
Diablo Systems Incorporated

System Operating Procedures
Reference Manual

SYSPG03P/R1 JULY 1976 Diablo is a trademark

Diablo Systems Incorporated

System Operating Procedures
Reference Manual

S Y S P G 0 3 P / R 1 J U L Y 1 9 7 6 D i a b l o i s a t r a d e m a r k

© Copyright 1976

Diablo Systems, Inc.

Hayward, California 94545

All rights reserved

"Diablo" is a registered trademark of Xerox Corporation

"Xerox" is a registered trademark of Xerox Corporation

TABLE OF CONTENTS

PARAGRAPH PAGE

Section 1 - Introduction and General System Description

1.1 Scope and Purpose of Manual
1.2 Notational Conventions

Section 2 - System Initialization and General Operating Procedures

2.1 Introduction O 1
2.2 System Components
2.3 Control and Indicators ^-1
2.4 Application of Main Power 2-6
2.5 System Initialization 2-6

9—7 2.5.1 Error Indications
2.5.2 Error Recovery 2-7

9 — 1 1 2.6 Keyboard Operation
2.6.1 Calling Disk and Memory Resident Programs into Execution 2-11
2.6.2 Command Processor Status Information to Operator 2-13
2.6.3 Correcting Typing Errors at the Keyboard 2-13
2.6.4 Aborting a Program Call or Keyboard Entry 2-14

2.7 File Structure 2-14

Section 3 - Creating and Editing Files

3.1 Introduction 3-1
3.2 File Creation 3-1

3.2.1 Preparing a Diskette to Contain a New File 3-1
3.2.2 Entering Data into a File 3-4

3.2.2.1 EDIT Call Statement 3-5
3.2.2.2 EDIT Call Using EDIT Prompting 3-6

3.3 Editing an Existing File 3-6
3.4 Editor Operation 3-10

3.4.1 EDIT Keyboard Operation 3-10
3.4.1.1 Keyboard Vertical Arrows Key 3-11
3.4.1.2 Keyboard Horizontal Arrows Key 3-11

3.4.2 EDIT Buffering Operation 3-12
3.4.3 Concluding an EDIT Operation 3-12
3.4.4 Summary of Editor Commands 3-12

3.5 Example of File Creation and Editing 3-17
3.5.1 File Allocation (Figure 3-1) 3-17
3.5.2 File Creation (Figure 3-2) 3-17
3.5.3 File Editing (Figure 3-3) 3-20

3.6 EDIT Call Using EDIT Prompting 3-24

Section 4 - Compiling and Executing a DACL Program

4.1 Introduction 4-1
4.2 Compiling a DACL Program 4-1

4.2.1 Calling Sequence 4-1
4.2.2 Example - Compiling a Program 4-3
4.2.3 Diagnosis of Compiling Errors 4-4

4.3 Execution of a Program (Interpreter) 4-4
4.4 Example - Execution of Program 4-5

i

TABLE OF CONTENTS (cont)

PARAGRAPH PAGE

Section 5 - Assembling and Executing an Assembly Language Program

5.1 Introduction 5-1
5.2 Assembling a Program 5-1
5.3 Calling ASEM 5-2
5.4 XREF Execution 5-3

Section 6 System Utility Software

6.1 Introduction 6-1
6.2 The FILES Utility 6-1

6.2.1 List-File (LST) Command 6-2
6.2.2 List-Filename (FLS) Command 6-5
6.2.3 Allocate-File (ALO) Command 6-7
6.2.4 Delete-File (DEL) Command 6-9
6.2.5 Truncate-File (TRU) Command 6-9
6.2.6 Rename-File (REN) Command 6-10
6.2.7 Write-Protect (PRO) Command 6-11
6.2.8 Unprotect-File (UNP) Command 6-12
6.2.9 Retype-File (TYP) Command 6-12
6.2.10 Label (LBL) Command 6-13
6.2.11 Date-File (DAT) Command 6-14
6.2.12 Change-Unit (UNT) Command 6-15

6.3 The Diskette Handling Utilities 6-15
6.3.1 FORMAT (Format-Diskette) 6-16
6.3.2 INIT (Initialize-Diskette) 6-18
6.3.3 DUMP (Dump-File) 6-19
6.3.4 PRINT (Print-File) 6-22
6.3.5 COPY (Copy-File) 6-23
6.3.6 SAVE (Save-File) 6-26
6.3.7 DISKCOPY (Copy-Diskette) 6-30

6.4 The Diagnostic Utilities 6-31
6.4.1 FIXD (Fix-Diskette) 6-32

6.4.1.1 HELP (Print-Prompting-Message) 6-33
6.4.1.2 LOAD (Load-Sector) 6-34
6.h 1.3 GET (Get-Sector) 6-35
6.'*; 1.4 DUMP (Hex-Dump) 6-36
6.4.1.5 PRINT (ASCII-Dump) 6-37
6.4.1.6 ASCII (Replace-ASCII-Data) 6-38
6.4.1.7 MODIFY (Replace-Hex-Data) 6-39
6.4.1.8 FILL (Fill-With-Hex-Data) 6-40
6.4.1.9 WRITE (Write-Sector-To-Diskette 6-41
6.4.1.10 VERIFY (Verify-Memory-With Diskette) 6-42
6.4.1.11 SCAN (Read-Diskette) 6-43
6.4.1.12 EXOR (Read-Diskette-Continuously) 6-44

6.4.2 MEMTEST (Memory-Test) 6-45
6.4.3 COMPAT (Diskette-Compatibility-Test) 6-46
6.4.4 EXOR (Diskette-Exerciser) 6-49
6.4.5 TIME and TIME SET (The Clock Utilities) 6-51

ii

TABLE OF CONTENTS (cont)

PARAGRAPH PAGE

Section 7 - Program Debugging

7.1 Introduction 7-1
7.2 Assembly Language Program Debugging 7-1

7.2.1 Load Program for Debugging (HEX) 7-1
7.2.2 Dump Memory (DMP) 7-2
7.2.3 Enter Data in Microcomputer Memory (HEX) 7-3
7.2.4 Enter Data in Microcomputer Registers (SET) 7-4
7.2.5 Set Breakpoint (BKP) 7-5
7.2.6 Execute Debugged Program (G) 7-6

7.3 DACL Program Debugging 7-7
7.3.1 Debugging Function 7-7
7.3.2 Example of DACL Program Debugging 7-7

Appendix A - Printwheel and Ribbon Replacement TO BE SUPPLIED

Appendix B - Status Message and Indications

Appendix C - How to Prepare a Diskette for Use in System 3200

LIST OF FIGURES

FIGURE PAGE

1-0 System 3200 1-0
2-1 System Components 2-2
2-2 System Keyboard and Control Panel 2-3
2-3 Formatted Diskette 2-15
2-4 Initialized Diskette 2-17
2-5 Active Diskette Directory File Labels 2-21
3-1 File Allocation 3-18
3-2 File Creation 3-19
3-3 File Editing 3-22
7-1 DACL Compilation Call 7-8
7-2 DACL Listing with Object Code 7-9
7-3 An Example of DACL Debugging 7-11

LIST OF TABLES

TABLE PAGE

2-1 Control Panel Controls and Indicators 2-4
2-2 IPL Error Indications 2-8
2-3 Directory File Label Descriptors 2-18
3-1 EDIT Command Summary 3-14

iii

SECTION I - INTRODUCTION AND GENERAL SYSTEM OPERATION

1.1 SCOPE AND PURPOSE OF MANUAL

This manual is intended for the reader who is familiar with general computer system

operation. The purpose of this document is to provide the operator with the general

procedure required to perform tasks carried out on the Diablo System 3200. A typical

System 3200 is shown in Figure 1-1. Routine tasks performed in the system include

those listed below. Each task or group of tasks is discussed in a section of this

manual.

1. Applying power, Flexible Disk Operating System (FDOS) initialization,

and general program initialization.

2. Creating and editing a file in the system.

3. Compiling and executing a program written in DACL (a high-level Diablo

Language).

4. Assembling and executing a program written in assembly language.

5. Operation of system utilities, including the system utility, Sort.

6. Operation of commands used to debug a program.

7. Procedures used to support system operation, replacing printer printwheel

and ribbon, interpreting status messages, etc.

1-1

1.2 NOTATIONAL CONVENTIONS

Throughout the remainder of this manual, certain notational conventions are followed^^^

in the presenting of information. These are listed below.

1. A parenthesized subscript following a string of alphanumeric or numeric char­

acters denote the numbering system to which the characters of the string belong:

F2AC. hexadecimal system; 125.octal system; the decimal system is assumed
(.to;

on all strings of digits without a subscript.

2. All italicized words represents variables. For example, the word register

refers to one of the following symbols from the set of symbols that can be

considered a register: A, B, C, D, E, H, L, and M. When the term appears without

italics, it is used generically.

3. Capitalized words in a keyboard line entry or a calling sequence represent a

keyword, a word with a prescribed meaning to the System 3200 software.

4. Parameters appearing in brackets [parameter] in a keyboard line entry refer to 3^^

mandatory input, i.e., a parameter from the set of parameters defined for the

fields must appear in the keyboard line entry.

5. Parameters appearing in parenthesis (parameter) in a keyboard line entry refer to

an optional input, i.e., a parameter from the set of parameters defined for the

field may optionally appear in the keyboard line entry.

6. Either a blank or comma serves as a separator between fields unless otherwise

specified.

7. Underlined data in system/operator dialogue indicates an operator response to a

system request. The symbol^ |at the end of a keyboard entry indicates a carriage

return.

NEW FILENAME7NEWFILE

1-2

SECTION 2 - SYSTEM INITIALIZATION AND GENERAL OPERATING PROCEDURES

2.1 INTRODUCTION

To operate the System 3200 requires a familiarity with the major system components

and with the system control panel controls and indicators. Thereafter, two procedures,

application of main power and system initialization must complete to permit a program

to be executed in the system. Once the system is initialized, a program can be called

into execution from the keyboard. Besides understanding these general system operating

procedures it is also helpful to understand the concept of a file within the System

3200, the structure used to maintain files (on diskette) in the system, and how to

manipulate these files. These topics are the substance of this section.

NOTE

The reader should read and understand Section 2 before

attempting the procedures in the remainder of this manual.

2.2 SYSTEM COMPONENTS

As shown in Figure 2-1, a system comprises several major components, typically, a

printer, diskette, CRT, control panel, and keyboard. However, the hardware components

comprising a given system are determined by system application.

2.3 CONTROLS AND INDICATORS

The controls and indicators of significance to the operator are shown in Figure 2-2

and briefly described in Table 2-1. The operator controls the dual diskette drives

by inserting diskettes into the two receptacles on either of the dual drives and

closing the access doors.

CAUTION

Do not open the access doors on either of the dual

diskette drives while the computer is writing to or

reading from a diskette.

2-1

2-3

Table 2-1. Control Panel Controls and Indicators

Control/

Indicator Description

IPL

(Initial

Program

Load)

Causes the system hardware bootstrap to load the contents of

the diskette in physical unit 0 (Figure 2-1, top dual diskette

drive) in the first 8K bytes of memory. The diskette typically

contains the FDOS software for the System 3200.

RUN/STOP Halts computer operation in STOP position. This switch must

be in the STOP position before either the IPL or RESET switch

will function.

RESET Performs a master clear of the computer, causing operation to

begin at address 0 with all interrupts disabled.

Column

Position

Indicator

Indicates the position of the carriage along the print line or

cursor horizontal position during operation with FDOS software;

indicates status code during IPL.

Light

Indicators

3-15

These lights are program controlled and as such reflect the

information placed in the lights by the particular program

executing in the system at a given moment.

Switches

0-3

These switches, like the light indicators above, are under program

control. Thus they can be programmed as required by the system

programmer.

SCROLL PTR

(Switch 4)

When on, causes the printer to scroll up several lines each time a

pause occurs in the transfer of data to the printer (from keyboard

or processor). This provides the operator a better view of the

data just printed.

Table 2-1. Control Panel Controls and Indicators (Cont)

Control/

Indicator Description

CRT TO PTR When on, causes all data normally destined for the CRT to

(Switch 5) print on the printer. When off, data is routed to the CRT

normally.

STOP CRT When on, inhibits the software scrolling feature in the CRT

(Switch 6) to prevent automatic scrolling when the CRT is sent more

than 22 lines of data for display. When this switch is

on, a single line can be scrolled by pressing the up/down

arrow key on the keyboard or the entire screen can be scrolled by

pressing the left/right arrow key on the keyboard.

STOP PTR (Switch 7) When on, inhibits the printer from printing.

DSK (Light 0) When on, indicates that the diskette is active.

PTR (Light 1) When on, indicates that the printer is active.

KBD (Light 2) When on, indicates that the keyboard is active.

2-5

2.4 APPLICATION OF MAIN POWER

Main power is applied to the System 3200 by a power on/off switch mounted to the

cabinet front panel, beneath the keyboard.

2.5 SYSTEM INITIALIZATION

Provided with the system are diskette containing the Flexible Disk Operating Systi

(FDOS). The entire FDOS is written in object code on one diskette.

Initialize the system by placing the diskette containing the FDOS software in

the logical unit 0 diskette drive receptacle and closing the access door. The

diskette should be placed in the receptacle with the diskette label facing the

right side of the system and the oblong read/write head slot aligned horizontal

and nearest the diskette receptacle. Thereafter, press the control panel STOP

switch and then the IPL switch. Set the STOP CRT (switch 6) on to have a memory

test executed during IPL.

Next press the control panel RUN switch and observe that the following sequence

of numbers are displayed in the control panel 3-digit column position indicator:

999, 901, through 904, 921, 970 through 973, 950, 940, 1 and 3. Next observe

that the KBD indicator lights and the following message appears on the system

CRT or printer.

CP1.2 REVxx - yyK SYSTEM

where xx is a 2-digit number indicating the revision level of CP1.2

(Control Program 1.2) and yy is a 2-digit number specifying the size

of the memory contained in the system.

If the system is equipped with more than 20K of-memory, the number sequence 901

through 904 is extended one number for each 4K increase in memory size. Thus a

32K system will display 901 through 907. If the STOP PTR switch (switch 7) is

off, the 901 through 9xx sequence is omitted.

2.5.1 Error Indications

If an error occurs during IPL, the system halts with one of the numbers from the

number sequence in the 3—digit column position indicator. The significance of

each of these numbers if an error halt occurs is detailed in Table 2-2.

2.5.2 Error Recovery

To correct an error halt condition displaying 999, 900 - 915, and 921, press the

control panel RESET switch and attempt the IPL once again.

If the 970 indication is displayed, ensure that the diskette drive access door

is properly closed and that the diskette has been inserted in the diskette

receptacle properly. Thereafter, attempt the IPL once again.

If the 971 or 974 indication is displayed, attempt the IPL load with another

diskette containing the FDOS software. If the error persists attempt the load

on another diskette drive. This can be effected by setting switch 1 on to load

from logical unit 1, switch 2 on to load from logical unit 2, and both switches

1 and 2 on to load from logical unit 3.

If the 972 indication is displayed, attempt the IPL load on another diskette

drive as described for the 971 error indication.

If the 973 indication is displayed, attempt the IPL load with another diskette

containing the FDOS software.

If error indications 84cc and Ixx are displayed, press the control panel RESET

switch and perform the IPL once again.

If error indications 601 through 607 are displayed, set the PTR OFF switch to the

ON position and correct the indicated error. Error indication 604 clears itself

when PTR OFF is turned on.

In any error condition persists, contact maintenance personnel to correct the

problem.

2-7

Table 2-2. IPL Error Indications

Number Explanation

999 with dis­

play in lights

0 - 1 5 .

900 - 915 with

display in

l i g h t s 0 - 1 5 .

921

970

971

Processor not running.

The bootstrap routine in read-only memory (ROM) which performs

the IPL is moved from ROM into random-access memory (RAM) while

the number 999 is displayed. The system halting with 999 dis­

played and an unknown display in light indicators 0-15 indi­

cates that a failure occurred during this movement. If the

system halts with lights 0-15 empty, the routine moved from

ROM to RAM successfully; however, failed to initiate properly.

Indicates an error during execution of the memory test. Light

indicators 0-7 contain the bit pattern that failed in the

memory test while lights 8-15 contains the high order eight

bits of the address where the failure occurred.

Indicates an error during execution of the direct memory access

memory refresh phase of the memory test. Light indicators 0-7

contain the bit pattern that failed while light 8-15 contain the

high order eight bits of the address where the pattern failed.

Indicates that the diskette drive containing the diskette to be

loaded is not ready: access door not completely closed,

diskette not in receptacle properly, or a hardware failure.

Lights 8-15 contain the diskette N1 status word. See

Appendix B for a description of this word.

Indicates that the bootstrap routine is unable to locate track 0

on the diskette. If light indicators 0-7 are empty, lights

8-15 contain the diskette N1 status word-. See Appendix B for

a description of the word. If lights 0-7 contain data, the

data contained is the NO status word while lights 8-15 contain

the N2 status word. See Appendix B for a description of these

two words.

2-8

Table 2-2. IPL Error Indications (cont)

Number Explanation

972

973

The bootstrap routine has issued a step command to move the

diskette read/write head off of track 0 and onto another track;

however, the command is not being carried out by the hardware.

Light indicators 0-7 contain the NO status word while lights

8-15 contain the N1 status word. See Appendix B for a des­

cription of these two words.

The bootstrap routine attempted to read a sector from the

diskette in which it expected to find binary data but did not.

This error condition could be caused by attempting to read a

diskette which does not contain FDOS.

974 The bootstrap routine attempted to read a sector from the

diskette and found the checksum it calculated was different

than that stored on the diskette for the sector. This could

indicate that the diskette itself is bad or that the drive is

malfunctioning.

84x Any error indication in the 840 through 847 range indicates an

unknown interrupt error. The error can occur if the system CRT

has failed.

Ixx Any 700 error indicates a parity error. The xx can assume a

value from 0 through 15 which corresponds to the 4K section of

memory in which the parity error occurred.

601 The printer is out of ribbon or its cover is open

602 The printer is out of paper.

603 Both the 601 and 602 conditions exist in the printer.

604 The printer is in a printer-check condition, i.e, it is up against

a stop or cannot execute the operation it has been commanded to

perform.

2-9

Table 2-2. IPL Error Indications (cont)

Number Explanation

605 Both the 601 and 604 conditions exists in the printer.

606 Both the 602 and 604 conditions exists in the printer.

607 The 601, 602, and 604 conditions exists in the printer.

2-10

2.6 KEYBOARD OPERATION

Once the system is initialized, most operator functions occur at the keyboard.

Thus before proceeding further, some general information on keyboard operation is

in order. After the system is initialized, the FDOS Command Processor executes in

the computer. Command Processor loads and executes programs on command from the

operator. The Command Processor is a point of departure and common return for all

system operation. A return to Command Processor is indicated by a colon being

printed or displayed.

2.6.1 Calling Disk and Memory Resident Programs into Execution

Once the system has been initialized, programs can be called into execution from

the keyboard. This is accomplished by inserting the diskette containing the program

to be called into an unused diskette drive and typing in the program name followed

by the number of the logical unit containing the diskette. When no unit number is

entered by the operator, logical unit 0 is assumed. Logical units are set to the

equivalent physical units after initialization. They can be changed by typing:

UNIT,x,y,3,... where x,y,Z,... are logical unit numbers. This will set physical unit

0 to logical unit x, physical unit 1 to logical unit y, physical unit 2 to logical

unit z, etc. To call a program into execution, perform the following keyboard line

entry.

[program or filename]{/unit no.)(,parameter 1...,parameter ̂

NOTE

The program or filename/?mit no. convention is

recognized by the command processor anywhere in

a keyboard line entry. Thus if a parameter in

a keyboard line entry is a filename, the unit

containing the file can also be input when the

filename is input.

2-11

Variable Definition

Program name

/

The name of the program being called.

A mandatory delimiter if unit number is specified, not required

otherwise.

The logical unit containing the diskette that contains the

program being called. Default is to logical unit 0.

The string of parameters required for the program to execute

properly.

unit no.

parameter 1,...

parameter n

Following is an example of a program call containing all the required parameters.

COPY,1STFILE/0,2NDFILE/1
4-1

After this call is made, the system copies a file called 1STFILE on unit 0 into a

file called 2NDFILE on unit 1. Following is an example of a program call in which

the operator is prompted.

The system assumes logical unit 0 thus no request for logical unit number occurs.

After this call is made, the following is printed:

ENTER: SOURCE FILENAME(S),DEST FILENAME(,OPT)

COPY

OPT ARE:

C=0(CLOSE AT EOD) C=1(CLOSE AT EOE)
C=2(TRUNK AT EOD)
P=1(PROTECT) A=1(APPEND)

To this the operator responds with one of the options listed as follows:

1STFILE/0,2NDFILE/1,C=0,P=0,A=0

2-12

After this entry is made, the system copies the file called 1STFILE on unit 0 into

the file called 2NDFILE on unit 1. The option following the two filenames specify

how 1STFILE is to be placed into 2NDFILE. (See Section 6 for more on COPY program.)

2.6.2 Command Processor Status Information to Operator

Command Processor provides a variety of status messages to the operator during

system operation. A list is provided in appendix B. One message is important to

the operator when calling a program into execution. This message is listed below

The message indicates that an error occurred while command processor attempted to

load a program.

LOAD ERR xx

Variable Definition

xx - 02
(16)

03(16)'15(16)
04

OA

14

16

17

18

(16)

(16)

(16)

(16)

(16)

(16)

Logical unit selected not ready.

Disk input/output error occurred during load.

Disk may not have been initialized.

Program not found in directory of diskette in logical unit specified.

End of file occurred prematurely.

Block count error exists on diskette specified.

Block type error exists on diskette specified.

A checksum error occurred while reading program from diskette.

Corrective measures for these indications are contained in appendix B.

2.6.3 Correcting Typing Errors at the Keyboard

During keyboard line entry, typing errors can be corrected in two ways. If a single

character is typed incorrectly, typing DEL (delete) deletes the character from the line

entry and causes the deleted character to be overstruck with a dash on the printer or

erased on the CRT. Continually typing DEL deletes the characters in reverse order, until

part or all characters of a given line entry have been deleted. If an entire

line is in error, the line may be deleted by pressing the CTRL (control) key and

typing x.

2-13

2.6.4 Aborting a Program Call or Keyboard Entry

If it becomes necessary to abort a program call or keyboard entry and return to

Command Processor, press the ESC key on the keyboard and observe that a colon prints

or appears on the CRT indicating that control has returned to Command Processor. If

this does not occur, reinitialize the system.

2.7 FILE STRUCTURE

In the System 3200 all information is stored in files. A file can contain

data or a program. Files are maintained on diskette and are read into the system

as needed. To understand how a file is maintained on diskette and accessed by the

system when needed, it is helpful to show the process involved in preparing a blank

diskette for use in the system and thereafter to show the contents of a diskette

containing files.

For a diskette to be usable in the System 3200, it must be formatted and initialized.

Two system utilities in the FDOS software are available to perform both of these

functions. See Appendix C or Section 6.

NOTE

The terms "blank" and "empty" have limited definitions

when used to describe diskette structure. A blank

diskette is an unformatted and uninitialized diskette,

whereas an empty diskette is formatted and initialized

but does not contain any files.

Figure 2-3 shows the structure applied to a blank diskette when the diskette is for­

matted. Formatting configures the blank diskette into 77 tracks, each track containing

26 sectors and each sector containing 128 bytes.

After the tracks* and sectors of a diskette have been formatted, it then becomes

necessary to create a file directory on the diskette. This is accomplished by

2-14

SECTOR

NOTE:
RECTOR PREAMBLE AND POSTAMBLE

."CONTAIN HARDWARE DATA.
Figure 2-3. Formatted Diskette

2-15

TRACK

TRACK 1

X TRACK 2

X TRACK 7 6

INDEX

initializing the diskette. When the operator initializes a diskette, sectors 8

through 26 of track 0 and sectors 1 through 26 of track 1 are initialized as the

diskette directory. The data contained in each sector of the directory, referred

to as a file label, is shown in Figure 2-4 and explained in Table 2-3.

Once the diskette is formatted and initialized it is considered an empty disk. It

contains no files but it can be placed in a system disk drive logical unit and data

can be written on the diskette. Figure 2-5 shows the contents of a diskette containing

several files. The printout is produced by the system utility FILES and represents

the active entries in the file directory of the diskette. As shown in the printout,

the diskette contains 21 files and, as indicated by the line entry UNUSED FILE LABELS,

there are 24 unfilled entries (file labels) in the file directory. Each file label in

the directory completely describes a file contained on the diskette. For example, the

file containing the program CP, part of the FDOS software, is listed in the directory

under its program name, i.e., program name is file name. The file CP is an S (TYPE),

system program load file and contains fixed length records (RECFM is a blank and

RECLEN is 000). The file CP is located in track 2 sector 01 (BOE) through track 4

sector 15 (EOE). The program occupies 67 sectors (SECTORS) and is protected (FP=P).

The file is not part of a multivolume file (MV = blank) thus it has no sequence

number (SEQ = blank). The file was created 07/02/76 and the end of data in the file^^^

is at track 4 sector 16 (EOD) (i.e., the next sector in which data can be written is

sector 16). EOD shows the next place data can be stored; thus, the value in EOD appears

one sector larger than the value in EOE. At the bottom of the printout is shown how

many unused sectors (UNUSED SECTORS - NUMBER) exist on the diskette and where they

are located (UNUSED SECTORS - BOE).

2-16

INDEX

RESERVED /
- SECTORS -/

1 - 7 / / TRACK 0
^T26~ ll / —- >

L- TRACK 0

L TRACK 1

L TRACK 77

SECTORS 8-26
TRACK 0

SECTORS
1-26 RESERVED
TRACK 1

FILENAME

FILE TYPE
RECORD FORMAT

RECORD LENGTH

RESERVED

BOE

RESERVED

EOE

RESERVED

FILE PROTECT

RESERVED

MULTIVOLUME INDICATOR

VOLUME SEQUENCE NUMBER

CREATION DATE

RESERVED

EOD

RESERVED

UNUSED SECTORS

BYTES

0-5

6-13

23

24

25-27

28

29-33

34

35-39

40-42

43

44

45

46-47

48-53

54-74

75-79

80

81-128

Figure 2-4. Initialized Diskette

2-17

Table 2-3. Dlrectorv File Label DescriDtors

Descriptor Definition

NAME

TYPE

Name of file being described.

Four types of files are defined for System 3200 represented by

the mnemonics P, A, B, and S:

Mnemonic File Type

P Program Load File

A ASCII Data File

B Binary Data File

S System Program Load File

RECFM

(Record Format)

RECLEN

(Record Length)

Record format is represented by two mnemonics V or a space

character. V specifies that a file contains variable length

records while a space character indicates that the file

contains fixed length records.

Record length is a variable from 1 through 128. A record

length of 000 indicates that records within the file described

are variable length while a variable between 1 and 128 states

number of bytes in a fixed-length record.

BOE

(Beginning of extent)

Beginning of extent specifies where physically on a diskette

the file begins. BOE comprises two 2-digit variables separ­

ated by a space: xx yy. The xx variable specifies the track

and yy specifies the sector where the file begins.

EOE

(End of Extent)

End of extent specifies where physically on a diskette the

file ends. Like BOE, EOE contains two 2-digit variables

separated by a space: xx yy. The first variable xx specifies

2-18

Table 2-3. Directory File Label Descriptors (cont)

Descriptor Definition

the track while the second yy specifies the sector. Refer

to the BOE for a description of track and sector.

SECTORS Sectors specifies the number of sectors in a file.

FP

(File Protect)

File protect specifies whether or not a file is write-pro-

tected from being written over inadvertently. The mnemonic

P in this field indicates that writing in the file is

prohibited, while a space character (indicated by a blank)

indicates that the file is not protected.

MV

(Multivolume)

This descriptor indicates whether or not the entire file is

on this diskette, a space character (indicated by a blank)

specifies that the file is wholly contained on the present

diskette, while the mnemonic C specifies that the file is

continued on another file, and, finally, the mnemonic L

specifies that the file is multivolume and that this diskette

contains the last of the multivolume file.

SEQ

(Sequence)

Sequence is a 2-digit variable, 00-99, which identifies a

given diskette in a multivolume sequence. Thus a 02 in this

field would indicate that this diskette was the second

diskette in a multivolume file.

CREATED This descriptor specifies the date a file is created: month,

day, and year.

EOD

(End-of-Data)

This descriptor specifies the last sector of a file that

contains data. Like BOE and EOE, EOD comprises two 2-digit

variables separated by a space: xx yy. The xx variable

specifies track while yy specifies sector. The track and

sector specified is the location of the next unused

sector in the file.

2-19

Table 2-3. Directory File Label Descriptors (cont)

Descriptor • Def mition

UNUSED SECTORS If a file is not completely filled with data the number

of empty sectors remaining in the file is shown in this

field.

2-20

o

(\j .=r lo c- r- ko
t- T- C\J O C\J O

0 * - r - r - (\) O r - r - T - C \ J C \ l (\ J (\ l (\ J C \ J

< £ Q ^ U) ^ D ^ D v D v O v D V D v D v D v D ^) U D v D v D v O v O v D v D V D v D
S M tr— t— c— tr— c— c-— — c-— e-— t— t— — c— — tr— t— r— t~— t—

E—i NNSSSN\SSS\SSNSSS\NSN
< t ^ C ~ - t - (\ I O O C O O O C O C T N C T > C ^ C r > C \ J C T >
W O ' - O O O O O O O O ' - O O O O O O O O ' - O

Id

P - I & H C U P u i P M D ^ P ^ P U D ^ C U D - I P H P - I D U C L I O U C X - I C I - J I X I D L I P L I

^ - t - 4 - u 3 W 4 - o o o i o ^ 3 - w c \ n D t n i n o i n ^ t - i r (
< o m c \ j < - * - o j « - o n r - L O ^ f ' - L O = r » - < —

•> LO v£> yd co CO OJ CO o t- .=r VO o r- CO .=r vO O LO o
J Ed r— T— o o T— 0J r— r— t— T— OJ OJ r— OJ t— r— OJ o OJ o r—
Ed O
Q Id -=r r- o r— t— -=T m zj- LO LO LO c— OA OJ T— ^r =t vo LO

•• LO o OJ r— r— T— T— O r— *— T— OJ O T— *— r— OJ 0J OJ OJ OJ (\)
O t—
-3 Q r— vO OA o*\ t- OA vO CO C— T— *— OA LO o- •— LO T— t^- LO OJ
< CO Id o o O *— o T— T— o r- r— T— T— O r— OJ C\J o x— O 0J OJ
- >H O

c o c o CO OJ vo O o> *— r— .=r CO CO ^r LO •=r LO LO X T— o OJ .=r LO
J o OJ T— o r— T— o X— T— T— OJ o r— T— t — OJ 0J 0J OJ OJ OJ
txj j OJ

» o z o o o o o o o o o o O o o o o o o o o o o
H > J o o o o o o o o o o O o o o o o o o o o o
CO P S o o o o o o o o o o O o o o o o o o o o o CO
J w

o

R
F

E
<d CO

O EH E P C o
z H O-i O W co c- CO LO *— ^r E
< Z X CO 00 00 CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO W Eh E QA c n t— T— c o <
2 z Eh J O S 0J s
X M W E *— s
o z >H Cx-» CO E o
o o

W EH
E
o Eh Eh Q Q

O

P S c o E CO Eh o <C CO W W LO CO co 0J r— E
w w < w w X E Eh w E E X Q s Ct4 —J P C PL, Eh CO CO W OJ OJ T— r— OJ t— W
EH H J E J > Ol, « W e s M CO X P C o w w o Eh o s E 23 E O Eh
Z. CO M E M < o o 2 M E E M M CO E CO P C < E X o W E E E LO T— •=T OA -=T c- E
Ed _J Du O E 00 o E M Eh o e Q E < c&> 23 < X Q M w o E E E o <- *— C\J OJ W

2-21

SECTION III - CREATING AND EDITING FILES

3.1 INTRODUCTION

In the last section, the FDOS software was loaded into the system. This section

describes how to create a file on diskette and, once created, how to edit the file

on diskette.

3.2 FILE CREATION

File creation involves preparing an empty or partially filled diskette to contain

a new file and the storing of data into the file once it has been prepared.

3.2.1 Preparing a Diskette to Contain a New File

Once the operator has decided on which diskette to place the new file, the next task

is to allocate sufficient space on the diskette to contain the file. To allocate

space for a file, the operator issues an allocate-file command to the utility

program FILES. FILES requests from the operator the proposed name, file type, and

record format to be assigned to the file in the file directory. In addition, FILES

requests from the operator the number of sectors to be allotted to the file. To

reply to this request, the operator must estimate the probable amount of space

required to store the final contents of the file. (Some guidelines are provided

in the following procedure.) See Section 6 for more on FILES.

To allocate space for a new file perform the following:

(1) Initialize the system.

(2) Place the diskette to contain the new file, if other than the diskette used to

initialize the system, in a logical unit other than that containing the diskette

used to initialize the system.

(3) Call the FILES program by typing the following:

FILES /unit*unit.
4->

3-1

The first variable must specify the logical unit containing FILES. The

second variable must specify the logical unit containing the diskette in which

the new file will be allocated.

(4) Observe that the following message appears on the printer or CRT.

ENTER COMMAND (LST,FLS,ALO,DEL,TRU,REN,PRO,UNP,TYP,LBL,DAT,UNT)

(5) Type in the following command followed by a carriage return:

ALO filename. where filename is the name of the file being allocated.
4-1

(6) Observe that the following message appears on the printer or CRT.

SECTORS? (NO ENTRY = MAX AVAILABLE)

(7) Enter the number of sectors that the file will ultimately contain. As a general

rule 25 sectors can hold approximately four pages of printout. It is also

easier to allocate more space than might ultimately be required. If no entry

is made, the maximum number of available sectors on the diskette will be

allocated to the file. Enter the number of sectors as follows:

SECTORS? (NO ENTRY = MAX AVAILABLE)nnnn
4—1

where parameter nnnn is a number between 1 and 1925.

NOTE

It is possible, if a large number of sectors is being

allocated to a file that the number specified by the

operator is larger than the maximum available on the

diskette. If this is the case, a message to this effect

will appear on the printer or CRT:

NOT ENOUGH ROOM TO ALLOCATE filename ON UNIT n VOL volume id

3-2

The operator should use a diskette with more space or

reduce the number of sectors requested.

(8) Observe that the following message appears on the printer or CRT:

TYPE? (A,B,P,S)

(9) Enter the letter (A,B,P, or S) that describes the type of data that will be

entered into the file (P = program, B = binary data, A = ASCII data, or S =

system program) as follows:

TYPE? (A,B,P,S)x
4-1

where parameter x is one of the four letters listed.

(10) Observe that the following message appears on the printer or CRT.:

RECORD FORMAT? (V, SPACE)

(11) Enter the letter V or press the space bar on the keyboard to select either a

variable length record (V) or a fixed length secord (space). Enter the selected

character as follows:

RECORD FORMAT? (V, SPACE)m

where parameter x is one of the two characters listed.

(12) If a variable length record is selected in step 11, proceed to step 13;

otherwise, observe that the following message appears on the printer or

CRT.

RECORD LENGTH? (1-255)

Record length is important when fixed length record files are to be

created. Fixed length records are typically used in random access

data files. If a fixed length record is selected in step 11, select

an appropriate record length in the range specified and enter the

quantity followed by a carriage return.

3-3

(13) Observe that the following message appears on the printer or CRT:

FILE filename ALLOCATED ON UNIT n VOL volume id ^

BOE xx yy - EOE xx yy

where xx = track number, yy = sector number.

This message indicates that a file has been allocated and describes the location,

the name of the file, and the unit containing the diskette.

(14) Repeat the procedure to create two or three additional files for later use in

editing a file.

3.2.2 Entering Data into a File

To insert data into a file, the operator calls system program EDIT, informs EDIT

of the name of the allocated file to be filled with information and thereafter enters

the specified data into the file. This procedure is described in the remainder

of this section by first providing the necessary commands and parameters required an^

then by providing an example of a program being written into an allocated file.

3-4

3.2.2.1 EDIT Call Statement

To enter data Into a file call EDIT by typing the following:

[EDIT] [fri] [,source file] [,z] [,N]
4 1

Line Entry Item Explanation

EDIT Command Word identifying the EDIT software module.

A space followed by a comma must follow the command word EDIT.

source file The name of the file where data is to be stored. If not already

allocated, EDIT will allocate the file.

The parameter z can assume three forms, the letters, A, D, or

T. If A is specified EDIT assumes that the operator intends

to create an assembly language source file. A D specifies

a DACL (Diablo Application Compiler Language) source file,

while a T specifies a text file, i.e., a data file or a

language text file.

N Indicates that the file contained in the call statement is

to be a new file.

Observe that the following message appears on the printer or CRT in response to the

call statement.

*D0 NOT REMOVE SOURCE MEDIA**

EDITOR 1.1

variable EDITOR READY

3-5

Where variable is determined by what was input in the call statement for the parameter

z: A produces ASSEMBLER; D, DACL LAN and T, TEXT.

CAUTION

Do not remove or change diskette during editing operation.

NOTE

If an improper value is entered during the call for

any parameter other than the command EDIT, the EDIT

software module executes with the erroneous data or

prints an error message. If an error message is displayed/

printed, EDIT will also prompt the operator for the

correct parameter. The messages EDIT prints or displays

described in paragraph 3.6.

If the correct message does not appear, abort the call by pressing the ESC key and

enter the complete EDIT call statement once more.

the correct message appears, EDIT is ready to accept data entered at the keyboard.

However, before entering data into the file, refer to paragraph 3.4 for information

on operation of the software module EDIT.

3.2.2.2 EDIT Call Using EDIT Prompting

If the EDIT call statement is made without all line entry items included in the

line entry, EDIT will prompt the operator for those parameters it requires to

execute. To call EDIT without supplying all parameters in the initial call state­

ment, refer to paragraph 3.6.

3.3 EDITING AN EXISTING FILE

Editing an existing file is similar to creating a new file. Both processes create

a new file. However, during the editing of a file some or all of the data contained

3-6

in an existing file is moved into a previously allocated, newly created file along

with insertions, changes, corrections, or deletions introduced at the keyboard. In

some cases, the editing process affects only the newly created file, i.e., the existing

file being edited is unchanged during the editing process. In other instances, however,

both files are changed during the editing process.

Call EDIT to edit an existing file by typing the following:

[EDIT] [$] [sourae filename] [,dest. filename] [,z] [,zy]

Line Entry Item Description

EDIT Command which calls EDIT software.

Mandatory space.

source filename

dest. filename

The name of the file being edited.

The name of the file being created to contain the edited

version of the existing source file.

Specifies the type of language contained on the file being

edited.

A = Assembly Language

D = DACL Language

T = Text (a data file containing data or English text.)

Six parameters are possible in this field: X, M, S, C, N, E.

Parameters X, M, and S are similar, however, different from

C, N, and E.

C - causes the source file to be transferred intact

into the newly created destination file.

N - used for file creation, this parameter indicates

to EDIT that a new file is being created.

3-7

E - indicates to EDIT that more data will be

entered onto the end of the existing file

specified in the call statement. When E is used,

the call statement contains only one filename,

that of the file in which more data is to be added

X - Multi-pass option; output on last file used.

M - Multi-pass option; output to designated file.

S - Single-pass option; output to designated file.

NOTE

The pass option defined by parameters X, M, or S applies

only to the find-string, locate-string, find-last, locate

last and locate and modify instructions. The X or M option

permits a multiple pass of both source and destination files

to occur. A pass occurs when a command such as locate-string

is input at the keyboard when half of the source file has

been edited and transferred into the destination file. The

locate-and-modify command with X or M selected causes EDIT

to search the remainder of the source file in search of the

string specified in the locate-and-modify command and there­

after to search through the destination file up to the position

in the destination file where the locate-and-modify command

was issued. Once this pass has completed, issuing any of the

five commands listed previously produces another pass with

the destination file being searched first followed by the

source file. At the completion of the editing operation,

with the X option selected the final edited information would

appear in the last file in which a pass completed. With M

selected the final edited information, if the last pass did

not complete in the destination file, would be transferred into

the destination file specified in the call. An S would not

permit a pass to move beyond the source file.

3-8

After the call to edit a file is issued, observe that the following message appears

on the printer or CRT:

*D0 NOT REMOVE SOURCE MEDIA**

EDITOR 1.1

variable EDITOR READY

Variable is determined by what was input in the call statement for the parameter z

A produces ASSEMBLER: D, DACL LAN: and T, TEXT.

If the correct message does not appear in response to the call statement, abort

the call by pressing the ESC key and enter the EDIT call once more.

If the correct message appears, EDIT is ready to accept data entered at the keyboard.

However, before entering data into the file, refer to paragraph 3.4 for information

on operation of the software module EDIT.

3-9

3.4 EDITOR OPERATION

The operation of EDIT requires an understanding of what constitutes an input of

data to a file being created or edited and what constitutes a command to EDIT.

It is also important that the operator understand the buffering operation that EDIT

carries out throughout the course of its operation. Finally, it is essential that

the operator understand what occurs when EDIT is terminated either normally or

abnormally. The following paragraphs will address each of these topics. In addition,

EDIT commands are listed in this section as a convenience to the operator. More

information on EDIT is contained in the System 3200 Editor Operation Reference Manual.

3.4.1 EDIT Keyboard Operation

Immediately after the "variable EDITOR READY" message appears on CRT or printer, the

appropriate device performs a carriage return and displays a "?" to inform the operator

the next keyboard input will be processed by EDIT. All editor commands begin with

a colon (:), thus anything typed which is not preceded by a colon is entered into a

line of the file. Besides distinguishing between data and command inputs, the operator

must be careful about typing nonprinting characters such as backspace or any of the

characters typed with the CTRL key held down. These appear nowhere in the printout

of a file yet exist physically within the file. The existence of nonprinting

characters in a file will cause errors when the file is assembled or compiled. The

nonprinting characters tab and space are an exception to this general rule. Tab or

space have specific functions when creating a file for the assembler or DACL. Typing

tab or space after a "?" appears causes a tabulation to column 10 of the print or display

line. Thereafter, either key produces a single space.

Typing errors can be deleted by typing the DEL key or typing x with the CTRL key *

pressed. Typing DEL causes a backspace of one character; the character originally

occupying the space is deleted. CTRL x deletes all characters back to the last

tab stop.

3-10

3.4.1.1 Keyboard Vertical Arrows Key

The vertical arrows key is marked with an up-pointing and down-pointing arrow.

Pressing the key during EDIT operation on a CRT system moves the EDIT line

pointer down. Holding the CTRL key down while pressing the key moves the EDIT

line pointer up.

3.4.1.2 Keyboard Horizontal Arrows Key

The horizontal arrows key is marked with a right-pointing and left-pointing

arrow. Pressing the key during EDIT operation on a CRT system moves the CRT

cursor to the right. Holding the CTRL key down while pressing the key moves

the CRT cursor to the left. Once the key is pressed, EDIT enters cursor modify

mode. In this mode characters may be inserted or deleted in a line. Typing a

character causes the character to be inserted to the right of the character

underlined by the CRT cursor. Also pressing the DEL key deletes the character

above the cursor in this mode and pressing the left slash (\) key terminates a

line at the present position of the cursor. The cursor modify mode is in effect,

even if the line pointer is moved to another line, until the RETURN key is

pressed.

3-11

3.4.2 EDIT Buffering Operation

EDIT operates with a buffer which is 21 lines long and 79 characters wide. During

file creation, each line entered on the keyboard up to line 21 is maintained in

the buffer. After the twenty first line has been entered, each line thereafter enters

at the bottom of the buffer while the top line of the buffer moves into the des­

tination file on disk. During the editing of a file, the same buffering operation

occurs. Lines from the source file enter the buffer along with data input from the

keyboard. When 21 lines have entered the buffer either from the keyboard or the

source file, subsequent lines enter at the bottom of the buffer and lines at the

top of the buffer are moved into the destination file on disk.

3.4.3 Concluding an EDIT Operation

Operation with EDIT can be terminated in a normal manner or in an abnormal manner.

A normal termination involves using one of three EDIT commands: End, End and

De-allocate, and End and Delete. These commands are discussed in the System 3200

Editor Operation Reference Manual. For purposes of this discussion, one feature ^

of each of these commands is significant: the manner with which each closes the file^

containing the edited data. Once all the data has entered the edited file, only

the End and De-allocate command de-allocates the remaining unused space of the

edited file. Thus, if an edited file initially contained 25 sectors and the

editing operation used only 15 sectors, the remaining 10 would be eliminated from

the file by the End and De-allocate command. The remaining two commands leave the

length of the file containing the edited data undisturbed. Both of these features

should be considered by the operator when terminating an EDIT operation. An abnormal

termination involves only typing the ESC character. If ESC is pressed before 22 lines

have been entered or edited, the empty destination file is closed; however, the

destination file, whether allocated by the operator or by EDIT immediately after being

called, remains on diskette. If ESC is pressed after 22 lines have been entered, the

destination file is closed in the same manner as if the E/ command had been issued.

3.4.4 Summary of Editor Commands

For the convenience of the operator, a summary of EDIT commands is printed in Table 3-1

3-12

Table 3-1. EDIT Command Summary

Command"" Description

: A automatically duplicate pointed line.

:C copy pointed line to bottom of screen, delete pointed line

from original location and position pointer tp said location

to type a new line

: CD copy pointed line to bottom of screen temporarily, delete pointed

line from original location, position pointer to said location to

type a new line, and then delete text of original line from bottom

of screen.

:D (n) delete specified line of source file in new file.

:D (n,n) delete lines n to n of source file in new file.

: E copy source file from current position to end of file and end

edit operation.

:E/ end edit file operation at end of current line.

:EF copy source file from current line to end of file but do not

terminate edit program.

: EOD copy source file from current line to end of file and de-allocate

remaining space allotted to file.

:F begin a copy search at beginning of each line for last string

entered to a FIND command.

:F (string) begin a copy search throughout the file for given string

positioned at beginning of a line.

reposition cursor to allow typing of a new line between previous

pointed line and next line.

""Parameters in the table appear to be entered on more than one line to fit the column

of the table. The operator should note that the command and all parameters must be

input in a single line followed by a carriage return.

3-13

Table 3-L. EDIT Command Summary (Continued)

Command^ Description

: L begin a copy search for last string entered to a LOCATE command.

:L (string,) begin a copy search through the file for a given string anywhere

within a line.

:LM {old)
2

{symbol)

{new)

begin a search through the file and execute modification of old

text by new text.

:M repeat last MODIFY command executed.

:M {old)<{new) search current line, replace specified old text by new text.

:M {old)>{new) search current line, insert specified new text at end of specified

old text and copy remainder of line.

search current line, insert specified new text at end of specifie^^

old text and delete remainder of line.

:M {old)\{new)

search current line, insert specified new text at end of specified

old text and copy remainder of line.

search current line, insert specified new text at end of specifie^^

old text and delete remainder of line.

•Ml {old)
2 {symbol)

{new)

store the designated old and new text for automatic use with

later LOCATE and MODIFY instructions.

:N {n) copy source file and position to line number specified.

:P* turn off printer, terminating printing of input and output lines.

:PF turn off printing of output file lines.

:PI print input file lines when file is read.

:P0 print output file lines when file is written.

, W
zlymbol. can be either <, =, or >.

3-14

Table 3-1. EDIT Command Summary (Continued)

Command"" Description

:PP print all lines in the buffer.

:R •erase current or pointed line, and allow typing of a replacement

line.

: SA erase all lines from pointed line to top of screen and buffer.

: SB erase all lines from pointed line to bottom of screen and buffer.

: SF skip from current line until last string entered to a SKIP FORWARD

command is found or end of file, without copying.

:SF (string) skip from current line until specified string is found or end of

file, without copying.

: SK start a copy search for last string entered to a SKIP STRING

command.

:SK (string) skip from beginning of file until string is found or end of file

is reached, without copying.

: SP erase all lines of screen and buffer.

:X (n) skip forward from current position to line specified without

copying.

:+ (") position pointer forward the number of lines specified and print

the line when positioned.

(») position pointer backwards the number of lines specified and print

the line when positioned.

3-15

Table 3-1. EDIT Command Summary (Continued)

Command"'" Description

: = print current line.

:# print current line numbers of source file and scratch file.

:* print active source file and scratch file names, allowing

operator to change source file.

:* {name/unit) change source file to source file specified, bypass printing

of current source name.

: $ (») skip from beginning of file to line number specified without

copying.

3-16

3.5 EXAMPLE OF FILE CREATION AND EDITING

Included in this paragraph is an example of file creation and file editing. The

example is divided into three parts: file allocation, file creation, and file

editing (Figure 3-1, 3-2, and 3-3, respectively).

3.5.1 File Allocation (Figure 3-1)

File allocation requires the operator to call the system utility FILES. As shown

in Figure 3-1, a call to FILES causes the "ENTER COMMAND..." message to appear. In

response to this the operator requests that a file be allocated and given the name

EXAMPLE1. FILES responds with a request for the number of sectors to be allocated

to the file. The operator requests 25. Next FILES asks the operator for a file

type. It has been decided that the file will contain a DACL program thus the operator

selects an A (ASCII) file type. Accepting the operator's file type, FILES next requests

the proposed format of records that will be contained in the file. To this the

operator responds with a V which requests a variable length record.

Receiving the last input from the operator, FILES allocates a file on the diskette

in logical unit 0. The space allocated to the file begins on track 27 at sector 11

and ends on track 28 sector 09. Receiving this acknowledgment from FILES, the operator

allocates another file entitled EXAMPLE2 for later use during file editing.

3.5.2 File Creation (Figure 3-2)

File creation requires the operator to call the software module EDIT. As shown in

Figure 3-2 the call to EDIT for file creation involves typing EDIT followed by a blank

and a comma (,). Thereafter, the call requires the name of the file being created

followed next by the language to be used in the file: DACL, Assembler, or text. These

parameters are represented respectively by EXAMPLE1 and the letter D. The space-comma

immediately following EDIT informs EDIT that the source file normally appearing in

this position for file editing is missing, and thus that this is a file creation

call. The N which concludes the call statement informs EDIT that the file EXAMPLE1

is a new file.

3-17

:FILES

ENTER COMMAND (LST,FLS,ALO,DEL,TRU,REN,PRO,UNP,TYP,LBL,DAT,UNT)
ALO EXAM PLE1
SECTORS? (NO ENTRYsMAX AVAILABLE)26
TYPE? (A , B , P, S) A.
RECORD FORMAT? (V,SPACE) V

FILE EXAMPLE1 ALLOCATED ON UNIT 0 VOL D13
BOE 26 03 - EOE 27 01
ENTER COMMAND

ALO EXAMPLE2
SECTORS? (NO ENTRY=MAX AVAILABLE) 2J5
TYPE? (A,B,P,S) A.
RECORD FORMAT? (V, SPACE) JL

FILE EXAMPLE2 ALLOCATED ON UNIT 0 VOL D13
BOE 27 02 - EOE 27 26
ENTER COMMAND

Figure 3-1. File Allocation

3-18

:EDIT , EXAMPLE 1 , D , N

*** EDITOR 1.1 ***

DACL-LAN EDITOR READY

'HOURS FIRM 2.2
'RATE FIRM 4 . 2
'TAX FIRM 4 . 2
7START KEYIN *L,*L,*L
? KEYIN "PAY TO THE ORDER OF NAME
? KEYIN "HOURS WORKED HOURS
? KEYIN "HOURS WORKED HOURS
? KEYIN "RATE PER HOUR N", RATE
? KEYIN "tAX TAS
? MULT HOURS. RATE
? MULT RATE, TAX
? SUB TAX. RATE
? PRINT "NET EARNINGS = "RATE
? GO TO START

NAME DIM L5
HOURS FIRM 2.2
RATE FIRM 4.2
TAX FIRM 4.2
START KEYIN *L,*L,*L

KEYIN "PAY TO THE ORDER OF ", NAME
KEYIN "HOURS WORKED ", HOURS
KEYIN "HOURS WORKED ", HOURS
KEYIN "RATE PER HOUR N", RATE
KEYIN "tAX ", TAS
MULT HOURS, RATE
MULT RATE, TAX
SUB TAX, RATE
PRINT "NET EARNINGS = "RATE

> GO TO START
?: E/

** FINAL OUTPUT ON UNIT 0, FILE EXAMPLE 1 **

Figure 3-2. File Creation

3-19

In response to the call statement, EDIT identifies itself by printing/displaying its nam

followed by the statement: DACL-LAN EDITOR READY. EDIT is ready to place DACL

language statements in file EXAMPLE1. Beneath the ...READY statement EDIT performs

several line feeds and types a ? at the beginning of a line. This signals the operator

that all inputs to the keyboard will be processed by EDIT. As shown in Figure 3-2,

the operator enters 15 DACL statements, some of which contain typing errors, incorrect

punctuation, and misspelled words. The sixteenth line, unlike the previous lines

begins with a colon (:). This is the preface to an EDIT command and thus prevents

the line from being entered into the file. The EDIT command following the colon, PP,

causes the content of the new file to be printed/displayed. As mentioned earlier in

the general discussion of EDIT, twenty one lines of data input to EDIT are always main­

tained in a buffer, thus the 15 lines shown in Figure 3-2 exist in the buffer and

not physically in file EXAMPLE1. The fifteen lines of data are placed in file EXAMPLEl

when the operator types the command, :E/. Acknowledgment that the fifteen lines of

data input to the buffer has entered file EXAMPLE1 is implied by the EDIT message:

** FINAL OUTPUT ON UNIT 0, FILE EXAMPLEl **.

3.5.3 File Editing (Figure 3-3)

File editing requires the operator to call the software module EDIT also. As shown

in Figure 3-3 the call to EDIT for file editing involves typing EDIT followed by a

blank. Thereafter, the call requires the name of the file being edited followed next

by the name of the file to contain the new edition of the edited file. In Figure

3-3, these parameters are represented by EXAMPLEl and EXAMPLE2, respectively. Next

EDIT requires the language involved in the editing process: DACL, Assembler, or

text. This is represented by the selection of D in the example. Finally, EDIT

requires an editing option: pass option, copy, or extension. This is represented

by the selection of the M pass option in the example.

In response to the call statement, EDIT identifies itself, states that it is ready

to EDIT a DACL language file, and, additionally issues a warning not to remove the

diskette containing the files used in the editing process. The familiar question

mark (?) appear at the start of a line beneath the ...READY statement to inform the

3-20

operator that all keyboard inputs will be processed by EDIT. As shown in Figure

3-3, the operator issues a series of commands to EDIT. Seeing an error in the DIM

statement at the beginning of the program, the operator commands EDIT to position

to line 1, :N1. At line 1, the operator issues the command :M and follows the

command with the text presently in line 1 which is to be deleted, DIML5. This

is followed by the text to replace that being deleted, DIM 15.

The word FIRM should be FORM in lines 3, 4, and 5. Thus the operator issues the

command :LM followed by the text to be located and deleted, FIRM, followed by the

£gxt to be inserted in place of that deleted, FORM. EDIT makes one complete pass

through EXAMPLE1 in search of the word FIRM. Each place it encounters FIRM it

substitutes FORM. During the process, each line in file EXAMPLE1 searched by

EDIT beginning with line 2 is moved into file EXAMPLE2. When EDIT reaches the

end of file EXAMPLE1, it begins searching in EXAMPLE2 and placing each line

searched in file EXAMPLE2 into file EXAMPLE1. Since EDIT began with line 2 in

EXAMPLE1, it stops with line 1 in EXAMPLE2. This represents a complete pass.

However, now EXAMPLE2 has become the file being edited and file EXAMPLE1 has

become the file receiving the newest edited data. Completion of the :LM command

is indicated by line 1 being printed/displayed. The :LM command is shown here

to illustrate its function; however, its use here is not typical. There are two

reasons for this. First, the original source data being edited is altered

during the second pass when source and destination files exchange roles. Unless

the operator took the precaution of copying the source data into another file

before beginning the editing operation, the original source data no longer exists.

Secondly, the line numbers established in the source file is intended to aid

the operator throughout the editing process yet the second pass of the :LM

command destroys the usefulness of these source file line numbers by altering

the source file contents.

After EDIT output line 1, the operator issues command :N7. This command causes

EDIT to print line 7 of file EXAMPLE1. Command :D8 causes EDIT to delete line

8 of file EXAMPLE1. As seen in the output of the newly created file, line 7 and

8 are identical, mistakenly input twice. The operator next uses :LM to correct

an incorrect spelling in line 10 or the original file. During typing of the second

:LM command, the operator keys in a comma (,) for a less-than (<) sign. Using the

DEL key he deletes the incorrect character and types in the correct one. Following

the second :LM command, the operator makes two attempts to change "RATE, to ",RATE.

3-21

He succeeds on the second try and thereafter changes GO TO to GOTO. The operator

then completes the editing process by requesting an output of the newly edited

data followed by a :E/ command which concludes the editing process.

:ED IT E X A M P L E 1. E X A M P L E 2,D, M

*** EDITOR 1.1 ***

* DO NOT REMOVE SOURCE MEDIA **

DACL-LAN EDITOR READY

? :N i

NAME DIML5
?:M DIML5 <DIM 15
?: =

NAME DIM 15
?:LM FIRM<FORM

NAME DIM 15
?: N 7

KEYIN "HOURS WORKED HOURS
? :D8
?:LM "tAX TAS<"TAX ". TAX

KEYIN "HOURS WORKED ", HOURS
? : N 1 0

MULT HOURS, RATE
? : N1 5

PRINT "NET EARNINGS = "RATE
?:M "RATE<"RATE

~ PRINT "NET EARNINGS = "RATE
?:M "RATE<",RATE
? : =

PRINT "NET EARNINGS = ",RATE
? : + 1

GO TO START
?:M GO T0<GQT0
7 • =

GOTO START
? : PP

Figure 3-3. File Editing (1 of 2)

3-22

NAME DIM 15
HOURS FORM 2.2
RATE FORM 4.2
TAX FORM 4.2
START KEYIN *L,*L,*L

KEYIN "PAY TO THE ORDER OF ", NAME
KEYIN "HOURS WORKED ", HOURS
KEYIN "RATE PER HOUR N", RATE
KEYIN "TAX ", TAX
MULT HOURS, RATE
MULT RATE, TAX
SUB TAX, RATE
PRINT "NET EARNINGS = ",R ATE

> GOTO START

** FINAL OUTPUT ON UNIT 0, FILE EXAMPLE2 **

Figure 3-3. File Editing (2 of 2)

3-23

3.6 EDIT CALL USING EDIT PROMPTING

To call EDIT without supplying all parameters in the initial call statement, perform

the following: ^

(1) Type in EDIT followed by a carriage return as follows:

EDIT
4-1

(2) Observe that the following message appears on the printer or CRT:

EDITOR 1.1

SOURCE FILE NAME (RETURN KEY IF NONE):

This message is significant only if an existing file is being edited.

(3) Perform a carriage return and observe that the following message appears on the

printer or CRT:

SCRATCH FILE NAME:

i
This message is significant because it requests the name of the file to be filled

(4) Enter the name of a file to be filled as follows:

SCRATCH FILE NAME:filename

NOTE

The filename specified in response to the above

message does not have to be the name of an allocated

file. If the filename is not the name of an allocated

file EDIT allocates a file and assigns to it the

filename specified and all remaining sectors on

disk. The operator should truncate the file when

completing the editing operation or with the FILES

utility to free the unused disk space.

3-24

(5) Observe that the following message appears on the printer or CRT:

UNIT NUMBER:

(6) Enter the number of the logical unit containing the diskette where the file is

located or is to be located (in the case where a nonexistent filename is given

EDIT as a scratch file). Make the entry along with a carriage return as follows:

UNIT NUMBER =n.
4-1

where n represents the selected logical unit number.

(7) Observe that the following message appears on the printer or CRT:

SELECT EDITOR LANGUAGE

"ASSEMBLER" EDITOR WILL BE ASSUMED, OTHERWISE TYPE (A) FOR "ASSEMBLER", (D)

FOR "DACL-LAN" OR (T) FOR "TEXT":

(8) Enter the appropriate response followed by a carriage return as follows:

"... TEXT" :_s
4-1

where z is the appropriate response from the three possible responses, A, D, or T.

(9) Observe that the following message appears on the printer or CRT in response to the

call statement:

*D0 NOT REMOVE SOURCE MEDIA**

EDITOR 1.1

variable EDITOR READY

where Variable is determined by what was input in the call statement for the

parameter z: A produces ASSEMBLER; D, DACL LAN; and T, TEXT.

3-25

If the correct message does not appear in response to the call statement, abort the

call by pressing the ESC key and enter the EDIT call once more.

If the correct message appears, EDIT is ready to accept data entered at the keyboard

However, before entering data into the file refer to paragraph 3.4 for information

on operation of the software module EDIT.

3-26

SECTION 4 - COMPILING AND EXECUTING A DACL PROGRAM

4.1 INTRODUCTION

In the last section, the procedure for creating a file was described. This section

describes how a file containing a DACL program is first compiled and, thereafter,

executed on the System 3200. Two system software modules are involved in this

process, one entitled DACL (the DACL compiler), which compiles the program, and the

other called INT (interpreter), which executes the program. The manner in which

each is called and the results produced is the subject of this section.

4.2 COMPILING A DACL PROGRAM

Two files are required by the DACL Compiler: a source file containing the DACL

statements (an ASCII file) and a destination file to which the compiler writes the

object code (a program file). If the destination file supplied to DACL has not been

allocated by the operator prior to compilation, DACL allocates it during compilation

providing there is room on the diskette. The destination file is truncated at end-

of-data (EOD) automatically. (Take care when using a previously allocated file for

the destination file as compilation will not complete if the file allocated is not

large enough.)

4.2.1 Calling Sequence

To compile a DACL program, call DACL by typing the following:

[DACL] [,source file.] [,object file]
4-1

Line Entry Item Explanation

DACL Command which calls DACL compiler into execution.

4-1

Line Entry Item Explanation

source file Filename of the file containing the DACL statements to

be compiled.

object file Name of the program file on the diskette to which the

compiler is to write the object code. If the file is not

already allocated, it will be allocated automatically and

truncated to EOD after compilation. If it is already

allocated, it will not be truncated after compilation.

If the operator types in "DACL" on the keyboard and does not identify the files,

the following messages will appear. The operator must then type in the response

indicated followed by a carriage return.

1. SOURCE FILE NAME:

Type in name of file containing DACL statements.

2. UNIT NUMBER:

Type in unit number of source file.

3. OBJECT FILE NAME:

Type in name of program file in which object code is to be written.

4. UNIT NUMBER:

Type in unit number of object file.

5. PRINT THE OUTPUT?

Answer "YES" or "NO." "YES" will result in the instruction being printed.

6. DISPLAY THE OUTPUT?

Answer "YES" or "NO." If "YES," the instructions will be displayed on the

4-2

CRT. (If the optional CRT is not part of the configuration, this will

send output to the printer. Consequently, answering "YES" to both

PRINT and DISPLAY will cause each instruction to be listed twice on the

printer when there is no CRT.)

7. PRINT THE CODE?

Type "YES" or "NO." "YES" will cause the object code for each DACL state-

ent to print in addition to the DACL statement.

After line entry is complete, the following message will appear.

PRINT THE HEADING:

Key in any identifying label to appear above the list of instructions. The heading

may be left blank by depressing the RETURN key.

4.2.2 Example - Compiling a Program

In the following example, PAYROLL is the source file containing the DACL statements

and PAY is the object file. The listing that results from the compilation of the

DACL statements in the PAYROLL file is shown. Data typed by the operator is under­

lined .

:DACL PAYROLL/ 1 • PAY/ 1
PRINT THE HEADING:
PAYROLL DEMONSTRATION

4-3

PAGE 01 PAYROLL DEMONSTRATION

1. 3476 NAME DIM 15
2 . 3488 HOURS FORM 2.2
3 . 348F RATE FORM 4.2
4 . 3498 TAX FORM 4.2
5 . 34 A 1 START KEYIN *L . *L . *L
6 . 34A6 KEYIN "PAY TO THE ORDER OF ".
7 . 3 4 BD KEYIN "HOURS WORKED ". HOURS
8 . 3 4 CD KEYIN "RATE PER HOUR N". RATE
9 . 34DF KEYIN "TAX ". TAX

1 0 . 34E6 MULT HOURS. RATE
1 1 . 34E9 MULT RATE. TAX
1 2 . 34EC SUB TAX, RATE
13. 34EF PRINT "NET EARNINGS = ".RATE
1 4 . 350 1 GOTO START
15 . 3503 STOP

3504 STOP

3505 START

3507 NAME
3509 HOURS
3 5 0 B RATE
350D TAX

0 ERRORS...DONE

4.2.3 Diagnosis of Compiling Errors

To assist the programmer in debugging errors in his code, the compiler prints and

displays error messages to the left of the listing. These error signals are an I,

U, or E, with the following significance:

I - Invalid or undefined instruction.

U - Undefined label or variable.

E - Error other than above - usually an error in order or arrangement.

In addition to providing error codes, each line is numbered to facilitate editing

program errors. (See Editor, section 3.)

4.3 EXECUTION OF A PROGRAM (INTERPRETER)

When the programmer has successfully written and compiled an error-free program,

4-4

the object code (in the example, PAY) may be executed through the interpreter by:

1. Typing "INT" to call the interpreter program.

2. Typing the name of the object code file to be executed in response to the

INT request for "PROGRAM NAME" which appears after typing "INT."

4.4 EXAMPLE - EXECUTION OF PROGRAM

On the following example, typing in "INT" and the object program name "PAY" causes

execution of the instructions which were successfully compiled in the previous example.

Underlined words indicate data entered by operator at the keyboard.

: INT
/D A C L 1.1
PROGRAM NAME: PAY

PAY TO THE ORDER OF EMPLOYEE 1
HOURS WORKED 42.00
RATE PER HOUR N 5 . 39
TAX .20
NET EARNINGS = 181.10

PAY TO THE ORDER OF EMPLOYEE 2
HOURS WORKED 49.00
RATE PER HOUR N 4.32
TAX ,19
NET EARNINGS = 171.46

PAY TO THE ORDER OF EMPLOYEE 3
HOURS WORKED 37-00
RATE PER HOUR N 3-39
TAX ,_1_8
NET EARNINGS = 102.85

4-5

SECTION 5 - ASSEMBLING AND EXECUTING AN ASSEMBLY LANGUAGE PROGRAM

5.1 INTRODUCTION

This section describes how a file, created using software module EDIT, as described

in Section 3, can be assembled and, thereafter, executed on the System 3200. The

system software module ASEM is involved in this process. The manner in which ASEM

is called and the output produced by ASEM is the subject of part of this section.

The remainder of the section is devoted to describing the system program XREF which

prints a cross-reference listing and to describing what is involved in executing

an assembled program.

5.2 ASSEMBLING A PROGRAM

ASEM assembles the source statements of an assembly language program, contained in

an ASCII file, into object code which it then places in a separate program file.

(Program file refers to the file type assigned to a file when it is first allocated.)

In addition, ASEM also produces a cross-reference file of labels used in the assembly

language program. ASEM is a multi-module assembler, i.e., it assembles at one time

a collection of modules each separated by an END statement and each containing a

program or collection of assembly language statements. In an assembly containing

several modules, labels that are common between modules either contain a colon (:)

or begin with an @ character, e.g., @TAG and TAG:1. These labels are called global

labels. The labels of memory resident system subroutines which may be called by any

assembly language program are global labels. A directory of these labels is contained
* k

in a file entitled TEXT:atr , a part of the system software. TEXT:xx associates with

global label with its memory address. Thus if an assembly language program uses a
k

system subroutine, TEXT:XiC must also be included in the assembly of the program uses a

that the label is translated into a meaningful memory address. This is accomplished
*

by combining TEXT:xa; with the file containing the assembly language program into still

another file which can then be assembled.

k
The xx portion of this filename differs depending on the level of the software present

in a system. To determine what the numbers for a system are, perform the LST command

of the FILES utility on the system deskette (see Section 6).

5-1

5.3 CALLING ASEM

ASEM is called and an assembly executed by typing the following:

[ASEM][^source filename](,object fHename)(,list option){,cross-reference filename)

«-

Line Entry Item Description

ASEM Command which calls ASEM into execution.

source filename The name of the file containing the assembly language source

statements.

object filename The name of the file to be used to contain the assembled

object code.

list option Three possible options exist: L, N, or a number between 0-127.

L = list entire assembly on the printer.

N = turn entire listing off except for errors,

n = 0-127 and causes ASEM to skip listing of the

first n modules. List statements contained in

the source module will be in effect.

Default for the list option is 0. With 0 selected inten­

tionally or by default, the listing can be manually turned

on or off by typing an L or N on the console during the

execution of ASEM.

cross-reference

filename

The name of file to contain the cross-reference file

generated by ASEM during the assembly process.

5-2

The command ASEM and all filenames follow the convention of containing an optional

unit designator, i.e., ASEM/2,.... would load the assembler from logical unit 2.

Otherwise, all files are assumed to reside on logical unit 0.

EXAMPLES

1. ASEM,SRC

File SRC on unit 0 is assembled and listed. No object or cross-reference files

are created.

2. ASEM,SRC,SRCBIN/1,N

File SRC is assembled with no listing. Object file SRCBIN is written on unit 1.

3. ASEM/1,SRC/2,SRCXREF

The assembler is loaded from unit 1. File SRC on unit 2 is assembled and listed.

No object file is created but cross-reference file SRCXREF is written on unit 0.

4. COPY TEXT:xx*.MODI, MOD2,SRC

ASEM,SRC,SRCBIN,2,SRCXREF
4-1

(See Section 6 for a complete description of COPY.

Modules TEXT::ra ,M0D1 and M0D2 are combined into one source file SRC. SRC is

assembled, creating object file SRCBIN and cross-reference file SRCXREF. The

listing begins with the third module (M0D2).

5.4 XREF EXECUTION

The program XREF prints the cross-reference listing from the cross-reference file

created during an assembly. XREF is executed by typing the following command:

[XREF,][,ovos8-referenoe filename](,list option)

The xx portion of this filename differs depending on the level of the software present

in a system. To determine what the numbers for a system are, perform the LST command

of the FILES utility on the system diskette (see Section 6).

5-3

Line Entry Item Description

ovoss-vefevenee Name of a cross-reference file created by ASEM during

filename assembly of a program.

list option n n = a number between 0-127. No cross-reference listing is

Droduced for the first n modules.

If no list option is entered, the first module will be skipped and no global cross-
•k

reference will be produced. This would be the normal mode if file TEXT:xx is used

as the first module and a lengthy global cross-reference is not desired.

There must be at least 260 sectors available for a scratch file on the same diskette

with the cross-reference file. If not, the file must be copied to another diskette

before executing XREF. The scratch file is automatically allocated and deleted by

XREF.

EXAMPLES

1. XREF,SRCXREF,0

Cross-reference file SRCXREF is listed. A global cross-reference is also

produced.

2. XREF,SRCXREF/1

Cross-reference file SRCXREF on unit 1 is listed. The first module is skipped

and no global cross-reference is produced.

The xx portion of this filename differs depending on the level of the software present

in a system. -To determine what the numbers for a system are, perform the LST command

of the FILES utility on the system diskette (see Section 6).

-5-4

SECTION 6 - SYSTEM UTILITY SOFTWARE

6.1 INTRODUCTION

The system utilities provide the operator essential capability to (1) handle files,

(2) handle diskettes, (3) perform diagnostics, and (4) to display and set the sys­

tem clock. A utility entitled FILES, which comprises twelve separate functions,

provides the operator file handling capability. A collection of seven utilities serves

the operator with diskette handling capability. Four utilities supply the operator

with diagnostic tests and idskette repair capability. Finally, two utilities

entitled TIME and TIME SET permits the operator to display and set the system clock.

Throughout this section, all programs can be called using the program name/unit no.

convention, where the optional /unit no. suffix to a program name (filename) indicates

the logical unit number of the drive containing the diskette where the program (file)

is stored.

6.2 THE FILES UTILITY

FILES provides the operator the ability to examine and change the file labels in

tracks 0 and 1, the diskette file directory, of the specified diskette. See Table

2-3 for a description of a file label. In addition, FILES permits the operator to

write the volume label (see the System Programmer Reference Manual for a description

of a volume label) for a specified diskette. Also, FILES permits the operator to

display the file label(s) in the file directory for a single file, a group of files,

or all files on a diskette. Finally, FILES allows the operator to change FILES

operation from a diskette in one logical unit to another diskette in another logical

unit. Each function is selected by typing the appropriate command from the following

set: LST, FLS, ALO, DEL, TRU, REN, PRO, UNP, TYP, LBL, DAT, and UNT. Each of these

command keywords perform one of the functions described in the following paragraphs.

These commands are specified by the operator as a line entry after the system utility,

FILES, has been called into execution in the system. The format of the keyboard

line entry which calls FILES into execution is as follows.

[FILES{/unit no.)(,unit no.)

Line Entry Item

FILES{/unit no.)

unit

Explanation

The keyword FILES causes Command Processor to load

and execute the diskette file labeled FILES.

A decimal digit which specifies the logical unit con­

taining the diskette directory file labels which

FILES will access. If no value is specified, the

default condition specifies logical unit 0.

FILES provides a message containing the various commands available. The message

is output when the operator calls FILES into execution. Some of the individual

command keywords also display a message requesting required parameters. An example

of the FILES keyboard line entry is shown below.

FILES/0,1

ENTER COMMAND (L ST,FLS,ALO,DEL,TRU,REN,PRO,UNP,TYP,LBL,DAT, UNT) ̂

The utility FILES on the diskette in logical unit 0 is called to operate on the

directory file labels of the diskette in logical unit 1. FILES responds by displaying

the ENTER COMMAND... message.

Pressing the ESCape key permits the operator to exit FILES operation and return to

operation with the command processor.

6-2

6.2.1 List-File (LST) Command

The list-file option displays the contents of the file label(s) contained in the

diskette file directory for an individual file, a specific group of files or all

files on the diskette. The command parameter specifies which of these three possible

operations are performed. The format of the keyboard line entry for the list-file

command is shown below.

[LSTl(, filename or variable*)
4—1

Line Entry Item Explanation

LST The keyword LST informs FILES that the list-file

command is to be be executed.

filename or variable* If this optional line entry item is omitted, the

contents of all file labels in the diskette directory

are printed. If a single filename is specified, the

file label contents for that file in the directory is

printed. Specifying a single file precludes the use

of the variable*. Variable* permits the operator to

specify an ordered set of alphanumeric characters

followed by an asterisk (*). A maximum of seven

characters can be specified. Specifying the alpha­

numeric characters followed by an * causes the file

labels of all files in the directory whose filenames

begin with the letters specified by the ordered set

of alphanumeric characters to be printed.

An example of the keyboard line entry for the list-file command and the response

displayed by FILES is shown below.

LST,FILE*

The file labels in the diskette file directory for all files on the diskette whose

filenames begin with the word FILE are displayed by FILES.

6-3

F I L E S O N U N I T 0 V O L V O L 1 J . P R O G

N A M E T Y P R F R L N B O E E O E S E C S F P M V S E Q C R E A T E D E O D U N U S E D S E C S

F I L E S B 0 0 0 0 4 2 1 0 6 0 5 3 7 P 0 5 / 2 8 / 7 6 0 6 0 6 0
F I L E 1 A 0 0 0 6 4 2 3 6 4 2 3 1 0 7 / 0 9 / 7 6 6 4 2 4 0
F I L E 2 A 0 0 0 6 4 2 4 6 4 2 4 1 / / 6 4 2 5 0
F I L E 3 A 0 0 0 6 4 2 5 6 4 2 5 1 / / 6 4 2 5 1
F I L E 4 A 0 0 0 6 4 2 6 6 5 2 4 2 5 / / 6 5 0 1 2 4
F I L E 5 A 0 0 0 6 5 2 5 6 6 2 3 2 5 / / 6 5 2 6 2 4

U N U S E D F I L E N A M E S 0 6

U N U S E D S E C T O R S
B O E N U M B E R

3 1 0 1 8 5 0
6 6 2 5 4 8
7 0 0 4 1 7 9
E N T E R C O M M A N D

6-4

6.2.2 List-Filename (FLS) Command

The list-filename option displays the filename(s) and file type(s) in the file-

label (s) contained in the diskette directory for an individual file, a specific

group of files, or all files on a diskette. The command parameter specifies which

of these three possible operations are performed. The format of the keyboard line

entry for the list-filename command is shown below.

[FLS]filename or variable*)

4—J

Line Entry Item Explanation

FLS The keyword FLS informs FILES that the list-filename

command is to be executed.

filename or variable* If this optional line entry item is omitted, the file­

name and file type in the file labels contained in

the diskette directory for all files on diskette are

printed. If a single filename is specified, the file­

name and file type in the directory file label for

that file is printed. Specifying a single file

precludes the use of the variable*. Variable* permits

the operator to specify an ordered set of alphanumeric

characters followed by an asterisk (*). A maximum

of seven characters can be specified. Specifying the

alphanumeric characters followed by an * causes the

filename(s) and file type(s) in the file labels of all

files whose filenames begin with the letters specified

by the ordered set of alphanumeric characters to be

printed.

An example of the keyboard line entry for the list-filename command and the response

displayed by FILES is shown below.

FLS,FILE*

4—'

The filename and file type in the diskette file directory file label for all files

on the diskette whose names begin with word FILE are displayed by FILES.

6-5

F I L E S O N U N I T 0 V O L V O L 1 J . P R O G

N A M E T Y P E

F I L E S B
F I L E 1 A
F I L E 2 A
F I L E 3 A
F I L E 4 A
F I L E 5 A ,

U N U S E D F I L E N A M E S 0 6

U N U S E D S E C T O R S
B O E N U M B E R

3 1 0 1 8 5 0
6 6 2 5 4 8
7 0 0 4 1 7 9
E N T E R C O M M A N D

6-6

6.2.3 Allocate-File (ALO) Command

The allocate-file command allocates the amount of diskette storage space requested

by the operator for the new file specified by the command. FILES queries the

operator by displaying messages immediately after the operator enters the allocate-

file keyboard line entry. The format of the keyboard line entry for the allocate-

file command is shown below.

[ALO] (, filename)
4-»

Line Entry Item Explanation

ALO The keyword ALO informs FILES that the allocate-file

command is to be executed.

filename The name of the file to be allocated.

An example of the keyboard line entry for the allocate-file command is shown below.

ALO.FILE

4-1

Immediately after the operator makes the keyboard line entry, FILES prints the

following message.

SECTORS? (NO ENTRY=MAX AVAILABLE)3
4-J

TYPE? (A,B,P,S)A
4—1

RECORD FORMAT? (V,SPACE)
4^

RECORD LENGTH? (1-255).
4—1

The question, SECTOR?, asks how many sectors are to be allocated to the file. If

the operator does not specify an amount, all available sectors on diskette are allocated,

TYPE? asks what file type to assign to the file. Similarly, the question, RECORD

FORMAT?, asks what types of records the file will contain. RECORD LENGTH asks for

the size of the records (in bytes) to be used in the file. The default condition

specifies 0 bytes. RECORD LENGTH is not displayed if V (variable) RECORD FORMAT is

specified. The answer to these questions are placed in the file label of the file

6-7

being allocated. Thereafter, FILES displays the following message to indicate

successful completion of its operation.

FILE FILE ALLOCATE ON UNIT n VOL Volume id

6.2.4 Delete-File (DEL) Command

The delete-file command deletes the file specified by the command from the diskette.

The format of the keyboard line entry for the delete-file command is shown below.

TDEL][,filename]

Line Entry Item Explanation

They keyword DEL informs FILES that the delete-file

command is to be executed.

The name of the file to be deleted.

An example of the keyboard line entry for the delete-file command is shown below.

DEL.FILEl

If the file is not write-protected, FILES deletes the file and displays the following

message.

FILE FILE1 DELETED ON UNIT n VOL volume id

If the file specified is write-protected, a message similar to the following is

displayed. The message informs the operator that the file is protected, thus the

operator must perform an unprotect-file command on the file in order to delete it.

FILE filename WRITE PROTECTED ON UNIT n VOL volume id

6.2.5 Truncate-File (TRU) Command

The truncate-file command truncates any unused space from the end of the file

specified. The format of the keyboard line entry for the truncate-file command is

shown below.

[TRU][,filename]

DEL

filename

6-9

Line Entry Item Explanation

TRU The keyword TRU informs FILES that the truncate-file

command is to be executed.

filename The name of the file to be truncated.

An example of the keyboard line entry for the truncate-file command is shown below.

TRU,FILE2

If the file is not write-protected, FILES truncates the file and displays the

following message.

FILE FILE2 TRUNCATED ON UNIT n VOL Volume id

If the file specified is write-protectea, a message similar to the following is

displayed. The message informs the operator that the file is protected, thus the

operator must perform an unprotect-file command on the file in order to truncate it.

FILE filename WRITE PROTECTED ON UNIT n VOL volume id

6.2.6 Rename-File (REN) Command

The rename-file command assigns a new name to the file specified. The format of

the keyboard line entry for the rename-file command is shown below.

[REN][, filename]
<P

Line Entry Item Explanation

REN The keyword REN informs FILES that the rename-file

command is to be executed.

filename The name of the file to be renamed.

6-10

An example of the keyboard line entry for the rename-file command is shown below.

REN.FILE2
4->

Immediately after the rename-file command is entered on the keyboard, the following

message prints which requests the new name to be assigned to the file. The operator

responds by entering the new filename to be assigned to the file. In the example

the new filename to be assigned to FILE2 is NEWFILE.

NEW NAME?NEWFILE
4—1 c

FILES displays the following message to indicate successful completion of its operation.

FILE FILE2 RENAMED NEWFILE ON UNIT n VOL volume id

6.2.7 Write-Protect (PRO) Command

The write-protect command assigns the write-protect attribute to the file specified.

This prevents the file from being inadvertently written over, truncated, or deleted.

The format of the keyboard line entry for the write-protect command is shown below.

fPROl[, filename]
4—1

Line Entry Item Explanation

pRQ The keyword PRO informs FILES that the write-protect

command is to be executed.

filename The name of the file to receive the write-protect

attribute.

An example of the keyboard line entry for the write-protect command and the response

displayed by FILES is shown below.

PRO,FILE1
4ZJ

FILE FILE1 WRITE PROTECTED ON UNIT n VOL volume id

6-11

6.2.8 Unprotect-File (UNP) Command

The unprotect-file command removes the write-protect attribute from the file specified.

This permits the file to be written over, truncated, or deleted. The format of the

keyboard line entry for the unprotect-file command is shown below.

[UNP][, filename]

Line Entry Item Explanation

UNP The keyword UNP informs FILES that the unprotect-file

command is to be executed.

filename The name of the file from which the write-protect

attribute is to be removed.

An example of the keyboard line entry for the unprotect-file command and the response

displayed by FILES is shown below.

UNP,FILE1

FILE FILEl UNPROTECTED ON UNIT n VOL Volume id

6.2.9 Retype-File (TYP) Command

The retype-file command assigns a new file type attribute to the file specified.

Thus where before a file was typed as an ASCII file, it may be retyped to a binary

file, etc. The format of the keyboard line entry for the retype-file command is

shown below.

TTYP][, filename]

Line Entry Item Explanation

XYP The keyword TYP informs FILES that the retype-file

command is to be executed.

filename The name of the file whose file type is to be changed.

6-12

An example of the keyboard line entry for the retype-file command is shown below.

TYP,FILE1

Immediately after the retype-file command is entered on the keyboard, the following

message is displayed which requests the new file type to be assigned to the file.

The operator responds by entering the new file type to be assigned to the file:

A (ASCII), B (Binary), P (Program Load File), and S (System Load File). In the example

the operator responds by specifying an ASCII (A) file type.

NEW TYPE? A

Thereafter, FILES displays the following message to indicate successful completion

of its operation.

FILE FILE1 ASSIGNED TYPE A ON UNIT n VOL volume id

6.2.10 Label (LBL) Command

The label command writes a new volume label for the diskette contained in the diskette

logical unit specified in the initial keyboard line entry that called FILES into

execution. See the System Programmer Reference Manual for a description of volume

label. The format of the keyboard line entry for the label command is shown below.

[LBL]

Line Entry Item Explanation

LBL The keyword LBL informs FILES that the label command

is to be executed.

An example of the keyboard line entry for the label command is shown below.

LBL

6-13

Immediately after the label command is entered on the keyboard, the following

message prints which requests the new parameters to be placed in the volume label.

The operators respond by entering each parameter requested.

NEW VOL ID? V0L2

NEW OWNER ID? OWNER'S NAME
*-1

Thereafter, FILES displays the following message to indicate successful completion

of its operation.

NEW VOL ID V0L2 OWNER'S NAME WRITTEN ON UNIT n

6.2.11 Date-File (DAT) Command

The date-file command inserts a date in the diskette directory file label of the

file specified. The format of the keyboard line entry for the label is shown below.

[DAT][, filename]
1

Line Entry Item Explanation

DAT The keyboard DAT informs FILES that the date-file

command is to be executed.

filename The name of the file which will be assigned a date.

An example of the keyboard line entry for the date-file command is shown below.

DAT FILE1
4-J

Immediately after the date-file command is entered on the keyboard, the following

message prints which requests the date to be placed in the file label for the file.

The operator responds by entering the appropriate date.

ENTER DATE YYMMDD 760704
—

6-14

Thereafter, FILES displays the following message to indicate successful completion

of its operation.

FILE FILEl DATED ON UNIT n VOL Volume id

6.2.12 Change-Unit (UNT) Command

In the keyboard line entry which calls FILES into execution, one of the unit

designators which may optionally appear after the keyword FILES (see paragraph 6.2)

specifies the logical unit containing the diskette directory file labels which FILES

will access. If not specified, the default condition specifies logical unit 0.

The change-unit command permits the operator to change this unit designation from

one logical unit to another. The format of the keyboard line entry for the change-

unit command is shown below.

jJJNTl
4—1

Line Entry Item Explanation

UNT The keyword UNT informs FILES that the change—unit

command is to be executed.

Immediately after the operator makes the keyboard line entry, FILES prints the

following message which requests the new logical unit number. The operator responds

by entering the new unit number, 2.

UNT? 2
4-1

6.3 THE DISKETTE HANDLING UTILITIES

The diskette utilities are a collection of routines which permit the operator to

structure blank diskettes in the System 3200 diskette sector organization and to

transfer files from one diskette to another or from diskette to either the CRT or

printer. Seven routines perform these functions: FORMAT (format-diskette), INIT

(initialize—diskette), DUMP (dump—file), PRINT (print—file), COPY (copy—file), SAVE

(save-file), and DISKCOPY (copy-diskette).

6-15

6.3.1 FORMAT (Format-Diskette)

FORMAT allows the operator to format a blank diskette. This formatted diskette can ^

then be initialized by the INIT routine and thereafter used in the system. Formatting

a blank diskette involves writing the track and sector ID records of a specified

number of tracks on a diskette. Refer to the System Programmer Reference Manual for more

information on the diskette file structure. The line entry items accompanying the

FORMAT keyword specifies the unit containing the diskette to be formatted; which

tracks on the diskette are to be formatted, i.e., any group of tracks from track 0

through track 76; the pattern of data to be stored in the sectors being formatted;

and the interlacing scheme for assigning addresses to sectors. To further explain

what is meant by interlacing scheme, consider a track containing 26 sectors. The

operator assigns a value between 1 and 25 as the interlace value in the FORMAT line

entry, for example, 4. The value 4 specifies that once the ID record for sector 1

has been written, the fourth sector following sector 1 is formatted as sector 2, the

fourth sector from sector 2 as sector 3, etc. A value of 5 specifies that the fifth

sector from sector 1 is formatted as sector 2, etc. A track formatted with an inter­

lace value of 4 and another with a value of 5 is shown in the following illustration.

The FORMAT software assigns the sectors in several passes and thereafter writes the

sectors physically on the diskette. Note that the interlace value of 5 produces a

symmetrical arrangement of sectors; whereas, the value 4 does not. The symmetry ends

for the interlace value 4 after the second pass. Sector 13 is assigned to the 23rd

sector on the diskette, then FORMAT attempts to assign sector 14 to the fourth sector

from the 23rd sector but finds it already assigned as sector 1. It then places sector 14

in the next available sector after sector 1.

6-16

Interlace Value 4

1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 14 8 21 2 15 9 22 3 16 10 23 4 17 11 24 5 18 12 25 6 19 13 26 7 20

1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26

Ir itel "lace Value 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 22 17 12 7 2 23 18 13 8 3 24 19 14 9 4 25 20 15 10 5 26 21 16 11 6

1 2 3 4 5 6

7 8 9 10 11

12 13 14 15 16

17 18 19 20 21

22 23 24 25 26

PASS 1

PASS 2

PASS 3

PASS 4

PASS 1

PASS 2

PASS 3

PASS 4

PASS 5

In the diskette file structure, each sector contains a sector ID record which comprises

of one byte containing sector address and another containing track address. All sectors

of one track are unique from sectors of another track because of track address. FORMAT

writes both track and sector addresses.

The format of the keyboard line entry for FORMAT is shown below.

[FORMAT(/unit no.)][,unit no.][tfrom track][,to track][,pattern][interlace value]
— 4_J

FORMAT also provides the operator a prompting message in response to the operator

entering only the keyword FORMAT followed by a carriage return. This is shown in

the following example.

6-16A

FORMAT/1

ENTER UNIT,FROM TRACK,TO TRACK,PATTERN (R,I,HEX),OPT(l-25)

Line Entry Item Explanation

FORMAT/unit no.

unit no.

from track

to track

pattern

The keyword FORMAT initiates the program FORMAT.

A number other than 0 which indicates the logical

unit containing the diskette to be formatted.

A number from 0 through 76 which specifies the track

at which formatting will begin. This number must be

smaller than the number specified as the to track

line entry item.

A number from 0 through 76 which specifies the track

at which formatting will conclude. This number must

be the same or larger than the number specified as the

from track line entry item.

Three patterns of data can be specified represented by

the mnemonics listed below.

Mnemonic Pattern

I Pattern I specifies that a byte of data

formulated by multiplying the track address

t of a sector which is to be filled by the

constant 32 and adding the product to the

sector address s. Thereafter this sum is

ANDed with the hexadecimal value FF:

[(£ * 32) + S] AND FF(16) = I- This logical

product is then stored in the first byte of

a sector. For each subsequent byte in the

sector, the product is incremented by +1.

Thereafter, a calculation is made for the

next sector and the process continues until

all sectors are filled.

R Pattern R is a random pattern created by

generating and filling each sector with a

unique random number.

6-17

Line Entry Item Explanation

Mnemonic Pattern

pattern (cont.)

interlace value

(16) The variable xx..,s is meant to imply two (lb;
hexadecimal digits. These digits are the

8-bit value stored in each byte of every

sector.

The interlace value is any number from 1 through 25.

An explanation of the purpose of the value is contained

in the description of the Format-Diskette program.

Once the keyboard line entry is made, FORMAT executes up to a point then prints the

following message:

DISK FORMATTER, ENTER Y TO CONTINUE

To continue, the operator must type an upper case Y after which FORMAT completes by

typing: ALL DONE.

6.3.2 INIT (Initialize-Diskette) ^

INIT initializes tracks 0 and 1 of any diskette mounted on a diskette drive other

than logical unit 0. INIT stores the entry DDR1 in the LABEL ID field of sectors

8 through 26 of the diskette track 0 and 1 through 26 of track 1. Sectors 8 through

26 of track 0 and 1 through 26 of track 1 form the diskette file directory. Each

sector contains a file label which describes each file on the diskette. The LABEL

ID field of each file label contains an HDR1 or DDR1 entry to indicate that the file

described by the file label is either an active or a null file, respectively. By

inserting DDR1 in sectors 8 through 26 of track 0 and 1 through 26 of track 1, INIT

creates an empty diskette. See the diskette file structure description in the System

Programmer Reference Manual for a discussion of the diskette file structure. The

format of the keyboard line entry for INIT is shown below.

[INIT{/unit no.)](,unit no.)

6-18

INIT also provides the operator a prompting message in response to the operator

entering only the keyword INIT followed by a carriage return. This is shown in the

following example.

INIT
4^

ENTER UNIT NO.

Line Entry Item Explanation

INIT{Iunit no.)

unit no.

The keyword INIT initiates the program INIT.

A number other than 0 which indicates the logical

unit containing the diskette to be initialized.

Once the keyboard line entry is made, INIT executes up to a point then prints the

following message:

DISK INITIALIZER, ENTER Y TO CONTINUE

To continue, the operator must type an upper case Y after which INIT completes

by printing: ALL DONE.

6.3.3 DUMP (Dump-File)

DUMP displays the file specified in the keyboard line entry on the printer or CRT.

The contents of the file are represented in hexadecimal and compressed ASCII in the

printout or on the CRT screen. Compressed ASCII is ASCII characters with blank

suppression. In addition, the track number and sector number are likewise displayed.

There are two formats for the keyboard line entry for DUMP. The first contains

the keyword DUMP followed by a filename. The second contains the keyword DUMP

followed by the track and sector number of the location on diskette where the dump

will begin followed by the track and sector number of the location on diskette where

the dump will end. Each of these is listed below.

6-19

First Format:

[DUMP{/unit no.)][,filename]

Second Format:

[DUMP(/unit no.)][,unit\[,from-trk/seo][,to-trk/seo]

DUMP also provides the operator a prompting message in response to the operator

entering only the keyword DUMP followed by a carriage return. This is shown in the

following example.

DUMP

ENTER: UNIT,FROM-TRK/SEC,TO-TRK/SEC OR FILENAME

Line Entry Item

DUMP(/unit no.)

filename

unit no.

Explanation

The keyword DUMP initiates the program DUMP.

The name of the file on diskette that is to be dumped.

Specifies the logical unit containing the diskette from

which data is to be dumped.

from-trk/sec The track number followed by a comma (,) delimiter

followed by a sector number of the location on diskette

at which the dump will begin.

to-trk/see The track number followed by a comma (,) delimiter

followed by a sector number of the location on the

diskette at which the dump will end.

Immediately after the operator enters a keyboard line entry for DUMP, the requested

file or requested track(s) and sector(s) are displayed. Below is shown samples

of the two types of keyboard line entries followed by a sample printout produced

by DUMP.

6-20

Keyboard Line Entry First Format:

DUMP.AFILE
-^-j

Keyboard Line Entry Second Format:

DUMP,1,25,3,25,4
4—J

Sample DUMP Printout:

TRACK 25 SECTOR 3

12 03 45 51 55 12 03 31 32 12
49 4E 47 20 53 45 43 54 4F 52
44 49 4E 47 20 54 52 41 43 4B
12 04 45 51 55 12 03 31 34 12
58 54 20 52 45 4C 41 54 49 56
4F 52 20 4E 42 52 2E 0D 12 07
45 4E 44 0D 12 07 4C 49 53 54
4F 52 47 12 03 55 3A 42 45 47

)

TRACK 25 SECTOR 4

54 12 03 4D 56 49 12 03 41 2C
41 4C 4C 20 20 53 3A 50 52 54
12 03 41 2C 23 41 0D 12 08 43
3 A 50 52 54 0D 12 08 4D 56 49
27 0D 12 08 4D 56 49 12 03 43
50 4C 4E 4C 12 04 4D 4F 56 12
08 43 41 4C 4C 20 20 53 3A 50
4F 56 12 03 42 2C 43 0D 12 08

ALL DONE

44 3D 45 4E 44 *. . EQU..12..D=END
20 45 3D 45 4E *ING SECTOR, E=EN
0D 46 3A 52 53 *DING TRACK..F:RS
44 45 3D 4E 45 *..EQU..14..DE=NE
20 5.3 45 43 54 *XT RELATIVE SECT
47 45 0D 12 07 *OR NBR PGE . . .
20 31 OD 12 08 *END. . . LIST 1...'
0D 50 52 49 4E *ORG . . U: BEG . .PRIN'

44 0D 12 08 43 *T..MVI..A,#D...C
12 08 4D 56 49 *ALL S:PRT...MVI
4C 4C 20 20 53 *. .A,#A...CALL S
03 45 2C 27 30 *:PRT...MVI..E,10
31 33 30 OD OD *' . ..MVI..C,130 . .
41 2C 45 OD 12 *PLNL..MOV..A,E. .
54 0D 12 08 4D *.CALL S:PRT...M
56 49 12 03 41 *OV..B,C...MVI..A

OD
2C
2E
OD
45
50
20
OD

23
OD
41
12
2C
03
52
4D

6-21

6.3.4 PRINT (Print-File)

PRINT displays the file specified in the keyboard line entry on the printer or CRT.

The contents of the file are represented in ASCII without compression. This is in

contrast to the dump-file utility which displays the file with compression. One

additional feature of the PRINT utility on CRT systems is the ability to print the

file contents and not the keyboard line entry that calls the PRINT utility. This is

accomplished by setting switch 0 on prior to making the PRINT keyboard line entry.

Thereafter, the keyboard line entry will appear on the CRT and the file contents

will appear on the printer. The format of the keyboard line entry for PRINT is

shown below.

[PRINT{/unit no.)] [, filename]

Line Entry Item Explanation

PRINT(/unit no. The keyword PRINT initiates the program PRINT.

filename The name of the file on diskette that is to be printed

A sample of PRINT operation is shown in the following example.

PRINT,FILE1 =̂J

ORG #2000

START XRA A
STA #999
RET

END START

ALL DONE

6-22

6.3.5 COPY (Copy-File)

COPY copies or appends the contents of a file or files specified as source into or

onto a file specified as destination. The source and destination files are input

together in the keyboard line entry separated by commas. When more than one filename

is specified, the last filename is assumed to be the destination file. The destination

file must already be allocated. (See the allocate-file command of system utility,

FILES, for file allocation.) The format of the keyboard line entry for COPY is shown

below. If specifying options append, protect, and/or close, the letters A, P, or C

must procede the option specified. In addition, the options may be specified in any

order.

[COPY][,source l(/unit no.),source 2 (Iunit no.),...source n(I unit no)

destination (./unit no.)] (,A=append) (,?-protect) (,C=close)
4-1

COPY also provides the operator a prompting message in response to the operator

entering only the keyword COPY followed by a carriage return. This is shown in the

following example.

COPY

ENTER: SOURCE FILENAME(S),DEST FILENAME(,OPT)

OPT ARE:

C=0(CLOSE AT EOD) C=1(CLOSE AT EOE)

C=2(TRUNK AT EOD)

P=1(PROTECT) A=1(APPEND)

ENTER COMMAND

Line Entry Item Explanation

COPY{/unit no.) The keyword COPY initiates the program COPY.

source 1Uunit no.)9

source 2(/unit no.),...

source n(/unit no.)

The name of the file or files to be used as the source

in the transfer.

6-23

Line Entry Item Explanation

destination/unit no.

A=append

V=protect option

C=close option

The name of the file to be used as the destination in

the transfer. The file must exist on the destination

diskette, not be write-protected, and have sufficient

space allocated to contain the files being copied.

If the append option is specified, the destination

file initial contents are preserved; otherwise, the

initial contents are overwritten.

The line entry item can take the value 0 or 1. If the

value 0 is specified, COPY overlays the contents of

the destination file. If a 1 is specified, COPY appends

the source file to the destination file from end-of-data

(EOD) to end-of-extent (EOE). EOD is the last location

in the file containing data. EOE is the last location

allocated to the file. In order for an append operation

to occur, EOE must exceed EOD by the amount of space

required to contain the source file. If not specified d

the source file overlays the destination file.

This line entry item specifies the type of file pro­

tection to be given the destination file. The type of

protection can be specified by entering 0 or 1 as the

protect option or by omitting the line entry item

altogether. Specifying a 0 directs COPY to leave

destination file unprotected, while specifying a 1

directs COPY to write-protect the file.

The line entry item specifies how the file copied on

the destination diskette is to be closed. The close

option takes the form of a number from 0 through 3.

The numbers specify the following close options. If

the line entry is omitted, the default condition is

C=0.

6-24

Line Entry Item Explanation

C=close option (Continued) close option Meaning

0 Close file at EOD (end-of-data)

1 Close file at EOE (end-of-extent)

2 Close file at EOD and truncate file to

EOD.

Default conditions exists for each line entry item omitted by the operator. The default

for 1=file type is all file types; for the C=close option, close file at EOD (C=0);

and for the P=pvotect option, do not write-protect (P=0).

COPY indicates successful completion of its operation by printing the message:

FILES COPIED TO FILE filename ON UNIT unit number ARE

filename 1

filename 2

source unit no.

source unit no.

filename n source unit no. ALL DONE

6-25

A sample of COPY operation is shown in the following example.

COPY,SFILE1,SFILE2,DFILE/1,P=0,A=0,C=0
4—1

FILES COPIED TO FILE DFILE ON UNIT 1 ARE

SFILE1 0

SFILE2 0 ALL DONE

In the example, the third file, DFILE, is interpreted by COPY to be the destination

file. Note that the /I designation on DFILE informs COPY that the destination file

is on unit 1. If not otherwise specified, COPY assumes that all files are on unit 0.

6.3.6 SAVE (Save-File)

SAVE allows the operator to move selected files from one diskette (source) to

another diskette (destination). The keyboard line entry input permits the operator M

to save all files from the source diskette on the destination diskette, to save ^

only files of a specific file type, or to save files by filename. SAVE allocates

space for the files being saved on the destination diskette. (See the allocate-file

command of system utility, FILES, for an explanation of file allocation.) The

format of the keyboard line entry for SAVE is shown below. See the diskette file

structure description in the System Programmer Reference Manual for more information

on the terms used in this paragraph (e.g., file type, EOD, EOE, etc.).

[SAVE{/unit no.)][, filename 1,... filename n, and/or filename*, and/ov * filename, and/or

* filename *3 ccnd/ov .. *cc*) (,T=file type) (,¥=pvoteet option)(,C=close option)

(,S=souvoe unit)(,D=destination unit)
^=J

SAVE also provides the operator a prompting message in response to the operator

entering only the keyword SAVE followed by a carriage return. This is shown in the

following example.

6-26

SAVE

ENTER FILENAME(S)(*) (,OPT)

OPT ARE:

S=SOURCE D=DEST T=TYPE(S)

C=0(CLOSE AT EOD) C=1(CLOSE AT EOE)

C=2(TRUNK AT EOD) C=4(ALO ALL CLOSE AT EOD)

C=5(ALO ALL CLOSE AT EOE)

ENTER COMMAND

Line Entry Item

SAVE(/unit")

filename 1j.
filename*
* filename
* filename*

^X^X^ ^X
*

.filename n

Explanation

The keyword SAVE initiates the program SAVE.

This optional line entry item permits the operator to

specify to be saved one or more filename and/or an

asterisk (*) followed by all or part of a filename,

and/or all or part of a filename followed by an

asterisk, and/or all or part of a filename preceded

and followed by an asterisk. An asterisk before a

filename causes SAVE to save all files having the letters

following the asterisk at the end of their filename.

An asterisk following a filename causes SAVE to save

all files having the letters preceding the asterisk

at the start of their filename. An asterisk on either

side of a filename causes SAVE to save all files having

the letters enclosed by the asterisks in the middle of

their filename. In addition, the line entry item also

permits the operator to specify to be saved all filenames

which have the sequence of letters *x*x*...*x* specified
in the line entry. As shown, the sequence set off by

asterisks, F*I*L*E*, will save all files whose filenames

contain the order sequence of letters "FILE" anywhere in

the name. A maximum of eight characters can be specified.

Specifying * alone saves all file from unit 0 to unit 1.

6-27

Line Entry Item Explanation

T=file type(s) Four types of files can be stored on a system diskette

and all files on a diskette must be classified as one

of these four types. Thus the SAVE line entry permits

the operator to specify all files of a given type(s) on

the source diskette are to be saved. The file types

are specified by letter mnemonics following the "T="

position of the line entry. The "T=" portion of the

line entry must precede the mnemonic(s). The mnemonics

which can be entered as well as the type of file each

represents is shown below.

Mnemonic File Type

P Program Load File

A ASCII Data File

B Binary Data File

S System Program Load File

C=close option This optional line entry item specifies how each file

saved on the destination diskette is to be closed. The

close option takes the form of a number from 0 through

5. The numbers specify the following close options.

close option Meaning

0 Close file at EOD (end-of-data).

1 Close file at EOE (end-of-extent).

2 Close file and truncate at EOD.

4 Allocate all available diskette space

to file but close file at EOD.

5 Allocate all available diskette space

to file but close file at EOE.

6-28

Line Entry Item Explanation

D= destination unit

S= source unit A decimal digit which specifies the logical unit

containing the source diskette. If not specified,

the default is to logical unit 0.

A decimal digit which specifies the logical unit

containing the destination diskette. If not specified

default is to logical unit 1.

Default conditions exists for some line entry items omitted by the operator. The

default condition for the T=file type(s) option is T=P,A,B,S (i.e., all types); for

the C=close option C=0 (close file at EOD); for the S=source unit, unit 0; and for

D=destination unit, unit 1. Specifying SAVE * causes SAVE to copy all files from unit 0

unit 1,

A sample of SAVE operation is shown in the following example.

SAVE,AFILE,BFILE,CFILE,FILE*,T=A,S=1,D=2,C=2

FILES SAVED FROM UNIT 1 TO UNIT 2 ARE: *

BFILE

CFILE

FILE1

FILE2

FILE3 ALL DONE

Note that the operator specified a file labeled AFILE but SAVE did not list the

filename among those that were saved. For purposes of this example, AFILE has been

assigned a file type of P (program file). Because of its file type SAVE did not

save AFILE since the operator keyboard line entry specified a T=A option, which

instructed SAVE to save only files assigned an ASCII file type.

6-29

6.3.7 DISKCOPY (Copy-Diskette)

DISKCOPY copies the contents of a diskette specified as source into a diskette

specified as destination. The diskette specified as destination should be an empty

or scratch diskette which contains no wanted files. DISKCOPY overwrites all files,

protected or not. The format of the keyboard line entry for DISKCOPY is shown below.

[DISKCOPY{/unit no.)][,source unit][,destination unit]

DISKCOPY also provides the operator a prompting message in response to the operator

entering only the keyword DISKCOPY followed by a carriage return. This is shown in

the following example.

DISKCOPY

ENTER SOURCE UNIT, DESTINATION UNIT

Line Entry Item Explanation

DISKCOPY{Iunit no.)

source unit

The keyword DISKCOPY initiates the program DISKCOPY.

The number of the logical unit containing the diskette

to be copied.

destination unit The number of the logical unit containing the empty

or scratch diskette.

DISKCOPY indicates successful completion of its operation by printing the message:

ALL DONE.

A sample of DISKCOPY operation is shown in the following example.

DISKCOPY,1,2
«—I

ALL DONE

6-30

6.4 THE DIAGNOSTIC UTILITIES

Four diagnostic utilities permit the operator to exhaustively test a diskette and

to repair individual sectors of a diskette, to test system memory, to test diskette

compatibility with other diskette drives, and to exhaustively test the ability of

a diskette drive to write and read without errors: FIXD, MEMTEST, COMPAT, and EXOR.

6-31

6.4.1 FIXD (Fix-Diskette)

FIXD permits the operator to load one sector from diskette into memory; to display ^

in hexadecimal or uncompressed ASCII one or more bytes from the sector or the entire

sector on the printer or CRT; to modify one or more bytes of the sector in memory

byte-by-byte or to fill a number of bytes with a hexadecimal value; and to write

the modified sector in memory back to a specified location on the diskette. In

addition, FIXD permits the operator to read the entire diskette once to determine

if hardware read errors occur or to read from the diskette continuously to detect

read errors. Each of these individual functions is selected by typing the appro­

priate keyword from from the following set: LOAD, GET, VERIFY, DUMP, PRINT, ASCII,

MODIFY, FILL, WRITE, SCAN, EXOR, and HELP.

These keywords are specified by the operator as a line entry after FIXD has been

called into execution. The format of the keyboard line entry which calls FIXD into

execution is as follows: [FIXD{/unit)]. FIXD acknowledges a correct load by typing

an asterisk (*). Thereafter, the operator can enter the command HELP, LOAD or GET.

HELP prints a prompting message listing the keywords and required parameter needed

to initiate each of the functions of FIXD. LOAD and GET move a sector from diskette

into memory. One of these must be performed before any of the other functions can ^

be performed.

6-32

6 . 4 . 1 . 1 H E L P (P r i n t - P r o m p t i n g - M e s s a g e)

H E L P p r i n t s a p r o m p t i n g m e s s a g e t o t h e o p e r a t o r w h i c h l i s t s t h e k e y w o r d s o f t h e

f u n c t i o n s p e r f o r m e d b y F L X D a l o n g w i t h t h e p a r a m e t e r s r e q u i r e d t o i n i t i a t e e a c h

f u n c t i o n . T o i n i t i a t e t h i s f u n c t i o n , t h e o p e r a t o r t y p e s t h e k e y w o r d H E L P f o l l o w e d

b y a c a r r i a g e r e t u r n . F I X D r e s p o n d s b y t y p i n g t h e f o l l o w i n g :

O P T I O N S A R E :
L O A D T R A C K S E C T O R U N I T
G E T T R A C K S E C T O R U N I T
D U M P (F R O M - B Y T E) (T O - B Y T E)
P R I N T (F R O M - B Y T E) (T O - B Y T E)
A S C I I F R O M - B Y T E A S C I I - S T R I N G
M O D I F Y F R O M - B Y T E H E X - D A T A
F I L L (F R O M - B Y T E) (T O - B Y T E) , H E X - V A L U E
W R I T E (T R A C K) (S E C T O R) (U N I T)
V E R I F Y (T R A C K) (S E C T O R) (U N I T)
S C A N U N I T
E X O R U N I T
H E L P ?

E a c h o f t h e s e f u n c t i o n s i s d e s c r i b e d i n t h e f o l l o w i n g p a r a g r a p h s .

6 - 3 3

6.4.1.2 LOAD (Load-Sector)

LOAD loads into memory one sector from the track, sector and diskette logical unit ̂

specified. This function or the GET function must be performed before any of the

other FIXD functions can be performed since this function moves the diskette sector

contents into memory where the other FIXD functions can occur. The format of the

keyboard line entry for LOAD is shown below.

[LOAD][,track][,sector][,unit](
_Cj

Line Entry Item Explanation

LOAD

track

lector

unit

The keyword LOAD informs FIXD that the load function

is to be executed.

The number of the tract (0-76) containing the sector

to be read into memory.

The number of the sector (1-26) within the track

to be read into memory.

The logical unit number of the drive containing the

diskette from which the sector is to be read.

After the keyboard line entry for the load function is made, FIXD prints an asterisk

(*) to indicate that the function has been completed. An example of the keyboard line

entry for LOAD is shown below.

LOAD.1.2.0

Sector 2 in track 1 of the diskette in logical unit 0 is loaded into memory.

6-34

6.4.1.3 GET (Get-Sector)

GET loads into memory0one sector from the track, sector, and diskette logical unit

specified in the same way as LOAD, however, LOAD makes one attempt to perform the

load function and if an error occurs does not retry the operation. GET on the

other hand will retry the operation until the load is effected or it is stopped

by the operator typing any keyboard character. The format of the keyboard line

entry is shown below.

[GET][,track][,sector][,unit]

Line Entry Item Explanation

GET

track

sector

unit

The keyword GET informs FIXD that the GET function

is to be executed.

The number of the tract (0-76) containing the sector

to be read into memory.

The number of the sector (1-26) within the track

to be read into memory.

The logical unit number of the drive containing the

diskette from which the sector is to be read.

After the keyboard line entry for the get function is made, FIXD prints an asterisk

(*) to indicate that the function has been completed. An example of the keyboard line

entry for GET is shown below.

GET,1,25,1

Sector 25 in tract 1 of the diskette in logical unit 1 is loaded into memory.

6-35

6.4.1.4 DUMP (Hex-Dump)

DUMP displays all or selected bytes of the sector loaded in memory from diskette

in hexadecimal on the printer or CRT. The format of the keyboard line entry for

DUMP is shown below.

[DUMP](,from-byte-no.)(,to-byte-no.) |
j

Line Entry Item Explanation

The keyword DUMP informs FIXD that the DUMP function

is to be performed

The number of the byte within the sector (1-128) at

which the dump is to begin.

The number of the byte within the sector (1-128) at

which the dump is to conclude. This number must

be the same or larger than the number specified for the

start of the dump.

If the optional start- and end-byte numbers are not specified, the entire sector is

displayed. An example of the display that occurs after the DUMP keyboard line entry

is made is shown below. Observe that each byte in the sector is numbered from 1

through 128.

DUMP

from-byte-no.

to-byte-no.

DUMP,1,128 j

BYTE DATA
1 CF 20 20 20 20 20 20 20 20 20 20 20 20 20 2F 20

17 20 2F 20 20 20 20 36 35 20 32 36 20 20 20 20 20
33 20 20 32 34 20 20 20 20 20 20 20 20 0D OA 00 OA
49 1 1 55 4 E 55 53 45 44 20 46 49 4 C 45 20 4 E 41 4D
65 45 53 20 20 30 37 10 0D OA OA 55 4 E 55 53 45 44
81 20 53 45 43 54 4 F 52 53 0D OA 20 42 4 F 45 20 20
97 20 4 E 55 4 D 42 45 52 0D OA 00 37 30 20 30 34 20

1 1 3 20 20 20 31 37 39 0D OA 00 55 4 E 49 54 3F 20 00

6-36

6.4.1.5 PRINT (ASCII-Dump)

PRINT displays all or selected bytes of the sector loaded in memory from diskette

in ASCII on the printer or CRT. The format of the keyboard line entry for PRINT

is shown below.

[PRINT](,fvom-byte-no.)(,to-byte-no.)

Line Entry Item

PRINT

from-byte-no.

to-byte-no.

Explanation

The keyword PRINT informs FIXD that the PRINT function

is to be performed.

The number of the byte within the sector (1-128)

at which the dump is to begin.

The number of the byte within the sector (1-128)

at which the dump is to conclude. This number

must be larger than the number specified for the

start of the dump.

If the optional start— and end—byte numbers are not specified, the entire sector

is displayed. An example of the display that occurs after the PRINT keyboard line

entry is made is shown below.

PRINT,1,80

000

ORG #2000

START X R A A
STA #999
RET

END START
ORG #2000

6-37

6.4.1.6 ASCII (Replace-ASCII-Data)

ASCII replaces selected consecutive bytes of the sector loaded in memory from

diskette with the ASCII data specified in the ASCII keyboard line entry. The

format of the keyboard line entry for ASCII is shown below.

[ASCII][,from-byte-no][,ASCII string]

Line Entry Item Explanation

ASCII The keyword ASCII informs FIXD that the ASCII function

is to be performed.

from-byte-no. The number of the byte within the sector (1-128)

at which the data replacement is to begin.

ASCII string The ASCII data to be used to replace existing data

in the sector.

Once the keyboard line entry is made, FIXD prints an asterisk (*) to indicate that

the ASCII replacement has been made. An example of the ASCII keyboard line entry

is shown below. ^

ASCI1,1,PROGRAM START |

The contents of bytes 1 through 13 of the sector in memory is replaced with the

ASCII string PROGRAM START. Each ASCII character occupies one byte.

6-38

6.4.1.7 MODIFY (Replace-Hex-Data)

MODIFY replaces selected consecutive bytes of the sector loaded in memory from

diskette with the hexadecimal data specified in the MODIFY keyboard line entry.

The format of the keyboard line entry for MODIFY is shown below.

[MODIFY][,from-byte-no.][thex data] f

Explanation

The keyword MODIFY informs FIXD that the MODIFY

function is to be performed.

The number of the byte within the sector (1-128)

at which the data replacement is to begin.

The hexadecimal data to be used to replace existing

data in the sector.

Once the keyboard line entry is made, FIXD prints an asterisk (*) to indicate that

the hexadecimal replacement has been made. An example of the MODIFY keyboard line

entry is shown below.

MODIFY,17,AB,12,IF j

The hexadecimal contents of bytes 17, 18, and 19 of the sector in memory is replaced

with the hexadecimal number AB^^, 12^^, and 1F^^, respectively.

Line Entry Item

MODIFY

fvom-byte-no.

hex data

6-39

6.4.1.8 FILL (Fill-With-Hex-Value)

FILL replaces selected consecutive bytes of the sector loaded in memory from diskett

with the hexadecimal value specified in the FILL keyboard line entry. The format

of the keyboard line entry for FILL is shown below.

[FILL] (, from-byte-no.) {,to-byte-no.) [,hex-valt^] |

Line Entry Item Explanation

FILL

from-byte-no.

to-byte-no.

hex-value

The keyword FILL informs FIXD that the FILL function

is to be performed.

The number of the byte within the sector (1-128)

at which the fill replacement is to begin.

The number of the byte within the sector (1-128)

at which the fill replacement is to conclude. This

number must be larger than the number specified for

the start of the fill.

A one- or two-digit hexadecimal value which will

be used to fill the bytes specified.

If the optional start- and end-byte numbers are not specified for the fill, the

entire sector is filled with the hexadecimal value specified. Once the keyboard

line entry is made, FIXD prints an asterisk (*) to indicate that the hexadecimal

fill has been made. An example of the keyboard line entry for FILL is shown below.

FILL,1,16,CF

Bytes 1 through 16 of the sector in memory is filled with the hexadecimal value

CF(16)"

6-40

6.4.1.9 WRITE (Write-Sector-To-Diskette)

WRITE stores the sector in memory into the track and sector specified. Once the

write occurs, FIXD also performs a verify to ensure that the data in memory and

the data stored on the diskette is the same. The format of the keyboard line

entry for WRITE is shown below.

[WRITE][,track][,sector][,un£t] j

Line Entry Item Explanation

WRITE The keyword WRITE informs FIXD that the WRITE function

is to be performed.

track The number of the track (0-76) containing the sector

in which the memory sector is to be written.

sector The number of the sector (1-26) within the track

in which the memory sector is to be written.

unit The logical unit number of the drive containing the

diskette in which the memory sector is to be written.

After the keyboard line entry for the WRITE function is made, FIXD prints an asterisk

(*) to indicate that the function has been completed. An example of the keyboard

line entry for WRITE is shown below.

WRITE,25,1,1

The memory sector is written into track 25, sector 1 of the diskette in logical

unit 1.

6-41

6.4.1.10 VERIFY (Verify-Memory-With-Diskette)

VERIFY compares the sector in memory with the sector on the diskette specified. If

the data in memory is the same as that on diskette, FIXD prints an asterisk (*);

otherwise, FIXD, prints the following message to inform the operator of the error:

BAD DATA READ

The format of the keyboard line entry for VERIFY is shown below.

r VERIFY1T.track1\.sector][.unit]

Line Entry Item Explanation

VERIFY

track

sector

unit

The keyword VERIFY informs FIXD that the VERIFY

function is to be performed.

The number of the track (0-76) containing the

sector with which the memory sector is to be

compared.

The number of the sector (1-26) within the track

with which the memory sector is to be compared.

The logical unit number of the drive containing the

diskette containing the diskette sector with which

the memory sector is to be compared.

An example of the keyboard line entry for VERIFY is shown below.

VERIFY.25.1.1

The memory sector is compared with sector 1 of track 25 on the diskette in logical

unit 1.

6-42

6.4.1.11 SCAN (Read-Diskette)

SCAN checks for proper operation of the diskette. It reads an entire diskette one

time and concurrently monitors the diskette hardware status to determine if any

read errors occur during the read operation. If no read errors occur, FIXD displays

an asterisk (*); otherwise, FIXD displays one of the following messages to inform

the operator of the error.

STATUS N2 = nn FATAL READ ERROR TRACK nn SECTOR nn
STATUS N2 = nn BAD DATA READ TRACK nn SECTOR nn
SOFT ERROR TRACK nn SECTOR nn

The soft-error message states that FIXD successfully completed a read operation;

however, the operation required up to five attempts before succeeding. A bad-data-read

or fatal-read-error message indicates that an attempted read operation could not be

successfully completed in five attempts. The significance of the 2-digit hexadecimal

value after the equals (=) sign is detailed in Appendix B.

The format of the keyboard line entry for SCAN is shown below.

[SCAN][,unit]

Line Entry Item Explanation

unit

SCAN The keyword SCAN informs FIXD that the SCAN function

is to be performed

The logical unit number of the drive which will be

checked.

An example of the diskette line entry for SCAN is shown below. FIXD reads the

entire diskette in the diskette drive configured as logical unit 1.

SCAN,1

6-43

6.4.1.12 EXOR (Read-Diskette-Continuously)

EXOR checks for proper operation of the diskette. Like SCAN, it reads an entire

diskette; however, unlike SCAN, EXOR continues the reading of the diskette until

halted by the operator. As it reads, EXOR concurrently monitors the diskette

hardware status to determine if any read errors occur during the read operation.

If no read errors occur, EXOR continues reading until halted by the operator,

typing any keyboard character. If an error occurs, one of the following messages

is displayed to inform the operator of the error.

STATUS N2 = nn FATAL READ ERROR TRACK nn SECTOR nn
STATUS N2 = nn BAD DATA ERROR TRACK nn SECTOR nn
SOFT ERROR TRACK nn SECTOR nn

The soft-error message states that FIXD successfully completed a read operation;

however, the operation required up to five attempts before succeeding. A

bad-data-read or fatal-read-error message indicates that an attempted read

operation could not be successfully completed in five attempts. The significance

of the 2-digit hexadecimal value after the equals (=) sign is detailed in

Appendix B.

The format of the keyboard line entry for EXOR is shown below.

[EXOR][,unit]

Line Entry Item Explanation

EXOR The keyword EXOR informs FIXD that the EXOR function

is to be performed

unit The logical unit number of the drive which will be

checked.

An example of the keyboard line entry for EXOR is shown below. FIXD reads the

entire diskette in the diskette drive configured as logical unit 1 continuously.

EXOR,1
«—1

6-44

6.4.2 MEMTEST (Memory-Test)

MEMTEST performs two tests on the system memory. The first test checks the

likelihood of the memory to drop individual bits. The second test checks the

integrity of the memory refresh hardware. Each test can be inhibited by control

panel switches 0 and 1: switch 0 inhibits the first test and switch 1 inhibits

the second test. Once initiated, MEMTEST continues execution until halted by

the operator placing the RUN/STOP switch to STOP and pressing the RESET switch.

To initiate MEMTEST, type MEMTEST followed by a carriage return. MEMTEST responds

by displaying the message: MEMORY TEST. Immediately afterwards, the following

sequence of numbers appears in the control panel column position indicator: 601

through 6xx (depending on memory size: a 20K system displays 601 - 606, a 64K system,

601 - 615), 621, 600, and 620 Once the sequence in the indicators completes, a

short time passes and then the following message is displayed: PASS # 1. After

this display occurs, MEMTEST begins its operation again by starting the sequence

in the column position indicator once more.

If MEMTEST detects an error during its execution, it displays one of the following

messages:

L°C nnnn(i6) = nn(16) S/B nn(16)
PARITY ERROR AT LOC nnnn^^ STATUS = nn^^

If the first message the hexadecimal number nnnn^^ is the location where the

failure occurred. The hexadecimal number nn^^ following the equal sign is the

data from the location specified, while the hexadecimal number nn(16) following

S/B indicates the value which should have been at that location.

In the second message, the hexadecimal number nnnn^^ specifies the location in

memory where the error was detected. The most significant digit of the hexadecimal

number nn. can be either a zero or one. A zero in this position indicates that
(16)

the parity error occurred during a processor memory fetch. A one in this position

indicates the parity error occurred during a memory fetch by the direct memory

access (DMA) hardware. The least significant digit of the 2-digit hexadecimal

number specifies in which of 16 possible 4K clusters of memory locations the

location producing the parity error is found.

6-45

6.4.3 COMPAT (Diskette-Compatibility-Test)

COMPAT tests the compatibility of diskette drives in a system with one another.

The compatibility test ensures that each drive in a system writes on a diskette

in such a manner that all other drives in the system can easily read the data

that has been written. To test compatibility, COMPAT writes a test pattern into

four tracks of a scratch (empty) diskette on the first diskette drive (logical

unit) being tested, then, instructs the operator to move the scratch diskette to

the next drive being tested and then writes the test pattern in four different

tracks of the diskette. This sequence repeats until all drives being tested have

been written into four tracks.

When COMPAT completes its writing operation, it instructs the operator to place

the scratch diskette back on the first logical unit being tested. Then COMPAT

reads all previously written tracks to ensure that the test pattern can be

retrieved faithfully by the logical unit being tested. Once the first logical

unit has read the test pattern from all previously written tracks, COMPAT directs

the operator to move the scratch diskette to the next logical unit being tested

and the read operation repeats. This entire sequence repeats until all logical

units have read the test pattern from all previously written tracks of the

scratch diskette.

The tracks in which COMPAT writes the test pattern for each of the four logical

units of a -system are shown below.

Logical Units

0

1

2

3

Tracks

0 36 45 69

1 37 46 70

2 38 47 71

3 39 48 72

The format of the keyboard line entry for COMPAT is shown below.

[COMPAT][,1st unit no.]...[,4th unit no.]
«P

6-46

COMPAT also provides the operator a prompting message in response to the operator

entering only the keyword COMPAT followed by a carriage return. This is shown in

the following example.

COMPAT

ENTER UNIT NUMBERS TO BE TESTED s f u :

Line Entry Item Explanation

COMPAT

1st unit no. through

4th unit no.

The keyword COMPAT initiates the program COMPAT.

The logical unit numbers of the units to be tested.

Each number specified must be separated by a comma

and no number larger than 4 may be specified.

An example of the keyboard line entry for COMPAT is shown below. COMPAT is

directed to test logical units 1, 2, and 3.

COMPAT,1,2,3
4-1

COMPAT responds to the keyboard line entry by displaying the following messages

over a period of time.

INSTALL SCRATCH DISK IN UNIT NO. 1 AND DEPRESS SPACE BAR TO CONTINUE
INSTALL SCRATCH DISK IN UNIT NO. 2 AND DEPRESS SPACE BAR TO CONTINUE
INSTALL SCRATCH DISK IN UNIT NO. 3 AND DEPRESS SPACE BAR TO CONTINUE

After the first of these three messages are displayed, the operator must install

a scratch diskette in logical unit 1 and press the space bar. After the second

and third messages are printed, the operator must remove the scratch diskette

from one logical unit and move it to the next. During this time COMPAT is writing

the test pattern in different tracks of the diskette on each logical unit. Once

all three messages have been displayed and the operator has responded appropriately

to each, the write portion of COMPAT's operation completes.

COMPAT next prints the same three messages again in the same way it did for the

write operation. This time, however, the test pattern is being read from all

tracks which have been written by each logical unit tested. COMPAT does not

automatically terminate its operation at conclusion of the read operation, rather

it begins the read portion of its operation again. The operator must terminate

6-47

COMPAT operation by typing the ESCape key. |

If an error is detected during the write portion of COMPAT's operation, the

first of the two following messages is displayed. If an error is detected during

the read porition of COMPAT's operation, the second of the two messages is displayed.

HEADER ERROR ON TRACK nn SECTOR nn

READ BACK ERROR ON UNIT n WRITTEN ON UNIT n TRACK nn SECTOR nn

Both messages specify the track and sector where the error occurred. In addition,

the read error message also specifies the unit which failed to read and the unit

which wrote the track in which the read error occurred. A header error indicates

that COMPAT found no header or an error in a header of a sector in which it

attempted to write the test pattern.

6-48

6.4.4 EXOR (Diskette-Exerciser)

EXOR exercises the diskette controller and the direct memory access (DMA) hardware.

EXOR writes random data in a randomly selected track of a specified diskette then

reads the random data from the track. This process compares the data read with

that written while monitoring the diagnostic checks performed during the write

and read operation to detect any error condition that might occur. EXOR executes

in this manner until halted by the operator.

To initiate EXOR, type EXOR followed by a carriage return and observe that the

following message is displayed. As stated in the message, load the diskette

logical unit(s) to be tested with a scratch diskette and enter 0, 1, 2, and/or 3

followed by a carriage return to select logical units 0, 1, 2, and/or 3 respectively.

: EXOR

INSTALL SCRATCH DISK(S) THEN ENTER UNIT NUMBER(S)

During execution, EXOR permits the operator to select one of two types of reports

on a diskette drive being tested. The first is a running total of soft, data,

and header errors. This report is displayed when requested by the operator. On

systems equipped with a CRT, the running total is displayed continuously on the

CRT. The second report is a log report displayed each time an error is detected.

To display the running total report on a system equipped with a printer, type R

and observe that the following report is printed. The report lists the current

total of write and verify operations performed along with a total of software

(soft) and hardware (data and header) errors that have occurred for each logical

unit being tested.

00/00/00 01:04:54

UNIT 0 UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 UNIT 7

WRITES 261

VERIFYS 260

ERRORS
SOFT

DATA

HEADER

6-49

A soft error indicates that EXOR successfully complete a write or read operation;

however, the operation required up to five attempts before succeeding. A data

error indicates that an attempted write or read operation could not be successfully

completed in five attempts. A header error indicates that EXOR found no header

or an error in a header of a sector in which it attempted to write.

To display the log report, type an L and observe that the following report is dis­

played. To turn the report off, type Q. EXOR responds to the operator input with

the first message which follows; thereafter, it produces one of the next three

messages listed anytime an error is encountered. The last message is printed after

the operator turns off the log report.

LOG ON

UNIT n STATUS N2 = xx
UNIT n STATUS N2 = xx
UNIT n SOFT ERROR

BAD DATA READ
FATAL READ ERROR

TRACK xx SECTOR xx date time
TRACK xx SECTOR xx date time
TRACK xx SECTOR xx date time

LOG OFF

The soft-error message indicates the same error as that described for the running

total report. The bad-data-read and fatal-read-error message specify the same '

type of error as the data error described in the running total report. The

significance of the 2-digit hexadecimal value after the equals (=) sign is

detailed in Appendix B.

To cause EXOR to test another diskette logical unit, type a U and observe that

EXOR displays the following message. Load the logical unit(s) to be tested with

a scratch diskette and enter the appropriate logical unit numbers followed by a

carriage return on the keyboard to continue.

INSTALL SCRATCH DISK(S) THEN ENTER UNIT NUMBER(S)

To halt EXOR operation, type any keyboard character except T}, L, U, or R and observe

that EXOR prints a log report on a system equipped with a printer followed by a

colon to indicate a return to Command Processor. On CRT systems, the log report

is updated and a colon is displayed.

6-50

6.4.5 TIME and TIME SET (The Clock Utilities)

The clock utilities permits the operator to display the time of day and to set the

date (month, day, and year) and time-of-day (hour, minute, and second).

To display day and date, type the keyword TIME followed by a carriage return and

observe that the time and date are displayed.

To set date and time enter the keywords TIME SET followed by a carriage return

and observe that the following message is printed.

TIME? (HH,MM,SS)

Insert the hour, minute, and second of time each separated by a comma and then

enter a carriage return. Observe that the following message is printed next.

DAY? (MM,DD,YY)

Insert the month, day, and year each separated by a comma and then enter a carriage

return. The time and day are now in the system.

6-51

SECTION 7 - PROGRAM DEBUGGING

7.1 INTRODUCTION

The System 3200 Command Processor permits the operator to load and debug programs

written in System 3200 Assembly Language or DACL. However, the methodology used

to debug assembly language programs differs from that used to debug DACL programs.

This difference exists because assembly language source code produces one machine

instruction for each line of source code (comment lines excluded). DACL source code

produces an object code which, in turn, must be interpreted by the system program

INT(erpreter). Thus a DACL program must be debugged as it is interpreted (executed)

by the interpreter (INT). This discussion is divided into assembly language and

DACL debugging.

7.2 ASSEMBLY LANGUAGE PROGRAM DEBUGGING

Command Processor enables an operator to load a program to be debugged into microcom­

puter memory without causing the program to execute. Command Processor enables the

operator to dump the contents of one or more memory locations, to store data in any

memory location, to enter data in any of the microcomputer registers, and to set a

breakpoint in the program being debugged. One other program debugging service provided

by the command processor is that it allows the operator to call into execution or to

continue executing the program being debugged. The keyboard line entry format which

commands each function is contained in the following paragraphs.

7.2.1 Load Program for Debugging (HEX)

The LOAD command calls a program to be debugged into microcomputer memory

without causing the program to execute. The operator enters the keyword LOAD

followed by the name of the program to be debugged. The keyboard line entry format

is shown below.

7-1

[LOAD][,program nam^] ^

Line Entry Item Explanation

LOAD Keyword that specifies the load-program function.

program name The name of the program to be debugged.

7.2.2 Dump Memory (DMP)

The DMP command displays the contents of one or more memory locations on

the system printer. The operator enters the keyword DMP followed by a single

address or an initial address (where the dump is to begin) and a terminal address

where the dump is to conclude). The keyboard line entry format is shown below.

To terminate a dump operation in progress, type any key on the keyboard.

[DMP][,address 1](taddress 2)
_£j

Line Entry Item Explanation

DMP Keyword that specifies the dump-memory function.

address 1 Any single memory address from 0000.,,. to FFFF,, , N .
(16) (16)

This entry is mandatory. If this is the only address

specified, a dump of two memory location occurs.

address 2 Any memory address from 0000,.,. to FFFF, . This
(16) (16)

address represents the last address in the series of

addresses from address 1 to address 2 that are being

displayed on the printer or CRT.

7-2

7.2.3 Enter Data in Microcomputer Memory (HEX)

The HEX command inserts data into any microcomputer memory location. The operator

enters the keyword HEX followed by the hexadecimal representation of the address in

which data is to be stored followed by the hexadecimal representation of the actual

data to be stored. The keyword line entry format is shown below.

[HEX][,addressj[,data 1, data 2,... data w]
—

Line Entry Item Explanation

HEX Keyword that specifies the enter-memory function.

address Any memory location from 0000^^ to FFFF^^. Observe

that memory location 0000 ̂ 6) to "^^(16) Can

specified. These locations contain the object code

for the system Control Program, CP. Thus ensure that

locations in this area of memory are not inadvertently

destroyed.

data 1, data 2,... data n A maximum of two contiguous hexadecimal digits may be

specified for each individual data entry. The two

hexadecimal digits produce eight bits of data which are

stored in the address specified in the line entry. If

more than one data entry is specified, each additional

data entry is stored in the next higher memory location

7-3

7.2.A Enter Data in Microcomputer Registers (SET)

The SET command inserts data into any one of the microcomputer registers. The

operator enters the keyword SET followed by the mnemonic of the register to receive

the data followed by the data to be entered in the register. The keyboard line entry

format is shown below.

[SET] [register] [,data]

Line Entry Item> Explanation

SET Keyword that specifies the enter-data function.

register Any of the following microcomputer registers can be

specified: A, B, C, D, E, F, H, L, and P. The mnemonic

F specifies the 5-bit status register while P refers

to the program counter. For an explanation of the

microcomputer registers refer to the Ranger System

Assembly Language Programming Manual, SYSPG02P.

data A maximum of two contiguous hexadecimal digits may

be specified. The two hexadecimal digits produce

eight bits of data which are stored in the specified

register.

7-4

7.2.5 Set Breakpoint (BKP)

The BKP command sets up to five breakpoints at specific program addresses in the program

being debugged, i.e., the operator can enter five BKP commands each specifying a dif­

ferent program address. Each BKP command saves the breakpoint address and the operation

code contained in the address in a table. Next the BKP command places an assembly

language restart 1 instruction in the breakpoint address. When the breakpoint program

address is reached during execution of the debugged program, the restart 1 instruction

causes a branch to location Note that a breakpoint must be set into a program
(.lb;

address containing an instruction operation code, otherwise, the breakpoint will never

be executed. A restart routine located at location 8^^ removes the restart 1

instruction from the breakpoint address and transfers from the table to the address

the original operation code of the location. Thus a breakpoint once executed is

removed from the program being debugged.

The restart routine also produces a printout of the state of the microcomputer regis­

ters at the time of breakpoint and causes the Command Processor to begin executing in

the microcomputer. A sample printout/display of processor registers is shown below.

P = 2 A 3A A =0 A F =5 6 B=00 C=04 0 = 3^ E=4i) H=2A L=51 SP=7FFA

NOTE

If it becomes necessary to reset (RESET button pressed) the

System 3200 during a debug operation, the breakpoint addresses

and associated operation code are cleared from the restart 1

table; however, the restart 1 code still exists in the program

being debugged. To recover, the operator can reload the pro­

gram and breakpoints or reload the breakpoints and resume

operation with the program which aborted. The second action

assumes that the system Control Program is intact.

7-5

The keyboard line entry format to set a breakpoint is shown below.

[BKP](,address)

Line Entry Item Explanation

BKP Keyword that specifies the set-breakpoint function.

address The address in hexadecimal of the location at which

the breakpoint is to be set. If no address is

specified, all breakpoints are cleared.

7.2.6 Execute Debugged Program (G)

The G. command causes a program being debugged to resume operation after a breakpoint

has been encountered or after the operator has set the P register using the SET command.

In addition, the G command calls into execution the program loaded into the micro­

computer by the LOAD keyword. The keyboard line entry format required to call a

debugged program into execution is shown below. |

[G] (, parameter 1>... -parameter n)

Line Entry Item Explanation

G Keyword that specifies the program being debugged is

to be executed.

parameter 1, .. . parameter n Any parameter required by the program to execute.

7-6

7.3 DACL PROGRAM DEBUGGING

Because DACL source statements are interpreted, the command processor commands to debug

a DACL program are limited to the HEX, DMP, and G commands. Each of the functions are

discussed and an example is provided to illustrate the DACL debugging operation.

7.3.1 Debugging Function

The HEX command sets or clears a breakpoint in a DACL program, starts a trace, and

inserts data into any microcomputer memory location. A DACL breakpoint is set by

loading memory location 0004with an address corresponding to an individual state­

ment of a DACL program. Loading location 000^(^6) zero clears the breakpoint.

A DACL trace may be started by loading address 0006,-,. with a zero, placing any value
(lb;

other than zero in the location halts the trace. The HEX command can also be used

to perform the same functions as described in paragraph 7.2.3. The DMP and G commands

are the same for both DACL and assembly language debugging. See paragraphs 7.2.2

and 7.2.6, respectively.

7.3.2 Example of DACL Program Debugging

Figure 7-1 shows the compilation of sample program DEBGFIL1 and subsequent creation of

program file DEBGFIL4. The DACL compilation call is made by responding to prompting

statements printed by DACL. This permits the operator to request DACL to print/display

the DACL code, a helpful printout/display when debugging a DACL program.

Figure 7-2 shows the printout resulting from the DACL compilation. The leftmost

column of numbers are the program statement numbers. The next column contains memory

locations containing the DACL code, the third column from the left is the DACL code

represented in hexadecimal. The two remaining columns contain the DACL program state­

ments. The internal representation of a DACL program is described in the DACL

Programming Reference Manual.

7-7

: D A C L
S O U R C E F I L E N A M E : D E B G F I L 1
U N I T N U M B E R : ±
O B J E C T F I L E N A M E : D E B G F I L 4
U N I T N U M B E R : 1
P R I N T T H E O U T P U T ? Y E S
D I S P L A Y T H E O U T P U T ? N O .
P R I N T T H E C O D E ? Y E S
P R I N T T H E H E A D I N G :
D A C L D E B U G D E M O N S T R A T I O N

F i g u r e 7 - 1 . D A C L C o m p i l a t i o n C a l l

7-8

PAGE 01 DACL DEBUG DEMONSTRATION

1. 3476 80 30 83 A FORM "0"
2 . 3479 80 31 83 ONE FORM "I"
3- 3470 80 33 83 THREE FORM "3"
4 . 347F D? 81 80 LOOP ADD ONE TO A
5. 3482 D1 80 82 COMPARE A TO THREE
6. 3485 D9 00 81 GOTO LOOP IF NOT EQUAL

7. 3488 64 41 20 3D PRINT "A = " , A , * 1 0 ,"ONE
7. 348C 20 80 12 09
7 . 3490 4F 4E 45 20
7. 3 4 94 3D 20 81 12
7. 3498 13 54 48 52
7. 3490 45 45 20 3D
7. 3 4A0 20 82 FF
6 . 3 4A 3 60 41 20 3D KEYIN "A = THREE"
8. 3 4A7 20 54 48 52
8. 3 4 A B 45 45 FF
9. 3 4 A E 60 50 52 4F KEYIN "PROGRAM COMPLETE"
9. 34B2 47 52 4 1 4D
9. 3 4B6 20 43 4F 4D
9. 3 4B A 50 4C 45 54
9 . 3 4BE 45 FF
10. 3 4C0 5E STOP

34C1 5E STOP

34C2 7F 34 LOOP

3 4C4 76 34 A
3 4C6 79 34 ONE
3 4C8 70 34 THREE

= ",ONE,«20,"THREE = ",THREE

3402 34 C2 34 C4
3406 34 7F 34 00
3 4 OA 00 00 00 00
3 4 OE 00 00 00 00
34 12 00 00 00 00
3416 00 00 00 00
34 1C 00 00 00 00
3420 00 00 00 00
3424 00 00 00 00
3 4 2A 00 00 00 00
3 4 2E 00 00 00 00
3432 00 00 00 00
3438 00 00
343C 00 00
3440 00 00 •"00 00

ERRORS.. • DONE

Figure 7-2. DACL Listing with Object Code

7-9

Figure 7-3 shows a sample DACL debug operation. Observe that before the INT is called,

a DACL breakpoint is set at location 3485..,.,.. The breakpoint is set by loading address ^
(lb) M

4(16) address 3485(^6) using the HEX command. It is essential to set at least the ^

first DACL breakpoint prior to calling INT. Next INT is called and the name of the program

being debugged DEBGFIL4 is provided. Thereafter INT executes program DEBGFIL4 until the

breakpoint at 3485. . .. is reached. There, INT halts execution and outputs the contents
(lb)

of the P register for the DACL program along with the state of condition flags. An

explanation of the four condition flags is contained in the DACL Programming Reference

Manual. INT also outputs the statement "RST 1 EXECUTED" followed by the state of all

microcomputer registers at the time the breakpoint occurred. These describe the state

of INT and are of no concern to the DACL programmer.

At the breakpoint the microcomputer returns to the system Command Processor. The operator

enters a zero at location to turn on a trace, changes the constant located at address

347A.,.,, to a 32 (an ASCII 2), and dumps the contents of DACL location 3476........ (Refer to
(lb) (16)

figure 7-2.) Loading the 32 (an ASCII 2) in DACL location 347A(^) replaces the

original 31, an ASCII 1, with an ASCII 2, thus changing the value of "one" to 2. This

illustrates the type of change to memory that can be carried out using the HEX debugging

command. Dumping (DMP) location 3476.-.. causes a display of both location 3476. . and ^
(lb) (lb) ^

3477(16). ^

Typing G causes the program being debugged to continue execution. However, since,

a trace was started, each DACL location is output along with a display of the four

INT condition flags. This list of DACL program addresses continues until the next break­

point is reached or the DACL program completes. In the example, the program contains a

loop and the original DACL breakpoint is once again encountered. This causes INT to halt

program execution and to display the three lines of data previously described. Observe

that one of the four flags, EQ, now contains a 1 in place of the 0 it previously held.

This indicates that the condition in statement 6 (Figure 7-2) will not be satisfied and

that an exit will be made from the loop. A dump of location 3476.... shows that the
(lb)

value of "A" does equal three. The DACL breakpoint is, next, removed by loading (HEX)

address 4.,,N with 00,00, and the trace is turned off by placing (HEX) a 1 in address 6(16). (lb)
Typing G, allows the program to complete.

7-10

: H E X 4 , 3 4 , 8 5

: I N T
/ D A C L 1 . 1
P R O G R A M N A M E : D E B G F I L 4

P = 3 4 8 5 E S O E Q O L S O O V O
R S T 1 E X E C U T E D

P = 2 A 3 A A = 0 A F = 5 6 B = 0 0 C = 0 4 D = 3 4 E = 4 4 H = 2 A L = 5 1 S P = 3 F F A

: H E X 6 , 0

: H E X 3 4 7 A 3 2

: D M P 3 4 7 6
3 4 7 6 8 0 3 1

: G

P = 3 4 7 F E S O E Q O L S O O V O

P = 3 4 8 2 E S O E Q O L S O O V O

P = 3 4 8 5 E S O E Q 1 L S O O V O
R S T 1 E X E C U T E D

P = 2 A 3 A A = 0 A F = 5 6 B = 0 0 C = 0 4 D = 3 4 E = 4 4 H = 2 A L = 5 1 S P = 3 F F A

: D M P 3 4 7 6
3 4 7 6 8 0 3 3

: H E X 6 , 1

: H E X 4 , 0 0 , 0 0

: J L
A = 3 O N E = 2 T H R E E = 3
A = T H R E E

P R O G R A M C O M P L E T E
/ D A C L 1 . 1
P R O G R A M N A M E :

Figure 7-3. An Example of DACL Debugging

7-11

APPENDIX A - PRINTWHEEL AND RIBBON REPLACEMENT

TO BE SUPPLIED

APPENDIX B - STATUS MESSAGES AND INDICATIONS

B.1 GENERAL

The system 3200 provides the operator two groups of status messages and one set of

status indications. One group of status message, generated by the Command Processor,

describe the condition of the system during execution of a program call. A second

group of messages, generated by the disk input/output device driver, l/0:FDK, a

system software module describes the status of the disk hardware and software. The

status indications appear in the line position indicator lights on the control panel

and are generated by the resident Control Program (CP).

B.2 PROGRAM LOAD STATUS MESSAGES

The program load status message describes the condition of the system during execution

of a program call by Command Processor. These messages are listed in Table B-l.

B. 3 DISK STATUS MESSAGES

The disk status messages describe the condition of the disk hardware and software.

The message is printed when a disk operation has not completed successfully. The

format of the printed message is shown below along with a sample printout. The

variables contained in the message are described in Figure B-l.

MESSAGE FORMAT

DISK STATUS N2—
DISK STATUS N0 —
MODE 1

SECTOR NO
DATA BUFFER HI

SECTOR SIZE HI
DISK ERR 246C xx xx xx xx xx xx xx xx xx xx xx AA A 2k A A A A / -\ s~ \

| (16)

SECTOR SIZE LO
DATA BUFFER LO

DRIVER STATUS-^
DISK STATUS Nl*
TRACK NO

SAMPLE MESSAGE

DISK ERR 246C 21 AO 21 4C 20 00 00 21 AA 24 0E

B-l

Table B-l. Program Load Status Message

Message Probable Cause Corrective Measure

RST EXECUTED

LOAD ERROR xx

xx = 02
(16)

03(16)' 15(16)

OA
(16)

(16)

(16)

(16)

(16)

LOGICAL UNIT x IS

NOT AVAILABLE

DISKETTE IN UNIT x IS

WRITE PROTECTED

READY UNIT x

A restart 1 instruction has

been executed. This implies

that a program has branched out

of bounds, i.e., to a nonexis­

tent memory address. This mes­

sage also indicates that a

breakpoint address has been

reached in debug operation.

The machine state is printed

along with the message.

Error occured while attempting

to load a program.

Logical unit unavailable.

Disk input/output error

occurred during load.

Program does not exist on

diskette.

Premature end of file.

Block count error.

Block type error.

Checksum error.

A diskette operation was attempt­

ed on an undefined logical unit.

A write operation was attempted

on a diskette with a write

protect hole.

Logical unit x is not ready.

Examine the contents of

the stack using the DMP

command of command pro­

cessor debug operation

to determine previous

program flow. Reini­

tialize the system if

not performing a debug

operation.

Activate logical unit using

command processor UNIT command

Retry the program call.

Ensure program exists on

diskette.

Reassemble program.

Reassemble program.

Reassemble program.

Retry the program call.

Define logical unit using

command processor UNIT command

Impossible to write on this

diskette unless write protect

hole is covered.

Ensure diskette is inserted

properly, wait 2 seconds, anc^

depress space bar to abort,

then depress ESC key.

MEMORY LOCATION CONTENTS

1D67 (1 6)

1D71 (1 6)

MODE
DRIVER STATUS
DISK STATUS
DISK STATUS N1
DISK STATUS N2
TRACK
SECTOR
DATA BUFFER LO
BATA SUFFEk HI
SECTOR SIZE LO
SECTOR SIZE HI

MODE

DISABLE PRINTOUT
DISABLE RECOVERY

| X , X | X , X , X | X , X | X |

LLL J J T UNIT NUMBER

MODE

000 READ A SECTOR
001 VERIFY SECTOR
010 WRITE A SECTOR
011 WRITE DELETED
100 SEEK
101 READ HEADER
110 READ DISK STATUS
111 RESET

DRIVER STATUS

ERROR SET BY BITS 6, 5, 4, 3, OR 2
SEEK ERROR
DISK ERROR

WRITE PROTECT

I x . x . x . x . x . x . x . x l

J Lb BUSY
SOFT ERROR(S)
DELETE SECTOR READ
UNIT SELECT ERROR

DISK STATUS N0 Ix.x.x.x.x.x.x.xl

BUSY
FORMAT FLAG

ERROR
LAST COMMAND WAS STEP

J L HEAD
PHYSICAL UNIT NUMBER
LAST COMMAND WAS SETTLE

Figure B-l. Disk I/O Errors (1 of 2)

B-3

DISK STATUS N1 |x,x,x,x,x,x,x,xI

TRACK 0
READY A
READY B

J L PHYSICAL WRITE PROTECT
0

INDEX OF SELECTED DISK
READY TO READ/WRITE HEAD A
READY TO READ/WRITE HEAD B

DISK STATUS N2 Ix,x•x,x,x,x,x,xI

NO SECTOR FOUND
TIMEOUT

NOT READY
HEADER CRC

J DATA LATE
DATA CLOCK
DATA AM
DATA CRC

NO SECTORS FOUND - NO HEADER MATCH FOR FOUR REVOLUTIONS OF DISKETTE.
TIMEOUT - ONE-HALF SECOND ELASPED WITHOUT DISK OPERATION COMPLETING.
NOT READY - NO INDEX FOUND ON DISKETTE.
HEADER CRC - HEADER MATCHED BUT CYCLIC REDUNDANCY CHECK ERROR EXISTS IN HEADER.
DATA CRC - DATA READ FROM DISK CONTAINS CYCLIC REDUNDANCY CHECK ERROR.
DATA AM - BAD DATA ADDRESS MARK ON DISKETTE.OR DELETED DATA AM.
DATA CLOCK - ADDRESS OR DATA CLOCK PATTERN ON DISKETTE BAD.
DATA LATE - DMA REQUEST NOT HONORED BEFORE NEXT TRANSFER TIME.

Figure B-l. Disk I/O Errors (2 of 2)

B-4

B.4 SYSTEM STATUS INDICATIONS

The system status indications are displayed in the line position indicator lights

on the system control panel. There are four groups of indications that appear in

the indicator lights: IPL errors, parity errors, unknown interrupt errors, and

printer errors. IPL errors produce one of the following numbers in the line

position indicator lights: 900 - 915, 921, 970 - 974, and 999. Parity error

produce a number between 700 to 715 and 780 to 795. Unknown interrupt errors

produce a number between 800 and 877. Finally, printer error produce a number

between 600 and 607. The significance of each error indication is detailed in

Table B-2.

B-5

Table B-2. System Status Indications

Number

999 with dis­

play in lights

0 - 1 5 .

900 - 915 with

display in

l i g h t s 0 - 1 5 .

921

970

971

Explanation

Processor not running.

The bootstrap routine in read-only memory (ROM) which performs

the IPL is moved from ROM into random-access memory (RAM) while

the number 999 is displayed. The system halting with 999 dis­

played and an unknown display in light indicators 0-15 indi­

cates that a failure occurred during this movement. If the

system halts with lights 0-15 empty, the routine moved from

ROM to RAM successfully; however, failed to initiate properly.

Indicates an error during execution of the memory test. Light

indicators 0-7 contain the bit pattern that failed in the

memory test while lights 8-15 contains the high order eight

bits of the memory address where the failure occurred.

Indicates an error during execution of the direct memory access

memory refresh phase of the memory test. Light indicators 0-7

contain the bit pattern that failed while lights B-15 contain the

high order eight bits of the address where the pattern failed.

Indicates that the diskette drive containing the diskette to be

loaded is not ready: access door not completely closed,

diskette not in receptacle properly, or a hardware failure.

Lights 8-15 contain the diskette N1 status word. See

Appendix B for a description of this word.

Indicates that the bootstrap routine is unable to locate track 0

on the diskette. If light indicators 0-7 are empty, lights

8-15 contain the diskette N1 status word. See Appendix B for

a description of the word. If lights 0-7 contain data, the

data contained is the NO status word while lights 8-15 contain

the N2 status word. See Appendix B for a description of these

two words.

B-6

Table B-2. System Status Indications (cont)

Number

972

973

974

84x

Ixx

601

602

603

604

Explanation

The bootstrap routine has issued a step command to move the

diskette read/write head off of track 0 and onto another track;

however, the command is not being carried out by the hardware.

Light indicators 0-7 contain the NO status word while lights

8-15 contain the N1 status word. See Appendix B for a des­

cription of these two words.

The bootstrap routine attempted to read a sector from the

diskette in which it expected to find binary data but did not.

This error condition could be caused by attempting to read a

diskette which does not contain FDOS.

The bootstrap routine attempted to read a sector from the

diskette and found the checksum it calculated was different

than that stored on the diskette for the sector. This could

indicate that the diskette itself is bad or that the drive is

malfunctioning.

Any error indication in the 840 through 847 range indicates an

unknown interrupt error. The error can occur if the system CRT

has failed. The variable x represents one of eight different

hardware status conditions at the time of the interrupt.

Any 700 error indicates a parity error. The xx can assume a

value from 0 through 15 which corresponds to the 4K section of

memory in which the parity error occurred.

The printer is out of ribbon or its cover is open

The printer is out of paper.

Both the 601 and 602 conditions exist in the printer.

The printer is in a printer-check condition, i.e, it is up against

a stop or cannot execute the operation it has been commanded to

perform.

B-7

Table B-2. System Status Indications (cont)

Number Explanation

605 Both the 601 and 604 conditions exists in the printer.

606 Both the 602 and 604 conditions exists in the printer.

607 The 601, 602, and 604 conditions exists in the printer

B-8

APPENDIX C - HOW TO PREPARE A DISK FOR USE IN SYSTEM 3200

To prepare a diskette for operation in the System 3200 requires two operation:

execution of the FORMAT utility followed by execution of the INIT utility.

FORMAT configures the tracks and sectors of a diskette for operation in the System

3200 while INIT writes a null file indication in each sector of the diskette file

directory (track 0, sectors 8-26 and all sectors of track 1).

FORMAT contains a default condition which will write a standard format on a diskette.

To format a diskette in this standard format type the keyword FORMAT followed by

a comma delimiter followed by the logical unit number of the diskette drive con­

taining the diskette being formatted. See the example below:

FORMAT,1

This keyboard line entry causes the \itility FORMAT to format the entire diskette

in logical unit 1 with a standard format. Once the keyboard line entry is made,

FORMAT responds with the following message.

DISK FORMATTER, ENTER Y TO CONTINUE

To this the operator must respond with an upper case Y. Thereafter FORMAT complete

the format process and indicates its completion by producing the following message

ALL DONE

Once FORMAT completes, the operator can then initialize the formatted diskette.

This is accomplished by entering the keyword INIT followed by a comma followed by

the number of the logical unit containing the diskette to be initialized.

INIT,1

This keyboard line entry causes the utility INIT to initialize the diskette file

directory of the diskette in the logical unit specified. Once the keyboard line

entry is made, INIT responds with the following message.

DISK INITIALIZER, ENTER Y TO CONTINUE

C-l

To this the operator must respond with an upper case Y. Thereafter INIT completes

the initialization process and indicates its completion by producing the following

message:

ALL DONE

The diskette is now ready for use in the System 3200.

C-2

