

The Computer Museum History Center

presents

"Building Computers in 1953: JOHNNIAC"

 Willis Ware Bill Gunning

JOHNNIAC Designer JOHNNIAC Project Engineer

Paul Armer Mort Bernstein

RAND Department Head JOHNNIAC Software Developer

5:30 PM, Tuesday, Sept. 15, 1998

Computer Museum History Center

Building 126

Moffett Field

Mt. View

JOHNNIAC was one of an illustrious group of computers built in the early 1950's, all inspired by

the IAS computer designed by John von Neumann at the Institute for Advanced Study in

Princeton. Some of these machines were MANIAC (Los Alamos) and ILLIAC (Univ. of Illinois),

as well as WEIZAC, AVIDAC, and ORDVAC. JOHNNIAC was built at RAND Corporation in

Santa Monica, and named after John von Neumann himself (he "disapproved", but didn't

complain too much). This talk will be given in front of JOHNNIAC itself, the actual machine,

since it is now part of the Computer Museum History Center at Moffett Field, the world's largest

collection of historical computer hardware.

JOHNNIAC ran for the first time in March, 1954. It pioneered the development of time shared

operating systems with JOSS (the JOHNNIAC Open Shop System). JOSS could support several

dozen users with drum swapping -- there were no disk drives then, so no disk swapping, but

instead large rotating drums for magnetic storage. JOHNNIAC also inaugurated the commercial

use of magnetic core memory, iron doughnuts on wires, which dominated computer memories

for the next decade. Among other tasks, JOHNNIAC was also used to develop digitizing tablets

for computer input.

Our speakers were all working on JOHNNIAC over 40 years ago. Willis Ware led the

development of JOHNNIAC and received the IEEE Pioneer Award in 1994 for his work on

JOHNNIAC. Bill Gunning was the computer engineer who built JOHNNIAC. Paul Armer

managed the Numerical Analysis Dept. at Rand where JOHNNIAC was built, and later directed

the Computation Center at Stanford. Paul hired Mort Bernstein to work on software for

JOHNNIAC at RAND, and Mort is now working on a JOHNNIAC simulator, due to be

completed before the year 2000.

This is a verbatim transcript of a public lecture given on September 15, 1998. This transcript is

(C) Copyright 1998 by The Computer Museum History Center and is for private individual use

only. It may not be published, in any form, in whole or in part, without prior written permission

of The Computer Museum.

PETER NURKSE:

I’m Peter Nurkse, and I represent a group called Bay Area Computer History Perspectives: that’s

me and Jeanie Treichel, also Sun Microsystems. The two of us have been organizing a history

series of talks for almost six years now, and in the last two years we’ve been joined by The

Computer Museum History Center, which as you can see looking around you, is the world’s

largest collection of historical computer hardware.

Speaking however of our first year of talks, back six years ago, we had a couple of talks on

ERMA, which was the first computer built here in the Bay Area; it was built at SRI in Menlo

Park as part of a project for Bank of America. Though ERMA back then, 1954, it was still a

prototype stage, and after they finished the prototype they tore it down, and then built a totally

different computer for the final commercial application, which was installed in 1959. So if you

think back then, 45 years ago, 1954, what was going on in the Bay Area, there was some ERMA

work, and what was going on down in L.A., well, JOHNNIAC here was up and running, and I

think the Standards Western computer was running. That was probably the first computer built in

California. Well, the balance of power in computing 45 years ago was rather down towards L.A.

It’s fortunate, we may say, that Silicon Valley asserted itself and reclaimed preeminence. So

that’s part of the benefits of history, looking back these relatively enormous periods of time in

computing history, like 40-45-50 years, and seeing how things have changed.

The program tonight is on JOHNNIAC, which was built in Santa Monica, and first started

running 45 years ago. So I’ll turn the mike over to Gordon Bell, who will introduce the speakers.

[Applause]

GORDON BELL:

Thank you, Peter. Actually, I was at the Manchester celebration in June, and it was the 50
th

.

We’re just 50 years into computing, 50 years ago the first stored program computer ran. What’s

particularly significant about the talk today is that first we have the JOHNNIAC here, and it’s a

member of the famed IAS family. It’s a true von Neumann machine, whatever that meant --

whether it was named because von Neumann wrote the first report on [the] stored program

computer, or, it was a parallel machine, and everybody else was building serial machines. I hope

we’ll find out the theory about how it ended up that way. [Audience comment: fon Neumann!]

What? [It was ffon Neumann!] Oh. Well, thank you [laughter]. Anyway, it was a member of

those machines, the Princeton and IAS machines, which included the ILLIAC, SILLIAC,

WEIZAC, MANIAC, and a few others, running in March ‘54.

Now I’d like to talk about the people who did that. I’ll start with Paul Armer, who was at RAND

between ‘47 and 68 as, I guess, programmer and eventually head of the computer science. Sort of

the project or overall department head at the time. He’s been at Stanford, at the computer center,

and has been a member of the Babbage Institute, and doing various other things.

Willis Ware was the designer of the machine, spent ‘46-’51 at IAS, then came to RAND

Corporation via North American Aviation, and has been there from ‘52 to ‘92, and is in fact still

a member or a consultant at RAND. He’s a member of the National Academy of Engineering, a

Fellow of the IEEE, and AAAS, and the ACM. He also wrote one of the first logic design books.

Bill Gunning was the JOHNNIAC Project Engineer, and was at RAND, and transferred to

RAND from Douglas, and was there from ‘47 to ‘54. [He] eventually came to the Bay Area, and

I ran into him a couple of times at Xerox PARC; he was part of the DEC/Intel/Xerox relationship

that created Ethernet. He was one of the key people who made it work. He’s now a consultant at

PARC.

Mort Bernstein, who was the JOHNNIAC software developer - have to get to that last. As Ken

Olsen was fond of saying, “Good software comes from heaven when you have good hardware.”

[Laughter] So we know - it wasn’t until a year or two ago that this explained how you get bad

software. [Laughter] So, there may be some wisdom in all of that. Anyway, Mort did

mathematics at the University of Pittsburgh, then was at RAND from ‘54 to ‘63; was at IBM for

a while, and then went to the Systems Development Corporation. Was part of the programming

of the FSQ-7, the SAGE system.

So let’s hear from the team now. [Applause]

I can’t help it, but for the record I need to say that when [the JOHNNIAC] was running the open-

shop system JOSS, the machine that replaced it was a PDP-6 that I helped design. [Laughter].

[WILLIS WARE: Major mistake. PAUL ARMER: I’ll let you tell us why later, Willis.]

PAUL ARMER:

I’m supposed to say a little bit about the early history, particularly to explain to some of you who

may not know it, the origins of the RAND Corporation, which I want to talk about briefly. But

actually, I had essentially very little to do with the JOHNNIAC in the very early days; it was

those other folks over there, and not us software types, who were worrying about that machine.

The one aspect that I’m concerned about covering is that a number of people, Bill for one,

George Brown, John Williams, Willis, made a trip to the east coast when we were considering

what did we want to do about meeting the incredible problems we saw, in that we needed a lot

more, and a lot more reliable, computing than we had available at the time. One of the things

which happened on that trip -- well, there was a notion that maybe we could get IBM to build a

machine for us.

They told us that no, they weren’t going to build one. And so we came back and decided we were

going to have to build it ourselves. I was off in another group at this time so I don’t really know

much about that trip and what went on, but maybe some of the others in the group can say more

about it.

The RAND Corporation got started at the end of World War II when General Arnold, then Chief

of Staff of the Army Air Corps -- and if you remember the history of our armed services, the Air

Force is a very late comer to the armed forces, and during World War II it was the Army Air

Corps, and then there was the Navy as the second arm. And it was only after World War II that

the Air Force became a third member of the armed services. But anyway, towards the end of

World War II, General “Hap” Arnold, who was the Chief of Staff of the Army Air Corps, got

concerned about the fact that they had all kinds of scientists from the academic world working

for them on their research problems, and these people were all dead intent on returning to the

academic world as soon as the war was over. So he began worrying about what he was going to

do to essentially attract this kind of talent to the problems of the then Army Air Corps.

He apparently talked with a number of executives from industry, and with a number of the

academics who were doing this work, and out of this came a couple of thoughts. One, that a

military installation was not the right model, that the model that was much more appropriate was

an academic model. And also the fact that it would be very important that the scientists

themselves have very much of a say about what they were working on.

Out of this came the notion, “All right, we need a nonprofit organization, and we’ll hire some of

these people, and that will work.” The thing that didn’t work about that model -- oh, eventually a

contract was given to the Douglas Aircraft Corporation to do what was called project RAND.

There were two notions about how they came up with the letters R,A,N,D, one of which was

Research ANd Development, but the more popular one was Research And No Development.

[Laughter] But anyway, this contract was given to Douglas, and that didn’t work at all, because

the people on Project RAND essentially needed to know what all the aircraft companies and

other organizations like that were doing in the way of work. And a Boeing employee was not

about to tell an employee of the Douglas Corporation what the hell he was working on. So

quickly the plan was changed such that it’s got to be a nonprofit organization, with no

connections with any commercial company. The Ford Foundation was conned into putting up a

big chunk of money, and the RAND Corporation came into being.

I want to say one quick word about that history. I wasn’t there at the time, and consequently what

I’ve just said is very much a personal impression of the world at that time, and might be quite

wrong.

So the contract was moved from Douglas to the newly formed nonprofit. I might say a bit about

some of the things that changed at that time. The notion was that you have to, in this

organization, have good salaries and good fringe benefits, and our early fringe benefits were that

we had four weeks of vacation, and the first year you got four weeks -- it was not anything that

built up over time. Further, we had from the academic world the TIA-CREF retirement plan, and

in the very early days of RAND, when we flew, we flew first class. So, the fringe benefits were

nice.

Further in relation to my comment about the individuals having something to say about what they

were working on, was that when a senior scientist was hired, in essence he was told, “We’ve just

bought your time for N years; go off and spend it in the best interests of the Air Force.” Or, at

that time, the Army Air Corps. I think this was just incredibly important in the early history of

RAND, and in the fact that it worked out well. I used to often describe the way RAND worked

was that each year the Air Force said to RAND, because it eventually became the Air Force,

“Here’s a bag of money. Go off and spend it in our best interests.” And then the RAND

management divided this money into N bags, where N was somewhere between 6 and 12, and

said, “Go off and spend this in the best interests of the Air Force,” and I think added, at least in

the way we operated, “in the best interests of the Air Force and science.” I think for a number of

the things that we did, that was a very key point. And indeed, if there was a proposal that we

work on something that maybe its immediate advantage to the Air Force was not particularly

obvious, but if it was good for science, we felt we could do it.

Now I want to turn a little bit to the early days of computing at RAND. I was hired by Cecil

Hastings, in the summer of 1947, to operate a desk calculator. There were lots of people around

RAND in that position. The president of RAND at that time was Frank Collbohm, the number

two man was J. D. Goldstein (“Goldie”), and John D. Williams was head of the Math

Department. Reporting to him was George Brown, who headed the Computer Science

Department. And there was also a Math Department. [Comment: Numerical Analysis.]

Numerical Analysis -- did I say Computer Science? Sorry about that. And George Brown has

been on my back about that, about four or five times in the past. I’m a slow learner.

Cecil and his group of desk calculator operators reported to George Brown. George Brown left

RAND in 1952, and I succeeded him. Willis Ware became Associate Department Head. And

then we did, Willis and I, something that around RAND was known as the hat trick, because we

traded hats. So, Willis has also been head of the Computer Science Department for many years,

although the Department doesn’t exist any more.

The biggest problem with desk calculator operation is that it was not only very slow, but that it

was incredibly error-prone. If you think about someone sitting at a desk calculator: he gets a

result, he copies it onto his worksheet, and then sometime later he’s got to punch it back into the

keyboard. Every one of those times, something can go wrong, and an error introduced. Of course,

you can come up with some examples of being able to do this well, with meticulous care. I mean,

for example, at least those of us who were operating desk calculators in those days were well

acquainted with mathematical tables that had been produced by, of all people, the Works

Progress Administration -- some of you probably don’t even know the initials, WPA, but it was

essentially a government way of trying to create jobs during the Depression. But they produced a

number of mathematical tables that, as far as I know, nobody has ever found an error in. I

suppose there are some, but

Punched card computing was a lot better, and actually when I arrived at RAND, the Department

was already involved in punched card computing, with Douglas equipment. And shortly

thereafter, we ordered a lot of punched card equipment. I guess the first calculator we got was a

602, and this was just an incredibly better way of getting computing done. I eventually got out of

the desk calculator business, by going to Cecil Hastings to say, “Hey, when we open our own

installation I want to work with that stuff.”

One of the serious shortcomings of this kind of gear was that essentially the only way you could

really do it was in a parallel fashion. Think of payroll. You’ve got a card for every employee, and

first of all for every employee you multiply hours times rate. And then eventually you do the

calculations for each employee, calculations of taxes due and other deductions, and finally you

print out a check. But, until you start printing checks, you haven’t completed the work for any

one of the employees. Now, this doesn’t bother you worth a damn when you’re doing payroll.

But suppose that you’re trying to maximize a function of five or six variables. What do you do

when you have this kind of a situation? Well, you pick out a number of combinations of these

five variables, and you start calculating. Until you finish the last step, you’ve essentially got

nothing on any of the cases. And when you do this, say trying to maximize a function like that,

when you get through, 90% of the results you’ve got, you can’t possibly be interested in. You

know, it was off in parameter space that didn’t bring in the results that you wanted at all. So you

wasted a lot of time. Not only was it slow, but you wasted a lot of time.

This situation really turned around when IBM came up with the Card Programmed Calculator, in

which the punched cards ran through the drive of a tabulator. And in each card was one program

step. That meant that you essentially, in this instance of trying to maximize a function, when you

started a given case, the machine worked entirely on that case until you were finished with it. So,

when you began to learn something about the results from this, you don’t calculate all these cases

that you threw out the last time. So, literally, that was a marvelous change.

Sort of a brief side story on this: one of the first programs that we did on the CPC involved

computing missile trajectories. We were given five cases which had been done, and supposedly

checked, on desk calculator equipment. When we ran them, it turned out that not a single one of

those cases had been done correctly! They weren’t drastically wrong, and people could, I

suppose, see that something has gone wrong, and back up a few steps, but none of them was

correct.

Now, since I’m trying to tell you a little bit about what was going on in the world way back then,

we were all essentially feeling an incredible demand to expand our capability. Not once or twice,

but orders of magnitude. Further, we wanted it to be a good deal more reliable. I’d like to quote

some figures that Bill Gunning came up with for me. In mid-1953, RAND programmers were

using the Standards Western Automatic Computer, at UCLA. That’s Standards, as in Bureau of

Standards. The machine was called the SWAC. Our programmers did a memory dump, so that

they could start over if necessary, every minute. Each minute on SWAC was equivalent to about

eight hours on the Card Programmed Calculator. The Card Programmed Calculator had a mean

time between errors of about eight hours. Later, SWAC improved to about 10 minutes mean time

between failures. So one of the goals of JOHNNIAC was that it be reliable, and by early 1956 its

mean time between failures was greater than 100 hours.

By this time -- by the time that JOHNNIAC began to operate -- the ENIAC effort in the east, and

of course the work of von Neumann and all at Princeton, which had such an impact on us that we

called the machine the JOHNNIAC, was one of the things that was going on in the world. There

was SWAC, as I mentioned earlier, at UCLA. Incidentally, von Neumann was a RAND

consultant, and influenced us a great deal. Bill and Willis will talk more about the RAND-

Princeton interaction. And with that...

WILLIS WARE:

I’d like to do the “Roots” part of this discussion, and look back at the pre-history of JOHNNIAC,

and in particular, the work at Princeton’s Institute for Advanced Study, where a great deal of the

foundation for the work of the machine behind us was laid. In 1946 -- again, just at the end of

World War II -- von Neumann, who had been familiar with the ENIAC during the war,

assembled a group at Princeton -- at IAS, excuse me -- to build a machine for science and

engineering applications. Burks, von Neumann, and Goldstine had been together at the

University of Pennsylvania during the war, and they jointly wrote a document called “The

Logical Design of a Digital Computing Instrument.” Now I think instrument is the right word. I

meant to look it up, but I didn’t. And that logical design, spelled out in two volumes, was to be

the foundation for the machine that von Neumann wanted designed.

The important thing about that project at IAS was that it was oriented toward science and

technology issues. That was natural, given von Neumann’s interests. It was to be a parallel

machine. It was to be as fast as the electronic art of the day could sustain. And on the other side

of the street were the companies like Eckert and Mauchly, who were building character-oriented

machines, serial, aimed at a quite different set of applications -- what today we would call

transaction calculations, or data processing.

So naturally the IAS effort came to the attention of all the groups in the country that were

interested in fast S&E (science and engineering) work. So we had a steady stream of visitors

through the project, looking over our shoulders, wanting to mimic for themselves what we had

done. And among them was the University of Illinois, Los Alamos, Argonne Laboratory at

Chicago, and RAND. So I got to know the RAND people during their visit, and in looking back I

suspect the only one I really ever met in any depth would have been Bill Gunning. I don’t think I

met the others that would have come through. But they looked over our shoulder, all the visiting

groups as they came through, would collect the latest information, the latest things that we had

done, the latest set of drawings, and march out, and it’s a mystery, I guess, that they didn’t beat

us, because they were that close behind.

Then, finally, when I finished my graduate work at Princeton, I came west, in 1951, first to North

American Aviation in Downey, where I learned a little something about how to make airplanes

on their production line, but at that time there was an early predecessor of the current IEEE

Computer Society holding meetings in one of the temporary buildings on the UCLA campus. It

was the Institute for Numerical Analysis building, where Harry Huskey and others -- Bill --

participated, built the SWAC, and there I renewed my acquaintance with Bill, and met a lot of

other people, like Harry Huskey and Ragnar Thorenson, and all the famous names.

By that time the RAND effort had started, a momentous event happened to occur: the Gunnings

went skiing, and Bill came back with a broken leg. The RAND management got immediately

concerned that here was the man in charge of their effort, and if he were to sustain a more serious

event than a broken leg, the project would be in deep trouble. So it was a natural and easy

transition for me to move from the east side to the west side of town down there, and to join

RAND in the spring of 1952, where I’ve been ever since. I had grown restless at North American

anyway, so it was just as well that that wonderful opportunity came along.

I’d like to comment about the IAS effort, and what it exported to the technical world of the time.

Now keep in mind that the commercial electronics art was still struggling, or really hadn’t

materialized, but it was struggling from the aftermath of World War II. So one just didn’t go out

and buy anything that one might want by the way of components. So we built a machine out of

the war surplus that we could get from the Army. There were regular vendors that would come

through who dealt in war surplus, and we’d have a shopping list, and they’d find aluminum, and

tubes, and one thing or another for us, and that was what we had to work from.

As I’ve commented, Burks, von Neumann and Goldstine produced the logical design. We, as an

engineering group -- the engineering group varied a little bit, it was five, six, sometimes four, but

six, give or take one -- the engineering group produced a prototype design of an all-parallel

machine, and it documented it quite well in terms of drawings and progress reports. But we also

exported a design philosophy. All of us who were in that engineering group had lived through the

war with the pulse technology of radars, IFF equipment, radar beacons, and that was the technical

foundation from which we went. So we built all our own test equipment based on that

foundation. But for the most part, those devices that I just mentioned beat the electronics

unmercifully. The radars typically beat their vacuum tubes with tremendous wallops of energy,

and that was not the way to build a computer. The IAS attitude was to treat the electronics as

kindly as possible, and electronics meant vacuum tubes at that time.

And so, all our vacuum tubes, we decided on a series of things, to run the vacuum tubes all at

derated heater voltages; instead of the nominal 6.3, as they all were in those days, we ran them at

6.0 or maybe 5.9 or thereabouts. We kept the heat dissipation in all the vacuum tubes at half of

what the handbooks would specify. We derated all resistors likewise, to half dissipation. We

derated -- marked down, so to speak -- the voltage ratings on capacitors. We avoided thermal

shock like the plague, so we turned all our vacuum tubes on over a period of several minutes,

with a huge variac arrangement. And we designed circuits that had to function properly, even

though every component would drift by 10% in the combination of worst directions.

We also exported some important logical principles: all the circuits were to be direct-coupled. No

capacitors were to be allowed in signal paths. So circuits therefore would function at their

inherent time constants, not as determined by some artificial time scale set by an internal clock.

In the lingo, the machine was to be fully asynchronous. No internal clock, no rigid time-line. So

in principle, one could arbitrarily slow down any event in the machine, and it would successfully

conclude the proper sequence, although of course somewhat slower. Another design principle

was that capacitors would never be used for the temporary storage of information, so when shift

registers were designed, they weren’t lateral, as the typical design of the day were, they were

ratcheting in nature: from here to here, and diagonally back. So every movement of information

in the machine was subject to the proviso: it would never be destroyed at its source until it was

known to be safely secured at its destination.

The IAS machine was some 1,200 or 1,500 vacuum tubes, all direct-coupled; that must be the

biggest direct-coupled DC coupled device that was ever done. There was of course one place

where we had to deviate from those rigid principles, where the physics dictated to the contrary,

and that was notably in electrostatic memory, where the physics of the charge behavior on the

phosphors of the CRT just had to tie you to a time scale.

Paul has given you the beginning of the RAND scene. I’ve sketched what the pre-history of the

JOHNNIAC was and what the technology was that was exported to several places, including

RAND, where Bill was in charge of the project. So the next move in this show is for Bill to talk

about hardware.

BILL GUNNING:

Thank you, Willis. One of the things I was going to talk about was what we did about vacuum

tubes to try to make life more bearable and longer, and he’s mentioned both regulating the heater

voltage and also turning the tubes -- the heater power -- on slowly, and turning it off slowly. And

the reason for that was that a common failure in vacuum tubes was so-called heater/cathode

short. For a tube to work, you had to get this cathode, which is a little cylinder, up to a red-hot

temperature, and to do that there was a tungsten wire in there called the heater, and it had to be

insulated from the cathode. If you slammed the power on to the heater, it will expand in how

long it takes for -- well, these are not incandescent lights, but -- in how long it takes for a light to

come on: a fraction of a second. But the sleeve, which was the cathode, didn’t heat up for many

seconds, as you know if you turn on a vacuum tube amplifier. The problem was the differential

expansion between the heater wires inside of the sleeve of the cathode. There was abrasion there,

and the insulation would wear out, and you have a heater/cathode short.

So, we designed -- I don’t know if the transformers are here [in the room] or not -- but we had a

special transformer designed that allowed us to put the tubes in groups of no more than 12, and

we were able to test the heater cathode leakage. Because as you watch the leakage you get some

idea of whether or not you’re about to have a failed tube. I don’t know where the selector is on

the machine any more; it doesn’t seem to be where I remember it. But it was possible to go

through this kind of analysis while the machine was running. That saved a great deal of time in

dealing with the tube problems.

Let me talk a little bit about some of the other things that were copied from, and some deviations

from, the IAS machine that Willis talked about. One was that in the IAS machine there was not

to be any connectors; when you put two pieces of wire together, they were soldered. And we took

the bold step of using lots of gold plated connectors, to be sure. But that made it possible for us

to get in and reach a tube that was about to fail, or already had failed. And that helped us a great

deal.

A bold step that we took -- we thought it was bold -- was to try to get the indication on the

operator’s console of what was the state of any of the flip-flops in the machine, and to be able to

set them either to 1 or a 0. This meant bringing a wire out from each one of those flip-flops --

there are typically 10 in a bay -- well, in fact there are 20, because there are the two ranks that

Willis talked about, in a shift register. You could shift up or shift down diagonally. Yeah, here

are all these wires coming out, there’s a big bundle, something like 3,000 wires came out of the

frame, and went over to the console, which was -- made the wires maybe be 15 feet long.

And the first test on the machine in those days was the prime number test. You wanted to

compute prime numbers. It was easy to program, apparently, and check. And it would run up to a

certain point and fail. You do it again and it would fail at the same place. Finally we tracked this

down to what we called the 30,000-ohm, 30K, effect. Not Y2K. Because that was the resistor that

was in series with each of these wires, to try to isolate the capacitance from the flip-flop. And it

didn’t do a good enough job. What happened then was equivalent to cross-talk in a PC board that

you’re familiar with in a modern machine, where it’s not digital, it’s really sort of analog, and

that you still have to deal with it. The solution was to stick a little neon tube in place of the

30,000 ohm resistor. A neon tube, up to about 50 volts, is pretty much an open circuit, and then it

breaks down and allows the current to flow. And so that’s the way the card machinery was

coupled to the innards of the machine and the way the console was coupled. Mort will have a

story about that later on.

I’ll go on to the fact that we had an enormous -- well, like this [gestures wide] motor generator in

a room by itself because it was noisy as hell. That was an AC line filter; it had some extra inertia

on the shaft, and the power in Santa Monica wasn’t all that wonderful, and so that helped a great

deal.

The last thing I want to mention is, if you look around on the end here you’ll funny little things

on a panel. Those are grasshopper fuses, which are sort of a three-terminal fuse that makes a

circuit if the fuse blows, and allows an alarm to come on, and they’re common in relay telephone

switching offices, and we built a lot of those in here.

Let me say just a little bit about, now going to memory, about the Williams tube memory, which

was the choice of most of the Institute for Advanced Study copies, and the Selectron memory.

Mort brought a copy of the Selectron here, that we can take a look at later. I’ll try to go through

this fast. The Williams tube memory used a standard cathode ray tube, and stuck a screen on the

outside of the tube, at the phosphor end, and ran a wire into the signal amplifier. The way it

would store information was to have the deflection set so that it could be placed at any of, if you

were greedy, a thousand spots. What it ended up with was usually 256 spots, 16 by 16.

Depending on what was done, the last time the beam was at that particular spot, whether it wrote

a second spot or just wrote the single spot, would determine the charge left in that spot. And so

when you came back with the beam, you could get either about half a millivolt of signal for a few

microseconds, or a much smaller signal. And that means that that was a very, very fragile

arrangement. Typically, if you’d come into the room with a 701, which used Williams memory,

or the SWAC, or the other machines, and flipped the room lights on, you had a pretty good

chance of producing a memory error.

Another problem was that cathode ray tubes were meant to be looked at, not to read the

secondary emission ratio off of every spot. If there were little defects in the phosphor, it could

change the secondary emission ratio, and make that spot a “bad spot.” People at IAS got

something like two percent yield of defect-free cathode ray tubes. IBM, by spending, it is alleged,

a million dollars to develop a superior processing facility, got that yield up to 60 percent, a great

achievement. But it still was -- the room light phenomena was an indication of how tricky this

was. Often you would adjust the position of the raster to straddle a defect in this tube, but since

they were all in parallel that didn’t do you -- that was a loser too. [Comment: Flashes from news

cameras were pretty bad, too.] I’ll bet! Any kind of electromagnetic flash. And the signal was

right in the middle of the broadcast band, too, so if you were close to [radio station] KFI, boy,

that was no good.

So what we did, since as Willis said, we were really going for reliability, was to pick up on what

was designed for the original IAS machine, the Selectron tube, which has digital addressing, so

you don’t have any analog stuff to come back and find the spot at which the information is

stored. And that was intended for the original IAS machine at a thousand bits. By the time we

decided to go with this tube, it was dropped down to 256 bits. We designed it for two banks, so

we could get 512 words, if we put in 80 tubes, 80 of these tubes. Here it is. The way it works is,

in the center of the tube are eight cathodes. There are metal bars that separate those cathodes,

nine metal bars. And there are also metal bars that are going horizontally across the cathode, so

by putting appropriate voltages on those bars, you can select one out of the 256 bits.

The information was stored by means of secondary emission; there were little eyelets in here that

are insulated -- just electrically floating. But there are two stable states in a secondary emission

thing, a high state and a low state. By selecting a particular eyelet and illuminating it with

electrons, you can get current flowing through it, and it flowed out into this box, where there is a

shielded lead, a coax lead that comes through the glass, and then it went through coax into our

sense amplifier. So that meant that we got something on the order of a thousand times as much

energy for a readout as a Williams tube. It was a very successful gadget except that it cost $800

each, and RCA decided that they didn’t want to make them any more because Jan Rajchman,

who -- and George Brown, were co-inventors -- could see core memory coming, and this was

doomed. So we went ahead and got enough of them to use them for about a year and a half or

two years.

Let me tell you one other thing about it. We went to visit the line on which these things were

built, at RCA, somewhere in Pennsylvania. [Inaudible comment] Where? Lancaster! They had

this tube sitting in a socket, sort of like this, at the end of the production line, I guess there were

several of them there. And there was this Tesla coil, like a cattle prodder, 10,000 volts. They had

it sitting there so that it was -- sparks would flash around on the inside. “What’s that for?” Well,

they said -- very often clean rooms were not what they are today -- there would be some lint or

other foreign matter inside of this enormous vacuum tube, and that would short out an eyelet. But

by sparking them with this high voltage, they could convert it into an okay tube, and put it into a

box and ship it to us. So, that was something that we learned as a way of extending the life of

these tubes, substantially.

Let me just say one other thing. This is a 40-bit machine; each of four bays has 10 bits in it. We

built a 10-bit machine -- a 10-bit slice of this machine -- and were able to test the design of the

control, and the memory with Selectrons, and that thing we called “Junior”. It was later

cannibalized and the registers were put into this frame. I think I’d better -- that’s the end of the

hardware part.

MORT BERNSTEIN:

Well, I want you to observe that software always comes last. [Laughter] It’s the last thing

anybody thinks of.

The JOHNNIAC was probably, outside of the SAGE system, one of the longest lived computers

around. It lasted 13 years before it was decommissioned, and only because it had reached the

state where it was not maintainable any more. Spare parts were not available, and it was time to

go.

It was an extremely rich software environment, for one very delightful reason: unlike the IBM

machines that RAND began to rent, beginning with the 701 sometime late in 1953, the

JOHNNIAC was a free good. It had been paid for. The only cost was maintenance. Nobody ever

figured out what that was. [Laughter] Nobody ever stated what it was, at least. So, essentially, it

was a free good, so unlike trying to run a problem for someone on the 701 or the 704, where you

had to worry about 300 bucks an hour for compute time, including check-out -- and I have to

remark that the Numerical Analysis Department, when I got to RAND, was unlike all of the other

departments at the RAND Corporation, where the management took the big pot of Air Force

money and divided it up into little pots, and gave each rice bowl some rice, Numerical Analysis

never got a rice bowl. Our rice bowl got filled because all of the other departments took their bag

of money and divided it down, and said, “Here’s your little piece. We’re going to need some

computing this year.” And if they concluded that there wasn’t any computing to be done this

year, there wasn’t going to be any rice in the bowl.

Well, that meant that rented machines were less desirable in some sense than free goods. But,

there’s a downside to that. The free good, unfortunately, wasn’t compatible with anything else in

the world, and the world was beginning to move toward the world of IBM essentially. And the

Air Force was beginning to acquire computers made by IBM, of course, and other government

agencies were acquiring computers made by IBM. If you were going to do a job for an agency

under contract, and give them the results including the software, they weren’t going to be able to

do anything with JOHNNIAC software, so there was this wonderful schizophrenia around the

place. So projects that were internal to RAND, that had no external connection where you had to

deliver the software, could easily be done on the JOHNNIAC. And so the programming

environment was a very diverse one, because there were people who were interested in the

machine because it was unique. There were people who were willing to devote their own

personal time to doing things on the JOHNNIAC because there was no real accounting ever done

on the JOHNNIAC. If you wanted to come in at two o’clock in the morning and run the machine,

nobody cared. If there was production to be run, of course you couldn’t interfere with it, but if the

machine was idle, it was available. And so there was an awful lot of bootleg software research

done.

And as a result, when the core memory got stuck on the machine -- I have no information or

memory about how the machine ran, what programs were used, or even how programs got

assembled on the Selectron memory machine. There seems to be no information in anybody’s

head anywhere about -- except for the first test program maybe being a prime number program.

What was the first application run on this machine in 1953? Nobody knows. [Comment: prime

numbers.] No, no, no, no [laughter] -- application! Was there a customer who came along and

wanted a program done on the JOHNNIAC? I have no idea. And I haven’t been able to find

anybody who does. I’m sure there’s somebody out there who must remember, but I was not

around, and I don’t. But when I got there, the machine had a very empty head, there was no

memory in it at all, and very shortly after I got there, the core memory was installed. They beat it

up for a while, and it eventually passed the acceptance test. The acceptance test was an

interesting one, and indicated the general reliability of the machine. The acceptance test was: it

had to run without a fault for eight hours. That’s that the mainframe had to run without a fault for

eight hours, which it did. It was a very, solid machine, and compared to the 701, which was in the

room next door. The IBM 701 had a mean time between failures of approximately 30 minutes. It

may have been less than that, in truth.

And so, if you run a program for the 701 and your estimate was that it was going to run for more

than half an hour, every 15 minutes of your estimated compute time you did a checkpoint/restart,

so that the operator could remount that tape and restart the program from the point that you had

last done a checkpoint. We never did that on the JOHNNIAC. Now, the JOHNNIAC didn’t have

any tapes to do that with [laughter], but that was irrelevant and immaterial. It did have a

reasonably sized drum.

The machine went through a number of -- an evolution, almost a continuous state of evolution

until about 1963. The first part of the evolution was, after the memory got installed, they installed

a 12,000 word drum. Very shortly thereafter, transistors became THE circuit of choice, and so the

machine was cannibalized and the first thing that was changed that I remember, the adders went

from analog tube adders to literally, digital discrete transistor adders. And I can remember, there

was a great deal of worry about, was the cold air that was passing through the machine cold

enough so the germanium transistors would last? Well, they decided that 60 degrees wasn’t good

enough, so they knocked it down to 55 degrees. From that moment on, you daren’t be in the

room with any of these glass doors open unless you had a parka on or you’d freeze to death.

[Laughter] That’s not a joke. It really was like a meat locker in there with the doors open. The

germanium transistors lasted very well under those circumstances.

Slowly but surely, about half of the logic in the machine -- the shift registers, the multiplier

control -- all became transistorized. But at that point, attention got diverted in other directions to

what to do with the machine. But I have to tell you a story now about -- that Bill said when they

put the neons in, as active elements in the circuit. The peripheral equipment on the machine was

a high-speed Analex printer which is an earlier version of, a 40-column version of a numeric-

only; it’s sitting back here in the corner. The 600 line a minute, 56 character, 144-character-wide

printer must be somewhere in the [History Center] warehouse, but God knows where it is at the

moment. The card reader was an IBM collator, and both feeds were active. The punched card

output was a summary punch which had been modified with beefed-up magnets, so that you

could punch binary cards. IBM had learned to do that a long time ago for the 701.

I don’t remember whether it was a unique feature on this machine, or IBM also did it on the 701,

but there was something called echo checking on the punch. And so you would punch a card, and

then it would go through a read station after it went through the punch station, and row by row

the bits got read back into the machine, and they could be, if you asked it to, and then they could

be compared with what you had punched, so that you would verify that what you sent was what

you got back. Okay.

Well, very early on the JOHNNIAC was used to create -- to do the payroll for RAND, at least the

first stage of the payroll. I don’t remember what all was involved, but it was multiplying hours by

rate, and other simple-minded things that probably were transferred over from either the CPC or

even a 604. The rest of the payroll ended up on the IBM 704, and I have to divert and tell you a

funny 704 story at the moment. The payroll was done on the 704, and it was a relatively small

machine. I think we had 8K of memory initially. And so the payroll was designed to run in a

minimum machine, and so the data fields were minimized to the point where you could squeeze

as much data in main memory as possible. The number of dependents, when computing your

taxes, somebody figured nobody is going to have more than seven. Right? Well, a guy named

Lester Ford, who was a mathematician, had his eighth dependent. And the payroll went through.

The payroll people went through upgrading the entry, and that got read into the machine, and this

three-bit field that was left for the number of dependents -- the updating took place by adding,

and so it overflowed into the next field, which created an illegitimate value. And the payroll

came to a screeching halt that week. Well, RAND paid twice a month, and they liked to make

[Problem with video camera: about 18 seconds missing]

 ... the first thing we did that morning, after we got the rest of the machine checked out, was run

the punch diagnostic. We must have put 2,000 cards through the punch, without one single error.

Didn’t make sense. So I sent Harriet back into it, and I said, “Whatever it was, was transitory.

Don’t worry about it. Punch works fine.”

Two weeks later I get a note from Harriet, [which] said “I had a tremendous number of echo

check errors last night. It took me all night to get the payroll finished.” Well, I have to back up

and tell you that one of the modifications we made to the machine was: we put a bell on the wall,

outside the machine room, which rang when the machine halted. That way Harriet could put a

stack of cards in the collator, and some blank cards in the punch, start the program, and go out

and do whatever other things she was doing in the machine room. And when the bell went off,

she knew she had to feed more cards, because it normally would stop when it ran out of cards,

either in the input or the output.

Well, that bell rang frequently. Finally, we had to convince Harriet -- by the way, this lady

worked graveyard shift, midnight to eight in the morning -- to stay over a little extra, and we

would meet with her, and find out what was going on. We asked Harriet to please go through, in

gory detail, exactly what had happened when the payroll failed. By the way, she couldn’t give me

the data, or anybody else, because Harriet Pierson, besides top management, was the only

[person] allowed to look at payroll data, so -- it was worse than top secret. It was compartmented

like you don’t want to know. Anyway, Harriet stayed over, and came in, and went through this

exercise, and for the exercise she had created dummy data, just in case we might look at it.

Well, nothing failed, and she couldn’t believe it. So we said, “Tell us exactly what you did.” So

we backed up, and she went through the whole thing, and I said, “Just go back out into the

machine room like you normally would, after you loaded the machine.” And she did. The first

thing she did is, she walked by the door, is turn the lights off. But the drapes were open, and there

was lots of light in the room, and so it didn’t have any effect as far as we could tell. But, when

we sat down and thought about all this, we said, “Gee, maybe you’d better simulate the whole

situation.” So we closed the drapes, and ran the payroll program. And sure enough, after about 15

or 20 cards, we got an echo check error. The damn machine was afraid of the dark. Open the

drapes [laughter], turn the lights on, and the machine ran fine! [Laughter] Makes no sense. Until

Dick Stahl, one of the technicians on the machine, remembered that the neons were an active part

of the circuit, and apparently by running a little test he determined that without any sunlight

coming through in the windows, or fluorescent light from the overheads, which provided just

enough ionization to keep them active, they deionized to the point where they would no longer

conduct. [Laughter] Now, the question was, how do we fix this? There were something like two

hundred and some odd -- how many neons were there? Well over 200. And nobody wanted to get

in there and unsolder and resolder 200 -- the machine would have been down for a week at that

point.

 Then somebody had a brilliant idea. Down here, where the air ducts for the return air from the

air conditioner were, they put a bank of fluorescent lights on each side of the machine. If the

filaments were on, they were on, the machine never had to run in the dark again. It never did.

[Laughter] It never was afraid of the dark again.

That was one of the more delightful aspects of the machine. There were other fun things that

happened with the JOHNNIAC. Before I tell you about those, as I said, it had a very, very rich

software environment. All in all there were four assemblers written for the machine. The last one

was written around 1961-62, and we almost didn’t get the write-up published. I called it

JACASS. Well, the JOHNNIAC had been abbreviated J’AC for years and years, and what would

you call JOHNNIAC assembler, if you’re going to abbreviate it? [Laughter] The people in

Publications were very upset at the word JACASS. It survived. I have a write-up to prove it.

The first fully symbolic assembler was written by a guy named Jules Schwartz, who some of you

may remember, from other places, SAGE in particular, and JOVIAL. The second one was written

about a year later by Cliff Shaw; most of you will recognize the name. He called the thing, the

program, or -- he didn’t believe it was an assembler. If you look at the write-up it says it’s a

loader, and it loads his version of symbolic cards. It was referred to as Easy Fox, because by the

time he wrote it, we had four card styles for the machine, with definite formats. They were

labeled A, B, C and D. Now, Cliff had invented two new ones for his stuff, and so they were

called E and F, and in the military alphabet of that day they were Easy and Fox, so it was called

Easy Fox. By the way, JOSS was written in Easy Fox.

Last but not least, around 1957 or thereabouts, I wrote a music assembler. Because the

JOHNNIAC, as far as I knew, and these guys can’t tell me otherwise at the moment, had an

instruction called “Hoot”. We had three-letter mnemonics, so it was abbreviated HUT, but the

real instruction, if you look at the instruction list, is spelled “h-o-o-t”, hoot. Its purpose was to

flip a toggle which went into an amplifier, and out to a speaker which was buried under the

keyboard there. And so you could make music with the machine.

Well, it got generalized to the point where any toggle that got flipped -- in fact, the whole order

decode could be passed through that amplifier, so there’s a switch in the inside on the left panel

which is the hoot control switch, which says you could make the toggle flip every time any

instruction went through, or you could pick any one of the 11 or 12 subsets of instructions, or you

could pick “hoot” all by itself. I got inspired by a story by a guy named Stu Dreyfus, who some of

you may know, who is over at Berkeley, whose brother Hubert is maybe somewhat more

infamous or famous, related to the world of AI, but he ran the IBM 701 at 590 Madison for GE

for a year or so, when he worked for Herb Grosch. And since they didn’t have jobs that took up

the entire shift every night, he was left with an idle machine that IBM didn’t want back. So he

got one of the CE’s to show him how to connect a toggle or a wire to one of the overflow bits --

now the IBM 7000 series machines were unique: they didn’t have one overflow, they had two,

they were called P and Q -- I don’t remember whether he told me he used the P bit or the Q bit.

Anyway, he was able to get, with a radio in the right place and a wire as an antenna or something,

he could get music out. And he learned to play the recorder by programming music for the 701.

That inspired me to write an assembler. I mean, one or two songs wasn’t enough to hand-code, so

I wrote it in assembler. The first thing I programmed for the assembler was “The Flight of the

Bumblebee”, which, by the way, it had about a three octave range, which was all I could squeeze

out of the machine, because it wasn’t all that fast. We were having some visitors at the house one

night, and a lady I’ve known for years says, “And what kind of silly things are you working on

now, Mort?” And I said, “I’m teaching the machine to play music.” She said, “Aw, come on.” I

said, “I’ll prove it.” I went to the phone, I called the night operator, and I said, “Is there anything

running on the JOHNNIAC?” He said, “No.” I said, “Put the Bumblebee deck on, and put the

phone over the speaker on the operator’s console.” And once it started to play, I handed the

phone to her. Well, it could be set up -- and I told them how to set the switches -- it could be set

up so that it continuously repeated. And she sat there and after about a few seconds she said,

“That’s just somebody playing a clarinet,” because it had a very reedy sound. Then she listened

some more, and she listened some more, and she listened some more, and she finally turned to

me. She said, “It’s gotta be a machine -- he hasn’t taken a breath yet!” [Laughter]

Sometime later the music assembler became generally available around the Corporation.

Sometime later somebody in one of the engineering departments was going to give a briefing and

a tour of the RAND installation to some relatively senior Air Force officers. And he decided that

the “Bumblebee” and some of the other songs that people had programmed weren’t appropriate

for a demonstration for the Air Force, and he was going to program the Air Force song. Well,

unfortunately, he didn’t read the instructions very well, because I’m not much of a musician, and

so you had to transform anything you wrote into the key of C, because that’s all it knew. And I

believe the Air Force song is not in the key of C. To compound the felony, the guy was tone-deaf.

[Laughter] He never let anybody know he was doing this. We ended up with about a half a dozen

very irritated Air Force officers after he played his version of the Air Force song for them. And

not very long thereafter, an edict went out that music was not to be played for visitors unless it

had been prescreened by somebody who could understand what was going on. [Laughter] It was

a fun place!

Very early after we got the core memory on, linear programming had been programmed for the

JOHNNIAC so that they could run small problems and again, it was a matter of money. If you

ran something that didn’t get -- it was going to cost a lot of money, the Economics Department

and people like that -- logistics people -- weren’t terribly happy, but if you could run the thing

essentially for free on the JOHNNIAC, that was great. So, a number of relatively small but

interesting LP [linear programming] problems were run on the machine. At some point in time,

one of them failed. Now, there had never been a failure up to that point. And it just came to a

screeching halt, after running for about two and a half hours. So, they couldn’t find a bug in the

program, they couldn’t find a bug in the code, and the assumption was, there’s a bug in the

hardware, and we couldn’t find a bug in the hardware. Well, Dick Stahl, whom I’ve mentioned

before, decided he -- in the back of his head I’m sure he had some idea of what might be wrong.

But he asked for a copy of the deck. And from time to time, after we’d made some change to the

machine, he’d run this thing. It would still fail. Well, about 1961-62, when the decision was

made that it was going to become a JOSS machine, Cliff would have been delighted if we could

have increased the amount of drum storage by a factor of two, and it was decided that they ought

to try to double the density of the drum. Which they ended up doing, and I ended up modifying

the diagnostics, and it seemed to run fine until Dick Stahl came to me and said, “There’s one

thing we don’t test in the diagnostics,” and that is, the drum was able to start at any address and

read to any other address, up to one full track, which was originally 1,024 and now 2.048 words.

So that you could start at a high address, read over the gap, and it would run into sequential

locations in memory. But we never tested whether or not reading over the gap worked properly.

So he said, “Write a diagnostic where I can set the initial address, and we can sort of creep up on

the gap, and see what happens to the data.”

That was okay. Now remember, it was still 2,048 per band, drum at this moment. And so he

started about 10 or 12 words from the end of the block, and worked his way up, word by word,

until he got to within three words of the end of the block. The first two words at the beginning of

the block were read in as garbage. Well, he had attributed that to the fact that we had doubled the

density. I think probably because it was two words that were clobbered. So we put it back to

single density, and then we decided, “Well, we have these new diagnostics -- let’s run it!” Guess

what. That bug had been in the drum from the very beginning. It failed the same way. They went

back, looked at what the problem was, fixed the circuitry. Two and a half years later, that LP

problem finally ran to completion. [Laughter]

The machine was a research vehicle in many, many ways. We put lots of goodies on it. There

was a 30-inch flatbed plotter, which was very material in solving a problem for me. Back around

late ‘57 or early ‘58, a guy named George Clement, who was head of the Engineering Division,

was asked to give a paper at the Franklin Institute on how you would get an instrument package

onto the moon. So he wanted to know, how do you get to the moon? What’s the trajectory? How

long is it going to take, what kind of boosters do you need, what kind of velocity do you need to

... you know, he wanted all the parameters. We said, “Fine, go look it up somewhere.” Well, it

didn’t exist, apparently, at the time. So we were commissioned -- a lady named Nancy Brooks

and I were commissioned to write a program to integrate the three-body problem. Okay, that’s

simple. So we decided on Runge-Kutta, and we demonstrated clearly that it was stable for

roughly the five day transit time. Somebody up in the Engineering Department gave us the initial

conditions, namely: we assumed that the vehicle was in a 100-mile orbit, and what you had to

select was the insertion angle. That is, where the vehicle was in the orbit, and the insertion

velocity. And we were told, somewhere in the neighborhood of 25,000 feet per second, and I

don’t remember what the angle was. So we decided to make our first run. We missed the moon

by 10,000 miles or more! That can’t be!

Well, we decided that they had given us some not very good numbers, and slowly but surely

increased the velocity and changed the thing until we hit the moon. Insertion velocity was 50,000

feet per second, transit time was two days, and we hit the moon at I don’t remember how many

hundred thousand miles per hour. [Laughter] Nothing would have survived, and we said “There’s

something screwy going on here. This can’t be right.” And the plotter had just come on-line, and

what we were getting out of the program was, and we still had, I believe, the 40-column numeric-

only printer, was tons of numbers, but we couldn’t translate them into anything that meant

anything inside of our heads, so I said, “Okay, I’m going to modify the program, where we’re

going to plot everything out as it goes.” So we plotted the earth, and then the moon, and then the

vehicle. At about every five integration steps we would plot where the vehicle was versus the

moon. Within about five minutes it was quite obvious what was wrong. The vehicle was going

east, the moon was going west. We had a retrograde moon! [Laughter] One lousy minus sign

strikes again! [Laughter] It wasn’t very long thereafter that one of those same kind of minus signs

ended up in the destruction of a missile being launched out of Cape Canaveral.

Let me tell you one more story, and then we’ll open it up for questions. The RAND tablet was

invented by a guy named Tom Ellis, and all of the development software, and proof of concept,

etc., was done on the JOHNNIAC. So there was this wonderful new input device -- oh, and we

had a five-inch scope, which we could feed back through the mainframe, to show where the pen

was. And it was sitting there, and it was an irresistible temptation, and so I sat down and wrote a

little character recognizer, that recognized I think it was 15 characters: 10 digits, the four

arithmetic operators, and the equal sign. So if you put digit-operator-digit-equals, as soon as it

saw the equals, it produced the answer on the scope. Okay. Well, most of you must remember

who J. C. R. Licklider was, he was the first head of the Information Processing Techniques

Office at ARPA, and he was coming for a visit to RAND, and we were going to try and convince

him to throw lots of money to all the kinds of fun research projects we wanted to do. And one of

the things we were going to demonstrate was this wonderful new tablet, which was a new device

in the world, and the demonstration was going to be the character recognizor.

I sat down and I showed him -- this is in the middle of August, by the way -- how this thing

worked, and he said, “Can I try it?” I said, “Of course, that’s the intent of this whole thing.” He

sits down in the chair -- now, the program, in order to reinitialize it and reset it to its initial state,

you touch the pen down at the 0,0 coordinate position. Lick takes the pen, touches it down at 0,0,

the machine crashes, the lights go out, and the world came to [an] end. And he looks up at me,

and he said, “Did I do that?” [Laughter] Fortunately, he hadn’t, and it wasn’t my program; it

turned out that Con Edison had dropped the whole of Santa Monica. [Laughter]

The last modification that I know that was made to the machine itself was, we had argued for

years about how to improve the machine. Do we put an index register into it? Well, that would

have caused all kinds of problems, and reprogramming practically everything. And finally I

convinced Tom Ellis that there was one more thing you could fix the machine, that would make

at least future programs somewhat more efficient, and that was indirect addressing. And he

wanted to know, was that really feasible? And I said, “Give me the logic diagrams, and I’ll figure

it out for you.” So I went over it, and I said, “Yeah, I think it’s very easy. All you have to do is

this.” And he finally agreed, and so indirect addressing was added to the machine. We checked it

out, and everything that I had, ran. And then Cliff Shaw ran Easy Fox, and tried to load a

program in it, brought it to its knees. What we had done, to get the indirect addressing: [a] word

was 40 bits long, instructions were 19 bits; the two middle bits weren’t used in any instruction.

So we programmed -- we fixed the machine so it would look at those two middle bits, and if they

were set, then you had one level indirect addressing. The right bit was for the right address, and

the left bit was for the left address. Cliff had used those bits as flags in order to save words in the

machine. None of his software ran [laughter]. And so, as a result, there is a switch on the console

which disables and enables indirect addressing [laughter]. Thank you all. [Applause]

GORDON BELL:

Undoubtedly there are lots of questions, and we’ll take a few minutes of questions.

Q. I had the great misfortune of programming two of these machines. One of the questions

[inaudible] ILLIAC and TRASK [?]. One of the questions I always had is, why 40 bits? Why was

that chosen?

GORDON BELL: That was von Neumann. [Comment: Willis worked with him.]

WILLIS WARE: That’s right. Those documents that I referenced, “The Logical Design” etc. said

40 bits.

Q. What was the logic behind that choice? Was it just like, the range of numbers, or ...

WILLIS WARE: I’m afraid you’d have to ask Johnny. [Laughter]

GORDON BELL: I think it’s described in the paper; in fact, Bell and Newell published the main

one of those. As I recall, it had to do with 10 digits -- you needed 10 digits to do the things ...

MORT BERNSTEIN: Well, you also have to remember this was fixed point, there was no

floating point, okay? And so you needed a reasonable range if you were going to do any kind of

fixed kind of arithmetic on the machine.

Q. You mentioned the variac, and bringing up the filaments gradually. Did you ever shut the

machine off when it was working normally, or did it run around the clock, or did you hazard ...

WILLIS WARE: No, we would power it down, slowly.

BILL GUNNING: But the DC would go off.

WILLIS WARE: Yeah.

MORT BERNSTEIN: But not the filament voltage. [BILL GUNNING: That’s right.] The

filament voltages stayed on all the time. [Comment: Is that right? That seems strange.] [WILLIS

WARE: I guess I stand ...] [Comment: Software guy! - laughter] When you brought the machine

back up, all you brought back up was B-plus. [BILL GUNNING: Okay - I was gone by then.]

[laughter]

Q. In today’s terminology, just for comparison, suppose you’re building JOHNNIACs for sale,

you want to put an ad in the Computer News, sell the thing, what clock speed, how much RAM

did it have, how many ports -- what kind of capacity ...

WILLIS WARE: Zero, zero, zero and zero. [Laughter] It had no clock; it had no ports, in the

current meaning of that word; had very nominal memory, 4,000 words by eight bytes per word --

five, rather, excuse me.

MORT BERNSTEIN: And it had a drum with three times as much memory as the main memory,

and that was it. And the I/O, to answer about ports, I don’t think there is hardly anybody here old

enough to remember “copy logic I/O”, which was what this machine did, and what the early IBM

machines did, before channels came along, and so when the machine was doing I/O, that’s all

you were doing. You were copying words off of the device that you had connected, or selected,

one bit -- not one bit, but one word at a time. [Comment: That was before interrupts, too.] No,

there were no interrupts in the machine. No interrupts whatsoever.

Q. Can you describe your simulator that you’re working on?

MORT BERNSTEIN: I’m trying to do a faithful simulation of a 40-bit computer, with the

instruction set of this machine, that will carry out all the instructions, up to the very end. Part of

the problem is, there is an environment one has to build in addition to just the simulator. And that

says you have to build the simulation of a punched card environment, including something that

looks like an 010, and something that looks like an 026, and [laughter - inaudible]. No, no, no --

we’re going to put fluorescents in the base. [Laughter]

Q. Is that why that RAND payroll still runs? [Laughter]

MORT BERNSTEIN: I don’t know, I suppose.

WILLIS WARE: The RAND payroll is now outsourced. [Laughter]

Q. With all the upgrading modifications that went into the machine, did you always maintain

software backwards compatibility, except for the index bit?

MORT BERNSTEIN: Except for the indirect addressing, yes, everything always ran. We were

always able -- well, the only thing that really changed when we modified the machine was how

fast it ran. Now, there’s a variac at this end of the machine that had the common name of

speedbus. There were some programs where you had to readjust the speedbus in order to get

them to run properly, like, there were very, very sensitive card I/O. So, if you were going to keep

the card reader running at full speed you had to get a certain number of instructions down there

after that last 12-hole read before you issued the select, to keep the card reader motor going.

Well, if you got the speedbus setup down a little bit too low, and the multiplies were running

more than 450 microseconds -- they were running up to 500 microseconds -- you may be unable

to make it, and so you go jiggle the machine, and everything ran fine again. [Comment: Turbo

switch!] It was continuous, it wasn’t a flip-flop kind of

Q. You’d mentioned JOSS just briefly. Could you spend a few moments describing what that

was, and how it operated, and what the significance of it was?

MORT BERNSTEIN: There’s a JOSS console at the far end of the machine. JOSS was one of

the very early time-shared user-oriented computation tools. It was not a general purpose time-

sharing system; it was aimed at doing small programs. And the history behind it is, one of the

ways we believed to keep the JOHNNIAC going, and justify its maintenance costs, was if we

could open the shop. I mean, there were fewer and fewer programmers who became JOHNNIAC

programmers as they joined the RAND Corporation, and we kept trying to find ways -- in fact,

prior to JOSS there were at least four attempts at producing batch-oriented open shop languages.

Fred Gruenberger created Quad, and I had created something called Smack, and another called

MORTRAN -- you know why [laughter] -- and there was another one in there somewhere. But

these were not successful because they were the kind of programming languages that

programmers would create. They weren’t the kind of thing that an engineer, or an economist, or

somebody like that would take to, and it took too much. Even though the advertisement was “it’s

easy to learn, it’s easy to use,” we’ve been hearing that for 40 years; it’s still not true. [Laughter]

And the idea was that JOSS would become your computational assistant. Cliff worked very, very

hard at making things as natural and easily understandable as he could, and his goal was that the

JOSS manual would be one page. Now I -- I don’t think I brought it with me -- I have a one-

page description of JOSS, which, if you’re a bit of a mind reader, yeah, you can figure out what

really you were able to do with it. But it was attractively enough done that it didn’t suffer from

all of the shortcomings of all of the floating point of the day. First of all, he did an integer

floating point rather than a fractional floating point. It looked like decimal to everybody from the

outside. There was nothing that wasn’t decimal, and when you took the square root of 2 and

squared it, it came back 2.000000, which is very important for people who don’t understand that

we’ve lost a bit somewhere, and now it’s 1.999999. And the syntax was oriented to people.

People hardly ever put the IF clause in front of a statement they want to condition; they put it at

the end. And Cliff looked at that and said, “That’s where it has to go. A = B IF” So it became

the secondary clause in the statement. There were all kinds of little good things like that, that

made the thing extremely easy to look at, easy to understand, and relatively straightforwardly

easy to use. And it took off! And as Gordon observed, ran out of time, space and availability of

the JOHNNIAC, and ended up creating a second version of it with some enhancements on a

PDP-6.

The biggest shortcoming of the machine was its shortage of secondary memory, in that you

couldn’t create a program, even a small five-line program, and save it anywhere. There was no

“save” space for users. So people had to retype things. Now, there was some facility for punching

out decks and loading them back in, but that apparently created some problems that I -- I wasn’t

there and don't really understand how it all went, but that was also a lot of the reason for the

pressure to move it onto the more modern machine with truly proper storage facilities where

people had allocated storage to them and they could recall programs that they had written, and

they could write bigger and bigger programs, and build on them, and build them slowly but

surely.

How long did it last, Willis? How long did JOSS ... ?

WILLIS WARE: I don’t know when we finally turned it off.

MORT BERNSTEIN: The PDP-6? I don’t, either, but it served -- it grew like Topsy and

somewhere there’s a compilation of the number of JOSS-like languages that were propagated

into the world by other organizations, and my recollection is, the number was well over 20, so it

did have an influence. A guy named Ed Bryan, who was one of the implementors of the PDP-6

version, who looked at what Cliff had done on this machine, and his time-sharing algorithm, as

far as Ed was concerned, was better than any time-sharing algorithm that anybody had created up

to that time. Interestingly enough, I do have a full source listing of JOSS which I intend, when I

get the simulator running, to get running on this thing. Now it’s not going to be a big user of

JOSS. I don’t think I can handle that. But it would be a lovely [inaudible].

Q. Just a quick one. What machine are you going to do the emulation on?

MORT BERNSTEIN: On a PC. What else?

GORDON BELL: OK. There’s some refreshments here.

END OF VIDEOTAPE

Transcribed by John Amos, a volunteer for The History Museum History Center

San Antonio, Texas October, 1998

