Start your own revolution

13

Dramatic developments in computer technol-
ogy have made it possible for you to completely
reorganize and improve the ways you manage
your personal and business life.

Today, for as little as $600, you can buy a
complete computer system about the size of a
typewriter. These new computers are called
personal computers. They are every bit as
powerful as yesterday’'s room-sized computers
that cost millions of dollars.

A personal computer can be your equalizer in
dealing with our complicated society. You'll
have the same organizing, calculating, and
information storage POWER that was pre-
viously only in the hands of large institutions.
You can have a computer to deal with their
computers.

As a reader of PERSONAL COMPUTING
magazine, you'll be in the heart of the

Computing
al the Links

computer revolution. We'll show you how to
use your own computer for business and home
management—for education, income tax pre-
paration, research, text editing, environmental
control, art, games, recipe files, budgeting,
inventory control and hundreds of other
applications.

PERSONAL COMPUTING is a consumer
magazine that makes computers more under-
standable and useable, Our readers include
businessmen, teachers, accountants, doctors,
lawyers, engineers, programmers, and scien-
tists.

Each issue of PERSONAL COMPUTING
brings you page-upon-page of useful infor-
mation and colorful, people oriented articles.
Subscribe now so you can be a part of this new
revolution.

Please start my subseription 1o Personal Computing

Name

Address

City

Zip

UsA

O 1 year (12 issues) $14
02 years (24 issues) $26
03 years (36 issues) $38

Charge my: [Master Charge [Bank Americard
Account #

Additional Postage par year:

Canada & Mexico $ 4.00 surface
$ 8.00 air

Other forelgn $ B8.00 surface
$36.00 ajr

Card expiration date

Please remit in US funds — Thank you

O Bill me
Ocheck o (you'll

please allow two months for processing.

one extra Issue for each year!)

MAIL TO: PERSONAL COMPUTING, 167 COREY ROAD, BROOKLINE, MASS. 02146.

WIS

S ATITIVA
¥HIL YNNIV 95E

SORES YD)

NOSNHOM NONA S

60ASNHDF SO0EH

SUBMITTING ITEMS FOR PUBLICATION

LABEL everything please, your name, address and the dare;
tapes should also include the program name, language and
system,

TYPE text if at all possible, double-spaced, on 8% x 11 inch
white paper.

DRAWINGS should be as clear and neat as possible in black
ink on white paper,

LISTINGS are hard to reproduce clearly, so please note:

Use a new ribbon on plain white paper when making
a listing; we prefer roll paper or fan-fold paper.

Send copies of one or more RUNS of your program,
to verify that it runs and to provide a sense of how
things work -- and to motivate more of us to read

the code, RUNS should illustrate the main purpose
and operation of your program as clearly as possible.
Bells, whistles and special features should just be des-
cribed in the documentation unless they're particu-
larly relevant.

Paper tapes of both the program and runs can provide
us with a way to make our own listing if we need to,
Then, if you give us permission, we can let CCC
(Community Computer Center) sell your program
cheaply via paper tape, to further the spread of inex-
pensive software. Finally, if we are so lucky as to have
access to a system on which your program runs, we
can try it out ourselves,

Make sure your code is well documented — use a sep-
arate sheet of paper, Refer to portions of code by line

number or label or address please, not by page number,

When writing documentation, keep in mind that read-
ers will include beginners and people who may be rel-
atively inexperienced with the language you're using.
Helpful documentation/annotation can make your
code useful to more people. Documentation should
discuss just which cases are covered and which aren't.
If you send us a program to publish, we reserve the
right to annotate it (don't worry, we won’t publish

it if we don't like it).

Last but not least, please try to limit the width of your
listings: 50-60 characters is ideal. Narrow widths mean
less reduction, better readability, an better use of
space.

SUBSCRIPTIONS

U.S. Subscriptions
1 $8/yr. (6 issues)
00 $15/2 yrs. (12 issues)
[Retaining subscription @ $25
($17 tax deductible)
[Sustaining subscription @ $100+
($92+ tax deductible)

Foreign Surface Mail

[J add $4/yr. for Canada
(1 add $5/yr. elsewhere

Foreign AIRMAIL

O add $8/yr. for Canada

[J add $11/yr. for Europe

[add $14/yr. elsewhere
Payment must be in U.S. dollars

drawn on a U.S. bank.

These back issues are available at $1.50 each:

Vol 5, No 6

Vol 6, Nos 1,2,3

Foreign Distributors of People’s Computers

Vincent Coen

LP Enterprises
313 Kingston Road
llford, IG1 1PJ
Essex, UK

Comicro AG

Badenstrasse 281
CH-8003 Zurich
SWITZERLAND

ASCII Publishing

305 HI TORIO

5-6-7 Minami Aoyama
Minato-Ku, Tokyo 107
JAPAN

Home Computer Club
1070-567 Yamaguchi
Tokorozawa, Saitama, JAPAN

Kougakusha Publ. Co., Ltd
Haneda Biru 403, 5-1
2-Chome, Yoyogi
Shibuya-Ku, Tokyo 151
JAPAN

Computer Age Company, Ltd
Kasumigaseki Building

3.2-5 Kasumigaseki
Chiyoda-Ku, Tokyo 100
JAPAN

“All Watched Over By Machines of Loving Grace” excerpted from
the book THE PILL VERSUS THE SPRINGHILL MINE
DISASTER by Richard Brautigan. Copyright [c) 1968 by Richard
Brautigan. Reprinted by permission of DELACORTE PRESS/

SEYMOUR LAWRENCE,

Cover photo Drew McCalley,

People’s Computers is published bimonthly by People’s Computer Company, 1263 El Camino Real, Box E, Menlo Park, CA 94025,
People’s Computer Company is a tax-exempt, independent, non-profit corporation, and donations are tax-deductible,
Second class postage paid at Menlo Park, California, and additional entry points.
Copyright © 1978 by People’s Computer Company, Menlo Park, California

PEOPLE’S COMPUTERS

9
€S

VOL6NO 4
JAN - FEB 1978 '

STAFF

EDITOR

Phyllis Cole
ASSISTANT EDITOR
Tom Williams
ART DIRECTOR
Meredith Ittner
PRODUCTION
Donna Lee Wood
ARTISTS

Maria Kent

Ann Miya

Judith Wasserman
TYPISTS

Maria Kent
Barbara Rymsza
Sara Werry

BULK SALES
Christine Botelho
BOOKSTORE
Dan Rosset
PROMOTION
Dwight McCabe
Andrea Nasher
CIRCULATION
Bill Bruneau
DRAGON EMERITUS
Bob Albrecht

RETAINING SUBSCRIBERS

David R. Dick

John B. Fried

Scott Guthery, Computer Recreations
W. A. Kelley

John C, Lilly

Frank Otsuka

Bernice Pantell

Larry Press

Shelter Institute

SUSTAINING SUBSCRIBERS

Algorithmics Inc, Bruce Cichowlas®

Don L. Behm

BYTE Publications, Carl Helmers,
Virginia Peschke, Manfred Peschke

Paul, Lori and Tom Calhoun

Bill Godbout Electronics

Dick Heiser, The Computer Store

CONTENTS

HOME COMPUTERS

8

16 SPOT: The Society of PET Owners and Trainers

Phyllis Cole discusses the care and feeding of a PET
22 TRS-80:A status report from Assistant Editor Tom Williams
LANGUAGES
36 COMAL: Structured BASIC

Bdrge Christensen tells of adding Pascal’s algorithmic structures to BASIC
41 PASCAL vs BASIC

David Mundie‘s polemical comparison of the two
48 TINY LANGUAGE: READER FEEDBACK

Dennis Allison and Bob Albrecht respond to readers’ suggestions
ARTICLES
12 AN EDUCATOR'S GUIDE TO VIDEODISC TECHNOLOGY

Kent Wood and Kent Stephens describe two new approaches
14 VIDEO DISCS: MAGIC LAMPS FOR EDUCATORS?

Lud Braun's study for the NIE is excerpted by Tom Williams
20 POUNCE

Joanne Verplank discusses Mac Oglesby’s cat-chase-mouse game
23 CHECKOUT

Charles McCarthy investigates computer stores in the Minneapolis area
54 A CAREFUL BULL IN THE CHINA SHOP

A COMPUTER REVOLUTION?
Some say yea and others nay . . .

Robert Rossum’s cheap approach to the mechanics of robotics

REGULAR STUFF

4 EDITOR'S COMMENTS
4 LETTERS
24 THE DATA HANDLER'S USER MANUAL: Conclusion
Don Inman discusses simple and inexpensive output devices
32 FORTRAN MAN.
Todd Voros and Lee Schneider conclude the Battle of the Compilers!
34 REVIEWS
A quartet of reviews covers a quintet of books
60 ANNOUNCEMENTS

JAN-FEB

EDITOR’S NOTES

Since I became editor a year ago, this
publication has undergone many changes.
Some stemmed from readership survey
results. Others reflect the personalities of
the staff, the advent of home (versus
hobby) microcomputer systems, and a
growing dissatisfaction with BASIC. We've
had letters both supporting and decrying
almost each and every change—a not
unexpected response given our widely
diverse readers. Or at least you were a very
diverse group a year ago—are you still?
It's time to find out: whether or not
you're a subscriber, please fill out the
questionnaire in the center of the magazine
and mail it immediately so we can report
on preliminary results in our March-April
issue—thanks.

Readers have asked about the ‘Bally
Library Computer' which since July has
been advertized by JS&A National Sales
Group., While Bally is marketing a Z-80
based video game system that can be used
as a calculator, the system as it stands
cannot be programmed by the user. The
ads sound as if you can very cheaply buy
a keyboard plus tape drive plus memory
that will enable you to program, but we
hear that specifications for any such add-
on have yet to be written. [S&A has not
fulfilled its repeated promise to supply
technical information. Here’s hoping
Bally can live up to the crazy promises
in the garbled ad copy—but I'm not going
to hold my breath waiting.

Are vou familiar with Dungeons and
Dragons, the epic fantasy game? As I hear
it, D&D inspired ‘Adventures’, a computer
fantasy game of exploration. One of
Adventure's unique and attractive features
is that to play the game you communicate
with the computer in short English
sentences. Its swelling audience is not
limited to game enthusiasts and science
fiction fans—its appeal is far broader than
that. Our March-April issue will feature an
article on how to program Adventure-like
epic games. So take heed: such games may
be habit forming—avoid the article unless
you're prepared to have Adventure enter
vour life!

Phyllis Cole

4 PEOPLE'S COMPUTERS

LELTTERS

e ———— e e S
T99999999999999999999999999999979

I have a home-made 8080A-based compu-
ter system at home with a SWTPC-AC-30
Cassette Interface and a terminal con-
nected, along with 60K of RAM and 2K
of ROM (which contains a monitor I
wrote).

I would like to know if anyone has a
super-Basic interpreter (i.e. ‘with all the
trimmings’) so that I may utilize a lot of
my RAM storage space. | would still have
to modify it, though, as my 1/O ports
are numbered in a helter-skelter manner
and my RAM starts at location 1000H
and goes through FFFFH,

I would not mind even typing the object
code into my machine for the first time,
but wonder if it is possible to get a tape
in Kansas City Format ‘ORG’ed at
1000H.

As a college student, I do not have
unlimited resources but could scrape up
a few bucks to pay the person who would
let my computer live in the glory of
BASIC (or anything else if possible).
Thank you very much.

Philip Hunt
100 E. Norwich, Apt 3
Columbus, OH 43201

1999999999999¢9¢9

Dear People,

I picked up a copy of People’s Computers
at the Personal Computing Expo in New
York City and have decided to subscribe.
I must be mad! I have too much to read
already!

For Paul Holbrook (the high school
senior who asked about colleges for
computer science in your September/
October issue): not all IBM monsters are
batch machines. I used to work with an
IBM 370/158 with 5 megabytes of
memory (is that monster enough?) that
had a super time-sharing system: interac-

tive computing for 100+ users simulta-
neously! The name on the article doesn’t
always indicate the system on the inside.

1 enjoyed the articles on computer net-
works but I'm still not sure what a
‘protocol’ is.

Leigh James
29B Robbins Lane
Rocky Hill, CT 06067

A ‘protocol’ is an agreed-upon standard.

1999999999999+¢9¢9

1 was both amazed and delighted to see
the article *Human or Machine? Aesthetic
Preferences for Pseudo-Random Compu-
ter-Generated Patterns” by A. Michael
Noll in the November-December issue of
Creative Computing. Mr. Noll describes
a series of experiments virtually identi-
cal to those proposed in my article
‘Computer as Art Critic’ (People’s Com-
puters, Nov.-Dec. '77). Those doubtful
about the artistic value of computer-
generated art should note that one of the
computer-generated items shown in Noll’s
article was preferred over a similar work
by Piet Mondrian, the famous Dutch
artist.

Jim Day
17042 Gunther Street
Granada Hills, California 91344

1999999999999¢9¢9

Jim Day’s ‘Computer as Art Critic’
struck a responsive chord in me, and
propelled me to my personal computer-
driven text-editing system to write a
reply. (My pet computer is Poly 88
with a Qume printer.) The fundamental
program Jim calls for was carefully
explored about 60 years ago in a book,
Aesthetic Measure by G. D. Birkhoff,

5 s—d*——

Birkhoff attempted to find formulae
which could compute which of two
works of art was the better. Computers
have been applied to the problem in a
book by James Gips called Skape Gram-
mars that was published recently. The
subtitle of his book is: ‘Artificial Per-
ception, Shape Generation, and Compu-
ter Aesthetics’. Gips® work goes a long
way, in my opinion, toward making
computer evaluation of critical values
meaningful. This book is by no means
easy reading, but Mr. Day and others
for whom the topic is interesting might
find it of value. It is published by Basel
and Stuttgart: Birkhauser Verlag, 1975.
In any case, the field is not as unexplored
as one might think.

I'd like to offer a suggestion or two
that might make discussing computer
evaluation of art a bit easier. First of
all, distinguish between criticism and
esthetics. The basic idea is that esthetics
is a branch of philosophy, and criticism
is not. An Esthetic is a framework on
which critical judgements can be hung.
Esthetics is to criticism as physics is to
engineering. Books have been written
about this, so I ask forgiveness for not
laying it all out here. Don’t feel bad,
Jim, since Birkhoff also got his criti-
cism and esthetics mixed. One of the nice
things about Gips’ book is that he keeps
them straight.

Another specific thing I'd like to mention
is Jim’s statement that pi is a ‘perfectly
“random” number’ is not at all true.
First of all, there is no such animal in
mathematics as a ‘random number’, There
is the concept of a random sequence of
numbers. Put a bit loosely, to be random,
a sequence must be unending in length,
and there must uot be any computer
program that can produce the sequence.
Knuth’s The Art of Programming has a
complete discussion of the definition of
a random sequence. Since there are
programs that can produce the digits of
pi (of course), its digits most definitely
are not random.

Jim's insight into the interplay of
randomness and regularity in creating art
is right in line with much contemporary
thought on the subject, and much tradi-
tional thought as well. He will be happy
to know that experiments like those
he describes, where hundreds of people
are asked to judge among a set of pattemns
for their ‘esthetic’ quality, have been

done many times. They abound in litera-
ture of psychology.

There have been cases where science has
discovered physical bases to our
supposedly esthetic preferences. H. Helm-
holtz, in his book (written in the 1800%)
The Sensation of Tone (reprinted in
paperback by Dover), showed that the
consonant musical intervals most cul-
tures prefer—the octave, the fifth, and so
on—are actually generated by the human
ear! He explained many of the features of
musical harmony by further physical and
physiological experiments. There are
reasons we like the sounds we hear,

I am glad Mr. Day has brought the subject
to People’s Computers’ readers. It is
a fascinating subject, which involves
computer science, philosophy, mathemat-
ics, psychology, physiology and art.
Thanks,

Jef Raskin
Box 511
Brisbane, CA 94005

T999999999999¢9¥9

The following letter refers to Don
Quixote Starship (DQS), an incredible
game originally proposed several years
ago by Dragon Emeritus Bob Albrecht,
founder and for 5 years editor of this
publication. DQS has been fading in and
out of our pages (see Volume 5, Numbers
4—6)—it’s currently out.

Dear Dragons,

I'm not sure if this idea is relevant to such
a venture as DQS, but it might be useful
to near-earth ‘operations’. Operations
is in quotes because I mean it in more
ways than one. This idea deals with the
(medical) operating rooms on board long-
duration space missions.

I'm sure it’s great to dream of drones
programmed to perform any operation on
any person and available anywhere on
your ship, but let’s get back to a more
near-term feasible plan. In terms of space
saving and economy it would be desirable
not to have to support a complete medi-
cal crew on-board. But in terms of
technology it would be quite an extensive
and expensive project to develop surgeon
drones.

What is needed is a way to provide
medical care, including the ability to do
major operations, from earth within the
limits of today’s technology. Enter the
‘TELE-SURGEONS’. 1 believe that by
adapting radioactive materials handling
devices to operating room situations and
by making them remote controllable
(100,000 miles?) by digital space com-
munications, an operating team on earth
could perform any operation in space.
All that would be required is a room
on-board the spacecraft with an operating
table and equipment and mechanical arms
that are remote-controlled by the arms of
the doctors and nurses on earth. It would
also have audio-visual communications to
instruct the patient and to watch what
they’re doing.

I'm sure it would take a lot of practice to
perform an operation on a patient that
you could only see on a T.V. screen, but
it would be a novel service. Consider a
TELE-SURGEON network spread across
the planets, able to come to the aid of
any spaceinan, anywhere, There would
never be the problem of awaking the ship
surgeon for an emergency operation that
he is probably in no condition to per-
form. There would always be several
fresh medical teams, ready to perform
operations 24 hours a day. (For anyone,
regardless of race, color, religion, citizen-
ship, etc.) We would have to rethink our
thoughts on just what a hospital is.
(Think of it, a large complex of operating
surgeons and assistants, but also a place
where no blood is shed! ‘Place’ would
have lost its meaning.) It might even
require a few modifications to the
Hippocratic Oath. (It’s about time some
changes are made: it’s been a long while
since Hippocrates. The space age is a
fitting time to do a little reworking.)

But regardless of its social and psycho-
logical implications, 1 think that by
keeping some facets of this mission planet
bound, such as the medical things, it will
make more room for the fanciful ideas
that we all would like to see be made
possible on flights of fancy such as DQS.

Andy Riemer
Rt 6 Box 295
Hayward, WI 54843

1!11111!1[1]1]1?111]11!11111[11

JAN-FEB 5

T999999999999¢9¥9

Being the proud owner of a PET 2001,
serial number 23, I was extremely pleased
to see the sections devoted to the PET in
your magazine. I strongly encourage you
to continue to offer programs and tech-
niques on using this handy little micro,
since Micro Soft BASIC (the PET’s lan-
guage) is pretty compatible with other
micros running M.S. BASIC.

I would like to comment about the Pet
Drawing Program presented in the Nov-
Dec issue, Although extremely ingenious,
I did detect three errors in the listing
given.

The first and easiest to spot was in line
30, where my issue says:
30 WH=50: X—20: GR=ASC(* ™)
AND 127
The error is obviously a misprint, where
the statement X—20 should read X=20.

The other two errors relate to lines 30
and 40 where nothing is shown for
graphic characters.

The standardization [have used when
submitting PET programs using special
symbols follows. I urge adoption of these
or some form of set standards so that
omission errors such as these will not
occur again.

My system for cursor and screen control
characters uses an underscore with each
symbol.

cursor left

cursor right

cursor down

cursor up

home cursor

home cursor, clear CRT

RVS on

RVS off

I~ i*m0l [VIA

When any particular symbol is then
required to be printed, such as a heart, or
cross-hatch or some other graphic symbol,
I use the following method. .

For a solid circle (Shift-Q):
GR=ASC (“shift-Q") .. . etc.

Note that each of my examples is under-
scored; usually I have used lower case
letters as well. The key is that lower case
letters are not instantly available upon
power up of the PET, nor can a user
underscore any particular character while

6 PEOPLE’'S COMPUTERS

using the next line below. Thus, when
seen in a program listing, the user will
(or should) see that what is called for is
not possible to key in as shown, and that
some special function or character is
being called for.

Thus, using my conventions for program
listing on the PET, the lines numbered 30
and 40, in the drawing program would be:
30 Y=12: X=20 GR=ASC(*shift-Q)
AND 127
40 PRINT “*”

Also, just in case you didn’t know, a call
to SYS(64824) (a system switch command
to device number 64824) is a call to the
PET system itself, thus, the current prog-
gram in the PET will be cleared and a
power up will be initiated again, producing
the same starting heading the PET
displays when first switched on.

Finally, before I end this letter, for any
PET owner who tried getting the lower
case letters by a POKE 59468, 14 then
didn’t know how to get back to the reg-
ular character set, every 16 counts from
12 and 13 will return the character set
shown on the keys. Thus POKE 59468, 12
(or 13, 28, or 29, up to the limit of 255)
will return the graphics rather than the
lower case letters. It was interesting to
note that shift-), shift-left arrow and the
symbol “pi’ were also changed to different
graphics as well as the 26 letters, even
though ‘pi’ retained its value when used
in the program.

Again, thank you for some fine articles
on the PET. If this is any indication for
the future, you have a life membership in
this reader.

Mr. Craig A. Pearce
2529 S. Home Avenue
Berwyn, IL 60402

As you'll see from this issue’s PET pro-
gram listings, we too have tried to come
to terms with the problem of listing the
PET’s graphic characters. We chose a
method which involved using key-cap
identifiers (CLR, HOME, RVS, etc.)
whenever possible, to minimize the
amount of ‘memorizing ' needed. By using
square brackets and upper case letters we
can prepare a program for listing by
typing a version of the program on the
PET, whether we're in graphics mode or
lower case mode.

Is your use of the underscore for typing
listings on a typewriter? As you noted,
the underscore can'’t easily be used on the
PET .unless you leave room to do so
between each line of the program. Also,
many printers can’t cope with the under-
score. Even the composer used to prepare
most of the text for this magazine has no
capability for underscoring.

Thanks very much for your comments,
ideas and useful information. We look
forward to more input (including pro-
grams) from readers for SPOT, the
Society of Pet Owners and Trainers (see
the article in this issue).

1 9999999999999¢9

How exciting to read of your ‘PET’s
First Steps’ in the Nov-Dec. issue of
P’sCs! Your article pointed out several
important aspects about PET BASIC pro-
gramming that just weren’t available
anywhere in current personal computing
literature. Your educational contribution
to PET users should prove enormous,
especially considering that there just
isn't any other software documentation
available from Commodore or any other
source.

Please feel assured that PET users every-
where will sincerely appreciate seeing
more PET programs in print. The PET
BASIC seems to be a highly refined
version written by Microsoft; and
although similar to most typical dialects
of other microcomputer BASICs, there
are still some very powerful refinements
of this (PET) software dialect that need
publication and more opportunity to be
fully analyzed by users.

Although I can not yet say that I fully
understand all the statements of your
‘Drawing Program’, [can say that it
works well!! (I used the PETs in both
the Berkeley and Palo Alto stores of
Mr. Calculator to type in your program;
and to the delight of the stores’ staff
and patrons, we had a fine time drawing
graphic designs on the PET.)

So far the only bug in the PET BASIC
I have heard of is that you are not able to
dimension an array to over something
like 255 elements. Did you find this
to be a problem with your PET too?

Again, many thanks for printing programs
to be used with the PET. I hope all PET
users will respect your generosity as much
as 1 do to print these special kinds of
programs for our benefit. Keep on
PETting—

George R, Julin
15 Poncetta Drive #322
Daly City, CA 94015

Glad you're enjoying the PET programs.
Edna Wells has contributed a PET
program and we hope others will join her.

PET BASIC has a number of bugs in addi-
fion to the one that limits the number
of elements in any array to 255, but
Commodore is currently preparing a new
version of BASIC which will overcome
most of them. Those of us with the early
version will be able to buy ROM chips
with the new version when it becomes
available—just when that will be and how
much the chips will cost hasn't been
announced. Fortunately, most of the
bugs are obscure. We'll report on them as
time and space allows.

1T9999999999999¢9

I was delighted to read your article
‘Our PET’s First Steps’. On October
28 I received PET 78. While it would save
small programs, it would not save large
ones. Or at least would refuse to verify
or load them. After about two weeks the
7167 bytes suddenly became 4854 bytes.
Apparently a memory chip went bad.
On November 15 I shipped it back for
repair.

The bad news is that People’s Computers
came today meaning I could not try the
drawing program. Two features you
mentioned that [did not know were
getting lower case and accessing screen
memory directly. The Intro leaflet does
not give much information for sure.

How can I get a copy of your PILOT
interpreter for the PET? Looking for-
ward to more PET articles and software.
(My Altair runs but the PET is fun.)

H L Stuck
P O Box 2207
Chapel Hill, NC 27514

See pages 16-19 for more on the PET,

19999999999999¢9
PROGRAM ABSTRACT

Title: Graphics-to-ASCII Utility —
ASCIIGRAPH
Copyright: Edna H. Wells —
20 November 1977
Permission to use, not to sell
Computer: Commodore PET 2001 (8K)
Language: 8K BASIC

This program prints the upper-case
graphic characters available on the PET
and their numeric equivalents. The arith-
metic expression ‘CHR$(N) is used to
create the display. Under program con-
trol, the numeric equivalents shown in

1 REM ASCIIGRAPH

the display, when placed in the
‘CHRS$(N) subscript, will return the
graphic character. This can be placed in a
string variable using a ‘LET’ assign
statement.

The PET graphics have ASCII equivalents
in the range 161 through 255. This
program can be modified to return the
characters in any range by changing line
25 1 =1 + 160°, The quantity added to
variable ‘J’ determines the starting point.
The eighty following characters will
print, forty (a full screen) at a time.
Pressing ‘RUN/STOP’ and ‘RETURN’
will hold the first screen display if
desired.

2 REM COPYRIGHT 1977 EDNA H. WELLS
3 REM PERMISSION TO USE, NOT TO SELL
10PRINT “DISPLAY ASCII FOR GRAPHICS"

11 PRINT

12 PRINT "PRESS ‘RUN/STOP' TO HOLD —": PRINT

20 FOR J=1TO 20
25 1=J+160
30 W$=CHR$(l): X$=CHR$(1+25)

35 Y§$ = CHR$(I+50): Z$=CHR$(I+75)

40 PRINT W$; " ="; I; TAB(10); X$; " ="; I+25;
45 PRINT TAB(20); Y$; " ="; 1+50; TAB(30); Z$; " ="; 1475
50 PRINT

55 IF J <>10 THEN 50
60 GOSUB 100

65 NEXT J

70 GOTO 999

100 REM TIME DELAY
110 FOR K=1 TO 5000
120 NEXT K

130 RETURN

999 END

JAN-FEB 7

o

.

REVOLUTION?

8 PEOPLE'S COMPUTERS

BY PHYLLIS COLE, Editor

‘Support the Revolution — buy a
computer!” urges the slogan on a T-shirt
I recently received. A revolution? Surely
that’s just advertising hype or the usual
jargon that associates itself with a
growing fad. Or can it be that the time
has finally come for the chicken to move
over and make room for a computer in
the proverbial pot? Well, some say yes,
and some say no.

The nay-sayers believe that over the next
few years home computers will be so
successfully mass-marketed that they
may well compete with TV for the way in
which at-home hours are spent. Just how
will these numerous home computers be
used? That depends on many things, but
most particularly on what programs are
available to excite, entertain, and last but
by no means least, educate the buyer of
the home computer.

COMPUTERS AS APPLIANCES

Many agree that if the home computer
succeeds it will be at leastin part because
it has been accepted as an ‘appliance’,
rather than as a general purpose computing
machine. By appliance | mean a smallish
machine which requires no special skill or
training to operate, and which has only
one or a few functions. The home com-
puter as it now exists is not yet an appli-
ance, but many such systems are heading
in that direction.

What will a computer appliance be like?
Let’s assume it’s a year or so in the
future. Pretend you know nothing about
computers, but wish to purchase a (myth-
ical) Helpful Hannah system to regulate
heating, lighting, smoke alarms, and
burglar alarms in your home.

So off you go to a department store
(already stores such as Sears have
announced the sale of home computers).
You are shown the sample, and told that
the price includes a ‘personalization’ fee
and an installation fee. A service contract
is available, or in case of problems you
can opt to bring the unit to a local
appliance service center on a pay-as-you-go
basis.

You buy the whole package. A few days
later installer number 1 arrives to make
a scale drawing of your house, showing
heat vents, smoke alarms, outlet locations,
and so on. You get to choose the labels
for the various rooms, so in addition to
the usual living room, kitchen, etc. the

*x * Kk k kX Kk * Kk Xk

This article postulates a furure in which
you can buy a small computer that can
perform a wide variety of functions.
Such a computer system may be on the
market sooner than we think — already
most of the applications mentioned in
this article are to be found on one small
computer or another.

xR Wk W WK

labels read ‘Ginny’s room’, ‘orchid room’,
and ‘computer room’.

A week later installer number 2 arrives
and spends some time installing the
devices you want your computer to
control and doing other electrician-like
activities which terminate with the
installation of a box with an odd-looking
outlet on the wall near which Helpful
Hannah will reside. The installer hands
you the Helpful Hannah unit, a box about
10 x 20 x 30 cm which has approximately
20 buttons on it. You plug your TV
monitor and Helpful Hannah into the
wall and the Helpful Hannah into the
newly installed wall box.

Now you're on your own, ready to tell
Helpful Hannah just how to run your
house. You press the button that says
‘on/off’, as the instruction manual said to
do. This appears on the TV screen:

Greetings from Helpful Hannah! In
order to run your house [must be
sure | have a correct picture of
your house.
At this point a diagram of your living
room appears on the TV screen, with
dimensions, outlets, etc. all shown in
their correct locations. Then this appears
beneath the diagram:
Press the ‘yes’ and ‘no’ buttons to
dnswer L']LIL"S[iOI'ISA

Is the picture of your living room
correct?

You press ‘yes’ and get the message:
Good. Press ‘done’ when you're
ready to see the kitchen.

You continue to approve the floor plan

until you get to ‘Ginny’s room’ where

you realize that one of the outlets is
shown in the wrong place. So when asked

Is the picture of Ginny’s room

correct?

You press ‘no’. Then this message appears:
Let's correct things one at a time,
Type a number (then press ‘done’)
that tells me one thing that is wrong.

1 room size

window(s)

door(s)

outlet(s)

heat vent(s)

smoke alarm

other

In this case, you press 4, then ‘done’.

You are asked ‘Is an outlet missing?” and

reply ‘no’. Now an arrow appears on the

screen; it points to each outlet in turn,
asking ‘is this outlet OK?" You press ‘no’
when the incorrectly located outlet is

pointed out. Next the numbers 1 to 12

are displayed along the wall where the

incorrect outlet is shown. You are told

Type the number closest to where

the outlet should be.

Type ‘0" if it shouldn’t be on the wall.
You type ‘8’ then press ‘done’; the pic-
ture is redrawn, and the question appears

Now is the picture of Ginny's room

correct?

You press ‘yes” and continue,

~1h W B W

Once you have verified the correctness of
the floor plan, Helpful Hannah asks the
necessary questions to determine how
you want your house run. You specify
temperatures for various parts of the
house, both for when the house is
occupied and when it’s not. The amount
of variation you can specify is limited not
by Helpful Hannah, but by the type of
furnace(s) and the location of heat vents.
You are relieved to discover that as the
salesperson promised, there is no difficul-
ty in specifying that the room where you
raise orchids be kept at a relatively high,
humid constant temperature (you have
already supplied the necessary thermo-
stats, vents and valves for your computer
to regulate).

In fairly short order you and Helpful
Hannah fill in the details of your working
relationship, then she’s off and running.
So you unplug the TV monitor and
return it to the 8-year old, who’s been
impatiently waiting to finish the animat-

JAN-FEB 9

ed cartoon she’s been making with the
help of the Jumpin’ Jack cartoon com-
puter she's borrowed from the school
library,

COMPUTERS AS MEDIA

Some computer systems will be far more
versatile than those we class as appliances.
For example, one system could carry out
Helpful Hannah's functions and animate
cartoons or play video games or perform
some other function at the same time.
Just how many people buy general pur-
pose computers as opposed to appliance
computers will depend on how easy to
use the general purpose systems are and
also how versatile they are.

Until recently, computers have been
shrouded in mystery and hovered over
by experts. To this day, esoteric incanta-
tions are necessary to do even rudimentary
things on many computers — you may
have to type strange lists of letters and
numbers before you can begin to use the
system. But times are changing — many
people are now convinced that the poten-
tial of computers will remain untapped
until we find a way to make computers
accessible to everyone. That is, we must
find a way to make computers easy to use
and useful, not only to scientists but to
language teachers and to retired go-go
dancers writing their memoirs and to
6-year olds who want to invent new
musical instruments and hear what they
sound like right away. And computers
should be for the contractor and the
architect and the car designer and the
lawyer and the Indian chief and the
artist who's never before had the excite-
ment of working with 2 million electric
colors. And let’s not forget the handi-
capped: computer-generated speech and
control of all sorts of appliances and
computer-based books, pictures, and
art supplies are being developed to help
the handicapped person broaden his
horizon.

Another scenario of a mythical system
will illustrate some of the potential for
the computer as a new medium — as a
tool for the mind. Let’s assume that the
system is so easy to put together that a
kid, say, 10-years old can do it. It’s likely
that some ‘putting together’ will be neces-
sary since most people will probably buy
a basic system that plugs into a TV and
then add toit. Suppose our current system
has a keyboard, a color TV, a computer,
and a ‘disc drive’ to permit computer

10 PEOPLE’S COMPUTERS

7:00 AM

7:30 AM

8:30 AM

10:00 AM

10:02 AM

11:30 AM

12:45 PM

3:35 PM

5:00 PM

5:12PM

6:55 PM
7:30 PM

9:00 PM

Tttt st At 2R R R ARt RS RER RS
Saturday, September, 1980

The main players in the cast are yourself, your spouse, 12-year old Leslie,
6-year old Jamey, and last but by no means least, your computer.

The computer turns up the heat in the living room, dining room,
and kitchen (this happens earlier on work days).

The computer turns on the radio to a classical music station and
starts coffee; if needed, alarms will go off at times prescribed by
individual family members.

12-year old Leslie uses a computer program she wrote to help
rehearse her part in a play in Spanish; the program ‘speaks’ in
Spanish as it cues her and prompts as needed.

Leslie is off to rehearsal; 6-year old Jamey continues work on his
animated color cartoon.

The computer notes that a window and door were left open; since
the heat has already been turned off and people are at home, this
is of no immediate concern.

Jamey bows to pressure from neighborhood kids to play just one
game of Wumpus; then just one game of Dinosaur; then just one
game of Star Grazer; then you kick the kids off the machine so
you can finish a report.

Using a penlike device attached to the computer you ‘draw’ on
the TV screen the various charts and diagrams needed for your
report. When you’re done straight lines are straight, curved lines
are appropriately curvy, and you've used shading to effectively
enhance several illustrations.

Using your computer room telephone, you connect your com-
puter to another computer which is programmed to do searches
for legal references. In less than 15 minutes you have verified one
reference for your report and completed two others. The bill for
the service will appear on your next VISA bill.

Jamey and friends excitedly use a plant identification program to
identify the latest specimens they’ll add to a growing collection
of wild plants. The program, a birthday present from Jamey's
grandmother, has also been used to identify the new plants that
keep appearing in the yard and garden,

The computer briefly interrupts Jamey with the information that
the temperature in the house will soon drop below the desired
minimum unless the side door and the window in Leslie’s room
are shut. Jamey shuts them.

Heat goes on in the occupied rooms.

Leslie and her friends get together their Saturday night band;
one band member, the computer, plays a different instrument
(usually one invented by the kids) each time the group meets.

Leslie and crew repair to the kitchen and your spouse resumes a
computer-assisted course for ground school. Upon discovering
that much of the learning required for a pilot’s license could be
done at home on your own computer, both you and your spouse
decided to study for your pilot’s licenses. You both decide to
complete the ground school course by the end of the month and
to rent the flight simulation program from your flying club as
soon as possible,

And so it goes. . .

LS SRR SRS RS Rttt it it Rt

programs to be permanently stored and
quickly retrieved. In addition, our
system has some more specialized
components: we have a printer that can
print words or pictures shown on the
computer onto paper; we have a way to
generate high quality sound — and
speech — using the computer; we also
have assorted small devices used for
pointing to the TV screen in different
ways.

In the box on the opposite page is a
brief glimpse into 1980. Join in the fan-
tasy—you, your spouse, two children, and
a computer have starring roles.

In the scenario, ‘computer program’
refers to a set of instructions written in
a special programming language the
computer can understand. At the time of
the scenario there exists at least one pro-
gramming language suitable for doing all
the types of activities described in the
scenario. And we assume that even young
kids can learn to instruct a computer
using this language.

WHAT NEXT?

Over the next 6 to 12 months, you'll
likely see many more firms using mass
advertising to sell computers to the
‘average American” consumer. These
computer systems will come in various
shapes and sizes, with various capabilities.
Some will have color; some will have
optional ‘attachments’ to let you play
video games, control appliances, and do
automated telephone answering: others
will also be useful to small busnessses.
Some special purpose systems, such as

those that support only one or two video

games, will fall into the ‘appliance’
category. Others will be designed as more
general purpose machines. Prices will
vary from several hundred dollars (for a
computer without a TV) on up.

The availability of numerous high quality,
low cost, useful computer programs will
make general purpose computers attractive
to many people. Computer manufacturers
hope such programs will be developed by
free-lance programmers and then sold to
the manufacturers on a royalty basis.
The manufacturer will then mass produce
the programs, probably at first on
inexpensive audio cassette tapes, and then
sell the programs for $5-20 for most
programs for home use. (Expect equip-
ment and programs to be used in small
businesses to cost a good bit more than
items for the home user.) The dream of
low cost quality programs appeals to

many — consumers dream of the many
wonderful things they can do so inexpen-
sively; programmers dream of being their
own bosses while having a reliable market
for their wares; manufacturers dream of
higher demand for their products because
so many interesting programs are
available.

But in what computer language or
languages shall such computer programs
be written? We need a language designed
to deal with all the activities described in
both scenarios and more. And such a
language must not only be powerful, it
must be easy to learn, so that all people,
kids included, can quickly and easily
learn to use it to do interesting things.
Are we likely to see such a computer
language in the next few years? I'm
optimistic, in part because so many ideas
are converging from so many sources —
more and more people are agreeing on the
elements needed for an adequate
computer language.

HOME COMPUTERISTS OF THE
WORLD...

Has the urge to join the home computer
brigade hit you yet? If so, expect to find
yourself swept up in the enthusiastic
fervor marking the early days of any
revolution. The confusion, camaraderie,
and the ‘this-could-be-the-start-of-some-
thing-big’ feeling helps make bearable the
delays that have come to be characteristic
of the computer industry. If you've not
yet united with the home computerists of
the world, you have exciting times ahead.
Tomorrow’s choices will likely be far
more exciting than today’s dreams. .. O

—J'

® XK W W ™ X

JAN-FEB 1

AN EDUCATOR’S GUIDE TO
VIDEODISC TECHNOLOGY

R. Kent Wood is associate professor
of instructional media, Utah State Uni-
versity, Logan. Kent G. Stephens is
associate professor of educational admini-
stration, Brigham Young University,
Provo, Utah. This article originally
appeared in the February, 1977 issue of
The Phi Delta Kappan. Reprinted with
permission.

Dver the past several years it has
become fashionable to categorize media
as “print” or “nonprint.” The recent
development of videodisc technology
makes such a dichotomy anachronistic.
The videodisc is truly a mixed medium.

Consider that an average book has
roughly 250 pages. Three hundred such
books can be stored on a single side of a
silver luster 12-inch videodisc. It looks
very much like the 12-inch stereophonic
records you now play on your phono-
graph. The videodisc itself is a pressed
“floppy” product of clear mylar-type
plastic overlaying an imbedded metallic
center. Your 300 books can be retrieved
and projected on a video screen from
one of the discs. Or you can store and
retrieve up to 50 hours of high-fidelity
music. Or you can do the same with
several educational films.

In one complete revolution of the
videodisc, a single page or picture is
recorded as ‘“analog data.” This
makes it possible, for reasons we can't
go into here, to play back a single page
with greater fidelity than we get from
current educational film techniques for
“freezing frames.” Or the data may be
played back as sound. Or you can get
both image and sound.

Consider: A classic book can be
recorded on a single videodisc in both
the original form and in a movie version.
The first one minute of storage space on
the disc can be the book; a one-hour
and 59-minute film of the same book

12 PEOPLE'S COMPUTERS

can be recorded on the remaining
storage surface. Students can read the
book page by page in a single-frame
sequence. Then, at their command, the
motion picture sequences unfold.
Videodisc can move from print to non-
print at the flip of a switch.

One of the great advantages of video-
disc technology is the low cost of
materials. The projected materials cost
of a single videodisc is approximately 50
cents; the total cost for a 30- to
45-minute videodisc program is roughly
$10. Thus the cost of materials is only
5% of the total disc price. By contrast,
more than 90% of the cost of a video-
tape program is of necessity in materi-
als. Even the new low-cost Sony
Betamax videotape sells for $16 for a
one-hour blank.

There are two major systems of
videodisc technology. The partnership
of Telefunken of Berlin and Decca
Records of London has been operative
in Western Europe for several years
now. The Telefunken-Decca system uses
a stylus electrical pick-up comparable to
the Radio Corporation of America
system in the U.S. The Music Corpora-
tion of America represents the laser
noncontact optical system. The two
systems are compared in Figure | dia-
grams.

In the last several years more than
$200 million has been spent on video-
disc research in the U.S. and Western
Europe. In 1972 Phillips of the Nether-
lands and MCA unveiled projects that
had been secret. During the last few
years the Zenith Radio Corporation has
had a 90-person research team in two
laboratories working furiously to refine
the laser-type videodisc system. RCA
has expended its research resources on
the diamond stylus systemi, with a large
plant and technicians located in St.
Louis. MCA is planning to place 11,000

BY R KENT WOOD and
KENT G STEPHENS

major motion pictures on their video-
disc system, along with more than 400
educational films. In all, some 17 major
companies have been expending re-
search and development funds on video-
disc technology.

It has been estimated that more than
a half billion dollars has now béen spent
on general TV hardware systems devel-
opment, including videodisc, and that
less than 1% of that amount has been
devoted to development of software.
Eventually, however, videodiscs may
have the effect of bringing better quali-
ty programming to the TV medium,
because more of the funds committed
can be devoted to development of
worthy programs. As noted, the great
advantage of videodisc lies in low
material costs.

u.lha(can we expect of videodisc
technology in the immediate future?
MCA planned to put the first com-
mercial videodisc player units on the
market as early as Christmas, 1976, but
continuing market surveys appear to
have delayed that event for several
months.

What will it cost to buy a player unit
and equipment to convert your present
color TV set to videodisc? The player
units will sell for between $500 and
§700. They look very much like the
current audio record turntable units you
presently use. The units have a wire lead
that is connected to the VHF antenna
terminals, just like your present TV
antenna connection. Simply tune your
set to an unused channel and turn on
the videodisc player. A beautifully de-
fined color picture will appear on the
TV screen. It has greater fidelity than
the images projected by standard film
systems in use today. Also, imagine
tying giant “lean-to™ screens to your TV
receiver. The screens are now available,
showing life-size images. The new sys-

__

teni can play motion sequences of film,
move to slow motion or fast, or freeze a
single frame, all at the user’s command.

Some educators have also suggested
tying computer technology systems to
vidéodisc in order to provide pro-
grammed instruction. Others have sug-
gested that in the future, journals — even
such as the one you are now reading —
can be produced in videodisc formats.
The mass production costs would be far
less than distributing the printed page in
vogue today. Imagine this article with
live demonstrations of videodisc tech-
nology shown in living color with mo-
tion. Imagine what it would be like in
the future to hear and see Jerome
Bruner, B. F. Skinner, or Carl Rogers
speaking to you about their current
research findings, with film clips of the
actual research settings. One videodisc
expert has suggested that videodisc tech-
nology is like history repeating itself;
that is, they see shades of Gutenberg
and another landmark invention com-
parable to the printing press.

One authority has listed these ad-
vantages for the videodisc as a new
medium:

— There is widespread agreement on
the projection of the base cost of an
hour’s information on the videodisc at
aboul one cent a minute — not 40 cents
or $4.

— The videodisc player itself could
be only one-third the retail price of
similarly functioning players in the film
and tape technologies.

— From a single paper-thin roll-it-up-
and-send-it-through-the-mail videodisc
you could selectively call up any one of
the more than 100,000 single picture
frames stored on one side and display it
indefinitely at the press of a button.

— You could mix stills and motion
randomly, manually, and on a pre-pro-
grammed basis.

— You could go forward and back-
ward at will, jumping from the first to
the last part of a program in several
seconds.

— Audio fidelity would be better
than that currently provided by good
quality LP audiodisc or tape, and there
could be four channels available.

— In certain of the approaches being
discussed, there is no mechanical con-
tact made with the disc itself. This
means that all of these advantages
would never degrade through use; the
disc would never wear out.* 7

The videodisc player units seem a

Figure 1. Two Major Videodisc Systems

Electronic signal
converter

Sapphire stylus
glides over
spiral groove

Thin metal
electrode

Groove half the width
" of a human hair

12-in. vinyl disc

Metal| Qi film
Styrene
Telefunken-Decca System

Electrical Pickup. The picture and sound code on a spinning disc (1) is
picked upelectrically by a stylus (2) that transfers signals to a converter
(3). The converter processes the signals into electronic form accepted
by a TV set.

12-in. aluminum- "
coated plastic disc

plastic modulate
reflected light

Microscope
¥ 3 objective

lens focuses
laser beam

L " 5 Photodetector
and signal
converter

MCA System

Optical Pickup. A laser (1) generates a light beam aimed by a prism (2)
and focused by a lens (3) on a disc (4) coded for picture and sound.
Reflected light strikes a photodetector (5) that converts it to signals
that are processed and fed to a TV set.

Microscopic pits in

sure bet for huge commercial success. If
they do make it big in the commercial
market, chances are that they could
become a prime tool used by educators
in the teaching/learning process. O

*Ken Winslow, "“A Videodisc in Your
Future,” Educational and Instructional Tele-
visiont, May, 1975, pp. 21, 22.

JAN-FEB 13

VideoDisess @Eagtl@ Lamps fopEducaiops?

BY LUDWIG BRAUN

As rthe microelectronic revolution con-
tinues, it becomes increasingly apparent
that human culture is standing on the
verge of the first really new era in the
continuity of thought since the written
word., Carl Sagan points out in his book
The Dragons of Eden, that humans are the
only animals capable of storing informa-
tion outside the body, thus making it
available for future generations.

To date, ideas and information have been
generated by the human mind and depos-
ited for use by others in the form of
pictures and the written or printed word.
This process, whether done by medieval
monks and scribes or the modern offset
press, has remained one of information
transmission. With the advent of the
electronic computer we are moving from
an era of information transmission to one
of information processing and transmis-
sion. We have created machines capable
of taking available information, manipula-
ting it according to human-devised
schemata to generate new information,
recording that and transmitting it—thus
making it in turn available for processing.

The invention of writing represented a
fundamental change in the way human
thought was transferred and recorded.
Gutenberg's development of movable
type represented a quantum jump in the
volume, speed and cost effectiveness of
written communication. The invention
of electronic data processing represents a
unique shift in the handling of informa-
tion—the automated generation of new
information., But only with the develop-
ment of microminiaturization has an
analogous quantum leap in volume, speed
and cost effectiveness become possible.
The full impact this revolution will have
on human culture is something we can
only dimly imagine.

The following article has been excerpted
from a report prepared by Professor
Ludwig Braun of the State University of
New York for The National Institute of
Education. The possibilities of interfacing
the immense storage capacity of video
discs to computers opens exciting possibil-
ities in education and in other fields as
well. Tom Williams

14 PEOPLE'S COMPUTERS

Remarkably, the history of video-disc
recording goes back to 1927, when John
L. Baird engraved video signals on a
gramophone disc, in much the same way
that audio signals were recorded. Baird
was limited by the technology of his time
to a 5,000 Hertz bandwidth. As a result,
his pictures had only 30 lines and 15
black-and-white elements per line. Even
though the resolution was poor, Baird
deserves a great deal of credit. It took
most of the ensuing half century and
legions of engineers to bring to practical
implementation the concept which he
pioneered.

The next step in recording of video
images occurred in 1956 when Ampex
announced magnetic-tape recording of
video images. The major technological
breakthrough here was the frequency
modulation of the video signal prior to its
recording. Because frequency modulation
is amplitude independent, the video signal
essentially is recorded in two-level, or
binary, form.

There are essentially two kinds of video-
disc systems: The electromechanical
systems in which there is mechanical
transduction (hence physical contact);
and electro-optical systems. The principal
differences between these two systems
are described in the article by R. Kent
Wood and Kent G. Stevens on Page 14.

In this report, we shall focus on electro-
optical systems because of their educa-
tional advantages and specifically on the
Philips/MCA system because it will enter
the American market place first and is
likely to dominate this market for that
reason, and because it appears to be
superior functionally to other systems.

In the Philips/MCA system, during normal
play, the disc rotates at 1,800 rpm. It has
54,000 tracks each containing a single
frame of, video information encoded in
NTSC (National Television Systems
Committee) format. This provides thirty
minutes of video program time per side.

Because each frame occupies an entire
track, there is one frame per revolution of
the disc. As a consequence, it is possible

.‘{

ﬁ..:ﬁ. e ~$, = :

to use the system as a slide projector in
the stop-frame mode by jumping back
one track at the end of each revolution;
hence, the image stays still. It is possible
also to generate slow motion -either
forward or reverse by controlling the
motion of the read head.

This system records the video signal in
binary form by frequency modulation
(as in the Ampex system). It is worth
looking briefly at the information storage
capacity of this disc from several view-
points. These are:

e [t is possible to store 54,000 indivi-
dual slides on one disc side using the stop-
frame mode.

e By compressing the audio signal by an
effective factor of 300 before recording
and then ‘uncompressing’ by the same
factor on play back it is possible to store
150 hours of music or other audio infor-
mation on one disc side.’

e A talking encyclopedia could contain
27,000 slides and 75 hours of commen-
tary.

e There is a total capacity of 185,625
bits per track, or 1.25 billion bytes per
disc side! This enormous capacity is
available as a read-only-memory for stor-
age of data or computer programs. It also
is possible to store information contained
in books in binary form (one byte per
character) — the Encyclopedia Britan-
nica could be stored in 50M bytes of
memory, only four percent of the capa-
city of a single disc.

Because the video-disc systems are aimed
at the consumer market, the signal encod-
ing has conformed to the NTSC standard
waveform. If educators are to be able to
take advantage of the cost benefits of
Jarge consumer demand, they must con-
form to this same NTSC standard. This
means that special interfaces are required
between the information source and the
disc, and between the disc and the com-
puter or other information medium.

In the Philips/MCA system, if the focusing
arm is stationary, the tracking mirror can

address any one of 100 tracks, and can
move from any track to an adjoining one
in 60 microseconds. Since 186K bits may
be stored in one track, 100 tracks can
contain 18.6M bits (or about 2.3M bytes)
of information. This is 20 times the capa-

city of a mini floppy disc. The table
compares the capacities of video discs
with full track utilization, video discs
using only 100 tracks, and the North Star
mini floppy disc (one of the most popular
discs in the microcomputer field).

A brief look at the table reveals that the
100-track video-disc system is clearly
superior to the mini-floppy disc system
by at least an order of magnitude in capa-
city, transfer rate, and access time, with
system cost, disc cost, and error rate
being comparable in both systems, The
only significant disadvantage of the video
disc as a mass memory device is that it is
a read-only memory, whereas the floppy
disc is read/write memory.

One potential drawback of the video disc
is production of copies. The replication
equipment is sufficiently expensive that
few schools will be able to justify the
cost; however, both Philips and MCA are
planning to establish replication centers
at several locations. A customer must
submit a video-tape master with the
information (pictures, data, etc.) encoded
in NTSC format. The replication center
will make a disc master for about $1,000
and will make disc copies for $1 each;
thus 200 copies will cost $6 each, and

"

1,000 copies will cost §2 each. It should
be noted that these costs represent only
the replication cost, not the cost of gener-
ating the information to be stored on the
disc.

Unfortunately, partly because video-disc

" systems are new, and partly because few

people have had any access to such sys-
tems, there has been essentially no devel-
opment of educational applications —
indeed, there has been little detailed
thought devoted to such applications.
Mr. James Baker, of the U.S. Army
Research Center, who is responsible within
the Army for video-disc applications,
feels that the only people in the United
States who are doing significant work in
this area are Dr. Robert Brantsen of
Florida State University and the WICAT
group in Utah under the direction of
Dr. Dustin Heustin and Dr. Victor
Bunderson.

In the author’s search of the literature
and in discussions with people around the
country, the following areas of educational
application of video-disc systems have
emerged:

Linear video. Here, the video disc is used
in place of movie film. The cost of a
20-minute educational film is well over
$200; even rental of the film for a single
showing costs $15-25. The estimated
purchase cost of a video disc film is $10-15.
Even if this were the only educational
application, it would be exciting, because
a school can build a “film’ library for less
than the present rental budget. In addi-
tion, the teacher has the capability to
achieve fast forward, and easy reversing,
which are not available with film project-
Or1s.

Archival storage. Because of the large
capacity of video discs to store informa-
tion, and their low cost, they are very
attractive as a medium for storage of
computer programs and data files, and
for storage of books, journals, and other
printed materials,

Programmed instruction. The possibility
of combining motion and still frames in
full color with text and audio, is a very
exciting alternative to more conventional
programmed texts. Clearly, the course-
ware developer has a much more flexible
and powerful tool than he ever has had
with paper and printing press. Drs.
Heustin and Bunderson and their WICAT
group in Provo, Utah are developing an
experimental video-disc programmed
‘text’ in high-school biology for the
McGraw-Hill Book Company.

Interactive use with the computer. Dr.
Alfred Bork of the University of California
at Irvine suggests® that a video disc will
contain a complete multi-media teaching
package. Such a package might include
a color video sequence presenting relevant
historical background and pertinent infor-
mation to set the stage for a complex
computer simulation of some phenom-
enon in biology, chemistry, or physics.
During interactive execution of the
simulation program, and depending upon
the student’s actions, the computer will
call upon the video disc to help it to
generate appropriate supporting graphics,
or an audio sequence, a background still
frame, or even a new computer program.
After the simulation is complete, the com-
puter will call a testing program from the
disc and check the depth of the student’s
understanding. Based on the results of
Continued on page 47.

Characteristic Video disc full cap. Video disc, 100 track Mini floppy disc
Total capacity 1.25x103M by tes 2.3M bytes 100K bytes
Transfer rate 7M bytes/sec. 7M bytes/sec. 16K bytes/sec.
Cost/bit 6x108cents 4x10cents 5x10 3 cents
System cost $500+interface $500+interface $700
Disc cost $2(lots of 1,000) $2(lots of 1,000) $5
Avg. access time 5 sec. 3 millisec. 463 millisec.
Error rate 109 109 1084071

Comparison of video disc with a popular mini-floppy disc.

JAN-FEB 15

PET photo courtesy of Utter Chaos

Commodore’s PET is a factory assembled
personal computer based on a 6502
microprocessor. The unit includes a key-
board, casseite tape unit, CRT, some
graphics, upper and lower case, and an
extended 8K BASIC. The system with 4K
of user memory costs $595; the 8K
model costs 8795. For details, see the last
2 issues of People’s Computers.

Until there’s some sort of formal PET
owners’ organization, People’s Computers
will provide space each issue as a forum
for PET people. The name of the forum
will be SPOT (Society of Pet Owners and
Trainers) unless something better comes
along. Possible uses for the forum include
swapping software and ideas (PET pro-
jects? and maybe Teachers’ PET?) and
complaints (obviously PET Peeves). Per-
haps projects that involve hooking the
PET to other devices should come under
the heading ComPETible Stuff?

TEACHERS' PET

The ‘we’ of this article refers to a group
of computer professionals — including
your editor — who have purchased a PET
as part of a project aimed at integrating
computers into the daily routines at a
local school. To date we've concentrated
on preparing a wide variety of sample
programs that we’ve shown to both kids

16 PEOPLE’'S COMPUTERS

and teachers. As of January we’ll begin
workshops with teachers and junior high
age students to teach them how to
program in a version of PILOT. The
workshops will focus on the development
of a body of programs to support the
topics that will be studied in the latter

half of the school year in the junior high. -

In addition, some programs for younger
kids will be developed; the junior high
school will serve as a primary resource
for introducing the PET and PILOT to
others in the school We plan to include
even nursery-school age children in the
project —already we have a demonstration
program for youngsters that age.

TAPE TIPS

We've found that the most reliable tapes
to use on the PET are Maxell, TDK, and
Memorex. We've had some problems
with the cheapest Radio Shack tapes. We
definitely do not recommend Scotch
tapes: we confirmed reports that when
used as computer tapes they snag—
although the problems of snagging may
be reduced if very short tapes are used.

In its manual, Commodore recommends
using ‘Nortronics’ Brand tape head clean-
er. They recommend ‘Nortronics’, ‘Hand -
de-mag’ and ‘Robins’ brands of head
demagnetizers. Tape deck head cleaning
and demagnetizing needs to be done every
50-100 hours of tape running time or
when you have trouble reading tapes
reliably.

SOFTWARE AVAILABILITY

PET programs are beginning to be adver-
tised—let us know which ones you've
tried, and whether you recommend that
others purchase them. Some of the
programs we’ve been working on are now
available. For a description of the pro-
grams, a price list, and a licensing agree-
ment send a stamped, self-addressed
envelope to Computer Project, Peninsula
School, Peninsula Way, Menlo Park, CA
94025.

DIAL-A-PET

We've used a board from The Net Works
(see announcement section) to connect
our PET over the phone to other com-
puters—and so we got the listings that
accompany this article.

The PCNET (Personal Computer Network)
Committee is involved in setting up
protocols (standards) to enable different
kinds of home computers to communicate
with one another. We’re implementing
the protocols on the PET in BASIC.
Using Commodore BASIC and The Net
Works® board we can barely keep up a 30
character per second speed. However, we
expect to be able to implement all -the
PCNET protocols in BASIC. So far, our
PET can automatically dial the phone,
and can receive and acknowledge packets
of information. (See ‘Computer Networks
by Larry Tesler, Volume 6, Number 2).
Other folk are implementing them on
other home computers, often in assembly
language. You’ll be hearing more of these
efforts in later articles.

To receive the latest draft of the
PCNET protocols, send $3.00 to cover
replication and mailing costs to Dave
Caulkins, 437 Mundel Way, Los Altos,
CA 94022.

NOTATION

Most printers can’t print PET graphics.
Also, Commodore BASIC lets you put
cursor control characters into PRINT
statements, and inside the quote marks
displays special reverse characters when
you do so. And most printers can’t cope
with printing in reverse (i.e. white on
black).

To help make PET listings more readable,
we've decided to indicate special stuff
inside square brackets, using commas to
separate items. Sometimes a number
precedes an item to tell how many times
it should be repeated. We use HOME,
CLR, RVS, OFF and INST as shown on
PET keys. Sometimes SPACE is used to
show where a space should be typed. A
single character indicates that the graphic
shown as the shifted character should
be wused. Examples are provided in
Figure 1.

Finally, you may have noticed colons at
the beginning of some program lines.
Colons indent lines inside FOR loops to
help show the limits of the loop.

STARS

Here's a familiar number-guessing game
that we’ve adapted for the PET. The pro-
gram randomly selects a number from 1
to 100 for you to guess. You try to guess
the number, then the program prints out
from 1 to 7 stars (asterisks) depending on
how close your guess is. When you guess
the number, the screen goes blank then
40 stars are randomly displayed in the
top 20 lines of the screen. .. .- .

Listing says You type

What happens
when program
The screen shows is run

PRINT “[CLR, Q] * PRINT **
CLR key

shift-Q

PRINT“[HOME,3 DOWN,S]”" PRINT *
HOME key

shift-S

cursor down 3 times 3 black Qs on white down 3 times

Examples of Notation for Special Characters
Figure 1

PRINT " Cursor goes

black heart on white home (upper

white dot on black left) and

¥, screen clears,
white dot
printed in
home position.

PRINT **
black S on white

Cursor goes
home, then

white heart on black (i.e. to row

4 4), next
prints a
white heart.

100 sets lower case mode.

110 clears the screen; moves the cursor to second
row.

120-210 prints out the instructions.

220 selects X, the random number to be guessed.

230-240 gets the guess, G.

250 branches to line 40 if the correct number
was guessed.

260 calculates D, the ‘distance’ that the guess G
is from the correct answer, X,

270-290 loops to print from 1 to 7 stars, depend-
ing on the value of D.

D:
Q:
No.*;

1248 16 32 64
0123 4 5 6
e b4 3 2 1

300 gets next guess.

405 clears screen,

410-430 loops to print 40 stars in randomly
chosen locations in the first 20 rows of the
screen. In these 20 rows there are 40*20
or 800 locations to choose from. We ran-
domly select Y, an integer from 1 to 800.
The command POKE 32768+Y, 42 prints
an asterisk (ascii code 42) in the Yth loca-
tion on the screen,

440-490 moves the cursor home, then to the
22nd row (the second blank line), prints a
message about how to restart the game,

500 waits until something is typed from the
keyboard.

510-530 if RETURN was pressed, starts the
game again; if anything else was typed,
ends the game.

10 REM STARS
100 POKE 58468,14

110 PRINT
120 PRINT
130 PRINT
140 PRINT
150 PRINT
160 PRINT
170 PRINT
180 PRINT
180 PRINT
200 PRINT

206 PRINT:

210 PRINT

“[CLR,DOWNT"

"WELCOME TO MY GALAXY. I°'M IN CHARGE"
"OF THE STARS HERE. PLAY WY GAME OF"
"e=*STARS*** AND GET SOME STARS FOR®
"YOURSELF.": PRINT

"1 WILL THINK OF A WHOLE NUMBER FROM™

“1 TO 100. YOU TRY TO GUESS IT. THE"
"MORE STARS 1 PRINT THE CLOSER YOU ARE."
“IF T PRINT 7 STARS **®*==s yQU ARE"
"VERY VERY CLOSE1!l"

PRINT

“OK STARSEEKER, I'M THINKING OF A NUMBER."

220 X=INT(1DO*RND{1))+1: N=1

230 PRINT
240 INPUT

“WHAT'S YOUR GUESS™;G

250 IF G=X THEN 400

260 D=ABS(

G-X

|
270 FOR Q=LOG{D)/LOG(2) TO 6
:PRINT "=~

280 :PRI

290 NEXT @
300 N=N+1:

GOTO z3p

400 REM GOT IT

405 FRINT

410 FOR Q=

[CLR]
170 40

420 :Y=INT(BOD®RND(1))+1: POKE 32788+Y,42

430 NEXT Q

440 PRINT
450 PRINT

460 PRINT:

470 PRINT

“[HOME, 21 DOWN]";

“YOU GUESSED MY NUMBER IN":N;"TRIES!!]"
PRINT "PRESS RETURN TO PLAY AGAIN.*"

"PHESS ANY OTHER KEY TO STOP."

480 GET AS: IF AS="" GOTOD 510
480 1F ASC(AS)=13 GOTO 205

500 PRINT:

6510 END

PRINT "BYE FOR NOWI®: PRINT

JAN-FEB 17

DRAW UPDATE

In our last issue we published a program,
DRAW, that allows you to draw pictures
on the PET. Even young children can
quickly and easily learn to use the PET’s
graphic characters using this program.

Now we've added to the program. You
can save on tape and retrieve the pictures
that you draw. We've also modified the
program to PRINT the characters on the
screen, instead of using POKE. The
program will run on either a 4K or 8K
PET.

The Target. The program treats the
screen as a grid of cells, 38 across and 24
down. When it starts, it clears (blanks)
the screen and displays a large round
dot (the ‘drawing symbol’) in a cell
near the center. That cell is the initial
‘target cell’. A white square blinks at
you occasionally to let you know where
the target cell is.

To draw a picture made of dots, use the
program’s target-motion keys. They are
not the same as the PET’s cursor keys.
Instead, the digit keys 1 through 9 are
used to make the target move one cell in
any of eight directions,

71819 4
41516 - P
1|23 !

Pretend the target cell is on the ‘5’ key.
To move it left, press *4’; to move it
up and right, press ‘9’; and so on. When-
ever the target moves, it will inscribe
the drawing symbol in its new cell.

The Drawing Symbol. When you are tired
of dots, press any graphic key. Shifting
is only needed for the graphics on the 1-9
key. The graphic character on the key
will become the new drawing symbol. It
will be inscribed in the target cell.

Press RVS, and the color of the drawing
symbol will be reversed. Subsequently
chosen drawing symbols are not affected.

18 PEOPLE’'S COMPUTERS

To erase, make SPACE be the drawing
symbol. The reverse SPACE draws white
stripes. DEL erases the target cell without
changing the drawing symbol. You can
‘un-DEL’ using the ‘5’ key.

Other Features. To move the target
without changing the picture, get rid of
the drawing symbol by pressing either of
the CRSR keys, then use the digit keys to
move the target. When you are ready to
draw again, press a graphics key or RVS.

When you want to admire your drawings
without the target cell blinking at you
periodically, press RETURN. Then, to
make it blink again, type any other key;
‘5" is a good choice.

To move the target to the center of the
screen, press HOME. To start a new
picture, press CLR (note that you'll have
to shift). To stop drawing so you can do
something else with your PET, first press
RETURN and then press STOP.

Saving and Retrieving Pictures. When
you're ready to save a picture, type the
left-arrow cursor control key—i.e. the
one that points to the tape recorder. First
the cursor stops blinking while your
picture is measured: during the 30
seconds or so that this takes, little streaks
of light may dance about the screen. Next
the first 3 lines of your picture are erased
and you're asked ‘SAVE FILE NAME?”
Type in a name for your picture and press
RETURN and then you'll be told to press
RECORD and PLAY on the recorder. It’ll
take about a minute (more or less,
depending on the size of your picture) to
save your picture on tape. When saving is
complete the program clears the screen
and displays the initial drawing symbol,
a dot, in the center of the screen.

Now rewind the tape..To retrieve your
picture from tape and print it on the
screen, type the up-arrow cursor control
key—the one that points to the screen.

Notice the ‘save’ (cursor left) and
‘retrieve’ (cursor up) commands involve
shifting—hopefully this will help avoid
accidental typing of these commands.

Annotations. Here are brief descrip-
tions of major elements of this program.

variables

LX, MX, LY, MY: least and maximum X and Y
used.

X, Y, L: target X, Y, screen location.

GRS, R: drawing symbol graphic and reversal,

PGS, PR: previous graphic and reversal from
location L.

SC=screen cursor address.

WH, BL, WT, FL: blink timers (white, black,
wait, flash).

Character codes: SP=space; SS=shift space;
CV=screen/ascii conversion factor;
SH=shift bit; US=unshift mask; BY=byte
mask; QTS$=quote; CR=carriage return;
RE=reverse; DE=delete; IR=initial
reverse (OFF); XR=exchange reverse
(XR—OFF=RVS).

linels)

5 puts system into graphics mode (as opposed
to lower case mode).

6-20 sets up constants, initializes variables;
note that the first and last characters
in strings H$ and V$ are cursor controls.

30 sets initial drawing symbol to a dot {(shift-Q)
and clears the screen.

40-60 prints dot in the center of the screen.

100 looks for keystroke.

150 converts keystroke to unshifted ascii.

200 checks that the target is blinked off.

250 RETURN causes a long blink.

300 resets short blink.

400-800 handles number key, graphic key,
DEL, RVS and the cursor control keys.

850-875 the LEFT cursor causes a ‘save’ on
tape; UP retrieves from tape.

1000 encodes symbol for display.

1200 resets drawing symbol.

1250 reverses drawing symboaol.

1300- 1500 displays symbol in target cell,

1700-2275 moves target in direction indicated
by number key.

2300 locates new target.

2325 stores previous graphic,

2350 stores previous reverse information.

2400 checks for drawing symbol.

2500-2700 blinks the target if there’s no
symbol to draw.

3000-3020 blinks the target while you're not
doing anything.

4000-4020 reverses the color of the target cell.

4500-4510 handles delete (DEL) key.

5000 initializes variables used in storing the
picture on tape.

5010-5130 determines the size of the picture.

6500-5615 saves 3 lines of the picture in an
array.

'6618-5627 clears first 3 lines of the screen.

5630-5635 requests file name for the picture.

‘5640-5700 stores picture onto tape. Lines

5675-5677 turn the tape recorder motor
on for 3 jiffies (3/60 second) and then
off. This code is needed only for early
PETs, which tend to have trouble

reading data files. This technique should
be used every 191 characters (1 record)
or, as here, more often.

6000-6015 opens file, reads X1 and Y1 coordi-
nates, checks status bit to see if end of
file reached.

6020-6040 positions picture in center of
screen.

6050-6100 reads and prints picture, closes file.

1 REM PET DRAWING PROGRAM
2 REM (c) 1977 PENINSULA SCHOOL

3 REM PERMISSION TO USE, BUT NOT SELL

5 POKE 59468.12

1l SC=32768: SP=32: S5S=1Rf0: Cv=181

7 BY=255; SH=1723: US=127; (T$=CHRS{34)

B OLEs1: Mx=33: Ly=0: MY=24: DIM E$(2)

O HE="FLEFT I I1CHURS(D)+ TRIGUT]™

0 S [Up 1T e EHPS () 4] LedWi |

18 HISe7™1™; S="0": Ch=13* KE=18: DE=20
AN Whi=50: Hi=23: WI=5: IH=]cd: IN=]Aar

30 GR$="7Q)": PRINT "[CLR)™:

A0 YeINT((My+LY)72): R=INT{(MR+LK)/2)
45 ReIR

50 PRINT "[HOME)":LEFTS{"[12 DOWN]",¥);SPC(X):
60 GOTD 2300

100 GET CS: IF C$="" GOTO 3000

150 C=ASC(CS) AND US

200 IF FLY>=WH THEN GOSUB 4000

250 IF C=CR THEN FL=-1E8: GOTO 100
300 FLeWH-WT

400 TF CS>=N1§ AND CS$<=NOS THEN 1700
450 [F C>=SP GOTO 1000

600 IF C=DE GOTO 4500

600 1F C=RE GOTO 1200

1700 PReX: PYaY

1760 XeXoC+1-3*INT((C42)/3)
100 IF X<LX THEN X=LX

1900 IF X>MX THEN X=MX

2000 YeY+i~INI((C-49)73)

2100 IF Y<LY THEN Y=LY

2200 IF YOMY MY

2250 PRINT MIDS(HS.X-PX+2.1):
Z775 PRINT MIDS(VS.Y=PYe2.1):
2300 LeSCea0eyix

237% POGS*CHAS(PLEK(L) OR SH)
2350 PR=IN-{PELK{L) AND S5H)
7400 1F GRS<Y™™ GOIOD 1300
2500 GOSUE 4000

ZfuY ION DE=1 1O WT: MEXT DL
27100 GOSUD &A00

2800 GOTa 100

19ufr FLefLY

A000 IF TLsWIl INEN GOSUB 40600

3020 If bLedy THEN FL=0: GOSUB 4000
3030 GO0 100

AUON PReRR-PR: PHINT CHRS{PR):
A0 PRINY pus CTLCIT]":
AURL TR

AN0N PRS=" T Pl=IR

700 IF CS="[DOWN]" OR CS="[RIGHT]® THEN ReIR: GRS=** 4ul0 PRIEI “[GI1 SPACL. LLEV|":CHRS(K):

750 1F CS="[HOMET™ THEN GRS="*: GOTO 40
Bo0 IF CS="[CLR]" GOTO 30

B50 1F CS="[LEFT]" GOTO 5000

#75 IF C$="[UP]" GOTO 6000

900 GOTO 100

1000 GR$=CHRS(C+SH): R=IR
1100 GOTO 1300

1200 If GRS="" THEN GR5=PGS: R=PR
1250 R=XR-R: PRINT CHRS(R):

1300 PRINYT GRS:“[LEFT]™:

1500 PGS=GRS: PR=R

1600 GOTO 100

Auva Got fan

Bl XOsMX: X1siX: YO=MY: Yi=|¥: Ks5(
LCTUR VI T O B AL))

hilza Do K=0 1039

Hoan peobel EREK)s K=Kvi
GIK i bl LeSE GOIn hied
LOGN s b XX THLNH X=X
Ao IRl THEN X1+X
sofa ol veyn o iEn Yy
Bivant pabl VYAVE OTHLR X1 ¥
bl -LLXEF X

Srdm MLXT Y

5500 SY=0

5510 FOR ¥=¥D 10 Y1

5512 1K=SC+40%Y+X0

5516 :HVan: LS=""

S520 ik X=x0 10 X1

5530 ::Co(FEEK(K)-5P AND CV)+5S
5545 ::VeCIBY: IF VehY GOTD 5545
5540 ::RVeV: LS=LS+MIDS("[AVS. OFF)".v+2.1)
G545 z:Kakel: LSwLS+CHUMS(SH*RV+C)
Slun THEXI X

BLIL tESISY =131 AValiel

B NS Tl SYCS AND YeXY GOIO 5ERS
S620 :IF ¥Y2¥D+7 GOTD 5660

5625 TPRINT "[HOME. OFF]":

5626 :FOR I=0 70 2: FOR J=0 TO MX
5627 ::PRINY ™ “:: MEXT J: PRINT: NEXT I
SE30 :INPUT "[MOML]SAVE FILE NAME™; NMS
5635 :PRINT "[HOME]":

5640 :0OPEN 1,1,1.NH3

5650 :PRINTHL1, Y1+1-Y0

5655 :PRINTHL, X1#1-X0

6660 :FOR 1«0 TO SY-1

5665 ::PRINTWI, QTS: ES(1); QTS
5670 ::ES{1)=""

5675 ::POKE 59411,.563: T=T1

5676 ::1F TI-T<3 GOTO 6676

5677 ::POKE 59411,61

5678 (NEXT 1

5680 :5Y=0

56856 NEXT Y

5690 CLOSE 1

5700 GOTO 30

6000 OPEN 1

EOOS INPUTHL, Y1

G010 INPUTHL, X1

6015 IF ST GOTO 6100

6020 YO=INT((MY+LY+1-Y1)/2)+1
G030 XO=INT((MA+LX+1-K1)/2)+1
6040 PRINT MIOS{"[CLR, 12 DOWN]".1,Y0D);
6050 FOR Y+1 TO Y1

G060 INPUTHL.LS

BO70 :PRINT SPC(X0):"[LEFT]";LS:
6080 :IF ¥<=MY THEM PRINT

6090 MEXT ¥

6100 CLOSE 1

6110 GRS=*"

6120 GOTO 40

OTHER STUFF

We’ve made our first use of the 8-bit user
port: we can flash a 40-watt lamp on and
off under program control. The circuit
we used is from The First Book of Kim,
which is reviewed in this issue. The 115
volt AC circuit must be isolated from the
5 volt digital circuit. We used a $1.50
opto-isolator to do this, and a $1.40
Triac (electronic switch) to operate the
lamp.

We've also used the PET to assist in analy-
zing data from a questionnaire. The
program is designed so that inexperienced
non-programmers can easily enter data,
using one DATA statement per question-
naire. For easy reference, the DATA
statement line number is the same as the
sequential identification number assigned
to each questionnaire. Checking the data
after it was entered into the computer
was facilitated by a program that displayed

data for any specified questionnaire in an
easy-to-read form.

The PET and its associated questionnaire
analysis programs have attended various
meetings where survey results were
discussed. To the delight of all concerned,
questions such as ‘What happens if we
change factor X by amount Y?" and
‘What's the median of Z?" were readily
answered, and, when appropriate, the
results were displayed as a graph. When
the questions involved complex calcula-
tions whose results were not obvious, the
computerized approach saved many hours
of analysis and most likely forestalled
many hours of discussion, since in a brief
time period it was possible to explore
many possible alternatives in depth.

A nice feature we've only recently
discovered: you can list programs at a
readable speed (about 2 lines per second)
by holding down the RVS key while

doing a listing. For more tips and another
PET program, see the letters section of
this issue.

We’ve seen draft versions of an introduc-
tory PET manual and a tutorial tape
which introduces BASIC. Both are
written for the novice. The tape’s 10
lessons go into more detail than does the
manual. [learned useful new information
even with a brief glimpse at the tape—you
don’t need semi-colons to separate items
in a PRINT statement—PRINT “HI, "N§
works fine. The PET User’s Manual now
being written promises to be the more
complete work that many of us await.
Commodore isn’t even guessing when
documentation will be available.

Last but not least, we hear that as of the
first week of December Commodore was
producing 100 4K PETs a week, and an
unknown number of 8K systems.

o, RN,

JAN-FEB 19

PROGRAM BY MAC OGLESBY
DISCUSSION BY JOANNE KOLTNOW VERPLANK,
Community Computer Center

In this article we bring together two long-time supporters of
People’s Computers. Mac Oglesby is a teacher in Vermont;
from his time-sharing terminal in a log cabin he creates games
for classroom use. We've published many of Mac's kid- tested
games over the last few years.

Joanne Verplank, the Director of Community Computer
Center, has introduced thousands of kids to computers over
the last few years. Here she shares with our readers her exper-
iences with one of her favorite games, Mac’s POUNCE.

We have to estimate and compare, visually, all the time — while
driving, walking, or giving directions, in order to buy raw
materials or decide which supermarket line is the shortest.
However, visual skill building, which includes estimation and
comparison, is often ignored in schools. POUNCE, an amusing
chase game by Mac Oglesby, offers a chance for us to practice
estimating and comparing short distances. POUNCE can be
used by players at several levels of experience. Beginners
easily learn to play, yet the game has enough variety to chal-
lenge the more advanced.

WHAT HAPPENS?

Players are shown representations of the cat and the mouse.

= CAT
t: = MOUSE

When the game begins, the mouse is at the left margin and the
cat is some distance away. The computer prompts POUNCE!!,
waiting for a number to be typed.

11 'y

POUNCE! 1 .

The cat pounces toward the mouse, moving a distance corres-
ponding to that number, in this case 4.
4

H L
POUNCE! !

Several things can happen as a result of a pounce, depending
on the relation between the size of the pounce and the dis-
tance between the animals,

20 PEOPLE'S COMPUTERS

1. If the size of the pounce matches the distance: The cat
lands on the mouse and catches it, and the game ends.

POUNCE!!

1
*%%x YOU'VE CAUGHT THE MOUSE WITH 5 POUNCES!!
WANT TO CHASE ANOTHER MOUSE? YES

2. If the size of the pounce is smaller than the distance: The
cat approaches the mouse, but doesn’t get it.

POUNCE!!
15

3. If the size of the pounce is greater than the distance: The
cat jumps over the mouse, landing on the other side. (In
order for the play to remain on the paper, the whole frame
of reference is shifted to the right.)

1311 (117
POUNCE! |
17
Fois 1111
(Since the cat always pounces toward the mouse, the player
doesn’t have to worry about direction when making pounce
decisions.)
4. Sometimes, when the size of the pounce is almost the
distance to the mouse, the mouse runs away.

POUNCE! 1
4

1118009

OH! OH! THE MOUSE SEES THE CAT!
RUN. MOUSE., RUNI

teréd 1111

A small percentage of the time that the mouse runs, it will
run into its hole. Then the game ends with the mouse the
winner.

Two runs are on the opposite page. Notice that the sizes
of the cat and mouse can vary between games. Notice, too,
how the size of the cat affects the size of its pounce.

The game is easy, so almost anyone can play. Except for the
few cases where a mouse runs into its hole (and this can happen
to anyone) play continues until the cat catches the mouse.
Also, the same noncommittal remgrk occurs at the end, no
matter how many turns a player takes.

*%% YOU'VE CAUGHT THE MOUSE WITH | POUNCE!!
WANT TO CHASE ANOTHER MOUSE? YEH

*%% YOU'VE CAUGHT THE MOUSE WITH 9 POUNCESI!
WANT TO CHASE ANOTHER MOUSE? YES

Since there is no turn limit, and players are not penalized for
taking a long time, the game offers an encouraging situation in
which people improve their estimation skills.

The few sentences used in the game are a parody of a children’s
reader. They’re simple to read, so reading doesn’t become a
stumbling block; they’re funny, so the simplicity doesn’t insult
anyone’s intelligence,

While the game is easy to play, it’s not trivial. Players have to
understand the relationship between the number they type
and the distance the cat moves. Since the distance depends on
the size of the cat, which varies from game to game, the
relationship is not immediately’ obvious. As players begin to
relate the number they typed to the size of the cat and the dis-
tance it moved, they learn that a big cat takes big pounces and
a small cat, small pounces. More practice enables them to
estimate the size of the pounce needed to cover a particular

RUNS

#ée = CAT
tts = MOUSE

11 free
POUNCE!!
24
TO POUNCE, JUST TYPE A WHOLE NUMBER FROM 1 TO 23.

POUNCE! !
10

ITIIRE!

OH! OH! THE MOUSE SEES THE CAT!
RUNs MOUSEs RUN!

111 . e

POUNCE!!
13

12sdasd

OH! OH! THE MOUSE SEES THE CAT!
RUN> MOUSE, RUN!

[£2) 11t
POUNCE! !
5
TIERTE
POUNCE!!

1 .
**% YOU'VE CAUGHT THE MOUSE WITH 4 POUNCES!!
WANT TO CHASE ANOTHER MOUSE? YES

distance. To do this, they have to compare the distance
covered in earlier pounces with the remaining distance, and
interpolate. They do this all visually, and often without saying
anything.

I have seen players argue about their estimations, but never use
measuring tools. Sometimes [point out relative distances,
leading beginners into an understanding of the game. My
conversation goes like this: ‘If a pounce of 6 got us this far —,
and a pounce of 2 got us this far —, how big a pounce do you
think we need to get this far —?" We never do more than
roughly indicate the distances, and that just for a moment.

The variety provided by the different sizes of the animals and
the slightly different starting points offers a challenge to
experienced players. As they become more expert in visual
estimation, they need fewer samples of their cat’s pounces and
can judge accurately relatively greater distances. By the time
they can catch the mouse in one or two pounces, they are
quite skilled at estimating and comparing short distances, and
they’ve had lots of fun.

A listing of POUNCE is on the next page. What next, Mac?

*““ ﬁ§\
\x*““\‘{;__

fﬂ“‘f;;‘ltf

¢ = CAT
t = MOUSE

POUNCE!!

L ’

POUNCE!!
8

t#
OH! OH! THE MOUSE SEES THE CATI
RUN, MOUSE. RUN!
LOOK! LOOK! THE MOUSE RAN INTO ITS HOLE!

WELL, THAT ONE GOT AWAYes«
WANT TO CHASE ANOTHER MOUSE? YES

JAN-FEB 21

TRS-80

We've received our TRS-80, and
written a review of the system. Un-
fortunately, our evaluation is quite
negative. Our policy is to give manu-
facturers a chance to respond to
negative comments before we
publish them. Given holiday sched-
uling, our press deadlines are such
that we must hold our review until
our March-April issue. Meanwhile,
we've sent a copy of the review to
the people at Tandy Computers,
offering to publish any timely and
pertinent responses to the points
raised in the review,

In addition, we encourage you
readers to send in reports of any
experiences you've had with the
TRS-80.

Tom Williams
Assistant Editor

22

“It’s a good poem, but try to put
more feeling into it next time.”

PEOPLE'S COMPUTERS

mOZ2CcO™

188
11@
120
138
140
158
160
17
18@
198
2ee
1889
1019
1820
1830
1840
1850
1860
187e@
le8@
1290
11080
1110
1120
1130
11408
1158
1160
1178
1180
119@
1288
1210
1228
1230
248
1250
1268
1278
128@
129@
1388
1318
1320
1330
1340
1350
1368
1378
1380
1398
1408
lale
14208
i43@
1448
1458
Lase
1470
1488
1498
1580
1518
1520
1530
1542
1550
1560
157@
1588
15982
1608
161@
1620
1638
1640
1650
1668
1672
1680
1692
1708
1710
1720
1738
1740
1750
1760
1778
1788
1798
1888
1810

NAME: ELEMLIB###1POUNCE

BY: MAC OGLESBY ON @1/28/76.

DESCRIPTION: LOOK! LOOK! SEE THE CAT JUMP OVER THE MOUSE?
POUNCE IS5 A GAME INVOLVING THE CONCEFTS OF SCALE AND
ESTIMATION BUT REQUIRING ONLY SIMPLE READING SKILLS.

INSTRUCTIONS: TYPE "RUN" TO PLAY.

LIBRARY "BASICLIB##*31QUESTION"
'"DELETE QUESTION MARK
CALL "QUESTION":@

RANDOMIZE

LET Al=1

LET Cl=T1=0

LET CS(1)=Cs(2)=""
LET S1=]+INT(RND*5)

"REPLAY RETURNS TO HERE

"SET THE SCALE (LENGTH OF CAT)
LET NI=INTC(7@/51) *MAX+ ALLOWABLE INPUT FOR FOUNCE
LET L1=SI*CINT(28/S1)+INT(RND*(58/513)) 'DISTANCE. CAT TO MOUSE
FOR Jl=1 TO Si ‘*GENERATE CAT, MOUSE SYMBOLS
LET CSC1)=CSC1)a"1"
LET CS$c(2)=Cs(2)a"e"
NEXT J1

"PRINT THE BOARD

PRINT

PRINT C3s¢2)3" = CAT"

PRINT C$¢1)3"™ = MOUSE"

PRINT

PRINT TAB(C1)3CSCA1); TAB(CLI+L1)3CS¢3~A1)
PRINT

*HAS MOUSE SPOTTED CAT?
IF L1>51%(=3+INTCRND*8)) THEN 138@
PRINT "OH! OH! THE MOUSE SEES THE CATI"™
PRINT ™ RUN. MOUSE, RUNI"
IF RND>.2 THEN 1332
PRINT "LOOK! LOOK! THE MOUSE RAN INTO ITS HOLE!™
PRINT
PRINT "WELL» THAT ONE GOT AWAYsse"
GOTO 1680
LET Li=S1%(9-S1+INTC(RND®(18~2%51)))
LET C1=0
LET Al=3-Al
GOTO 1200

PRINT "POUNCE!! "i:CHRS(1@);
LINPUT AS
IF (LENCAS)=-2)*(LENCAS)-1)<>3 THEN 1828
CHANGE AS TO A
FOR Ji=1 TO A(®)
*CHECK FOR DIGITS
IF (57=-ACJ1)% (ACJ1Y-48)=>@ THEN 1460
GOTO 1820
NEXT J1
IF A(@)=2 THEN 1500
LET Pl=A(1)-48
GOTO 1520
LET Pl=10*C(AC1)-48)+(A(2)-48)
IF P1>N1 THEN 1826
LET Pi=Pl=5])
LET Ti=Tl+l

*POUNCE = INPUT X CAT'S LENGTH
*COUNT POUNCES

ON SGN(L1-P1)+2 GOTO 15808,1648.,17702

*JUMPED OVER MOUSE
LET L1=Pl=-L]

LET Cl=0

LET Al=3-Al

GOTO 1200

'CAUGHT MOUSE
PRINT "#%& YOU'VE CAUGHT THE MOUSE WITH":i T1;"POUNCE":
IF Ti=1 THEN 1670
PRINT "s"3
PRINT "11%
PRINT "WANT TO CHASE ANOTHER MOUSE? "}
LINPUT AS
LET AS=SEGS(AS,1:1)
CHANGE A% TO A
IF €121-AC1))*(B9~-AC1))<>@ THEN 1748
GOTO 1850
STOP

'POUNCE FELL SHORT
IF Al=1 THEN 17908
LET Cl=C1+Pl
LET L1=L1-P1

GOTO 1209

1828 PRINT "TO POUNCE, JUST TYPE A WHOLE NUMBER FROM 1 TO "JSTRSC(N1)i"."
1838 PRINT
1840 GOTO 138@

1858
1860

END

I checked out all the computer stores in
the Minneapolis-St. Paul area listed in
PCC’s Reference Book. Here is what I

found:

rll{?l!4_

Microprogramming Inc
12033 Riverwood Dr , Burnsville MN

Has IMSAI, Poly, assorted other stuff,
some books, a few mags. Primarily small
business software development, and not
hobby oriented. A very pleasant guy

QF==J‘——

Byte Shop MN,

7547 Irish Ave , Cottage Grove MN 55016
This is a private home in an outer suburb,
moderately affluent new development for
people who want to appear on their way
up. No sign of any store, and clearly
strictly zoned against any commercial
activity. I didn’t feel it was worth stop-

owns this (looks like one man and secre-
tary) and I felt really bad about the 10

ping to investigate.

minutes he spent with me, for he clearly
had a living to make and I suspect that his
only capital was his time and smarts.

Byte Shop of Eagan,

1434 Yankee Doodle Rd , Eagan MN
A store in the next suburb over from ~
Cottage Grove, in a small nest of a dozen Q“*§
of so small shops. Three visits made at
various times of day. Always closed.
Handwritten sign saying ‘closed’ cover-
ing the commercial ‘closed’ sign and the
hours when open. Manufacturers’ litera-
ture, back joumals to about 2 months
ago, a few books visible through store
window,

Computer Depot Inc

3515 W 70th St, Edina MN 55435

A hobbyist store. A cut above Radio
Shack, both in atmosphere and prices.
Parts in bubble pack at full list price. Lots
of books and mags. Half a dozen systems
up, including Compucolor (purity
mediocre, convergence poor), lots of
memory board kits for sale, three guys
in lab coats standing around talking to
each other and knocking the competition
(a good thing not to do when customers
are around), and a goggle-eyed 12 year
old kid who pushed me away from a
terminal I was looking at so he could play
Star Trek.

ol

Computer Room St. Paul

3938 Beau D’Rue Dr , St. Paul MN 55122
Open for business, seems to handle only
Altair, a few mags and books, no indivi-
dual components for hardware hackers.
No clerks. My contact was a very pleasant
gal who was doing consumer software

o ;U-t :!

evaluation.

=Computer Depot Inc.
1716 Midwest Plaza Bldg , Mpls MN 55402

town office buildings. Not for the
hobbyist, but if you're a successful MD or \
lawyer or stockbroker with $50K who \
wants a fancy accounts receivable system \

to write off your tax bill, you'll be x

A posh suite in one of the better down- &

puter Depot in Edina. No equipment or
literature. Looks like lawyer’s office.
tee ! !ff_

e\ s

comfortable here. Tied in with Com- \

I also have two Radio Shacks near where
I live. One is run by a reasonably nice
guy (a ham) who doesn’t know about
computing machinery, nor anything
about their competition, but is honest
enough to say that he has no idea when
anything will be available from them.
The other store wanted $100 down against
an unknown delivery date, even though
he had no literature and admitted that he
would not have a demo when they were
available. Caveat emptor.

JAN-FEB

23

SOOI

THE DATA HANDLER
USERS MANUAL:

CONCLUSION

BY DON INMAN

D05050303 IO OLOLSLOS

The DATA HANDLER is a complete microcomputer system on a single
PC board based on the MOS technology 6502 microprocessor. The
DATA HANDLER can operate at very high speeds as a stand alone
microcomputer or dedicated controller for even such high speed devices
as disk peripherals. External TTYs or terminals are not needed since the
DATA HANDLER contains 26 keyboard switches for full function
hardware front control; personal expandability of the system is
achieved by using the Altair/IMSAI peripherals on the DATA HAND-
LER PC board. The DATA HANDLER Bare Bones Kit which includes
the DATA HANDLER PC board, PC board stand, 26 keyboard
switches, and a complete documentation package is being offered at a
price of $89.95. The complete kit is priced at $179.95. This includes
the DATA HANDLER PC board, PC board stand, 26 keyboard
switches, the complete set of IC's, 1 6502 MOS Technology micropro-
cessor, sockets, LED’s resistors, capacitors, 500 ns memory, and a
complete documentation package. It is available through Western Data
Systems, 3650 Charles Street, Suite G, Santa Clara CA 95050.

24 PEOPLE’S COMPUTERS

Deon Inman is a former teacher, now editor of Calculators/Com-
puters, who’s been working with teachers in the San Jose
School District. Under Don’s guidance, the teachers have buiilt
Data Handlers, complete microcomputer systems based on the
6502 microprocessor, and are now learning to use them. This
is the seventh and last in a series of articles aimed at teaching
relatively inexperienced people how to do assembly language
programming for the 6502,

This user’s manual is designed to serve both as a self-teaching
guide and as an outfine for a course at the beginning level of
computer science. While it deals specifically with the Data
Handler, it can easily be adapted to other microcomputers
using the MOS Technology 6502, such as the PET.

The course consists of nine two-hour class sessions, the first
two of which were spent constructing the systems. Our series,
Parts 1-7, covered class sessions 3-9. To recap,

Part Issue Topic(s)

1 Vol 5 No 4 System specifications, binary and
hexadecimal notation; checking
out the system.

2 Vol 5 No & Data transfer.

3 Vol 5 No 6 The arithmetic unit.

4 Vol 6 No 1 Indexed addressing.

5 Vol 6 No 2 Writing programs.

6 Vol 6 No 3 Programming for multiplication
and division.

7 Vol 6 No 4 (Conclusion). Simple and inex-
pensive output devices.

SESSION X — MEMORY USED AS INPUT/OUTPUT

Memory is used for two different primary purposes in our
computer. It is used for the storage of instructions for our
program. A second use is for storing data to be used by the
program. As far as the memory is concerned, no distinction is
made between an instruction and data. Both are merely 8-bit
binary numbers. The programmer usually places his program
in the lower portion of memory and data in higher numbered
locations.

The Data Handler also makes use of memory for INPUT and
OUTPUT. An 8-bit output port and an 8-bit input port are
located on the right rear portion of the board. The output port
is wired to memory location 7FFE, and the input port is wired
to memory location 7FFF,

Address: 7FFF Address: 7FFE

Data Bit0 o0——— o Flag Clear
10— 8212 8212 |———oFlag
20— ——0 0 Data Bit
40— ——o1
40— Input Output}——o02
50— ———03
fo——— L 04
70— Port Port —05

_____.__06
Strobe 0———— ———o07

Data to address |
7FFF Enabled by address 7FFE

INPUT AND OUTPUT PORTS
Figure 1

Output Port
Data Bits

The essential elements of the input and output ports are
shown in Figure 1. These ports handle data in a parallel
fashion. That is, all eight bits of data are presented to the port
at one time. When an eight-bit data byte is ready for input, a
strobe signal must be sent to the computer to tell it the data
is ready. The computer then deposits the data into memory
location 7FFF. Your program may then use the data in that
location.

The output port works in reverse fashion. When data is depos-
ited into memory location 7FFE, a signal is given at Flag and
eight bits of data are available at the output port. If you wish
to clear the output port, the Flag Clear bit is grounded tem-
porarily.

THE OUTPUT PORT

A typical use of the output port is shown in Figure 2. Discrete
LED’s are connected to show binary output. When the pro-
grammer wishes to output data, he stores the data in 7FFE
with the sequence:

8D STA store accumulator in memory

FE

7F
The data would then be displayed in binary notation on the
LED display

The next step up from the binary LED display would be a
pair of 7-segment displays. Each one of the displays will
output one hexadecimal digit. A pair of displays thus provides
for the output of two hex digits, or one byte of data. In my
original class where this material was first presented, we used
a device from Hallbar, Inc. for the display. It was a kit consist-
ing of a single 9368 latch decoder/driver integrated circuit and
a 7-segment display with construction instructions and theory
of operation. However this unit proved rather expensive. Buy-
ing parts separately would be cheaper than buying the kit,
especially if you get the new CMOS version of the 9368.

LED Display
All resistors 200 - 300 ohms.

=
4

ADDING A HEX OUTPUT DISPLAY
Figure 2

JAN-FEB 25

—

16

6

13 12 11

2

10 9 13 12

9368
1

o
)]

o
4]

D4

D3

I11 10 9 15 14

9368 16—<+5
2 1 7

Most
Significant
Digit

D2

Least
Significant
Digit

D1

Do

FLAG

FLAG

N MW /\/V\/\/Y

CLEAR

From
Computer
QOutput Port

7-SEGMENT OUTPUT DISPLAY

Figure 3

The reader may 'wish to put together his own displays. A
diagram for such a project is given in Figure 3. In addition to
the eight data bits at the Data Handler output port, Flag and
Flag Clear signals are also provided. The Flag Clear is shown
connected to a LED. This tells the user that an output is there.
The Flag Clear signal is connected to ground through a
momentary push button switch to clear the display.

26 PEOPLE’'S COMPUTERS

Costs:

9368 ~ $3.25 - 4 each
7-Segment &~ $1 - 3 each
(common cathode LED)

FCO1

STOR FCO03
FC04

FCO06
FCO7
FCO08
FCO09
LOOP FCOA
FCoB
FCoC
FCOD
FCOE

FC10
FC11

FC13
FC14

D8
A9
00

8D
FE
7F

AD
00
A2
80
cs8
DO
FD
CA
DO
FA

18
69
01

4C
03
FC

If additional output ports are available to you, additional dis-

CODE

MNEM

CLD
LDA, 00

STA, 7FFE

LDY, 00
LDX, 80

INY
BNE, LOOP

DEX
BNE, LOOP

CLC
ADC 01

JMP, STOR

plays can be added. Consult the diagrams in the Data Handler
manual to see how the output port 7FFE is wired. A modifica-
tion of the address select circuit is necessary to give an addi-
tional output port, say at 7FFD. Having two output ports
would enable you to display two bytes of a double-precision

result or two distinct one-byte results.

Let’s now demonstrate the use of the output port by using the
simple counting program shown below. A time delay is insert-
ed at steps FCO6 through FCOF so that the output will be slow
enough so you can read the low order byte. Either the binary

LED display or the 7-segment display may be used.

The program is an endless loop and will keep counting until
you press the Halt button. If you want to count in the decimal
mode, change the first instruction to F8 SED (Set decimal

mode).

DEMONSTRATION PROGRAM TO EXERCISE AN OUTPUT DEVICE

COMMENTS

Output the count.

Initialize Y register
for delay loop.
Initialize X register
for delay loop.
Start delay.

Get ready to count up 1.
Add 1 to accumulator count.

Clear decimal mode for hex count,
Start the count at zero.

This group

of steps is
merely a time
delay so that
you can read
the count.

Go back and output new count,

JAN-FEB

27

MUSIC FOR IDIOTS
Now that you know how to use the ouput port, here’s a THE DIOFSMUSIC PROGIAM

program | credit to my 13 year old son. It uses one bit of the RANELE SONGEQR RS

: ; ; TWINKLE, TWINKLE LITTLE STAR LOC CODE MNEM COMMENTS
output port to vibrate the cone of a speaker producing music-
like sounds, No attempt has been made to control the note LOC DATA LOC DATA FCOO AO LDY Countar 1.
length. Thg program merely represents an example of what can FDOO 01 FD28 BB FCO1 00
hF dc?na _Nlth a s:ngl_e output bft as a controller. The.external E8 01 FCO2 A9 LDA Pop the speaker.
:.:|rcurt r'mgr}t be designed to drive or control any device. Here 01 BB FCO3 01
is the circuit we'usec':L The music program follows. It was used E8 D2 FCo4 8D STA through the output.
as a demonstration in the class, but we found that the note ac D2 FCO5 FE
data was suited to the ti-ming of my particular Data Handler. 01 E8 FCOB 7F
You may l_'lave to experiment to find the correct values for 9 01 FCO7 BE LDX, ABS+Y Let's have the note.
your r'nacI:une. Ar_w data bit of the output port may be used, 8E E8 FCos 00
data bit 0 is used in the figure 4. FDO8 01 FD30 ac FCO9 FD
8E 01 FCOA CA Decrement X for awhile.
9C 9C FCOB DO Stay in the loop 'til X goes to 0.
: 9c 8E FCOC FD
Output Port Data Bits AE 01 FCOD CE Decrement the output,
[] [] ® ® 01 8E FCOE FE
Dy Dg Dg Dy AE FD36 9c FCOF 7F
BB 9C FC10 BE LDX, ABS+Y Grab the note again.
eDp D7 eD2 D3 FD10 01 FD38 AE FC11 00
BB 01 FC12 FD
Data Bit 0 D2 AE FC13 CA DEX Decrement some more.
1 01 BB FC14 DO Don‘t branch till X is 0 again.
D2 01 FC15 FD
E8 BB FC16 CE Decrement the speed set at FC60.
2 EB8 D2 FC17 60
3 : 4 9C 01 FC18 FC
FD18 01 FD40 D2 FC19 A9
10 to 100 ac E8 FC1A 00
pf AE 01 FCiB CcD Compare FC60 with O,
5 >5 +| 01 E8 FCi1C 60 If its not zero,
| AE 01 FC1D FC go back to Loop 1
BB FD45 01 FC1F E2 to delay some more.
= Speaker 01 FC20 A9 Load the speed you'll use at FCB0 (try 80).
9 : 8 BB FC21 {2
=" ' FD20 D2 Load: 45 in FC27 FC22 8D Store it back in FC60,
D2 :whatever you FC23 60 you'll need it again.
IC = 7404 9C putin FC21 FC24 FC
01 goes in FCB0 FC25 cs Increment Y for a new note.
ac also FC26 co Compare Y with
MUSIC CIRCUIT AE FC27 7 number of notes in song.

{You know the music

01 - FC28 DO Branch if not 0 to Loop 1 poss round 8 round)

AE FC29 D8 and go around some more,
FC2A 4C Song’s done. Shut off the
FC2B 00 computer or you're going to hear it again.
FC2C FC

Figure 4

Notes: (bottom to top) C-E8, D=D2, E=BB, F=AE, G-9C, A=BE, B=82, C=76, etc.

01 will give a rest, Put the note in twice to make it twice as long. Play around with it.

28 PEOPLE'S COMPUTERS JAN-FEB 29

THE INPUT PORT

Although provision is made on the Data Handler printed cir-
cuit board to input from the keyboard, other devices can be
connected through the 8-bit input port and memory location
7FFF.

modify the program used for the output port (the counting
program). Our input signal will determine whether the count-
ing process displayed is done in the decimal mode or the hexa-
decimal mode. If our input is set to zero (ground on the
switch in figure 5), the program counts in the hexadecimal
mode as before. If our inputis a 1 (plus 5 volts on the switch),

DEMONSTRATION OF LOADING FROM THE INPUT PORT

LOC

FCO00

CODE

A2

MNEM

LDX, 00

COMMENTS

the program counts in the decimal mode. The switch must be FCO1 00
set before the program is run and the data /atched by means of FC02 AD
the strobe signal. FCO03 ER
FC04 7F
FCO05 9D
FCO06 00
FCO7 FF
FC08 E8 INX

FCO09 EO CPX,<>
FCOA <
FCOB FO
FCOC 08
FCOD A9
FCOE 02
FCOF 8D
FC10 FC
FC11 FF
FC12 4C
FC13 12
FC14 FC

LDA INPORT Load the data byte.

Our first demonstration uses only one bit of the input port. It
simulates an external signal from some control device. We will

STA FF0OO0+X Store it in memory.

DEMONSTRATION OF INPUT/OUTPUT DEVICE Compare value in X with

number of entries.
Branch if same to main program.

Equipment external to the computer: BEQ MAIN

2 7-segment common cathode displays
2 9368 hexadecimal latch/BCD to 7-segment
decoder/driver IC’s (as in figure 3) wired to output port
1 single pole, double throw switch to bit D of input port (figure 5)

LDA, 02 Load accumulator with 02.

Store in low-order address
of initialization vector.

STA FCFF
Operation: With input switch at zero the program outputs hex count.
With input switch at one the program outputs decimal count,
DON’T FORGET THE INPUT MUST BE STROBED IN TO LATCH IT
BEFORE THE PROGRAM STARTS.

JMP FC12 Loop here until Halted for

another input.
LOC CODE MNEM COMMENTS
FC15 Your main program would start here.
FCO00 D8 CLD

FCO01 AD LDA INPORT
FCO02 FF
FCO03 iz
FCO04 DO
FCO5 15 decimal mode.

FCO06 A9 LDA 00 Start at zero in counter (accumulator).
FCO7 00 LT L ‘D I
FCO8 8D STA OUTPORT Display count. 7 6 F5 H4

FC09 FE
FCOA 4
FCOB AD
FCOC 00
FCOD A2
FCOE 80
FCOF c8 INY
FC10 DO BNE LOOP =
FC11 FD

Originally set for hex mode.
Read the input signal.

BNE, DECI If switch is not zero change to
For our second, and last, demonstration we will use all eight
data bits of the input port. They are wired in the same manner

as the Dg switch in Figure 5.

Input Port Data Bits

This demonstration uses a short program to load a block of
numbers into memory from the input port. It could be used as
a subroutine within a program which required loading of
memory at various parts of the main program. The program
assumes that when you have loaded the required data you will
return to the main program at location FC15,

Do #D; @D, @ Dy
LDY, 00 Strobe

LDX, 80
Delay I.op

Eight bits of data are loaded from the switches by the strobe
signal. The program stores the data in memory using the X

FC12 CA DEX INPUT PORT register as an index. If all entries have been made the program
FC13 DO BNE LOOP = jumps to the main program (location FC15). If all entries have
FC14 FA 7 igure 5 not been made, the initialization vector is set to return you to

FC15 18 cLC
FC16 69 ADC 01
FC17 01
FC18 ac
FC19 08
FC1A FC
FC1B F8 SED

FC1C ac JMP, COUNT
FC1D 15

FCI1E FC

the location for the next input (FC02). The program then
loops until you push the Halt button. After pushing the Halt
button, make your next entry and strobe it in. Then press the
Start key again. This process is repeated until all your entries
have been made. The program then automatically jumps to the
main program.

Countup 1.

JMP OUT Qutput it,

Set decimal mode.
This concludes this Data Handler series. Western Data Systems,
3650 Charles St Suite G, Santa Clara CA 95050, have been
updating the Data Handler. Any future articles on the Data
Handler depend upon how soon the revised version is available.

30 PEOPLE'S COMPUTERS JAN-FEB 31

D

4

@ of himselfl, battling the Count on all sides al

THRILNG concLLision !

BY LEE SCHNEIDER
& TODD VOROS

Brushing off a few bits of digital dust,
Fortran Man explains . . .

In pass 1, | used the special
duplicating ability given me by
Ludwig to make multiple copies
of myself , , . to keep the Count
busy while | bagan pass 21

In that pass, | incremented

myself to the top of the highest

tower and ralsed & special Transistorian
interrupt flag provided by the Monitor!

Yes. .. wedetected

In our last episode. we were witness to the start
of one of the most rare and remarkable cvents
ever to occur in compuling history ... the
Battle of the Compilers! Within the walls of a
dark and unbiased castle at the foot of the
Monolithic Mountains, the entire land of Tran-
sistoria can sense the oscillations produced by
the battle between two titanic foes: Fortran
Man and the evil Count Algol! The Count is a
wily and powerful foe, who has resisted termina-
tion for thousands of cycles...but Fortran
Man is not lscking in power or skill . . . plus,
he has the aid of the Ultimate Power on his side
...the Monitor! With the Monitor’s help.
Fortran Man is able to create multiple copies

once, fighting the Count's superior data-crunch-
ing strength by sheer weight of numbers! During
the great battle between the Count and the army
of duplicate F-Men, a signal Flag suddenly
appears on the tower of the real castle ., . . and
moments later, within nanoseconds of the time
the real Fortran Man reaches his friends who
await him at the edge of the data field. all
Transistoria is shaken by the sight of a great
bolt of interrupt energy ... which descends
on the castle; and blasts it into a billion bits!

And now, amazed observers rise from the
ground potential where they were thrown by
the great blast . . . to find that the once massive
and sinister Castle Algol is...gone! Doktor

Debug wastes no time in polling F-Man as to
how this came ta be . . .

Heavens to Breakpoint,
F-Man . . . what happened?

A two-pass plan,

Herr Docktor. . .
which would have

been impossible
without the aid

of Ludwig von Monitor!

o ey N
=2
But that was no ordinary interrupt
flag , . . it was a virtual-storage memory
ipping flag!

But. . . Transistoria has no
virtual memories!

-

Exactlyl So when the W

interrupt occurred, the % i
Count was swapped out . . . ["\\
N
-

with no place to gol

In other words,
the Count has been —
terminated . . . forever!

The Doktor acknowledges understandingly . .
and then turns to examine the location which
only microseconds before had held the great

castle. ..
N

Yes, | see . . . and it appears

N that we will have no more to

fear from Count Algol!

But , . . what happenad

to the castle? |'ve seen

some rapid relocations of

data in my day ... but this . . . !!

N NSRS BN
R

tere is the Hero of the celebration? For
" the cycle, he is escorted aboul the town
ty ... who obviously has other things
nind

me, FMan ., ,
have seen what
aceful, low-cycle
e Transitorials. ..
«in't you stay here
| us? We would be happy
ave you make this your

1 would really like to,
Parity . . . but I'm afraid

ild seem that all of Transistoria had
led itsell to the port to see him off ..
F-Man changes his sign and branches
aboard the transport

Soodbye, alll

Goodbye, old friend!
Perhaps some time in
the future Parity and |
shall transmit ourselves
to 360 City and visit you!

0= =
I
g 5 %] FORTRAN
= g x { UBER ALLE
o2 5). s
]
FES i
As the last light fades, Fortran Man, Doktor And it is good that Our Hero has rested ... é 5 — § pst, Our Hero branches out of Transis-
| hed little lookahead in that case . . . but De‘:}ug._ and the Doktor's beautiful daughter for on the rising edge of the next cycle there = < w - nding back towards his resident location
| can cartainly compute what happened! Parity joumey wearily back to the village . .. begins such a celebration as _Tranms!nr_in has 2 teat metropolis of 360 City . . . where he
past the file control blocks which line the never before executed! Free from the fear of E -~ ve newer and greater adventures to
When | was last ot Castle Algal, edges of the data field . . . being drained of life-giving bits by the evil 5
| noticed that its once dynamic ! = Count, files arrive in bitstreams from all about Y
data structure was crumbling all 3 = SR ERATRCRC the countryside...and Fortran Man is the >— £ n, that's another episode altogether, For
about, badly in need of refreshing! Come, then . . . looks like hero of the day! _] c bugh, this is
2 ou could use a few rest ! - -
1t was on the verge of 3 ‘:\fdﬂ! p n- E .
dissipating on its own . . . (‘s
and since no refreshing could (11 E
take place during the interrupt, ' .. m .-
the data structure finally gave way! fl the Count has decremented my strength = '
2 bit or two . . . but at least now | can] = ol
rest in the knowledge that Transistoria 7)) g s .8
N El - Exd &
sl 2 - 28 <«
= i = 0w &
Z % g B :
s B 3 c = -
5 .8 SO &
el e =5 |
8§ 28w g
Y - £ -
] Hmmm ., . very logical . .. m;.o' % %8 % 6
as usunl, F-Man! | o0 OB 999 STOP
a a—m = END

JAN-FEB

32 PEOPLE'S COMPUTERS

Reader Survey

In the past year we’ve made many changes in Peaple’s Computers
in response to a survey of our readers. It's time again for your
input--please complete the card below and return it as soon as

possible.

people’s computers
Subscription Form

1ere is the Hero of the celebration? For
! the cycle, he is escorted about the town
ty ...who obviously has other things

BY LEE SCHNEIDER
& TODD VOROS

A
Brushing off a few bits of digital dust,

Fortran Man explains . . .

In pass 1, | used the special
duplicating ability given me by

Ludwig to make multiple copies
of myself . . . to keep the Count
busy while | began pass 2!

In that pass, | incremented

myself to the top of the highest

tower and raised a special Transistorian
interrupt flag provided by the Monitor!

Yes . .. we detecte(
the signal from hert

| had little lookahead in that case . . . but
| can certainly compute what happened!

| When | was last at Castle Algol,
| noticed that its once dynamic
data structure was crumbling all
about, badly in need of refreshing!

|

=\

Q"

It was on the verge of
dissipating on itsown . , . &
and since no refreshing could

take place during the interrupt,

the data structure finally gave way!

T
W

. aff/_lf//,_

72

PEOPLE'S COMPUTERS

People’s Computers’ Survey

1. | am interested in computersasa. . .
" hobby [educator [0 computer professional

[other

2. My level of computer experience is . . .

[J zero [beginner O intermediate O extensive

3. My main interests are in using computers TOLS
[0 commercial software development [household automation
0 communications O household records, finances
[0 data bases O mailing lists

O education O music
[J games [scientific applications, analyses

O graphics, art O small business applications
O handicapped people O word processing
[other

4. My interests in using computers for education are . . .
O providing materials for family and friends
[teaching kids under 10
O teaching kids 10-14
[teaching high school students
O teaching adults
O other
[0 non-existent

5. In future issues of People’s Computers | would like to see more of:

| would like to see less of:

6. | receive these computer publications:

[Byte O Computer Music Journal T Calculators/Computers
Ol Computer [Creative Computing O Kilobaud
O ROM O Dr. Dobb’s Journal [Personal Computing
O other
7. Do you presently own a computer that works?
O yes O no

8. Do you plan to buy a home computer or additional home computer
equipment within the next 6 months?

[yes O no

9. The highest level of education |'ve completed is:
O junior high O bachelor’s
O high school [0 master’s
[junior college I Ph.D. or Professional

10. My age group is:

O under 14 [19-30
O 14-18 [31-50
O over 50
11.1am O male [female

12. Are you a subscriber to People’s Computers?
[yes O no

|

O G S S S -

Please send me a one-year subscription to People’s Computers
magazine (published bi-monthly) for $8.

O This is a renewal

O Payment enclosed
(Please attach your label)

O Bill me

NAME

ADDRESS

CITY/STATE ZIP
O Visa/BankAmericard Card No

O Master Charge Expiration Date

(Foreign rates available on page 2) 36

- S5 D D O S N D S S 0 S D 0 G 5 T O S O S G S e e S S D D S S e e o

8 Back Issues for $6!

(Order now. Supplies are limited)

For just $6 you can get 8 back issues from Volumes 4 and 5 in
their original newspaper format. Buy our last three issues (new
magazine format) for still just $1.50 each. An order card is below.
Highlights of these issues include:

Soloworks Curriculum; Space Games Programs; Huntington
Project Simulations; Kids Building Computers; Electronic Pro-
jects for Musicians; Classroom Computer Games; PILOT;
Tiny PILOT; 6502 Assembly Programming; Pet ‘Robots’; Games
Programs.

(See back of card for magazine contents)

o O G S O 0 e o e D S O e S S S S S

Back Issue Order

O Send me 8 back issues of People’s Computer Company s newspaper from

Volumes 4 and 5 for only $6.
O Send me these quantities of back issues for $1.50 each:

Vol 5, No 6 Vol 6, No 2

Vol 6, No 1 Vol 6, No 3
NAME
ADDRESS
CITY/STATE ZIP.
O Visa/BankAmericard Card No

Expiration Date

O Master Charge

nind . ..

me, F-Man . ..
have seen what

aceful, low-cycle
e Transitoriais. ..
dn’t you stay here
| us? We would be happy
ave you make this your

lld seem that all of Transistoria Had
ted itself to the port to see him off . ..
F-Man changes his sign and branches
aboard the transport . . .

Goodbye, old friend!
Perhaps some time in

the future Parity and |
shall transmit ourselves
to 360 City and visit you!

Ji:\
bl FORTRAN
’ , UBER ALLES

ast, Our Hero branches out of Transis-
pding back towards his resident location
reat metropolis of 360 City . . . where he
re newer and greater adventures to

1, that’s another episode altogether. For
>ugh, this is

999 STOP
f END -, -

JAN-FEB 33

32

BY LEE SCHNEIDER
& TODD VOROS

Brushing off a few bits of digita
Fortran Man explains . ..

In pass 1, | used the special
duplicating ability given me by
Ludwig to make multiple copies
of myseif . . . to keep the Count
busy while | began pass 21

In that pass, | incremented

myself to the top of the highes

tower and raised a special Tran
interrupt flag provided by the |

Yes. ., we
the signal |

| had little lookahead in that case . , . bu
| can certainly compute what happened|

When | was last at Castle Algol, ™
| noticed that its once dynamic
data structure was crumbling all
about, badly in need of refreshing!

It was on the verge of
dissipating on its own , . .
and since no refreshing cou
take place during the interr
the data structure finally g

Hmmm . .. very |
as usual, F-Man!

PEOPLE'S COMPUTERS

FIRST CLASS

PERMIT NO. 756
MENLO PARK, CA

BUSINESS REPLY MAIL

No Postage Stamp Necessary if Mailed In the United States

Postage will be paid by

people’s computers

1263 El Camino Real

Box E

Menlo Park, CA 94025

Our most recent back issues in the new magazine format:
(Each issue contains one or more listings of games.)

Vol 6, No 1: Home Computers for Beginners; Z-80 PILOT; Tiny BASIC;
6502 Assembly Programming; Graphics; Women and Computers; game
program.

Vol 6, No 1: Heathkit Computers; Pet Robots; Do-it-yourself CAI in PILOT
and BASIC; 6502 Assembly Programming; Kids’ Computer Books; HP-25
Programming; game programs.

Vol 6, No 2: The PET; Tiny Languages; Computer Networks; Tiny PILOT
Interpreter in BASIC; Microcomputers and Home Energy; game programs:
mini-Kalah, Sandpile.

Vol 6, No 3: PET Evaluation; Teaching Math with Oz Graphics; Biofeedback
and Microcomputers.

Mail to: people’s computers back issues
1263 El Camino Real
Box E

Menlo Park, CA 94025

Please enclose payment with your order.

S

The festival atmosphere is everywhere .. . in
one place. a bookkeeping routine amuses the
crowd by jugeling figures . , . in another, music
is synthesized by local D/A routines from the
traditional Transistorian patterns in their memo-

1'm sorry, Parity . . . but
| have work to dol

As long as there are complex
problems to be solved, challenges
to be met, doers of programmatic
evil to be confronted . . . | must be
there, to fight for Truth, Accuracy,
and the Algorithmic Way!

Yes ... | understand.
But . .. I'm going to

miss you, F-Man!

A practitioner ol the art of error-detection-
and-correction coding amazes the crowd by
making randomly selected bits disappear from
one end of a transnussion. then mysteriously
re-appedr on the other end!

|

s 1/ Tr'ﬂl)' il
il o £)]

But all too soon the cyle comes to an end . ..
and they are interrupted by the good
Doktor. . .

’" There you are! Come

on, then, F-Man . . . the low-speed

transport is waiting in the port to

take you back down the channel to

360 City! And it can’t delay much longer . . .

Very well . . . | have
always worked to

minimize programmatic i

delays . , . come onl

But, where is the Hero of the celebration? For
most of the cycle, he is escorted about the town
by Party...who obviously has other things
on her mind .. .

Tell me, F-Man , . .

you have sean what

a peaceful, low-cycle

place Transitoriais. ..
couldn’t you stay here

with us? We would be happy
to have you make this your
resident location . . .

| would really like to,
Parity . . . but I'm afraid
nott

It would seem that all of Transistoriz had
connected itself to the port to see him off. ..
and as F-Man changes his sign and branches
himself aboard the transport . . .

Goodbye, alll

Goodbye, old friend!
Perhaps some time in

the future Parity and |
shall transmit ourselves
to 360 City and visit you!

FORTRAN
L UBER ALLES

On signal from the UART control center, the
Hold line is dropped from the port. and the
transport starts on its journey down the
channel . ..

Goodbye, Doktor ., ,
perhaps someday | shall

RETURN!

And give my thanks to
Ludwig von Monitor . . .
without his help | could
never have reset the Count!

As the Monolithic Mountains fade into the
background, Fortran Man watches the passing
of the peaceful data banks along the edges of
the chanmel, and at last can take a few micro-
seconds for asell~evaluation routine . . .

Well . . . another job successfully by \

2 completed . . . and certainly one
Z of my toughest!

Ah, well . .. | wonder
how Billy Basic is doing
back in 360 City ...?

g

So, at last, Our Hero branches out of Transis-
toria, heading back towards his resident location
in the great metropolis of 360 City | . . where he
will have newer and greater adventures to
face...

But then, that's another episode altogether. For
now, though, this is

999 STOP
END

JAN-FEB

33

REVIEW'S

THE FIRST BOOK OF KIM

Jim Butterfield, Stan Ockers,

Eric Rehnke, editors

ORB, PO Box 311, Argonne, IL 60439
176 pp, $9.00

The First Book of Kim, along with the
KIM Programming Manual are a must for
all KIM owners. I couple the two together
since:

e The KIM Programming Manual
comes with the KIM at purchase time.

® The First Book of Kim is predicated
on the fact that you are a KIM owner. It's
value is otherwise quite limited as almost
all the programs in the book depend
heavily on the KIM Monitor and use of
the KIM keyboard and display.

If you own some other 6502 computer
and buy the book expecting to immedi-
ately make use of its games and programs,
you will be disappointed. The First Book
of Kim is intended for KIM users. No
other use is implied by the authors or
editors. As its title clearly states — this
is a KIM book. Don’t expect it to work
miracles for other 6502 machines. If you
can rework the games and programs
contained in the book to run on a dif-
ferent machine, you are proficient
enough to write your own games and
don’t need the book.

That’s enough about what this book is
not. Let’s hear about what it is. As I
said for openers, it is a MUST for KIM
owners — especially for those who have
recently purchased a KIM. The book is
dedicated to just such people. If you are
an old-time KIM user and belong to the
KIM/6502 Users Group, you have
probably seen most of the games, pro-
grams, utilities, and hardware ‘add on’
hints. Even for you, this book puts all
these ‘goodies’ in one place, neatly
organized,

The individual programs in TFBOK were
contributed by various authors and
edited by stan Ockers, eric Rehnke, and
jim Butterfield. Does that sound like
ORB or is it just a coincidence? The

34 PEOPLE’'S COMPUTERS

heavy contributor is obviously Jim
Butterfield. 1 highly suspect that all
authors are members of the KIM-1
User’s Group. The group’s User Notes
is a great newsletter full of useful infor-
mation. (P.O. Box 33077, North
Royalton, OH 44133)

The book opens with a section devoted
to KIM beginners explaining memory,
hexadecimal numbers, how to load, run
and step through a program, and testing
a program. Displaying values and using
the keyboard through the monitor’s
subroutines are also included. The
majority of programs contained in the
book use the monitor’s subroutines with
great effect.

The second section, the heart of the
book, contains some 90 pages of 28
well-documented games and diversions.
The programs are arranged by title in
alphabetical order so that they should
be easy to find when you want them. The
type is LARGE and EASY TO READ —
another good feature. Of special impor-
tance is the complete documentation.

Section three contains useful utility
programs for such things as relocating
programs, mini-monitor and mini-dis-
assembler, memory test, tape utilities,
sort, etc. The utilities look impressive.

Two sections on expanding the KIM and
interfacing it to the outside world com-
plete the book.

Should you buy the book?

* If you own, or are going to own, a
KIM, you MUST buy The First Book
of Kim. The authors are dedicated KIM
users and have intertwined every program
in the book with the KIM-1 computer.
As you read through it I get the feeling
that the book is a part of the computer —
a peripheral, but still a necessary part.
The book is meant to be used.

e If you do not own a KIM and do not
plan to buy one, you probably cannot use
the book in its intended way. It may
give you some programming ideas: but
unless you know the KIM monitor, it
will prove frustrating — all those goodies
and no way to use them.

e If you don’t own a KIM and you DO
buy the book, YOU ARE GOING TO
BUY A KIM just to use the book.

[like the idea of the cooperative approach
of the authors and editors. Ilike the idea
of publishing books designed for a specific
piece of hardware. While this limits its
immediate wide-spread appeal, it makes
the book much more practical and useful
than the generalities presented in many
‘how to' books. This book is excellent
for its specific purpose.

Reviewed by Don Inman.

COMPUTERS, COMPUTERS,
COMPUTERS

D. Van Tassel, editor

Thomas Nelson, 1977, 192 pp, $6.95

This is a collection of stories and verse
that have something to do with compu-
ters. The quality, while not spectacular, is
good. It made a pleasant afternoon’s
reading and most of the pieces I had not
read before. But I wish the editor had
mentioned that ‘That Dinkum Thinkum’
by Robert Heinlein, is essentially a short
excerpt from Heinlein’s enjoyable book
The Moon is a Harsh Mistress. | recom-
mend you read Computers, Computers,
Computers.

Reviewed by Eryk Vershen.

YOUR HOME COMPUTER
by James White
Dymax, 1977, 211 pp, §6.00

HOME COMPUTERS: 2'° QUESTIONS
AND ANSWERS

Volumes I and II: HARDWARE and
SOFTWARE

by Rich Didday

Dilithium Press, 1977

Vol 1 175 pp, $7.95

Vol II 150 pp, $6.95

I've been teaching a class on microcom-
puters at McNeil Island penitentiary.
We started out with no hardware and a
class of students who knew nothing
about electronics or computers. It would
have been very difficult to make a success
out of such a class without good books
with illustrations and practical examples.
These three books are just what we
needed.

James White’s book is written for the
person who wants to know why he or she
should buy a home computer, what one
is and how to choose one. The primary
emphasis of the book is on hardware
with many photographs and specific
examples of each type of hardware
discussed, but there is also a brief intro-
duction to programming, enough so that
the reader is left with some understanding
of what a program is and why it is impor-
tant.

We found White’s book to be a good
introduction for the novice. The micro-
computer field has a language of its own
which the novice must learn, and White

covers the basic concepts clearly and at
a comfortably slow pace. He also includes
a good listing of computer stores, clubs
and publications which the novice will
find helpful.

The microcomputer field is changing
so rapidly that many of the discussions
of specific hardware in White’s book are
already out of date, but don’t let this
put you off. No book can-be up to date
in this field — you'll have to read the
magazines and newletters for the latest
new product information, and White’s
book will give you enough background to
understand much of what you'll read.

After reading White’s book, my students
had a general idea of what a micro-
computer is and they were familiar with
some of the language of the computer
field. Then we were ready to go into
some detail, to examine the architecture
of microcomputers and to learn how to
program them. Didday’s two volumes
proved very helpful at this stage.

Didday’s volumes were produced by
editing the transcription of ten days
of conversation about microcomputer
hardware and software. There are lots of
illustrations, sketches, practical examples
and creative ideas. A few students found
the conversational format odd at first,
but everyone ended up liking these
books.

Didday intended his books as an intro-
duction for the novice, and he does
define new technical terms as he uses
them, but he has packed a lot of infor-
mation into two volumes, so [think
many will find his books most useful if
an introductory book like White’s is read
first. To give you an idea of the ground
he covers, here are some of his chapter
headings: ‘Numbers, logic and building
blocks’, *Getting into hardware’, "What's
it like to assemble a computer kit?’,
‘Some specific microprocessors’, ‘What’s
it really like to program in machine and
assembly languages?’, ‘What's it like to
program in Basic?’, and ‘What can you
really do with it and what can’t you do
with it?".

If you want to get started in micro-
computers, reading these three books
is a good beginning,

Reviewed by Tim Scully.

THE COMPUTER IN PSYCHOLOGY
Michael J. Apter, George Westby, editors
Wiley, 1973, 309 pp, $18.95 (hardbound)

This book was written by members of
the department of psychology at Univer-
sity College, Cardiff. The first five
chapters deal with the use of computers
in the processing of psychological data,
the on-line control of psychological
experiments, and the modelling of
behavior. Here the emphasis is on tech-
niques rather than applications. The
last five chapters describe some of the
applications to which the techniques
outlined in the first half of the book
have been put. Further reading is
suggested at the end of each chapter, and
an extensive bibliography is presented
following the last chapter.

Chapter 1 traces the development of cal-
culating machines from primitive finger
counting through modern computers. The
second chapter is an introduction to pro-
gramming. Chapter 3 examines the lan-
guages and software techniques available
for the control of on-line experiments.
Chapters 4-8 deal, respectively, with
the use of computers in on-line experi-
ments, modelling of behavior, study of
the psychology of perception, and
applications in the psychology of
language. Chapter 9 reviews and gives
examples of the use of computers in
clinical psychology, not only for the
storage and retrieval of clinical data,
but for the automation of psychological
testing and interviewing in general, and
also the interpretation of clinical data.
The techniques of Computer-Assisted
Instruction are outlined in Chapter 10.

The book is very well written, easy to
follow, and provides a good introduction
to the applications of computers in the
various fields of psychology. It also
contains lots of ideas that could be
turned into worthwhile projects for
computer hobbyists.

Reviewed by Jim Day. O

JAN-FEB 35

U

Bgrge R. Christensen and his associates in Denmark are among
the many people dissatisfied with BASIC, especially as a tool
for teachers and students. So they did something about it:
COMAL was the happy result.

It all started back in 1972 when we got a NOVA minicompu-
ter here at the States Training College, Tonder, Denmark.
We started writing BASIC programmes like they did at most
schools where they were lucky enough to get a computer
at that time. At first everything seemed just fine. BASIC is
easy to learn, and both the students and I wrote a lot of small
programmes — most of them with mathematical themes —
and they ran irreproachably. Gradually the programs grew
bigger and errors became more frequent. Very often I had to
sit for quite some time to find out where a student had made
a mistake, and it began to irritate me that I often found it

difficult to read even relatively small programmes written in
BASIC.

I found two main reasons for that: variable names are much
too short to give any information about what they represent,
and the many GOTO’s make it difficult and time consuming
to identify the different tasks of a programme. Let’s have
alook at the following simple example:

aayve IF PC1ed THEN GOTO G100

aaze PEINT "?OU MUST FARY P "DOLLAR.

CaZa GOTO G148

2160 FRINT YO MUST FAY <INCL. FEE» " P+Z "DOLLAR"
2110 REM (#FEE OR NO FEE THAT WAS THE DUESTION*)>

As you can see, there are two alternatives. If P (price) is less
than 100, you have to pay a fee of 2 dollars to have your
order executed. If the price is 100 dollars or more, you don’t
have to pay the fee. Now very often the GOTO in line 90 is
forgotten, and the larger the programme module between the
IF statement and the ‘break point’ grows, the greater the
risk that it is forgotten. Also I find it extremely stupid that
if the Boolean expression in the IF statement is true (e.g.
in line 70 if P is less than 100), you have to go somewhere
else (from line 70 to line 100) instead of executing the state-
ment or statements immediately following it. Looking for the
alternative immediately afterwards is the normal way of doing
that kind of job. And why must price be represented by a P,

36 PEOPLE'S COMPUTERS

I.:uctured BASIC

BY BORGE R CHRISTENSEN

or if you are generous P1, and not just PRICE? In large pro-
grammes with a lot of identifiers one is easily lost with the
non-mnemonic names in a BASIC programme. Why can't
an algorithm like the one above simply be stated like this:

oeve IF FRICE>=168 THEN DD

g PRINT "vOU MUST FARY “:FRICE; "DOLLAR"

0E53 ELSE

ik e FRINT “Woll MUST FAY CINCL. FEE) " PRICE+2; "DOLLARY
8116 ENDIF (#FEE OR NO FEE THAT MAS THE QUESTION+)

In the very fine book by Kerninghan and Plauger, The Ele-
ments of Programming Style, it says: ‘Say what you mean,
simply and directly’ and ‘choose variable names that won’t be
confused’. These two simple and fundamental rules of pro-
gramming are impossible to apply with BASIC! On the other
hand, there must be indisputable good things in BASIC, since
it has become so popular and widespread. Personally, I would
not be without the interactive mode and the dynamic editor
of a BASIC system. Also I/O statements are easy to use and
quite effective. And it certainly is easy to learn. 1 discussed
the program with some of my colleagues at the Institute of
Computer Science, University of Aarhus, and together with
one of them, Benedict Ldfstedt, I designed some extensions
of BASIC in order to have more readable and safer pro-
grammes. We wuse the algorithmic structures from the
programming language Pascal, defined by the Swiss professor
Niklaus Wirth. Pascal is a language of the Algol family, but it
is easier to use than Algol. I wanted our programming language
to be an extension of BASIC for two reasons: existing BASIC
programmes should still be running on our system, and — as
mentioned above — there are things in BASIC we would like
to use. After we had designed the extensions, two very tal-
ented students of mine, Knud Christensen and Per Christian-
sen, began to modify our BASIC interpreter (DGC’s — Data
General Corporation’s — Extended BASIC) and in three
months we had our first version running. We called it COMAL
(Common Algorithmic Language). Some people think I should
call it Structured BASIC. I don't care. Our project needed a
title: we gave it the one above.

Now I won’t tire you with a long theoretical explanation
about Niklaus Wirth’s and E. W. Dijkstra’s ‘structured pro-
gramming’ and ‘algorithmic structures’: instead I'll come right

to the point and demonstrate our language and the principles
of our extensions by means of an example. Please follow me.
I shall from now on refer to the program listing, which appears
on page 39. The programme has a heading, of course, with
some remarks on title, author, time, etc. (10-130). The head
also includes some definitions and declarations (70 - 130). In
line 80 and line 130 you can trace the first extensions of
BASIC. In COMAL you may use up to 8 characters in an
identifier name. The first of these characters must be a letter,
the following may be letters or digits. As mentioned above,
this is one of the really important things, and it adds substan-
tially to the readibility of a program. The variables TRUE and
FALSE are used later on in Boolean expressions, and the two
pointer functions are used for manipulation of strings. I’ll
explain it all when we are ready for it. From line 130 you can
see that string variables are named according to the same rule
as numeric variables and that a $-sign is added as in BASIC to
identify the type. In LET statements you may have as many
assignments as the line width will take, individual assignments
being separated by a semicolon.

The next part of the program is the MONITOR (150 - 420).
The body of the monitor is the interior of a REPEAT . . .
UNTIL loop. I would like to explain the structure of the moni-
tor first and then come back to REPEAT ... UNTIL loops
later on,

The monitor — and the whole program in fact — is controlled
from the INPUT statement in line 180 and the CASE structure
in lines 200 - 400. In this program, the CASE structure works
like this: CODES (1,2) is evaluated, i.e. the substring consist-
ing of the two first letters of CODES, is picked out. The inter-
preter now looks at the associated WHEN statements (220,
250, 280, 310, 340, 370), to see whether the value (the sub-
string) is found after a WHEN or not. If the operator has
written, say SEARCH, the substring will be SE, which is
found after the WHEN in line 280. Now the lines berween this
WHEN and the following WHEN will be executed. After that,
the interpreter goes on with the statement following imme-
diately after the ENDCASE. If the operator types STOP (or
STO or even ST) after the request in 180, lines 380 -390 will
of course be executed. If an illegal command, say SPT, is
entered, the alternative section, which is the one following
immediately after the CASE statement, is executed.

In general the CASE structure is described like this:

CASE expr OF

WHEN list,
2]

;‘;I:IEN list,,
C_pn]

ENDCASE

and works like this:

CASE {expr) OF

The expr (which as usual means a constant, a variable or an
expression) is evaluated, and the interpreter starts looking for
the value in the lists following the WHEN’s. If it is found, the
program section P; between the actual WHEN and the
following WHEN (or ENDCASE) is executed. If not found, the
section P between the CASE statement and the first WHEN
statement is executed. After that execution continues with
the statement following the ENDCASE.

The list; may include as many items as the line width permits
(this facility is not used in the sample program). The list may
also include expressions (arithmetic and Boolean), and if there
are any, they will be evaluated during the search. This gives
you some quite interesting possibilities. Just look at this. Fur-
ther explanations should not be needed:

8849 INPUT "THE ELENENT: " X
8859 CASE TRUE OF

8868 PRINT “THE ELENENT IS NOT IN ANY OF THE SETS®
8676 WHEN X=1,X=3,%=5,¥=7,%=9

TET PRINT “THE ELENENT IS IN SET A"

BI98 WHEN X>-18 AND X<=8

6168 PRINT “THE ELENENT IS IN SET B"

8118 UHEN X=18,X=28,%=38,%=48,%=58,%X>180

8126 PRINT "THE ELENENT IS IN SET C*

#138 ENDCASE

Indented lines which emphasize the structure of the program
are automatically supplied by the interpreter on the listing.
I'll have more to say about that later. CASE structures may be
nested to any depth.

In the monitor I've used the EXEC (execute) statement, too.
In line 240 it says: EXEC INCODES. This is a subroutine
call, and we may just as well go on at once to have a look
at the subroutine or procedure that is called. It’s in lines
440 - 550, and it begins with the statement PROC INCODES
and ends with the statement ENDPROC INCODES. COMAL’s
PROC differs from BASIC’s GOSUB in that a name is used
instead of a statement number and the extent of the sub-
routine is clearly shown. Procedures may call new procedures
until a depth of seven.

In lines 470 - 540 you find another COMAL structure,
WHILE . . . ENDWHILE, which defines a loop. It’s very sim-
ple: as long as CODES is different from ‘NONE’, lines 480-

JAN-FEB 37

530 will be repeatedly executed. The structure WHILE . . .
ENDWHILE is shown in this flow-chart:

N e N
\ \
~\ true Code between .~‘
§ 0 DO and ENDWHILE \
N N\

false :::

where p is a Boolean expression.

The IF ...ENDIF structure is best demonstrated in PROC
RUBOUT (780 - 920). Let’s have a look at lines 830, 880,
and 910. Here we find the keywords IF, ELSE and ENDIF.
The whole thing is controlled by the statement:
IF FOUND THEN

in 830. FOUND is a variable, which is used as a Boolean
variable. It will be interpreted as frue, if it has a non-zero
value, and as false, if it has a value of zero. This is not a
specific COMAL facility, but was already in the Extended
BASIC from DGC. It it has the value true, lines 840 - 870
will be executed, and if it has the value false, lines 890 - 900
will be executed. The structure of an IF ... ELSE ... ENDIF
branching is demonstrated in this flow-chart:

Code between
ELSE and ENDIF

TSI S
VIS4

The expression p may of course be any Boolean expression
(including Boolean constants and variables).

So far, I've not explained the REPEAT . . . UNTIL. Let’s look
at PROC HOUND (1080 - 1140). In lines 1090 and 1120
you'll find the REPEAT . . . UNTIL delimiters. The structure
is the most self-explaining I know of, but nevertheless, here
is the relevant flow-chart:

\‘ v
\ \
~\ Code between \\
\ REPEAT and UNTIL \
N \
N \
~\ P false \\
N \
N 4 \

There are some interesting details in the body of the REPEAT
. .. UNTIL loop. First look at the statement in line 1110. It
says:

LET FOUND=(CODE$=MAIN$(FNA(I),FNB(1))).

38 PEOPLE'S COMPUTERS

We'll take it from the right to the left: MAINS(FNA(I),FNB(I))
is the substring of MAINS including the characters pointed out
by FNA(I) and FNB(I) and all characters in between, If I is
equal to, say 6, FNA(I) is equal to 26 and FNB(I) is equal to
30. This is a trick we use to simulate an array of strings. We
simply “cut” a string into pieces all of equal length (defined
by the two pointer functions FNA and FNB). We expect to
have string arrays implemented in COMAL by the beginning
of 1978. We shall use the same conventions as in HP-3000
BASIC (cf. People’s Computers, Sept - Oct 1977, page 58).

Well, back to our assignment. When the substring of MAINS
has been picked out, it’ll be compared to the value of CODES,
which is also a string. If it is the same string, the Boolean
expression has a value of false. If the expression is frue,
FOUND is assigned a value of 1, and if the expression is false,
FOUND is assigned a value of 0. According to the conventions
mentioned above this will work whenever FOUND is used in a
test somewhere. As you can see, we have a nice piece of
Boolean algebra in COMAL, but I must admit that it is not
used very much by the students yet. The REPEAT . . . UNTIL
in 1090 - 1120 might just as well have terminated with:
UNTIL CODE$=MAINS$(FNA(I),FNB(I)) OR IFMAX.

Most students would do it like that, but then they would have
to add the statement:

IF CODE$=MAINS(FNA(I),FNB(1))

THEN LET FOUND=TRUE

IF .. .ELSE...ENDIF, WHILE . .. ENDWHILE . . . and
REPEAT . . . UNTIL may each and independently of each
other be nested to a depth of seven. So if you use them all
together with good old FOR NEXT, you may go down to
a depth of twenty-eight. So far, I have never seen that done.

Any program written in DGC Extended BASIC may be run
by our COMAL interpreter. This means that our library and all
the BASIC programs we might get from other sources can be
used with little change or no changes at all. And if you have to
change them, it’s not because of COMAL but because of
BASIC. As we all know, BASIC versions are not always com-
patible,

The indented lines supplied by the COMAL interpreter have
proved to be of greater importance than we had foreseen.
They work as a kind of ‘global debugging’ facility. Suppose
you forget to close an IF-branch with ENDIF, You can see
immediately from the listing that something is wrong, since
the statements do not ‘close up’ at the end of the listing. Also,
and this is very important, students seem to become much
more conscious about structure, when they see it the COMAL-
way.

We were also happy to learn that our structures are very useful
with computer-assisted instruction (CAI), We didn’t plan it
that way, but they are. We were more concerned with the algo-
rithmic and problem solving points of view when we designed
COMAL, but it appears that in particular the CASE structure
is extensively used by our colleagues who work with CAI.

We’ve been using COMAL for almost two years now; I often
wonder why so many people are still satisfied with BASIC.
BASIC was OK back in 1967, but that was 10 years ago! And
just look at the development of hardware since then. The mini

A COMAL PROGRAM

(A run is on the next page)

#6818 REN (#SINULATOR: FILE OF ARTICLES#)

6828 REN (#URITTEN FOR “PEOPLES COMPUTER?®)

#8380 KREN (+BY BERGE R. CHRISTENSEN AT “DATO’, TONDER, DENMARK*)
2648 REM (+DATE OF THIS VERSION: OCT, 8. 1977%)

8858 REM (+LANGUAGE: COMAL 77 - RUN BY NOVA 1288+#)
8880 REN //----=—mmmmmnan /!

8878 REM (*TW0 BODLEAN CONSTANTS: TRUE AND FALSE ARE DEFINED#)
#8889 LET TRUE=1; FALSE=8

6678 REM (#TUO POINTERFUNCTIONS: FNA AND FNB ARE DEFINED®)
2180 DEF FNA(X)=52X-4

8118 DEF FNB(X)=5%X

8120 REN (s+MAINSTRING AND BUFFERSTRING ARE DECLARED®)
2138 DIN HAINS(S588),CODES$(S)

8148 REN //-----=--—-==mm= 1

#1506 KEM (*HONITOR#)

6168 LET NAX=8

§178 REPEAT (#FILE IN USEs)

188 INPUT "ENTER, SURVEY, SEARCH, DELETE, SORT, STOP: “,CODE$
§1980 PRINT

#2868 CASE CODE$(1,2) OF

#8219 FRINT "HO SUCH TASK - youtt*

8226 UHEN “ER"

8238 REM (#ENTER CODES#)

240 EXEC INCODES

8258 WHEN "Su“

8269 REN (#PRINTOUT OF SURVEY®)

8278 EXEC SURVEY

#288 WHEN "SE"

8299 REN (+LOOK FOR A GIVEN CODE=®)

8349 EXEC GETCODE

8318 WHEN “DE"

8328 REN (#DELETE A CODE#)

8338 EXEC RUBOUT

£348 WUHEN “SO"

8358 REK (*ALPHANUNERIC SORTING OF FILE#)

8368 EXEC ALFASORT

378 UHEN “ST"

8led REH (#THAT“S ALL FOR TODAY, FOLKS#)

B399 ST0P

#4886 ENDCASE

2419 UNTIL FALSE

8428 END OF MOWITOR

#4380 RENSS/rmmrrr = m /1

8448 PROC INCODES

#458 REM (*TYFE IN NEW CODES#)

@468 INPUT "> “,CODES

#478 WUHILE CODE$<>"NONE" DO

a480 EXEC ANALYZE

8498 1F OK THEN

8588 LET HAINS=NAINS,CODES
8518 LET HAX=NAX+1
8528 ENDIF (#IF CODE OK, THEN IT HAS NOW BEEW ENTERED#)

8538 INFUT "> ", CODES

8548 ENDWHILE

8558 ENDPROC INCODES

§588 REN //=reormmrmromnms 1/

8578 PROC SURVEY

8588 PRINT

8598 PRINT "HERE IS YOUR LIST:"
8688 PRINT

f&18 FOR I=1 TO MAX

8628 FRINT HAINS(FNA(I),FNB(I))
#4638 HEXT 1

[LEY
B4658

8670
8588
8598
788
8718
8729
8738
8748
8758
8768

@788
8798
8869
6818
#6280
#6318
LR
2858
8848
8878
g8B8
6898
8988
gy
8728
8738
8948
8758
#9468
978
é788
8994
1808
1618
1828
1838
1848
1958
1848
1878
1888
1958
11890
1a
1128
1138
1148
1158
1148
1178
1188
1198
1288
1218
1229
1238
1248
1258
1268

FRINT
ENDFROC SURVEY

FROC GETCODE

LET 1=8

INPUT "WHICH CODE? ",CODES

EXEC HOUND

IF FOUND THEN
ELPR]NT “THE WANTED CODE HAS NO.";ADR;"IN THE FILE."
SE)

PRINT "NO SUCH CODE IN YOUR FILE!®

ENDIF (sCODE DR NO CODE - THAT WAS THE OUESTION#)

ENUPROC GETCODE

FROC RUBOUT
INFUT “WHICH CODE IS GOING? " ,CODE$
LET 1=8
EXEC HOUND
LET LAST=LEN(HAINS)
IF FOUND THEN
REN (#DELETE THE CODE#)
LET P1=FNACADR)-1; P2=FNB(ADR)+1
LET HAINS=HAINS(1,P1) MAINS(P2,LAST)
LET HAX=HAX-1
ELSE
FRINT "NO SUCH CODE IN YOUR FILE!™
FRINT
ENDIF (+CODE DELETED OR NOT FOUND®)
ENDPROC RURDUT

FROC ALFASORT

FOR I=1 T0 MAX-1
FOR J=I+1 TO HAX
REM (#IF THE I“TH CODE CONES AFTER THE J“TH CODE#)
IF HAINS(FNACI),FNBCID)DHAINS (FNACJ),FNR(J)) THEN
REH (#SUWAF THE TWD CODES#)
LET CODES=MAINS (FNA{I),FNE(I))
LET HATHS$(FHA(I),FNBCID)=HATHNS (FNA(J),FNBCJ))
LET HAINS(FNACJ) FNB(J))=CODES
ENDIF (*SWAPFING DONE#)
HEXT J
NEXT 1
EHOPROC ALFASORT
REW //-—=mmmmmmmmeee 1
PROC HOUND
REPEAT (#LOOK FOR CODE, UNTIL FOUND OR KO MORE CODES#)
LET 1=141
LET FOUND=(CODES=HAINS(FNA(I),ENB(I)))
UNTIL FOUND DR I=HaX
LET ADR=I
ENDFROC HOUND
REN //-m===mrmmmmmaae 1/
FROC ANALYZE
LET OK=TRUE
FOR I=1 T0 3
IF CODE$(I)<"A" OR “Z"<CODES(I) THEN LET OK=FALSE |
NEXT 1
FOR I=4 70 5
IF CODE$(I)<"@" OR "9"<CODES(I) THEN LET OK=FALSE
HEXT 1
IF NOT OK THEN PRINT “CODE ILLEGAL. 1S NOT REGISTREDI®
ENDPROC ANALYZE

REM //-==mmmmmmmmmnes 17

JAN-FEB 39

was just barely designed in 1967. Through the works of
Dijkstra, Wirth, Hoare and others, we know much more about
good programming languages now. Why is this knowledge not

used? It is my firm belief that most computers are under- —

utilized due to insufficient software. And that goes especially
for educational systems. Are we too easy for the computer
dealers?

By the way, a COMAL interpreter is not a huge affair as you
might think. We only had to add about 10 - 12% to the BASIC

interpreter to have COMAL running, and in the very near
future we hope to implement COMAL on a micro. With the
new micros we have a chance to have computers running even
in small schools; we expect that soon a lot of children will be
working with them. Are they going to have computers from
1977 with software based on principles from 1957? Would
you like to go to work every day in a car from 19107
Honestly? And not just for fun? Using developmental speed as
the measure, it would be about the same as using a 1977 com-
puter with 1957 software. O

VI Ll Ll L Ll Lileisssiid

RUN OF THE COMAL PROGRAM

ENTER, SURVEY, SEARCH, DELETE, SORT, STOP: EN

> ANV4S

> QTH34

> RTY34

> UUw34

> TUNS4

> BSAZ7

> BHWS4

> NONE

ENTER, SURVEY, SEARCH, DELETE, SORT, STOP: SU

HERE IS YOUR LIST:

ANVAS
QTH34
RTY34
UUW34
TUNS &
BSA77
BHWGS

ENTER, SURVEY, SEARCH, DELETE, SORT, STGOP: SO

ENTER, SURVEY, SEARCH, DELETE, SORT, STOP: SU

HERE IS YOUR LIST:

ANVAS
BNUWSS
BSA77
OTH34
RTY34
TUNDS
UuW34

ENTER, SURVEY, SEARCH, DELETE, SORT, STOP: DE

WHICH CODE IS GOING? BSA77
ENTER, SURVEY, SEARCH, DELETE, SORT, S5TOP: SU

40 PEOPLE’S COMPUTERS

HERE 15 YOUR LIST:

AHRVAS
BNW54
QATH34
RTY34
TUNSS
uuu34

ENTER, SURVEY, SEARCH, DELETE, SORT, STOP: EN

> NMWA4S

> UUR&7

> RTYU4

CODE ILLEGAL. IS NOT REGISTRED!

> NONE

ENTER, SURVEY, SEARCH, DELETE, SORT, STOP: SU

HERE IS YOUR LIST:

ANVA45
BHWS4
ATH34
RTY34
TUNG6
UuW34
HMW45
UURSZ

ENTER, SURVEY, SEARCH, DELETE, SORT, STOP: SO

ENTER, SURVEY, SEARCH, DELETE, SORT, STOP: SU

HERE IS YOUR LIST:

ARVAS
BNUS4
HNUAS
aTH34
RTY34
THNS4
UUR6?
UUY34

ENTER, SURVEY, SEARCH, DELETE, SORT, STOP: ST

PASCAL

VS

BASIC

A POLEMICAL COMPARISON OF THE TWO
AS GENERAL -PURPOSE MICROPROCESSOR LANGUAGES

BY DAVID A MUNDIE

Many of our readers have expressed
interest in learning more about Pascal.
Here, David Mundie’s discourse explores
Pascal by contrasting it to BASIC. For
readers with a limited programming back-
ground we recommend reading the Pascal
listing on page 44 before beginning the
article. The object of the Mastermind-Jike
game is for the player to guess a random-
ly generated array of characters. The last
5 statements are the action part of the
program, the preceding statements are the
definition part.

The formal definition of Pascal is con-
tained in Pascal: User Manual and Report
by Kathleen Jensen and Niklaus Wirth,
published by Springer-Verlag, Berlin
1974. Ken Bowles’ Introduction to
Computer Science, published by
Springer-Verlag in late 1977, uses Pascal
as its teaching vehicle. Information on
implementations of Pascal may be
obtained through the Pascal Newsletter,
available from Andy Mickel, University
Computer Center, 227 Exp Engr, Univer-
sity of Minnesota, Minneapolis, MN
55455,

If someone were to propose that the out-
dated Z-8888 CPU be retained in prefer-
ence to the newer, faster, and more
powerful 6868A, simply because every-
one was already familiar with the older
machine, his sanity would probably
be questioned, Yet when it comes to the
languages used on those machines, the
personal computing community seems
content to hobble along with a hopelessly
inadequate language whose only excuse
for existence is that it got there first.
This contrast between our compulsiveness
with regards to machines and our fetish-
ism with regards to languages is surely
one of the more interesting psychological
aspects of the current computing scene.

Those with a vested interest in BASIC
would have us believe that the situation is
irreversible. | personally believe that the
market for BASIC is just about saturated,
and that if personal computing is to
attain its full potential, the many margin-
ally interested members of the general
public will have to be won over with a
language more suited to their needs than

JAN-FEB 41

BASIC. The casual user of the future will
demand a language that is simple, power-
ful, and logical; | am hopeful that he will
get it.

Be that as it may, now that micropro-
cessor implementations of my favorite
language, Pascal, are becoming available,
| think the time has come to examine the
two languages side by side, and what
follows is my contribution to such a com-
parison. | am a prototypical applications
programmer with no background in com-
puter science, so | shall not attempt to
propound the principles of structured
programing on which, to a large extent,
Pascal is based. Instead | shall concentrate
on an actual BASIC program and its
Pascal translation. | shall attempt to
demonstrate that Pascal, because it offers
an adequate repertoire of data types and
control structures, allows the programmer
to remain on a high level of algorithmic
abstraction, where he functions best,

BASIC PASCAL

DATA TYPES

integer X
real X
character (string) x
boolean

defined scalar

X X X XX

STRUCTURING METHODS
array X
record

set

file

pointer

b - B

OPERATORS

mixed arithmetic X
integer division

modulus X
exponentiation X
relational operators X X
set operators
logical operators

x X

x %

CONTROL STRUCTURES

if X
case

for X
while

repeat

goto x

® X K K KX

SUBPROGRAMS
recursion

local variables
parameters X

x X

CHART 1. Pascal vs. BASIC at a glance. The
only feature BASIC has that Pascal doesn't
is exponentiation!

42 PEOPLE’S COMPUTERS

whereas BASIC forces him to dirty his
hands with improvised tricks and clumsy
stopgaps. Pascal expresses algorithms
clearly and simply, while BASIC does its
best to obscure them altogether.

| could have made my task easier by
examining those features of Pascal which
have absolutely no equivalent in BASIC,
and which by themselves would justify
Pascal’s adoption as a standard language:
its recursive procedures, for example, or
its superb data-structuring facilities. But a
binary tree in BASIC, if feasible, would
be a painful thing to behold, so | have
restricted myself to only the simplest
uses of the simples of Pascal’s constructs.
Furthermore, | could have chosen one of
the illegible, amorphous BASIC programs
which abound, because BASIC encour-
ages sloppy thinking. Instead, | have
chosen one which is carefully written.
This is, then, a ‘worst possible case’
comparison as far as Pascal is concerned.

The sample programs are presented in
Listings 1 and 2. The functioning of the
programs will be explained below under
‘program structure’, It is not my inten-
tion to teach Pascal, but the following
points may be helpful to the BASIC
user seeing a Pascal program for the first
time. ReadIn(x) and writeln(x) are
roughly equivalent to INPUT X and
PRINT X — they are mnemonics for
‘READ a LiNe’ and WRITE a LiNe'
respectively. Statements are separated by
semicolons. Arrays are indexed using
square brackets. Type declarations are
mandatory for all variables. Chr and ord
are transfer functions; chr(3) returns the
third element in the character set —
usually the character ‘¢’ — while ord(’c’)
returns the integer 3.

| shall compare the programs on nine
specific points.

1. IDENTIFIERS. | should think the
most refreshing aspect of Pascal for a
weary BASIC programmer would be its
identifiers, which may be of any length.
Thus the completely opaque T'and ‘G’
of the BASIC program become the much
more transparent ‘target’ and ‘guess’;
this is absolutely essential if a program
is to be readable as an algorithm. | shall
not belabor the point, since | realize
that BASIC is at last moving towards
longer variable names, but it should be
pointed out that in Pascal identifiers
name not just variables, but also proce-

10 DIMF(9),G(9),T(9),H(18,3)

20 GOSUB 560

30 FORX=0TOA

40 LETT(X) = INT(RND(R)*B)+1

50 NEXT X

60 FORI=1TO A+B+1

70 FORX=0TOA

80 LETF(X)=0

90 NEXT X

100 LETF1=0

110 LETF2=0

120 INPUT V

130 IF V<>0 THEN 180

140 FORX=1TOI-1

150 PRINT H(X,0); “,” ;H(X,1); “=" :H(X,2)
160 NEXT X

170 GO TO 120

180 IF V=1THEN 480

190 IF V =2THEN 670

200 LETT1=V

210 FORX=0TOA

220 LET G(X) = INT(T1/(10**(A—-X)))
230 LETT1=T1-G(X)*(10**(A-X))
240 IF G(X)<1 THEN 260

250 IF G{X)<B+1 THEN 280

260 PRINT “BAD NUMBER IN"; V
270 GO TO 70

280 IF G(X)<>Ti(X) THEN 310

290 LETF(X)=1

300 LETF1=F1+1

310 NEXT X

320 IF F1=A+1 THEN 540

330 FORY=0TOA

340 IF T(Y)=G(Y) THEN 420

350 FORX=0TOA

360 IF G(Y)<<>T(X) THEN 410

370 IF F(X)=1THEN 410

380 LETF(X)=1

390 LETF2=F2+1

400 GO TO 420

410 NEXT X

420 NEXTY

430 PRINT F1;","F2

440 LET H(1,0) =F1

450 LETHI(I,1)=F2

460 LETHI(1,2)=V

470 NEXTI

480 LETV=0

490 FORX=0TOA

500 LET V =V+T(X)*(10**(A=X))
510 NEXT X

520 PRINT “ANSWER IS":V

530 GO TO 30

540 PRINT “YOU GUESSED IT"

550 GO TO 30
560 PRINT
570 PRINT "
580 INPUT AB
590 LETA=A-1

DIGITS & MAX VALUE"

600 RETURN
610 END
Listing 1. This is a simple number-guessing

game of the Mastermind type.

program banbas{c(inﬂut,cutput);

const maxXxnumch=10;

tyge

var target,guessitoken; hi,lo,chichar; oldg:array T..maxmnax af token

maxmax=71;
token=packed arrayll1..msxnunch] of char;

.
’

L,l,tru,maxtries,black,vhite,numchar:integenr;

nldb,oldwipacked anrag[1..maxmax]2f

intenger;

endofround,endofgeme ,wmateh,bad:boolean;
matnhed:gﬁggg[ﬂ..maxnumch]gj boolean;

begin endofgame:=false;
for 1:=1 to maxnumch do target[i] :=' '; guess:=target;
i

writeln(' low character?!');
writeln (!
wptteln (!

readln(lo)
readin(ht);
of characters?'); readln(numchar);

high chapactenr?!);
no «

maxtries:=numchar+tonrd(hi)=ord(lo0)

end;

procedure nawpound;
begin endofround:=Fa
target[1] s=chnr(ord(

end;

" beg
begt

|q|:
lsl:
Tpt,

begin

1se; try:=0; Taope 1:=1 to nunchar do
la)+trunc(randon (1) *(ard(hi)=-0rd(10))))

in matched[tl] :=true; color:=color+1
n weiteln(' conmand?'); readln(ch);

)

el g
'b',0ldu([1] , 'w?,0lda[1]);

_____ answepr 1s: ',target); endefround:=tprue end;

begin endofround:i=true; endofgame:=true end;

n t:=0; pepeat t:=1+1; read(guess[i]);

bad:=pot(guess [1]in [lo«.n1]) until (i=numehar)or(bad); readln;

if bad then wptteln(' bad character!') else 1f guess=target then

begin writeln(' ucu guessed 1t!'); endofround:=tpue o Fo

end else if try=naxtries then

begin ¢riteln(' you are lcst; answer 1s: !',target);endofround:=true

o |

en
35
1

£
b

begin black:=0; white:=0; try:=try+1;
1:=1 ip numchar do matched[1] :=false;
for 1:=1 to numechar do if guess[i]=target [t
numchar do iFf guess[i]#target[t
_____ DEBRSE JA =i+
wmateh:= (guess[1]=target[]]) (
if wmatch then tally(j,white) until
end; weiteln(' b',black,"? w',white);
oldg[try]l :=guess; oldb[tru]:=black; ol du[try]:=uhite
end

end

en tally(ti,black);
e

Jthen
lthen

a

n

a Dﬁz(matched j]));
U (w E

mateh)or(j=numchar)

rt

newgame ;

repeat neupround;

end.

— —

until endofgane

that the algorithm for the entire program is contained in just the last five lines of the listing. Following

i

I

Listing 2. This is a free Pascal translation of listing 1, using arrays of characters rather than integers. Notice
traditional Pascal practice, reserved words have been underlined.

JAN-FEB 43 |

|

<

A
{

dures, functions, constants, and types,
so that, for example, ‘GOSUB 560’
becomes ‘newgame’,

2. PROGRAM STRUCTURE. Another
major difference which immediately
strikes the eye is the difference in the
structure of the two programs. The
structure of the BASIC program is easy
to describe: it hasn't any. It is a simple
list of statements of equal value. It has
been shown time and time again that this
is bad news when it comes time to debug,
modify, document, or just plain under-
stand a program. In contrast, the Pascal
program is broken down into a number of
manageable parts which may be tested
and understood separately. The algorithm
for the program as a whole is found at the
very end, in five succinct lines:
begin newgame;
repeat newround;
repeat command until endofround
until endofgame
end.

It is difficult to imagine programming on
a higher level of algorithmic abstraction.
Even the complete programming novice
could intuit that ‘newgame’ initializes
certain game conditions, that ‘newround’
starts a new round, that a round consists
of processing commands until the round
is over, and that rounds are played until
the game is over. Nothing in the BASIC
program gives so much as a hint of what
the overall pattern of the game is; instead,
the eye wanders aimlessly over the page,
desperately looking for a clue as to what
is going on.

By looking at the declaration part of the
Pascal program (broken down into const
for constant, var for variable and type
declarations), then at each of the pro-
gram’s subroutines, we can fill in that
general algorithm with the details of its
operation. The object of the game is
for the player to guess an array of char-
acters which the computer generates in
the procedure newround using a random
number generator. The procedure com-
mand prompts the player to enter one of
four possible commands by typing one
of the four letters s’, ‘q’, r’, or ‘c'.
A S(top) command terminates the round
and the game immediately. A Q(uit)
command shows the player the answer
and terminates the round, while a
R(ecap) command shows the player his
previous guesses and how well they
scored, using the arrays oldg, oldb, and

oldw. Lastly, a C(alculate) command
reads in a guess from the player, and
checks it for correctness; if the player has
exceeded the limit on the number of tries
{maxtries) or has guessed the target exact-
ly, the round is terminated and a suitable
message displayed, otherwise the guess is
compared to the target and the player is
told how many correct characters he had
in the correct positions (black) and how
many in incorrect positions (white). The
procedure newgame, finally, specifies the
number of characters in the target and
guess (numchar), the range of acceptable
characters (lo to hi), and the maximum
number of tries allowed.

The movement from generality to detail
which we have just seen is called ‘step-
wise refinement’ by the theoreticians, and
it makes a program easier to read because
at any step one need only consider those
details that are really necessary. Step-wise
refinement is possible because Pascal is
block-structured, which means that sub-
programs, like ‘command’ have the same
structure as programs. Without going into
detail, we may say that a block in Pascal
consists of a definition part, in which
constants, types, variables, and subpro-
grams are defined, and an action part,
which contains the algorithm of the
block. Thus the five lines quoted above
constitute the action part of the main
program; everything else is its definition
part,

3. DATA TYPES. Here's another example
of how Pascal allows the programmer to
think at a higher level of abstraction
than can his BASIC counterpart. Consider
the function of the array F in the BASIC
program. The elements of this array are
initialized to zero (line 80), then when-
ever a match between the target and the
guess is found, the appropriate element of
F is set to one. Later the array is used to
test whether a given element has already
been matched, by testing ‘IF F(X) = 1’
at line 370. From this it should be clear
that on the algorithmic level, F(X) is
not a number at all: it is a Boolean vari-
able taking on the values true and false.
Because BASIC lacks this data type, the
programmer has had to leave the algorith-
mic level and make do with integers, with
the result that the intent of his program
has become seriously disguised. One's
first expectation is that F(X) will count
something, and only a painstaking exam-
ination of the entire program reveals its
true function.

In contrast, Pascal provides a Boolean
type, so that the programmer can remain
on the more abstract level and simply
write ‘matched[i] := true’, where the
intention of the statement is perfectly
transparent. An incidental advantage of
this is that each element of ‘matched’
takes up just one bit of storage whereas
each element in ‘F’ takes up at least a
byte, probably more,

The type Boolean is one of Pascal’s four
predefined scalar data types, the others
being integer, real, and character. In addi-
tion, it is possible to define new scalar
(i.e. ordered) types by listing their values,
as for example ‘week = (mo, tu, we, th,
fr, sa, su)’, thus providing for extremely
easy-to-read programs. These scalar types
are the fundamental building blocks from
which all structured types are derived.

4. STRUCTURING METHODS:

ARRAYS. Not only does BASIC fail
to provide one of the most important
basic data types, it also fails to provide
adequate means of structuring the types
it does have. To see this, let us look at
the arrays ‘T’ and ‘G". From a strictly
logical point of view, these are simply
arrays of characters. But in trying to
express this in his program, the BASIC
programmer ran up against the fact that
BASIC has no arrays of characters. Once
again, a makeshift solution has been
imposed on him: in this case, it is the
‘integer’ V which is read in and then
‘unpacked’ into its individual digits by
the tortured routine in lines 220 - 230,
then repacked in lines 490 - 510. This is
bad not just because it is awkward and
slow, but also because it completely
obscures what is going on.

Now Pascal a/so lacks arrays of characters
as a data type. But it does have the char-
acter as a basic data type, and the array
as a basic structuring method, so that the
definition of a type for the target is as
simple as saying:

token: packed array [1. .maxnumch]
of char.

This done, the type token may be used
just as any of the basic data types may
be: in assignment statements (target:=
guess), as parameters to subprogram calls
(writeIn(target)), in expressions (if
target = guess) and so on. Two inci-
dental advantages of the Pascal approach
are that the player is not restricted to

digits, and that the Pascal arrays take up
only a fraction of the space occupied
by their BASIC equivalents.

The newer kinds of BASIC with string
variables may answer this specific objec-
tion, but not my central point, which is
that in Pascal it is possible to define
any data type built out of the basic
units, whereas in BASIC you must
take what you are offered.

This is perhaps the place to mention
that requiring an array to start at O
(or at 1), with the resulting awkwardness
of line 590 where a variable is read in and
then immediately decremented by one,
seems barbaric to a Pascaler. In Pascal
arrays may have any number of dimen-
sions, and both bounds are chosen at will.

The array is only one of five basic struc-
tured types in Pascal. | shall discuss the
type set below, but the other three
(pointer, file, and record) are, as | men-
tioned above, so far beyond BASIC that
discussing them would be pure malice on
my part.

5. STRUCTURING METHODS: SETS.
For the sake of conciseness | have elimi-
nated most error-checking from the two
programs, but suppose we wanted to
check that no illegal commands were
entered. If the commands were letters,
as in the Pascal program, checking them
in BASIC would entail the absurd:

100 IF C$="R"” THEN 220

110 IF C$ = ""Q"” THEN 220

120 IF C$="S" THEN 220

130 IF C$="C"” THEN 220

140 PRINT “ILLEGAL INPUT"
where each value must be tested sepa-
rately. Pascal takes care of this with the
structured type set, whose utility goes
far beyond this simple example, and
which in fact allows set manipulation
in all its generality. The above test in
Pascal would be this simple:
ifchin [, 'q’, 5", 'c’] then ...
where in is the relational operator for
inclusion; program banbasic uses it to
check that the characters in the guess
are in the set [hi. .lo]. Thanks to this fea-
ture, it would be a trivial matter to
rewrite the Pascal program so that the
target and guess be composed of any set
of values, contiguous or not; for example,
to make it into a card game, one could
use the set [0..'9%, 4', 'k’ ‘q‘'l. In
BASIC this would require a completely
new program,

6. CONSTANTS. The second line of the
Pascal program defines two program con-
stants. ‘Maxnumch’, for example, is set
to 10. This feature of Pascal allows for a
more abstract and therefore more mean-
ingful program. Instead of seeing ‘10’ in
the program and wondering ‘Why 107’,
one sees maxnumch and remembers that
it represents the maximum number of
characters in a token, whatever that num-
ber happens to be. In addition, this
makes changing the value of maxnumch
throughout the program simply a matter
of changing one line. The BASIC pro-
grammer must either type ‘10’ through-
out the program, in which case changing
its value becomes an ordeal, or else resort
to the illogical and wasteful expedient of
designing a variable which never varies.
Gone forever is the absurdity of a pi ‘func-
tion” — one simply writes ‘pi=3.1415927"
at the beginning of the program and
forgets about it after that.

7. CONTROL STRUCTURES: ASSIGN-
MENT AND CONDITIONAL STATE-
MENTS., We have seen how Pascal

outperforms BASIC at setting up meaning-
ful data types. Now let us turn our atten-
tion to the other side of the coin, and see
how data is manipulated in the two
languages.

In Pascal as in BASIC the fundamental
kind of statement is of course the assign-
ment statement, But where BASIC lacked
the courage to introduce a special symbol
for this all-important operation, using
instead the awkward LET and the
ambiguous equals sign, Pascal (like Algol)
clearly distinguishes between the assign-
ment operator (:=) and the relational
operator (=).

To control program flow from one part
of a program to another, two kinds of
branching are essential. In the first, flow
is determined by the values (true or false)
of Boolean expressions such as ‘X=1'. In
both languages, this kind of branching is
achieved by the if statement, but the
Pascal version is far superior for two
reasons. For one thing, it has an else
clause which is so desirable it has begun
to show up in certain versions of BASIC,
But even more important, it is a much
more natural tool for expressing
algorithms because it groups statements
with the conditions for their execution,
rather than the reverse, as BASIC does.
Consider for example the following
program segment:

JAN-FEB 45

100 IF X=1 THEN 400

200 LET Y=456

300 GO TO 500

400 LET Y=123
It is absurd to place the action to be
taken if X equals 1 as far as possible from
the expression ‘X=1" and instead place
alongside ‘X=1" the action that will be
taken precisely when X is not equal to 1.
This kind of thing is well and good for
machine languages, but it is not the way
we think and has no place in a high-level
language used to express our thinking in
machine-usable form. It makes far more
sense to do as Pascal does:

if x=1 then y:=123 else y:=456
This is more readable as well as more
elegant.

The confusion in BASIC’s control struc-
tures reaches catastrophic proportions
when we come to the second kind of
branching, where flow is determined not
by Boolean expressions, but by expres-
sions which may take many different
values. The particular course of action to
be taken depends on the value of the
expression. Some versions of BASIC
provide a rudimentary version of this
feature in the computed GO TO statement
but the Pascal case statement is incompar-
ably better for the following reasons.
First, any scalar type except real may be
used as the case variable. In the sample
program the case statement in the proce-
dure command depends on the value of
the character ch. Second, the values
specified need not be contiguous. In our
example, the four values are 7', 'q’, 's',
and ‘c’, whereas in BASIC they could
only be the integers 1, 2, 3, and 4, This is
an inelegant approach often requiring
painful contortions, Third, as with the
if statement, Pascal groups statements
with the conditions for their execution,
while BASIC does not. Thus the state-
ment that will be executed if the
command is ‘s’ is the compound state-
ment:
begin endofround:=true;
endofgame:=true end .

If the reader has any doubts as to whether
the Pascal version is superior, | would ask
him to look at the four commands in the
procedure command, then try to trace
the same flow of control in the BASIC
program given that it depends on the value
of V read in at line 120. (Hint: the BASIC
program fails to distinguish between data
and action, so that V is the player’s guess
as well as his command.) | think that any
fair judge will have to admit that it is

easier to follow the Pascal program than
to chase all over in the BASIC version.

Pascal’s approach to program control is
made possible in large part by the
compound statement. In Pascal any
sequence of statements may be made into
a single compound statement simply by
bracketing it with the symbols begin and
end. This possibility of grouping state-
ments into meaningful wholes contributes
to the structure of Pascal programs; in
fact, the action parts of Pascal blocks are
nothing more than compound statements.

Before leaving the subject of conditional
statements, | must mention BASIC’s lack
of logical operators. | am sure that
BASIC is already sufficiently embarrassed
at its deficiency in this area, so | shall
tactfully restrict myself to asking which is
clearer:
100 IF X=1 THEN 500
200 IF Y>=2 THEN 800
300 IF Z=1 THEN 500
or
if (x=1) or ({y<2) and (z=1))
then...?

8. CONTROL STRUCTURES: REPETI-

TIVE STATEMENTS. In a high-level
language it is essential to provide ways to
repeat a given statement until certain end-
conditions are met. We may distinguish
three cases: (a) The statement is repeated
a specific number of times, no matter
what. (b) The statement is repeated while
(as long as) a certain condition is true.
{c) The statement is repeated until a cer-
tain condition becomes true.

BASIC creates utter algorithmic confusion
by providing only one control structure
for all three cases, namely the FOR state-
ment. Thus a reader of the BASIC pro-
gram would quite naturally expect the
loop starting at line 60 to be executed
A+B+1 times, but this is wrong: it will
execute until either 1=A+B+1 or the player
ends the round or the player ends the
game or the target has been guessed.
Once again, BASIC manages to camou-
flage completely the intended algorithm,
which is clearly case (c), not case (a).
This algorithm is perfectly expressed by
the Pascal version:
repeat command until endofround

where ‘command’ sets the Boolean
variable ‘endofround’ to true whenever
any of the foregoing conditions occurs.
Needless to say, Pascal also supplies a
while statement for case (b).

9. PROCEDURES AND FUNCTIONS.
It would have been nice to conclude with
a point on which BASIC did almost as
well as Pascal, but unfortunately, BASIC
does very poorly with procedures and
functions. Indeed, BASIC’s miserable
handling of subprograms is probably the
single strongest argument in favor of
ditching the language altogether, whereas
Pascal’s superb subroutine declaration
facilities are a continual source of delight,
Considerations of space prevent me from
doing more than list some major points of
comparison: (a) As already mentioned,
Pascal subprograms bear narmes, not num-
bers, making for self-explanatory pro-
grams, (b) In Pascal, subroutines may
have parameters, passed either by value or
by address; without this feature | am not
sure one should speak of subprograms at
all. The procedure tally is used to keep
track of both white and black by passing
these two variables as parameters.
(c) Pascal functions can return any scalar
type or a pointer, not just numbers.
(d) Pascal’s block structure means that
subprograms may define local constants,
types, variables, and subprograms, An
example is the procedure tally, which is
local to the procedure command. This
means that storage may be allocated as
efficiently as possible, yet it is easy to
guard against unwanted side effects,
(f) Machine language programs external
to the main program may be called.

IS BASIC EASY TO LEARN? We have
seen that Pascal out-performs BASIC
right down the line, and before conclud-
ing | would like to consider the oft-
repeated advertisement that BASIC is an
easily learned language closely resembling
simple English. | think that even a casual
consideration of this statement will reveal
its falsity. As far as | know, two-character
names and GO TO statements have never
been elements of good English writing
style. ‘And’, ‘not’, and ‘or’ are surely
among the most common words in our
language. We do not say, ‘If it rains then
400 go to the beach go to 500 400 stay
home’, we say ‘If it rains than stay home
else go to the beach’. We do not tell our
children to do their homework 999 times
when we mean they should do it until
they get it right. High-level languages
should be judged on the simplicity and
flexibility of their basic constructs, not
on how much they look like English, but
even on the latter score BASIC's claims
are pure advertising hype.

Is Pascal harder to learn than BASIC?

Frankly, | do not know. But of this | am
certain: a Pascal subset consisting only of
the four basic scalar types, the array asa
structuring method, the five control
structures and the subprogram facilities
would still put BASIC to shame, and
would be easier to learn than BASIC
because it would be more systematic and
more flexible. Even the 22 constructs of
the full language represent a trivial peda-
gogical burden given the power of the
language. Add to this the fact that in
learning Pascal one is learning to think
algorithmically and | think we need not
fear Pascal’s being unsuited for beginning
programmers.

CONCLUSION. The radical difference
in design philosophy between Pascal and
BASIC was driven home to me recently
by an item in Kilobaud. Some poor
BASIC programmer had, quite naturally,
felt the need to control program flow
depending on whether a 'y’ or an ‘n" were
input from the keyboard. Unable to do
this easily in BASIC, he was seriously
proposing a new statement of the form
ANSWER F1, F2 which would brand to
F1 or F2 depending on what was input
from the keyboard. To a Pascaler, itis
difficult even to imagine that what in
Pascal amounts to a simple one-line
function declaration (function answer:
boolean; begin answer:=input="y’; readin
end) should be in BASIC a question of
redefining the language itself, to be fought
out among the implementers and in the
halls of ANSI, the American National
Standards Institute.

BASIC offers an absolutely minimal set
of features and expects you either to
devise makeshift solutions or to design a
new version of the language when they
are not adequate. No wonder there are so
many different versions of BASIC! Pascal
offers a somewhat wider selection, but
avoids the pitfall of trying to incorporate
every feature known to man, as PL/1
seems to. Instead of trying to foresee
every possible application which might
arise, Pascal’s designers chose just those
features which allow the user to expand
the language himself to suit his needs. It
is this combination of power and simpli-
city which makes Pascal the perfect choice
for a standard microprocessor language.
BAN BASIC! O

VIDEO DISCS
(Continued from page 15)

this test, the computer might call up
another simulation (more or less
complex, depending upon the student’s
performance), or a terminal video
sequence, as dictated by the strategy of
the courseware developer. One significant
advantage to the teacher of this approach,
in addition to the obvious pedagogic
advantages, is the ease of use. Only a
single disc need be loaded, rather than a
computer program, a slide carousel, a film,
and an audio cassette, each separately, and
each into a different machine.

The possibilities for educational impact
with video-disc systems indicated in the
four items are very exciting—espe-
cially the interactive use with a computer,
It should be pointed out, however, that
the consumer video-disc player to be
offered for sale starting in late 1977 will
not have the capability to interact with a
computer as indicated above. With that
player, fast forward and reverse are
executed under manual control. A video-
disc player must become available which
can communicate directly with a
computer, telling the computer which
track it currently isreading, and accepting
a command from the computer telling
the player the next track to read. Philips
and MCA are working independently on
players for the educational and industrial
(E/I) users. These units are a year or two
away, and are expected to cost in the
order of $1,000-1.500 when they become
available. It is expected that these so-
called E/I players will have a local micro-
processor and some local memory to
achieve the interactions described above.
The video-disc systems which have been
described above have great potential for
education as stand-alone devices and as
part of an information-processing system
in conjunction with a computer. This
potential must remain latent until
educators are able to obtain video-disc
systems and are able to obtain access to

master systems to produce special-
purpose discs. O
References

1. Kenney, George C., ‘Special Purpose Appli-
cations of the Optical Videodisc System.’
IEEE Transactions on Consumer Electronics
November, 1976, pp. 327-338.

2. Bork, Alfred M., ‘Videodiscs—The Ultimate

Computer Input Device?’ Creative Comput-
ing, March/April, 1976, pp. 44, 45.

JAN-FEB 47

Bob Albrecht, aka the Dragon, retired as
editor of this magazine (then a newspaper
called People’s Computer Company) over
a year ago. Since then he’s spent lots of
time with kids and computers in class-
rooms. He'’s generating and gathering lots
of ideas and information about how
computers can be made fun for and
accessible to kids.

In particular, Bob has decided a new
programming language is needed. Dennis
Allison, a local computer consultant and
long an active supporter of ours, agrees.
This is the third in a series on suggestions
for a ‘tiny’ language for kids and those
who work with kids.

We encourage input from our readers,
especially those who work with kids,
whether or not you're a computer spe-
cialist.

We said we'd announce a contest struc-
ture for our Tiny Language extravaganza
this issue, but we're not going to do so
after dll. Reader participation is just
beginning, and it’s too soon to tell if
there’s enough interest to merit a contest.
Then too, if we're really going to take
our time and do this thing right, we may
need to expand our collection of prizes
to cover a period as long as a couple of
years to ensure we have adequate time to
extensively test our notions.

BOB WALLACE'S SUGGESTIONS

[have some ideas for your new Tiny
Language. You mentioned having a
simple graphic capability; a real good
idea! One of the best graphics ideas
used for ‘kid’ languages is the turtle; see
Smalltalk, for example. One nice thing
about turtles is their relative nature: you
can write a ‘turtle subroutine’ to draw a
graphic shape, and later position it any-
where on the screen. You can-even rotate
it. OK, since everything in this language
is a string, a turtle is a string, too. What
do we need to specify a turtle? Well, we
need:

1) The color. There are two ways to do
this: first, each turtle string can have a
letter to indicate the color; for now, per-
haps ‘L’ for light and ‘D’ for dark on
black and white sets. The other way to

48 PEOPLE'S COMPUTERS

TIny

LARGUAGE

specify a color is to have a ‘current
color’, and change it as needed. | think
the latter might be more flexible.

2) The position. Let's use the X and Y
position, starting at zero in the lower left
corner. This avoids negative numbers, and
we want to keep it simple. In the turtle
string, use a fixed number of digits per
position, so parsing is simplified.
Examples might be ‘012/024" or
060,030°. Three digits are enough for a
1,000 x 1,000 point display, but two
(100 x 100) would not be enough for
(say) the Polymorphic display.

3) The direction. This could be a number,
modulo-something, like 0 to 7 for 8 direc-
tions. Alternatives might be 0 to 3 or 0 to
15, or compass points, like ‘N’ or *SSW".

Now we need some functions to make the
turtle do things. These functions will take
a turtle and a number as arguments, and
return an updated turtle. The MOVE
function will also make the turtle move
on the display. I'll define:

MOVE (TURTLE, NUMBER) — moves the tur-
tle a specified
number of
spaces.

TURN (TURTLE, NUMBER) — turns the turtle
clockwise.

COLOR (TURTLE, LETTER] — changes the
color of the
turtle.

For example, let’s draw a square:

(dark turtle at (24,
64) points up)
FORI=1T04 (4 sides in a square)
TR:= MOVE (TR,15) (draw a side)
TR:=TURN (TR,2) {turn 90 degrees)
NEXT (until finished)

TR:=""D:024/064,0"

Some other ideas for the language:

1) Forget operator precedence. Calcu-
lators and APL get along fine without it:
it adds a lot of processing code and time;
it complicates the language.

2) IF statement: Microsoft BASIC exe-
cutes all statements to the right on the
same line if the test is true. FORTRAN
and C drop the THEN and just put the
relational test in parentheses. | suggest
a combination, IF followed by an expres-
sion in parentheses, followed by all
statements to execute if the expression is
true. ELSE clauses are handy but not
absolutely necessary. One other point:
I'm not sure whether ‘false’ should be
defined as a null string or as a zero
numeric quantity (like ‘0’ or ‘000").

3) Multiple statements per line are very
useful and easy to implement.

4) Besides the FOR...NEXT loop,
include a LOOP...EXIT...REPEAT
construction. This will handle the WHILE
and UNTIL constructs of the structured
languages, and many other situations
besides. I suppose you'll need the GOTO
as well.

5) Make blanks significant between iden-
tifiers and keywords, but ignore them
elsewhere.

6) 1 hope at least two character identi-
fiers (they could both be letters) are
allowed. It’s easy to allow identifiers of
any length, with only the first two signi-
ficant. To simplify somewhat, make only
the first 2 letters of keywords significant
also. This means the user can’t have

variable names like ‘FOQO’ since the first
2 letters conflict with a keyword (‘FOR’).
I never use numbers in identifiers; per-
haps not allowing identifiers like ‘X1°
would simplify things.

7) The North Star BASIC string conven-
tion is pretty simple and flexible. Any
string can be followed by two numbers in
parentheses to define a substring; for
example, STRING (4, 2) means charac-
ters 4 and 5 in STRING. A one-dimen-
sional array of numbers can be easily
simulated with this, as well as the
Microsoft LEFT$ and MID§ functions.
Since you have one-dimensional string
arrays, this gives you two-dimensional
numeric arrays, as well.

8) Subroutines (functions, procedures)
are important! Invoke them by an appear-
ance of the name; try not to require a
‘CALL’ keyword, or parentheses follow-
ing if the subroutine doesn’t have any
arguments. ‘GOSUB line number’ is the
single worst characteristic of BASIC. One
way to simplify is make every subroutine
a function (and every statement an
expression, for that matter). Use the
‘RETURN (value)’ construction to leave
a function; it’s much cleaner than assign-
ing the value to the function name.
Local variables and recursion are nice,
but probably not necessary for a tiny
language. Since everything is a string,
arguments would probably be passed
as pointers to strings.

9) String space management does not
have to be complicated. Define a string as
a two byte length (alright, maybe one
byte), followed by the string. Just con-
catenate these all together in available

m——r

memory. Define a string with an initial
byte zero as a free string. To find space
for a new string, start at the beginning of
the string space, and see if the first string
is free and big enough. If it isn’t free, go
to the next one (that’s easy, add the
length to the current string space
pointer), If it’s free but not long enough,
see if the following string is free; if it is,
collapse the two free strings and try
again. Once you have a space long
enough, remember to make any extra
space into another free string. To free a
string, just zero the first byte. I coded
this in 8080 as part of another (not
completed) project, and the code wasn’t
too long; 256 bytes very approximately.

10) For easy extensibility, clean
structure, and so on, use the APL sub-
routine convention. This does limit you
to zero, one, and two argument func-
tions, but I don’t think this is a serious
limitation for a tiny language. For
example, let's do a SQUARE function
using turtles, in the APL convention:

% L1

NEWTURT := “D:024/064,0" SQUARE 15

$ TURTLE SQUARE SIZE (define 2-argu-
ment function)
(don’t affect ori-

ginal argument)

TUT := TURTLE

FORI=1TOA4 (draw four sides)
TUT := TUT MOVE
SIZE (draw one side)

TUT :=TUT TURN 2 (turn 90 degrees)
NEXT: RETURN TUT (all finished,
leave)

Well, I could design languages forever, but
I'll quit here.

Bob Wallace
CoMind Design
PO Box 5415
Seattle, WA 98105

BOB ALBRECHT RESPONDS

The APPLE computer has a choice of 16
colors. It also has a Tiny BASIC that is
unusually easy to teach to kids. Go to
your local computer store and try this
program on the APPLE.

10 REM COLOR RANDOM ART
20 COLOR=RNDI(18)

30 X=RNDI(40):Y=RND(40)

40 PLOT X, Y: GOTO 20

For information on the APPLE, contact
APPLE Computer Company, 20863
Stevens Creek Blvd., B3-C, Cupertino,
CA 95014,

Directions could be ‘implied by’ a
numeric keypad such as that used in the
DRAW program on page 18, Remember,
most kids will be using calculators at
home or at school, so the keypad will be
very familiar!

If we forget operator precedence, let’s
use calculator arithmetic, mot APL.
Kids will already be used to calculator
precedence.

The string conventions you suggest are
similar to HP2000 BASIC and Cromemco
BASIC. Suppose X is a one-dimensional
array, To get characters 4 and 5 of
X sub 3, we might write X(3:4,2).

The Z-80 with its Table Look Up and
Block Move instructions, will love your
suggestions about string space manage-
ment.

In addition to string variables, should we
also have a small set of 16-bit numeric
variables? Perhaps A# through Z #?

. Thanks, Bob. This is the kind of partici-

pation we are looking for.

The Dragon

JAN-FEB 49

-

DENNIS ALLISON RESPONDS

I agree that graphics is an important part
(or should be) of any new Tiny Language.
The ideas in Smalltalk are really hard to
separate from their display. Incidentally,
1 prefer their syntax to the one you
suggest. Interested readers should look at
the article by Alan Kay in Sept. 77
Scientific American, the article by Kay
and Goldberg in the March 77 issue of
Computer Magazine, and at ‘Personal
Dynamic Media' in Volume 4 Number 6
of People’s Computers (then known as
People’s Computer Company).

Operator precedence doesn’t really
complicate the language or the processing
particularly. As a creature of habit, I
find I expect it, If we do give it up,
we'd best go all the way and adopt
APL’s right-to-left evaluation to main-
tain consistency.

Else clauses are very handy if you want to
keep track of what is going on. The struc-
tured programming gurus would have us
believe that one should not write an if
without an else. I am in their camp.
Incidentally, your BASIC orientation is
showing. There are other possibilites than
the line-based syntax which BASIC pro-
vides. (Look at C for example.) 1 think
the Microsoft IF is a cop-out. It is an
unobvious effect. An IF in the middle of
a line has a different effect on the pro-
gram than if it appeared in some other
place. The language violates the rules
of locality independence.

Multiple statements per line presume that
you have lines as a significant language
construct. If you do, they are easy to
implement, but difficult to implement
without funny side effects. For example,
why must DATA statements be the
first statement of a multistatement line,
why do GOSUB statements not return to
the next statement but the next num-
bered statement, etc.

N
l o
{ A\\U (I" ot |f{'/,
S l‘ff,; \\6 'l“" s
’ AL
60 PEOPLE’'S COMPUTERS

NEW RESOURCES FOR
TINY LANGUAGE DESIGNERS
from the Dragon

1. Teaching Smalltalk by Adele
Goldberg and Alan Kay. Xerox
Palo Alto Research Center, 3333
Coyote Hill Road, Palo Alto, CA
94304,

An important resource for those
who would design computer
languages for children. [might even
say, an essential resource.

2. ‘Getting Into Games', Personal
Computing, November/December,
1977, pages 85-89.

Perhaps the people who make video
games are making more progress
towards a usable language than the
personal computer manufacturers.
Also read the article, ‘Tools or
Toys’, by Jake Roamer — same
issue of Personal Computing, pages
83-84.

3. ‘String Processing, Anyone?’ by
Daniel Chester. In a recent issue of
Print-Out, published monthly
by the Central Texas Computer
Association, 508 Blueberry Hill,
Austin, TX 78745.

I haven’t seen this one yet. It
describes a String Language (STL)
that provides some of the features
of LISP and SNOBOL and can be
implemented on a microcomputer.

Cannot agree more! looping constructs in
BASIC are abysmal. But, I'd like to see
nesting required to be static rather than
dynamic. For clarity, one should always
match FOR and NEXT.

NGy, . .

\ ‘ r : : S

7 ;N umU
L) 3 ’
(a PN 72

Blanks should be significant in much the
same sense they are significant in English
text. They are to delimit the sequences
of characters which make up words. All
rational languages require this. FOR-
TRAN and BASIC are in the other class.

Multicharacter identifiers can certainly be
provided. @ More important is some
mechanism for localizing identifiers and
for abstracting functions. What is needed
is some kind of procedure mechanism
with local variables. I expect recursion
would be supported.

Using North Star BASIC string conven-
tion is as good a convention as any. Using
indexes in the fashion of North Star does
violate one rule of language design—that
is, consistency of use. One has to inter-
pret STRING (2, 4) differently than
ARRAY (2, 4) though you are using the
same syntatic construct. It isn’t pretty
or aesthetic.

Procedures are important. The CALL
keyword is indeed redundant and can be
eliminated. The seemingly redundant
empty parentheses following a parameter-
less procedure call have several potential
justifications. First, they call attention to
the fact that a procedure is being invoked
rather than a wvariable. Further, in
languages like C where the procedure
designator need not be a name but may
be a pointer-valued expression, the empty
argument list is necessary to distinguish
the call from a simple expression
evaluation,

Your string allocation scheme suffers
from two major problems. First, one has
to scan all the strings in order to find free
space. One would be better off keeping a
list of free space and require that the
minimum space allocated for strings is
adequate for the length and a pointer.
The real problem occurs when the system

has been running for a long time. The
tendency will be to generate many small
free blocks sprinkled through the memory
space. Eventually there will be no place
for a new string even though there is
adequate storage because no block of
contiguous storage is large enough. When
memory is dear, this problem is particu-
larly acute. To solve it, one needs to have
some sort of compaction scheme. The
difficulty one then encounters is that all
references to all strings must be appro-
priately patched up.

The APL convention is not limiting in
APL because it allows vectors as argu-
ments. In a tiny language it might be
acceptable, particularly if one allowed
pointers. One could then pass a pointer to
a list of arguments rather than the
arguments themselves.

Tk e
'.&':f
"’

=

LEIGH JANES' SUGGESTIONS

Dennis

For Bob Albrecht and Dennis Allison:
only a #finy language? If your Dragon-
squeak turns out to be any good, won’t
you eventually want to expand it into a
full Dragonroar? If so, wouldn't it be
better to plan Dragonroar with Dragon-
squeak as the first step?

One of the things I would like to see is
the syntax checker as part of the editor
so that errors of form are caught immedi-
ately. (In general, I'd like to be able to
use a single editor and call the appli-
cable language’s syntax checker as a
subroutine.)

There must be a better way to initialize
data than by READing DATA state-
ments. If I remember correctly, Fortran
provides a nice way—why not borrow
(steal?) that method?

.rlf”" *’»«ﬁ(\/g’] e

/- . ”HH
S5t ,\lm, ol f:\f)r,;f/f ,.uff, ;H ¥

If you must abbreviate, please don’t
use RND for ‘random’—try RAND—RND
seems to have a bad habit of meaning
‘round” to people. (Yes, I know one can
get accustomed to the idiosyncrasy—but
wouldn’t you want to avoid as many idio-
syncrasies as possible?) All abbreviations
should be chosen carefully, (SQR tends
to mean ‘square’~why not SQRT for
‘square root’?) Why would we want to
squeeze blanks out of a string? (Why only
blanks?)

Please have labels for the statements to
GO TO: line numbers don’t carry much
meaning,.

Leigh Janes
29B Robbins Lane
Rocky Hill, CT 06067

DENNIS ALLISON RESPONDS

Leigh,

We are arguing for spare, aesthetic, and
powerful Tiny Languages because we feel
that they provide the best vehicle for pro-
gramming. A Tiny Language need not be
an unpowerful language; its universe of
discourse is simply more limited. Really
large languages, like PL/1, are very very
difficult to design, implement, and use
because of the interaction between the
various language elements. Often, a
large language is really a small language
with lots of special-purpose bandages to
satisfy the whims of particular user
communities. Such languages have bun-
dles of special cases and lack much
internal consistency. All in all, we believe
small is beautiful in both languages and
economic systems.

It is nice to have syntax check at line-
entry-time. Many BASIC systems do this;
many others do not in the name of imple-
mentation ease and efficiency. Not all
errors can be caught here. Problems
related to the flow have to wait until the
whole program is ready to run. Others
must always be done at execution time;
divide by zero, for example, falls into this
category. More important, syntax
checking at line-entry time seems to
require that the programming language
be line-oriented in the sense that each
line is a single functional unit indepen-
dent of all other lines. This rigid require-
ment makes it difficult to construct
meaningful control structures.

The data statement syntax in BASIC is,
well, yeach! It’s as it is to make READ
and INPUT as much alike as possible.
Many BASIC systems use the same code
for both with a slightly different get-
next-character subroutine. FORTRAN’s
data initialization mechanism is straight-
forward, but is physically distinct from
the declaration. I prefer something like
the PL/1 declaration which allows the
variable to be declared and initialized in
one fell swoop. Initialization is a fairly
complicated issue in language design.
How should it be handled in recursive
environments? Should it be read-only or
read-write?

Naming conventions for intrinsic func-
tions are now nearly traditional. 1 don’t
share your problems with RND and SQR,
but then I am not wedded to their use.
In any reasonable system you should be
able to change the names to fit your
particular preference, but the choice
of names should not be a big issue. You
should be comfortable with changes of
notation.

Labels for GOTO’s! Heavens, we'll solve
that easily enough. We won’t have
GOTOs.

Dennis

JAN-FEB 51

TODD VOROS' SUGGESTIONS

Ideas regarding design of a TINY LAN-
GUAGE FOR KIDS (TILK):

1) Suggest you name your language TILK
if you don’t already have a name.

2) When designing games, those based on
the concept of ‘balanced randomness’ are
often the most enjoyable. ‘Balanced ran-
domness’ simply means that random
events occur that both aid and hinder a
game player’s efforts to achieve his goal,
but the fotal summation of the random
events is zero effect on the game. Thus,
over the span of the length of a game, say
10 positive events occur that help the
player (such as border expansion in
KINGDOM) then there should be approx-
imately 10 negative events hindering the
player (such as theft in KINGDOM).

The ability to generate a random event
under the control of a known distribution
curve would be a worthwhile addition to
the capabilities of your version of TILK.

A function, let’s call it ‘%" should be
made available in TILK to perform this
service. It might work something like this:

%S5:T ‘WELL, YOU ARE LUCKY. YOU
GET AN EXTRA §5°

This would cause the statement after the
%xx to be executed approximately xx%
of the time (in this example, 5 times for
every 100 passes) through the program.

%20 : statement

would cause statement to be executed
20 times out of every 100 calls. Note that
this does not mean statement will be
executed every 20 calls to the % function.
Each time % is invoked, the probability
sample is based on a random bell curve.
This is the technique used to generate
random events in KINGDOM. The
LRAND function in the FORTRAN
version of KINGDOM can indicate a
simple method of implementing this type
of function. Itseemstomy way of think-
ing that this might be a desirable ability
for your language, especially since it is
fairly easy to implement. If generating
random numbers in TILK is a problem,

52 PEOPLE'S COMPUTERS

simply sample some random character in
an input buffer to use as a new seed. Of
course, the next seed can be used to point
to a new location in the input buffer to
point to the next seed, and seeds do not
have to be picked up on every input
(again, let the random number generator
decide that. . .) It should make for
variable games between different players
of games. . .

% will execute with a probability of
whatever xxx is specified after the %.
This can be used to bias games.

3) TILK should warn the user when he
is running out of memory space. . .before
you get to typing the 2nd last line of
your program. . .

4) As a Systems Programmer one of my
major complaints has been (and is) that
of insufficient detail paid to facilities to
aid the programmer in DEBUGGING
HIS PROGRAMS. In a language like
TILK, especially where inexperienced
users will be trying to write working
programs, every effort should be made to
assist the user when things GO WRONG
(and they will).

In this area, | propose:

An option command * that will cause
TILK statements to be typed as they are
executed.

An option command $ that will cause
TILK variables to be listed as they are
referenced and updated, and the state-
ments that are doing so.

The ability to determine which statements
caused branches and which statements
were branched to. (Perhaps only one or
two levels deep). This would allow ‘wild
branches’ to be traced quickly and easily.

Occurance of a second option command
would shut the option off again.

5) | dislike the idea of unconditional
branching.

LOOP, IF (logical exp) THEN (statement)
ELSE (statement), and CALL are suffi-
cient for solving any algorithm expressed
with unconditional branching. Using non-
unconditional branching structure in a
program results in programs that are easier
to understand, easier to debug, and
emphasize the structure to the problem
to be solved, rather than the architecture
of the computer system on which the
problem is implemented. If we train our
early machine users with good program-
ming habits, perhaps the future of
computer software will be better and our
marvelous tower of Babel won’t be so high.

TILK might be an ideal place to begin
with such a structure: A language with no
GOTO statement!!! See my People’s
Computers article on SKETCHCODE that
will be published next issue.

6) Arrays, if you have them, should be
allocated dynamically, as they are in
DEC’s FOCAL for the PDP-8. See Pro-
gramming Languages, Vol II (published
by DEC). Personally, I think TILK
should avoid them, as they confuse
beginners.

7) TILK should support subroutines.
They could be involved by some special
character, say /, followed by digit 1-9. So
/8/ identifies subroutine 8 and (8 invokes
it. Or some such scheme.

8) TILK should be able to remember
things over power off intervals. This
implies a file system which should be very
simple to use.

The system could be accessed via a
function:

=$xxxx to receive the xxxxth string
from the ‘memory’
$xxxx= to store the xxxxth string

into the ‘memory’

Absolutely no mention of record lengths,
devices, etc. should be imposed on the
beginning user. . . only if he wants to
‘remember’ something, should he use the
$. § saves stuff, that’s all.

Perhaps all variables (string, numeric)
should be stored on external storage?

If one were to force the user to end his
session with BYE or some such command,
then everything could be checkpointed. . .

Perhaps such a ‘virtual’ memory which
the user really isn’t aware of would be
ideal for TILK. . .

9) The OZNAKI project (Nov-Dec
People’s Computers) suggests directions
of GRAPHICS for TILK. However, I feel
OZNAKI is too complex for TILK, but
might provide a beginning foundation for
a graphics subsection of TILK.

10) TILK should detect infinite loops and
stop them, if possible. This could be
done by using xxxx pseudo-instructions
executed without any keyboard input or
output.

Well gentlemen, that’s all [have to say for
now. These highly opinionated viewpoints
are strictly my own, and any ideas you
derive from them you are welcome to use.

ol ! 15 §

O\

Keep up the good work—and bear in
mind my motto:

‘Computers should work—not people!’
when dealing with programming languages
and systems (wish IBM had kept that in
mind when they wrote 0S/360 JCL. . .)

Todd L. Voros
3721 W Juniper Court
Milwaukee, WI 53209

DENNIS ALLISON RESPONDS

Comments on these interesting ideas:

1) Maybe; any other suggestions?

2) An interesting idea for a games’ lan-
guage, but of limited usefulness in a
general purpose language. There is a close
similarity between these ideas Dijkstra’s
Guarded Comments (see ‘A Discipline of
Programming’, Prentice Hall, Englewood
Cliffs, NJ, 1976). Dijkstra’s idea was to
preface each statement of a group of
statements with a ‘guard” (local valued
expression). With no account of the
ordering, one of the statements inside the
group would be selected and executed
provided the guard were true; if the guard
were not true, another statement would
be selected until either all statements had
been tried or one statement successfully
executed. This proposal is similar except
that it specifies a probability distribution.

3) I'm not sure why this is important.
Either the program will fit or it won't.
The thing to avoid is having a lack of
memory totally lock up the system so
that you cannot recover the (too large)
program to make it smaller.

4) TILK has unconditional branching!
It is traditional, but we have not yet
decided to include that ‘feature’. A trace
mode and a monitor mode to simplify

debugging at execution time is a good
one. Occasional BASIC systems have
provided them.

As a programmer myself, I find that care-
ful design and attention to detail when
the program is generated provides more
return than any number of debugging
features.

5) Me too. I rather like the idea of a
single looping construct with an EXIT
statement which terminates the innermost
loop. It’s nice to see some of the
structured programming and software
engineering ideas filtering into personal
computing.

6) Data Structures are very, very impor-
tant. BASIC, FORTRAN, and FOCAL
(since you mention it) don't really have
them. They have arrays and scalars, but
they don’t have ways of constructing
inhomogeneous objects and passing their
names about (references or pointers).
Dynamic allocation is certainly a nice and
useful feature, but that is only part of the
issue.

7) Gotta have procedures, with para-
meters and local name (variable) spaces.
But why frutz up the concept with a
yeach syntax. The usual functional nota-
tion, ‘F(a, b, c)’, is pretty well established.
If we go one better and define classes
(procedures and data structures bound
together to form manipulable objects),
we might allow introduction of infix,
prefix, and postfix operators,

8) File systems are important, but why
the proposed syntax? The APL work-
space concept is rather nice and would be
the one I prefer. But the real problem is
the general lack of reasonable physical
storage devices.

9) Graphics are a must. A turtle-like
approach is simple and easily implement-
ed. (A turtle is an object which will move
about the screen on command dragging or
holding a pen. Smart turtles may even
know about colors.)

10) How is TILK going to detect an
infinite-loop? Turing had something to
say about that (it’s impossible in general).
Further, many of my programs have
apparently infinite loops.

Dennis O

JAN-FEB 53

BY ROBERT ROSSUM

A Careful Bull 2
in the China Shop

LI o
@%@ .

65

%

@

o
2

A CHEAP APPROACH TO THE MECHANICS OF ROBOTICS

This is the first of a two-part series.
In our March-April issue the second part
will cover in detail the mechanics of
robot building. Additional background
material on designing a robot may be
found in Robert Rossum’s articles,
‘Robots as Household Pets’(Vol 5, No 4)
and ‘Pet Robots: New Cuapabilities’
(Vol 6, No 1).

The name Rossum may be familiar to
science fiction fans — it comes from the
Capek play, R.UR. The play is com-
monly cited as the source of the term
robot’ as it is commonly used (‘R.UR.’
stands for ‘Rossum’s Universal Robots’).
Members of the United States Robotics
Society are using the family name
‘Rossum’ as a kind of collective pseudo-
nym for their publications. Members who
prefer to be anonymous may publish
through USRS under whatever ‘Rossun-
name’ they reserve. Thus far, half a dozen
names have been spoken for, e.g. ‘S.A.
Rossum,’ ‘D.I. Rossum,’ and some folks
whose real family name is Rossum have
been listed.

Robert Rossum’ writes books, articles,
and non-theatrical motion pictures. He
has spent most of the past 20 years
working in research and developmental
laboratories.

We thank MITs for permission to reprint
the figures in the article from the Septem-
ber issue of Computer Notes.

Copyright on this article is held by the
United States Roboties Society, a non-
profit corporation devoted to gathering,
collating and disseminating information
about robotics. For more information,
write USRS, P.O. Box 26484, Albuquer-
que, NM 87102.

54 PEOPLE'S COMPUTERS

PART I

A robot that doesn’t move? Not a very
satisfactory machine! It has been said
that the most interesting thing computers
ever do is blow hot air on your shoes
while they hum and soak up money. An
intelligent machine, however clever, lacks
charm if it just sits around like a bump
on a log. Perhaps part of the present
enthusiasm for robotics is a reaction to
this static performance of our clever
machines. Roboticists almost universally
report their determination to construct
mobile systems.

The ordinary roboticist is a good thinker-
upper, programmer, planner, and inno-
vator, but seldom a first-rate mechanical
engineer and master machinist. It’s all
very well to draw conceptual plans for
experimental mechanical systems, but
actual construction and modification of
mechanical creatures is prohibitively
expensive in time and cash. The mobile
systems built by institutions and private
workers tend to be awkward, fragile,
unstable, and uninteresting, as well as
expensive. Indeed, the interesting
machines that receive national publicity
tend to be anthropomorphic monsters.
A recently publicized system is over six
feet high and weighs several hundred
pounds. It performs some remarkable
tricks under the remote control of its
master, but looks mighty unstable on its
small base. One has a queasy feeling that
if this thing dropped a wheel off the
edge of a walkway, it would topple over,
crushing dog, child, mailman or Volks-
wagen. The publicity arising from that
incident might not bring cheer to other
roboticists.

Copyright 1977 by the United States Robotics
Society

Even the cute little wheeled systems
that experimenters set to snuffling
around their laboratories have no more
athletic prowess than is required to climb
over a doorsill or up on a rug without
stalling or upsetting. Conventional mech-
anical systems are generally proving
unsatisfactory for devices that are in-
tended to simulate the performance of
living things,

And the flaw in the simulation is not
chiefly the lack of intelligence. David
Heiserman, author of Build Your Own
Working Robot, has observed that his
robots acquire behavioral characteristics
of living creatures, responding to their
environment in surprisingly complex
fashion. The fact that impresses him most
is the simplicity of the circuitry involved.
A few basic sensory channels, simple
reflexes, and a trifle of logic allow his
machines to behave like simple animals.
It may be that the devices are intellec-
tually trivial, but since they can move,
displaying their characteristics overtly,
and can alter their performance in
response to a changing environment, they
are interesting. Heiserman’s mechanical
systems are quite crude, but they do
something.

If experimenters can develop cheap and
dirty mechanical systems that any clumsy
amateur can build in his own garage, the
apparent progress in robotics may be sig-
nificant. The purpose of these short
articles is to call attention to a cheap, not
inexpensive, but cheap mechanism that
may serve in a large number of robotics
applications. No detailed designs are
offered, but roboticists will be able to
employ the basic principles of the system
without further elaboration here in print.
The trick is to shake off some conven-
tional notions that have obscured the
value of this old and familiar mechanism.

A

i W;}‘fﬁ%
’
= %,

~.course, the correction is not likely to be

other. The robot must be able to correct

 its course, to ‘zero in’ on the target. Of
‘course, when the machine changes its

perfect; it may over-correct or encounter
more problems along the way. Ordinarily,
a servomechanism is employed to make
up for imperfections in the rest of a
machine, to make the back-and-forth
corrections necessary to guide or position
a machine properly. The servo is precise,
in that it takes the machine to exactly the
right position, but it is not ‘accurate’,
necessarily: it does not follow a detailed
set of instructions to get to a target.

In this electronic age, we think of
robotics mechanisms in terms of electron-
ically controlled servosystems, stepping
motors, and complicated, heavy gear
trains. Consider servos. Since no mechan-
ical system is perfectly accurate, we must
always provide a trial-and-error system
that will let a free-moving device
accomplish its tasks in spite of imper-
fection. For example, if you set your pet
robot on a course for the fire hydrant a
block away, you can be sure that the
critter will miss the fireplug unless it
knows one when it sees one, and can hunt
around as necessary to find the thing.
Just aiming straight from where you are
to the hydrant won’t work, since irregu-
larities in the pavement, uneven wear in
the robot’s wheels and gears, bad aim, or
a dozen other problems will almost
inevitably prevent the machine from
going directly from one place to the

The distinction between precision and
accuracy is important. If your robot is
accurate, you may give it instructions
such as: Move exactly north 315 feet,
5 inches. Then make a 90° turn, to the
left (not an 89° turn or a 91° turn, but a
90° turn) and move exactly 19 feet, 7
inches. Stop there or youll smash your
little lens on the knobby thing that is
sticking out of the hydrant.

What are the chances that you really know
exactly what the instructions should be,
and your robot can carry the instructions
out well enough to get within six inches
of the hydrant? Not very good, unless
you have an uncommonly well-made,
expensive machine (equipped with a
magnificent inertial guidance system, per-
haps) working in an environment that is
not very irregular, If there are cracks in
the sidewalk, you're in trouble.

If your robot is equipped with sensors
and servos, it can use instructions more
like this: Move along the sidewalk to the
north without falling off the edge or
bumping signposts, until you detect
something that looks like a fireplug off
to the left, about 300 feet along the way.
Then move toward that hydrant until
you're six inches from it. Stop there.

Chances are good that the robot will go
precisely where you want it to go. Pre-
cision, not accuracy. The robot may be
constructed completely of lousy com-
ponents, may not be able to turn accu-
rately within five degrees, may be off by
three percent in its judgment of distance,
but it will do what you want it to do.
Recall that living things are built entirely
of lousy, individually unreliable and
irregular components. Even the brain is
constructed of stuff that couldn’t meet
military specifications for purchasing,
regardless of actual performance.

Recall, too, that when an animal lifts
its foot, it does not usually have to swing
that foot clear around a 360° arc to return
it to its starting position. Feet move for-
ward and back, up and down. Tails move
to and fro. Muscles in living creatures are
paired. Your bicep pulls your forearm
up and your tricep pulls it back down.

Mechanical servomechanisms work with
paired motors, usually, pulling things first
one way, then the other, ‘zeroing-in’.
The robot builder is usually depressed by
the realization that almost everything in
his critter must be duplicated — all motors
matched, or anyway, reversible. One
common ploy is to make the motor pull
against a spring that returns a limb to
‘normal” position after the motor moves
it.

Robot designers ordinarily provide a
motor for an arm, a motor for a head, a
motor for wagging the tail and so on.
Sometimes a very complex. heavy, power-
consuming gear system is used to accom-
plish all these functions with a single
motor.

But consider an alternative: the ancient
double windlass mechanism, about which
you can learn a great deal in handy refer-
ence manuals like encyclopedias (see
‘windlass’, ‘capstan’, or ‘winch and wind-
lass’). The virtues of the double windlass
for the roboticist are many.

JAN-FEB 66

THE BASIC SYSTEM

The sequential figures show how a basic
system can be constructed. In Figure 1,
the box with an ‘M’ on it is a motor;
Figure 2 illustrates a long shaft protruding
from the motor. A pair of pulleys is
placed on the shaft in Figure 3.
Above the shaft at some arbitrary dis-
tance is Lever A, pivoted at its center
(Figure 4). Below the shaft is Lever B,
also pivoted at its midpoint (Figure 5).
Our interest here is in getting Lever B to
do something in particular when we move
Lever A.

In Figure 6 we connect Levers A and B
with Cords C, and C,. The cords are
wrapped loosely around the pulleys on
the shaft so that when the motor turns,
the pulleys just spin inside the loose cords
without affecting them and the levers.

Suppose, in Figure 7, that you take hold
of Lever A, tilting it upward at the left
end. That pulls Cord C, tight around its
pulley, though Cord C, remains loose
around its pulley. Here the mechanical
magic begins. As Cord C, grips the pul-
ley, the force of the motor begins to pull
on the cord. Even it you lift the end of
the lever very delicately with your finger-
tips, the cord, hence also the end of
Lever B, will be pulled by the full force
of the motor. You need only keep a bit
of tension on the top part of that cord to
apply the motor’s full force to the task of
lifting up the end of Lever B.

If you pull the end of Lever A steadily up
to some particular position, the motor
will wind up the lower part of Cord C,
until Lever B is cocked at the same angle
as Lever A. Then the cord will begin to
slip on the pulley, and the pulling force
of the motor will be relieved. You have
applied a small control force to the upper
lever, causing the motor’s force to be
applied to the lower lever. In fact, a
weight of some significance might be
hanging from that left end of Lever B.

The weight shown in Figure 8 is far
heavier than you could lift with your
fingertip. The motor would do the lift-
ing, multiplying the control force greatly.

Notice that when Cord C, begins to slip,
C, is just on the point of growing tight.
When the action stops, the windings of
the two pulleys are just slightly loose, as
they were when the action began. The

66 PEOPLE'S COMPUTERS

Figure 1. The motor

Figure 2, Motor with shaft

THIE

Figure 3. Pulleys added to shaft

system is all ready to perform again
promptly when another control force is
applied to a lever. If you pull up on the
right end of Lever A now, Lever B will
be returned to its original matching
position — a sort of bicep/tricep action.

You've done two things — controlled the
position of Lever B by manipulating
Lever A, and multiplied the tiny control
force with the force of the motor. These
are both very important to the roboticist
who is hoping to control the limbs of a
mechanical creature.

MORE BASICS

You may choose to amplify your motion
as well as your control force.

=

W

Figure 4, Upper lever added

Lever A

Lever B

Figure 8. Cords C,; and C, added

s

Tk

Iﬁ Lever B

Figure 5, Lower lever added

If you now raise the left end of Lever A
the same distance you did before, the
force of the motor will be applied to
Lever B in the same way (see Figure 9).
The same length of cord will be drawn up
by the pulley, but the left end of Lever B
will be moved a greater distance. You
have multiplied both force and motion.

The motor here may be as large as you
like for the application you have in
mind. The control force you apply to
Lever A may, in fact, be supplied by
another motor, since your robot will
probably employ an electrical system,
and turning power off and on in electri-
cal motors will be a straightforward
matter. The control motor (see Figure
10) may be very small, both in physical
size and power. (The main motor may
even be gasoline or steam powered,
if you like, depending on your applica-
tion and your willingness for your robot
to breathe real smoke and fire with
the interesting associated noises.)

e ——

In fact, your control motor might sensi-
bly be a reversible shaded-pole motor.
People who know about motors say that
a shaded-pole motor can be held in a
stalled condition indefinitely without
damage, and that’s an advantage. (A
later article will discuss a mixed bag of
alternatives to control motors,) With
signals from your robot’s brain, presum-
ably your personal computer, you can
move Lever B either way automatically,
with appreciable force.

The shaft from the main motor may be
equipped with numerous pairs of pulleys
(Figure 11) so that power may be applied
at any point along the shaft to any
chosen lever down below.

The shaft may be flexible (Figure 12) so
that power can be transmitted from the
main motor to remote regions of the
robot in which it resides.

Lever A

Lever B

Lever A

Lever B

Figure 7. Both levers canted to same
angle

Figure 8. 10 Ib weight hanging from
Lever B

The pulleys on the shaft may be of differ-
ent sizes (Figure 13) so that Lever B,
may be moved with a different amount of
power from that applied to B,, and so
on down the line. Maybe you don’t want
the robot to wag its tail with enough
force and speed to smash a chair leg. You
can control the speed and power of the
wag by choosing levers of appropriate
length and pulleys of appropriate diame-
ter,

A matter of great importance arises at
this point in the discussion — the matter
of shared power. Obviously, there’s a
limit to the number of pulleys you can
put on the shaft of a given motor. There’s
a practical physical constraint of some
kind to balance your every wish. If you
tighten the cords at every point along

Figure 9. Cords on Lever B now
attached appreciably closer
to the pivot than on Lever A

the shaft, drawing power from the motor
at each pair of pulleys, your chances of
overloading the motor are very great.
But there’s the beauty of the system
(well, one beauty among many) — it
works the way an animal works. A real
animal seldom uses all of his muscles at
once. When you run, you may be using
your leg muscles in an extreme fashion,
but you are not simultaneously using
your neck and arm muscles to their
fullest extent. Chances are that you are
not simultaneously trying to bite through
a heavy bone, drawing a great deal of
energy in your jaw muscles.

Shared power is a very significant factor
in the design of animals. You have a
certain amount of chemical energy stored
locally in your muscles. When you move
muscles, you consume some of that
available chemical energy. If you exert
the muscles greatly, you use up all that’s
locally available, and must eat more sugar
sent up from the liver. With great
exertion, you can develop a severe local
shortage of energy. Luckily, you seldom
exert all muscles at the same time, so
you don’t develop a general deficit of
energy. (In fact, though, people do some-
times die of over-exertion. That’s one of
the problems for people stuck in
blizzards. They tend to use up all of their
reserves, struggling through the snow,
then lie down to rest. Very bad. When
they quit moving, they quit pumping
new chemicals to their depleted muscles
fast enough. The cold and lack of energy
may be fatal. When a runner finishes a
race, he keeps trotting for a bit, not only
out of respect for tradition, but because
a sudden cessation of activity could be
painful and dangerous.)

The analogy is not perfect, but it’s pretty
good. This double windlass system
allows the energy of the main motor
to be shared by many functions in the
body of the robot. The average load on
the motor can be quite low, while large
amounts of energy are rapidly available
wherever needed. When separate motors
are used at all places where energy is

- needed, those motors must be big enough

to supply all the energy that will ever be
needed from them. That means a lot of
extra weight is being dragged around all
the time, just in case a burst of energy
is needed at any point. The double
windlass system solves much of this
problem with a comparatively simple
simulation of the system Nature has been
using effectively for a long time.

JAN-FEB 67

B ——

This is not to complain of standard me-
chanical systems—there’s much to be said
for the clever designs that competent
engineers have developed for robotic and
non-robotic mobile systems using modern
technology. However, cheapness is not a
feature of standard mechanical systems,
nor can the average home craftsman cope
with the standard systems,

The double windlass system can be
assembled by the home experimenter
with a Tinkertoy outfit or an Erector Set.
The interested roboticist can work with
this system himself even before the
next article in this series is published in
the Mar-Apr issue.

The pulleys can be empty thread spools
in the experimental system. When you get
around to building a rig that's meant
to last, you'll want to use metal, because
there's a lot of wear, Don’t the cords
stretch? Sure, and theyll have to be
tightened once in a while. So what! At
least you can figure out what’s wrong and
fix it yourself. (And there will be many
maddening problems inherent in this
system as in any other.) The whole
mechanism can be quite sloppy, by
machinist’s standards, and still work.
Precision can be achieved in a sloppy
system without accuracy.

AV AV

AV
| = L

JRiE | 1 J

B 8,

Figure 11. Main motor shaft with more sets of pulleys

33 By

Control Motor

Lever A

Lever B

Figure 10. Control motor on Lever A

Figure 12, Flexible shaft with pulleys
along its snaking path

‘Well, I guess I don’t want the robot to
be too strong.’

“Too strong for what?’

‘For people. I don’t want it to hurt any-
body by accident, and I thought maybe
the cords would slip in case the machine
happened to be gripping somebody too
hard.’

*Ah. Well, you’ll have to take care of that
in the machine’s logic. I suppose you
could build in a sensing circuit that
makes it turn off when it hears a scream.’

*That isn’t the comfort I was looking for.’

‘Sorry. A machine is a machine. Build it
the way you want to build it. Maybe it
can learn to be careful.’

This article doesn’t treat the logic, the
brain, or the reflexes of a robot, though
some of those matters will be touched
upon later in the series. Instead, it offers
a cheap and dirty approach to making
robots do something interesting, If you
have been stewing in frustration over
your inability — financial or mental — to
build a working system to go with the
brains on your shelf, get busy with the

In the discussions leading to this article
someone asked: ‘Isn’t there a real safety
factor in the fact that the cords will
slip on the pulleys if they are over-
loaded?’

‘Oh, no. The cords will break before they
slip. This is the kind of mechanism people
use to pull two or three miles of oil-drill
stem up out of wells. The windlass is
a powerful tool. Why?’

58 PEOPLE'S COMPUTERS

spools and Erector Set motors. O
M
A\V4 L4 AV AV
L | []] i |
B 8 By By
Figure 13. Various sizes of pulleys on
the shaft

SPEAK!

AT THE

SECOND
=T COn
UTER Ex

ergﬂce Sz B e

® Tutorially Talk about our Tantalizing Thinkertoys
¢ Comprehensively Comment on your Complex Computer Calisthenics
» Describe Daring Digital Deeds

CHOOSE YOUR OWN TOPIC(S)

Topics at the FIRST West Coast Computer Faire included:

t Residential Energy & Computers

t Computers & Systems for Very Small Businesses

t Entrepreneurs

t Speech Recognition & Speech Synthesis by Home Computer
t Tutorials on Software Systems Design

t Implementation of Software Systems & Modules

t High-Level Languages for Home Computers

T Multi-Tasking on Home Computers

t Homebrew Hardware

t Bus & Interface Standards

1 Microprogrammable Microprocessors for Hobbyists
t Commercial Hardware

1t Tutorials for the Computer Novice

1 People & Computers

1 Human Aspects of System Design

T Personal Computers for the Physically Disabled
t Legal Aspects of Personal Computing
T Amateur Artificial Intelligence

T Computer Art Systems

1 Music & Computers

T Electronic Mail

t Computer Networking for Everyone
t Personal Computers for Education

1 Amateur Radio & Computers

NOTE: The Conference Proceedings of the First West Coast Computer Faire carries over 320 pages of these tutorials & technical
presentations, many discussing the state-of-the-art in home & hobby computing. The Proceedings is immediately available from
Computer Faire (within California, $13.40; outside California, $12.68; foreign, please write for rates-payment must accompany
order), or from your local computer store {a dastardly dis-service to you if it's notl).

OR YOUR TALK TO BE PUBLISHEL

in the Proceedings of the SECOND West Coast Computer Faire,
which will be available at the Faire,

abstracts & camera-ready papers
will be needed.

- CALL or WRITE:

A # Tell us your topic
el R equest Speakers’ Instructions ~=mm—
Phone instantly to request Author’s Kit!
Deadline for submitting camera-ready, full-text paper in specified format:1978 Jan 16‘

COMPUTER FAIRE BOX 1579, PALO ALTO CA 94302 (] (415) 851-7664 O

JAN-FEB

ANNOUNCEMENTS

T999999999999¢9¢9

SOFTWARE
TI999999999999¢

6800 TELEPHONE APPLICATIONS

Software Exchange, a newly formed
company, is developing a line of low cost
software for the computer hobbyist with
emphasis on the practical application for
the home computer. Two telephone
application programs for the 6800 micro-
computer are now available. Each program
includes complete documentation, with
schematic diagrams and instructions.

1. 6800 automatic telephone dialer: $9.95
postpaid includes object code and
punched paper tape in Mikbug*
format, and instructions for adapting
to other 6800 systems,

. 6800 telephone answering device:
$4.95 postpaid includes assembly
listing and object code. Compatible
with any 6800 system.

Software Exchange, 2681 Peterboro,

W. Bloomfield, MI 48033

* Mikbug is a registered trademark of

Motorola, Inc.

1999999999999¢9¢

THE 6502 PROGRAM EXCHANGE

(o

The 6502 Program Exchange has released
a number of new software packages for
6502 systems. These include an extended
version of the high-level language FOCAL,
a 4K resident assembler, and an efficient
Mini-Editor.

The new FOCAL is called FCL65E to
distinguish it from the FCL-65 previously
released. FCL65E (6.5K) offers 8 to 9
digit accuracy, 8-level priority interrupt
handling, string variables and functions,
and greater flexibility in its FOR, SET,
and DO commands., Complete cross-
assembly listings for TIM ($1000-$25F2)
and KIM ($2000-$35F2) can be purchased
for $35. Both FCL-65 and FCL65E now
have all their system dependent software
in a zero-page 1/O block, allowing easy
conversion to other 6502 systems.

60 PEOPLE'S COMPUTERS

A Mini-Manual ($6) and a paper tape or
hex dump ($17) will get you started on
TIM or KIM systems. A User’s Manual,
104 pages of FCL65SE examples and fur-
ther documentation is available for $12.
The Exchange offers an expanding library
of programs (including a STAR TREK)
for FCL-65 and FCL6SE.

More information and a list of other avail-
able software may be obtained by sending

$1.00 to The 6502 Program Exchange,
2920 Moana, Reno, NV 89509.

%
, ¥
e ¥ L1
% %
» %
1999999999999%¢9¥Y

3 NOTICE :

We receive a large number of press
releases every day and must limit
choices for publication to a very
few. Concise announcements stand
a much better chance of being
included than items which require §
extensive rewriting such as wordy |
treatises or abbreviated lists of
products, specifications, or soft-
ware. And please, don’t send us
 stuff in all upper case: it drives our

=Q
—
—

8080 WORD PROCESSING SYSTEM

Mini Word Processing 2.0 (MWP) enables
the user to prepare letters, text and
mailing labels or envelopes. When used
for correspondence processing, MWP
allows name and address entries to be
coded with number of group codes and
document response codes. For example,
an inquiry might be coded with date and
inquiry type group codes and a specific
response letter body with selected para-
graph/phrase insertion document codes.
A followup letter might be sent keyed
only on group codes,

MWP provides in-line editing and common
text/phrase insertions in the text
generation module. The letter and text
output modules provide text insert or
replacement, margin/page control and
page numbering. The MWP System is
driven by a Menu select routine with
seven processing modules.

MWP is extremely easy to use and includes
a comprehensive user’s manual with
varied examples. The price is $195
supplied on a diskette compatible with
MITS Disc Extended Basic. See your
computer dealer or contact The Software
Store, 706 Chippewa Square, Marquette,
MI 49855 (906) 228-7622.

T999999999999¢9¢%9

EDUCULTURE INTRODUCES
MICROCOMPUTER ‘COURSEWARE’

The first wave of professionally-prepared
learning materials specifically for small
stand-alone computer systems is now in
preparation at Educulture, Inc., a
California-based educational publisher.
The programs, aimed primarily toward
secondary and post-secondary education,
include comprehensive, coordinated
series in mathematics, English, and the
sciences.

As initially configured, the programs
are designed to run on machines with
32K bytes of random-access memory,
single-drive digital tape or flexible disk

storage, and medium-resolution CRT
displays (5'2 X 512 to 720 X 1024
addressable points). Graphic capabilities,
which allow the use of pictures, diagrams,

and the special characters and symbols of -

mathematics and science are included in
the programs.

The Educulture effort represents the first
major entry of a publisher into the
educational software industry. The
payment of standard advances and royal-
ties is expected to attract experienced,
qualified authors in a field not previously
noted for its monetary rewards. Educul-
ture is the educational technology division
of the William C. Brown Company of
Dubuque, lowa, a publisher of college
textbooks and other printed learning
materials, For further details contact
Jon Bosak, Project Editor, Educulture
Inc., 3184 ‘T Airway Ave., Costa Mesa,
CA 92626, or phone (714) 751-2113.

19999999999999¢9

HARDWARE
TI99999999999¢9¢

NEW LOW SPEED MODEM

The Net Works announces their
TNW-488 low speed modem which
provides an interface between the IEEE
bus and Bell’s Data Access Arrangement.
The modem is on an 8" x 117 double-
sided circuit board employing the Motor-
ola MC 6860 modem chip and a UART.
It follows the standard of the Bell 103A
Frequency Shift Keyed (FSK) modem.
Power supplies of +5, +12 and —12 are
provided on card.

The capabilities of the TNW-488 include
software selected/enabled pulse dialing,
auto originate/answer and transmit break.
Also included are selectable baud rate
(up to 600, filter optimized for 300 bps),
long or short space disconnect and error
detection. The assembled and tested
board sells for $225 with documentation
and the bare printed circuit board is
available with documentation for $60.
Contact: The Net Works, 5014 Narragan-
set No. 6, San Diego, CA 92107; (714)
223-1176
, %*
* %
* x *

1999999999999¢9¥¢9

Aﬁ-‘_—'-i

IBM SELECTRIC PRINTER FOR
MICROCOMPUTER OUTPUT

Micro Computer Devices has announced
the SELECTERM, a fully converted [BM
Selectric Il Typewriter. The conversion to
a printer enables immediate use with any
microcomputer.

The SELECTERM may be connected
directly to either parallel or serial port,
with all inputs at standard TTL level. No
additional software is required since all
logic is an internal PROM. The SELEC-
TERM includes a special typing element
that produces all ASCII and full upper
and lower case alphanumeric characters.
Also included are tab command, back-
space, vertical tab and bell.

Special features may be ordered including
dual pitch, correcting feature, pin feed
platen in a choice of 13 sizes, and a noise
reduction feature. Any color that IBM
offers may be ordered.

The SELECTERM can be used as a
typewriter since none of the typing
capabilities have been affected by the
conversion to a printer. Because the
SELECTERM has been approved by IBM,
the typewriter warranty remains active,
and yearly service contracts may be
obtained from IBM. In addition, Micro
Computer Devices provides a separate
factory warranty on the conversion
package.

The SELECTERM may be purchased
only through dealers, though OEM
inquiries are invited. Full price is $1650.
Contact vour computer store dealer, or
write Micro Computer Devices, 960
E. Orangethorpe, Bldg. F, Anaheim, CA
92801.(714) 992-2270.

1999999999999¢9€¥9

SCIENTIFIC CALCULATOR
INTERFACE

An interface board employing a scientific
calculator circuit for use by 8080, Z-80,
6800 and other microprocessor systems
has been made available by Mini Micro
Mart. The interface is to a powerful scien-
tific calculator chip produced by MOS
Technology, the 7529-103; basic and
complex math functions can be done
with simple software and the absolute
minimum of system memory. This inex-
pensive board permits the user to perform
math functions not provided for in many
of the BASIC and FORTRAN interpre-
ters and also provides for calculations to
a higher degree of precision.

Calculations utilizing interpreters or
compilers that would require 8K to 16K
of memory can be done in under 1K. The
user has available the functions of a fully
programmable, sophisticated 40-key
scientific calculator including trig func-
tions, inverse trig, logarithms, anti-
logarithms, exponentiation and factorials;
it directly supports two parentheses
levels. The user can take advantage of the
board’s capabilities in three manners: it
could be used to supplement the func-
tions of a small interpreter, as a stand-
alone firmware math package, or it could
be programmed to emulate the functions
of a powerful, programmable calculator.

Two versions of the board are available —
the RM Series with a pin-out that
matches the Motorola Exercisor bus and
which could be adapted readily to an
Intel SBC 80/10 system and another ver-
sion is produced in a personal computing
S-100 standard bus configuration. Soft-
ware is included for both 8080 and 6800
systems.

Through the use of CMOS and 74LS IC’s,
the power requirements are less than
1/2 amp at +5V and 30 MILS at +12V.
The board is available in kit form at
$99.95. For further details, contact Mini

~Micro Mart, 1618 James Street, Syracuse,

New York 13204, or phone (315) 422-
4467.

% *
*

'R-lﬁ *
¥ %
1999999999999¢9¥"

JAN-FEB 61

NEW PROM PROGRAMMER

Oliver Audio Engineering now has a new
low cost series of piggyback PROM pro-
grammers. For example, the PP-2708/16
PROM Programmer plugs directly into
any 2708 or TMS-2716 memory socket.
The PROM to be programmed is placed
in the socket and the data is dumped over
the 8 lower address lines using OAE’s pro-
prietary interface technique (pats.
pending). No additional power supplies
are required and all timing and control
sequences are handled by the programmer.
Only a short software routine is required,
and multiple programmers may be con-
nected in parallel for gang programming.

Each unit comes complete with a DC to
DC switching regulator, 10 turn cermet
trimmers for voltage and pulse width
alignment, and a zero insertion force
socket. The unit is packaged in a black
anodized aluminum case for table top
operation. A 5 foot flat ribbon cable
interconnects the programmer with the
read only PROM socket via a 24 pin
plug. Prices are $249 in kit form and
$295 assembled and tested. Contact
OAE, 676 West Wilson Ave., Glendale,
CA 91203, (213) 240-0080.

1999999999999¢9¢9
TSC MULTI-USER SYSTEM

Technical Systems Consultants announces
the TSC Multi-User System. This system
allows 4 users to simultaneously use one
SWTPC 6800 microcomputer, all running
separate programs. The TSC Multi-User
Board is a SS-50 bus board containing
some required extra memory, interrupt
logic, and a few registers. The board is
designed to plug into one of the memory
slots on the bus. With the board installed,
simply load the BASIC cassette mncluded
with the board for a four user BASIC
system.

62 PEOPLE'S COMPUTERS

Suggested retail price for the TSC-Multi-
User Board Kit is $129.95. That includes
the Multi-User Board Kit with all parts,
IC sockets, diagnostics, and instructions.
Also included is a cassette and users
manual for a Four User Micro BASIC Plus.
Also available from TSC are two versions
of 8K BASIC specially adapted for the
TSC Multi—User System. One version
allows cassette save and load by each user,
entirely independent of the other user
activity. The second version supports the
new SWTPC Mini-Floppy system. With
this BASIC, each user can access the disc
drives for saving or loading programs.
The disc files may also be user password
protected. Both versions of BASIC will
allow the use of a SWTPC PR-40 printer
for program listing,

The system requirements are as follows:
1-SWTPC 6800 Micro Computer; 12K-32K
of memory (minimum recommended for
use with 8K BASIC and 4 users is 24K);
l-terminal for each user; 1-ACIA Board
for each user. To give you an idea of
total system price ranges, a minimum 2
user system with 12K of memory,
terminals, and TSC Multi-User System
will retail for around $1,700. A fully
packed very powerful system, including
32K of memory, dual disc drives, four
CT-64 terminals, 8K BASIC, PR-40
printer and interface, all ACIA boards,
and the TSC Multi-User System will
sell for under $4,800. For further
information contact: Technical Design
Consultants, Inc., P.O. Box 2574, West
Lafayette, IN 47906.

19999999999999¢9
DISKETTES

Manchester Equipment Co. carries disk-
ettes for all of the following systems:

Shugart 800 Shugart SA 400
Altair Mini-Diskettes
Helios North Star

0OSI Fortran IV
Digital Systems Smokey Signal
Imsai Metropolis
Innovex

All diskettes are $3.75 each. Orders ac-
cepted only by payment accompanying
order; Bankamericard, Master Charge, and
COD OK. Add $2.00 for shipping and
handling. Manchester Equipment Co.,
Inc., 120 Bethpage Rd., Hicksville,
NY 11801,

1999999999999¢9¢9

HORIZON COMPUTER WITH BUILT-
IN DISK DRIVES

A complete microprocessor system with
integrated floppy disk memory is now
available from North Star Computers,
Inc. Called HORIZONIM, the system is
designed for business, educational and
personal applications. HORIZON is ready
for programming in extended disk BASIC
with the addition of a CRT or hard-copy
terminal. North Star BASIC includes
sequential and random disk files, format-
ted output, a line editor, strings. user
defined functions, and more.

The system is available in two models.
HORIZON-1 ($1,599 kit; $1,899 assem-
bled) includes a Z80A processor, 16K
RAM, minifloppy disk and 12-slot S-100
motherboard with serial terminal inter-
face. The HORIZON-2 ($1,999 Kkit;
$2,349 assembled) includes a second
built-in disk drive.

The Z8OA processor operates at 4MHZ—
double the power of the 8080. The North
Star 16K RAM board lets the ZBOA exe-
cute at full speed. HORIZON can load or
save a 10K byte disk program in less than
two seconds. Each diskette can store 90K
bytes; the motherboard is S-100 compati-
ble.

North Star also offers additional S-100
boards including a hardware floating
point option at $259 kit; $359 assembled,
and 16K RAM boards at $399 kit, $459
assembled, with optional parity check
and additional serial and parallel 1/O
ports at $39 kit and $59 assembled. Deli-
very is 30 days on receipt of order. For
more details write: North Star Computers,
Inc., 2465 Fourth Street, Berkeley, CA
94710. (415) 549-0858.

T99999999999949¢9

19999999999999¢9
OTHER

1999999999999¢9¢9
COMPCON 78

IEEE’'s COMPCON 78 will be held
Feb 27-Mar 2 at the Jack Tar Hotel
in San Francisco. A special evening
program consisting of exhibits and four
panel sessions will present a look at the
phenomenon of personal computing.
The panel sessions start at 7:00 PM and
cover topics such as Women’s Contribu-
tions in Innovative Computer Applica-
tions (Monday), Robotics and Bionics
(Tuesday), Computer Magazines (Wed-
nesday) and Computer Art and Music
(Thursday). From 5—10 PM on Monday
through Wednesday attendees will be
able to get first hand experience of a
broad range of computer equipment. The
COMPCON 78 registration fee covers
attendance at all day time sessions and
all Personal Computing sessions and
exhibits; a $5 fee will enable individuals
to attend only the Personal Computing
sessions and exhibits. For more informa-
tion on the Personal Computing sessions
contact organizers Alice Ahlgren, Market-
ing Manager, Cromemco, Inc, Mountain
View, CA (415) 964-7400 or Bob
Albrecht (415) 323-6117.

1999999999999¢9¢9

USA-JAPAN COMPUTER
CONFERENCE

The third USA-Japan Computer Confer-
ence will be held October 10-12, 1978 in
San Francisco. This marks the first time
this gathering is to be held on American
soil,

Papers are solicited on all aspects of
computing technology, including compu-
ter applications. Papers in the form of
complete drafts should be submitted to
the U.S. representatives of the Technical
Program Committee by March 1, 1978.
Drafts should not exceed 5,000 words,
and abstracts not exceeding 150 words
should be included with submitted drafts.

Individuals planning to submit papers
should submit their material to: Prof.
Edward J. McCluskey, Digital System Lab-
oratory, Stanford University, Stanford,
CA 94305,

1999999999999¢9¢9

NCC 78

The 1978 National Computer Conference
will feature a Personal Computing Festi-
val, to take place June 6-8 at the
Disneyland Hotel complex in Anaheim,
CA. A special program of papers and
presentations relevant to personal compu-
ting will be presented. Both one-day and
three-day registrations will be available
for the Festival. Information on NCC 78
may be obtained from AFIPS Headquar-
ters, 210 Summit Avenue, Montvale, NJ
07645 or by calling (201) 391-9810.

1999999999999¢9¢9
PET OWNERS GROUP

I'm forming a PET owners group to ex-
change ideas and information. I'm a
broker, particularly interested in financial
applications; another member s
especially interested in assembly language
programming. Carl Martin, 2001 Bryan
Tower, Suite 3800, Dallas, TX 75201;
(214) 742-5750

1999999999999+9¢9
COURSE

A two-week course in the fundamentals
of digital electronics and microcomputer
interfacing will be held at Virginia Mili-
tary Institute from July 17 through
July 29, 1978. For information and regis-
tration forms write to: Dr Philip B Peters,
Dept. of Physics, VMI, Lexington, VA
24450.

199999999999949¢9
CONTU EXTENDED

House Bill H.R. 4836, to extend by seven
months the term of the National Commis-
sion on New Technological Uses of Copy-
righted Works (CONTU) was signed into
law by President Jimmy Carter on October
28, 1977, after having been passed by the
Senate on October 13, 1977. Public Law
95-146 required that the Commission
submit its final report to the President
and the Congress on or before July 31,
1978, rather than on or before December
31, 1977. The Commission was contin-
uing to hold meetings on the subject of
new uses of copyrighted works as late
as November — check with them for
meetings. Contact CONTU, Washington
D.C. 20558; telephone (202) 557-0996.

1999999999999¢9¢9

ACM SIGPC

The Association for Computing Machin-
ery chartered a new Special Interest
Group on Personal Computing, SIGPC, at
the National Computer Conference in
June. SIGPC will be operated exclusively
for educational and scientific purposes in
the design and applications of computer
systems for personal uses. This includes
personal computer systems for home,
clerical, small business, management and
recreational uses.

To join SIGPC write to the Association
for Computing Machinery, PO Box 12105,
Church Street Station, New York, New
York 10249. The dues (which include a
subscription to the newsletter) are:
$5.00/year for Members, associates and
student members of the ACM (please
include ACM member number); $13.00/
year for non-ACM members.

For further information on SIGPC pro-
grams, contact Dr. Portia Isaacson, The
Micro Store, 634 South Central Express-
way, Richardson, TX, 75080; (214) 231-
1096.

1999999999999¢9¢9
COMPUTER CLUBS

The Minnesota Computer Society meets
the first Monday of each month at 7:30
p.m. at Brown Institute, 3123 E Lake St,
Minneapolis, MN (unless announced
otherwise). For further information con-
tact: Minnesota Computer Society, c/o
Jean Rice, Box 35317, Minneapolis, MN
55435.

Computer Amateurs of South Jersey
meet at 7:30 p.m. the last Tuesday of
each month at the National Park Munici-
pal Building, 7 S Grove Ave, National
Park, NJ. For additional information call
(609) 541-1010 or (609) 541-8296.

Boston Computer Society meetings are
held the fourth Wednesday of each
month, except July, at the Common-
wealth School, 151 Commonwealth Ave,
Boston. They start at 7:00 p.m. and usu-
ally run till 10:00. For further informa-
tion contact The Boston Computer Soci-
ety, 17 Chestnut St, Boston, MA 02108;
(617) 227-1399,

B o ¥
*";t-**&***

1999999999999¢9¢9

JAN-FEB 63

