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JOHNNIAC was one of an illustrious group of computers built in the early 1950's, all inspired by 

the IAS computer designed by John von Neumann at the Institute for Advanced Study in 

Princeton. Some of these machines were MANIAC (Los Alamos) and ILLIAC (Univ. of Illinois), 

as well as WEIZAC, AVIDAC, and ORDVAC. JOHNNIAC was built at RAND Corporation in 

Santa Monica, and named after John von Neumann himself (he "disapproved", but didn't 

complain too much). This talk will be given in front of JOHNNIAC itself, the actual machine, 

since it is now part of the Computer Museum History Center at Moffett Field, the world's largest 

collection of historical computer hardware. 

  

JOHNNIAC ran for the first time in March, 1954. It pioneered the development of time shared 

operating systems with JOSS (the JOHNNIAC Open Shop System). JOSS could support several 

dozen users with drum  swapping -- there were no disk drives then, so no disk swapping, but 

instead large rotating drums for magnetic storage. JOHNNIAC also inaugurated the commercial 

use of magnetic core memory, iron doughnuts on wires, which dominated computer memories 

for the next decade. Among other tasks, JOHNNIAC was also used to develop digitizing tablets 

for computer input. 

  

Our speakers were all working on JOHNNIAC over 40 years ago. Willis Ware led the 

development of JOHNNIAC and received the IEEE Pioneer Award in 1994 for his work on 

JOHNNIAC. Bill Gunning was the computer engineer who built JOHNNIAC. Paul Armer 

managed the Numerical Analysis Dept. at Rand where JOHNNIAC was built, and later directed 

the Computation Center at Stanford. Paul hired Mort Bernstein to work on software for 

JOHNNIAC at RAND, and Mort is now working on a JOHNNIAC simulator, due to be 

completed before the year 2000. 
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PETER NURKSE: 

 

I’m Peter Nurkse, and I represent a group called Bay Area Computer History Perspectives: that’s 

me and Jeanie Treichel, also Sun Microsystems. The two of us have been organizing a history 

series of talks for almost six years now, and in the last two years we’ve been joined by The 

Computer Museum History Center, which as you can see looking around you, is the world’s 

largest collection of historical computer hardware.  

 

Speaking however of our first year of talks, back six years ago, we had a couple of talks on 

ERMA, which was the first computer built here in the Bay Area; it was built at SRI in Menlo 

Park as part of a project for Bank of America. Though ERMA back then, 1954, it was still a 

prototype stage, and after they finished the prototype they tore it down, and then built a totally 

different computer for the final commercial application, which was installed in 1959. So if you 

think back then, 45 years ago, 1954, what was going on in the Bay Area, there was some ERMA 

work, and what was going on down in L.A., well, JOHNNIAC here was up and running, and I 

think the Standards Western computer was running. That was probably the first computer built in 

California. Well, the balance of power in computing 45 years ago was rather down towards L.A. 

It’s fortunate, we may say, that Silicon Valley asserted itself and reclaimed preeminence. So 

that’s part of the benefits of history, looking back these relatively enormous periods of time in 

computing history, like 40-45-50 years, and seeing how things have changed.  

 

The program tonight is on JOHNNIAC, which was built in Santa Monica, and first started 

running 45 years ago. So I’ll turn the mike over to Gordon Bell, who will introduce the speakers. 

[Applause] 

 

 

GORDON BELL: 

 

Thank you, Peter. Actually, I was at the Manchester celebration in June, and it was the 50
th

. 

We’re just 50 years into computing, 50 years ago the first stored program computer ran. What’s 

particularly significant about the talk today is that first we have the JOHNNIAC here, and it’s a 

member of the famed IAS family.  It’s a true von Neumann machine, whatever that meant -- 

whether it was named because von Neumann wrote the first report on [the] stored program 

computer, or, it was a parallel machine, and everybody else was building serial machines. I hope 

we’ll find out the theory about how it ended up that way.  [Audience comment: fon Neumann!] 

What? [It was ffon Neumann!] Oh. Well, thank you [laughter]. Anyway, it was a member of 



those machines, the Princeton and IAS machines, which included the ILLIAC, SILLIAC, 

WEIZAC, MANIAC, and a few others, running in March ‘54. 

 

Now I’d like to talk about the people who did that. I’ll start with Paul Armer, who was at RAND 

between ‘47 and 68 as, I guess, programmer and eventually head of the computer science. Sort of 

the project or overall department head at the time. He’s been at Stanford, at the computer center, 

and has been a member of the Babbage Institute, and doing various other things.  

 

Willis Ware was the designer of the machine, spent ‘46-’51 at IAS, then came to RAND 

Corporation via North American Aviation, and has been there from ‘52 to ‘92, and is in fact still 

a member or a consultant at RAND. He’s a member of the National Academy of Engineering, a 

Fellow of the IEEE, and AAAS, and the ACM. He also wrote one of the first logic design books. 

 

Bill Gunning was the JOHNNIAC Project Engineer, and was at RAND, and transferred to 

RAND from Douglas, and was there from ‘47 to ‘54. [He] eventually came to the Bay Area, and 

I ran into him a couple of times at Xerox PARC; he was part of the DEC/Intel/Xerox relationship 

that created Ethernet. He was one of the key people who made it work. He’s now a consultant at 

PARC.  

 

Mort Bernstein, who was the JOHNNIAC software developer - have to get to that last. As Ken 

Olsen was fond of saying, “Good software comes from heaven when you have good hardware.” 

[Laughter] So we know - it wasn’t until a year or two ago that this explained how you get bad 

software. [Laughter] So, there may be some wisdom in all of that. Anyway, Mort did 

mathematics at the University of Pittsburgh, then was at RAND from ‘54 to ‘63; was at IBM for 

a while, and then went to the Systems Development Corporation. Was part of the programming 

of the FSQ-7, the SAGE system. 

 

So let’s hear from the team now. [Applause] 

 

I can’t help it, but for the record I need to say that when [the JOHNNIAC] was running the open-

shop system JOSS, the machine that replaced it was a PDP-6 that I helped design. [Laughter]. 

[WILLIS WARE:  Major mistake. PAUL ARMER: I’ll let you tell us why later, Willis.] 

 

 

PAUL ARMER: 

 

I’m supposed to say a little bit about the early history, particularly to explain to some of you who 

may not know it, the origins of the RAND Corporation, which I want to talk about briefly. But 

actually, I had essentially very little to do with the JOHNNIAC in the very early days; it was 

those other folks over there, and not us software types, who were worrying about that machine. 

The one aspect that I’m concerned about covering is that a number of people, Bill for one, 

George Brown, John Williams, Willis, made a trip to the east coast when we were considering 

what did we want to do about meeting the incredible problems we saw, in that we needed a lot 

more, and a lot more reliable, computing than we had available at the time. One of the things 



which happened on that trip -- well, there was a notion that maybe we could get IBM to build a 

machine for us. 

They told us that no, they weren’t going to build one. And so we came back and decided we were 

going to have to build it ourselves. I was off in another group at this time so I don’t really know 

much about that trip and what went on, but maybe some of the others in the group can say more 

about it. 

 

The RAND Corporation got started at the end of World War II when General Arnold, then Chief 

of Staff of the Army Air Corps -- and if you remember the history of our armed services, the Air 

Force is a very late comer to the armed forces, and during World War II it was the Army Air 

Corps, and then there was the Navy as the second arm. And it was only after World War II that 

the Air Force became a third member of the armed services. But anyway, towards the end of 

World War II, General “Hap” Arnold, who was the Chief of Staff of the Army Air Corps, got 

concerned about the fact that they had all kinds of scientists from the academic world working 

for them on their research problems, and these people were all dead intent on returning to the 

academic world as soon as the war was over. So he began worrying about what he was going to 

do to essentially attract this kind of talent to the problems of the then Army Air Corps. 

 

He apparently talked with a number of executives from industry, and with a number of the 

academics who were doing this work, and out of this came a couple of thoughts. One, that a 

military installation was not the right model, that the model that was much more appropriate was 

an academic model. And also the fact that it would be very important that the scientists 

themselves have very much of a say about what they were working on.  

 

Out of this came the notion, “All right, we need a nonprofit organization, and we’ll hire some of 

these people, and that will work.” The thing that didn’t work about that model -- oh, eventually a 

contract was given to the Douglas Aircraft Corporation to do what was called project RAND. 

There were two notions about how they came up with the letters R,A,N,D, one of which was 

Research ANd Development, but the more popular one was Research And No Development. 

[Laughter] But anyway, this contract was given to Douglas, and that didn’t work at all, because 

the people on Project RAND essentially needed to know what all the aircraft companies and 

other organizations like that were doing in the way of work. And a Boeing employee was not 

about to tell an employee of the Douglas Corporation what the hell he was working on. So 

quickly the plan was changed such that it’s got to be a nonprofit organization, with no 

connections with any commercial company. The Ford Foundation was conned into putting up a 

big chunk of money, and the RAND Corporation came into being.  

 

I want to say one quick word about that history. I wasn’t there at the time, and consequently what 

I’ve just said is very much a personal impression of the world at that time, and might be quite 

wrong.  

 

So the contract was moved from Douglas to the newly formed nonprofit. I might say a bit about 

some of the things that changed at that time. The notion was that you have to, in this 

organization, have good salaries and good fringe benefits, and our early fringe benefits were that 

we had four weeks of vacation, and the first year you got four weeks -- it was not anything that 



built up over time. Further, we had from the academic world the TIA-CREF retirement plan, and 

in the very early days of RAND, when we flew, we flew first class. So, the fringe benefits were 

nice. 

 

Further in relation to my comment about the individuals having something to say about what they 

were working on, was that when a senior scientist was hired, in essence he was told, “We’ve just 

bought your time for N years; go off and spend it in the best interests of the Air Force.” Or, at 

that time, the Army Air Corps. I think this was just incredibly important in the early history of 

RAND, and in the fact that it worked out well. I used to often describe the way RAND worked 

was that each year the Air Force said to RAND, because it eventually became the Air Force, 

“Here’s a bag of money. Go off and spend it in our best interests.” And then the RAND 

management divided this money into N bags, where N was somewhere between 6 and 12, and 

said, “Go off and spend this in the best interests of the Air Force,” and I think added, at least in 

the way we operated, “in the best interests of the Air Force and science.” I think for a number of 

the things that we did, that was a very key point. And indeed, if there was a proposal that we 

work on something that maybe its immediate advantage to the Air Force was not particularly 

obvious, but if it was good for science, we felt we could do it.  

 

Now I want to turn a little bit to the early days of computing at RAND. I was hired by Cecil 

Hastings, in the summer of 1947, to operate a desk calculator. There were lots of people around 

RAND in that position. The president of RAND at that time was Frank Collbohm, the number 

two man was J. D. Goldstein (“Goldie”), and John D. Williams was head of the Math 

Department. Reporting to him was George Brown, who headed the Computer Science 

Department. And there was also a Math Department. [Comment: Numerical Analysis.] 

Numerical Analysis -- did I say Computer Science? Sorry about that. And George Brown has 

been on my back about that, about four or five times in the past. I’m a slow learner. 

 

Cecil and his group of desk calculator operators reported to George Brown. George Brown left 

RAND in 1952, and I succeeded him. Willis Ware became Associate Department Head. And 

then we did, Willis and I, something that around RAND was known as the hat trick, because we 

traded hats. So, Willis has also been head of the Computer Science Department for many years, 

although the Department doesn’t exist any more.  

 

The biggest problem with desk calculator operation is that it was not only very slow, but that it 

was incredibly error-prone. If you think about someone sitting at a desk calculator: he gets a 

result, he copies it onto his worksheet, and then sometime later he’s got to punch it back into the 

keyboard. Every one of those times, something can go wrong, and an error introduced. Of course, 

you can come up with some examples of being able to do this well, with meticulous care. I mean, 

for example, at least those of us who were operating desk calculators in those days were well 

acquainted with mathematical tables that had been produced by, of all people, the Works 

Progress Administration -- some of you probably don’t even know the initials, WPA, but it was 

essentially a government way of trying to create jobs during the Depression. But they produced a 

number of mathematical tables that, as far as I know, nobody has ever found an error in. I 

suppose there are some, but .... 

 



Punched card computing was a lot better, and actually when I arrived at RAND, the Department 

was already involved in punched card computing, with Douglas equipment. And shortly 

thereafter, we ordered a lot of punched card equipment. I guess the first calculator we got was a 

602, and this was just an incredibly better way of getting computing done. I eventually got out of 

the desk calculator business, by going to Cecil Hastings to say, “Hey, when we open our own 

installation I want to work with that stuff.”  

 

One of the serious shortcomings of this kind of gear was that essentially the only way you could 

really do it was in a parallel fashion. Think of payroll. You’ve got a card for every employee, and 

first of all for every employee you multiply hours times rate. And then eventually you do the 

calculations for each employee, calculations of taxes due and other deductions, and finally you 

print out a check. But, until you start printing checks, you haven’t completed the work for any 

one of the employees. Now, this doesn’t bother you worth a damn when you’re doing payroll. 

But suppose that you’re trying to maximize a function of five or six variables. What do you do 

when you have this kind of a situation? Well, you pick out a number of combinations of these 

five variables, and you start calculating. Until you finish the last step, you’ve essentially got 

nothing on any of the cases. And when you do this, say trying to maximize a function like that, 

when you get through, 90% of the results you’ve got, you can’t possibly be interested in. You 

know, it was off in parameter space that didn’t bring in the results that you wanted at all. So you 

wasted a lot of time. Not only was it slow, but you wasted a lot of time. 

 

This situation really turned around when IBM came up with the Card Programmed Calculator, in 

which the punched cards ran through the drive of a tabulator. And in each card was one program 

step. That meant that you essentially, in this instance of trying to maximize a function, when you 

started a given case, the machine worked entirely on that case until you were finished with it. So, 

when you began to learn something about the results from this, you don’t calculate all these cases 

that you threw out the last time. So, literally, that was a marvelous change. 

 

Sort of a brief side story on this: one of the first programs that we did on the CPC involved 

computing missile trajectories. We were given five cases which had been done, and supposedly 

checked, on desk calculator equipment. When we ran them, it turned out that not a single one of 

those cases had been done correctly! They weren’t drastically wrong, and people could, I 

suppose, see that something has gone wrong, and back up a few steps, but none of them was 

correct.  

 

Now, since I’m trying to tell you a little bit about what was going on in the world way back then, 

we were all essentially feeling an incredible demand to expand our capability. Not once or twice, 

but orders of magnitude. Further, we wanted it to be a good deal more reliable. I’d like to quote 

some figures that Bill Gunning came up with for me. In mid-1953, RAND programmers were 

using the Standards Western Automatic Computer, at UCLA. That’s Standards, as in Bureau of 

Standards. The machine was called the SWAC. Our programmers did a memory dump, so that 

they could start over if necessary, every minute. Each minute on SWAC was equivalent to about 

eight hours on the Card Programmed Calculator. The Card Programmed Calculator had a mean 

time between errors of about eight hours. Later, SWAC improved to about 10 minutes mean time 



between failures. So one of the goals of JOHNNIAC was that it be reliable, and by early 1956 its 

mean time between failures was greater than 100 hours.  

 

By this time -- by the time that JOHNNIAC began to operate -- the ENIAC effort in the east, and 

of course the work of von Neumann and all at Princeton, which had such an impact on us that we 

called the machine the JOHNNIAC, was one of the things that was going on in the world. There 

was SWAC, as I mentioned earlier, at UCLA. Incidentally, von Neumann was a RAND 

consultant, and influenced us a great deal. Bill and Willis will talk more about the RAND-

Princeton interaction. And with that... 

 

 

WILLIS WARE: 

 

I’d like to do the “Roots” part of this discussion, and look back at the pre-history of JOHNNIAC, 

and in particular, the work at Princeton’s Institute for Advanced Study, where a great deal of the 

foundation for the work of the machine behind us was laid. In 1946 -- again, just at the end of 

World War II -- von Neumann, who had been familiar with the ENIAC during the war, 

assembled a group at Princeton --  at IAS, excuse me --  to build a machine for science and 

engineering applications. Burks, von Neumann, and Goldstine had been together at the 

University of Pennsylvania during the war, and they jointly wrote a document called “The 

Logical Design of a Digital Computing Instrument.” Now I think instrument is the right word. I 

meant to look it up, but I didn’t. And that logical design, spelled out in two volumes, was to be 

the foundation for the machine that von Neumann wanted designed.  

 

The important thing about that project at IAS was that it was oriented toward science and 

technology issues. That was natural, given von Neumann’s interests. It was to be a parallel 

machine. It was to be as fast as the electronic art of the day could sustain. And on the other side 

of the street were the companies like Eckert and Mauchly, who were building character-oriented 

machines, serial, aimed at a quite different set of applications -- what today we would call 

transaction calculations, or data processing.  

 

So naturally the IAS effort came to the attention of all the groups in the country that were 

interested in fast S&E (science and engineering) work. So we had a steady stream of visitors 

through the project, looking over our shoulders, wanting to mimic for themselves what we had 

done. And among them was the University of Illinois, Los Alamos, Argonne Laboratory at 

Chicago, and RAND. So I got to know the RAND people during their visit, and in looking back I 

suspect the only one I really ever met in any depth would have been Bill Gunning. I don’t think I 

met the others that would have come through. But they looked over our shoulder, all the visiting 

groups as they came through, would collect the latest information, the latest things that we had 

done, the latest set of drawings, and march out, and it’s a mystery, I guess, that they didn’t beat 

us, because they were that close behind.  

 

Then, finally, when I finished my graduate work at Princeton, I came west, in 1951, first to North 

American Aviation in Downey, where I learned a little something about how to make airplanes 

on their production line, but at that time there was an early predecessor of the current IEEE 



Computer Society holding meetings in one of the temporary buildings on the UCLA campus. It 

was the Institute for Numerical Analysis building, where Harry Huskey and others -- Bill -- 

participated, built the SWAC, and there I renewed my acquaintance with Bill, and met a lot of 

other people, like Harry Huskey and Ragnar Thorenson, and all the famous names.  

 

By that time the RAND effort had started, a momentous event happened to occur: the Gunnings 

went skiing, and Bill came back with a broken leg. The RAND management got immediately 

concerned that here was the man in charge of their effort, and if he were to sustain a more serious 

event than a broken leg, the project would be in deep trouble. So it was a natural and easy 

transition for me to move from the east side to the west side of town down there, and to join 

RAND in the spring of 1952, where I’ve been ever since. I had grown restless at North American 

anyway, so it was just as well that that wonderful opportunity came along.  

 

I’d like to comment about the IAS effort, and what it exported to the technical world of the time. 

Now keep in mind that the commercial electronics art was still struggling, or really hadn’t 

materialized, but it was struggling from the aftermath of World War II. So one just didn’t go out 

and buy anything that one might want by the way of components. So we built a machine out of 

the war surplus that we could get from the Army. There were regular vendors that would come 

through who dealt in war surplus, and we’d have a shopping list, and they’d find aluminum, and 

tubes, and one thing or another for us, and that was what we had to work from. 

 

As I’ve commented, Burks, von Neumann and Goldstine produced the logical design. We, as an 

engineering group -- the engineering group varied a little bit, it was five, six, sometimes four, but 

six, give or take one -- the engineering group produced a prototype design of an all-parallel 

machine, and it documented it quite well in terms of drawings and progress reports. But we also 

exported a design philosophy. All of us who were in that engineering group had lived through the 

war with the pulse technology of radars, IFF equipment, radar beacons, and that was the technical 

foundation from which we went. So we built all our own test equipment based on that 

foundation. But for the most part, those devices that I just mentioned beat the electronics 

unmercifully. The radars typically beat their vacuum tubes with tremendous wallops of energy, 

and that was not the way to build a computer. The IAS attitude was to treat the electronics as 

kindly as possible, and electronics meant vacuum tubes at that time.  

 

And so, all our vacuum tubes, we decided on a series of things, to run the vacuum tubes all at 

derated heater voltages; instead of the nominal 6.3, as they all were in those days, we ran them at 

6.0 or maybe 5.9 or thereabouts. We kept the heat dissipation in all the vacuum tubes at half of 

what the handbooks would specify. We derated all resistors likewise, to half dissipation. We 

derated -- marked down, so to speak -- the voltage ratings on capacitors. We avoided thermal 

shock like the plague, so we turned all our vacuum tubes on over a period of several minutes, 

with a huge variac arrangement. And we designed circuits that had to function properly, even 

though every component would drift by 10% in the combination of worst directions.  

 

We also exported some important logical principles: all the circuits were to be direct-coupled. No 

capacitors were to be allowed in signal paths. So circuits therefore would function at their 

inherent time constants, not as determined by some artificial time scale set by an internal clock. 



In the lingo, the machine was to be fully asynchronous. No internal clock, no rigid time-line. So 

in principle, one could arbitrarily slow down any event in the machine, and it would successfully 

conclude the proper sequence, although of course somewhat slower. Another design principle 

was that capacitors would never be used for the temporary storage of information, so when shift 

registers were designed, they weren’t lateral, as the typical design of the day were, they were 

ratcheting in nature: from here to here, and diagonally back. So every movement of information 

in the machine was subject to the proviso: it would never be destroyed at its source until it was 

known to be safely secured at its destination.  

 

The IAS machine was some 1,200 or 1,500 vacuum tubes, all direct-coupled; that must be the 

biggest direct-coupled DC coupled device that was ever done. There was of course one place 

where we had to deviate from those rigid principles, where the physics dictated to the contrary, 

and that was notably in electrostatic memory, where the physics of the charge behavior on the 

phosphors of the CRT just had to tie you to a time scale.  

 

Paul has given you the beginning of the RAND scene. I’ve sketched what the pre-history of the 

JOHNNIAC was and what the technology was that was exported to several places, including 

RAND, where Bill was in charge of the project. So the next move in this show is for Bill to talk 

about hardware.  

 

 

BILL GUNNING: 

 

Thank you, Willis. One of the things I was going to talk about was what we did about vacuum 

tubes to try to make life more bearable and longer, and he’s mentioned both regulating the heater 

voltage and also turning the tubes -- the heater power -- on slowly, and turning it off slowly. And 

the reason for that was that a common failure in vacuum tubes was so-called heater/cathode 

short. For a tube to work, you had to get this cathode, which is a little cylinder, up to a red-hot 

temperature, and to do that there was a tungsten wire in there called the heater, and it had to be 

insulated from the cathode. If you slammed the power on to the heater, it will expand in how 

long it takes for -- well, these are not incandescent lights, but -- in how long it takes for a light to 

come on: a fraction of a second. But the sleeve, which was the cathode, didn’t heat up for many 

seconds, as you know if you turn on a vacuum tube amplifier. The problem was the differential 

expansion between the heater wires inside of the sleeve of the cathode. There was abrasion there, 

and the insulation would wear out, and you have a heater/cathode short.  

 

So, we designed -- I don’t know if the transformers are here [in the room] or not -- but we had a 

special transformer designed that allowed us to put the tubes in groups of no more than 12, and 

we were able to test the heater cathode leakage. Because as you watch the leakage you get some 

idea of whether or not you’re about to have a failed tube. I don’t know where the selector is on 

the machine any more; it doesn’t seem to be where I remember it. But it was possible to go 

through this kind of analysis while the machine was running. That saved a great deal of time in 

dealing with the tube problems.  

 



Let me talk a little bit about some of the other things that were copied from, and some deviations 

from, the IAS machine that Willis talked about. One was that in the IAS machine there was not 

to be any connectors; when you put two pieces of wire together, they were soldered. And we took 

the bold step of using lots of gold plated connectors, to be sure. But that made it possible for us 

to get in and reach a tube that was about to fail, or already had failed. And that helped us a great 

deal.  

 

A bold step that we took -- we thought it was bold -- was to try to get the indication on the 

operator’s console of what was the state of any of the flip-flops in the machine, and to be able to 

set them either to 1 or a 0. This meant bringing a wire out from each one of those flip-flops -- 

there are typically 10 in a bay -- well, in fact there are 20, because there are the two ranks that 

Willis talked about, in a shift register. You could shift up or shift down diagonally. Yeah, here 

are all these wires coming out, there’s a big bundle, something like 3,000 wires came out of the 

frame, and went over to the console, which was -- made the wires maybe be 15 feet long.  

 

And the first test on the machine in those days was the prime number test. You wanted to 

compute prime numbers. It was easy to program, apparently, and check. And it would run up to a 

certain point and fail. You do it again and it would fail at the same place. Finally we tracked this 

down to what we called the 30,000-ohm, 30K, effect. Not Y2K. Because that was the resistor that 

was in series with each of these wires, to try to isolate the capacitance from the flip-flop. And it 

didn’t do a good enough job. What happened then was equivalent to cross-talk in a PC board that 

you’re familiar with in a modern machine, where it’s not digital, it’s really sort of analog, and 

that you still have to deal with it. The solution was to stick a little neon tube in place of the 

30,000 ohm resistor. A neon tube, up to about 50 volts, is pretty much an open circuit, and then it 

breaks down and allows the current to flow. And so that’s the way the card machinery was 

coupled to the innards of the machine and the way the console was coupled. Mort will have a 

story about that later on.  

 

I’ll go on to the fact that we had an enormous -- well, like this [gestures wide] motor generator in 

a room by itself because it was noisy as hell. That was an AC line filter; it had some extra inertia 

on the shaft, and the power in Santa Monica wasn’t all that wonderful, and so that helped a great 

deal.  

 

The last thing I want to mention is, if you look around on the end here you’ll funny little things 

on a panel. Those are grasshopper fuses, which are sort of a three-terminal fuse that makes a 

circuit if the fuse blows, and allows an alarm to come on, and they’re common in relay telephone 

switching offices, and we built a lot of those in here.  

 

Let me say just a little bit about, now going to memory, about the Williams tube memory, which 

was the choice of most of the Institute for Advanced Study copies, and the Selectron memory. 

Mort brought a copy of the Selectron here, that we can take a look at later.  I’ll try to go through 

this fast. The Williams tube memory used a standard cathode ray tube, and stuck a screen on the 

outside of the tube, at the phosphor end, and ran a wire into the signal amplifier. The way it 

would store information was to have the deflection set so that it could be placed at any of, if you 

were greedy, a thousand spots. What it ended up with was usually 256 spots, 16 by 16. 



Depending on what was done, the last time the beam was at that particular spot, whether it wrote 

a second spot or just wrote the single spot, would determine the charge left in that spot. And so 

when you came back with the beam, you could get either about half a millivolt of signal for a few 

microseconds, or a much smaller signal. And that means that that was a very, very fragile 

arrangement. Typically, if you’d come into the room with a 701, which used Williams memory, 

or the SWAC, or the other machines, and flipped the room lights on, you had a pretty good 

chance of producing a memory error.  

 

Another problem was that cathode ray tubes were meant to be looked at, not to read the 

secondary emission ratio off of every spot. If there were little defects in the phosphor, it could 

change the secondary emission ratio, and make that spot a “bad spot.” People at IAS got 

something like two percent yield of defect-free cathode ray tubes. IBM, by spending, it is alleged, 

a million dollars to develop a superior processing facility, got that yield up to 60 percent, a great 

achievement. But it still was -- the room light phenomena was an indication of how tricky this 

was. Often you would adjust the position of the raster to straddle a defect in this tube, but since 

they were all in parallel that didn’t do you -- that was a loser too. [Comment: Flashes from news 

cameras were pretty bad, too.] I’ll bet! Any kind of electromagnetic flash. And the signal was 

right in the middle of the broadcast band, too, so if you were close to [radio station] KFI, boy, 

that was no good.  

 

So what we did, since as Willis said, we were really going for reliability, was to pick up on what 

was designed for the original IAS machine, the Selectron tube, which has digital addressing, so 

you don’t have any analog stuff to come back and find the spot at which the information is 

stored. And that was intended for the original IAS machine at a thousand bits. By the time we 

decided to go with this tube, it was dropped down to 256 bits. We designed it for two banks, so 

we could get 512 words, if we put in 80 tubes, 80 of these tubes. Here it is. The way it works is, 

in the center of the tube are eight cathodes. There are metal bars that separate those cathodes, 

nine metal bars. And there are also metal bars that are going horizontally across the cathode, so 

by putting appropriate voltages on those bars, you can select one out of the 256 bits.  

 

The information was stored by means of secondary emission; there were little eyelets in here that 

are insulated -- just electrically floating. But there are two stable states in a secondary emission 

thing, a high state and a low state. By selecting a particular eyelet and illuminating it with 

electrons, you can get current flowing through it, and it flowed out into this box, where there is a 

shielded lead, a coax lead that comes through the glass, and then it went through coax into our 

sense amplifier. So that meant that we got something on the order of a thousand times as much 

energy for a readout as a Williams tube. It was a very successful gadget except that it cost $800 

each, and RCA decided that they didn’t want to make them any more because Jan Rajchman, 

who -- and George Brown, were co-inventors -- could see core memory coming, and this was 

doomed. So we went ahead and got enough of them to use them for about a year and a half or 

two years.  

 

Let me tell you one other thing about it. We went to visit the line on which these things were 

built, at RCA, somewhere in Pennsylvania. [Inaudible comment] Where? Lancaster! They had 

this tube sitting in a socket, sort of like this, at the end of the production line, I guess there were 



several of them there. And there was this Tesla coil, like a cattle prodder, 10,000 volts. They had 

it sitting there so that it was -- sparks would flash around on the inside. “What’s that for?” Well, 

they said --  very often clean rooms were not what they are today -- there would be some lint or 

other foreign matter inside of this enormous vacuum tube, and that would short out an eyelet. But 

by sparking them with this high voltage, they could convert it into an okay tube, and put it into a 

box and ship it to us. So, that was something that we learned as a way of extending the life of 

these tubes, substantially. 

 

Let me just say one other thing. This is a 40-bit machine; each of four bays has 10 bits in it. We 

built a 10-bit machine -- a 10-bit slice of this machine -- and were able to test the design of the 

control, and the memory with Selectrons, and that thing we called “Junior”. It was later 

cannibalized and the registers were put into this frame. I think I’d better -- that’s the end of the 

hardware part.  

 

 

MORT BERNSTEIN: 

 

Well, I want you to observe that software always comes last. [Laughter] It’s the last thing 

anybody thinks of.  

 

The JOHNNIAC was probably, outside of the SAGE system, one of the longest lived computers 

around. It lasted 13 years before it was decommissioned, and only because it had reached the 

state where it was not maintainable any more. Spare parts were not available, and it was time to 

go.  

 

It was an extremely rich software environment, for one very delightful reason: unlike the IBM 

machines that RAND began to rent, beginning with the 701 sometime late in 1953, the 

JOHNNIAC was a free good. It had been paid for. The only cost was maintenance. Nobody ever 

figured out what that was. [Laughter] Nobody ever stated what it was, at least. So, essentially, it 

was a free good, so unlike trying to run a problem for someone on the 701 or the 704, where you 

had to worry about 300 bucks an hour for compute time, including check-out -- and I have to 

remark that the Numerical Analysis Department, when I got to RAND, was unlike all of the other 

departments at the RAND Corporation, where the management took the big pot of Air Force 

money and divided it up into little pots, and gave each rice bowl some rice, Numerical Analysis 

never got a rice bowl. Our rice bowl got filled because all of the other departments took their bag 

of money and divided it down, and said, “Here’s your little piece. We’re going to need some 

computing this year.” And if they concluded that there wasn’t any computing to be done this 

year, there wasn’t going to be any rice in the bowl. 

 

Well, that meant that rented machines were less desirable in some sense than free goods. But, 

there’s a downside to that. The free good, unfortunately, wasn’t compatible with anything else in 

the world, and the world was beginning to move toward the world of IBM essentially. And the 

Air Force was beginning to acquire computers made by IBM, of course, and other government 

agencies were acquiring computers made by IBM. If you were going to do a job for an agency 

under contract, and give them the results including the software, they weren’t going to be able to 



do anything with JOHNNIAC software, so there was this wonderful schizophrenia around the 

place. So projects that were internal to RAND, that had no external connection where you had to 

deliver the software, could easily be done on the JOHNNIAC. And so the programming 

environment was a very diverse one, because there were people who were interested in the 

machine because it was unique. There were people who were willing to devote their own 

personal time to doing things on the JOHNNIAC because there was no real accounting ever done 

on the JOHNNIAC. If you wanted to come in at two o’clock in the morning and run the machine, 

nobody cared. If there was production to be run, of course you couldn’t interfere with it, but if the 

machine was idle, it was available. And so there was an awful lot of bootleg software research 

done. 

 

And as a result, when the core memory got stuck on the machine -- I have no information or 

memory about how the machine ran, what programs were used, or even how programs got 

assembled on the Selectron memory machine. There seems to be no information in anybody’s 

head anywhere about -- except for the first test program maybe being a prime number program. 

What was the first application run on this machine in 1953? Nobody knows. [Comment: prime 

numbers.] No, no, no, no [laughter] -- application! Was there a customer who came along and 

wanted a program done on the JOHNNIAC? I have no idea. And I haven’t been able to find 

anybody who does. I’m sure there’s somebody out there who must remember, but I was not 

around, and I don’t. But when I got there, the machine had a very empty head, there was no 

memory in it at all, and very shortly after I got there, the core memory was installed. They beat it 

up for a while, and it eventually passed the acceptance test. The acceptance test was an 

interesting one, and indicated the general reliability of the machine. The acceptance test was: it 

had to run without a fault for eight hours. That’s that the mainframe had to run without a fault for 

eight hours, which it did. It was a very, solid machine, and compared to the 701, which was in the 

room next door. The IBM 701 had a mean time between failures of approximately 30 minutes. It 

may have been less than that, in truth.  

 

And so, if you run a program for the 701 and your estimate was that it was going to run for more 

than half an hour, every 15 minutes of your estimated compute time you did a checkpoint/restart, 

so that the operator could remount that tape and restart the program from the point that you had 

last done a checkpoint. We never did that on the JOHNNIAC. Now, the JOHNNIAC didn’t have 

any tapes to do that with [laughter], but that was irrelevant and immaterial. It did have a 

reasonably sized drum. 

 

The machine went through a number of -- an evolution, almost a continuous state of evolution 

until about 1963. The first part of the evolution was, after the memory got installed, they installed 

a 12,000 word drum. Very shortly thereafter, transistors became THE circuit of choice, and so the 

machine was cannibalized and the first thing that was changed that I remember, the adders went 

from analog tube adders to literally, digital discrete transistor adders. And I can remember, there 

was a great deal of worry about, was the cold air that was passing through the machine cold 

enough so the germanium transistors would last? Well, they decided that 60 degrees wasn’t good 

enough, so they knocked it down to 55 degrees. From that moment on, you daren’t be in the 

room with any of these glass doors open unless you had a parka on or you’d freeze to death. 



[Laughter]  That’s not a joke. It really was like a meat locker in there with the doors open. The 

germanium transistors lasted very well under those circumstances.  

 

Slowly but surely, about half of the logic in the machine -- the shift registers, the multiplier 

control -- all became transistorized. But at that point, attention got diverted in other directions to 

what to do with the machine. But I have to tell you a story now about -- that Bill said when they 

put the neons in, as active elements in the circuit. The peripheral equipment on the machine was 

a high-speed Analex printer which is an earlier version of, a 40-column version of a numeric-

only; it’s sitting back here in the corner. The 600 line a minute, 56 character, 144-character-wide 

printer must be somewhere in the [History Center] warehouse, but God knows where it is at the 

moment. The card reader was an IBM collator, and both feeds were active. The punched card 

output was a summary punch which had been modified with beefed-up magnets, so that you 

could punch binary cards. IBM had learned to do that a long time ago for the 701.  

 

I don’t remember whether it was a unique feature on this machine, or IBM also did it on the 701, 

but there was something called echo checking on the punch. And so you would punch a card, and 

then it would go through a read station after it went through the punch station, and row by row 

the bits got read back into the machine, and they could be, if you asked it to, and then they could 

be compared with what you had punched, so that you would verify that what you sent was what 

you got back. Okay. 

 

Well, very early on the JOHNNIAC was used to create -- to do the payroll for RAND, at least the 

first stage of the payroll. I don’t remember what all was involved, but it was multiplying hours by 

rate, and other simple-minded things that probably were transferred over from either the CPC or 

even a 604. The rest of the payroll ended up on the IBM 704, and I have to divert and tell you a 

funny 704 story at the moment. The payroll was done on the 704, and it was a relatively small 

machine. I think we had 8K of memory initially. And so the payroll was designed to run in a 

minimum machine, and so the data fields were minimized to the point where you could squeeze 

as much data in main memory as possible. The number of dependents, when computing your 

taxes, somebody figured nobody is going to have more than seven. Right? Well, a guy named 

Lester Ford, who was a mathematician, had his eighth dependent. And the payroll went through. 

The payroll people went through upgrading the entry, and that got read into the machine, and this 

three-bit field that was left for the number of dependents -- the updating took place by adding, 

and so it overflowed into the next field, which created an illegitimate value. And the payroll 

came to a screeching halt that week. Well, RAND paid twice a month, and they liked to make ....  

 

[Problem with video camera: about 18 seconds missing] 

 

 ... the first thing we did that morning, after we got the rest of the machine checked out, was run 

the punch diagnostic. We must have put 2,000 cards through the punch, without one single error. 

Didn’t make sense. So I sent Harriet back into it, and I said, “Whatever it was, was transitory. 

Don’t worry about it. Punch works fine.”  

 

Two weeks later I get a note from Harriet, [which] said “I had a tremendous number of echo 

check errors last night. It took me all night to get the payroll finished.” Well, I have to back up 



and tell you that one of the modifications we made to the machine was: we put a bell on the wall, 

outside the machine room, which rang when the machine halted. That way Harriet could put a 

stack of cards in the collator, and some blank cards in the punch, start the program, and go out 

and do whatever other things she was doing in the machine room. And when the bell went off, 

she knew she had to feed more cards, because it normally would stop when it ran out of cards, 

either in the input or the output.  

 

Well, that bell rang frequently. Finally, we had to convince Harriet -- by the way, this lady 

worked graveyard shift, midnight to eight in the morning -- to stay over a little extra, and we 

would meet with her, and find out what was going on. We asked Harriet to please go through, in 

gory detail, exactly what had happened when the payroll failed. By the way, she couldn’t give me 

the data, or anybody else, because Harriet Pierson, besides top management, was the only 

[person] allowed to look at payroll data, so -- it was worse than top secret. It was compartmented 

like you don’t want to know. Anyway, Harriet stayed over, and came in, and went through this 

exercise, and for the exercise she had created dummy data, just in case we might look at it.  

 

Well, nothing failed, and she couldn’t believe it. So we said, “Tell us exactly what you did.” So 

we backed up, and she went through the whole thing, and I said, “Just go back out into the 

machine room like you normally would, after you loaded the machine.” And she did. The first 

thing she did is, she walked by the door, is turn the lights off. But the drapes were open, and there 

was lots of light in the room, and so it didn’t have any effect as far as we could tell. But, when 

we sat down and thought about all this, we said, “Gee, maybe you’d better simulate the whole 

situation.” So we closed the drapes, and ran the payroll program. And sure enough, after about 15 

or 20 cards, we got an echo check error. The damn machine was afraid of the dark. Open the 

drapes [laughter], turn the lights on, and the machine ran fine! [Laughter] Makes no sense. Until 

Dick Stahl, one of the technicians on the machine, remembered that the neons were an active part 

of the circuit, and apparently by running a little test he determined that without any sunlight 

coming through in the windows, or fluorescent light from the overheads, which provided just 

enough ionization to keep them active, they deionized to the point where they would no longer 

conduct. [Laughter] Now, the question was, how do we fix this? There were something like two 

hundred and some odd -- how many neons were there? Well over 200. And nobody wanted to get 

in there and unsolder and resolder 200 -- the machine would have been down for a week at that 

point. 

 

 Then somebody had a brilliant idea. Down here, where the air ducts for the return air from the 

air conditioner were, they put a bank of fluorescent lights on each side of the machine. If the 

filaments were on, they were on, the machine never had to run in the dark again. It never did. 

[Laughter] It never was afraid of the dark again.  

 

That was one of the more delightful aspects of the machine. There were other fun things that 

happened with the JOHNNIAC. Before I tell you about those, as I said, it had a very, very rich 

software environment. All in all there were four assemblers written for the machine. The last one 

was written around 1961-62, and we almost didn’t get the write-up published. I called it 

JACASS. Well, the JOHNNIAC had been abbreviated J’AC for years and years, and what would 



you call JOHNNIAC assembler, if you’re going to abbreviate it? [Laughter] The people in 

Publications were very upset at the word JACASS. It survived. I have a write-up to prove it.  

 

The first fully symbolic assembler was written by a guy named Jules Schwartz, who some of you 

may remember, from other places, SAGE in particular, and JOVIAL. The second one was written 

about a year later by Cliff Shaw; most of you will recognize the name. He called the thing, the 

program, or -- he didn’t believe it was an assembler. If you look at the write-up it says it’s a 

loader, and it loads his version of symbolic cards. It was referred to as Easy Fox, because by the 

time he wrote it, we had four card styles for the machine, with definite formats. They were 

labeled A, B, C and D. Now, Cliff had invented two new ones for his stuff, and so they were 

called E and F, and in the military alphabet of that day they were Easy and Fox, so it was called 

Easy Fox. By the way, JOSS was written in Easy Fox.  

 

Last but not least, around 1957 or thereabouts, I wrote a music assembler. Because the 

JOHNNIAC, as far as I knew, and these guys can’t tell me otherwise at the moment, had an 

instruction called “Hoot”. We had three-letter mnemonics, so it was abbreviated HUT, but the 

real instruction, if you look at the instruction list, is spelled “h-o-o-t”, hoot. Its purpose was to 

flip a toggle which went into an amplifier, and out to a speaker which was buried under the 

keyboard there. And so you could make music with the machine.  

 

Well, it got generalized to the point where any toggle that got flipped -- in fact, the whole order 

decode could be passed through that amplifier, so there’s a switch in the inside on the left panel 

which is the hoot control switch, which says you could make the toggle flip every time any 

instruction went through, or you could pick any one of the 11 or 12 subsets of instructions, or you 

could pick “hoot” all by itself. I got inspired by a story by a guy named Stu Dreyfus, who some of 

you may know, who is over at Berkeley, whose brother Hubert is maybe somewhat more 

infamous or famous, related to the world of AI, but he ran the IBM 701 at 590 Madison for GE 

for a year or so, when he worked for Herb Grosch. And since they didn’t have jobs that took up 

the entire shift every night, he was left with an idle machine that IBM didn’t want back. So he 

got one of the CE’s to show him how to connect a toggle or a wire to one of the overflow bits -- 

now the IBM 7000 series machines were unique: they didn’t have one overflow, they had two, 

they were called P and Q -- I don’t remember whether he told me he used the P bit or the Q bit. 

Anyway, he was able to get, with a radio in the right place and a wire as an antenna or something, 

he could get music out. And he learned to play the recorder by programming music for the 701.  

 

That inspired me to write an assembler. I mean, one or two songs wasn’t enough to hand-code, so 

I wrote it in assembler. The first thing I programmed for the assembler was “The Flight of the 

Bumblebee”, which, by the way, it had about a three octave range, which was all I could squeeze 

out of the machine, because it wasn’t all that fast. We were having some visitors at the house one 

night, and a lady I’ve known for years says, “And what kind of silly things are you working on 

now, Mort?” And I said, “I’m teaching the machine to play music.” She said, “Aw, come on.” I 

said, “I’ll prove it.” I went to the phone, I called the night operator, and I said, “Is there anything 

running on the JOHNNIAC?” He said, “No.” I said, “Put the Bumblebee deck on, and put the 

phone over the speaker on the operator’s console.” And once it started to play, I handed the 

phone to her. Well, it could be set up -- and I told them how to set the switches -- it could be set 



up so that it continuously repeated. And she sat there and after about a few seconds she said, 

“That’s just somebody playing a clarinet,” because it had a very reedy sound. Then she listened 

some more, and she listened some more, and she listened some more, and she finally turned to 

me. She said, “It’s gotta be a machine -- he hasn’t taken a breath yet!” [Laughter]  

 

Sometime later the music assembler became generally available around the Corporation. 

Sometime later somebody in one of the engineering departments was going to give a briefing and 

a tour of the RAND installation to some relatively senior Air Force officers. And he decided that 

the “Bumblebee” and some of the other songs that people had programmed weren’t appropriate 

for a demonstration for the Air Force, and he was going to program the Air Force song. Well, 

unfortunately, he didn’t read the instructions very well, because I’m not much of a musician, and 

so you had to transform anything you wrote into the key of C, because that’s all it knew. And I 

believe the Air Force song is not in the key of C. To compound the felony, the guy was tone-deaf.  

[Laughter] He never let anybody know he was doing this. We ended up with about a half a dozen 

very irritated Air Force officers after he played his version of the Air Force song for them. And 

not very long thereafter, an edict went out that music was not to be played for visitors unless it 

had been prescreened by somebody who could understand what was going on. [Laughter] It was 

a fun place! 

 

Very early after we got the core memory on, linear programming had been programmed for the 

JOHNNIAC so that they could run small problems and again, it was a matter of money. If you 

ran something that didn’t get -- it was going to cost a lot of money, the Economics Department 

and people like that -- logistics people -- weren’t terribly happy, but if you could run the thing 

essentially for free on the JOHNNIAC, that was great. So, a number of relatively small but 

interesting LP [linear programming] problems were run on the machine. At some point in time, 

one of them failed. Now, there had never been a failure up to that point. And it just came to a 

screeching halt, after running for about two and a half hours. So, they couldn’t find a bug in the 

program, they couldn’t find a bug in the code, and the assumption was, there’s a bug in the 

hardware, and we couldn’t find a bug in the hardware. Well, Dick Stahl, whom I’ve mentioned 

before, decided he -- in the back of his head I’m sure he had some idea of what might be wrong. 

But he asked for a copy of the deck. And from time to time, after we’d made some change to the 

machine, he’d run this thing. It would still fail. Well, about 1961-62, when the decision was 

made that it was going to become a JOSS machine, Cliff would have been delighted if we could 

have increased the amount of drum storage by a factor of two, and it was decided that they ought 

to try to double the density of the drum. Which they ended up doing, and I ended up modifying 

the diagnostics, and it seemed to run fine until Dick Stahl came to me and said, “There’s one 

thing we don’t test in the diagnostics,” and that is, the drum was able to start at any address and 

read to any other address, up to one full track, which was originally 1,024 and now 2.048 words. 

So that you could start at a high address, read over the gap, and it would run into sequential 

locations in memory. But we never tested whether or not reading over the gap worked properly. 

So he said, “Write a diagnostic where I can set the initial address, and we can sort of creep up on 

the gap, and see what happens to the data.”  

 

That was okay. Now remember, it was still 2,048 per band, drum at this moment. And so he 

started about 10 or 12 words from the end of the block, and worked his way up, word by word, 



until he got to within three words of the end of the block. The first two words at the beginning of 

the block were read in as garbage. Well, he had attributed that to the fact that we had doubled the 

density. I think probably because it was two words that were clobbered. So we put it back to 

single density, and then we decided, “Well, we have these new diagnostics -- let’s run it!” Guess 

what. That bug had been in the drum from the very beginning. It failed the same way. They went 

back, looked at what the problem was, fixed the circuitry. Two and a half years later, that LP 

problem finally ran to completion. [Laughter]  

 

The machine was a research vehicle in many, many ways. We put lots of goodies on it. There 

was a 30-inch flatbed plotter, which was very material in solving a problem for me. Back around 

late ‘57 or early ‘58, a guy named George Clement, who was head of the Engineering Division, 

was asked to give a paper at the Franklin Institute on how you would get an instrument package 

onto the moon. So he wanted to know, how do you get to the moon? What’s the trajectory? How 

long is it going to take, what kind of boosters do you need, what kind of velocity do you need to 

... you know, he wanted all the parameters. We said, “Fine, go look it up somewhere.” Well, it 

didn’t exist, apparently, at the time. So we were commissioned -- a lady named Nancy Brooks 

and I were commissioned to write a program to integrate the three-body problem. Okay, that’s 

simple. So we decided on Runge-Kutta, and we demonstrated clearly that it was stable for 

roughly the five day transit time. Somebody up in the Engineering Department gave us the initial 

conditions, namely: we assumed that the vehicle was in a 100-mile orbit, and what you had to 

select was the insertion angle. That is, where the vehicle was in the orbit, and the insertion 

velocity. And we were told, somewhere in the neighborhood of 25,000 feet per second, and I 

don’t remember what the angle was. So we decided to make our first run. We missed the moon 

by 10,000 miles or more! That can’t be!  

 

Well, we decided that they had given us some not very good numbers, and slowly but surely 

increased the velocity and changed the thing until we hit the moon. Insertion velocity was 50,000 

feet per second, transit time was two days, and we hit the moon at I don’t remember how many 

hundred thousand miles per hour. [Laughter] Nothing would have survived, and we said “There’s 

something screwy going on here. This can’t be right.” And the plotter had just come on-line, and 

what we were getting out of the program was, and we still had, I believe, the 40-column numeric-

only printer, was tons of numbers, but we couldn’t translate them into anything that meant 

anything inside of our heads, so I said, “Okay, I’m going to modify the program, where we’re 

going to plot everything out as it goes.” So we plotted the earth, and then the moon, and then the 

vehicle. At about every five integration steps we would plot where the vehicle was versus the 

moon. Within about five minutes it was quite obvious what was wrong. The vehicle was going 

east, the moon was going west. We had a retrograde moon! [Laughter] One lousy minus sign 

strikes again! [Laughter] It wasn’t very long thereafter that one of those same kind of minus signs 

ended up in the destruction of a missile being launched out of Cape Canaveral.  

 

Let me tell you one more story, and then we’ll open it up for questions. The RAND tablet was 

invented by a guy named Tom Ellis, and all of the development software, and proof of concept, 

etc., was done on the JOHNNIAC. So there was this wonderful new input device -- oh, and we 

had a five-inch scope, which we could feed back through the mainframe, to show where the pen 

was. And it was sitting there, and it was an irresistible temptation, and so I sat down and wrote a 



little character recognizer, that recognized I think it was 15 characters: 10 digits, the four 

arithmetic operators, and the equal sign. So if you put digit-operator-digit-equals, as soon as it 

saw the equals, it produced the answer on the scope. Okay. Well, most of you must remember 

who J. C. R. Licklider was, he was the first head of the Information Processing Techniques 

Office at ARPA, and he was coming for a visit to RAND, and we were going to try and convince 

him to throw lots of money to all the kinds of fun research projects we wanted to do. And one of 

the things we were going to demonstrate was this wonderful new tablet, which was a new device 

in the world, and the demonstration was going to be the character recognizor. 

 

I sat down and I showed him -- this is in the middle of August, by the way -- how this thing 

worked, and he said, “Can I try it?” I said, “Of course, that’s the intent of this whole thing.” He 

sits down in the chair -- now, the program, in order to reinitialize it and reset it to its initial state, 

you touch the pen down at the 0,0 coordinate position. Lick takes the pen, touches it down at 0,0, 

the machine crashes, the lights go out, and the world came to [an] end. And he looks up at me, 

and he said, “Did I do that?” [Laughter] Fortunately, he hadn’t, and it wasn’t my program; it 

turned out that Con Edison had dropped the whole of Santa Monica. [Laughter] 

 

The last modification that I know that was made to the machine itself was, we had argued for 

years about how to improve the machine. Do we put an index register into it? Well, that would 

have caused all kinds of problems, and reprogramming practically everything. And finally I 

convinced Tom Ellis that there was one more thing you could fix the machine, that would make 

at least future programs somewhat more efficient, and that was indirect addressing. And he 

wanted to know, was that really feasible? And I said, “Give me the logic diagrams, and I’ll figure 

it out for you.” So I went over it, and I said, “Yeah, I think it’s very easy. All you have to do is 

this.” And he finally agreed, and so indirect addressing was added to the machine. We checked it 

out, and everything that I had, ran. And then Cliff Shaw ran Easy Fox, and tried to load a 

program in it, brought it to its knees. What we had done, to get the indirect addressing: [a] word 

was 40 bits long, instructions were 19 bits; the two middle bits weren’t used in any instruction. 

So we programmed -- we fixed the machine so it would look at those two middle bits, and if they 

were set, then you had one level indirect addressing. The right bit was for the right address, and 

the left bit was for the left address. Cliff had used those bits as flags in order to save words in the 

machine. None of his software ran [laughter]. And so, as a result, there is a switch on the console 

which disables and enables indirect addressing [laughter]. Thank you all. [Applause] 

 

 

GORDON BELL: 

 

Undoubtedly there are lots of questions, and we’ll take a few minutes of questions. 

 

Q. I had the great misfortune of programming two of these machines. One of the questions 

[inaudible] ILLIAC and TRASK [?]. One of the questions I always had is, why 40 bits? Why was 

that chosen? 

 

GORDON BELL: That was von Neumann. [Comment: Willis worked with him.] 

 



WILLIS WARE: That’s right. Those documents that I referenced, “The Logical Design” etc. said 

40 bits. 

 

Q. What was the logic behind that choice? Was it just like, the range of numbers, or ... 

 

WILLIS WARE: I’m afraid you’d have to ask Johnny. [Laughter] 

 

GORDON BELL: I think it’s described in the paper; in fact, Bell and Newell published the main 

one of those. As I recall, it had to do with 10 digits -- you needed 10 digits to do the things ... 

 

MORT BERNSTEIN: Well, you also have to remember this was fixed point, there was no 

floating point, okay? And so you needed a reasonable range if you were going to do any kind of 

fixed kind of arithmetic on the machine. 

 

Q. You mentioned the variac, and bringing up the filaments gradually. Did you ever shut the 

machine off when it was working normally, or did it run around the clock, or did you hazard ... 

 

WILLIS WARE: No, we would power it down, slowly. 

 

BILL GUNNING:  But the DC would go off. 

 

WILLIS WARE: Yeah. 

 

MORT BERNSTEIN: But not the filament voltage. [BILL GUNNING: That’s right.] The 

filament voltages stayed on all the time. [Comment: Is that right? That seems strange.] [WILLIS 

WARE: I guess I stand ... ] [Comment: Software guy! - laughter] When you brought the machine 

back up, all you brought back up was B-plus. [BILL GUNNING: Okay - I was gone by then.] 

[laughter] 

 

Q. In today’s terminology, just for comparison, suppose you’re building JOHNNIACs for sale, 

you want to put an ad in the Computer News, sell the thing, what clock speed, how much RAM 

did it have, how many ports -- what kind of capacity ... 

 

WILLIS WARE: Zero, zero, zero and zero. [Laughter] It had no clock; it had no ports, in the 

current meaning of that word; had very nominal memory, 4,000 words by eight bytes per word -- 

five, rather, excuse me. 

 

MORT BERNSTEIN: And it had a drum with three times as much memory as the main memory, 

and that was it. And the I/O, to answer about ports, I don’t think there is hardly anybody here old 

enough to remember “copy logic I/O”, which was what this machine did, and what the early IBM 

machines did, before channels came along, and so when the machine was doing I/O, that’s all 

you were doing. You were copying words off of the device that you had connected, or selected, 

one bit -- not one bit, but one word at a time. [Comment: That was before interrupts, too.]  No, 

there were no interrupts in the machine. No interrupts whatsoever.  

 



Q. Can you describe your simulator that you’re working on? 

 

MORT BERNSTEIN: I’m trying to do a faithful simulation of a 40-bit computer, with the 

instruction set of this machine, that will carry out all the instructions, up to the very end. Part of 

the problem is, there is an environment one has to build in addition to just the simulator. And that 

says you have to build the simulation of a punched card environment, including something that 

looks like an 010, and something that looks like an 026, and [laughter - inaudible]. No, no, no -- 

we’re going to put fluorescents in the base. [Laughter]  

 

Q. Is that why that RAND payroll still runs? [Laughter] 

 

MORT BERNSTEIN: I don’t know, I suppose. 

 

WILLIS WARE: The RAND payroll is now outsourced. [Laughter] 

 

Q. With all the upgrading modifications that went into the machine, did you always maintain 

software backwards compatibility, except for the index bit?  

 

MORT BERNSTEIN: Except for the indirect addressing, yes, everything always ran. We were 

always able -- well, the only thing that really changed when we modified the machine was how 

fast it ran. Now, there’s a variac at this end of the machine that had the common name of 

speedbus. There were some programs where you had to readjust the speedbus in order to get 

them to run properly, like, there were very, very sensitive card I/O. So, if you were going to keep 

the card reader running at full speed you had to get a certain number of instructions down there 

after that last 12-hole read before you issued the select, to keep the card reader motor going. 

Well, if you got the speedbus setup down a little bit too low, and the multiplies were running 

more than 450 microseconds -- they were running up to 500 microseconds -- you may be unable 

to make it, and so you go jiggle the machine, and everything ran fine again. [Comment: Turbo 

switch!] It was continuous, it wasn’t a flip-flop kind of .... 

 

Q. You’d mentioned JOSS just briefly. Could you spend a few moments describing what that 

was, and how it operated, and what the significance of it was? 

 

MORT BERNSTEIN: There’s a JOSS console at the far end of the machine. JOSS was one of 

the very early time-shared user-oriented computation tools. It was not a general purpose time-

sharing system; it was aimed at doing small programs. And the history behind it is, one of the 

ways we believed to keep the JOHNNIAC going, and justify its maintenance costs, was if we 

could open the shop. I mean, there were fewer and fewer programmers who became JOHNNIAC 

programmers as they joined the RAND Corporation, and we kept trying to find ways -- in fact, 

prior to JOSS there were at least four attempts at producing batch-oriented open shop languages. 

Fred Gruenberger created Quad, and I had created something called Smack, and another called 

MORTRAN -- you know why [laughter] -- and there was another one in there somewhere. But 

these were not successful because they were the kind of programming languages that 

programmers would create. They weren’t the kind of thing that an engineer, or an economist, or 

somebody like that would take to, and it took too much. Even though the advertisement was “it’s 



easy to learn, it’s easy to use,” we’ve been hearing that for 40 years; it’s still not true. [Laughter] 

And the idea was that JOSS would become your computational assistant. Cliff worked very, very 

hard at making things as natural and easily understandable as he could, and his goal was that the 

JOSS manual would be one page. Now I  -- I don’t think I brought it with me --  I have a one-

page description of JOSS, which, if you’re a bit of a mind reader, yeah, you can figure out what 

really you were able to do with it. But it was attractively enough done that it didn’t suffer from 

all of the shortcomings of all of the floating point of the day. First of all, he did an integer 

floating point rather than a fractional floating point. It looked like decimal to everybody from the 

outside. There was nothing that wasn’t decimal, and when you took the square root of 2 and 

squared it, it came back 2.000000, which is very important for people who don’t understand that 

we’ve lost a bit somewhere, and now it’s 1.999999. And the syntax was oriented to people. 

People hardly ever put the IF clause in front of a statement they want to condition; they put it at 

the end. And Cliff looked at that and said, “That’s where it has to go. A = B IF ....” So it became 

the secondary clause in the statement. There were all kinds of little good things like that, that 

made the thing extremely easy to look at, easy to understand, and relatively straightforwardly 

easy to use. And it took off! And as Gordon observed, ran out of time, space and availability of 

the JOHNNIAC, and ended up creating a second version of it with some enhancements on a 

PDP-6.  

 

The biggest shortcoming of the machine was its shortage of secondary memory, in that you 

couldn’t create a program, even a small five-line program, and save it anywhere. There was no 

“save” space for users. So people had to retype things. Now, there was some facility for punching 

out decks and loading them back in, but that apparently created some problems that I -- I wasn’t 

there and don't really understand how it all went, but that was also a lot of the reason for the 

pressure to move it onto the more modern machine with truly proper storage facilities where 

people had allocated storage to them and they could recall programs that they had written, and 

they could write bigger and bigger programs, and build on them, and build them slowly but 

surely. 

 

How long did it last, Willis? How long did JOSS ... ? 

 

WILLIS WARE: I don’t know when we finally turned it off.  

 

MORT BERNSTEIN: The PDP-6? I don’t, either, but it served -- it grew like Topsy and 

somewhere there’s a compilation of the number of JOSS-like languages that were propagated 

into the world by other organizations, and my recollection is, the number was well over 20, so it 

did have an influence. A guy named Ed Bryan, who was one of the implementors of the PDP-6 

version, who looked at what Cliff had done on this machine, and his time-sharing algorithm, as 

far as Ed was concerned, was better than any time-sharing algorithm that anybody had created up 

to that time. Interestingly enough, I do have a full source listing of JOSS which I intend, when I 

get the simulator running, to get running on this thing. Now it’s not going to be a big user of 

JOSS. I don’t think I can handle that. But it would be a lovely [inaudible]. 

 

Q. Just a quick one. What machine are you going to do the emulation on? 

 



MORT BERNSTEIN: On a PC. What else? 

 

GORDON BELL: OK.  There’s some refreshments here. 

 

END OF VIDEOTAPE 
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