion of the command,

The alobal "curmkr" is a text pointer pointing to the
statement at the top of a window in DNLS, or the CM in TNLS,

[he first word of "curmkr" should be set to the stid of
the statement you want at the top of the window (in TNLS
the statement which you want to hold the CM),

The second word of "curmkr", i,e, curmkr{l], should hold
the character position for the CM, (In DNLS it is
usually 1,)

The global "ecspvs" is a two word array which should hold two
viewspec words for the new view,

The global stdvsp is a two work array holding the NLS
standard viewspecs (i,e, the ones in effect when you
first enter NLS),.

The current viewspec words may be gotten from the display
area descriptor, If you have REFed a variable called
"da", for example, you may assign the address of the
display area which held the cursor at the time of the
last command Accept with the statement:

§da - 1da() ; %return address of display area
descriptor%

You may then refer to fields within the display area
descriptor,

davspec =~ holds the first viewspec word
davspc?2 == holds the second viewspec word

You may change indiyidual fields within viewspec words,
The following fielads apply to viewspec words!

vslev == lowest level to bpe displayed

vsrlev == {f set to TRUE, the level of the current
staterment will be added to vslev

vslevd == {f set to TRUE and vsrlev is TRUE, the

page 131

&SRI=ARC 18«NOV=75 20320 33522

.ARC 33522 Rev, 22 NOV 75 NLS Proarammers’ Guide

Part Four: Additional L10 Capabilities

current level will be subtracted from rather than
added to vslev

vstrnc == number of lines of each statement to be
displayed

vscapf == {f TRUE, content analyzer on (viewspec 1);
takes precedence over vscakf

vscakf == {f TRUE, content analyzer on until one
statement passes (viewspec i)

vsusqgf == {f TRUE, user sequence generator on
(viewspec 0)

vsbrof =« if TRUE, branch only on (viewspec gq); takes
precedence over vysplxf

vsplxf == it TRUE, plex only on (viewspec 1)
vshlkf == {f TRUE, blank lines on (viewspec ¥)

vsindf == {f TRUF, indenting on (viewspec A; on by
default)

vsrind == if TRUE, indenting relative to first
statement in display (viewspec Q)

vsnamf -« if TRUE, statement names on (viewspec C; on
by default)

vsstnf == if TRUE, Statement numbers or SIDs on
(viewspec m)

vsstnr == if TRUE, statement numbers/SIDs put on right
(viewspec G)

vssidf == 1f TRUE, SIDs replace statement numbers
(viewspec 1)

vsidtf == §f TRUE, Sstatement signatures on (viewspec
K)

vsfrzf «= if TRUE, frozen statements on (viewspec 0)

vspagf == 1f TRUE, pagination on in TNLS (viewspec Ej
on by default)

&SRI=ARC 18=NOV=75 20320 33522
‘NLS programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Four: Additional L10 Capabilities

vsdaft == {f TRUE, don‘’t defer display recreation in
DNLS (viewspec uj; on by default)

1f you wish, you may set the variable "cspcacod" to the
address of a user content analyzer procedure, .and/or the
variable "cspusgcod" to the address of a user sequence
generator procedure; they will be instituted before the
window is updated,

The tollowing tields in the display area descriptor may
be useful:

dacacode == holds address of currently instituted
Content Analyzer procedure

dausqcod == holds address of currently instituted user
Sequence Generator procedure

If you have a REFed variable called "da", have not edited
the fjle, and do not wish to change the viewspecs, you might
. use the following sequence of commands:

%$address of last display area%
&da . cspupdate _ lda();
$stid of stmnt to be put at top of windowg
curmkr . stid ;
curmkr(l] o 1 3
$two current viewspec words%
cspvs .. da,davspec:
cspvsll) _ da,davspc?;
$turn on Content Analyzerst
- csPyvs,Vvscapf .. TRUE;
$institute the procedure "filterproc" as Content
Analyzer%
cspcacod . sfilterproc;
%¥set up for display recreations
dpset (dspipf, curmkr, endfil, endfil);

Tf you have edited the file, use the type "dspyes" instead
of "dspjpf" in your call on "dpset",

Other Useful Procedures 647

astruc(astring) == given the address of a string, sets the
string to upper case, 6d7a

. techno(stid,astring) == given an stid, appends the statement
number string to the string variable whose address is passed, 6d7b

page 133

.ARC 33522 Rev, 22 NOV 75

&SRI=ARC 18=NOV=75 20:20 33522

getsid(stid) == given an stid, returns value of SID (don”t
forget to add zero to front if converting to a string)

fechsig(stié¢,astring) == aiven an stid, appends the statement
signature to the string variable whose address is passed,

getdat(astring) == agiven the address of a string, appends date
and time to string,

arptst(stidl,stid2) == checks that two stid’s specify a legal
group; returns them ordered or else an "illegal group" signal
is generated,

plxset(stid) == given an stid, returns the stid of the head and
of the tajl of the plex of which the passed stid {s a member;
e, g, first . plxset(stid ; last) ;

resetf(fileno) == given the file number of and open file,
deletes all contents of the file leaving only origin statement,
resets date and ident in origin statement (leaves file locked)

filnam(filnc,astring) == afven the file nuymber, appends the
file name (in link format surrounded by angle=brackets <>) to
string whose address is passed

pause(milliseconds) == waits the given number of milliseconds,
then returns

settimer(milliseconds,aproc,parami,param2,parami,paramg) ==
calls procedure whose address is passed, passing up to four
parameters to that procedure, after given nuymber of

milliseconds; other code will be executed in the mean time

Globals of Interest:

#initsr* == is the login ident of the person currently using
the program,

inptrf == is incremented every time the user types a <CTRLw=0>;
this can be useéd as a user program interrupt mechanism; {,e,
you can set it to 0 at the beainning of the program and then
check {t at the start of each loop of your program to see {f
the user has typed a <CTRL=0>, i,e, wishes to abort the
command,

inpstp == is incremented every time the user types a <CTRL=s>,

NLS Programmers’ Guide
part Four: Additional L10 Capabilities

6d7¢c

6d7d

6d7e

6d7f

6d79

6d7h

6d71

6d73

6d7k

6d8

6d8a

6d8b

6dic

4SRI=ARC 1B=NOV=75 20320 33522
’ NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
Part Four: Creating and Using Attachable Subsystems

section 5; Creating and Using Attachable Subsystems be

In summary, the programmer must write two programs to build a user
attachable subsystem: the CML and the L10 support procedures,

Each of these programs is compiled separately (by their respective
compilers) intc separate REL files, The Load Program command (in

the PROGRAMS subystem) will load both at once if the extension on

the filename holding the CML code is "cml" and the extension on

the 1,10 code file is "subsys", O0Once loaded, the user may use

commands in the subsystem as he does commands in any of the

standard subsystenms, 6el

You may find it convenient to begin writing a program by copying
the following skelton (plex) from thnis NLS file
<USERGUIDES,L10=GUIpE,6e2a>, It can then be modified to fit the
needs of your progQram, (The comments in the FILE statements allow
vou to quickly bug the information required by the Compile File
command, All the CML declarationg that are uysed in the NLS system
are included only to contripute to consistent use of commang words
and values, The CML rules have been left blank; they must be
.tllled in or removed, All file, procedure, subsystem, and rule
names are only exemplary, The last three parameters in the L10
procedure are only exemplary,)
he2
FILE cname % (CML,SAV,) T0O (cname,cml,) % 6e2a
% DECLARATIUNS %
DECLARE PARSEFUNCTION
answy % reads ansgwer construct %

answer, for gquestions = returns 0/1 %
sp, reads next char, TRUE if space %
readconfirm, reads next char if ca %

readbug, reads next char 1f BUG %

%
%
%
%
readoption, % TRUE if next char is optchar %
readrepeat, % TRUE {f next char is repeat %
lookansw, $ TRUE if next char is Y/CA %
lookconfirm, & TRUE if next char is CA/REPEAT/INSERT %
%
%
%
%
W

lockbug, TRUE if next char is BUG %

locknum, TRUE if next char is a number %
clearname, clears the name area %

notcajs reads next char, TRUE if not CA char %

DECLARE CONMMAND
"BRANCH" = 1
"GROUP" = 2 ,
YPLEX" &3 ,
"STATEMENT" =

. "CHARACTER"
NCONTROLCHAR®

ORD

nwvas

s~
-

page 135

&SRI=ARC 18=NOV=75 20320 33522

.AFC 33522 Rev, 22 NOV 75 NLS Programmers® Guide
part Four: Creating and Using Attachable Subsystems

"INVISIBLE"
"LINK" = 8 ,
"DIRECTCRY" = 9 ,
"PASSWORD" = 10 ,
"NUMBER" = 11 ,

]
-
-~

"TEXT" = 12 ,
"VISIBLE" = 13 ,
"WORD" = 14 ,

"FILE" = 15 ,
"NFWFILELINK" = 16 .
"OLDFILELINK® = 17 ,

"NAME" = 18 ,
"IDENT" = 19 ,
"IDENTLI1IST" = 20 ,
"EDGE" = 21 ,
"MARKER" = 22 ,
"NLS" = 23
"ITEM" = 24 ,
"ITEMNOVS" = 25 ,
"SUCCESSOR" = 26 ,

"FPREDECESSOR" = 27
. "Up" = 28 ,

"DOWN" = 29 ,
"HEAD" = 30 .,
"TAIL" = 31 ,

W"END" = 32 .

"BACK" 33 4

"NEXT" 4 ,
"ORIGIN" = 35 ,
"FILERETURN" = 36
"RETURN" = 37 ,
"FILENAME" = 38 ,
"FIRSTNAME" = 39 ,
PNEXTNAME" = 40 ,
"EXTNAME" = 41 ,
"FIRSTCONTENT" = 42 ,
YNEXTCONTENT" = 43 ,
"FIRSTWORD" = 44 ,
"NEXTWORD" = 45 ,
"DETACHED" = 46 ,
“TTY" 3 47 ,

"AUTO" = 48 ,
"CONTINUE" = 49 ,
"ON" = 50
"RECOVER" 51 »
"SLINKER" 52 »

' WUBDATE" = 53 ,
"CLEAR" = 54 ,

nn-

page 136

&S5RI=ARC 18«N0Ve75 20320 33522
.NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Four: Creating and Using Attachable Subsystems

"IDENTS" = 55 ,
"FILES" = 56 ,
"DELETE" = 57 ,
"DEFERRED" = 58 ,
"IMMEDIATE" = 59 ,
"NCT" = 60
"PREVENT" = 61 ,
PRESET" = 62 .,
YARCHIVE" = 63 ,
"SEQUENTIAL" = 64 ,
n-Iv"ru = 65 ¢
"JUSTIFIED"
"ASSEMBLER"
"BOTH" = 6R
"UNDELETE" = 69 ,
"FCR" = 70 ,
"STATUS" 3 71 ,
"TAPE" ' 72 ,
"ACCOUNT" = 73 ,
"NO" = 74 ,
"VERSIONS" = 75 ,
. "EXTENSION" = 76 ,
*DATE" & 717 ,
"CREATION" = 78 ,
"LAST" ® ‘79 ,
"FIRST" = 80 ,
"READ" = 815
"WRITE" = 82 ,
"DUMP" = 83 ,
"EVERYTHING" = 84 ,
"LENGTH" = 85 ,
"MISCELLANECUS"
"ACCESSES" = 87 ,
"PROTECT" = 88 ,
"SIZE" = 89 ,
"TIME" = 90 ,
"VERBOSE" = 91 ,
"SORT" = 92 ,
"BYTESIZE" = 93
"ARCHIVED" = 94 ,
"ALL" =. 95 ,
"MCDIFICATIONS"
"UFPER" = 97 ,
"LOWER" = 9§ ,
"MCDE" = 99 ,
"SENDMAIL" = 100 ,

. "BUsSyYy" = 101 ,
"QUICKPRINT" = 102 ,

66
67

-

B6

96

page 137

‘M-‘C 33522 Rev, 22

page 138

NOV 7
pPart

"JOURNAL" =
"PRINTER" =
"ccr" = 105
"TERMINAL" =
PRENMOTE" = 1
WREST" = 108
"CASE" = 109
"CONTENT" =
"lt”"’l"*/\p‘l’"
"VIEWSPECS"
"EXTERNAL" =
"TOY = 114
"PRIVATE" =

"Fl’l"l:l(:" s 1

|I1F"\~EXN = ‘l

"ALLOW" = {1
"

"EXECUTE" =
"APPEND" = 1
"LIST" = 121
"S’.'lll = ‘22
"SELF" = 123
"FORRID" = |
"DISK" = ‘25
"DEFAULT" =
"QLD" = 127
"NEW" = 128
"COMPACT" =
"RENAME" = |
"ADD" = 131
"SUBTRACT"
"MULTIPLY"
"DIVIDE" =
"RIGHT" =
"LEFT" = 13
"ACTION" =
"AUTHORS" =
"COMMENT" =
"EXPEDITE"
"HARDCOPY"
"INFORMATION
"INSERT" = 1
"KEYWORDS" =
"OBSOLETES®
"RFC" = 146
"SUBCOLLECTI
"TITLE" = 14
"UNRECORDED"
"L10" = 150

1
3
6

i

&SRI=ARC 18=NOVe75 20320 33522
5 NLS Programmers’ Guide
Four: Creating and Using Attachable Subsystems

103 ,
104 ,

’
106 .
oy
r
’
12:0% ;
= 111 ,
21322
113

118 ,
16 ,
T
230
119 ,
20 ,
'
'
'
24 ,
’
126 ,
’

’
129 ,
30
’
132
133 ,
34 ,
S »
’
3 0
138 ,
39 5
140 .
141
e &t 3
43 ,
144 ,
= 145 ,
'’
ONS" =
8 ,
= 149 ,

147 ,

&SRI=ARC 18=NOVe75 20:20 33522
‘m,s Programmers® Guide ARC 33522 Rey, 22 NOV 75
Part Four: Creating and Using Attachable Subsystems

"PROCEDURE" = 151 ,
"SEQGENERATOR" = 152 ,
"BUFFER" = 153 ,
"NPDT" = 154 ,
"PARSERULE" = 155 ,
"CA" = 156 ,

"CD" = 157
"RET" = 158 ,
“pCrus 189
"Bw" = 160 ,
"BS" = 161

’
"LITESC" = 162 ,
"IGNORE" = 163 ,
"SC" = 164 ,
“Sh" s 165 ’
"TAB" = 166 .,
YIMLAC" = 167 .,
"TI% = 168"
"NVT®" = 169 ,
"EXECUPORT" = 170 ,
"MENUY 1711,
. NDNLSII 172 ’
ll']'\LS" ’
"COMMAND" = 174 ,
"RULE" = 175 ,
"SUBSYSTEM" = 176 ,
"DISPLAY" = 177 ,
"FROZEN"
"HLPCOM"
"EROGRAM" = 18O ,
"TERSE" = 181 ,
"INDENTING" = 182 ,
"UNIVERSAL" = 183 ,
"ENTRY" = 184 ,
"INCLUDE" = 18S ,
"BCTTOM" = 186 ,»
"PAGE" = 187 ,
"OFF" = 188 ,
"F[,'l!<" = 189 F
"PARTIAL" = 190 ,
"ANTICIPATORY" = 191 ,
"DEMAND" = 192 ,
"FIXED" = 193 ,
nccr"‘[hULu = 194 3
"CURRENTCONTEXT" = 195 ,
"FEEDBACK" = 196 ,

. "HERALD" = 197 ,
"PRINTOPTIONS" = 198

’

page 139

.ARC 33522 Rev,

"PROMPT"

"RECOGNITION"

"STARTUP"

"LEVELADJUST"

"REVERSE"
'.TEST.'
"TASKER"

"LINEPROCESSOR"

"CENTER"
"CNTLG"

22 NOV 75
Part Four:

&SRI=ARC 18=NOV=75 20320 33522
NLS Programmers’ Guide
Creating and Using Attachable Subsystems

199 ,

200 ,
201 ,
202 ,
203 ,

204 ,

205
:206'
207

208 3

% COMMON RULES %

% ENTITY

DEFINITIONS
editentity

%
textent / structure;

% TEXT ENTITY DEFINITIONS %

textent
text]
/
% STRUCTURE
structure

notstatement

SUBSYSTEM name

CUM;AND
TERMINATION

H

END,

FINISH
FILE lname %
% globals %

"CHARACTER"
" ’VUHHtF"g
ENTITY DEFINITIONS

INITIALIZATION

fname?2

(L10,5AV,) TO (lname,SUbsys,) %

NTEXTY /
/ “WORD"

textl / "LINK";

/ “"VISIBLE" / "INVISIBLE"

%
/ notstatement;
"BRANCH" / "PLEX" 3

"STATEMENT"
"GROUP" /
KEYWORD "“NAME"
fnamel

"COMMANDWORD"

fname3

6e2b

(xname) FROCEDURE g execution procedure %
$Formal Parameterss

(result,
parsemode,
paraml,
param2,
parami);
$Locals%

REF result,

s2result recordsg

¢«parsing, backup, cleanups
svour first parameter,,,.%

%0f course you may have,..%

%0 to 7 of your own parametersg
param3;

paraml, param2,

CASE parsemode 0OF

parsing:
BEGIN
END};

backup,
BEGIN
END}

ENDCASE;

paqguiﬁo

cleanup:

‘ NLS Programmers® Guide

Part Four: Creating and Attachable

Using

RETURN(&Tesult);
END,

FINISH

&SRI=ARC
ARC 33522
Subsystems

Rev,

18=NOV=75 20320
22 NOV

15

page 141

33522

L&SRI=ARC 18=NOV=75 20320 33522

.;\HV 33522 Rev, 22 NOV 75 NLS Programmers® Guide
Part Five: Error Handling == SIGNALS

page 142

&SRI=ARC 18=NOV=75 20320

. NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75

Part Five: Error Handling == SIGNALS

PART FIVE: Advanced Programming Topics
Section 1: Error Handling ==~ SIGNALS

Introduction

When an NLS system procedure fails to perform properly, it may
generate an error signal, Every signal has a value, When a
signal is generated, control is paSsed back to the last sianal
trap in effect, If no explicit program control statement (e.g.
RETURN, GOTC) is aiven in that signal trap, a new signal will
be generated, 1If the error is not dealt with, the signal will

| eventually bubble all the way back to the execution routine,

| The execution routine should always trap a signal,

l You may trap signals and regain control by setting up the
response in advance,

. Trapping Signals
To trap error signals cf any error value:

ON SIGNAL ELSE statement ;

E.q,
ON SIGNAL ELSE
BEGIN
dismes(2,sstring);
RETURN;
END}

It is a good idea to set up a signal response before calling
any NLS system procedures,

the end of the procedure or until it is changed, and will be
executed whenever a4 signal is received by that procedure, Any
subsegquent ON SIGNAL statements will at that point change the
signal response (i,e, only one signal response can be in effect
at any point during procedure execution),

Only signals generated by procedures below (e,g, called by)
your procedure will be trapped by your procedure’s signal trap,
. It will not trap signals generated in the same procedure,

l Once the signal response is set, it remains in effect through
|
|
|
|
|
|
|
|

Ta

Ta1

7ala

7alb
7a2

Ta2a

7a2b

Ta2c

7a2d

Tale

page 143

33522

&SRI=ARC 18=NOV=75 20320 33522

.ARC 33522 Rev, 22 NOV 75 NLS Programmers® Guide
part Five: Error Handling == SIGNALS

The Signal response may be any (block of) L10 statement(s), It
will be executed, then 7a2f

- if you have an explicit program control statement (RETURN,
GOTO, EXIT LOOP), control will be passed accordingly and the
signal will stop there, or

- if the sianal trap includes no explicit program control
statement, another signal of the same value will be
generated, and control will pass upward through the stack of
procedures called until it encounters another signal trap,

A RETURN will return control to the procedure which called the
one which intercepted the signal (not the one which generated
it), 7a2qg

Thus, if you wish to resume control in the current procedure,
the signal trap will have to end with a GOTD statement pointing
to an appropriately labeled statement, This is one of the few

places where a GOTO is really necessary, 7a2h

’ 1f the signal trap applies to a loop, an EXIT LOOP or REPEAT
LOOP is a valid signal program control statement, Ta2i
Trapping Signals in Execution Routines 7a3

If a signal bubbles up through the execution routine to the

command parser (in a command in an attachable subsystem), the

results may be uynpredictable, Execution routines should always
include signal traps, Tala

A RETURN(FALSE) will shift cML into backup mode, It will back

up to before the last set of CML alternatives (not necessarily
equivalent to the last user input element), and then shift back

into parsine mode, (This may imply backing all the way through

the command, i,e, aborting the command,) 7a3b

The procedure "abortsubsystem" may be useful in this context,

It will shift the command parser into backup mode and abort the
current command, Then it will execute a Quit (from the cCurrent
subsystem) and return the user to the previously used

subsystem, It should be passed the address of an error string

to be displayed, E,Qq, 7aic

ON STGNAL ELSE abortsubsystem(s"Error in xprocedure,.,") ;

or
. ON SIGNAL ELSE abortsubsystem(sysmsg) ;

page 144

&SRI=ARC 18=NOV=75 20320
‘NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
Part Five; Error Handling =« SIGNALS

(see "Specific Signals")
Cancelling signal Traps

After proaram execution sets up a4 signal response, the
following statement will cancel it so that thereafter a signal
will just bubble on up:

ON SIGNAL ELSE WNULL 3
or just
ON SIGNAL ELSE

1t may be subséguently reset by execution of another ON SIGNAL
statement,

Specific Signals

When a signal is generated, the NLS system global variable

"sysgnl" is given a specific value (the valye of the signal),

Each value represents a certain type of error, Also the system

global variable "sysmsg" is given the address of a string which
. holds an error messadqe,

The above constructions react to any signal, no matter what its
valuye may be, The ON SIGNAL statement can be used much like a
CASE statement (comparing cases to the global sysgnl) if you
wish to trap specific signals:

ON SIGNAL
=constant: statement;
=constant; statement;

ELSE statement;

E,Q,

ON SIGNAL

=ofilerr: %open file errory
BEGIN
IF sysmsg THEN diswmes(2,sysmsa);
RETURN;
END}

ELSE %any other error signal%
BEGIN

I dismes(2,S"Error");

RETURN;

o

Ta4

7ad4a

Ja4db

7as

7aS5a

7a5b

7a5c¢

page 145

33522

'APC 33522 Rey, 22 NOV 75

S§SRI=ARC 18=NOV=75 20320 33522

The current signal constants can be found in <NLS,BCONST,>,

The common reason for using this specific signal treatment is
when you call a procedure which you know will generate a
certain signal value ynder certain conditions, 1In such a case,
vou can learn the signal constant of concern from the SIGNAL
statement which generates it,

Generating Signals

You may generate a SIGNAL in a procedure by the statement:
SIGNAL (value, astring)

where value is the value of the signal (perhaps a system
global) and astring is the address of a string holding the
error messace, 1f the second parameter is omitted, it will be
assumed to be zero and no message wlll be printed, The first
parameter is mandatory; every signal must have a value,

Examples:

SIGNAL (ofilerr, s"Couldn’t open your file,") ;
SIGNAL (2) ;

Another way t0 agenerate a SIGNAL i{s by calling the proceduyre

err(errno)

It will generate a STGNAL of the value "errsig" (a system
aglobal) and will set up a message depending on the value you
pass for errno, errno may be any of the following:

== "File copy fails";

== "Open Scratch fails";
== "Cannot load proaram";
"1/0 Error";

-= "Exceed capacity";

== "Bad file block";

== "Not implemented"

NN S W N -
1
1

I1f you pass it the address of a string as the error
number, it will signal usina that address for sysmsg, and
that string will be printed,

By allowing err to generate all the signals, you will £ind
it easy to freeze execution upon an error condition while
debugging usina NDDT, as described in the next section (by
setting a breakpoint at err),

page 146

NLS Programmers” Guide
part Five: Error Handling == SIGNALS

7a54d
Ta6

Taba

Tabb

Tabe

NLS Programmers”

part Five:

Be careful not
same procedure,

ON SIGNAL
zerrsiqg:
ELSE 444

§SRI=ARC 18=NOV75 20320 33522

Guide ARC 33522 Rev, 22 NOV 75
Error Handling =« SIGNALS

to call err and then trap its SIGNAL in that
You might say:

NULL3;

page 147

LSRI=ARC 18=NOV=75 20320 33522

’ARC 33522 Rev, 22 NOV 75 NLS Programmers’

Guide

part Five: NDDT Debugginag

Section 2: NDDT Debugaging

Introduction

Debugging is the process of finding the errors in a program,
Unce the problem is located, you may correct it in the source
code (NLS file) and recompile,

NLS includes a debugging tool called NDDT, for "NLS Dynamic
Debugging Technique," NDDT allows you to examine the state of

your proarar during or after running it (i,e, using the command
or filter), This section describes the capabilities of NDDT,

Accessing NDDT

To make NDDT avaiijable from NLS, you must execute the command
in the PROGRAMS subsystem:

Set Nddt (control=h) OK
. This adds the program NDDT to your user programs bpuffer,
Thereafter, whenever you type a <CTRL=h>, NLS will immedjately
be interrupted (be it in a waiting or running state) and you
will enter NDDT, NDDT will respond with its command hearald, a

right angle=bracket (»), indicating that NDDT is ready to
accept a command,

NpDT commands are specified by typing the first character of
the command word,

You may continue with NLS (from the point Where it was
interrupted) with the NDDT command:

Continue 0K

You may continue NLS from a specific instruction address with
the NDDT command:

Goto ADDRESS OK
NDDT Address Expressions
Everything stored in the machine (instructions and variables)
has an address, its location within the computer’s memory, AN

address is an octal (base~eight) number,

. The name of a procedure or of a named L10 statement may be used

~ page 148

70

b1

Tbla

7bib

b2

7b2a

7b2b

Tb2c¢

7b2d

b3

7b3a

&SRI=ARC 18=NOV=75 20320 33522
.NLS Programmers’ Guide ARC 33522 Rey, 22 NOV 75
Part Five: NDDT Debugging

instead of a8 number, It represents the octal location of the
named staterent or of the first instruction of the procedure, 7b3b

Addresses (symbols or numbers) may be combined, to evaluate to

some locaticn, An expression concatenated with the following
operators will pe evaluated from left to right (no hierarchical
ordering) to a single value: Tbic

<SP> same as +
-
»

/

Thus, a symbhol may be followed by a space (or pluse=sign) and
then an octal number, The number {s added to the location
represented by the symbol, 7b3d

Single=Word Variables Th4

Often, programmers wish to examine or modity the contents of a
single word at a given location, The NDDT Show command prints
. the contents of the word at that address, Tbda

Show Location ADDRESS 0K

where adéress is anp address expression as defipned above or
one of the following:

® == preceding entity
<LF> == next entity
Next == next entity

<TAB> == entity whose address is the content of current
location

NDDT maintains some address as your current location, and the

Show command sets this location to the one it examines, 1f you

ao not specify an address in a show command, the current

location is assumed, 7b4db

NDDT can print the contents in three ways: as a Symbol followed
by a number (to be added to the symbol location), as a single
| number, or as text, The default printout mode is symbolic,
| The printout mode may optionally be changed in a Show command,
| ‘ The new printout mode remains in effect until subsequently
changed, Tbdc

page 149

&SRI=ARC 18=NOV=75 20:20 33522

.ARC 33522 Rev, 22 NOV 75 NLS Programmers® Guide

- page 150

part Five: NDDT Debugging

show Location ADDRESS <CTRL=b> PRINTMODE OK

where PRINTMODE is one of the following:
Numeric
Symbolic
Text

A fast way to do the same thing is provided with the value
command: 7b4d

Value of ADDRESS CK
or
Value of ADDRESS <CTRLeb> PRINTMODE OK

You may print anc then replace the value in a word with the
Show command: Tbde

Show Location ADDRESS .. EXP OK
or
Show Location ADDRESS <CTRL=b> PRINTMODE . EXP OK

where EXF is an expression whose value will replace the old
value of the given location, 1In addition to the address
expressiens discussed above, you may use the form:

valuel,,value?
where "valuel" {s a standard expression which will be put

in the left half of tpe word, and "value2" is an
expression which will be put in the right half,

String Variables 7b5

The contents of a strina variapble may be examined and modified
as we)l)]l as simple variables, using the command: 7b5a

show string ADDRESS OK

Strings are always printed in text printout mode, 7b5b

You may print and then replace the string with the Show
command? 7b5¢

Show String ADDRESS o STR 0K

where STR is a literal string which you type in,

&SRI=ARC 18=NOV=75 20320 33522
'NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
pPart Five: NDDT Debugging

Records 7b6

To work with L10 records, you must first set the NDDT record
pointer to the first word of an L10 record definition, with the
command?} Tb6a

Record pointer set to: SYMBOL OK '
where SYMBOL 1s the name of some L10 record, Note that it

may be necessary to use the MARK command (described below)
to make local records known to the NDDT system, .

This is equivalent to the command: Tb6b !
!
Show Location RF . SYMBOL 0K :

You may then examine all the fields of any record with the
command: 7b6¢C

Show Record ADDRESS 0K
or
. Show Recerd ADDRESS <CTRL=b> PRINTMODE OK

Yoy may exarine and optionally change a single field within a

record with the Show [ocation command, substituting

ADDRESS,FIELD for ADDRESS, 1bbd

You may replace each field in a record with the command: Tbé6e
Show Record ADDRESS .
The name of each field is then printed and a new value may
be typed in, terminated by a Command Accept, Typing only a
command Acceépt will advance to the next field of the record
without modifying the last field,

Built in NDDT symbols 707
A number of Sympols are puilt in to NDDT and may be used in
address expressjions, Whep they are used, PRINTMODE will be

ignorea, since the printout mode is predefined for each of
these symbols, Tb7a

l Built in Locations, Registers Tb7b |

| Al == register A1l
. A2 == register A2
‘ A3 == register A3

page 151

&SRI=ARC 18=NOV=75 20:20 33522

.AFC 33522 Rev, 22 NOV 75 NLS Programmers® Guide
part Five: NDDT Debugging

A4 == register A4
R1 == recister R1
R2 == register R2
R3 == register R3
R4 == register R4

Built in Locations, Frame 7bl¢c

When a procedure is called, a "frame" is added to the stack,
It includes a word (holding the return location of that
procedure in the right nhalf) followed by all the parameters,
then all the locals, Some predefined symbols allow You
access the current or any previous frames and the
information in them,

M == contains address of current frame

MARK == contains address of previous frame

RET == return location in current frame

RP == address of record definition of last field used

§ == contains address of top of stack (last LOCAL word, or

whatever)
' SIG == current frame siagnal location
Built in Records 7b74d

BASE == first frame in procedure stack

FRAME ==« current frame description

F == same as FRAME

LOCALS == current frame LOCALS

L == same as LOCALS

RECP == description of current record

R == same as RECP

PARMS == current frame parameters

P == same as PARMS

TUP == description of top frame in procedure stack

Control Switches Tb7e
EC == Current symbol escape character (;)
RNAMES == If FALSE suppresses printing of record field names
SF == If FALSE disables these NDDT built in symbols
Special character commands 7b8
The special character commands are provided for commonly usSed
functions, All but = are essentjially subcommands of the SHOW

. command and are processed exactly as if they had pbeen preceded
by the command word Show, 7bBa

page 152

&SRI=ARC 18=NOV=75 20320 33522
. NLS Proarammers® Guide ARC 33522 Rey, 22 NOV 75
Part Five: NDDT Debugaing

= == Show current location in numeric typout without
chanaing the current printing mode

- == Assign a valve to current location
* == Show previous location
LF == Show next location
TAB == Show location addressed by current location
Traces and Breakpoints 69
If yoy set a "trace" at a location, the system will print that
address every time that instruction is executed, Execution
will not be interrupted, You may set a trace with the command: 7b%a
Trace location ADDRESS OK
1f you set a breakpoint at a location, a <CTRL=h> will
automatically be executed just before the given instruction
. (causing you to interrupt execution and enter NDDT), This
allows you to interrupt execution of vour program at a given
point and examine and chanae the state of the system, A
breakpoint ray be set with the command: 7b9b
Breakpoint Set ADDRESS 0K
Each trace and breakppint is assigned a number, beginning with
zero, when it is set, You may cancel a trace or breakpoint
using this number Or using the address to which it is set: Tb9c
Breakpoint Clear NUMBER DK
or
Breakpoint Clear ADDRESS 0K

You may cancel all traces and breakpoints that you have set
with the command: 7b9d

Breakpoint Clear All OK

You Mmay list a trace or breakpoint of a given number and the
location to which it {s set with the command: 7b9e

: Breakpoint Print NUMBER 0K

I . You may list all traces and breakpoints, their numbers, and
their locations with the command: Tb9t

&SRI=ARC 1B=NOV=75 20320 33522

‘AFC 33522 PeV, 22 NODV 75 NLS proqrammers' Guide
part Five: NDDT Debugging

Breakpoint Print OK

A breakpoint may replace a previous trace Or breakpoint (new
address, sare number) with the command: 7b9%¢a

Breakpoint Set ADDRESS <CTRL=b> Replaces breakpoint NUMBER
OK
A breakpoint may be set so that it only interrupts if a
comparison petween location and a given constant is true, with
the following command: 7b9h

Breakpoint Set ADDRESS <CTRL=b> Test ADDRESS RELOP CONSTANT
0K

where ADDRESS is the location of the word to be compared,
RELOFP is one of thfe following: = § € > &= O>=
CONSTANT is an expression with a value,
A breakpoint may be set so that it only interrupts if a
procedure is called and returns true, with the following
‘ command: 7b91
Breakpoint Set ADDRESS <CTRL=b> Call PROCEDURENAME OK
L10 Procedures 7b10
You may call an L10 procedure from NDDT with the command: 7b10a
Procedure Call PROCEDURENAME OK
If the procedure requires parameters, Vou must 1ist them in
parentheses, separated by commas, after the name of the
procedure: 7b10b
Procedure Call PROCEDURENAME (paraml, param2, ,.,) OK

one string, enclosed in quotes, may be included in the
parameter list, e,q,:

Procedure Call PRNCEDURENAME ("literal", param2, ..,) OK
The return value(s) of a procedure call will be typed out, 7oi0cC
NDDT allows you to replace an existing procedure with a new

procedure, Whenever the old procedure is called anywhere in
‘ the system, the new procedure will be called instead, The new

page 154

&SRI=ARC 18«NOV=75 20:20

.NLS programmers’ Guide ARC 33522 Rev, 22 NOV 75

Part Five: NDDT Debugging

procedure will be passed the same parameters as were passed to
the old, 1This replacement can be done with the command:

Procedure Replace OLDNAME OK NEWNAME OK

The name of the procedure which was replaced is saved so that
it may be restored, The replacement may be cancelled with the
command;

Procedure Back up to OLDNAME OK
Symbols

The system maintains a table of symbol names and the addresses
which they represent, When a user program is loaded, {ts
symbols are added to the symbol table, Thus, (in addition to
system globals) the table is composed of blocks, one for each
proagram,

Each block is refered to by the (unique) name of the
program, (This i{s why the CML and SUBSYS parts of a uUser

. attachable subsystem must have different names in the FILE
statement,) The list of blocks (programs) is called the
nmark stack," Locals as well as globals are recognized by
NDDT for only those user programs in the mark stack,

You may list the names of the blocks currently in the mark
stack with the command:

Mark symbol table: Print contents of stack 0K
A block may be deleted from the mark stack (the symbols remain
in the symbo)l tabje, but they are not recodnized by NDDT) with
the command;

Mark symbol table: clear block PROGRAMNAME OK

A bjock may be reipnstated to the park stack with the command:

Mark symbol table: Set at PROGRAMNAME OK

A new (empty) block may be added to the mark stack with the
command:

' Mark symbol table: set at NEWBLOCKNAME 0K

Tp10d

Toi0e

7b11

7blla

Tb11b

Tbllc

7b11d

Tblle

page 155

33522

&SRI=ARC 18=NOV=75 20:20 33522

.APC 33522 Rev, 22 NOV 75 NLS Programmers® Guide

part Five: NDDT Debugaing

1f there is at least one block in the mark stack, a new symbol
representing some address may be created with the command: Tblif

Define New SYMBOLNAME OK ADDRESS OK

Symbols defined with this command have a global scope, and
may be used to satisfy external references in L10 user
programs subsequently compiled,

Any symbol within a block listed in the mark stack may be
redefined to represent a different address with the command: 7bilg

Define 01d SYMBULNAME OK ADDRESS OK

1f you wish to replace an existing routine by a new version of

the same routine, some method of distinguishing between new and

old occurrences of the same symbol is required, Any symbol

preceded by a semicolon (3) refers to the old occurrence of the
symbol, (The semicolon has the effect of disabling the symbol

table marking mechanism for the given symbol, causing it to be
identified in the "old" section of the symbol table,) 7b11h

For example, suppose an eXisting routine named TEST is to be
replaced by a new versjon of the same routine which You have
just compiled (hence is in the mark stack), The NDDT
procedure Replace command can be used as follows:

Procedure Keplace jTEST 0K TEST 0K

Scanning for Content 7b12

you may search a set of words for a specific content with the
command: Tbi12a

Find content: CONTENT 0K masked by: OK lower address:
STARTADDRESS UK upper address: ENDADDRESS OK OK

The content of every word in the specified range will be

compared tc CONTENT, CONTENT may be of the form of an address

or a PDP10 machine instruction, The address and content of

each word which matches will be printed, (NOte that the

"masked py" field was ignored,) 7b12b

1f vou wish only to compare certain bits in each word to
corresponding bits in CONTENT, you may specify a mask, A mask
is a number (of the address form), Only those bit positions in
which the mask has a one will be compared, (If the mask is not

page 156

i e — ———

&SRI=ARC 18«NOV=75 20320 33522
. NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Five: NDDT Debugging

specified, all ones wWill be assumed and the entire word will be
compared,) 7bl2c

Find content: CONTENT OK masked by: MASK OK lower address:
STARTADDRESS UK upper address: ENDADDRESS OK 0K

MASK may also be of either the ADDRESS form or the PDP10
instruction form,

Tb12d

page 157

.ARC 33522 Rev, 22 NOV 75

&SRI=ARC 18=NOV=75 20:20 33522

section 3; writinag CML Parsefunctions

Parsefunctions

Functions which are declared with the PARSEFUNCTION attribute
in CML are assumed to be L10 procedures which are designed to
pe parsing functions, They are used to examine the user’s
input, They are called in "parsehelp" mode before being called
in "parsing" mode, When so called, they are passed the address
of a string as a third implicit argument, The parsefunction
routine should fil1l that string with the appropriate profmpt
characters which tell what the parsing function is looking for,

When the user is faced with alternatives which include a
parsefuncticen, the parsefunction will be called in parsemode
"parsegmark" for the strina to include in the questionmark
display, This string must be no greater than 24 characters,

Sample Interpreter Parsefunction Routine

Assume that in some command we want the typein of a number to
appear as an alternative to some set of Keywords, We can
accomplish this by defining a parsefunction (call it looknum)
which looks at the next input character and succeeds if the
next character is a digit and fails otherwise, 1If we write
this functicn as the first alternative in some command, then
control will pass from the interpreter to the parsefunction
before it passes to the Keyword interpreter,

Suppose our command looks like:

COMMAND sample = "INSERT"
(looknum() <"number"> ent . #"NUMBER"
/' ent o C"TEXT"/"LINK"))
% entity now contains an entity type (NUMBER, TEXT, or
LINK), We now use the LSEL function to get a selection
of this type %
source _ LSEL(ent)
CONFIRM
xinsert (ent, source) ;

page 158

NLS Programmers’ Guide
part Five: writing CML Parsetunctions

7¢

16l

Tcla

Tcib

Tec2

7c2a

7¢2b

&SRI=ARC 18=NOV=75 20320 33522
NLS Programmers*® Guide ‘ ARC 33522 Rev, 22 NOV 75
part Five: wWriting CML parsefunctions

The parsefunction looknum which is called by the interpreter
both when prompting the user and also during the actual parse
of the command, Te2c

(looknum) PEOCEDURE % looks at the next input character, if
it is a é¢igit, then return TRUE, else return FALSE %
$ FORMAL ARGUMENTS %
(result, % address of the result record %
parsemode, % parsing mode of the interpreter %
string); % address of prompting string %
REF result, string;
CASE parsemode 0OF
= parsina:
CASE lookc() OF %value of next character in input
buffers
IN [(°0, *9): NULL 3
ENDCASE RETURN(FALSE)
parsehelp: %supply string for prompt%
#strings _ "NyM:" ;
parsegmark: %supply string for gquestionmark$

#string# _ "Number" ;
’ ENDCASE};
RETURN (&result);

END,

&SRI=ARC 18=NOV=75 20320 33522

.Anc 33522 Rev, 22 NOV 75 NLS Programmers® Guide
part Five: Calculator Capabjilities

Section 4: Calculator Capabilities 7d

Introduction 7d1

L10 arithmetic can only work with integers, The CALCULATOR

subsystem holds a numbers of procedures which the user

proagrammer may call to do doublewprecision floating point

arithmetic, Floating point numbers are stored in twosword

arrays, which the user proarammer must declare, All CALCULATOR
routines work with these two word arrays, 7dla

Converting String to Double=Precision Floating Point 742

A number in a string variable may be converted to a floating
point array with the procedure: 7d2a

nfloat (astring, awordi, aword2)

where astring is the address of a string holding the number,
. awordl is the address of the first word of the array,
and
aword2 is the address of the second word of the array,
The nuymber in the string may hold a decimal point, and may be
preceded by a minus=sign (=), Other characters (e,3, a dollar

sign) may precede the first character of the number (a digit,
minus sian, or decimal); they will be iagnored, 7d2b

Converting Floating Point to String 743

The twe word array may be converted back to a strind with the

procedure? 7d3a
afloutp (avar, astring, format)

where

avar is the address of the (first word of the) array
holding the floating point number, and

astring is the address of a string variable in which the
text ¢f the numrber is to be placed;

the third parareter is ignored, so just pass zero,

. The format cf the strina is dictated by the glopal variable

page 160

&SRI=ARC 18=NOVe75 20:20 33522

"dfoutm,” The followina fields apply to this global (default
values are in square brackets]:

fldl == characters to the left of the decimal (10)
fld2 =« characters to the riant of the decimal (2]
£1d3 == characters in exponent field (0]

round == number of significant digits to round to [(12] round
must be less than or equal to £1d1 + f1d2 f1d1 + £1d2 must
be less than or egual to 12

oflo == go to exponent notation if left-of=decimal too big
(0]

exsign == {f a positive exponent, use first character of
exponent field for: (V)

0 == first digit of exponent

1 == Wy

2 == 3 space

exp2 == prefix on exponent: (0]
0 == no exponent
1 == WEN
2 == WDW
3 -- "'10."

dpt == print decimal point switch (0=0ff, 1=0n) [1)

dig == print at least one diait to left of decimal (0 {f
necessary) (0=0ff, 1=0n) (1)

just == justify number within space of three fields: [1]
0 == right justify by adding spaces to left
you must also set the
global "calflg" to TRUE
== right justify by adding vOn»s
right justify by adding nxns
== left justify by adding spaces to right
you must also set the
global "calflg" to FALSE

w N -
1
4

sign <= if a positive number, use first character of field 1
for: (0)

0 == first digit of number

1 == a space

2 - n’"

NLS Proarammers® Guide ARC 33522 Rey, 22 NOV 75
Part Five: Calculator Capabilities

7d3b

age 161

&SRI=ARC 1B=NOV=75 20320 33522

.bh(‘ 33522 Rev, 22 NOV 75 NLS Programmers® Guide
part Five:; Calculator Capabilities

Additionally, if the global "cacflg" is TRUE, the number will

be formatted with commas, 7d3c
calculations with Foating Point 744

The following procedures do floating point calculations on the

two=word arrays described above, All of the following

procedures require as parameters the address of the (first word

of the) arrays, 7d4a

qcadd(a,c) ==~ a . a + b
gcsub(a,b) =~ a _ a = »>b
gcmult(a,b) == 4 . a *# b
aqcdiv(a,b) =~ a . a /b

gcdivw(a,b,C) ==~ Cc .8 / b

. qcneg(a) == a . =2

&SRI=ARC 18=NOV=75 20320 33522
NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
part Five: Fields and Records

section 53 Filelds and Records Te

Introduction Tel

A set of bits within a word can be used without affecting the

rest of the word, (On the PDP~10, words are 36=-bits long,) A
contiguous set of bits within a word is called a field, Filelds

allow more efficient use of storage, Jela

once a field is defined, you may apply it to any word
(variable), 1t will refer to the defined set of bits in
that word (e,g, the field "RH" refers to the right-most 18
bits of whatever word it modifies),

You may assign a number to or from a field by following the

varjable nare with a perjod (,), then the name of tnhe field: Jelb
var,field
. E,q9, stid,stpsid . origin ;

pany fields are defined in the NLS system, and may be used by

user programmers, Some have been mentioned in preceding

sections; others may be found in the NLS source code, Telc
Declaring Records Te2

Records are always defined glgbally, Record definitions are,

like global declarations, put outside of procedures within 10

files, Je2a

A record definition defines a series of fields, with the length
(number of bits) sPecified for each field: Te2b

RECORD fieldi(lenath), field2({length), ,.. ;
The fields are allocated from right to left within the word, Te2c
E,q, the record definition:
RECORD right (18], left(17) 3
would define two fields, The field "right" refers to the
right=most 18 bits of the word, The field "left" refers to

the next 17 pits to the left of the field "rianht," (The
. left=most bit is not used in this example,)

page 163

&SRI=ARC 18=NOVe75 20320 33522
.ARC 33522 Rey, 22 NOV 75 NLS Programmers® Guide
part Five: Flelds and Records

A RECORD definition may specify any number of fields, 1If a

field is defined to be too large to fit in the remaining bits

of the current word, it is automatically defined to represent

the first field in the next word, I,e, this and subseguent

fields are defined from the right of the next word, This can

extend through any number of words, Te2d

£,0, the RECORD definition:
RECORD fieldil18), field2(10), field3(18), fieldd4(36] 3
would define the fields as followsg
fieldl == riaoht half of word
field? == right=most 10 bits in left half of word
fieldld == right half of next word
fieldd == entire third word (i.e, word(2))

0f course when using fields that refer to subseguent words,
you must be sure that you are operating on arrays of the

. appropriate size,

peclaring Fields TJe3
Althouygh yoy can declare single fields as described here, the
practice is limited, (It is useful in manipulating byte
pointers,) User programmers should use RECORD definitions
instead, Te3a
A single field may pbe defined with the declaration: Telb
DECLARE FIELD name = (address, size : position] i

where

address is the address of the word to which the field
refers,

size is the number of bits in the fleld, and

position is the number of bits left to the right of the
fielag,

In an assignment, the address of the word referenced is kept in
a register, named "rp," It may be used as an index by placing
it in parentheses, Thus a FIELD declaration refering to the
. right half of & word is: Teldc

page 164

&SRI=ARC 18=N0V=75 20320 33522
. NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
part Five: Fields and Records

DECLARE FIELD riant=((rp), 18:0) ;
The left half of the next word could be defined: 7e3d
DECLARE FIELD left=[1(rp), 18:18] ;
The address is held in the right half of a byte pointer, You
may declare a field with zero as the address, then assign the
field definition plus an address to set up a byte pointer: TJele
DECLARE FIELD right=(0, 18:0]) ;
then
bytepointer _ right + svariable ;
A FI1ELD declaration may be external as well as global: Jeif

DECLARE EXTERNAL FIELD name = [address, size : position] ;

page 165

&SRI=ARC 18=NOV=75 20:20 33522

.ARC 33522 Rev, 22 NOV 75 NLS Programmers® Guide
Part Five: Stacks and Rings

Section 6: Stacks and Rings 7€

Declaring Stacks and Rings T£1
stacks and rings are allocated series of words of storage, A
stack or ring is defined to hold a given number of records;
each record may be a single or a defined number of words, You
may "push" records onto the stack or ring and then “"pop" them
off, as described here, 7f1a

A stack may be declared (at the global level) with the L10
declaration: 7f£1b

DECLARE STACK stacknamelsize]
where size is the number of one=word records in the stack,

Yyou may work with records of more than one word with the stack
declaration: 7fic

‘ DECLARE STACK stackname(size,recsizel ;

where recsize is the number of words in each record, All
records in a stack must be the same size,

Like other declarations, any number of stacks may be declared
with the same statement: 7fld

DECLARE STACK stacknamelsize), stacknamelsize,recsizel), ,¢47
Stacks may be declared as external to the progQramg 1f1e
DECLARE EXTERNAL STACK stackname(size,recsizel, .42

Ring declarations are identical, with the word "RING"
substituted for "STACK," E,Q,: 7£1£

DECLARE RING ringname(size], rinaname(size,recsize), ..+ 7
DECLARE EXTERNAL RING ringnamelsize,recsizel, ,¢s?

Initializing stacks and Rings 7€2

pefore it is used, a stack or ring must be jnitialized (i,e,
cleaned up), with the L10 statement: 1£2a

‘ RESET stackname

Pqﬂfﬂiﬁ6

r'-'-'---------—-—-—————————-——————————-——-.____________________,

&SRI=ARC 18=NOV=75 20320 33522
NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75
Part Five: Stacks and Rings

or
RESET ringname ;

The storage can then be considered empty, The RESET statement
can be ysed whenever yoy wish to clean yp the stack or ring, 7£2b

Using Stacks and Eings 7£3

You may add a record to the top of the stack or ring with the
L10 statement: 7f3a

PUSH address ON stackname ;

where addéress is the address of the first word (perhaps the
single word) of the record to be added to the stack,

=1f you try to add more elements than the stack can hold, a
SIGNAL will be generated,

=1f You try to add more elements than the ring can hold,
records will be replaced, starting from the bottom (the
. first record pushed on),

You may remove a record from the stack or ring, and optionally '
assign it tc a recordé variable (a simple variable or array of
the appropriate size) with the L10 statement: 7£3b

POP stackname ;
or
POP stackname TO address ;

where address is the address of the first word (perhaps the
single word) of the record to receive the record from the
stack,

=1f you try to remoVe more elements than the stack currently
nholds, a SIGNAL wjill be generated,

=If you try to rerove more elements than the ring currently
holds, records will be reread, starting from the top, This
should be avolded, If you did not previously fill the ring,
this top record will hold garbage,

You may read the first word of the record at the top of the
stack or ring (without affectjng the stack or ring) as an
expression by enclosing the name in square=brackets: 7f3c

. [stackname)

page 167

ESRI=ARC 18=NOVe75 20820 33522
‘M—‘C 33522 Rev, 22 NOV 75 NLS Programmers® Guide
part Five: Stacks and Rings

The Second word (the one below that one the stack) may be
read as [stackname « 1), and so on,

E.Q, 7£34d
var .. [stackname] ;

To use stacks and rings, one usually must Keep track of how

many records are currently on the storage, Thus, you probably

will need to maintain a count in a simple variable in parallel
to use of the stack or ring, 7f3e

page 168

&SRI=ARC 18~NOV=75 20:20 33522
'NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
Part Five: Using the Segquence Generator

Section 7: Usina the Sequence Generator 1q

Introduction 7a1

The Sequence Generatcr {s used by a number of NLS commands

which require a series of statements from an NLS file, A

procedure may open a sequence holding a number of statements}

the Seguence Generator then passes those statements back, one

at a time, every time it i{s called, 7g1a

The Sequence Generator considers viewspecs in choosing which
statements to return, e,g, level truncation, If viewspec | or

kK is on, it may call a Content Analyzer program before

returning the statement, This allows a great deal of

flexibility in working with a series of statements, 7q91b

Co=Routine Effect 792

Once the Secuence Generator decides to return a statement (or
string), it calls a mechanism which returns control to the

. procedure that called the Segquence Generator, Thus control
will return directly to that calling procedure, even from other
procedures the Sequence Generator has called, i.,e. even if the
return mechanism was called from a procedure called by the
Sequence Generator, 7g92a

When the Seguence Generator is called the next time, it passes
control to the instruction after the one which called the
return mechanism, 1,e, it continyes right where it left off, 792b

Thus,» the Sequence Generator may call a content Analyzer
Program which may return control directly to the procedure
¥hich called the Sequence Generator, The next time the
Sequence Generator {s called, executjon will bedin in the
middle of that content Analyzer prodram (which may later return
through the normal RETURN statement to the Seguence Generator),
(Thus, the sequence Generator is behaving like a co=routine to

the calling procedure,) 7q92¢

&SRI=ARC 18=NOV=75 20:20 33522

ARC 33522 Rev, 22 NOV 75

NLS Programmers’ Guide

part Five: Using the Sequence Generator

calling Procedure Sequence Generator Content Analyzer

1 LN
? s
3 seqgen(&sw) >>=> | ,,,
?- LN
3 Ch filter >>w===>

—

LN
2 LA
CnremrnsesnsncnsennssenmeneeadS 3 return mechanism

-

SEAQEN(LSW) Ddmcemmemmmmcmecennmnnd

w o,

normal return

o n e

4 L4909 So=wwomecne=(
5 LR
T vey Smmmwmme=ec< 6 return mechanism
Sequence Work Area
when a Content Analyzer proaram is called by the Seguence
Generator, cne parameter is passed, the address of an array
called the “"sequence work area," This array, although ignored
by most Content Analyzer prodrams, holds a great deal of useful
information, 1If the Content Analyzer procedure receives this
address as a parameter, and then REFs it, it may refer to the
following fields in the seguence work area (see
<NLS,BRECORDS,Seqr> for entire record declaration):
swstid == stid of current statement or string in sequence

sWwestid == stid of current real STATEMENT {n Sequence (even
if swstid points to a string)

swibstid == stid of statement heading last branch in
sequence

swclvl == level of current statement in seqguence
sWslvl == level of first statement in Sequence
swvspec == first word of viewspecs for sequence
swvsp2 == second word of viewspecs for sequence

swWusacod == address of user Sequence Generator procedure for
sequence

swcacode == address of Content Analyzer procedyre for
seaguence

page 170

7924

793a

S&SRI=ARC 18«NOV=75 20320 33522
.NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75

part Five: Using the Sequence Generator

swkflg =« FALSE when seguence is opened, TRUE once something

has been returned by sequence
Displaying Strinas

You may call the return mechanism from Content Analyzer
proarams while causing the Sequence Generator to inject a
string in the segquence, 1Under the normal circumstance, where
the seguence 1s being used to put up a display or print a file
or to do filtered editing, this allows you to inject a string
into the output, Thus yoy may receive a statement, reformat it
into a string (without editing the statement itself), and then
display the string,

The following procedure injects a string in the sequence, then
returns to the procedure that called the Sequence Generator:

send (sw, astring) ;

where sw 1s the address of the seguence work area, and
astring is the address of the string, (Remember, if you

‘ REFed the parameter holdinag the address of the sequence work
area, use the ampersand (&) construct when passing it to
send,)

Note that the co=routine effect will cause execution to pick up
right where it left off when the Seguence Generator is called
for the next statement, Thus, execution will beain just after
the send, 1f you then RETURN a value of TRUE, the statement
itself will ALSo be displayed, Most applications of send will
RETURN(FALSE) immediately after the call on send,

An example of a Content Analyzer program using send() to show
only the first line of each statement:

(firstline) PROCEDURE (sw) ; %content analyzer filter to
display only first liness
LOCAL TEXT POUINTER ptr ;
REF sw
%to hold address of segquence work areag
g¢set pointer at end of first lineg
CASE READC OF
= ENDCHR: FIND “ptr ;
= EOLg FIND “ptr _.ptr 3
ENDCASE REPEAT CASE;
$put first line in global string%
‘ #dspstr# . SF(ptr) ptr ;
$inject string into sequences

Ta4

Ta4a

7a94b

7a4c

7q4ad

&SRI=ARC 1B=NOV=75 20320 33522

.AFC 33522 Rey, 22 NOV 175 NLS Programmers® Guide
part Five: Using the Sequence Generator

l

send (&Sw, Sdspstr) ;

%so statement won’t also be displayed%
RETURN (FALSE) ;

END,

Using Seguences 7a5

You may open and use your own sequences in attachable

subsystems, This may be useful when you wish to process a

series of statements, perhaps only those passing certain

requirements (e,g, level or a Content Analyzer filter), 7a5a

To open a seguence, you Should have declared and REFed a

variable to hold the address of the sequence work area that

will be reserved for your sequence, The procedure which opens

the sequence returns this address, 7a95b

&sw - openseg(stidl, stid2, vspecl, vspec2, segproc,
caproc);

. where

stidl and stid2 are two stids deliniating a croup in an
NLS file that will be the source of the statements in the
sequence, They may be the same (for a branch), The
sequence Generator ignores the branch only and plex only
viewspecs,

1o get stid2, the procedure "segend" may be useful,
civen stidl and the two viewspec words, it checks the
branch=only and plex=only viewspecs and returns the
appropriate stid for stid2, E.Q,:

&sW . openseqg (stidl, segend(stidi,vspeci,vspec?),
vspeci, vspec2, sSegproc, caproc€);

vspecl and vspec? are two words holding the viewspecs for
the sequence, There a a number of predefined fields
which allow vou to set bits within these words, (See
part Four, Section 4,) Of particular interest to the
sequence Generator are the level truncation (not the line
truncation) and the content Analyzer viewspecs,

segproc is the address of the Sequence Generator routine

to be used, If you pass zero, the NLS standard Sequence

generator will be used, (User Sequence Generators are
' not described here,)

page 172

R e R s

NLS Programmers’ Guide ARC 33522 Rev, 22 NOV 75

&SRI=ARC 18=NOV=75 20:20 33522
‘Part Five: Usino the Sequence Generator

caproc is the address of a Content Analyzer procedure to
pe used 1f needed by the sequence (as specified in the
viewspecs), 1If none is needed, you may pass zero,
Passing the address of a seguence is in effect
instituting that procedure for that segquence, The
address of the currently instituted procedure may be
gotten from the display area descriptor, as described in
part Four, Section 4,

A call on the procedure "seagen" will increment the fields in

the sequence wOrk area to the next statement (or string) in the

sequence; it will return the first statement in the seguence

the first time it is called, You must pass it the address of a

seguence work area, e€,9,: 7a5¢
seqgen (&sw) 3

seggen returns the new swstid field of the sequence, or
endtil if there are no more statements in the seguence,

You may then refer to the fields in the seguence work area
. for information about that statement, e,q,:

sW.swstid == stid of current item in sequence

SW,swclvl == level of current item in seguence
when you are done with a sequence, you must close it by calling
the procedure "closeseqg" with the adddress of the sequence work

area; e, q,: 7a54d

closeseqg(&sw) 3

page 173

&SRI=ARC 18=NOV=75 20320 33522
.Auc 33522 Rev, 22 NOV 75 NLS Programmers® Guide

part Five: Using the Seguence Generator

A typical use of the Sequence Generator might be as follows: 7g5e

%2 set up sequence %
$ set up viewspecs %
2cet adress of display area descriptor; da is REFed
simple variable%
sda o 1d4d8()
sget current viewspecs; vspec is LOCAL two=word arravs
vspec .. da,davspec
vsvecll) _ da,davspc?2
sturn on Content Analyzer for this sequence$
vsbec,vscapf .. TRUE 3}
sopensea with "proc" as Content Analyzer filter, returns
the address of sequence work area; sw 1s REFed simple
variable$
§sW - openseag(sourcestid, sourcestid, Vspec, vspecll),
da,dausqgcod, $proc);
ON SIGNAL ELSE closeseq(&sw) }
& loop through sequence %
sreset control=o flag$

inptres. . 0y
LOOP
BEGIN
IF inptrf THEN %user typed a control=o%
BEGIN

dismes (1, s"User terminated Process") ;
EXIT LOOP ;
END}
$increment to next statement in branch Yol are
processing which passed filter "proc"; or else exits
IF seqgen(s&sw) = endfil THEN EXIT LOOP ;
acall some procedure to process current stid (could as
well have been any block of code)%
process(sw,swstid) 3
END}
% close sequence %
ON SIGNAL ELSE 3
closesea (&SW) 3

page 174

&SRI=ARC 18=NOV=75 20320 33522
.NLS programmers® Guide ARC 33522 Rey, 22 NOV 75
Part Five: Conditional Compiling

Section 8; condjitional Compiling Th

You may delimit blocks 0f code within procedures that will only be
compjled {f a constant {s TRUE or FALSE, 1If the code {s not

compiled, of course it will not be part of the code file and will

not be executed, ni

First a constant must be defined with the SET construct (at the
beginning of the file) as either zero (FALSE) or non=zero

E (TRUE), 7hla
; Then, code delimited by the string: 7hib
%+tnames

where name is the SET constant

will only be compiled {f the constant is SET to a TRUE
value,

. Similarly, code delimited by the string: Thic

$=namet

will only be compiled {f the constant is set to zero .
(FALSE),

&SRI=ARC 18=NOV=75 20:20 33522

.AHT 33522 Rey, 22 NOV 75 NLS Programmers’ Guide
part Five: Conditional Compiling

For example., Th2

if the follewing statement appears at the beginning of the
program: 7h2a

SET test=0;

then a procedure in the proaram might include code delimited by
this construct, e,qg,: 7h2b

L10 statement ; %normal code, always compiled%

»
L10 statement 3 %normal code, always compiled$%
$=testy

L10 statement ; %this statement WILL be compiled%

L10 statement ; %this statement WILL be compiled$%
$~tests

$+testy
' L10 statement ; %this statement will NOT be compiled$

L
L10 statement ; %this statement will NOT be compiled%
$+tests
L10 statement ; %normal code, always compiled%

page 176

&SRI=ARC 18=NOV=75 20:20 33522
'NLS Programmers® Guide ARC 33522 Rev, 22 NOV 75
ASCII 7-bit Character Codes

ASCII1 7=-B1IT CHARACTER CODES 8
Char ASCII Char ASCII Char ASCII Char ASCII
A 001 $ 041 A 101 a 141
*B 002 " 042 B 102 b 142
4! 003 L] 043 C 103 c 143
*D 004 s 044 D 104 d 144
*E 005 3 045 E 105 e 145
*F 006 ~ 046 F 106 f 146
Bell 007 4 047 G 107 g 147
BS 010 (050 H 110 h 150
Tabp 011) 051 I 111 i 151
LF 012 B 052 J 112 i 152
VT 013 + 053 K 113 K 153
Formreed 014 ’ 054 L 114 1 154

o CR 015 - 055 M 115 m 155 .
. *N 016 . 056 N 116 n 156 '

0 017 / 057 0 117) 157
il 020 0 060 P 120 p 160
*0 021 1 061 Q 121 q 161
"R 022 2 062 R 122 r 162
bt] 023 3 063 S 123 s 163
T 024) 064 T 124 t 164
*u 025 -) 065 U 125 u 165
v 026 6 066 v 126 v 166
“w 027 7 067] 127 w 167
¢ 030 8 070 X 130 x 170
*Y 031 9 071 Y 131 Yy 171
*2 032 : 072 A 132 z 172
ESC 033 3 073 [133

< 074 \ 134

= 075] 135

> 076 ;- 136

? 077 - 337 DEL 177
Sp 040 @ 100

&SRI=ARC 18=NOVe75 20320 33522

. 33522

33522
Guide

&SRI=ARC 18»~NOVe75 20:20

NLS Programmers”’

.ch 33522 Rev, 22 NOV 75

(J33522) 18«NCV=75 20220333
Institute /&SRI=ARC; Distribution:
INFO=ONLY]) FEED([INFO=ONLY)) LJM([INFO=ONLY)) ; Keywords: 110
cml nddt program content analyzer pattern; Sub=Collections: NIC;
Dbsoletes Document(s): 33461; Clerk: NDM; Origin: < USERGUIDES,
L10=GUIDE ,NLS;428, >, 18=NOV=75 19:32 NDM

Title: Author(s): Stanford Research
/NDM([INFO=ONLY]) JHBC ¢

re e
rer

paqge

"’i%N/?'ws!rlwnxnr

p pean Meyer, James H, Bair, Special Jhb Feedback, Laura J, Metzger,

DLS 22-SEP=75 14:37 33523
Announcing FORMATTER, A Subsystem to Format Common RADC
Correspondance

< STONE, DOC=FORMATTER,NLS3;2, >, 22=SEP=75 14333 DLS ;333 1

DLS 22=SEP=75 14:37
FORMATTER

A NEW NLS SUBSYSTEM

In principle it has been possible at RADC (ever since we got
the TYCOMsS) to prepare correspondence in NLS files and have it
printed directly by the TYCOM on letterhead paper, In practice
this has not happened on a wide scale, since one must:

learn the output Processor directives (and their
interactions),

master the idiosyncracies of the TYCOM and

understand the requlatory, adminsitrative and secretarial
procedures governing the format of correspondence,

A subsystem has been created under NLS to deal with the
formatting and printing of correspondence on the TYCOM, This
subsystem has two major objectives:

to eliminate the need for learning Output Processor
directives

to eliminate the need for learning the "correct" form and
format of correspondence,

The subsystem is called FORMATTER and one obtains it by typing
EF or GF, i,e, Execute/Goto Formatter, It has one
command,,.INSERT with options for:

Evaluators (memo in file at)

Letter (format in file at)

Memo (format in file at)

nutline (for workstatement or solesource)

Solesoyrce (format in file at)

Workstatement (format in file at)

Each of the options prompts the user for inputs it needs
to complete the correspondence, ie, ident, subject,
routing list, etc,

FORMATTER obeys the standard command language structure of NLS,
It will respond to the <°S> and ? in the normal fashion, The
help feature is not implemented at this time, but will be once
the bugs have been ironed out,

33523

1a

l1al

1ala

1aib

lalc

l1a2

1a2a

1a2b

1a3
ia3a
1a3b
la3c
1a3ad
l1ale

1a3f

1a3f1

l1a4

DLS 22~SEP=75 14:37 33523

FORMATTER

In all cases (except for the Evaluators and Outline commands)
FORMATTER eXpects a file containing the content of the

correspondence, structured as appropriate to the subject

material, NO paragraph numbers, leading spaces, directives,

subject, distribution list, signature blocks, etc, 1a$

In the case of the Evaluators and Outline commands, the
subsystem expects only a BLANK file, 1a5a

Evaluators creates the entire "List of Evaluator®s and
Evaluation Criteria" memo, Outline creates the standard
paragraph headings, i,e, Objective, Scope,

Background,,.etc, required for Work and Solesource

statements, 1a5al

FORMATTER prompts the user for information need to complete the
correspondence, For example, lets take the Insert Memo

command, 1a6
The user types EF and enters the FORMATTER Subsystem, He then
types IM (Insert Memo) and is prompted as follows: 1a7
(format in file at) A: l1ala
(Auther®s ident / <®U> if login ident:) OPT/T/(A]: 1a7b
(Subject:) T/(A): 1a7c
(Addressee:) T/([A]l: 1a7d
(Any Attachments?) Y/N: 1ale
if the user types Y, then the prompt: 1a7el
(Attachments (seperate with commas):) T/[A): la7ela
otherwise it does it and displays/types the message: 1ave2
Inserting Memo rFormat,,,. 1a7¢f

Inputs obtained from the user are inserted in their proper
place, the flle 1s formatted, directives inserted, and ready
for printing on the TYCOM, 1a8

DLS 22=SEP=75 14:37 33523
FORMATTER

PROCEDURES FOR USING FORMATTER ib
Create a file, insert the body of the letter, memo etc, Edit
it to your satisfaction and Update the file, Then elther: 1bl
print it on the line printer or TTY ., annotate with subject,
distribution, attachments and take it to the PS0 for
spelling checks, formatting and printing on the TYCOM,..Or ibla
Execute Formatter yourself, Output Remote OT Terminal and
take it to the PSO, iblb
(Execute Formatter is preferred over Goto Formatter if
you only have one memo to format, since it automatically
returns to BASE when completed,) iblbl
Depending on the nature of the memo and your individuval €£iling
schemes, once it {s printed you cani ib2
po nething 1b2a
A good idea until the chain of command has signed off on
1t ib2ait
Delete the File 1b2b
Update the File ib2¢c
pelete Modifications ib2d
This throws awav the changes made in the file by
FORMATTER and leaves you with the "guts" of the memo that
you initially typed, You can then: 1b2d1
move it to a named branch in your procurement file
(for example) or ib2dia
Journal using SENDMAIL, 1b2d1b
1f minor mistakes are made and discovered while typing in under
any of the prompts you can <"H> backspace character or <%"W>
backspace word and retype, You CANNOT backspace through the
chain of prompts, however, 1If, for example, you discover a
mistake in the title while you are typing in the attachments,
it is best to complete the seguence and edit manually after
FORMATTER has done its thing, 1f there are major mistakes, you
can of course type <*X> and start over again, ib3
LIMITATIONS, QUIRKS AND ASSORTED GOODIES ic

DLS 22-SEP=75 14:37
FORMATTER

There are some unexpected things that happen when using
formatter in its present state (1 Sept 75),

First the baddies:

The automatic numbering of statements in a memo only
works down to four levels, That is, the fifth level will
default to the 1,2,3,4,5 type of nuymbering, This {is
because I could not determine, by looking at the regs,
what the numbering should be like below the 4th level,

Since the signiture block is keyed to the author’s ident,
one currently has to type the ident for Krutz (RpK) if he
has a memo or letter that needs to be signed by him,

The Insert Workstatement command will not work unless you
have at least 4 branches at the ist level, This can be
frustrating, but at the same time is a reminder that yvou
do not have all the required major headings,

I suggest that you use the Insert Outline command to
set up the major headings of a workstatement, insert
N/A 1f not applicable; then it should work fine,

When asked for the ident of a person, you should be able
to use the ,lastname approach if you don”’t know his
ident, This works some of the time, but not always, I
have no explaination for this,

Now for the goodies:

FORMATTER will automatically capitalize in those instances
where secretarial practice or rules of correspondance
dictate that one should,

This means that one does not have to capitalize when
typing in the title of a workstatement or distribution
list on a memo for example,

However, in the case of the subject Oof a memo, where
only the user can determine which words need to be
capitalized, he must do it himself,

This means that the string of characters "rog lemke",
will be translated into the "official" form for the
addressee of (R, Lemke),

FORMATTER asks for the ident of the author in many cases,
This causes a number of things to "automagically" appear in

33523

ici

icla

iclal

icla2

icla3

1clala

1clad

lc2

ic2a

1c2al

ic2ala

1c2a2

DLS 22~SEP=75 14:37
FORMATTER

the correspondance, While checking the ident of the user.
his full name, telephone number and symbol are also looked
up (if necessary) and inserted in the appropriate place in
the correspondance,

PROBLEMS WITH FORMATTER

The PSO should compensate for all the limitations of the
author’s knowledge and for system inadequacies, One should
expect a perfect final product, If he doesn‘’t get one, I and
the PSO would like to know about it, PLEASE send bugs,
suggestions for improvements, etc, to STONE and CARRIER,

(Those received in memo form on letterhead paper will get
priority attention!)

33523

1¢c2b

1d

141

idla

DLS 22-SEP=75 14337 33523
Announcing FORMATTER, A Subsystem to Format Commen RADC
Correspondance

(J33523) 22=SEP=75 14:37;3;33: Title: Author(s): Dyane L, Stone/DLS;
Distribution: /RADC([INFO=ONLY]) JHB([INFO=ONLY]) ;
Sub=Collections: RADC; Clerk: DLS;

. 33523 pistribution
Rocco F, luorno, Thomas J, Bucciero, Roger B, Panara, John L,
McNamara, Joseph P, Cavano, Duvane L, Stone, Marcelle D, Petell,
Thomas F, Lawrence, James H, Bair,
Wolf=Hasso Kaubisch, Kim Cynthia Carter, Samuel L, Ruple, Stephen P,
Sutkowski, Richard Calicchia, william w, Patterson, Francis J,
Hilbing, Robert K, wWalker, Frank P, Sliwa, Joe F, Femia, Roger W,
weber, Melville J, Draper, Robert D, Krutz, James W, Hyde, David T,
Craig, Fred N, Dimaggio, Robert E, Doane, Richard Nelson, william F,
stinson, Daniel R, Loreto, John B, McLean, Murray L, Kesselman,
Edward F, LaForge, Agatha C, Deconde, Alan R, Barnum, Larry M,
Lombardo, Roberta J, Carrier, Richard H, Thayer, Frank J, Tomaini,
Mike A, Wingfield, Edmund J, Kennedy, Raymond A, Liuzzi, Donald
vanAlstine, Deane F, Bergstrom, Frank S, LaMonica, William E, Rzepka

JLM 22+SEP=75 13146 33524

. technolgy transfer

Meeting with B Stinson,F Morreale,T DiMince on ther meet with MCI on
the Technology Transfer 1

Bill Gave a brief summary of MCI,s pitch on who they are etc,lI
have a copy of ther briefing charts in my file , 1a

They then gave a pitch of their view of the 6,4 program which they
look upon as their baby,It seems as though it will be our task to
conyvince ther we will provide them with a technology baseas well
as Mitre,and in fact a broader base due to our funding

flexability, 1b
They did indecate a willigness to work with us on the concept of a

spec and asked us to review the handbooks done by Mitre ic
Action items 1d

They have agreed to meet again down ther the 6th of October to
discuss the 6,4 program,Stinson wants our inputs and maybe even
accompany him with them on the program,I Guess our position
should be worked out by you,I and Dick as to what we want to

. handle etc, 141
They want a full scale briefing to a large number of MCI types
down there,They are going to contact us on a date, 142
is 143
wWant to send there two guys up here on the language
facility,since there are only two,Date not established, 144
Want any ideas we have on how we can work wity MCI prior te the
6th of October ideally, 145
Comments on their guide books 146

JLM 22-SEP=75 13:46 33524

. technolgy transfer

(J33524) 22«SEP=75 131463313 Title: Author(s): John L, McNamara/JLM;
Distribution: /FJT([ACTION]) DFB([INFO=ONLY]) Sub=Collections:
RADC; Clerk: JLM; nrigin: < MCNAMARA, TT,NLS31, >, 22~SEP=75

13:26 JLM 333308 0k;

‘ 33524 pistribution

Frank J, Toraini,

Deane F, Bergstrom,

	33522

	33523-33524

