
"

apy s /

•

-1-

SKETCHPAD, A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM

by

IVAN EDWARD SUTHERLAND

B.S., Carnegie Institute of Technology

(1959)

M.S., California Institute of Technology

(1960)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January, 19&3

Signature of Author.
Department of Electrical Engineering, January 7, 1963

Certified by. *
Thesis Supervisor

Accepted by.
Chairman, Departmental Committee on Graduate Students

l

SKETCHPAD, A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM

by

IVAN EDWARD SUTHERLAND

Submitted to the Department of Electrical Engineering on
January 7, 1963, in partial fulfillment of the require­
ments for the degree of Doctor of Philosophy.

ABSTRACT

The Sketchpad system uses drawing as a novel communication
medium for a computer. The system contains input, output, and
computation programs which enable it to interpret information drawn
directly on a computer display. It has been used to draw electrical,
mechanical, scientific, mathematical, and animated drawings; it is
a general purpose system. Sketchpad has shown the most usefulness
as an aid to the understanding of processes, such as the motion of
linkages, which can be described with pictures. Sketchpad also makes
it easy to draw highly repetitive or highly accurate drawings and to
change drawings previously drawn with it. The many drawings in this
thesis were all made with Sketchpad.

A Sketchpad user sketches directly on a computer display with a
"light pen." The light pen is used both to position parts of the
drawing on the display and to point to them to change them. A set of
push buttons controls the changes to be made such as "erase," or
"move." Except for legends, no written language is used.

Information sketched can include straight line segments and
circle arcs. Arbitrary symbols may be defined from any collection of
line segments, circle arcs, and previously defined symbols. A user
may define and use as many symbols as he wishes. Any change in the
definition of a symbol is at once-seen wherever that symbol appears.

Sketchpad stores explicit information about the topology of a
drawing. If the user moves one vertex of a polygon, both adjacent
sides will be moved. If the user moves a symbol, all lines attached
to that symbol will automatically move to stay attached to it. The
topological connections of the drawing are automatically indicated by
the user as he sketches. Since Sketchpad is able to accept topologi­
cal information from a human being in a picture language perfectly
natural to the human, it can be used as an irput program for computation
programs which require topological data, e.g., circuit simulators.

Sketchpad itself is able to move parts of the drawing around to
meet new conditions which the user may apply to them. The user
indicates conditions with the light pen and push buttons. For example,
to make two lines parallel, he successively points to the lines with

-3-

the light pen and presses a button. The conditions themselves are
displayed on the drawing so that they may be erased or changed with
the light pen language. Any combination of conditions can be defined
as a composite condition and applied in one step.

It is easy to add entirely new types of conditions to Sketchpad's
vocabulary. Since the conditions can involve anything computable,
Sketchpad can be used for a very wide range of problems. For example,
Sketchpad has been used to find the distribution of forces in the
members of truss bridges drawn with it.

Sketchpad drawings are stored in the computer in a specially
designed "ring" structure. The ring structure features rapid pro­
cessing of topological information with no searching at all. The basic
operations used in Sketchpad for manipulating the ring structure are
described.

Thesis Supervisor! Claude E. Shannon

Title: Ibnner Professor of Science

ACKNOWLEDGEMENTS

I am indebted to Professors Claude E. Shannon and Marvin Minsky

for their help and advice throughout the course of this research.

Their helpful suggestions at several critical times gave Sketchpad

much of its present character.

Special thanks are due to Professor Steven A. Coons of the

Mechanical Engineering Department and to Douglas T. Ross of the

Electronic Systems Laboratory. Even though I was outside their

Computer Aided Design group, they provided at least as unstintingly

of their time and ideas as if I had been their only concern.

I owe a great debt to the MIT Lincoln Laboratory for the tre­

mendous support it afforded me. I wish to thank Wesley A. Clark and

Jack L. Mitchell for making the TX-2 computer available to me and

for providing help to make the special equipment I needed. I

appreciate the helpful suggestions and interest that they and all the

members of Group 51 provided. Special thanks are due Leonard M.

Hantman for the additions he made to Sketchpad.

The Research Laboratory of Electronics at MIT provided me with

office space and congenial office mates whose discussion and interest

I greatly appreciate.

Finally, I wish to thank Lawrence G. Roberts who was a constant

source of answers to specific questions I had both about the best

ways to program TX-2 and about the mathematics of difference equations

and matrix manipulations.

*

-5-

TABLE OF CONTENTS

Abstract <=

Acknowledgements ^

Table of Contents 5

List of Figures 6

Chapter I. Introduction 8

Chapter II. History of Sketchpad 2k

Chapter III. Ring Structure 3^

Chapter IV. Light Pen 51*-

Chapter V. Display Generation 67

Chapter VI. Recursive Functions 87

Chapter VII. Building a Drawing, The Copy Function 102

Chapter VIII. Constraint Satisfaction , 110

Chapter IX. Examples and Conclusions 120

Appendix A. Constraint Descriptions 1^1

B. Push Button Controls 1^

C. Structure of Storage Blocks 1^7

D. Ring Operation MACRO Instructions 152

E. Proposal for an Incremental Curve Drawing Display .. 15^

F. Mathematics of Least Mean Square Fit l6l

G. A Brief Description of TX-2 16^

Glossary 170

Bibliography • • • • • • 175

Biographical Note 176

-6-

LIST OF FIGURES

Figure 1.1. Hexagonal Pattern 10

1.2. TX-2 Operating Area - Sketchpad in Use 11

1.3° Plotter Used with Sketchpad 12

1.4. Line and Circle Drawing 14

1.5« Illustrative Example 15

1.6. Four Positions of Linkage 20

1.7. ^ and / \ on Same Lattice 20

Figure 3°1° N-Component Elements 36

3.2. Basic Ring Structure 4l

3.3° Line Segment and End Points 43

3.4. Zero and One Member Rings . .• 43

3« 5° Fresh Point Block 46

3.6. Compacting the Ring Structure 47

3«7° Instances Generic Block 51

3.8. Generic Structure 52

Figure 4.1. Light Pen %

4.2. Construction of Light Pen 56

4.3. Predictive Pen Tracking 58

4.4. Displays for Pen Tracking 58

4.5. Address in Display Register 6l

4.6. Operation of Pseudo Pen Location 6l

-7-

Figure 5* 1* Twinkled Display 69

5.2. Coordinate Systems 73

5.3. Display of Constraints 84

5.4. Display of Scalar and Digits 84

Figure 6.1. Applying Two Constraints Indirectly to Two Lines 94

Figure 7.1. Definitions to Copy 106

Figure 9.1. Zig - Zag for Delay Line 122

9.2. BCD Encoder for Clock ,. i.. 122

9.3. Three Bar Linkage 125

9.4. Conic Drawing Linkage 125

9 . D i m e n s i o n Li n e s 1 2 8

9.6. Truss Under Load 128

9»7« Cantilever and Arch Bridges 131

9.8. Winking Girl and Components'..... 133

9.9" Girl Traced from Photograph 134

9.10. Girl with Features Changed 135

9.11. Circuit Diagrams 137

Figure E.l. DDA for Drawing Lines 155

E.2. DDA for Upright Conies 157

E.3. PDA for the General Conic 159

Chapter I

INTRODUCTION

-8-

The Sketchpad system makes it possible for a man and a computer

to converse rapidly through the medium of line drawings. Heretofore,

most interaction between men and computers has been slowed down by the

need to reduce all communication to written statements that can be typed;

in the past, we have been writing letters to rather than conferring with

our computers. For many types of communication, such as describing the

shape of a mechanical part or the connections of an electrical circuit,

typed statements can prove cumbersome. The Sketchpad system, by

eliminating typed statements (except for legends) in favor of line draw­

ings, opens up a new area of man-machine communication.

The decision actually to implement a drawing system reflected our

feeling that knowledge of the facilities which would prove useful,

could only be obtained by actually trying them. The decision actually

to implement a drawing system did not mean, however, that brute force

techniques were to be used to computerize ordinary drafting tools; it

was implicit in the research nature of the work that simple new

facilities should be discovered which, when implemented, should be use­

ful in a wide range of applications, preferably including some unforseen

ones. It has turned out that the properties of a computer drawing are

entirely different from a paper drawing not only because of the accuracy,

ease of drawing, and speed of erasing provided by the computer, but also

primarily because of the ability to move drawing parts around on a computer

drawing without the need to erase them. Had a working system not been

developed, our thinking would have been too strongly influenced by a

lifetime of drawing on paper to discover many of the useful services

that the computer can provide.

As the work has progressed, several simple and very widely applicable

facilities have been discovered and implemented. They provide a sub-

picture -capability for including arbitrary symbols on a drawing, a con­

straint capability for relating the parts of a drawing in any computable

way, and a definition copying capability for building complex relation­

ships from combinations of simple atomic constraints.* When combined

with the ability to point at picture parts given by the demonstrative

light pen language, the subpicture, constraint, and definition copying

capabilities produce a system of extraordinary power. As was hoped at

the outset, the system is useful in a wide range of applications, and un-

forseen uses are turning up.

AN INTRODUCTORY EXAMPLE

To understand what is possible with the system at present let us

consider using it to draw the hexagonal pattern of Figure 1.1. We will

issue specific commands with a set of push buttons, turn functions on and

off with switches, indicate position information and point to existing

drawing parts with the light pen, rotate and magnify picture parts by

turning knobs,and observe the drawing on the display system. This

equipment as provided at Lincoln Laboratory's TX-2 computer1 is shown

in Figure 1.2. When our drawing is complete it may be inked on paper,

12
as were all the drawings in the thesis, by the plotter shown in

* Terms with specialized meanings are listed in the glossary at the

very end of this thesis.

-10-

FIGURE 1.1. H EXAGONAL PATTERN

-11-

1 f

FIGURE 1.2. TX-2 OPERATING AREA - SKETCHPAD IN USE.
On the display can "be seen part of a bridge

similar to that of Figure 9-6. The Author is holding
the Light pen. The push buttons used to control
specific drawing functions are on the box in front
of the Author. Part of the bank of toggle switches
can be seen behind the Author. The size and position
of the part of the total picture seen on the display
is obtained through the four black knobs just above
the table.

-12-

FIGURE 1.3. PLOTTER USED WITH-SKETCHPAD
A digital and analog control system

makes the plotter draw straight lines and
circles either under direct control of
the TX-2 or off-line from punched paper
tape.

- —13-

Figure 1.-3 • It is our intent with this example to show what the computer

can do to help us draw while leaving the details of how it performs its

functions for the chapters which follow.

If we point the light pen at the display system and press a button

called "draw", the computer will construct a straight line segment*

which stretches like a rubber band from the initial to the present
)

location of the pen as shown in Figure 1.4. Additional presses of the

button will produce additional lines until we have made six, enough for

a single hexagon. To close the figure we return the light pen to near

the end of the first line drawn where it will "lock on" to the end

exactly. A sudden flick of the pen terminates drawing, leaving the

closed irregular hexagon shown in Figure 1.5A.

To make the hexagon regular, we can inscribe it in a circle. To

draw the circle we place the light pen where the center is to be and

press the button "circle center", leaving behind a center point. Now>

choosing a point on the circle (which fixes the radius,) we press the

button "draw" again, this time getting a circle arc* whose length only is

controlled by light pen position as shown in Figure 1.4.

Next we move the hexagon into the circle by pointing to a corner of

the hexagon and pressing the button "move" so that the corner follows

*The terms "circle" and "line" may be used in place of "circle arc" and

"line segment" respectively since a full circle in Sketchpad is a circle

arc of 360 or more degrees and no infinite line can be drawn.

-Ill-

\PATH OF LIGHT P EN
\ ~~

\

\

START D RAW
CIRCLE C ENTER

TERMINATE
ARC OBTAINED

s N
N x- s /

FIGURE 1.4.
LI N E A N D CIR C L E DR AWING

-15-

FIGURE 1.5. ILLUSTRATIVE EXAMPLE

the light pen, stretching two rubber band line segments behind it. By

pointing to the circle and giving the termination flick we indicate that

the corner is to lie on the circle. Each corner is in this way moved

onto the circle at roughly equal spacing around it as shown in Figure 1.5D*

We have indicated that the .vertices of the hexagon are to lie on the

circle, and they will remain on the circle throughout our further

manipulations. If we also insist that the sides of the hexagon be of

equal length, a regular hexagon will be constructed. This we can do

by pointing to one side and pressing the ''copy" button, and then to

another side and giving the termination flick. The button in this case

copies a definition of equal length lines and applies it to the lines

indicated. We have said, in effect, make this line equal in length to

that line. We indicate that all six lines are equal in length by five
• •*

such statements. The computer satisfies all existing conditions (if it

is possible) whenever we turn on a toggle switch. This done, we have a

complete regular hexagon inscribed, in a circle. We can erase the entire

circle by pointing to any part of it and pressing the "delete" button.

The completed hexagon is shown in Figure 1.5F.

To make the hexagonal pattern of Figure 1.1 we wish to attach a

large number of hexagons together by their corners, and so we designate

the six corners of our hexagon as attachment points by pointing to each

and pressing a button. We now file away the basic hexagon and begin

work on a fresh "sheet of paper" by changing a switch setting. On the

new sheet we assemble, by pressing a button to create each hexagon as

a subpicture, six hexagons around a central seventh in approximate

position as shown in Figure 1.5G. Subpictures may be positioned, each

in its entirety, with the light pen, rotated or scaled with the knobs

-17-

and fixed in position by the pen flick termination signal, but their

internal shape is fixed. By pointing to the corner of one hexagon,

pressing a button, and then pointing to the corner of another hexagon

we can fasten those corners together, because these corners have been

designated as attachment points. If we attach two corners of each outer

hexagon to the appropriate corners of the inner hexagon, the seven are

uniquely related, and the computer will reposition them as shown in

Figure 1.5H. An entire group of hexagons, once assembled, can be

treated as a symbol. The entire group can be called up on another "sheet

of paper" as a subpicture and assembled with other groups or with single

hexagons to make a very large pattern. Using Figure 1.5H seven times

we get the pattern of Figure 1.1. Constructing the pattern of Figure

1.1 takes less than five minutes with the Sketchpad system.
,.. m ® < > j

INTERPRETATION OF INTRODUCTORY EXAMPLE

In the introductory example above we have seen how to draw lines

and circles and how to move existing parts of the drawing around. We

used the light pen both to position parts of the drawing and to point

to existing parts. For example, we pointed to the circle to erase it,

and while drawing the sixth line, we pointed to the end of the first

line drawn to close the hexagon. We also saw in action the very

general subpicture, constraint, and definition copying capabilities

of the system.

Subpicture:

The original hexagon might just as well have been anything
else: a picture of a transistor, a roller bearing, an air­
plane wing, a letter, or an entire figure for this report.
Any number of different symbols may be drawn, in terms of
other simpler symbols if desired, and any synibol may be used
as often as desired.

Constraint: -18-

When we asked that the vertices of the hexagon lie on the
circle we were making use of a basic relationship between
picture parts that is built into the system. Basic rela­
tionships (atomic constraints) to make lines vertical,
horizontal, parallel, or perpendicular; to make points
lie on lines or circles; to make symbols appear upright,
vertically above one another or be of equal sizeJ and to
relate symbols to other drawing parts such as points and
lines have been included in the system. It is so easy to
program new constraint types that the set of atomic con­
straints was expanded from five to the seventeen listed
in Appendix A in a period of about two days; specialized
constraint types may be added as needed.

Definition Copying:

In the introductory example above we asked that the sides
of the hexagon be equal in length by pressing a button
while pointing to the side in question. Here we were using
the definition copying capability of the system. Had we
defined a composite operation such as to make two lines
both parallel and equal in length, we could have applied
it just as easily. The number of operations which can be
defined from the basic constraints applied to various pic­
ture parts is almost unlimited. Useful new definitions
are drawn regularly; they are as simple as horizontal lines
and as complicated as dimension lines complete with arrow­
heads and a number which indicates the length of the line
correctly. The definition copying capability makes using
the constraint capability easy.

IMPLICATIONS OF INTRODUCTORY EXAMPLE

As we have seen in the introductory example, drawing with

the Sketchpad system is different from drawing with an ordinary pencil

and paper. Most important of all, the Sketchpad drawing itself is

entirely different from the trail of carbon left on a piece of paper.

Information about how the drawing is tied together is stored in the

computer as well as the information which gives the drawing its particular

appearance. Since the drawing is tied together, it will keep a useful

appearance even when parts of it are moved. For example, when we moved

the corners of the hexagon onto the circle, the lines next to each corner

-19-

were automatically moved so that the closed topology of the hexagon was

preserved. Again, since we indicated that the corners of the hexagon

were to lie on the circle they remained on the circle throughout our

further manipulations.

It is this ability to store information relating the parts of a

drawing to each other that makes Sketchpad most useful. For example, the

linkage shown in Figure 1.6 was drawn with Sketchpad in just a few

minutes. Constraints were applied to the linkage to keep the length of

its various members constant. Rotation of the short central link is

supposed to move the left end of the dotted line vertically. Since

exact information about the properties of the linkage has been stored in

Sketchpad, it is possible to observe the motion of the entire linkage

when the short central link is rotated. The value of the number in

Figure 1.6 was constrained to indicate the length of the dotted line,

comparing the actual motion with the vertical line at the right of the

linkage. One can observe that for all positions of the linkage the

length of the dotted line is constant, demonstrating that this is indeed

a straight line linkage. Other examples of moving drawings made with

Sketchpad may be found in the final chapter.

As well as storing how the various parts of the drawing are related,

Sketchpad stores the structure of the subpicture used. For example, the

storage for the hexagonal pattern of Figure 1.1 indicates that this

pattern is made of smaller patterns which are in turn made of smaller

patterns which are composed of single hexagons. If the master hexagon

is changed, the entire appearance of the hexagonal pattern will be

changed.. The structure of the pattern will, of course, be the same. For

example, if we change the basic hexagon into a semicircle, the fish

scale pattern shown in Figure 1.7 instantly results.

-20-

1087 1087

17)87

FIGURE l.G.
FOUR POSITIONS OF LINKAGE
NUMBER SHOWS LENGTH OF DOTTED LINE

FIGURE 1 . 7 .
AA AND AA ON SAME LATTICE

-21-
Since Sketchpad stores the structure of a drawing, a Sketchpad

drawing explicitly indicates similarity of symbols. In an electrical

drawing, for example, all transistor symbols are created from a single

master transistor drawing. If same change to the basic transistor symbol

is made, this change appears at once in all transistor symbols without

further effort. Most important of all, the computer !,knows" that a

"transistor" is intended at that place in the circuit. It has no need

to interpret the collection of lines which we would easily recognize as

a transistor symbol. Since Sketchpad stores the topology of the draw­

ing as we saw in closing the hexagon, one indicates both what a circuit

looks like and its electrical connections when one draws it with

Sketchpad. One can see that the circuit connections are stored because

moving a component automatically moves any wiring on that component

to maintain the correct connections. Sketchpad circuit drawings will soon

be used as inputs for a circuit simulator. Having drawn a circuit one will

find out its electrical properties.

SKETCHPAD AND THE DESIGN PROCESS

Construction of a drawing with Sketchpad is itself a model of

the design process. The locations of the points and lines of the draw­

ing model the variables of a design, and the goemetric constraints applied

to the points and lines of the drawing model the design constraints

which limit the values of design variables. The ability of Sketchpad

to satisfy the geometric constraints applied to the parts.of a drawing

models the ability of a good designer to satisfy all the design conditions

imposed by the limitations of his material^, cost, etc. In fact, since

designers in many fields produce nothing themselves but a drawing of a

part, design conditions may well be thought of as applying to-the

-22-

drawing of a part rather than to the part itself. If such design con­

ditions were added to Sketchpad's vocabulary of constraints the com­

puter could assist a user not only in arriving at a nice looking draw­

ing, but also in arriving at a sound design.

PRESENT USEFULNESS

At the outset of the research no one had ever drawn engineering

drawings directly on a computer display with nearly the facility now

possible, and consequently no one knew what it would be like. We have

now accumulated about a hundred hours of experience actually making

drawings with a working system. As is shown in the final chapter,

application of computer drawing techniques to a variety of problems has

been made. As more and more applications have been made it has become

clear that the properties of Sketchpad drawings make them most useful

in four broad areas:

For Making Small Changes to Existing Drawings:

Each time a drawing is made, a description of that drawing
is stored in the computer in a form that is readily trans­
ferred to magnetic tape. Thus, as time passes, a library
of drawings will develop, parts of which may be used in other
drawings at only a fraction of the investment of time that
was put into the original drawing. Since a drawing stored
in the computer may contain explicit representation of design
conditions in its constraints, manual change of a critical
part will automatically result in appropriate changes to
related parts.

For Gaining Scientific or Engineering Understanding of Operations That
Can Be Described Graphically:

The description of a drawing stored in the Sketchpad system
is more than a collection of static drawing parts, lines and
curves, etc. A drawing in the Sketchpad system may contain
explicit statements about the relations between its parts
so that as one part is changed the implications of this
change become evident throughout the drawing. It is possible,
as we saw in Figure 1.6, to give the property Of fixed length
to lines so as to study mechanical linkages, observing the

-23-
path of some parts when others are moved.

As we saw in Figure 1.7 any change made in the definition
of a subpicture is at once reflected in the appearance of
that subpicture wherever it may occur. By making such
changes, understanding of the relationships of complex
sets of subpictures can be gained. For example, one can
study how a change in the basic element of a crystal
structure is reflected throughout the crystal.

As a Topological Input Device for Circuit Simulators, etc.:

Since the ring structure storage of Sketchpad reflects
the topology of any circuit or diagram, it can serve
as an input for many network or circuit simulating
programs. The additional effort required to draw a
circuit completely from scratch with the Sketchpad system
may well be recompensed if the properties of the circuit
are obtainable through simulation of the circuit drawn.

For Highly Repetitive Drawings:

The ability of the computer to reproduce any drawn
symbol anywhere at the press of a button, and to
recursively include subpictures within subpictures
makes it easy to produce drawings which are composed of
huge numbers of parts all similar in shape. Great interest
in doing this comes from people in such fields as memory
development and micro logic where vast numbers of elements
are to be generated at once through photographic processes.
Master drawings of the repetitive patterns necessary can be
easily drawn. Here again, the ability to change the
individual element of the repetitive structure and have
the change at once brought into all sub-elements makes
it possible to change the elements of an array without
redrawing the entire array.

Those readers who are primarily interested in the application

of Sketchpad are invited to turn next to Chapter IX, page 120 for

aditional examples and conclusions.

-2b-

Chapter II

HISTORY OF SKETCHPAD

When at the end of the summer of i960 Jack I. Raff el told me that

there was considerable interest at Lincoln Laboratory in making a com­

puter "more approachable" through advanced use of displays, I paid

little heed, but a seed had been planted. As work on TX-0 computer at

MIT during the winter of 1960-61 brought me some familiarity with using

display and light pen, the idea began to grow in my mind that applica­

tion of computers to making line drawings would be exciting and might

prove fruitful. Late in April, 1961, following up Mr. Raffel's earlier

suggestion, I approached Wesley A. Clark, then in charge of computer

applications in Group 51 Lincoln Laboratory, with the proposal that

I use TX-2 in an investigation of computer drawing techniques. I owe a

great deal to Mr. Clark's initial enthusiasm and, though I didn't"know

it at the time, to the many design features1 he had incorporated into

TX-2 seemingly with just such a project in mind.

During the summer of i960, Herschel H. Loomis had done some preli-

mi nary drawing work on TX-2 which he was kind enough to demonstrate for

me in May, 1961, as my first contact with TX-2. During the summer of

1961 I devised a curve tracing program and some of the first notions

about interlaced and twinkled display. Late in the summer of 1961 a

project to connect an ink-line-on-paper plotting system to TX-2 was re­

vived. An EAI plotter12 painted bright red, had been at Lincoln Labo­

ratory for two or three years before, but interest in the project had

faded for lack of a user. Throughout the Sketchpad effort I have

-25-

maintained a collateral interest in the hardware development necessary

to get the plotter working. The plotting system has been incorporated

as a part of the overall Sketchpad system, but of course its development

is only incidental to the research embodied in the thesis.

From the earliest stages of the project development I had had the

closest contact with Professor Claude E. Shannon whose penetrating

questions have served as the measuring stick by which I could judge my

progress. He agreed to supervise the drawing effort as a thesis project

in the fall of 1961. In the process of contacting faculty members to

form a thesis committee I became aware that my effort was not unique and

that I was not alone in my interest and enthusiasm for graphical com­

puter input and output. Hie availability of computer controlled display

systems and particularly of light pen devices for manual input made it

almost inevitable that computers would one day be involved in engineer­

ing drawing. People at MIT had long talked of such an application.

Computer application to geometric problems was not new. The APT

(Automatically Programmed Tool) development through which a computer is

able to control a milling machine to produce a complex metal part had

evolved many useful geometric manipulation techniques. I made contact

with the Computer Aided Design group at MIT which was composed partly of

the people of the MIT Electronic Systems Laboratory (formerly called the

Servomechanisms Laboratory) who developed APT and partly of people in

the Mechanical Engineering Department who brought a knowledge of the

problems faced by designers to the project.

I had been surprised that so little practical work had been done in

application of computers to line drawing, especially since display

-26-

systems and light pens were relatively common when my work "began. I can

see now, however, that I have had a unique opportunity to pursue my in­

terest. I was able to visit many separate laboratories for discussion

and ideas without becoming so attached to any one that I was forced into

its way of thinking. In particular, members of the Mechanical Engineer­

ing Department, notably Professor Steven A. Coons, who agreed to serve

on my thesis committee, suggested mechanical design problems and appli­

cations. Members of the Electronic Systems Laboratory, notably Douglas

Ross, provided help and advice on n-component elements. The Artificial

Intelligence group, notably Professor Marvin Minsky, another committee

member, gave advice and encouragement in the niceties of picture repre­

sentation and the kind of interest aimed more at a fundamental under­

standing of the processes developed than in their practical application.

Lincoln Laboratory provided not only advice but also technical support

including to date about 600 hours of time on the TX-2-

Whatever success the Sketchpad effort has had can in no small

measure be traced to the use of TX-2.* TX-2's 70,000 word memory, 6b

index registers, flexible input-output control and liberal supply of

manual intervention facilities such as toggle switches, shaft encoder

knobs, and push buttons all contributed to the speed with which ideas

could be tried and accepted or rejected. Moreover, being an experi­

mental machine it was possible to make minor modifications to TX-2 to

match it better to the problem. For example, a push button register

was installed at my request. Now that we know what drawing on a com­

puter is like, much smaller machines can be used for practical applica­

tions .

* A brief description of TX-2 may be found in Appendix G.

-27-

RESEARCH PROGRESS

Thus it was that in the fall of 1961 work began in earnest on a

drawing system for TX-2. In the early fall I perfected my light pen

tracking programs and subroutines for displaying straight lines and pre­

senting a portion of the total picture on the display at increased magni­

fication. In early November 1961, my first light pen controlled drawing

program was working. It is significant that at this time a notion of

"strong conditions" was used to give geometric nicety to the drawing.

For example, lines could be drawn parallel or perpendicular to existing

lines but carried no permanent trace of the relationship other than the

accident of their position. This early effort in effect provided the

T-square and triangle capabilities of conventional drafting. Somewhat

before my first effort was working, Welden Clark of Eolt, Beranek, and

5 Newman demonstrated a similar program to me on the PDP-1 computer.

Early in December 1961 Professor Shannon visited TX-2 to see the

work I had been doing. As a result of that visit the entire effort took

new form. First, Professor Shannon suggested point blank that I include

circle capability in the system. Second, I realized when he asked for

paper to sketch a drawing he intended to enter into the computer that

the strong conditions notion which simulated the conventional tools of

drafting was not adequate for computer drawing. As a result of includ­

ing circles into the Sketchpad system a richness of display experience

has been obtained without which the research might have been rather dry.

As a result of trying to improve upon conventional drafting tools the

full new capability of the computer-aided drafting system has come into

being.

-28-

In December 1961, and during the first part of 19&2, then, I began

working on the problems of display generation for cirlces outlined in

Chapter V. The circle generating subroutine gave great difficulty espe­

cially in the details of edge detection and closure. At about this same

time I started work on the ring structure representation of the drawing

outlined in Chapter III; the preliminary drawing effort of November 1961

had used conventional table storage. By the first of February 19^2, the

ring structure was in use, but without the generic blocks which give it

its present flexibility. Intersection programs for lines and circles

had been written and debugged, and the second generation drawing program

could be begun.

In making the second generation drawing program, explicit represen­

tation of constraints and automatic constraint satisfaction were-to be

included. I learned of the matrix method described in Appendix F for

finding the minimum mean square error solution to linear equations from

Lester D. Earnest of the MITRE Corporation and obtained a macro, SOLVE,
Q "

from Lawrence G. Roberts which did the arithmetic involved. ' Armed with

the tools for representing and doing arithmetic for constraints I went

gaily ahead with programming.

In the first crack at representing constraints I made two basic

errors which have subsequently been corrected. First, I provided that

the constraints be tied not only to the variables constrained but also

to related nonvariables. For example, the horizontal constraint not

only referred (as it should) to the two end points of a line, but also

(as has been subsequently removed) to the line itself. It was impos­

sible to make points have the same y coordinate without having a line

-29-

between them; deletion of the line deleted the constraint as well. In

more recent work constraints refer only to variables so that lines need

not be present to make points have the same y coordinate.

The second error in constraint representation was in the numerical

computation of the relationship represented by the constraint. At first

I insisted that for any constrained variable it be possible to compute

directly the linear equation of best fit to the constraint. That is,

for each constraint on a variable the equation of a line could be found

along which the constraint would be satisfied or nearly so. Not only

was it difficult to compute the equation of such a line, requiring a

special purpose program for each type of constraint, but also my lack

of regard for the niceties of the scale factor of the computed equation

resulted in instabilities in the constraint satisfaction process.

Whereas for the relaxation procedure to operate properly it is neces­

sary to remove "energy" from the system at each stage, my computations

for certain cases added energy. It was early summer of 19&2 before

definition of the mathematical properties of constraint types in terns of

a subroutine for computing directly the error introduced by a con­

straint not only cured the instability troubles but also made it easy to

add new constraint types.

Along with the new capabilities of the constraint satisfaction pro­

grams and the extensive use to be made of constraints, the second genera­

tion drawing program included for the first time the recursive instance

expansion which made possible instances within instances. The trials of

getting systems to work are many; one which stands out in my mind was

that instances within instances rotated in the wrong direction when the

-30-

outer instance was rotated. Neither were the things I tried to do

always correct. For example, the initial instance expansion routine

forced each instance of a picture to be smaller than the master drawing

for that instance. I have since come to appreciate the value of having

some normalizing factor in products so that all fixed point numbers can

be treated as signed fractions in the range, -1 ̂ x ^ 1, representing

the fraction of full scale deflection on the coordinate system in ques­

tion.

In late March 1962, I discovered that points could be related to

instances through the use of two linear equations relating the coordi­

nates of the point to the four components of the instance position.

Armed with this new infoimation, the difficulties I had been having

with attachers on instances yielded to the same general format used for

other constraints. It became possible for a single instance to have as

many attachers as desired, each of which could serve as attachment point

for any number of instances.

The first actual programming of the maze-solving high-speed con­

straint satisfaction methods proposed much earlier began about March

1962. I had not had enough experience before that time with the ring

structure to face the extensive ring manipulations which would be re­

quired for this part of the work. The development of the ring manipula­

tion macros shown in Appendix D was started in connection with the maze

solving routines.

By Memorial Day 1962, the second version of Sketchpad was consid­

ered working well enough that a motion picture was made shoeing the

various drawing manipulations possible. It was possible to draw line

-31-

segments and circle arcs and point to them to erase'them or move the 2

points on which they depend. A limited number of constraints were

available which could make lines horizontal or vertical, force points

to lie on lines or circles, and relate instances to their attachment

points. Constraint satisfaction was primarily by relaxation, but for

certain simple cases the maze solving methods would give more rapid re­

sults. It was possible to see that sketching could indeed be done on

the computer.

Not yet available were display for points or constraints, or any

notion of digits, text, scalars and dummy variables. It was almost im­

possible to add new constraint types to the system, and even had they

been added, the recursive merging and the definition copying capability

were not available to apply them easily to the object picture. Sketch­

pad at this stage was a nice demonstration and toy but as yet lacked the

richness of detail now available.

During the late spring of 1962, then, enough experience had been

gained with computer drawings to realize that more capabilities were

needed. It was possible for me, armed with photographs of the latest

developments, to approach a great many people in an effort to get new

ideas to carry the work on to a successful conclusion. Out of these

discussions came the notions of copying definitions and of recursive

merging which are, to me, the most important contributions of the

Sketchpad system. Also out of these talks came the conviction that a

generic structure would be necessary if the system were to be made easy

to expand. On June 9, 1962 all this new information came to a head and

an entirely new system was begun which has grown with relatively little

-32-

change into the final version described here. Had I the work to do

again, I could start afresh with the sure knowledge that generic struc­

ture, separation of subroutines into general purpose ones applying to

all types of picture parts and ones specific to particular types of

picture parts, and unlimited applicability of functions (e.g. anything

should be moveable) would more than recompense the effort involved in

achieving them. I have great admiration for those people who were able

to tell me these things all along, but I, personally, had to follow the

stumbling trail described in this chapter to become convinced myself.

It is to be hoped that future workers can either grasp the power of

generality at once and strive for it or have the courage to stumble

along a trail like mine until they achieve it.

Towards the end of the summer of 1962 the third and final version

of Sketchpad was beginning to show remarkable power. I had the good

fortune at this time to obtain the services of Leonard M. Hantman, a

Lincoln Laboratory Staff Programmer, who added innumerable service

functions, such as magnetic tape manipulation routines, to the system.

He also cleaned up some of the messy programming left over Tram my

rushed efforts at getting things working. For example, he shortened

and improved my original ring manipulation macros. Also, towards the

end of the summer the plotting system began to be able to give useable

output. Hantman added plotting programs to Sketchpad through which the

figures in this paper were made.

Computer time began to be spent less and less on program debugging

and more and more on applications of the system. It was possible to

provide preliminary services to other people, and so a user group was

-33-

formed and informal instruction was given in the use of Sketchpad. A

library tape was obtained and has ever since been collecting pictures

for possible future use. The user group experience showed that rela­

tively new users with no programming knowledge could produce simple

drawings with the system if a skilled user (myself) prepared the build­

ing blocks necessary. For example, a secretary designed and drew an

alphabet with the aid of a 10 x 10 raster of points to use as end points.

Both the raster and the alphabet are now a part of the library.

Even now, however, there are possibilities for application of the

system not yet even dreamed of. The richness of the possibilities of

the definition copying function, and the new types of constraints which

might easily be added to the system for special purposes suggest that

further application will bring about a new body of knowledge of system

application. For example, the bridge design examples shown at the end

of this paper were not anticipated.

There are, of course, limitations to the system. In the last chap­

ter are suggested the improvements, some just minor changes, but some

major additions which would change the entire character of the system.

It is to be hoped that future work will far surpass my effort.

-3U-

Chapter III

RING STRUCTURE

The Sketchpad system stores information about drawings in two sepa­

rate foims. One is a table of display spot coordinates designed to make

display as rapid as possible; the other is a file designed to contain

the topology of the drawing. The topological file is set up in a spe­

cially designed ring structure which will form the major subject of this

chapter. The ring structure was designed to permit rearrangement of the

data storage structure for editing pictures with a minimum of file

searching, and to permit rapid constraint satisfaction and display file

generation. The ring structure was not intended to pack the required

infomation into the smallest possible storage space. We felt that we

could write faster running programs in less time by including some re­

dundancy in the ring structure. This was considered more important than

the ability to store huge drawings. Moreover, the large storage capaci­

ty of the TX-2 did not force storage conservation. The particular form

of the ring structure chosen has led to some of the most interesting

features of the system simply because the changes required to keep the

ring structure consistent led to useful facilities such as recursive

merging discussed in Chapter VI.

N-CCMPONENT ELEMENTS

In the drawings made by the Sketchpad system there are large popu­

lations of relatively few types of entities with very little variation

in format between entities of each type. For example, an entire

-35-

drawing may be composed of line segments and end points, each line seg­

ment connecting exactly two end points, and each point having exactly

two coordinates. Because of this uniformity within each given type of

entity, it is possible to set up a standard storage format for each

type of entity with standardized locations for information about the

various properties which entities of that particular type usually have.

Each entity, therefore, is represented in the computer as an n-component

element, that is, by a block of n consecutive registers in storage each

of which contains a specific kind of information about that element.

For example, the coordinates of a point are always stored in the i

and registers of its n-component element or block. Similarly, the

nth and mth registers of a line block always contain the addresses of

the start and end point blocks for that line as Figure 3.1 shows. Par­

ticular numerical locations for various pieces of information are shown

in Appendix C.

MNEMONICS AND CONVENTIONS

In using n-component elements it has been found useful to give

symbolic names to the various registers of each element so that the

actual numerical locations of various kinds of information need not be

remembered. Thus, for example, the coordinates of a point are stored

in the PVALth and PVAL+lst (for Point VALue) registers of its n-compo­

nent element. Since all programming for Sketchpad is done in a symbolic

programming language in terms of mnemonics, it is easy to rearrange the

internal format of any kind of n-component element by changing the nu­

merical values assigned to the mnemonic symbols used within that kind

of element. In the figures in this thesis, symbolic locations of

-36-

LINE

POINT A
POINT B

LSP
LEP

POINT A POINT

X COORDINATE
Y COORDINATE

POINT B

PVAL

POINT

X COORDINATE
Y COORDINATE

PVAL

FIGURE 3.1. N-COMPONENT ELEMENTS

-37-

pieces of data within n-ccmponent elements are shown to the right of the

data. Actual register addresses are shown to the left of the data. Hie

position of particular pieces of data may change from figure to figure

as it becomes necessary to more fully illustrate the structure, but the

mnemonic address will indicate which data are being shown.

Although the use of mnemonics gives complete flexibility to the for­

mat of n-component elements, certain co nventions were followed in Imple­

menting Sketchpad and in the figures of this thesis.

1. Hie location of an n-component element is the address of
its first (lowest numbered) register;

2. Hie first component of the element (the contents of its
first register) is used to indicate the type of element;
and

3. All numerical information such as values of coordinates
is located at the end (highest numbered locations) of
the element.

In the figures, higher numbered registers run down the page, making

the location of an element the address of its top register. Such element

locations are indicated by symbolic names to the left of the n-component

element or contained within components of other elements which make ref­

erence to them.

Most of the components of the n-component elements in the Sketchpad

system are pointers containing addresses of other elements. Such point­

ers indicate topological information such as the end points of a line

segment. If an n-ccmponent element is to be relocated in storage, that

is, if the information it contained is to be stored in some other regis­

ters to compact the storage structure prior to saving it on magnetic

tape, the contents of any topological component referring to the element

which is to be relocated must be changed to refer to the new location.

-38-

However, relocation of an element in storage should not change the ap­

pearance of the picture represented, and so numerical information such

as the coordinates of points or the size of suhpictures must not he

changed. Segregation of numerical information at the end of the n-com­

ponent element facilitates the relocation of elements,

Gross transfers of the entire storage structure can be accomplished

by treating all topological pointers as relative to some basic address.

In Sketchpad, for example, a topological pointer to an n-component ele­

ment contains not the absolute computer address of that element, but the

location of the n-component element relative to the first address of the

storage structure area, LIST. At various times it has been necessary to

change the location of the storage area, giving LIST a different value.

The use of relative pointers proves useful for inter-machine communica­

tion also, making it possible to store a given data structure anywhere

in memory. In the illustrations, however, the relative pointing is sup­

pressed, as if LIST = 0.

REVERSE INDEXING

Suppose that index register a contains the relative location of the

n-component element for a line segment and that it is desired to know

the coordinates of that line's start point (ISP). The address of the

"fcll
start point block may be found in the ISP entry of the line block as

shown in Figure 3-1. We can pick up this address using reverse indexing

by the instruction:

LDA LSP + LIST

load the accumulator from the ISP entry of the block pointed to by

-39-

index register a. LIST enters in because pointers are relative. Now if

we transfer the contents of the accumulator to index register £ and per­

form the instruction:

LDA Q PVAL + LIST
P

the X coordinate of the start point of the line will be placed in the

accumulator.

Note that in these instructions we used the index register to indi­

cate which n-component element is being co nsidered and the address por­

tion of the instructions to indicate the specific component selected.

This is called "reverse indexing" to distinguish it from "normal" index-

*th
ing in which the index register indicates the i entry of the table

referred to in the address portion of the instruction. The only normal

thing about "normal" indexing, however, is the widespread inclusion in

computers of an instruction which increments an index register and trans­

fers control to a specified 'location if the index register has not yet

reached some specified value, usually 0. The 709's TIX instruction is

typical.

A real value of the TX-2 for implementing the Sketchpad system

turned out to be its ability to reset an index register from a register

indicated by the contents of another index register (or even the prior

contents of the index register to be reset.'). TX-2's accumulator is not

used in this index register processing. A special symbolism was built

into the compiler to make it easy to use double index instructions; the

instruction:

RSX p|Q LSP + LIST

puts into p the address of the start point of the line pointed to by

-1+0-

index register a. The Sketchpad program consists in large part of such

instructions.

RING STRUCTURE

The basic n-component element structure described above has been

somewhat expanded in the implementation of Sketchpad so that all refer­

ences made to a particular n-component element or block are collected

together by a string of pointers which originates within that block.

For example, all the line segments which terminate on a particular point

may be found by following a string of pointers which starts within the

point block. This string of pointers closes on itself; the last pointer

points back to the first. Moreover, the string points both ways to make
[

it easy to find both the next and the previous member of the string in

case some change must be made to them.

The ring structure, then, assigns two registers to each component

in the n-component element. One is used for the direct reference shown

in Figure 3.1; the other register is used to string similar references

together. The basic ring consists of two kinds of register pairs, the

"hen" and "chicken." The hen pair is contained within a block which

will be referred to, for example, in a point block, while the chicken

pair is contained in a block making reference to another, for example,

a line block making reference to the point. The chickens which belong

to a particular hen constitute all the references made to the block con­

taining the hen. Figure 3.2 shows a typical ring; the inserting opera­

tion and ordering shown will be explained below. Appendix C shows how

the hen and chicken blocks are arranged in different kinds of elements.

-Ll-

LU
Z
LU

I
LU

Q_
O

O

CJ
LU
Od

Ell

O
GE
<C

QE
O
Ll_

LU

CJ

IE
CJ

GO
CD
CO
CO

CJ
CJ
CJ
CJ

O
o
a
El

CJ

CJ —J

fc

i El
Gu El
& El
% El
»-

<
<
-<
«<

/•

CE
O

>—
LU

O CJ
O CJ
o CJ
o CJ

CD
CO
GO
GO

LU
QL

()

QL
I—

cO

CD

CXI
«•

ro

-US-

Figure 3*3 shows the complete structure for a line segment and two end

points with the appropriate rings shown.

The mnemonic for a component is taken to be the upper (lower num­

bered) of the register pair. The ring collecting ties, of course, are

relative to LIST but this has been suppressed in the illustrations. The

part of the upper register not occupied by the chicken pointer contains

a number which indicates how far this particular element is from the top

of the n-component element. This is the small negative number showing

in Figure 3.3. It is used to find the top of a block when a component

of it has been found as a member of a ring.

HUMAN REPRESENTATION OF RING STRUCTURE

In representing ring structures the chickens should be thought of

as beside the hens, and perhaps slightly below them, but not directly

below them. The reason for this is that in the ring registers, regard­

less of whether in a hen or a chicken, the left half of one register

points to another register whose right half always points back. By

placing all such registers in a row, this feature is clearly displayed.

Moreover, the meaning of placing a new chicken "to the left of" an exist­

ing chicken or the hen is absolutely clear. The convention of going

"forward" around a ring by progressing to the right in such a representa­

tion is clear, as is the fact that putting in new chickens to the left

of the hen puts them "last," as shown in Figure 3.2. Until this repre­

sentation was settled on, no end of confusion prevailed because there

was no adequate understanding of "first," "last," "forward," "left of,

or "before."

-in-

AAAA

FFFF

mMMEMMzmm

-2 1

"•* L OOOO
DDDD HT

-€ 1

X CO ORDINATE
Y CO ORDINATE

AS

PVAL

DDDD
CCCC

10 | 10 UN*
-2 1
"4 1 AA LAA FFFF
< 1

iy

LEP

BBBB

EEEE

EHEMI'LKI®
< 1

•4 1 0000
CCCC CCCC

-s 1

X C OW ID 1 NATE V COW tpwrr

as

PVAL

FIGURE 3.3.
LINE SEGMENT AND END POINTS
IN RING STRUCTURE NOTATION

AAAA

KEY OR H EN
0000

AAAA AAAA

TOP O F E LEMENT

KEY OR H EN
0000

AAAA BBBB BBBB AAAA

BBBB

CHI CKEN
TOP O F E LEMENT

AAAA AAAA

FIGURE 3.4.
ZERO AND ONE MEMBER RINGS

-1A-

BASIC OPERATIONS

The basic ring structure operations are:

1. Inserting a new chicken into a ring at some specified
location in it, usually first or last.

2. Removing a chicken from a ring.

3. Putting all the chickens of one ring, in order, into
another at some specified location in it, usually
first or last.

4. Performing some auxiliary operation on each member of
a ring in either forward or reverse order.

These basic ring structure operations are implemented by short sections

of program defined as MACRO instructions in the compiler language. By

suitable treatment of zero and one member rings, that is of hens with

none or one chicken, as shown in Figure 3-^, the basic operation pro­

grams operate without making special cases. As stated in the macro lan­

guage, the basic operations become trivially easy to use. For example,

PUTL S LSP x a - PLS x 3

puts the LSP (Line Start Point) entry of the line block pointed to by

index register a into the ring whose hen is the PLS (Point LineS entry)

of the point indicated by index register 0, thus making £ be the start

point of a. If "x" is read as "of" and is read as "into", the macro

statement almost makes sense in Engl ish. The format and function of all

the ring manipulation macro instructions used in Sketchpad can be found

in Appendix D.

GENERATION OF NEW ELEMENTS

Subroutines are used for setting up new n-component elements in

free spaces in the storage structure. These subroutines place the

distance-to-the-top numbers in alternate registers as required and

clear out the components so that each is an empty ring as shown in Fig­

ure 3-5* As parts of the drawing are deleted, the registers which were

used to represent them become free, indicated by placing them in the

FREES ring. Data for new n-component elements could be put into these

free registers if sufficiently long continuous blocks of free storage

were available, but Sketchpad is not at present equipped to do this.

Rather, new components are set up at the end of the storage area,

lengthening it, while free blocks are allowed to accumulate. Garbage

collection periodically compacts the storage structure by removal of the

free blocks and relocation of the information above them (that is, infor^

mation in higher numbered registers illustrated lower on the page) as

shown in Figure 3.6. Storage of a drawing on magnetic tape can be done

much more compactly for having removed all internal free registers.

BOOBY TRAPS

Every system which is devised for programming on computers has lit­

tle problem areas which give humans more trouble than other parts; the

ring structure organization and operations are no exception. As was

indicated above, the visualization of the ring as a row of elements aids

greatly in understanding of the basic operations. The use of relative

addressing, while giving great power for data communication, gave the

programmer considerable difficulty because the term LIST must often but

not always be added to or subtracted from the address portion of in­

structions . It took months before all the nuances of these problems

were learned.

-46-

12 10 P O I N T

-2 0000
— —

-4 0000
— ^—
-6 0000

23- —s—
0
0

PLS

PVAL

FIGURE 3.5. FRESH POINT B LOCK

-1+7-

FIGURE 3.6.
COMPACTING THE RING STRUCTURE

-U8-

By far the greatest difficulty concerned processes which change

the ring structure while other operations are taking place on it. For

example, there must be two versions of the basic macro which permits aux­

iliary operations to be performed on all the members of a ring in turn.

One version, LGORR (Leonard's GO Round the ring to the Right), performs

the auxiliary operation on one ring member while remembering the next

ring member so that if the auxiliary operation deletes the current ring

member the next one has already been found. Another version of the basic

macro, LGORRI (LGORR Insertable), remembers which ring member the auxil­

iary operation is being performed on so that if the auxiliary operation

puts a brand new member into the ring next to the current one, the new

one will not be overlooked. Neither macro will function properly if both

the current and the next ring members are deleted simultaneously by the

auxiliary function.

Early in the research the multiple sequence nature of the TX-2 was

utilized to provide immediate updating of the ring structure when push

button commands were given by the user. Trouble arose if the display

generation program was working in the ring structure at the instant that

it changed. It is now clear that multiple sequencing and data channels

must be used only to transmit information into the computer and not to

process the ring structure, a job properly left to the main computation

stream. Main computation stream ring manipulation has implications on

future machine design since most of the ring manipulations can be per­

formed with index arithmetic alone without tying up the main arithmetic

element which meanwhile could be of use to someone else. Perhaps several

machines could share a single powerful arithmetic element if they did the

bulk of their processing w;ith index arithmetic.

-U9-

GENERIC STRUCTURE, HIERARCHIES

The organization of the elements of the drawing into types has fa­

cilitated the generalization of the programs which comprise the Sketch­

pad system. The effort toward generality came relatively late in the

research effort "because I did not at first appreciate the power that a

general approach could bring. Considerable reprogramming was done, how­

ever, to include as much generality as possible. Those subroutines

which had to do with a single kind of drawing part were collected to­

gether and specifically labeled, both in the coding sheets and block

diagrams, but most importantly in the mind, as belonging to that parti­

cular kind of entity. The remainder of the program was left completely

general.

The general part of the program will perform a few basic operations

on any drawing part, calling for help from routines specific to particu­

lar types of parts when that is necessary. For example the general pro­

gram can show any part on the display system by calling the appropriate

display subroutine. Similarly, the general program is able to relocate

objects on the display, making use of specific routines only to apply a

transformation to the various kinds of objects. Again, the general pro­

gram will satisfy any numerical constraints applied to the drawing by the

user, calling on specific subroutines only to compute the error intro­

duced into the system by a particular constraint.

The big power of the clear-cut separation of the general and the

specific is that it is easy to change the details of specific parts of

the program to get quite different results or to expand the system with­

out any need to change the general parts. This was most dramatically

-50-

brought out when generality was finally achieved in the constraint dis­

play and satisfaction routines and new types of constraints were con­

structed literally at fifteen minute intervals.

In the data storage structure the separation of general and specific

is accomplished by collecting all things of one type together as chickens

which belong to a "generic" hen. The generic hen contains all the infor­

mation which makes this type of thing different from all other types of

things. Thus the data storage structure itself contains all the speci­

fic information, leaving only general programs for the rest of the system.

A typical generic block is shown in Figure 3.7«

The generic blocks are further gathered together under super-generic

or generic-generic blocks according to four categories: Variables, Topo­

logicals, Constraints, and Holders, as shown in Figure 3.8. All picture

parts which have numerical information are ultimately gathered together

under the VARIABLES block by way of their own generic blocks. Ideally

the VARIABLES block should in some way indicate that there was numerical

information, but the generality has not been carried as far as this yet.

Space for information about the number of components of a variable (which

is unnecessary for the topological entities) could be omitted from the

generic blocks for lines and circles. At present all generic blocks

still carry space for all the information in any of them simply because

of historical reasons, ihis accounts for the spaces seen in the Figure

3.7.

For the sake of completeness the four broad categories of things,

the generic-generic blocks, are brought together under the UNIVERSE

block, which, as a special case, is always located at the exact start of

24 VARIABLES

-2 0000

TYPEWRITER CODE NAME
SUBROUTINE ENTRY

FIT SCOPE AROUND IT
APPLY TRANSFORMATION

24.16..

NORMAL PICTURE KIND
FOUR COMPONENTS

VALUE AT IVAL

-51-

TYPE

SPECB

NAME
DI SPLAY
HOWBIG
MOV IT

SIZE

KIND
TUPLE
VARLOC

FIGURE 3.7.
INSTANCES GENERIC BLOCK'

-52-

LU
CO
en
LU

cn o
CL. o

tS)
h-
z

<
Q1
I—
cO
z
o
LJ

cD
C£
UJ
o

o
in

(Tt
£

•n

u.

•n
Ui

u
u

•n

I e-»
n

r i

lA

in

m

LU
CL

(_J

CL
I—
cO

(_J

CL
UJ

UJ
CD

oO
ro

<n

CD
><

cc
•<

«n

irf

m

LU
CL

CD

-53-

the storage structure, relative address 1. The UNIVERSE block belongs

to no higher block. I considered making it belong to itself so that con­

tinued upward searching through the generic structure would appear to

reach an unending string of UNIVERSE blocks, but I could find no solid

reason for so doing. Further work may develop one, of course.

EXPANDING SKETCHPAD

Addition of new types of things to the Sketchpad system's vocabulary

of picture parts requires only the construction of a new generic block

(about 20 registers) and the writing of appropriate subroutines for that

thing. The subroutines might be easy to write, as they usually are for

new constraints, or difficult to write, as for adding ellipse capability,

but at least a finite, well-defined task faces one to add a new ability

to the system. Before the generic structure was clarified, it was almost

impossible to add the instructions required to handle a new type of ele­

ment.

-5U-

Chapter IV

LIGHT PEN

In Sketchpad the light pen is time shared between the functions • of

coordinate input for positioning picture parts on the drawing and demon­

strative .input for pointing to existing picture parts to make changes.

Although almost any kind of coordinate input device could be used in­

stead of the light pen for positioning, the demonstrative input uses

the light pen optics as a sort of analog computer to remove from consid­

eration all but a very few picture parts which happen to fall within its

field of view, saving considerable program time. Drawing systems using

storage display devices of the Memotron type may not be practical be­

cause of the loss of this analog computation feature.

CONSTRUCTION OF LIGHT PEN

The light pen is a hand held photocell which will report to the

computer whenever a spot on the display system falls within its small

field of view. The housing for the photocell is about the size of a

fountain pen and is manipulated much as a pen or pencil, hence the name.

Many different varieties of light pens have been built, including large

cumbersome ones in the days before miniaturization, to be replaced by

transistorized versions, and recently by fiber optic pens connected by

a flexible light pipe to a photocell mounted inside the computer frame.

The particular pen used for the Sketchpad system consists of a photo-

diode and transistor preamplifier mounted in the pen housing and con­

nected to the computer by a length of small coaxial cable, as shown in

-55-

the photograph of Figure 4.1, and in the drawing of Figure 4.2. It is

used by Sketchpad primarily because its operation is relatively inde­

pendent of the distance it is held from the computer display, since it

has a cylindrical field of view.

Since spots on the display system are intensified one after another

in time sequence, whether or not each spot is seen by the pen is indi­

vidually reported just after intensification of that spot. The light

pen amplifier is designed so that the pen is sensitive only to the

bright blue flash of the first intensification of a display spot and

not to the dim yellow afterglow. The amplifier output is strobed only

when a display spot has been intensified to minimize room light pickup.

Although some computers require an interrogation of a pen flip-flop to

find out if a spot was seen, TX-2 uses the interruption of a sequence

change to indicate this fact* Thus if a series of points are displayed

on the scope by a set of data transfer instructions, and one of these

points falls under the field of view of the pen, subsequent instructions

will be performed in the light pen sequence rather than in the display

sequence until the light pen sequence is finished. Thus it is unneces­

sary to interrogate the pen specifically for each display spot, the

interruption of sequence changing serving automatic notification that a

spot was seen. For pen tracking, where a program branch is made for

every spot displayed, interruption by the pen requires more program in­

structions than would a specific bit testing instruction, but for the

demonstrative use of the pen where any spot of the background display

may fall within the pen's field of view but is relatively unlikely to

do so, the interruption is a real advantage.

* TX-2 's light pen is treated as an input device separate from its

display. See Appendix G.

-56-

FIGURE k.l. LIGHT PEN.
Courtesy of MIT

Electronic Systems Laboratory.

FIGURE k.2. CONSTRUCTION OF LIGHT PEN.
Drawing courtesy of Electronic Systems

Laboratory. This drawing was made by
conventional methods.

-57-

PEN TRACKING

The light pen and its connecting cable report to the computer im­

mediately after any display spot has been shown which lies within the

pen's view. By displaying a cross-like pattern and noticing which

spots fall within the light pen's view, the computer can follow the

motions of the light pen around the screen. In order to follow normal

motions of a hand held light pen I have found it necessary to redisplay

the tracking cross about 100 times per second, taking 1 millisecond per

display. When the cross is being "dragged" across the screen at the

maximum speed I have achieved, successive crosses are displayed about

0.2 inches apart and the maximum pen speed is thus 20 inches per second

which has proven quite enough for the experiments conducted. If the

light pen is moved faster than that, the tracking cross will fall en­

tirely outside of its field of view and tracking will be lost. I use

the loss of tracking as the so-called termination signal for all pen

tracking operations.

Early in the system development some effort was spent trying to

reduce the computer time spent in pen tracking. It was attempted to

have the computer predict the location of the pen based on its past

locations so that a longer time might elapse between display of track­

ing crosses. The assumptions of constant velocity,

Xt = (Xt-l " Xt-2) + Xt-1 Yt = (Yt-l " Yt-2) + Yt-1' (U"l)

and constant acceleration,

xt = 3<xt-l - Xt-2> + Xt-3 Yt • 3<Yt-l - Yt-2> + Yt-3, (4"2)

where successive pen positions are denoted by subscripts, were tried.

A pictorial representation of these assumptions is shown in Figure ̂ -.3»

CONSTANT VELOCITY o *
T-2

-58-

\
•• *

O i

CONSTANT ACCELERATION
o o T">

1-2

o
1-3

FIGURE 4.3.
PREDICTIVE PEN TRACKING

o % ® o ° \
o 0 o 0

© 0 o° 0

O r \ / ^ r » o o o a ® o o 0 0 O O o
O
O

O O 0 O 0 ©

0 0
« 1

RANDOM POINTS 0
©
o
0
©
0

©
©
©
©
©
«

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ©
© ©
o ©
o ©
o 0
0 0

FIGURE 4.4.
DISPLAYS FOR PEN TRACKING

-59-

An attempt was made to combine various types of prediction according to

the speed of motion of the pen, but all such efforts met with difficult

stability problems and were interfering with more important parts of the

research. Therefore, 1 decided to accept the ten per cent of time lost

to tracking in order to proceed to more interesting things. Other

workers, notably Holland Silvers formerly of Bolt, Beranek and Newman,

report better success with predictive tracking giving numbers like yfo

loss.

Different methods of establishing the exact location of the light

pen have been tried using many different shapes of display. For example,

the displays shown in Figure all seem to be about the same as far as

time taken to establish pen position and accuracy. As far as I know, no

one has taken into account the motion of the pen during the tracking

display period. I use the logarithmic scan with four arms.

To initially establish pen tracking the Sketchpad user must inform

the computer of an initial pen location. This has come to be known as

"inking-up" and is done by "touching" any existing line or spot on the

display whereupon the tracking cross appears. If no picture has yet

been drawn, the letters INK are always displayed for this purpose.

DEMONSTRATIVE USE OF PEN

During the remaining 9OJo of the time that the light pen and display

system are free from the tracking chore, spots are very rapidly dis­

played to exhibit the drawing being built, and thus the lines and

circles of the drawing appear. The light pen is sensitive to these

spots and reports any which fall within its field of view by the

-60-

interruption of a sequence change before another spot can be shown.

The table within the computer memory which holds the coordinates of the

spots also contains a tag on each one as shown in Figure 4.5 so that

the picture part to which this spot belongs may be identified if the

spot should be seen by the pen.

A table of all such picture parts which fall within the light pen's

field of view is assembled during one complete display cycle. At the

end of a display cycle this table contains all the picture parts that

could even remotely be considered as being "aimed at." During the next

display cycle a new table is assembled which at the end of that cycle

will replace the one then in use. Thus, two storage spaces are provided,

one for assembling a complete table of display parts seen, the other for

holding the complete table from the last display cycle so that the aim­

ing computation described below in the sections on demonstrative lan­

guage and pseudo pen location may avoid using a partially complete table.

Note that since the display of the TX-2 is independent of the computa­

tions going on, the aiming computation may occur in the middle of a dis­

play cycle.

Due to the relatively long time that a complete display cycle for

a complicated drawing may take, the aiming computation, by using infor­

mation from the previous complete display cycle, took excessive time to

"become aware" of picture parts newly aimed at by the pen. Therefore, I

require that any display part seen by the light pen which is not yet in

the table being built for the current display cycle be put not only in

that table, but also in the table for the previous display cycle if not

already there. This speeds up the process of locking onto elements of

-6l-

APPRE55 OF PART

FIGURE 4.5.
ADDRESS IN DISPLAY REGISTER

/

\

\

AT INTERSECTION

AT CIRCLE

AT P OINT

FIGURE 4 . 6 .
OPERATION OF P5EUD0 PEN LOCATION

-62-

the drawing. Similarly, the information from a previous display cycle

may contain many previously seen drawing parts which are not currently

within the light pen's field of view, especially if the light pen has

moved an appreciable distance since the last complete display cycle.

One might attempt to detect large pen displacements during a display

cycle and indicate that the old light pen information is too obsolete

to use if such displacements occur. However, I have often found it

handy to slide appreciable distances along a line or curve, in which

case the light pen information is not made entirely obsolete. There­

fore, no such obsolescense-by-displacement routine has been incorporated

into the Sketchpad system.

DEMONSTRATIVE LANGUAGE

The table of picture parts falling within the field of view of the

light pen, assembled during a complete display cycle, contains all the

picture parts which might form the object of a statement of the type:

apply function F to .

e.g. erase this line (circle, etc.). Since the one half inch diameter

field of view of the light pen is relatively large with respect to the

precision with which it may be manipulated by the user and located Dy

the computer, the Sketchpad system will reject any such possible demon­

strative object which is further from the center of the light pen than

some small minimum distance; about l/8 inch was found to be suitable.

Although it is easy to compute the distance from the center of the light-

pen field to a line segment or circle arc, it is not possible to compute

-63-

the distance from the light pen field center to a piece of text or a

complicated symbol represented as an instance. For every kind of pic­

ture part some method must be provided for computing its distance from

the light pen center or indicating that this computation cannot be made.

The distance from an object seen by the light pen to the center of

the light pen field is used to decrease the size of the light pen field

for aiming purposes. A light pen with two concentric fields of view, a

small inner one for demonstrative purposes, and a larger outer one for

tracking would make this computation unnecessary and would give better

discrimination between objects for which no distance computation exists.

Lack of this discrimination is now a problem. Design of such a pen is

easy, and consideration of its development for any future large scale

use of engineering drawing programs should be given serious considera­

tion.

After eliminating all possible demonstrative objects which lie

outside the smaller effective field of view, the Sketchpad system con­

siders objects topologically related to the ones actually seen. End

points of lines and attachment points of inst ances are especially impor­

tant, but objects on which constrai nts operate, or the value of a number

as opposed to the digits which represent this value may also oe consid­

ered. Such related objects may not specifically appear in the drawing

but it must be possible to reference them easily. If any such object

is sufficiently close to the center of the light pen field, it is ad ded

to the table of possible demonstrative objects even though it may have

no display and, therefore, was not seen by the light pen.

As described above, the aiming or demonstrative program first elimi­

nates from further consideration objects which are too far from the

-6k-

center of the light pen field to reduce the effective size of the field

for aiming purposes. Next it brings into consideration unseen objects

related to the objects actually seen. After these two procedures the

number of objects still under consideration determines the further

course of action. If no objects remain under consideration, nothing is

being aimed at. If one object, it is the demonstrative object and the

light pen is said to be "at" it, e.g., the pen is at a point, at (on) a

line, at (on) a circle, or "at" a symbol (instance). If two objects

remain, it may be possible to compute an intersection of them. If the

intersection is sufficiently close to the pen position, the pen is "at"

the intersection. With two or more objects remaining, the closest

object is chosen if such a choice is meaningful; or if not, no object is

pointed at, i.e., there is no demonstrative object.

The above consideration of the demonstrative program has been left

vague and general purposely to point out that the specific types of

objects being used in a drawing differ only in the details of how the

various computations are made. For example, although the Sketchpad

system is not now able to do anything with curves other than circle arcs

and line segments, the demonstrative program requirements to add conic

sections to the system, as it stands, involve only the addition of com­

putation procedures for the distance from the pen location to the conic,

routines for computing the intersection of conics with conics, lines,

and circles, and some indication of what topologically related objects,

e.g. foci, need be considered. Figure k.6 outlin es the various regions

within which the pen must lie to be considered at a line segment, a

circle arc, their end points, or their intersection. The relative sizes

-65-

of the error tolerated in the "sufficiently close to" statements above

are indicated as well. The error tolerated is a fixed distance on the

display so that confusion because objects appear too close together can

usually be resolved by enlarging the drawing as described in Chapter V.

The organization of the demonstrative program in Sketchpad is in

the form of a set of special cases at present. That is, the program

itself tests to see whether it is dealing with a line or circle or

point or instance and uses different special subroutines accordingly.

This organization remains for historical reasons but is not to be con­

sidered ideal at all. A far better arrangement is to have within the

generic block for a type of picture part all subroutines necessary for

it.

PSEUDO PEN LOCATION

The demonstrative program computes for its own use the location on

a picture part seen by the light pen nearest the center of the pen's

field of view. It also confutes the location of the intersection of

two picture parts. Thus when the demonstrative program decides which

object or intersection the light pen is at, an appropriate pseudo pen

location has also been computed. If no object has been named as demon­

strative object, the pseudo pen location is taken to be the actual pen

location. The statements "at a line," "at a circle," and "at a point"

take on true significance, for the pseudo pen location will indeed be

at these objects.

The pseudo pen location is displayed as a bright dot which locates

itself ordinarily at the center of the pen tracking cross. It is easy

-66-

to tell when the demonstrative object is a line, circle, point, or

intersection, because this bright dot locks onto the picture part and

becomes temporarily independent of the exact pen location. The pseudo

pen location or bright dot is used as the point of the pencil in all

drawing operations; for example, if a point is being moved, it moves

with the pseudo pen location. As the light pen is moved into the areas

outlined in Figure k.6 and the pen locks onto existing parts of the

drawing, any moving picture parts jump to their new locations as the

pseudo pen location moves to lie on the appropriate picture part. The

pseudo pen location at the instant that a new line or circle is created

is used as the coordinates of the fixed end of that line or circle.

With just the basic drawing creation and manipulation functions of

draw, move, and delete and the power of the pseudo pen location and de­

monstrative language programs, it is possible to make fairly extensive

drawings. Most of the constructions normally provided by straight edge

and compass are available in highly accurate form. Most important, how­

ever, the pseudo pen location and demonstrative language give the means

for entering the topological properties of a drawing into the machine.

-67-

Chapter V

DISPLAY GENERATION

The display system, or "scope," on the TX-2 is a ten bit per axis

electrostatic deflection system able to display spots at a maximum rate

of about 100,000 per second. A display instruction permits a single

spot to be shown on the display at any one of slightly more than a mil­

lion places, requiring 20 bits of information to specify the position of

the spot. Due to the multiple sequence design of the TX-2 it is conven­

ient to permit the display system to operate at its own speed. The dis­

play will request memory cycles whenever they are required to transmit

more information to it, but the time actually taken in displaying a spot

will not be lost, for the rest of the TX-2 may be involved with other

operations meanwhile. It has been found useful, therefore, to store the

locations of all the spots of a drawing in a large table in memory and

to produce the drawing by displaying from this table. The display

system, then, sees the rest of Sketchpad as 32,000 words of core storage.

The rest of the Sketchpad is able to compute and store spot coordinates

in the display table without regard to the timing of the display system.

The display spot coordinates are stored one to a memory word. The

display subprogram displays each in turn, taking 20 microseconds each so

that some time will be left over for computation. If instead of display­

ing each spot successively, the display program displays every eighth in

a system of interlace, the flicker of the display is reduced greatly,

but lines appear to be composed of crawling dots. For large displays

made up mostly of lines such an interlace is useful. However, for

-68-

repetitive patterns of short lines, the effect may be that the entire

drawing seems to dance because of synchronization between the interlace

and the repetitive nature of the pattern. The interlace may be turned

on or off under user control by means of a toggle switch.

Early display work with the display file led to the discovery by

the author and others that if the spots were displayed at random, a

twinkling picture resulted which is pleasing to the eye and avoids

flicker entirely (see Figure 5.1). However, small detail is lost be­

cause of the eye's inability to separate the pattern from the random

twinkle unless the pattern is gross. Twinkling, like interlace, is

under user control by a toggle switch. Twinkling is accomplished by

scrambling the order of the display spot locations in the display file.

To do this, each successive entry is exchanged with an entry taken at

random until every entry has been exchanged at least once. Needless

to say, whether a scrambled file is displayed successively or by inter­

lace makes no difference to its twinkling appearance.

MARKING OF DISPLAY FILE

Of the 36 bits available to store each display spot in the display

file, 20 are required to give the coordinates of that spot for the dis­

play system, and the remaining l6 are used to give the address of the n~

component element which is responsible for adding that spot to the

display. Thus, all the spots in a line are tagged with the ring struc­

ture address of that line, and all the spots in an instance are tagged

as belonging to that instance. The tags are used to identify the parti­

cular part of the drawing being aimed at by the light pen for demonstra­

tive statements. See Chapter IV, Figure b .5, p6l.

-69- i

FIGURE 5.1. TWINKLING DISPLAY.
Displaying the spots of a large display in random

sequence makes the display appear to "twinkle." This
photograph was exposed only long enough to show about
half of the spots of a twinkling display. It conveys
the impression of a twinklings display as well as any
still picture can. k 2 2 2

The curves are of the equation x - x +• y = a
for several values of a. They were drawn by another
program rather than by Sketchpad.

-70-

If a part of the drawing is being moved by the light pen, its dis­

play spots will be recomputed as quickly as possible to show it in suc­

cessive positions. The display spots for such moving, parts are stored

at the end of the display file so that the display of the many non-

moving parts need not be disturbed. Moving parts are made invisible to

the light pen so that the demonstrative and pseudo pen location computa­

tions described in Chapter IV will not "lock on" to parts moving along

with the pen.

COORDINATE SYSTEMS

The coordinate system of the TX-2 display system has origin at the

center of the scope and requires ten bits of deflection information

located at the left of 18 bit computer subwords for each axis. Treat- 1

ment of these numbers as signed fractions of full scope deflection leads

to the most natural programming because of the fixed point, signed

fraction nature of the TX-2 multiply and divide instructions. The

scope coordinate system is natural to the ability of the TX-2 to perform

arithmetic operations simultaneously on two 18 bit half words. It is

not suitable for representing variables with more than two components,

nor is the precision available in 18 bits adequate for all the opera­

tions for which the Sketchpad system is applicable.

For convenience in representing many component variables and for

more than 18 bit precision, Sketchpad uses an internal coordinate system

for drawing representation divorced from the representation required by

the display system. This internal system is called the page coordi­

nate system. In thinking of the drawings in Sketchpad, the page

-71-

coordinates are considered as fixed. A page to scope transformation

gives the ability to view on the scope any portion of the page desired,

at any degree of magnification, as if through a magnifying glass. The

magnification feature of the scope window-into-the-page makes it pos*

sible to draw the fine details of a drawing. The range of magnifica­

tion of 2000 available makes it possible to work, in effect, on a

7-inch square portion of a drawing about, l/b mile on a side.

TRANSFORMATIONS AND SCALE FACTORS

The page coordinate system is intended for use only internally and

will always be translated into display or plotter coordinates by the

output display subroutines. Therefore, it is impractical to assign

any absolute scale factor to the page coordinate system itself; it is

meaningless to ask how big is the page. It is, however, very important

to know how big the visible representations of Sketchpad drawings will

be, for one must make drawings in the correct sizes if one is to communi­

cate with machine shops. Dimensions indicated on the drawing must cor­

respond to the dimensions of the drawing in its final form if full-size

drawings are to be produced. The computer's only concern with the

actual size of the page coordinate system is to know what decimal number

should be displayed for the value of a certain distance in page coordi­

nates. As Sketchpad now stands, the value is such that one-to-one scale

drawings can be produced on the plotter if dimensions are read in uni^s

of thousandths of an inch.

Page coordinates, then, are dimensionless signed fractions, 36 bits

long which are considered as fixed when considering drawing representa-j

tions. In order to avoid the troubles of overflow, it is made difficult

-72-

for the user to generate page coordinates with values in the most signi­

ficant six or seven hits of the 36 allowed. This is done by artificially

limiting the maximum part of the page displayed on the scope to 1/256 of

the page's linear dimension. The 29 or 30 bits of precision which remain

are sufficient for all applications. The maximum magnification of the

display is also limited so that the "grain" of the page coordinates can­

not show on the display. The 2000-to-one scale change mentioned above

remains.

A scale factor for the display controls the size of the square

which will appear on the scope. The actual number saved is the half-

length of the side of the square, called SCSZ for SCope SiZe as shown in

Figure 5.2. Also saved are the page coordinates of the center of the

scope square. By changing these numbers the portion of the page shown;

on the scope may be changed in size and moved, but not rotated .

The shaft position encoder knobs below the scope (see Figure 1.2,

p*U) are used to control the scale factor and square positioning

numbers indicated above. Rotation of the knobs tells the program to

change the display scale factor or the portion of the page displayed.

In order to obtain smooth operation at every degree of magnification,

unit knob rotations produce changes in the scope size and position

numbers proportional to the existing scope size number, SCSZ. Rotation

of the scale change knob, therefore, causes exponential increase or

decrease in SCSZ and this results in apparent linear change in the view

on the scope.

-73-

PAGE COORDINATES

FIGURE 5.2. COORDINATE SYSTEMS

-7^-

INSIDE OUT AND OUTSIDE IN DISPLAY

How the direction of rotation of the knobs affects the translation

of the display is important from the human factors point of view. It is

possible to think of moving the scope window above the page or moving

the ;drawing beneath the window. Since to the user the scope is physi­

cally there, and no sense of body motion goes with motion of the window,

the knobs turn so that the operator thinks of moving the drawing behind

his window: rotation to the right results in picture motion to the

right or up. Similarly, rotation of another knob to the right results

in rotation of picture objects to the right as seen by the user. No

such convenient manner of thought for the scale knob has been found.

Users get used to either sense of change about equally poorly) the major

user so far (the author) still must try the knob before being sure of

which way it should be turned.

The translation knobs were primarily used to locate a portion of

the picture in the center of the scope so that it could be enlarged for

detailed examination. To make centering easier, a special function was

provided which relocates the picture so that the immediately preceding

light pen position is cent ered. The knobs are now used for fine posi­

tioning of the picture to make the scope display all of an area which

just barely fits inside it. The light pen could perhaps be used to con­

trol scope size and positioning without reference to the knobs at all,

perhaps with a coarse and fine control. The question of what controls

are best suited to humans is wide open for investigation-

-75-

COORDINATE CONVERSION AND EDGE DETECTION

The reason for having the page-scope transformation in terns of

the location of the scope center and the size of the scope is that this

form makes it very easy to transform page coordinates into scope coordi­

nates .

PAGE COORDINATE - CENTER OF SCOPE _ SCOpE COORDINATE
SCOPE SIZE

The process of division will yield overflow if the point converted does

not lie on the scope. However, one can little afford the time that

application of this transformation to each and every spot in a line

would require. It is necessary, therefore, to compute which portion(s)

of a curve will appear on the scope, and generate ONLY those portions

for the human to see. The edge detection problem is the problem of

finding suitable end points for the portion of a curve which appears on

the scope.

In concept the edge detection problem is trivial. In terms of

program time for lines and circles the problem is a small fraction of

the total computational load of the system, but in terms of program

debugging difficulty the problem was a lulu. For example, the computa­

tion of the intersection of a circle with any of the edges of the scope

is easy, but computation of the intersection of a circle with all four

edges may result in as many as eight intersections, some pairs of which

may be identical, the scope corners. Now which of these intersections

are actually to be used as starts of circle arcs?

-76-

THE SERVICE PROGRAM - LINE AND CIRCLE GENERATION

As the Sketchpad system now exists, all displays are generated from

straight line segments, circle arcs, and single points. The details of

generating the specific display spots for each of these types of display

is relegated to a "service" program. The service program also contains

the actual display suh-program for displaying the spots and retains

control over the input and output to the display file. The service pro­

gram takes care of the transformation of coordinates from page coordi­

nates to scope coordinates and computes the portion of the line, circle,

or point to be shown, if any. Since these service functions have been

working correctly, further programming was not required to make refer­

ence to the details of scope size, position, coordinate transformation,

or display. For example, the routine which displays text on the scope

uses the line and circle service programs to compose each letter.

The independence of the bulk of the program from the specifics of

display is a very valuable asset for future expansion and change to the

system. For example, when a line drawing scope capability was added to

the TX-2, only the service program needed to be changed to accommodate

it. Moreover other people can and do use the service subroutines in

their programs. The attitude of independent parts divided by independ­

ence of function pervades the Sketchpad system; being forced to divide

the program into several binary portions because it was, in toto, too

big to handle, I divided it in the most natural places I could find.

The actual generation of the lines and circles lor the present spot

display scope is accomplished by means of the difference equations:

x. = X. , + Ax y. = y..! + Ay (5-i)
1 1-1 _ 1

-77-

for lines, and

Xi = Xi-2 + 1 (yi-l " yc}

2 (5-2)

yi " yi-2 " R (xi-l " Xc)

for circles, where subscripts i indicate successive display spots, sub­

script c in dicates the circle center, and R is the radius of the circle

in Scope Units. In implementing these difference equations in the pro­

gram the fullest possible use is made of the coordinate arithmetic capa­

bility of the TX-2 so that both the x and y equation computations are

performed in parallel on 18 bit subwords. Including marking the points

in the display file with the appropriate code for the ring structure

block to which they belong (two instructions), and indexing, the program

loops contain five instructions for lines and ten for circles. About

3/h of the total Sketchpad computation time is spent doing these 15 in­

structions I

CIRCLE CLOSURE

It is an unfortunate property of difference equation approximation

to differential equations that the tiny errors introduced by the finite

approximation may accumulate to produce gross noticeable errors. Al­

though the difference equation (5-2) listed above for circle generation

may seem more complicated than necessary, it is the small details of the

equation that make it useable. Considerable effort was required to find

an equation which produced faithful circles and could be implemented to

take advantage of the parallel 18 bit arithmetic available in the TX-2.

Other equations tried either generated logarithmic spirals due to

-78-

mathematical inadequacies, required more than 18 bit precision to oper­

ate accurately, or required serial processing of the x and y equations,

which would consume more time.

For example, the difference equations:

xi " xi-l +-| (yi-l - yc>

•L (5-3)
yi = yi-l " R (xi-l " Xc>

produce a logarithmic spiral which grows about (it x step size) in "radi­

us" each turn. This spiral divergence is predicted theoretically and

is unrelated to any roundoff error. It could be avoided by using the

equations:

Xi

yi

" •fTTW "i*1-1 +1 (yi"1" y°^
(S-'O

but the term R is so little different from unity for the usual
•s/l + R2

values of R that it cannot be represented in 18 bits. The simple change

from (5-3) to the equations:

xi = Xi-1 + ~R ^ yi-l " yc}
(5-5)

= yi-l " "R ^ Xi Xc}

where a new position of x is used to generate the next position of y.

Equations (5-5) approximate a circle well enough and are known to close

exactly both in theory and when implemented, but because the x and y

equations are dissimilar, they cannot make use of TX-2's ability to do

two 18 bit additions at once. Note, however, that Equations (5-5) are

ideally suited for implementation on machines which can perform only

-79-

one addition at a time. In fact, Sketchpad uses Equations (5-5) to

generate the sine and cosine functions used for rotations.

DISPLAY PROGRAMS

The display programs for line and circle segments are simply the

line and circle drawing subroutines plus a small program which extracts

the pertinent numerical information from the ring structure to locate

the line or circle segment properly. A similar routine for drawing

dotted lines and dotted circles would be useful—the same manipulations

that apply to lines and circles could be applied to the dotted curves

as well. To be consistent with the existing programs the dotted line

program would use the line or circle drawing subroutine many times,

once for each dot. Although this would be somewhat inefficient in that

the values of Ax and Ay in (5-1) would be recomputed each time, it

could be made to work with the minimum programming difficulty. Alterna­

tively, a special dotted line subroutine could be written. This would

be especially appropriate if output devices were used for which dotting

could be accomplished in a special way as, for example, lifting the

plotter pen periodically while it is tracing a curve.

Another variation on lines and circles would permit making lines

of various weights or with different styles of dots: center lines and

the like. These could each be put into the system as a different type

of line, or all could be treated as a single type with some numerical

specification of the line characteristics. For example, two scalars

might be used to indicate approximate dot frequency and the ratio of

dot length to dot period. A single scalar might specify the line weight.

-80-

It is important that the properties ,of such a scalar would be the unit-

less properties of ratios, invariant under changes to the scale of the

drawing and the transformations of instances. The existing scalar with

the dimension of length would not serve.

Text, to put legends on a drawing, is displayed by means of special

tables which indicate the locations of line and circle segments to make

up the letters and numbers. Each piece of text appears in a single line

not more than 36 characters in length of equally spaced characters which

can be changed by typing. Digits to display the value of an indicated

scalar at any position and in any size and rotation are formed from the

same type face as text. It is possible to display up to five decimal

digits with sign; binary to decimal conversion, is provided, and leading

zeros are suppressed. Whatever transformation is applied to the magni­

fication of subpictures applies also to the value displayed by the

digits. Digits which indicated lengths when a subpicture was originally

drawn remain correct however it is used. Digits are intended for making

size notations on drawings by means of dimension lines.

The instance, as will be described more fully in Chapter VI, be­

haves as a single entity. The display spots which represent all the

internal parts of instance must be marked with the address of the

instance block rather than with the address of the actual line or circle

blocks which are the indirect cause of the spots. The instance expan­

sion program makes use of the line, circle, number, and-text display

programs and itself to expand the internal structure of the instance.

A marker is used so that during expansion of an instance, display spots

retain the instance marking.

-81-

Expansion of instances may be a most time consuming job. When

just the existence of an instance is important, but not its internal

character, one can display a frame around the instance without having

its internal structure show. The framing and expansion of instances

are individually controlled by toggle switches. The instance frame is

a square drawn around the outline of the instance, that is, the smallest

square which fits around the master of the instance in upright position.

The size and location of this square are computed whenever a drawing is

filed away, provided that no instances of the drawing exist. In fact,

the drawing is relocated so that the center of the frame is always at

the origin of the page coordinate system. This is done so that the

coordinate system of an instance will have origin at about the center

of the instance. If instances of the picture exist, the program re­

frains from relocating picture origin because to do so would slightly

relocate "1 instances of the picture in the other direction.

The instance expansion routine does some edge detection in a crude

way to avoid spending inordinate amounts of time deciding that each

line and circle in an instance grossly off the scope is individually

off the scope. Instances are not expanded unless there is a fair

chance that some part of them will appear. The instance outline box

is used for this purpose: the instance is not expanded if its center is

more than 1.5 times as far from the scope edge as its box size. Since

the relatively new addition of avoiding box size recomputation and

translation of a picture if instances of it exist, it is possible to

have parts of an instance extend any distance outside their box.

Therefore, instance parts might disappear inexplicably. This has,

however, never been observed in practice.

-82-

A more complete treatment of the size of an instance for edge

detection which would cure the difficulties outlined above could be

made. One would compute not only the size of the smallest outlining

square each time an un-instanced drawing is filed away, but also the

size of the smallest surrounding circle each time the drawing is filed

away, whether or not it is instanced. The smallest circle would be used

to deteraiine whether a particular instance was worth expanding at all,

oi; if the entire circle was contained on the scope, it would indicate that

further edge detection would be entirely unnecessary. In computing the

smallest enclosing circle, needless to say, subpictures would be con­

sidered only as objects which occupy their smallest enclosing circle;

internal structure of instances would be ignored. Whereas now only the

smallest enclosing box can be seen, in the proposed more complete treat­

ment either the smallest enclosing square or circle could be displayed.

DISPLAY OF ABSTRACTIONS

The usual picture for human consumption displays only lines,

circles, text, digits, and instances. However, certain very useful

abstractions are represented in the ring structure storage which give

the drawing the properties desired by the user. For example, the fact

that the start and end point s of a circle arc should be equidistant

from the circle's center point is represented in storage by a constraint

block. To make it possible for a user to manipulate these abstractions,

each abstraction must be able to be seen on the display if desired.

Not only does displaying abstractions make it possible for the human

user to know that they exist, but also displaying abstractions makes it

-83-

possible for him to aim at them with the light pen and, for example,

erase them. The light pen demonstrative language described in Chapter

IV is sufficient for making all changes to objects or abstractions

which can be displayed. To make Sketchpad's light pen language univer­

sal, all objects and abstractions represented in Sketchpad's ring struc­

ture can be displayed. To avoid confusion, the display for particular

types of objects may be turned on or off selectively by toggle switches.

Thus, for example, one can turn on display of constraints as well as or

instead of the lines and circles which are normally seen.

If their selection toggle switch is on, constraints are displayed

as shown in Figure 5.3. The central circle and letter are of fixed

size on the scope regardless of the drawing scale factor and are

located at the average location of the variables constrained. The four

arms of a constraint extend from the top, right side, bottom, and left

side of the circle to the first, second, third, and fourth variables

constrained, respectively. If fewer than four variables are constrained,

excess arms are omitted. In Figure 5*3 the constraints are shown ap­

plied to "dummy variables," each of which shows as & X •

Two difficulties are encountered with this representation of con­

straints :

1. The constraint diagrams tend to overlap one another when
a geometric figure has several constraints applied to it,
and

2. One character is not enough to display all the symbols
and mnemonics one would like to have for his constraints.

A more desirable arrangement would let the user draw the constraint

representation diagrams in the same way he makes other drawings, per­

mitting him to invent whatever mnemonics he could draw. It would also

X

X <£>
X

-8L-

FIGURE 5 3
DISPLAY OF C ONSTRAINTS

SCALAR

CONSTRAINT MAKES DIGITS UPRIGHT

CONSTRAINT ON SCALAR VALUE

FIGURE 5 .4.
DISPLAY OF SCALAR AND DIGITS

-85-

be nice to be able to relocate the body of a constraint representation

at will to avoid the unfortunate and confusing overlapping. How to

locate it without explicit instructions would, however, be a problem.

Moreover, the constraint, having a position itself, would have to be

treated as a variable and might be used to constrain itself, compounding

an already messy business. Alternatively, instead of locating the

circle and letter at the center of the variables one could locate them

at random nearby. Any confusion of constraints could then be clarified

by recomputing the display file to get a new set of random locations.

Another abstraction that can be displayed if desired is the value

of a set of digits. The value of a set of digits is stored as a varia­

ble separate from the digits themselves. Moving digits means relocating

them on the drawing or rotating than. Making the digits bigger means

just that, increasing the type size. But making the value bigger changes

the particular digits seen and not the type size. The value of a set of

digits, a scalar, appears as a^ connected to the digits which display

it by as many lines as there are sets of digits and located at the

average location of these sets, as shown in Figure Since there is

usually only one set of digits displaying the value of a scalar, the^

is usually superimposed on it and connected to it by a zero length line

which looks like a dot. The major difficulty with this display is that

values which have no digits all lie exactly on top of one another at the

origin.

EMPTY DISPLAYS

The frames which may be put around instances can be thought of as

abstractions of the existence as opposed to the appearance of the

-86-

instance. Moreover, since it is possible to make an instance of a pic­

ture and then erase the lines in the master picture, it is possible to

have an instance with no appearance at all, an empty instance. Before

instance framing was possible such empty instances were inaccessible to

the light pen and likely to be forgotten by the user because they could

not show on the display. At the present time it is possible to lose

only text; a line of text composed entirely of spaces does not show.

THE AS YET UNDREAMT OF THINGS THAT WILL BE DISPLAYED

The organization of Sketchpad display as a set of display subrou­

tines with identical external properties makes it possible to add new

kinds of displays to the system with the greatest ease. At the present

time the need for dotted lines and circles, including center lines, dark

lines, etc., and the need for a ratio type unitless scalar for repre­

senting angles and proportions is clear. Conic sections would be useful.

What other kinds of things may became useful for special purposes is as

yet unknown;. Sketchpad attempts to be big enough to incorporate anything

easily.

-87-
Chapter VI

RECURSIVE FUNCTIONS

In the process of making the Sketchpad system operate, a few very

general functions were developed which make no reference at all to the

specific types of entities on which they operate. These general functions

give the Sketchpad system the ability to operate on a wide range of

problems. The motivation for making the functions as general as possible

came from the desire to get as much result as possible from the program­

ming effort involved. For example, the general function for expanding

instances makes it possible for Sketchpad to handle any fixed geometry

subpicture. The rewards that come from implementing general functions

are so great that the author has become reluctant to write any

programs for specific jobs.

Each of the general functions implemented in the Sketchpad system

abstracts, in some sense, same common property of pictures independent

of the specific subject matter of the pictures themselves. For example,

the instance expansion program is a representation of the fact that

pictures frcm many fields contain subpictures with relatively fixed

appearance. It is not claimed that the general functions described in

this chapter form a complete set, that is, abstract all the common

properties of pictures. There is a definite need for a general purpose

function for making topological changes to a drawing. Such a general

purpose system is necessary, for example, to put fillets and rounds on

corners, or to be able to define a vocabulary of dotted lines "which

could be, "unreeled," as it were, to any desired length. Nevertheless,

the power obtained from the small set of generalized functions in

Sketchpad is one of the most important results of the research.

-88-
In order of historical development, the recursive functions in use

in the Sketchpad system are:

1. Expansion of instances, making it possible to have
subpictures within subpictures to as many levels as
desired.

2. Recursive deletion, whereby removal of certain "
picture parts will remove other picture parts in order
to maintain consistency in the ring structure.

3. Recursive merging, whereby combination of two
similar picture parts forces combination of similarly
related other picture parts, making possible application
of complex definitions to an object picture.

4. Recursive moving, wherein moving certain picture
parts causes the display of appropriately related picture
parts to be regenerated automatically.

PUSH DOWN LISTS

A common method of keeping track of the recursion process is to

use, a "push down list," a device much like a sinking table used in

cafeterias to hold dishes so that as a dish is removed the next is

ready. Each-of the entries of a push down list references the next, so

that if one is removed, the location of the next will be available. A

peculiarity of the Sketchpad system is that these push down lists are

formed directly in the data storage structure and not separately by the

program. This guarantees that if the data storage structure fits in

memory, it may be fully recursed without risk that the push down in­

formation overflow the space available for it. As far as possible.

Sketchpad uses parts of the data structure otherwise.used for other

purposes to perform the push down function.

Chapter III and Appendix C described the ring structure used for

primary picture storate in the Sketchpad system and showed the relation­

ships between various kinds of blocks. In this section as little reference

-89-
as possible will be made to the exact nature of the blocks involved,

because by avoiding reference to specific structure the .functions con­

sidered may be made applicable to any specific structure. By way of

example, however, some specific cases will be mentioned; bear in mind

that these are meant only to be illustrative.

DEPENDENT AND INDEPENDENT ELEMENTS

Certain picture elements depend in a vital way for their existence,

display, and properties on other elements. For example, a line segment

must reference two end points between which it is drawn; a set of digits

must reference a scalar which indicates the value to be shown. In three

dimensions it might be that a surface is represented as connecting four

lines which in turn depend on end points. If a particular thing depends

on something else there will be in the dependent thing a reference by

pointer to the thing depended upon. In the ring structure used in

Sketchpad, there will be a ring with a "hen" pair in the thing depended

on and at least one "chicken" pair in a dependent thing. For example,

a ring will connect a point with all lines which use it as an end point;

the chicken pairs of this ring, being in the blocks for the lines in

question, point to the point as an end point of the lines.

Since there may be any number of rings passing through a given

block, a particular block may depend on some other blocks and

simultaneously be depended on by others. Such a block contains both

hens and chickens. In particular, all blocks contain at least one

chicken which indicates by a reference to a generic block the type of

thing represented. Some things are otherwise totally depended upon,

e.g. points, some things are totally dependent, e.g. lines, and some

both depend and are depended1 on, e.g. instances.

-90-
RECURSIVE DELETING

Consistency is of course maintained if a single thing upon which no

other thing depends is deleted. To accomplish this, all chicken pairs

in its "block are removed frcm their corresponding rings. The registers

which comprised a deleted block are declared "free" by their addition to

the FREES storage ring. In the Sketchpad system, line segments are

entirely dependent and may be deleted without affecting anything else.

However, deleting a line may leave end points on the drawing with no

lines attached to them. A special button is provided for removing all

such useless points from the drawing.

If a thing upon which other things depend is deleted, the dependent

things must be deleted also. For example, if a point is to be deleted,

all lines which terminate on the point must also be deleted. Otherwise,

where would these lines end? Similarly, deletion of a variable requires

deletion of all constraints on that variable; a constraint must have

variables to act on. Three dimensional surfaces might be made to depend

on lines which depend on points; if so, deletion of a point would require

deletion of a line which would in turn require deletion of a surface.

In Sketchpad, deleting a scalar forces deletion of all digits displaying

its value, which will force deletion of all constraints holding the

digits in position. Although the scalar-digits-constraint chain is

the longest one in Sketchpad, the programs could handle longer chains

if they existed.

The recursiveness of deletion brings with it the difficulty that

one deletion may cause any number of deletions. It may therefore be

difficult to follow the ring structure during deletions. For example,

suppose that everything in a particular picture is to be deleted, a

facility which is provided. The program applies the delete routine to

-91-
the first thing in the picture, say a point, and then to the next thing

in the picture, say a line which terminated on the point. The normal

macro mentioned in Chapter III for applying functions to all the members

of a ring, LGORR, cannot be used, for at the time the next ring member

is to be located, both it and the current ring member may be so much

meaningless free storage. To delete everything in a pictur e, Sketchpad

again and again deletes the first thing in the picture, thus chewing

away until the picture is gone.

The push down list for recursive deletion is formed with the pair of

registers which normally indicates what type of thing a block represents.

As soon as it is found that a block must be deleted, it is declared

"dead" by placing its TYPE pair in a generic ring called DEADS. The first

dead thing is then examined to see if it forces other things to be de­

clared dead, which is done until no more dead things are generated by the

first dead thing. The first dead thing is then declared "free" and the

new first dead thing is examined in exactly the same way until no more

dead things exist. The DEADS ring, through registers which normally in­

dicate type, serves as the push down list.

RECURSIVE MERGING

The single most powerful tool for constructing drawings, when com­

bined with the definition copying function described in Chapter VII, is

the ability to merge picture parts recursively. The recursive merge

function makes it possible to make statements such as "this thing is to

be related to that thing in such and such a way," The relationship may

be treated as applying to things which it relates only indirectly. For

example we shall soon see how one line may be made parallel to another

even though the parallelism constraint applies only to the locations

-92-
of their end points. Similarly, a set of digits can be forced to dis­

play the length of a line, even though the constraint involved refers

to the end points of the line and the value of the digits rather than

to the line or the digits themselves. The recursive merge function makes

it meaningful to combine anything with anything else of the same type

regardless of whether the things are dependent on other things or depended

on by others.

If two things of the same type which are independent are merged,

a single thing of that type results, and all things which depended on

either of the merged things depend on the result* of the merger. For

example, if two points are merged, all lines which previously terminated

on either point now terminate on the single resulting point. In Sketch­

pad, if a thing is being moved with the light pen and the termination

flick of the pen is given while aiming at another thing of the same

type, the two things will merge. Thus, if one moves a point to another

point and terminates, the points will merge, connecting all lines which

formerly terminated on either. This makes it possible to draw closed

polygons.

If two things of the same type which do depend on other things are

merged, the things depended on by one will be forced to merge, respectively,

with the things depended on by the other. The result* of merging two dependent

things depends respectively on the results* of the mergers it forces. For

example, if two lines are merged, the resultant line must refer to only

two end points, the results of merging the pairs of end points of the

* The "result" of a merger is a single thing of the same type

as the merged things.

-93-

original lines. All lines which terminated on any of the four original

end points now terminate on the appropriate one of the remaining pair.

More important and useful, all constraints which applied to any of the

four original end points now apply to the appropriate one of the re­

maining pair. This makes it possible to speak of line segments as being

parallel even though (because line segments contain no numerical in­

formation to be constrained) the parallelism constraint must apply to

their end points and not to the line segments themselves. If we wish

to make two lines both parallel and equal in length, the steps outlined

in Figure 6.1 make it possible. More obscure relationships between

dependent things may as easily be defined and applied. For example,

constraint complexes can be defined to make line segments be collinear,

to make a line be tangent to a circle, or to make the values represented

by two sets of digits be equal.

INSTANCES

The most powerful tool provided in the Sketchpad system for creating

large complex drawings quickly and easily is the instance. Instances

are recursively expanded so that instances may contain other^instances

to give an exponential growth of picture produced with respect to effort

expended. Instances may have attachment points and therefore may

connect points topologically much as line segments do. For example, an

instance of a resistor may connect two points both electrically and

geometrically on the drawing. An instance also has the properties of a

four component variable: numbers are stored in each instance block to

indicate where, how big, and in what rotation that instance is to

appear on the picture. It took some time to reconcile the topological

properties of instances with their properties as variables.

-91*-

A. OPERATION DEFINITION B. PICTURE TO CONSTRAIN

C. DEFINITION COPIED D. FIRST LINE MERGED

E. SECOND LINE MERGED F. CONSTRAINTS SATISFIED

FIGURE G.l. APPLYING TWO CONSTRAINTS
NDIRECTLY TO TWO LINES
-{^PARALLELISM EQUAL LENGTH

-95-

The block of registers which represe nts an instance is remarkably

small considering that it may generate a display of any complexity. For

the purposes of display, the instance block makes reference to a picture

by means of its chicken in a ring which ties a picture to all its

instances. The ire tance will appear on the display as a figure geometrically

similar to the picture of which it is an instance but at a location,

size, and rotation indicated by the four numbers which constitute the

"value11 of the instance. An important omission as this is written is

the ability to make mirror images. Right and left handed figures must

now be treated separately, whereas the instance should indicate whether

a right or left handed version of the master is to be shown.

INSTANCES AS VARIABLES

The four numbers which specify the size, rotation, and location of

the instance are considered numerically as a four dimensional vector.

In certain computations, the value of a variable is changed "as little

as possible" if there is no need to change it further. The distance

measured in the case of instances is the square root of the sum of the

squares of the four components. For this reason, and for simplicity in

the use of the fixed point arithmetic of the TX-2, it is important that

the four numbers used to represent the vector be of about the same order

of magnitude. The particular numbers chosen are the coordinates of the

center of the instance and the actual size of the instance as it appears

on the drawing times the sine and cosine of the rotation angle involved.

In a typical drawing these four numbers have reasonably similar ranges

of variation.

-96-
In our early work we attempted to use the position and the sine and

cosine of the rotation angle times the reduction in size from the master

picture in order to avoid the normalization of master picture size implicit

in the above paragraph. This not only prevented having instances larger

than their masters because of the fixed point arithmetic, but also made

distance in the four dimensional space meaningless. No attempt was ever

made to use the size and rotation numbers independently.

The transformations of coordinates represented by the above

paragraphs are:

Poor

x. X2

Better

'̂ 2 11

ii i2

_i2 X1

X m

+

i3

ym
m h

x / s m' m

+
y /s
*nr m

(6-1)

(6-2)

where:

xd,yd = display locati°n in PaSe coordinates.

x v = Master location in page coordinates.
nr Jm

s = Size of master picture in page coordinates
m

i .. î s 4 vector in instance, - 1< î< + !•

RECURSIVE DISPLAY OF INSTANCES "97-

In displaying an instance of a picture, reference must be made to

the picture itself to find out what picture parts are to be shown. The

picture referred to may contain instances, however, requiring further

reference, and so on until a picture is found which contains no instances.

A recursive program performs this function. At each stage in the recursion,

any picture parts displayed must be relocated so that they will appear at

the correct position, size and rotation on the display. Thus, at each

stage of the recursion, some transformation of the form of Equation (6-2)

is applied to all picture parts before displaying them. If an instance is

encountered, the transformation represented by its value must be adjoined

to the existing transformation for display of parts within it. When the

expansion of an instance within an instance is finished, the transformation

must be restored for continuation at the higher level.

To avoid the difficulties of taking an inverse transformation, the

old transformation is saved in registers provided for that purpose in

the picture block of the picture being expanded. Thus, the current trans­

formation is stored in program registers and is being used, whereas the

previous transformation is saved in the picture block currently being

expanded. The push down list is provided also by indicating in the

picture block being expanded the particular instance thereof which is

responsible for this expansion of the picture. The first picture to

be displayed starts with no transformation at all. Thus, if it contains

itself as an instance, one recursion is possible, saving the old trans­

formation in the picture block and saving the address of the instance

responsible for the expansion in the picture block as well. Subsequent

recursions will be prevented, however, because no instance is expanded

-98-
if the picture of which it is an instance already belongs on the push

down list. It would be possible to expand such circular instances

further by providing some suitable termination condition such as reaching

a level too small to show on the display. However, since the instances

might get larger rather than smaller, termination conditions are far from

simple.

ATTACHERS AND INSTANCES

Many symbols used must be integrated into the rest of the drawing

by attaching lines to the symbols at appropriate points, or by attaching

the symbols directly to each other as if by zero length lines. For

example, circuit symbols must be wired up, geometric patterns made by

fitting shapes together, or mechanisms composed of links tied together

appropriately. An instance may have any number of tie points, and, con­

versely, a point may serve as tie for any number of instances.

An "instance-point" constraint block is used to relate an instance

to each of its tie points. An instance-point constraint is satisfied only

when the point bears the same relationship to the instance that a point

in the master picture for that instance bears to the master picture

coordinate system. Instance-point constraints are treated as a special

case when an instance is moved so that tie points always move with their

instance, and lines terminating on the tie points move as well. Each

instance-point constraint makes reference to both the instance and its

tie points by means of chickens.

To use a point as an attacher of an instance, the point must be

designated as an attacher in the master drawing of the instance. For

example, when one first draws a resistor, the ends of the resistor mu^t

be designated as attachers if wiring is to be attached. When an instance

is created by pressing the "instance" button, toggle switches tell what

picture the instance is to refer to. Along with the instance element

are created a point and an instance-point constraint for each attacher.

These points are bonifide points in the object picture but are not

automatically attachers of the object picture. If they are to be used

as attachers when the object picture is instanced, they must be designated

anew. Thus of the three attachers of a transistor it is possible to

select one or two to be the attachers of a flip-flop.

The entire internal structure of the instance is suppressed as

far as the light pen is concerned except for the attachers. Thus even on

a dense circuit drawing it is possible to connect elements with ease

because at the highest level of instance only the designated attachers

will hold the attention of the light pen program. Usually there are

only a few attachers for each block no matter how complicated internally,

and so it is generally obvious which' one to use.

>

RECURSIVE MOVING

At first only variables could be moved. Moving a variable means

to change somehow the numbers stored- as the components of the variable,

usually to make the display for the variable follow light pen motions.

A moving point, for example, will be firmly attached to the pseudo

pen position, while a moving piece of text faithfully follows light pen

displacements so that the part of the text which was under the pen when

the "move" button was pressed remains under the pen. For variables

with more than two components, moving is partly controlled by the pen

and partly by knobs. For example, the moving text can be made larger or

rotated by two of the knobs.

The advent of the recursive merging and the definition copying

functions made it clear that one should be able to move anything

regardless of whether or not it is variable. To move a non-variable, a re­

cursive process is used to find whatever variables may be basic to the

thing being moved. For example, if a line is to be moved, the end

points on which it depends must be moved. All objects which are being
1 •

moved are put in a ring whose hen is in the MOVINGS generic block. The

object actually attached to the light pen is first in the ring. Upon

termination pnly this first object in the MOVINGS ring may be merged

with other objects.

The numerical operation of moving is accomplished by the standard

transformation procedure. The small transformation due to light pen

position change and knob rotation since the last program iteration is
") /

converted to the form of Equation (6-2) and placed in the standard

location. Each object in the MOVINGS ring is transformed by it. The

generic block for each type of object,of course, contains the subroutine

to apply the transformation to such objects. The generic block for lines,

for example, indicates that no transformation need be applied to the

line because it contains no numerical values and will automatically be

moved when its end points are moved.

Moving objects must be invisible to the light pen. Since the light

pen aims at anything within its field of view, it would otherwise aim

at a moving object and a jerky motion would result. Motion would only

happen when the pen's field of view passed beyond the object being moved.

Moreover, the display for moving objects must be recomputed regularly for

the benefit of the human user, but the unmoving background need not be

recomputed. The display spot coordinates for objects being recomputed

-101-
is placed last in the display file, above (in higher numbered registers)

the fixed background display so that it may be recomputed without dis­

turbing the rest of the display file. The light pen program rejects any

spots seen by the pen which come from these high display file locations.

Needless to say, the entire display file must be recomputed once to

eliminate the former traces of the newly moving objects.

-102-

Chapter VII

BUILDING A DRAWING, THE COPY FUNCTION

As experimentation with drawing systems for the computer progressed,

the basic drawing operations evolved into their present forih. At the

outset, the very general picture and relationship defining capability of

the copy and recursive merging functions were unknown and so considerable

power had to be built directly into the system. Now, of course, it would

be possible to use much simpler atomic operations to draw simple pictures

embodying many of the notions now treated as atomic.

DRAWING VS. MOVING

An idea that was difficult for the author to grasp was that there

is no state of the system that can be called "drawingConventionally,

of course, drawing is an active process which leaves a trail of carbon

on the paper. With a computer sketch, however, any line segment is

straight and can be relocated by moving one or both of its end points.

In particular, when the button "draw" is pressed, a new line segment and

two new end points are set up in storage, and one of the line s end

points is left attached to the light pen so that subsequent pen motions

will move the point. The state of the system is then no different from

its state whenever a point is being moved.

Similarly, to draw a circle, one creates a center point when the

button "circle center" is pressed, and creates in the ring structure a

circle block and its start and end points when the button "draw is

pressed with a circle center defined. The end point of the circle arc

-103-

is left attached to the light pen to move with subsequent pen motions.

Since the start and end points of a circle arc should be equidistant

from its center point, an equal distance constraint is created along

with the circle but could be subsequently deleted without deleting the

circle.

ATOMIC OPERATIONS

In general, when creating new points to serve as the start of line

segments and circle arcs or centers for circle arcs, an existing point

is used if the pen is aimed at one when the new point would be generated.

Thus, if one aims at the end of an existing line segment and presses

"draw" the new line segment will use the existing point rather than

setting up another point which has the same coordinates. Later motion

of this point will move both lines attached to it; the ring structure

storage reflects the intended topology of the drawing. Similarly, if

one is moving a point and gives a termination signal while aiming at

another point, these two points will be merged, again reflecting the

intended drawing topology.

We have seen that a constraint is set up to indicate that the start

and end joints of a circle arc should be equidistant irom its center

whenever a new circle arc is drawn. Similarly, constraints to indicate

that a point should lie on a line or circle are automatically set up if

a point is either created while the pen is pointing to the line or circle

or moved onto the line or circle. The constraints, of coarse, do not

apply to the line or circle itself but to the points on which it de­

pends.. If the light pen is aimed at the intersection of line segments,

-lOfc-

two "point-on-line" constraints will be set up for a point created or

left there, one for each intersecting line. Three or more line seg­

ments may be forced to pass through a single point by moving that point

onto them successively to set up the appropriate constraints. Constraint

satisfaction will then move the lines so that all of them pass through

the point. In order to avoid cluttering up the ring structure with re­

dundant constraints, the point-on-line and point-on-circle constraints

are set up only if the point is not already so constrained.

GENERALIZATION OF ATOMIC OPERATIONS

The atomic operations described above make it possible to create in

the ring structure new picture components and relate them topologically.

The atomic operations are, of course, limited to creating points, lines,

circles, point-on-line and point-on-circle constraints. (The point-on-

circle constraint is the same type as used to keep the circle's start

and end points equidistant from its center.) Since implementation of

the copy function it has become possible to create any combination of

picture parts and constraints in the ring structure. The recursive

merging function makes it possible to relate this set of picture parts

to any existing parts. For example, if a line segment and its two end

points are copied into the object picture, the action of the "draw

button may be exactly duplicated in every respect. Along with the copied

line, however, one might copy as well a constraint to make the line hori­

zontal, or two constraints to make it both horizontal and three inches

long, or any other variation one cares to put into the ring structure

to be copied.

-105-

When one draws a definition picture to be copied, certain portions

of it to be used in relating it to other object picture parts are desig­

nated as "attachers". Anything at all may be designated: for example,

points, lines, circles, text, even constraints.' The rules used for com­

bining points when the "draw" button is pressed are generalized so that:

For copying a picture, the last-designated attacher is left
moving with the light pen. The next-to-last-designated
attacher is recursively merged with whatever object the pen
is aimed at when the copying occurs, if that object is of
like type. Previously designated attachers are recursively
merged with previously designated object picture parts, if
of like type, until either the supply of designated attachers
or the supply of designated object picture parts is exhausted.
The last-designated attacher may be recursively merged with
any other object of like type when the termination flick is
given.

Normally only two designated attachers are used because it is hard to

keep track of additional ones. The order in which attachers are desig­

nated is important because it is in this order that they will be treated.

If a mistake is made in ordering the attachers, redesignation of an at­

tacher puts it last in the order. As this is written there is no way

to undesignate an attacher, except by deleting it, an oversight which

should be corrected.

If the definition picture to be copied consists of a line segment

with end points as attachers and a horizontal constraint between the

end points, as shown in Figure T«1A, pressing the "copy' button will

appear to the user exactly like pressing the "draw button. One end

point of the line will be left behind and one will follow the light pen.

Subsequent constraint satisfaction will, however, make the line horizon

tal.

If the definition picture consists of two line segments, their four

end points, and a constraint on the points which makes the lines equal

-106-

POINT. ATTACHER 2

POINT. ATTACHER 1

A. HORIZONTAL LINE

LINE. ATTACHER 2,

' \ /

_ - - - W '

LINE. ATTACHER 1

B. EQUAL L ENGTH LINES

POINT. ATTACHER 2
DIAMOND INSTANCE-

POINT. ATTACHER 1

INSTANCE-POINT CONSTRAINT Axd)
CONSTRAINTS ON INSTANCE "(E) (F)

C. PARTLY F LEXIBLE A RROW

INSTANCE. ATTACHER 2.
INSTANCE. ATTACHER 1 /

D.

ts>

© ©'(D
PRE—JO I NED IN STANCES

FIGURE 7 . 1 .
D E F I N I T I O N S 0 COPY

-106-

in length, with the two lines designated as attachers as shown in Figure

7.IB, copying enables the user to make any two lines equal in length.

If the pen is aimed at a line when "copy" is pushed, the first of the

two copied lines merges with it, (taking its position and never actually

being seen). The other copied line is left moving with the light pen

and will merge with whatever other line the pen is aimed at when termi­

nation occurs. Since merging is recursive, the copied equal-length con­

straint will apply to the desired pair of object picture lines. If no

lines are aimed at, of course, the copied picture parts are seen at once

with the scale factor so reduced that the entire copied picture takes up

about l/l6 of the display area.

If the picture to be copied consists of the erect constraint and

the full size constraint, both applying to a single dummy variable which

is the attacher, copying produces a useful constraint complex attached

to the pen for subsequent application to any desired instance. With

only one attacher, the instance constrained is the one the pen is aimed

at when termination occurs.

COPYING INSTANCES

As we saw in Chapter VI the internal structure of an instance is

entirely fixed. The internal structure of a copy, however, is entirely

variable. An instance always retains its identity as a single part of

the drawing; one can only delete an entire instance. Once a definition

picture is copied, however, the copy loses all identity as a unit; indi­

vidual parts of it may be deleted at will.

One might expect that there was intermediate ground between the

fixed-internal-structure instance and the loose-internal-structure copy.

-107-

One might wish to produce a collection of picture parts, some of which

were fixed internally and some of which were not. The entire range of

variation between the instance and the copy can be constructed by copy­

ing instances.

For example, the arrow shown in Figure 7.1C can be copied into an

object picture to result in a fixed-internal-structure diamond arrowhead

with a flexible tail. As the definition in Figure 7«1C is set up, draw­

ing diamond-arrowheaded lines is just like drawing ordinary lines. One

aims the light pen where the tail is to end, presses "copy" and moves

off with an arrowhead following the pen. The diamond arrowhead in this

case will remain horizontal.

Copying pre-joined instances can produce vast numbers of joined

instances very easily. For example the definition in Figure 7*ID, when

repetitively copied, will result in a row of joined, equal size diamonds.

In this case the instances themselves are attachers. Although each press

of the "copy" button copies two new instances into the object picture,

one of these is merged with the last instance in the growing row. In

the final row, therefore, each instance carries all the constraints which

were applied to either of the instances in the definition. This is why

only one of the instances in Figure 7«1D carries the erect constraint.

Notice also that although the diamond is normally a two ̂attacher instance,

each of the diamonds in Figure 7-ID carries only one attacher. The other

has been deleted so that each instance in the final row of diamonds will

obtain only one right and one left attacher, one from each of the cop ied

instances.

-108-
THE MECHANICS OF COPYING

Needless to say, when a piece of ring structure is copied the

definition picture used is not destroyed; the copying procedure re­

produces its ring structure elsewhere in memory. However, the repro­

duction is not just a duplication of the numbers in some registers. The

parts of the definition drawing to be copied may be topologically related,

and the parts of the copy must be related to each other in the same way

rather than to the parts of the master. Worse yet, some parts of the

definition may be related to things which are not being copied. For

example, an instance is related to the master picture of which it is

an instance, and the copy of the instance must be related to the same

master picture, not to a copy of it.

To copy a picture, space to duplicate all the elements of the pic­

ture is allocated in the free registers at the end of the ring structure.

Each of the new elements is tied into its appropriate generic block ring

by its TYPE component. Each new element is placed in this ring adjacent

to the element it is a copy of. That is, for each element in the master

a duplicate element is set up adjacent to it in the generic ring for

that type of element. Appropriate scaled values are given to copied

variables. The various references in the definition elements are then

examined to see whether they refer to things that have been copied. If

they do, the corresponding components of the copied elements are made

to refer to the appropriate copied elements. On the other hand, if a

definition element refers to something which has not been copied, its

copy refers to the same element that its definition does.

When the complete copy has been made, the copies of all but the

last-designated of the attachers are recursively merged with the designated

-109-

portions of the object picture. The last-designated attacher is fastened

to the light pen with the recursive moving function. The last-designated

attacher may later on merge with another picture part.

-110-

Chapter VIII

CONSTRAINT SATISFACTION

The major feature which distinguishes a Sketchpad drawing from a

paper and pencil drawing is the user's ability to specify to Sketchpad

mathematical conditions on already drawn parts of his drawing which will

be automatically satisfied by the computer to make the drawing take the

exact shape desired. For example, to draw a square, any quadralateral

is created by sloppy light pen manipulation, closure being assured by

the pseudo light pen position and merging of points. The sides of this

quadralateral may then be specified to be equal in length and any angle

may be required to be a right angle. Given these conditions, the com­

puter will complete a square. Given an additional specification, say

the length of one side, the computer will create a square of the desired

size.

The process of fixing up a drawing to meet new conditions applied

to it after it is already partially complete is very much like the proc­

ess a designer goes through in turning a basic idea into a finished de­

sign. As new requirements on the various parts of the design are

thought of, small changes are made to the size or other properties of

parts to meet the new conditions. By making Sketchpad able to find new

values for variables which satisfy the conditions imposed, it is hop

that designers can be relieved of the need of much mathematical detail.

The effort expended in making the definition of constraint types as

general as possible was aimed at making design constraints as

geometric constraints equally easy to add to the system. To d ,

-111-

however, Sketchpad is more of a model of the design process than a

complete designer's aid "both "because it is limited to two dimensions

and because little advanced application has as yet been made of it.

Ihe work on constraint satisfaction has been successful as far as

it has been taken. The constraint definition and satisfaction programs

generalize easily to three dimensions; in fact, constraint satisfaction

for instances is even now treated as a four dimensional problem. The

high speed maze solving technique for constraint satisfaction described

below works well where constraints have been specified unredundantly.

There is much room for improvement in the relaxation process and in

making the "intelligent" generalizations that permit humans to

capitalize on symmetry and eliminate redundancy.

DEFINITION OF A CONSTRAINT TYPE

Each constraint type is entered into the system as a generic block

indicating the various properties of that particular constraint type.

Generic blocks for constraints need not be given symbolic programming

names since virtually no reference is made to particular constraint

types in the program. The generic block tells how many variables are

constrained, which of these variables may be changed in order to satisfy

the constraint, how many degrees of freedom are removed from the con­

strained variables, and a code letter for human reference to thi

constraint type.

Any number of variables may be related by a constraint, but the

display for constraints (see Chapter V) will he ambiguous if more than

four variables are indicated, and so no constraints relate more than

four variables. Of these variables, some may be referenced only.

-112-
The routine which satisfies the constraint by changing the values of

some of the variables is forbidden to satisfy the constraint by chang­

ing a "for reference only" variable. For example, a constraint could

be implemented vhich would make its first variable equal to its second

by changing the first to match the second, but not the reverse. This

kind of one-way constraint is useful because it speeds up the relaxation

procedure by forcing re-evaluation of variables in a specified order.

For example, the constraint which makes the value of a number equal to

the change in length of a bridge beam, thus indicating the force

carried by the beam, is one way. It would be pointless to have an

erroneous value of the indicator affect in any way the relaxation pro­

cedure for the bridge. Again, the constraint which relates a point to

an instance in such a way that the point maintains the same relationship

to the instance that an original point in the master picture had to the

master picture, uses the original point "for reference only" to discover

just what the correct relationship is. Thus the end terminal on a

resistor will always stay at the end of the resistor. It would be out

of keeping with the fixed geometry nature of instances to have the

internal details of the instance changed to make it fit into some

awkward position.

The one-way type constraint, however, can lead to instabilities in

the constraint satisfaction procedure. For example, if two scalars

were each specified to be twice the value of the other, with reference

only made to the smaller,

A - 2B (8-1)

B - 2A,

-113-
both variables would grow without bound, assuming, each iteration,

values four times as big as before. If, however, a similar condition

were set up with normal two-way constraints, the values of the variables

would approach zero, a correct and stable result. Since the number of

one-way constraints is small and they are designed for and used in

special applications only, very little instability trouble of this kind

has been observed. Future users who add one-way constraints, however,

are warned to be cautious of the instabilities which may result.

NUMERICAL DEFINITION OF CONSTRAINTS

After the first stumblings of trying to define a constraint type in

terms of the equations of lines along which the constrained variables

should lie to satisfy the constraint, the numerical definition of con­

straints directly in terms of an error was devised. By using an error

definition and considering the square of the error as an energy, one not

only reflects directly the intent of the relaxation process, but also

makes it easy to write the defining subroutines for new constraint types.

The defining subroutine for a constraint type is a subroutine which

will compute, for the existing values of the variables of a particular

constraint of that type, the error introduced into the system by that

particular constraint. For example, the defining subroutine for making

points have the same x coordinate (to make a line between them verticâ)

computes the difference in their x coordinates. What could be simpler;

The computed error is a scalar which the constraint satisfaction routine

will attempt to reduce to zero by manipulation of the constrained

variables. The computation of the error may be non-linear or time

dependent, or it may involve parameters not a part of the drawing ->uch

-114-
as the setting of toggle switches, etc. The flexibility of computation

subroutines for defining constraints is tremendous.

In order to avoid overflow difficulties, the partial derivative of

the error with respect to the value of any of the components of a con­

strained variable must be less than two. In order to make the constraints

work well together, it is necessary that they be balanced, that is that

the partial derivative of error with respect to displacement be nearly

equal for all constraint types. I have arbitrarily tried to make the

error subroutines compute an error about proportional to the distance by

which a variable is removed from its proper position. In other words,

many of the existing constraint computation subroutines make the partial

derivative about unity.

LINEARIZATION OF CONSTRAINTS

The method of finding the least mean squares fit to a group of

constraints described below requires that a linear equation be given for

each constraint. To find the linear equation which best approximates

the possibly non-linear constraint for the present values of the variabiles,

the error computed by the subroutine is noted for several slightly

different values of the variables. The equation,

y (X. - X.) = -Eo, (8-2)
{_. AX. 1 lO

where x are the components of the variable, E is the computed error,
i

and subscript o denotes intial value, is used as the linear best fit-

Actually, the coefficients computed are l/2 the values shown in equation

(8-2) to permit error to be equal to displacement without generating

overflow.

-115-
Sorae constraints may remove more than one degree of freedom from

the variables constrained. For example, the constraint which locates

one thing exactly mid-way between two others removes two degrees of

freedom. Such constraints must have as many error computation sub­

routines as there are degrees of freedom lost, since each subroutine

results in a single linear equation. A subroutine which computes the

distance from a variable to its correct location without regard to the

number of degrees of freedom being removed will cause erratic results.

A correct subroutine pair for constraining one thing to lie between two

others computes both how far out of line the center thing is and, sep­

arately, 1/2 the difference in the distances from the center object to

the two outer ones (l/2 is put in to meet the maximum derivative require­

ment).

THE RELAXATION METHOD

When the one pass method of satisfying constraints to be described

later on fails, the Sketchpad system falls back on the reliable but slow

method of relaxation to reduce the errors indicated by the various com­

putation subroutines to smaller and smaller values. For simple construe

tions such as the hexagon illustrated in Figure 1 »5> Pa6e 15 the relaxation

procedure is sufficiently fast to be useful. However, for complex

systems of variables, especially directly connected instances, relaxation

is unacceptably slow. Fortunately, it is for just such directly con­

nected instances that the one pass method shows the most striking success.

The relaxation method of satisfying conditions is as follows:

Choose a variable. Re-evaluate it to reduce the total error
introduced by all constraints in the system. Choose another
variable and repeat.

-116-

Note that since each step makes some net reduction of total error, there

will be monotonic decrease of error and thus stability is assured.

Since re-evaluating a variable will change only the error introduced by

the constraints which apply to that variable, only the changes in the

errors introduced by these constraints need be considered. Other vari­

ables and therefore the errors of constraints applying only to them will

remain constant. Sketchpad's ring structure makes it easy to consider

all constraints applying to a particular variable since all such con­

straints are collected together in a ring whose "hen" is in the variable.

It is important in the relaxation method that, at each step,the very

latest computed values of all variables be used for error computations.

From the point of view of the program, this means that only one value

for each variable need be stored, each being updated in turn. Former

values not only may, but must be discarded. It is also important that

the change in error obtained by completely satisfying a constraint by

moving one of its variables be identical to to the change in error to be

obtained by completely satisfying it by moving another of its variables.

The error computing subroutine definition for a constraint computes the

same error for a constraint no matter which of its variables is to be

moved. My original instability troubles with constraint satisfaction

came from insufficient care in meeting this condition.

LEAST MEAN SQUARES FIT TO LINEARIZED CONSTRAINTS

In implementing the relaxation method above, it is important to be
i

able to find quickly a new value for a variable which reduces the total

error introduced by the constraints on that variable. In particulâ the

linearized form of the constraints results in a set of linear equations

-117-
for the variable each of which must be met as closely as possible.

Unfortunately, there may be any number of linear equations applying to

a particular variable and these may be either independent but incomplete,

independent and complete, or redundant and overdefining. A general

arithmetic macro, SOLVE, for finding the best value for a set of equations

has been devised.

SOLVE converts the given equations into an independent set of

equations whose solution will be a point of minimum mean squared error

for the original set. It is not always possible to solve the independent

set of equations uniquely, and if it is not, SOLVE finds that solution

which results in the minimum change from the existing value of the vari­

able. The mathematical discussion pertinent to SOLVE is given in

Appendix F. I am indebted to Lawrence G. Roberts for providing me with

the basic SOLVE program.

Seen from the outside, then, the linearization program and SOLVE

make it possible for Sketchpad to find a new value for any variable to

more closely meet the conditions indicated by constraints. Repeated

application of these programs to variables, in sequence, implements the

relaxation process. Application of these programs to selected variables

to detect the number and degree of independence of constraints is used

as an important part of the one pass constraint satisfaction method.

ONE PASS METHOD

Sketchpad can often find an order in which the variables of a drawing

may be re-evaluated to completely satisfy all the conditions on them in

just one pass. For the cases in which the one pass method works, it is

far better than relaxation: it gives correct answers at once; relaxation

-118-
may not give a correct solution in any finite time. Sketchpad can find

an order in which to re-evaluate the variables of a drawing for most of

the common geometric constructions. Ordering is also found easily for

the mechanical linkages illustrated in the last chapter. Ordering can­

not be found for the bridge truss problems illustrated in the last

chapter.

The way in which the one pass method works is simple in principle

and was easy to implement as soon as the nuances of the ring structure

manipulations were understood. To visualize the one pass method, con­

sider the variables of the drawing as places, and the constraints relating

variables as passages through which one might pass from one variable to

another. Variables are adjacent to each other in the maze formed by the

constraints if there is a single constraint which constrains them both.

Variables are totally unrelated if there is no path through the con­

straints by which one could pass from one to the other.

Suppose that some variable can be found which has so few constraints

applying to it that it can be re-evaluated to completely satisfy all of

them. Such a variable we shall call a "free" variable. As soon as a

variable is recognized as free, the constraints which apply to it are

removed from further consideration, because the free variable can be

used to satisfy them. Removing these constraints, however, may make ad­

jacent variables free. Recognition of these new variables as free

removes further constraints from consideration and may make other ad­

jacent variables free, and so on throughout the maze of constraints.

The manner in which freedom spreads is much like the method used in

Moore's algorithm^ to find the shortest path through a maze. Having

found that a collection of variables is free, Sketchpad will re-evaluate

-119-
them in the reverse order, saving the first-found free variable until

last. In re-evaluating any particular free variable Sketchpad uses

only those constraints which were present when that variable was found

to be free.

In the ring structure representation of the drawing all variables

found to be free are placed in a special ring called the FREEDOMS ring.

(Note that the FREE ring is used for empty spaces in storage and has

nothing to do with freedom in the present sense.) Each variable placed

on the FREEDOMS ring has associated with it, by extra ties, those con­

straints which it will be used to satisfy. In what order variables

should appear in the FREEDOMS ring need only be computed when the con­

straint conditions change. For a given set of conditions the same

ordering will serve for finding many satisfactory values. For example,

as part of a linkage is moved with the light pen, the ordering first set

up for the linkage serves until the conditions change.

-120-

Chapter IX

EXAMPLES AND CONCLUSIONS

In the first chapter we saw, as an introduction to the system, some

simple examples of Sketchpad drawings. In the "body of this report we

have seen many drawings, all of which, except the drawing of the light

pen, Figure k.2, were drawn with Sketchpad especially to be included

here. In this chapter we shall consider a wider variety of examples in

somewhat more detail. The examples in this chapter were all taken from

the library tape and thu$ serve to illustrate not only how the Sketchpad

system can be used, but also how it actually has been used so far.

We conclude from these examples that Sketchpad drawings can bring

invaluable understanding to a user. For drawings where motion of the

drawing, or analysis of a drawn problem is of value to the user, Sketch­

pad excells. For highly repetitive drawings or drawings where accuracy

is required, Sketchpad is sufficiently faster than conventional tech­

niques to be worthwhile. For drawings which merely communicate with

shops, it is probabl y better to use conventional paper and pencil.

PATTERNS

The instance facility outlined in Chapter I enables one to draw

any symbol and duplicate its appearance anywhere on an object drawing at

the push of a button. The symbols drawn can include other symbols and

so on to any desired depth. This makes it possible to generate huge num­

bers of identical shapes; if at each stage two of the previous symbols

are combined to double the number of basic shapes present, in twenty

steps one million objects are produced.

-121-

The hexagonal pattern we saw in Figure 1.1, p. 10, is one example

of a highly repetitive drawing. The hexagonal pattern was first drawn

in response to a request for hexagonal "graph" paper. About 900 hexa­

gons were plotted on a single 30 x 30 inch plotter page. It took about

one half hour to generate the 900 hexagons, including the time taken to

figure out how to do it. Plotting them takes about 25 minutes. The

drafting department estimated it would take them two days to produce a

similar pattern.

The instance facility also made it easy to produce long lengths of

the zig-zag pattern shown in Figure 9*1* As the figure shows, a single

"zig" was duplicated in multiples of five and three, etc. Five hundred

zigs were generated in a single row. Four such rows were plotted one

half inch apart to be used for producing a printed circuit delay line.

Total time taken was about ^5 minutes for constructing the figure and

about 15 minutes to plot it.

In both the zig-zag pattern of Figure 9*1 and in the hexagonal

pattern of Figure 1.1 the various subpictures were fastened together by

attachment points. In the hexagonal pattern, each corner of the basic

hexagon was attached to the corners of adjacent hexagons. The position

of any hexagon was then completely determined by the position of any

other. In the zig-zag pattern of Figure 9.1, however, only a single

attachment was made between adjacent zig-zags. Additional constraints

were applied to each instance to keep them erect and of the same size.

A somewhat less repetitive pattern to be used for encoding the

time in a digital clock is shown in Figure 9.2. Each cross in the fig­

ure marks the position of a hole. The holes will be placed so that a

binary coded decimal (BCD) number will indicate the time.

-122-

juuuuuvAAiuuuuukMiuuiniuuuxnAiuuuinAniuvAAiuwMAAAiuuuuuwtnAnAnmAniwuuuuuvAniuuuui

FIGURE 9.1.
ZIG-ZAG FOR DELAY LINE

FIGURE 9 . 2 .
BCD ENCODER FOR C LOCK

-123-

Sketchpad was first used in the BCD clock project to produce 60

radial lines at equal 6° spacing. To do this a single 6° wedge was pro­

duced by first trisecting a right angle to obtain a 30° wedge and then

cutting the 30° wedge into five parts. The relaxation procedure was

used in each case to make three or five sketched-in chords equal in

length. Making the 6° wedge took a brand new user less than one half

hour including instruction time. The author has constructed other

wedges as small as 1/128 of a circle in five minutes. All such wedges

become a part of the library.

The 6° wedge has three attachment points. By attaching five of

the wedges together, and then attaching three groups of five, a quadrant

is constructed. Fitting together four quadrants gives a complete circle

based entirely on the single 6° wedge. The advantage of constructing a

full circle composed of 60 wedges is that any lines drawn in the origi­

nal 6° wedge will appear 60 times around the circle with no further

effort on the part of the user. Sixty radial lines were produced in

this way.

Using the sixty radial lines plotted for him the BCD clock designer

then marked with pencil approximately where the crosses should be placed

to obtain BCD coding. Returning to Sketchpad we put a pattern of dots

in the 6° wedge so that in the full circle, rings of dots appeared which

could be aimed at with the light pen. It was then an easy matter to

place a cross exactly on each of the desired dots. Total time for

placing crosses was 20 minutes, most of which was spent trying to in­

terpret the sketch.

-12lj~

LINKAGES

By far the most interesting application of Sketchpad so far has

been drawing and moving linkages. We saw in Chapter I the straight line

linkage of Peaucellier, Figure 1.6, p.20. The ability to draw and then

move linkages opens up a new field of graphical manipulation that has

never before been available. It is remarkable how even a simple linkage

can generate complex motions. For example, the linkage of Figure 9.3

has only three moving parts. In this linkage a central 1 link is sus­

pended between two links of different lengths. As the shorter link

rotates, the longer one oscillates as can be seen in the multiple expo­

sure. The ji link is not show n in Figure 9.3 so that the motion of four

points on the upright part of the JT may be seen. These are the four

curves at the,top of the figure.

To make the three bar linkage, an instance shaped like the j; was

drawn and given 6 attachers, two at its joints with the other links and

four at the places whose paths were to be observed. Connecting the jj

shaped subpicture onto a linkage composed of three lines with fixed

length created the picture shown. Ihe driving link was rotated by turn­

ing a knob below the scope. Total time to construct the linkage was five

minutes, but over an hour was spent playing with it.

Sketchpad can make linkages that one would hardly think of con­

structing out of actual links and pins. For example, a Sketchpad sliding

joint is ideal, whereas to actually build a sliding joint is relatively

difficult. Again, it i s possible to make two widely separated links be

of equal length by applying an appropriate constraint, but to build such

a linkage would be impossible.

FIGURE 9-3. THREE MR LINKAGE
The paths of four points on the

central link are traced. This is a
15 second time exposure of a moving
Sketchpad drawing.

FIGURE 9-̂ . CONIC DRAWING LINKAGE
As the "driving lever" is moved, the

point shown with a "box around it traces
a conic section. This conic can be seen
in the time exposure.

-126-

A linkage that would he difficult to build physically is shown in

Figure 9.^. This linkage is based on the complete quadrilateral. The

three circled points and the two lines which extend out of the top of the

picture to the right and left are fixed. Two moving lines are drawn from

the lower circled points to the intersections of the long fixed lines

with the driving lever. The intersection of these two moving lines (one

must be extended) has a box around it. It can be shown theoretically

that this linkage produces a conic section which passes through the place

labeled "point on curve" and is tangent to the two lines marked "tangent-"

Figure 9.^B shows a time exposure of the moving point in many positions.

The straight dotted lines are the paths of other, less interesting points.

At first, this linkage was drawn and working in fifteen minutes.

Since then we have rebuilt it time and again until now we can produce it

from scratch in about three minutes.

DIMENSIONING OF DRAWINGS

It is important that a Sketchpad drawing be made in the correct size

for many applications. For example, the BCD clock pattern shown in Fig­

ure 9-2 was plotted exactly 12 inches in diameter for the actual appxxca-

tion. In fact, the precision of the plotter is such that its plotted

output can be used directly as a layout in many cases. But the size of

a drawing as seen on the computer display is variable. To make it pos­

sible to have an absolute scale in drawings, a constraint is provided

which forces the value displayed by a set of digits to indicate the dis­

tance between two points on the drawing. The distance is indicated in

thousandths of an inch for "full size" plotted output.

-127-

Th is distance indicating constraint is used to make the number in a

dimension line. Many other constraints are used to make the arrowheads

at the end of the line be "parallel" to the dimension line and to make

enough space in the line for the dimension number. In some sense the

dimension line is a complicated linkage; like a linkage it can be moved

around while retaining its properties. For example, the arrowheads stay

the same size even when the dimension line is made longer. A dimension

line with small arrowheads is a part of the library. This line is suit­

able for dimensions of the order of a few inches. A three-four-five

triangle dimensioned with this line is shown in Figure 9-5.

To produce the three-four-five triangle of Figure 9.5, three verti­

cal and four horizontal line segments were made to be the same length.

After erasing these lines, the three correctly positioned corners of the

triangle were dimensioned. Putting in a dimension line is as easy as

drawing any other 3.ine. One points to where one end is to be left,

copies the definition of the dimension line by pressing the copy button,

and then moves the light pen to where the other end of the dimension

line is to be. The size of the three-four-five triangle was adjusted so

that even dimensions appeared. At other sizes, of course, the ratio of

the dimensions was correct but not so easy to recognize at a glance.

Total time to produce dimensioned three-four-five triangle was three

minutes, exclusive of time taken to produce the library version of the

dimension line. The first dimension line took about fifteen minutes to

construct, but that need neve r be repeated.

-128-

FIGURE 9.5. DIMENSION LINES

-1186 " MEANS TENSI0N

FIGURE 9.G.
TRUSS UNDER LOAD

-129-

BRIDGES

One of the largest untapped fields for application of Sketchpad is

as an input program for other computation programs. The ability to

place lines and circles graphically, when coupled with the ability to

get accurately computed results pictorially displayed, should bring

about a revolution in computer application. With Sketchpad we have a

powerful graphical input tool. It happened that the relaxation analysis

built into Sketchpad is exactly the kind of analysis used for many engi­

neering problems. By using Sketchpad's relaxation procedure we were

able to demonstrate analysis of the force distribution in the members

of a pin connected truss. We do not claim that the analysis represented

in the next series of illustrations is accurate to the last significant

digit. What we do claim is that a graphical input coupled to some kind

of computation which is in turn coupled to graphical output is a truly

powerful tool for education and design.

In Figure 9.6 is shown a truss bridge supported at eac h end and

loaded in the center. To draw this figure, one bay Of the truss (shown

below the bridge) was first drawn with enough constraints to make it

geometrically accurate. These constraints were then deleted and each

member was made to behave like a bridge beam. A bridge beam is con­

strained to maintain constant length, but any change in length is ind i­

cated by an associated number. Under the assumption that each bridge

beam has a cross-sectional area proportional to its length, the numbers

represent the forces in the beams. The basic bridge beam definition

(consisting of two constraints and a number) may be copied and applied

to any desired line in a bridge picture. Each desired bridge member was

-130-

changed from a line into a full "bridge beam by pointing to it and press­

ing the "copy" button.

Using the bridge bay six times we construct the complete bridge.

The loading line and the one missing end member are put in separately.

The six-bay unloaded truss bridge is part of the library. It took less

than ten minutes to draw completely. Applying a load where desired and

attaching supports, one can observe the forces in the various members.

It takes about 30 seconds for new force values to be computed. The

bridge shown in Figure 9.6 has both outside lower corners fixed in posi­

tion. Normally, of course, a bridge would be fixed only at one end and

free to move sideways at the other end.

Having drawn a basic bridge shape, one can experiment with various

loading conditions and supports to see what the effect of making minor

modifications is. For example, an arch bridge is shown in Figure 9.7

supported both as a three hinged arch (two supports) and as a cantilever

(four supports). For nearly identical loading conditions the distribu­

tion of forces is markedly different in these two cases.

ARTISTIC DRAWINGS

Sketchpad need not be applied only to engineering drawings. The

ability to put motion into the drawings suggests that it would be ex­

citing to try making cartoons. The capability of Sketchpad to store

previously drawn information on magnetic tape means that every cartoon

component ever drawn is available for future use. If the almost identi­

cal but slightly different frames that are required for making a motion

picture cartoon could be produced semi-automatically, the entire Sketch­

pad system could justify itself economically in yet another way.

-132-

One way of cartooning is "by substitution. For example, the girl

"Nefertite" shown in Figure 9*8 can be made to wink by changing which

of the three types of eyes is placed in position on her otherwise eye­

less face. Doing this on the computer display has amused many visitors.

A second method of cartooning is by motion. A stick figure could

be made to pedal a bicycle by appropriate application of constraints.

Similarly, Nefertite's hair could be made to swing. This is the more

usual form of cartooning seen in movies.

Aside from its economics as a teaching or amusement device, car­

tooning can bring the insights which are the prime value of Sketchpad

drawings. The girl seen in Figure 9.9 was traced from a photograph into

the Sketchpad system. The photograph was read into the computer by a

8
facsimile machine used in another project and shown in outline on the

computer display. This outline was then traced with wax pencil on the

display face. Later, with Sketchpad in the computer, the outline was

made into a Sketchpad drawing by tracing the wax line with the light

pen.

Once having the tracing on magnetic tape many things can be done

with it. In particular, the eyes and mouth were erased to leave the

featureless face which may also be seen in Figure 9»9» Returning to

the tracing and erasing everything except the mouth and then everything

except an eye we obtained features. In refitting the features to the

blank face we discovered that, although the original girl was a sweet

looking miss, an entirely different character appears if her mouth is

made larger as in Figure 9.10. Using a computer to partially automate

an artistic process has brought me, a non-artist, some understanding of

-133-

STTTT777

FIGURE 9.8.

WINKING GIRL AND COMPONENTS

-13^-

<®>\ Kg2>

o

FI6URE 9 9
GIRL TRACED FROM PHOTOGRAPH

FIGURE 9 .10.
GIRL WITH F EATURES CHANGED

-136-

the effect of certain features on the appearance of a face. It is the

understanding that can be gained from computer drawings that is more

valuable than mere production of a drawing for shop use.

ELECTRICAL CIRCUIT DIAGRAMS

Electrical engineers are, of course, interested in making circuit

diagrams. It is not surprising that Sketchpad should be applied to

this task. Unfortunately, electrical circuits require a great many

symbols which have not yet been drawn properly with Sketchpad and are

not therefore in the library. After some time is spent working on the

basic electrical symbols it may be easier to draw circuits. So far,

however, circuit drawing has been a big flop.

The circuits of Figure 9.11 are parts of an analog switching

scheme. You can see in the figure that the more complicated circuits

are made up of simpler symbols and circuits. It is very difficult,

however, to plan far enough ahead to know what compos its of circuit

symbols will be useful as subpictures of the final circuit. The simple

circuits shown in Figure 9.11 were compounded into a big circuit involv­

ing about UO transistors. Including much trial and error, the time

taken by a new user (for the big circuit not shown) was ten hours. At

the end of that time the circuit was still not complete in every detail

and he decided it would be better to draw it by hand after all.

CONCLUSIONS

The circuit experience points out the most important fact about

computer drawings. It is only worthwhile to make drawings on the

-137-

-< -< -A/vW-

FIGURE 9.11.
CIRCUIT D IAGRAMS

-138-

computer if you get something more out of the drawing than just a draw­

ing. In the repetitive patterns we saw in the first examples, precision

and ease of constructing great numbers of parts were valuable. In the

linkage examples, we were able to gain an understanding of the behavior

of a linkage as well as its appearance. In the bridge examples we got

design answers which were worth far more than the computer time put into

them. If we had had a circuit simulation program connected to Sketch­

pad so that we would have known whether the circuit we drew worked, it

would have been worth our while to use the computer to draw it. We are

as yet a long way from being able to produce routine drawings with the

computer.

FUTURE WORK

The methods outlined in this report generalize nicely to three

dimensional drawing. In fact, work has already been begun to make a

complete "Sketchpad Three" which will let the user communicate solid

objects to the computer. A forthcoming thesis by Timothy Johnson of

the Mechanical Engineering Department will describe this work. When

Johnson is finished it should be possible to aim at a particular place

in the three dimensional drawing through two dimensional# perspective

views presented on the display. Johnson is completely bypassing the

problem of converting several two dimensional drawings into a three

dimensional shape. Drawing will be directly in three dimensions from

the start. No two dimensional representation will ever be stored.

Work is also proceeding on direct conversion of photographs into

line drawings. Roberts reports a computer program8 able to recognize

-139-

simple objects in photographs well enough to produce three dimensional

line drawings for them. Roberts is storing his drawings in the ring

structure described in Chapter III so that his results will be compat­

ible with the three dimensional version of Sketchpad.

Much room is left in Sketchpad itself for improvements. Some im­

provements are minor, such as including mirror image subpictures. Some

improvements should be made to suit Sketchpad to particular uses that

come up. For example, it is so interesting to study the path of parti­

cular points on a linkage that Sketchpad should be able to store and

later display the path of chosen points.

More major improvements of the same order and power as the existing

definition copying capability can be forseen. At present Sketchpad is

able to add defined relationships to an existing object drawing. A

method should be devised for defining and applying changes which involve

removing sane parts of the object drawing as well as adding new ones.

Such a capability would permit one to define what rounding off a corner

means. Then, by pointing at any corner and applying that definition,

one could round off any corner. Sketchpad cannot now do this because

rounding off a corner involves disconnecting the two lines which form

the corner from the corner point and then putting a small circular arc

between them.

HARDWARE

Sketchpad has pointed out some weaknesses in present computer

hardware. A proposal for a line drawing display which would greatly

surpass the capability of the spot display now in use is given in

-1^0-

Appendix E. Such a display would not only provide flicker free display

to the user, hut also would relieve the computer of the burden it now

carries in computing successive spots in the display.

There are two conflicting demands made by Sketchpad on the light

pen. On the one hand, the pen must have a fairly large field of view

for ease of tracking. On the other hand, it should have a small field

of view for aiming at objects. It should be possible to build a pen

with two concentric fields of view which would report to the computer

separately.

The arithmetic element of the computer is not used in doing the

ring structure processing which forms a large part of Sketchpad. On

the other hand, the index registers and their associated arithmetic are

extensively used. Hiis suggests that several users could share an

arithmetic element if sufficiently powerful index arithmetic were made

available to each of them.

-ll+l-

Appendix A

CONSTRAINT DESCRIPTIONS

code variable
types

description

k3
T

point
instance
(point)

Point bears same relation to
instance that (point) bears
to its picture.
GENERATED AUTOMATICALLY WITH
INSTANCES

33 p thing Three things are collinear.
L p thing Note: no distinction made about

p thing ordering of variables.
GENERATED AUTOMATICALLY WHEN
POINTS ARE CREATED ON LINES

22 p thing Distance from first to second
C p thing is equal to distance from first

p thing to third. (First is circle center.)
GENERATED AUTOMATICALLY WHEN
POINTS ARE CREATED ON CIRCLES

2k ^ thing Thing is erect or on its side.

t ~ I -
27 p thing First thing is directly above
H p thing or below, or directly beside

second thing. (Horizontal or
vertical line.)
GENERATED AUTOMATICALLY FOR ANY
LINE BY HORV BUTTON

30 ^ thing U thing is "parallel" to line
I p thing between p things. Parallel to

p thing horizontal line means upright.
(To set angle of text.)

-142-

code

21
B

25
F

47
X

variable
types

p thing
p thing
p thing
p thing

4 thing
4 thing

scalar
p thing
p thing

scalar
4 thing

instance

06
6

p thing
p thing
p thing

4 thing

description

Distance from first thing to
second is l/3,l/2,l,2,3> times
distance from third to fourth.

First thing is l/3,l/2>l>2>3
times size of second thing.

Value of scalar equals distance
between things in inches.

Value of scalar equals size of
thing in inches.

Instance is full size, i.e. the
same size as its master picture

First thing is at mid point of
other two, e.g. dimension in
dimension line is at center of
line.

Thing is l/32,l/l6,l/8,l/4,l/2
or 1 inch in overall size.

37
P

p thing
p thing
p thing
p thing

Line from first to second would
be parallel or perpendicular to
line from third to fourth.
(Lines need not be there.)

code variable
types

-1^3-

des cript ion

36 k thing p thing will be next to if thing
0 p thing with enough space for 5 digit

number, e.g. to create space in
dimension line.

46
w

p thing
p thing

Distance between things is main­
tained what it wa s last time meta
of tog 22 was down. USES META
OF TOG 22. e.g. for bridges and
linkages.

50
Y

scalar
(p thing)
(p thing)

Value of scalar is equal to change
in distance between p things since
meta of tog 22 was down, sign con­
sidered. e.g. to display forces in
beams. USES META OF TOG 22.

Appendix B

-1UU-

PUSH BUTTON CONTROLS

BUTTON NAME BIT NUMBER FUNCTION

Draw 1.8

Circle 1.7
center

Move 2.1

Delete 1.3

Instance 2.k

Copy 20 3.6
Copy 21 3.1
Copy 22 2.5
Copy 23 1.9

Stop 1.6

Text ^.3

Number 3.7

Hold ^•9

Garbage 1.1

Create a new straight line segment or
circle arc. End of line or arc left
attached to light pen.

Center of circle is left where pen is
pointing. Next thing drawn will be
circle arc.

Object pointed at moves with light pen.

Object pointed at removed from drawing.

Instance of picture whose number is in
toggle register 25 is created.

Four buttons. Copy definition picture
indicated in toggle registers 20 to 23
respectively. These buttons can be set
up to create equal length lines, di­
mension lines, etc. Any four functions
can be available at once.

Leave moving obj ect wherever it is.
Merge moving object if aiming at object
of like type. Same as termination
flick of the pen.

Create line of text consisting only of
the letter X. Typing while a piece of
text is moving adds to the text dis­
played .

Create a new set of digits and a scalar
which is its value. Digits left moving.

Following pen flick not to be taken as
termination signal. Used to set pen
aside for typing text.

If pen is tracking, recenter picture so
that place pen is pointing at will be
in the center. If pen not tracking, compact
ring structure by removing garbage.

BUTTON NAME BIT NUMBER FUNCTION

-1^5-

Constraint 2.8

Horv

Designate

Tie

Fix

Unfix

IBM

Library-

Library
write

Change
instance

Dismember

Order

Disorder

2.9

2.2

2.6

3.3

2.7

k.3

3.9

Special start
point

2.3

k.k

k.6

^.5

Create a new constraint of the type
numbered in toggle register 25. Dummy
variables are created. Constraint
left moving.

Apply horizontal or vertical constraint
to line aimed at. Choice is based on
1+5° cutoff.

Designate object. Ibr copying a definition
picture with three or more ties.

Object pointed at is an attacher of this
picture.

This object must not move during con­
straint satisfaction. Moving an object
with the light pen unfixes it.

All fixed and designated objects unfixed
and undesignated.

Read tape record. Number of record on
tape given in toggle 26. Typewriter
confims successful reading or writing.

Read a record from the TX-2 library
tape. Address of record given in tog­
gle register 27. Typewriter confirms.

Write a record on library tape. Type­
writer confirms.

Moving instance or instance pointed at
is changed to type indicated in Toggle
register 25. Can change resistor into
diode, etc.

Instance pointed at is redu ced one level,
i.e., its internal structure on the next
level becomes usable.

Lines are put in better order for plot­
ting.

Lines are put in worst order for plot­
ting.

BUTTON NAME BIT NUMBER FUNCTION

-146-

Punch

Plot

4.7

4.8

Punch plotter tape for object picture,

Plot object picture.

The following dangerous functions only operate if "meta" button (4.10)

is pressed as well.

Delete
constraints

Delete
points

Delete
picture

IBM

1.2

1.4

1.5

4.3

All constraints in object picture are
deleted.

All unattached points in object picture
are deleted.

Entire object picture is deleted.

Write IBM tape record. Typewriter
confirms.

Appendix C -1^7-

STRUCTURE OF STORAGE BLOCKS

(C) s Chicken

(H) a Hen

(S) s Start of subroutine

- s Ring part of component

. s Spare register

Q 8 Data part of block

TYPE OF
BLOCK

STRUCTURE REMARKS

Universe
Variables TYPE
Holders
Constraints SPECB
Topos .

INAME (
Frees 1. 1
Deads
Movings
Curpics
Freedoms
Fixeds
Desigs
Mergers
Works

Lines TYPE
Circles
Pictures SPECB

NAME
DISPLAY!
HOWBIG

MOVIT
SIZE

KIND

Scalars
Points
Instances
Texts
Digits
Dummies

TYPE

SPECB

NAME
DISPLAY/
HOWBIG

MOVIT
SIZE
WHERE
KIND
TUPLE
VARLOC

(C) All these short generic blocks use the
same format. TYPE is a chicken (C)

(H) which connects the block to its next
higher level in the generic structure,
see Figure 3.8. SPECB is the hen (H)
collecting the TYPE blocks in the next
lower level. TYPE and SPECB serve this
purpose in all blocks where they appear.
NAME contains a four letter typewriter
code name for each generic block.
Counting lines, one finds that TYPE a
0, SPECB a 2, and NAME * h.

(C) / Generic blocks for lines, circles and\
\ picture blocks. /

(H)

(S) Display subroutine.
(S) Fit scope around this thing.

(S) Apply transformation to this thing (Degenerate)
Length of line, circle and picture blocks.

Put these in PPART or PICBLKS of a picture
block.

(C) / Generic blocks for various kinds of
(variables.

(H)
)

(S)
(S)

(S)

(S)

Apply transformation to this thing.

Find position of thing on display.

Number components in vector.
Location of first vector component in block.

-1 kQ-

Hov TYPE (c) Generic blocks for various constraint

Porp -

(c)
types.

etc. SPECB (H)
etc. -

NAME
DISPLAY (s)

Degenerate. (Does nothing.) HOWBIG (s) Degenerate. (Does nothing.)

MOVIT (s) Degenerate.
SIZE
CONLET Letter to appear in display.
KIND

CQMP (s) Error computing subroutine.
NCON

(s)
Number degrees of freedom removed.

CHVAR Number of changeable variables.

Picture TYPE (c) (Specific picture block.)

PICBLKS (H) Abstractions in picture. KIND of generic
_

(H)
block tells if a thing is an abstraction.

PPAET (H) Picture parts. Lines, Circles, Instances,
-

(H)
Texts, and Digits in picture.

PWHOS (c) Put into SPECB of Curpics ring if this
- is current picture.
PPABOM (H) Moving parts of picture.

PATAP (H) Attachers of this picture.

PINS (H) Instances of this picture.

PSIZE
PNAME
PSAVE

Overall size of this picture.
36 bit "name" for this picture.
Space to save transformation when recursively-
expanding instances.

Line TYPE (C) (Specific line block.)

ATATAP (C) Put into PATAP of picture if this line
- is an attacher.
BWHOS (C) Which picture this thing belongs to.

VORD (C) Put into SPECB of Movings if this line
- is moving.
LSP (C) Start point of line. Goes into PLS ring
- of point.
LEP (C) End point of line.

Circle

Point

Instance

TYPE (c)

ATATAP (C)

BWHOS (C)

VORD (C)

CSP (c)

CEP (C)

CIRCEN (C)

CVALJ
TYPE (C)

ATATAP (C)

BWHOS (C)

VORD (C)

VFLW (H)

VCON (H)

PLS (H)

IPCOTP (H)

PVALJ

TYPE (c)

ATATAP (c)

BWHOS (c)

VORD (c)

VFLW (H)

VCON (H)

IWHAT (c)

IVAL S
"
" j
It '

(Specific circle "block.) -1̂ 9-

Start point of circle arc.

End point of circle arc.

Center point of circle.

Angle of circle arc (to avoid ambiguity)
Radius of Circle (to save recomputation)

(Specific point block.)

Put in SPECB of Freedoms during maze-
solving constraint satisfaction.

Constraints which this variable will
be used to satisfy.
Constraints on this variable.

Lines and Circles on this point

Instance-point constraints which use
this point for reference only.
X coordinate of point.
Y coordinate of point.

Specific instance block. Size of
instance is half size of enclosing box,

What picture this is an instance of.

Size times cosine of rotation.
Size times sine of rotation.
X coordinate.
Y coordinate.

-150-

Text

Dummy

TYPE (c)

ATATAP (c)

BWHOS (C)

VORD (C)

VFLW (H)

VCON (H)

TVAL >
Tf)
" 1 If

I

TXTS
i»

•i

II

u

n

n

H

H)
it

TYPE (C)

ATATAP (C)

BWHOS (C)

VORD (C)

VFLW (H)

VCON (H)

TPVAL)

/Particular lines of text. Size of \
/ tex t is half height of letters. Position

V line.

Size times cosine of rotation.
Size times sine of rotation.
X coordinate.
Y coordinate.
Text to he shown, four letters per
register, typewriter codes.

(Particular dummy variable.)

X coordinate.
Y coordinate.

-151-

Digits

Scalar

TYPE (c)

ATATAP (c)

BWHOS (c)

VORD (c)

VFLW (H)

VCON (H)

NTOSHOW (c)

NVAL 1
!? 1
tT /
ft I

TYPE

ATATAP (c)

BWHOS (c)

VORD (c)

VFEW (H)

VCON (H)

SSHOW (H)

SVAL |

• i

TYPE (c)

ATATAP (c)

BWHOS (c)

CVTS,VORD (c)

VAR1

VAR2

VAR3

VARlt

/A particular set of digits. Size of
\ digits is half height of figures.

Scalar "whose value is to be shown.

Size times cosine of rotation.
Size times sine of rotation.
X position.
Y position.

(A particular scalar block.)

Digits showing this scalar's value.

Value of scalar.

/All constraint blocks have same format. \
If fewer than four variables, block will j

. be shorter and VARIATION will be moved I
\up. /

Variable used to satisfy this constraint
in maze-solving method.
First constrained variable.

Second constrained variable.

VARIATION Code for variations within a constraint
type, e.g., horizontal or vertical.

Appendix D

RING OPERATION MACRO INSTRUCTIONS

-152-

The macro instructions listed in this appendix are used to implement

the basic ring operations listed in Chapter III. Only the format is

given here since to list the machine instructions generated would be of

value only to persons familiar with theTX-2 instruction code. In each

case the macro name is followed by dummy variables separated by non-

alphabetic symbols. The dummy variables XR and XR2 refer to ihdex

registers which contain the address of the block which contains the ring

element being worked on. The terms N of XR or NxXR mean the Nth

element of the block pointed to by index register XR, for example, the

LSP (line start point) register of the line block pointed to by index

register OL.

LTAKEaNxXR

Take N of XR out of whatever ring it is in. The ring
is reclosed. If N of XR is not in a ring, LTAKE does
nothing. N of XR must not be a hen with chickens.

PUTLaNxXR-»MxXR2

PUTRaNxXR-*MxXR2

Put N of XR into the ring of Which M of XR2 is a member.
N of XR is placed to the left (PUTL) or right (FUTR) of
M of XR2 M of XR2 may be either a hen or a chicken. N
of XR must not already belong to a ring.

-153-

M0VEL*N*XR-»M*XR2

M0VER*N*XR-*M*XR2

Combination of LTAKE and FUTL (PUTR). Assumes that both N of XB and M
of XR2 are in the same ring. Intended for reordering a ring.

CHGRL»N*XR-*M*XR2

CHGRRaN*XR-*M*XR2

Combination of LTAKE and FUTL (PUTR). N of XR and M of XR2 may be in
different rings.

LG0RR»N*XR*XR2-*SUBR-*LEXIT

LG0RL«N*XR«XR2-»SUBR-*LEXIT

Go around the ring of which N of XR is the nen. Exit to subroutine
SUBR once for each ring member. The address of the top of the block
to which each ring member belongs is put in XR before starting the
subroutine. XR2 is used as a working index register. The subroutine
may destroy the contents of both XR and XR2. The subroutine may delete
individual members of the ring provided recursive deletion does not
delete additional ring members. The subroutine must not generate new
ring members. Jump to LEXIT when finished with the ring. Go around
"the ring to the right (LGORR) or left (IGORL).

LG0RRI«N*XR»XR2-» SUB R-* LEXIT

LGORL I«NxXR=XR2-»SUBR-*LEX IT

Same as LGORR except that the subroutine may generate new members in
the ring. The subroutine must not delete the current member of the
ring. New members will be visited if they are put in the ring later
in sequence.

C0MBHR*N*XR-*M*XR2

C0MBHL*N*XR-»M*XR2

The members of the ring whose hen is at N of XR are placed in the ring of
which M of XR2 is a member. N of XR must not be empty. The new members
are placed to the right (COMBHR) or left (COMBHL) of M of XR2, M of
XR2 may be either a hen or a chicken. N of XR is left empty.

-15^-

Appendix E

PROPOSAL FOR AN INCREMENTAL CURVE DRAWING DISPLAY

In the course of the work with Sketchpad it has become all too

clear that the spot-by-spot display now in use too slow for comfortable

observation of reasonable size drawings. Moreover, having the central

machine compute and store all the spots for the display is a waste of

general purpose capacity that might better be applied to other jobs.

As a solution to these difficulties I propose that a special purpose

incremental computer be used to generate the successive spots of the

display at high speed. The central machine would provide only a mini­

mum of information about each curve to be drawn; e.g., end points of

lines; start, center and arc length of circle arcs.

The technology of incremental computers is well developed, but so

far as I know, no one has yet applied them directly to the problem of

computer display systems. Basically the incremental computer works by

adding one register to another successively and detecting any overflows

or underflows which may be generated. Certain registers are incremented

conditionally on the result of overflow or underflow generation.

In the system of Figure E.l, the x and y increment registers are

added to the x and y remainder registers and overflows or underflows

(dotted lines) are used to increment the beam position of the display.

A counter (not shown) is provided to limit the length of the straight

line generated. The unit would request more information from the com­

puter after the appropriate number of additions. For drawing straight

lines on a 102̂ x 102̂ raster display the increment registers should

-155-

FIGURE E. l .
DDA FOR DRAWING LINES

,

-156-

contain 10 bits plus sign, 11 bits in all each; the remainder registers

should contain 10 bits with no sign; and the counter should contain 10

bits.

To understand how the system of Figure E.l operates consider that

its x increment register contains the largest possible positive number

and that its y increment contains one half that value. The x addition

would result in overflow nearly every iteration, whereas the y addition

would result in overflow only on alternate additions, and so a line

would be drawn up and to the right with a slope of l/2.

The usual practice in incremental computers is to be able to step

the increment registers by a single unit up or down according as over­

flow or underflow is produced in another addition. In the system of

Figure E.2, the) is an adder-subtractor which can increase or de­

crease the increment register by the amount stored in the curvature

register. The (+?) adds or subtracts if overflow or underflow is gen­

erated in the other addition. Overflow or underflow is signalled to

the (+?, adder along the dotted paths in Figure E.2.

Use of the conditional adder permits a curvature to be specified

so that curves can be drawn. The system of Figure E.2 will draw straight

lines if the numbers in the curvature registers are zero, circles if the

numbers are equal and opposite in sign, ellipses if the numbers are un­

equal and unlike in sign,and hyperbolas if the numbers are like in sign.

The ellipses and hyperbolas are generated, however, with axes parallel to

the coordinate axes of the display.

Theory and simulation show that just as in the incremental equation

used for generating circles (see Chapter V), the latest value of incre­

ment must be used if the curve is to close. Therefore, the additions

FIGURE E.2.
DDA FOR UPRIGHT CON ICS

-158-

cannot all occur at once; the order shown in Figure E.2 by the numbers

1-k next to the adders makes the circles and ellipses close. In a serial

device it is possible to do the four additions in just two add times by

having only a one bit time delay between the two additions for each

coordinate, i.e^ ̂ ?) just before (+),

Circles can be drawn with radii from about one scope unit to a

straight line according to the numbers put in the curvature registers.

Simulation shows that if the increment and curvature registers contain

17 bits plus sign, 18 bits each in all, and the remainder contains 17

bits without sign, the largest radius circle that can be drawn is just

noticeably different from a straight line after having passed fully

across a 102*1- x 102*1- raster display. The simulation program for this

test is less than 100 instructions long and requires, of course, no

multiply or divide. Simulation of larger incremental computers on small

general purpose digital computers should be a powerful way to get complex

numerical answers quickly and easily.

If the system of Figure E.2 is duplicated twice as shown in Figure

E.3, a general Conic Section drawing capability is obtained. I am

indebted to Larry M. Delfs for pointing out that the display incrementing

outputs of the two systems should be added together. The full system of

Figure E.3 can draw not only arbitrary conic sections but a host of

interesting cycloidal curves. For drawing the simple straight lines

and circles, the two halves of the system would be loaded with identical

numbers to gain a two-fold speed advantage.

A trial design using 20 megacycle serial logic and 36 bit delay

lines available commercially showed that the full system would be able

-159-

FIGURE E.3.
DDA FOR THE GENERAL CONIC

-l6o-

to generate new display points at 0.9 microseconds each for lines and

circles and slightly slower (hut not half speed) for complicated conics.

This corresponds to a writing rate of ahout 10,000 inches per second.

Some saving in cost could be expected if longer delay lines were used

and a correspondingly slower operation speed were tolerated. It appears

possible to get similar performance from a parallel scheme.

-l6l-

Appendix F

MATHEMATICS OF LEAST MEAN SQUARE FIT

The result quoted in this appendix is well known and is repeated

here only for reference.

Suppose we have P equations in N unknowns:

N

 ̂â x̂ = 1 £ i ̂ P; or AX = C • (F-l)

j-i

If P is larger than N there would in general be no exact solution. We

vish to find the values for the unknowns which minimize the sum of the

ish
squared errors of the equations. The error in the i equality is given

by:

N

Ei =1 (aij xj - ei>» (F"2)

j=I

and the total squared error,

P N

Et =r [i (a« v -
i=l J-l

(F-3)

We vish to minimize Ê , and so we take partials with respect to each x̂

and set all these equal to zero. For a particular x̂ called x̂ ,

(au XJ) " eJ- (M)
* i=l J»1

Since the partial of a sum is equal to the sum of the partials,

P N

$5t - V JL ^ ~L ̂
* i=l

12
A (aij XJ) " °ij '
3=1

-162-

(F-5)

or since

d . n2 3 _ 55 (Q) - 2Q ̂ Q,

dE2
N

12(I (aijxj} - c 55T

N

i=l j=l
\L I (au V

>1

- C, (F-6)

Now the last part of (F-6) is a sum of terms like ... only one of

which involves x^. at all, namely Therefore,

=Z CI (a« V " °i.
,xk

(aik><
i=l j=l

(F-T)

which, when set equal to zero gives:

P N

0 = A [L (aik au xj) * aik ciJ
1=1 j=i

(F-8)

or

P N

11
i=l j=l

a,, &, , x.
ik ij j

r

=I aik V
1=1

(F-9)

Changing the order os summation,

N P

I . { I aikaij)xj =(I aikci)
j=l i=l i=l

(F-10)

which in matrix notation "becomes:

ATAX = ATC. (F-ll)

-163-
T
/ A is a square matrix of order N. Thus a system of any number of lin­

ear equations can be reduced to a simpler system whose solution is the

value of the variables for least square fit to the original set of equa­

tions .

If the original equations are equations in two unknowns, a plot of

(F-2) with error squared in the upward direction is a parabolic valley.

Since any vertical section of a parabolic valley will be a parabola, and

the sum of any two parabolas in likewise a parabola, a plot of (F-3) can

at most be an eliptic paraboloid. The Equations (F-10) and (F-ll) re­

sulting from the method described here represent the locus of locations

where contour lines of the eliptic paraboloid are parallel to the axes.

The intersection of these loci, the solution of (F-ll), is the lowest

point in the eliptic paraboloid, the least mean squares fit to (F-l).

-l6k-

Appendix G

A BRIEF DESCRIPTION OF TX-2*

At first glance, TX-2 is an ordinary single-address, binary digital

computer with an unusually large memory. It is an experimental machine-

many of its in-out devices are not commercially available. On closer

inspection, one finds it has seme important innovations—at least they

were innovations at the time TX-2 was built (1956).

The distinctive features of TX-2 are:

1. Simultaneous use of in-out machines through
interleaved programs.

2. Flexible, "configured" data processing.

Some other virtues include:

1. Automatic memory and arithmetic overlap.

2. A "bit" sensing instruction (i.e., the operand
is one bit.').

3. Addressable arithmetic element registers.

4. Especially flexible in-out.

5. 6k index registers.

6. Indirect—i.e. deferred addressing.

7. Magnetic Tape Auxiliary Storage

IN-OUT

The phrase "simultaneous use of in-out machines" should be taken

quite literally. It does not mean simultaneous control. Each unit has

* By Alexander Vanderburgh

-165-

its own buffer register and only one of these can be processed by TX-2

at any given instant. It is the relative speed that is important. For

example, the in-out instruction that "fills" the display scope buffer

takes no more than 10 microseconds, but the display itself takes from

20 to 100 microseconds, i.e., up to ten times as long. While the display

is busy, the computer can compute the next datum of course, but it c an

also initiate other in-out transfers. In practice, since most in-out

units are much slower than their associated programs, the computer

spends a significant percentage of the time just waiting (in "Limbo"),

even when several devices are in use. Interleaved initiation of in-out

data transfers is partly automatic and partly program controlled. Each

in-out routine is independently coded and is operated by TX-2 according

to its "priority. " Each unit has a "Flag Flip-Flop" to indicate to con­

trol that it is ready for further attention. When a unit is ready for

further attention its routine will be operated unless another unit of

higher priority also needs attention. An index register is reserved

for each in-out unit and is used as a "place-keeper" when its routine

is not being operated. The sharing among in-out routines of storage,

index memory, and the arithmetic element is the programmer's responsibi­

lity.

"CONFIGURED" DATA PROCESSING

The "normal" word length for TX-2 is 36 bits. For many applica­

tions 18 or 9 bits would suffice, and in some cases each piece of data

requires the same processing. Configuration control permits "fracture"

of the normal word into two 18 bit pieces, four 9 bit pieces, or one 27

-166-

bit and one 9 bit. These "subwords" are completely independent—for

example, there are separate overflow indicators. In addition to

"fracture" there is "activity" and "quarter permutation". Any quarter

word can be made "inactive" i.e., inoperative. The 9 bit quarters of

a datum from memory may be rearranged (permuted) before use. There

are 8 standard permutations—for example, the right half of memory

can be used with the left half of the arithmetic element. Nine bits

are required for complete configuration specification. Since only

5 bits are available for bit thin film memory is addressed by each

instruction word, a special 32 word, 9 bit thin film memory is

addressed by each instruction that processes data directly. A

complete change to any of 32 configurations is therefore possible

from instruction to instinct ion.

THE SMALLER VIRTUES

Overlap: TX-2 has two core memories—"S" memory, a vacuum tube

driven 6^,536 word core memory, and "T" memory, a transistor driven

^096 word core memory about 20$ faster. Instruction readout can be

done concurrently with the previous data readout if program and data

are in separate memories.

The use of the arithmetic element is also overlapped. Instructions

that follow a multiply or divide operation will be done during the arith­

metic time if they make no reference to the arithmetic element. The

overlap is entirely automatic and may be ignored if the programmer

chooses. A careful programmer can gain speed by doing indexing after

multiply or divide and by putting program and data in separate memories.

-167-

Bit Sensing Instruction; One instruction— SKM—uses a single bit of

any memory word as its operand. Control bits provide 32 variations of

skipping setting, clearing, and/or complementing the selected bit. This

instruction can also cycle the whole word right one place if desired.

Addressable Arithmetic Element: Seventeen bits of the TX-2 instruc­

tion word are reserved for addressing an operand. This would allow a

131,072 word memory. TX-2 has only 69,632 registers of core storage.

Ihe toggle switch and plugboard memories, the real time clock register,

the knob register (shaft encoder), and the arithmetic element registers

use 55 of the remaining addressing capability. The arithmetic element

registers are therefore part of the memory system and can be addressed,

e.g., one can add the accumulator to itself.

Flexible In-Out: The TX-2 user must program each and every datum

transfer. The lack of complex automatic in-out controls may seem to be

a burden, but the simplicity of the system gives the programmer much

more precise and variable control than automatic systems provide. For

example, coordination of separate in-out units such as display and light

pen is possible. Moreover, it i s relatively easy to attach new in-out

machines as they become available.

Index Memory and Indirect Addressing: Of the 6b index registers,

one must devote a few to each in-out unit's program. With all 21 in-out

devices concurrently in use, each program would have two index registers

for normal programming use. In practice, one seldom uses more than half

a dozen in-out units, and each routine would then have ̂ —clearly a luxu­

ry. Indirect addressing provides a means for indexing normally nonindex-

able instructions, or for double indexing normal instructions.

-169-

Input:

Random number generator—average 57*6 psec per 9 "bit number

IBM Magnetic Tape (Model 729 Ms)

Miscellaneous pulse inputs—9 channels—push buttons or
other source

Analog input—Epsco Datrac—nominal 11 bit sample
—27 kilocycle max. rate

2 light pens—work with either scope or both on one

Special memory registers:

Real time clock

shaft encoder knobs, 9 bits each

592 toggle switches (16 registers)

37 push buttons—any or all can be pushed at once

Output:

Paper tape punch—300 6 bit lines/sec

2 typewriters—10 characters per second

IBM Magnetic Tape (729 MS)

Miscellaneous pulse/light/relay contacts—9 channels
(low rates)

Xerox printer—1300 char, sec

2 display scopes—7 x 7 inch usable area, 102^+ x 102̂ raster

Large board pen and ink plotter—29" x 29" plotting area
15 in/sec slew speed. Off line paper tape control
as well as direct computer control.

"

J*-thing

Ale

Atomic

Attacher

Balance

Block

Chicken

Circle

Constraint

GLOSSARY -170-

A four component variable: text, digits, or instance.

To place the light pen so that light from the picture
part aimed at falls on the photocell and so that the
center of the light pen field of view is sufficiently-
close to the picture part.

Axiomatic, fundamental, built in. The atomic con­
straints are listed in Appendix A. The atomic
operations are each controlled by a push button
listed in Appendix B.

For instances, a particular point designated in the
master for which in the instance the light pen will
have a particular affinity. Also the related point
created in the picture containing the instance when
the instance was created.

For copying, any drawing part designated in the
definition picture. Attachers may be recursively
merged with object picture parts when the definition
is copied.

The property of equal weight among constraints
obtained by making error in a constraint equal to
displacement.

A set of consecutive registers used to represent a
picture part. An n-component element.

A subordinate ring member, composed of two registers
one of which references the block containing the
hen for this ring, the other references the next
and previous chickens in the ring.

A circle arc. A full circle is a circle arc 36O0

or more in length.

A specific storage representation of a relationship
between variables which limits the freedom of the
variables, i.e., reduces the number of degrees of
freedom of the system. Also, constraint is some­
times used to mean a type of constraint, as in
"there are seventeen atomic constraints."

Constraint
satisfaction

The process of moving variables so that all the
conditions on them embodied in the constraints are
met. It is not always possible.

-171-
Copying Duplication in storage the ring structure of a

definition picture. A copy is not to be confused with
an ^ns"^ance • Any instance may be changed into a
copy by dismembering.

Definition A master picture. Especially a picture to be used
for copying, usually containing a combination of
atomic constraints. Also the error computation
routine associated with a constraint.

Delete To erase. Deleted blocks become garbage.

Digits A set of five decimal digits plus sign, leading
zeros suppressed. As a variable digits may be moved,
rotated, or made larger on the display. The
particular value displayed is that of an associated
scalar and may be changed only by moving the scalar.

Dismembering The process of changing an instance into a copy by
creating in the ring structure a duplicate of the
internal structure of the instance's master and re­
moving the instance. A dismembered instance becomes
a group of lines, etc., which may be individually
moved, deleted, etc. Dismembering peels off only one
layer of instance at a time.

Dummy variable A particular two component variable used to locate
the arms of a constraint when it is first created.
Dummy variables may merge with any other kind of
variable leaving any attached constraints applying
to that variable. Display for a dummy variable is
a X •

Error The number computed by the definition subroutine for
a cons"traint» Error is zero if the constraint is
satisfied and grows monotonically as the constrained
variables are moved.

File A storage structure. A file may be in either list
form or table form. Also a collection of magnetic
tape records.

Free A variable which has so few constraints on it that
it may be moved to satisfy all of them. Such a
variable will be in the FREEDOMS ring.

Garbage Free storage inside the range of storage addresses
being used to represent the drawing.

Hen A pair of registers in a block used to indicate the
first and last references made to that block by the
chickens belonging in the hen's ring. Also called
a key.

-172-
Instance A fixed geometry subpicture represented "very compactly

in storage by reference to a master and indication
by four numbers of the size, rotation, and location
of the subpicture. Internal structure of an instance
is visible and may contain other instances, but since
it is identical in appearance to the master it cannot
be changed without changing the master^ Except for
size, rotation, and location, all instances of one
master look the same.

Key See hen.

Line A line segment. No representation for an infinite
length line exists in Sketchpad.

Line segment A topological thing connecting two points. Contains
no numerical information. Sometimes called a line.

A particular form of storage structure in which each
element stores not only the information pertinent
to it but also the address of the next element. Not
to be confused with a table.

A position in the coordinate system represented by.
a pair of coordinates. Not to be confused with a
point which has a location. Also the address of a
particular piece of information in storage.

A picture which is used to define the visible
internal structure of an instance.

Combination of two storage blocks to identify two
picture parts, which must be of like type, permanently.
The result of a merger of variables takes on the
value of the historically older variable. In the
ring structure, merging makes one block out of two,
reducing the other to garbage• In certain cases
merging is recursive.

Changing the numerical information stored in a
variable. Moving a point stores a new coordinate
location over the previous one. Moving an instance,
text, or digits includes size change and rotation.
Moving a scalar implies changing its value but does
not change the position of its display. Moving is
also the state a thing is in when it is attached to
the light pen; it may be stationary on the display.
Moving is not to be confused with relocating.

List

Location

Master

Merging

Moving

N-component
element

Numbers

-173-
A particular form of storage in which various
properties of each object represented are stored
in consecutive registers. Also the block of
registers representing an object.

See scalais and digits. Number often refers to
digits and scalars collectively. Also the binary
numbers stored for a variable.

Object
picture

Older

Picture

Point

Pointer

A particular picture currently being worked on.
Especially a complicated picture of particular
interest to a user as opposed to a definition or
master picture which is to be used as a portion
of the object picture.

The older of two blocks is the one with the lowest
numbered address, illustrated higher on the page.
Since new blocks are taken from the free space in
addresses higher numbered than the drawing storage,
an older block was usually created sooner.

A storage device to collect together related drawing
parts. A "sheet of paper". Also the lines, points,
instances, and constraints, etc., that are drawn
in the picture, collectively. , Pictures are numbered
so that any one may be called to appear on the dis­
play. Within the limits of storage, as many
pictures as desired may be set up and used.

A specific representation in the ring structure used
as an end point for a line segment. Not to be
confused with location or spot. Also as a verb, to
aim at something with the light pen.

A storage register which contains the location of
another storage register rather than numerical data.
Such a register is said to point to the register
whose address it contains.

Pseudo.pen
location

A location near the axis of the light pen which is
used as the "point of the pencil". The pseudo pen
location lies exactly on an existing point or line
or circle or at the intersection of lines if the pen
is aimed at them.

Relocating

Result

Ring

Changing the address at which a particular block is
stored in memory. Not to be confused with moving.

The single thing which remains after two things
have been merged.

A set cf po inters which closes on itself. In Sketch­
pad all rings point both forward and back. A ring
is composed of one hen and many chickens.

1

Ring structure

Satisfy

Scalar

Spot

Table

Termination

Texts

Tie

Value

Variable

-I7U-

The type of storage structure used to represent the
drawing's topology. See ring.

See constraint satisfaction.

A one component vector whose value can be dis­
played by a set of digits. For display of the
scalar itself a # is used.

One of the bright dots on the display,
confused with point or location.

Not to be

A formi of storage structure in which successive
pieces of information are stored in successive
registers in memory. Tables are the "conventional"
form of storage. See also list and ring
structure.

The process of taking things out of the moving
state. Termination is usually done by giving a
flick of the light pen. Pressing "stop" also
terminates. Upon termination, merging may take
place.

Lines of textual material typed in and appearing in
a standard type style on the picture. Text is
treated as a four component variable•

An attacher.

The particular information stored in the numerical
portion of a variable. E.g., the location of a
point. Especially the value of a scalar as opposed
to the location of the set of digits displaying
this value.

A picture Dart which contains numerical information.
Scalars, points, instances, texts, digits and -higroy
variables are the only variables at present,, Also
used to denote a type of variable.

BIBLIOGRAPHY

-175-

1. Clark, W. A., Frankovich, J. M., Peterson, H. P., Forgie, J. W.
Best, R. L., Olsen, K. H., "The Lincoln TX-2 Computer," Technical
Report 6M-J4-968, Massachusetts Institute of Technology, Lincoln
Laboratory, Lexington, Mass., April 1, 1957, Proceedings of the
Western Joint Computer Conference, Los Angeles, California, February,
1957.

2. Coons, S. A., Notes on Graphical Input Methods, Memorandum 8U36-M-I7,
Dynamic Analysis and Control Laboratory, Massachusetts Institute of
Technology, Department of Mechanical Engineering, Cambridge, Mass.,
May i960.

3. Johnston, L. E., A Graphical Input Device and Shape Description Inter­
pretation Routines, Memorandum to Prof. Mann, Massachusetts Institute
of Technology, Department of Mechanical Engineering, Cambridge, Mass.,
May k, i960.

k. Lickleder, J. C, R., "Man-Computer Symbiosis," I.R.E. Trans, on Human
Factors in Electronics, vol. HFE, pp. 14—10, March i960.

5. Lickleder, J. C. R., and Clark, W., "On-Line Man-Computer Communica-
tion," Proceedings of the Spring Joint Computer Conference, San Fran­
cisco, California, May 1-3, 1962, vol. 21, pp. 113-128.

6. Loomis, H. H, Jr., Graphical Manipulation Techniques Using the Lincoln
TX-2 Computer, Group Report 51G-0017, Massachusetts Institute of
Technology, Lincoln Laboratory, Lexington, Mass., November 10, i960.

7. Moore, E. F., "On the Shortest Path Through a Maze," Proceedings of the
International Symposium on the Theory of Switching, Harvard University,
Harvard Annals, vol. 3, pp. 255-292, 1959*

8. Roberts, L. G., Machine Perception of Three Dimensional Solids, Ph.D.
Thesis, Massachusetts Institute of Technology, Electrical Engineering
Department, Cambridge, Mass., February, 1963*

9. Southwell, R, V., Relaxation Methods in Engineering Science, Oxford
University Press, 19^0.

10. Vanderburgh, A. Jr., TX-2 Users Handbook, Lincoln Manual No. *4-5, Massa­
chusetts Institute of Technology, Lincoln Laboratory, Lexington, Mass.
July, 1961.

11. Walsh, J. F., and Smith A. F., "Computer Utilization," Interim
Engineering Report 6873-IE-lO &nd 11, Electronic Systems Laboratory,
Massachusetts Institute of Technology, Cambridge, Mass., pp. 57-70,
November 30, 1959*

12. Handbook for Variplotter Models 205S and 205T, PACE, Electronic Associ­
ates Incorporated. Long Branch, New Jersey, June 15, 1959*

-176-
Biographlcal Note

Ivan Edward Sutherland was horn on May 16, 1938 in Hastings,

Nebraska. After an early childhood near Chicago, he moved to Scarsdale,

New York where he graduated from Scarsdale High School. Mr. Sutherland

was a George Westinghouse Scholar during his four years at Carnegie

Institute of Technology, Pittsburgh, Pennsylvania where he received the

Bachelor of Science degree in Electrical Engineering in June 1959*

While at Carnegie he twice won the American Institute of Electrical

Engineers Student Prize Paper Contest for District 2 (1958 and 1959)*

As a graduate student he held a National Science Foundation Fellowship

for three years (1959 to 1962). He received the Master of Science degree

in Electrical Engineering from California Institute of Technology,

Pasadena, California in June i960. From September i960 to December 1962,

Mr. Sutherland was associated with the Research Laboratory of Electronics

at Massachusetts Institute of Technology first as a full-time doctoral

student and then as a research assistant during the fall semester of

1962. During the summers of i960, 1961 and 1962 he was a Staff Member

of the MIT Lincoln Laboratory.

Mr. Sutherland is a coauthor of "An Electro-Mechanical Model of

Simple Animals," (Computers and Automation, February 1958) and is the

author of "Stability in Steering Control," (Electrical Engineering,

April i960). He is a member of Sigma Xi, Tau Beta Pi, Eta Kappa Nu,

and Pi Mu Epsilon. Mr. Sutherland belongs to the Institute of Electrical

and Electronics Engineers and the American Society of Mechanical

Engineers.

