10

=

DIGITAL RESEARCH’

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2 INTERFACE GUIDE

Copyright (e) 1979

DIGITAL RESEARCH

Copyright (e) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manua! or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950,

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

CP/M 2 INTERFACE GUIDE

Copyright t(c) 1979
Digital Research, Box 579
Pacific Grove, California

INtroduction o =i =iewp—y

L]

Operating System Call Conventions

A Sample File-to-File Copy Program

A Sample File Dump Utility .

.

A Sample Random Access Program .

System Function Summary

-

34
37

46

1. INTRODUCTION.,

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/0 facilities of the system.

CP/M is logically divided into four parts, called the Basic 1I/0
System (BIOS), the Basic Disk Operating System (BDOS), the Console
command processor (CCP), and the Transient Program Area (TPA). The
BIOS 1is a hardware-dependent module which defines the exact low level
interface to a particular computer system which 1is necessary for
peripheral device 1I/0., Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Digital Research manual entitled "CP/M Alteration Guide").
The BIOS and BDOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP is a
distinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device, The TPA is an area of memory (i.e., the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are executed, The lower portion of memory
is reserved for system information and is detailed later sections.
Memory organization of the CP/M system in shown below:

high | |

memory | |
| FDOS (BDOS+BIOS) |

FBASE: | I
| I

| CCp |

CBASE: | |
| |

I |

| |

| TPA |

| |

TBASE: | |
| system parameters |

BOOT: | |

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
“CP/M Alteration Guide."™ All standard CP/M versions, however, assume
BOOT = @PPPH, which is the base of random access memory. The machine
code found at location BOOT performs a system “"warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research.)

i

to return control to CP/M at the command level, Further, the standard
versions assume TBASE = BOOT+6100H which is normally location B100H.
The principal entry point tp the . FDOS is at location BO0T+ﬁﬁ@§

(normally 0@005H) where a jump to FBASE is found. The address field ac
BOOT+0P0O6H (normally @PHP6H) contains the value of FBASE and can be
used to determine the size of available memory, assuming the CCP 1is
being overlayed by a transient program.

Transient programs are loaded into the TPA and executed as
follows. The operator communicates with the CCP by typing command
lines following each prompt. Each command line takes one of the
forms:

command
command filel
command filel file2

where "command" is either a built-in function such as DIR or TYPE, or
the name of a transient command or program. If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

command, COM

If the file is found, it is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in
memory. The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE,))
|

If the command is followed by one or two file specifications,
the CCP prepares one or two file control block (FCB) names in the
system parameter area. These optional FCB's are in the form necessary
to access files through the FDOS, and are described in the next
section,

The transient program receives control from the CCP and begins
execution, perhaps using the I/0 facilities " of the FDOS. The
transient program is “called" from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. 1In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE-1 is free,

The transient program may use the CP/M I/0 facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem. The I/0 system is accessed by passing a
"function number" and an "information address” to CP/M through the
FDOS entry point at BOOT+Q@M@5H. In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FDOS. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators are
given in below,))

(All Information Contained Herein is Proprietary to Digital Research.)

2

2. OPERATING SYSTEM CALL CONVENTIONS,

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs. Many
of the functions 1listed below, however, are more simply accessed
through the I/0 macro library provided with the MAC macro assembler,
and 1listed in the Digital Research manual entitled "MAC Macro
Assembler: Language Manual and Applications Guide."

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/0, and
disk file I/0. The simple device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Seguential Tape Character
Write a List Device Character

Get or Set I/0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+0@@5H, 1In general, the function
number is passed in register C with the information address 1in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A = L and register B = H upon return in all cases. Note that
the register passing conventions of CP/M agree with those of 1Intel's

PL/M systems programming language. The list of CP/M function numbers
is given below.

(All Information Contained Herein is Proprietary to Digital Research.)

3

0 System Reset 19 Delete File

1 Console Input 20 Read Seguential

2 Console Output 21 Write Sequential)

3" Reader Input 22 Make File

4 Punch Output _ 23 Rename File

5 List Output 24 Return Login Vector

6 Direct Console I/0 25 Return Current Disk

7 Get I/0 Byte 26 Set DMA Address

8 Set I/0 Byte 27 Get Addr(Alloc)

91 . P g st e neg 28 Write Protect Disk
13 Read Console Buffer 29 Get R/O Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 &iSearch for ‘Eicgt 36 Set Random Record
18 Search for WNext

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location 0Q00H), it
is sufficiently large to make CP/M system calls since the FDOJ}'
switches to a 1local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT = @000H):

BDOS EQU @ 0065H ; STANDARD CP/M ENTRY
CONIN EQU 1 ; CONSOLE INPUT FUNCTION
ORG ¥160H ;BASE OF TPA
NEXTC: MVI C,CONIN ;READ NEXT CHARACTER
CALL BDOS ; RETURN CHARACTER IN <A>
CEAL S ; END OF PROCESSING?
JINZ NEXTC = [LOICE ST FSI T
RET ; RETURNS TGOS CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files 1n eacg)r
category. The file types listed below name a few generic categories”

(All Information Contained Herein is Proprietary to Digital Research.)

4

which have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File

COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each
"line" of the source file is followed by a carriage-return 1line-feed
sequence (ODH followed by @AH). Thus one 128 byte CP/M record could
contain several lines of source text, The end of an ASCII file is
denoted by a control-Z character (lAH) or a real end of file, returned
by the CP/M read operation, Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is used to terminate read
operations,

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from @ through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area, Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values. Although the
decomposition into extents 1is discussed in the paragraphs which
follow, they are of no particular consequence to the programmer since
each extent 1is automatically accessed in both sequential and random
access modes.

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+@@5CH (normally @@5CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/O is provided by CP/M
at location BOOT+0@80@H (normally PP8PH) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of
33 bytes for sequential access and a series of 36 bytes in the case
that the file 1is accessed randomly. The default file control block
normally located at @@05CH can be used for random access files, since
the three bytes starting at BOOT+@#@7DH are available for this purpose.
The FCB format is shown with the following fields:

(All Information Contained Herein is Proprietary to Digital Research,)
5

e e e o ————————————— T — i ————— o ——

up 4l 82 .. 08 690 11 .33 k3 a0 LS5 L0030 32733 34 35

where

dr drive code (8 - 16)
@ => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

L A

16=> auto disk select drive P.

flsa4C8 contain the file name in ASCII
upper case, with high bit = 0@

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl*, t2%, and t£3' dencrEs e
bit of these positions,

tl' = 1 => Read/Only file,
B2 = => SYS file,.no DIR list
ex contains the current extent number,

normally set to @8 by the user, but
in range @ - 31 during file I/0

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

e record count for extent "ex,"
takes on values from @ - 128

d@,..dn filled-in by CP/M, reserved for
system use

(o current record to read or write in

a sequential file operation, normally
set to zero by user

rd,rl,r2 optional random record number in the
range P-65535, with overflow to r2,
rfg,rl constitute a 16-bit value with
low byte r@, and high byte rl

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subseguent file operations, When accessing files, it is the
programmer's responsibility to £ill the lower sixteen bytes of the FCB
and initialize the "cr" field. Normally, bytes 1 through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero.

(All Information Contained Herein is Proprietary to Digital Research.)

6

>

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file operations

f (see the OPEN and MAKE functions). The memory copy of the FCB 1is

updated as file operations take place and later recorded permanently

on disk at the termination of the file operation (see the CLOSE
command) .

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the 1line following the
transient name, denoted by “filel" and "file2" 1in the prototype
command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+@@5CH, and can
be used as-is for subsequent file operations. The second FCB occupies
the d¥ ... dn portion of the first FCB, and must be moved to another
area of memory before use, 1If, for example, the operator types

PROGNAME B:X.Z0T Y.ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+@@B5CH is initialized to drive code 2, file name "X" and file type
MTOT . The second drive code takes the default value @, which is
placed at BOOT+0P6CH, with the file name "Y" placed into location
BOOT+0@6DH and file type “ZAP" located 8 bytes later at BOOT+0@75H.
All remaining fields through "cr" are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before

opening the file which begins at BOCT+@8@5CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+0@5DH and BOOT+6@6DH contain blanks, In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location
BOOT+P@8PH is initialized to the command line tail typed by the
operator following the program name. The first position contains the
number of characters, with the characters themselves following the
character count, Given the above command line, the area beginning at
BOOT+0080H is initialized as follows:

BOOT+0 P 8PH :
+0 " +E1"+*02 t03 °+0 4 05 06" ¥P7 +P8 " +09 +HIMN +1:1) +1 2 ekl 14
l 4 " [1] (1] B L] " . L1} (13 x L1 1] . 1] L] Z L1 (11 O (11 L1 T (1] " " " Y L] L] = " L1] Z 1] " A " " P L]

where the characters are translated to wupper case ASCII with
uninitialized memory following the last valid character. Again, it is
the responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the
default DMA address is explicitly changed.

The individual functions are described in detail 1in the pages
which follow.

(A1l Information Contained Herein is Proprietary to Digital Research.)
¥

LR SR S S R E R R RS R R R R R SR AR R R SRR R R R R R

* *

* FUNCTION #: System Reset % ()
* * e
khkkhkkhkhkkhkhkhhhhkhkhkhhhhhhkhkhhhkhkhhhhhhkhhkhhkx

* Entry Parameters: ' .

* Register C: @@H r

Khkhkkkhhhhhkdhhkkhkhhhkhhhhhhkhkhhkhhhhhkkkhhhhk

The system reset function returns control to the CP/M operating
system at the CCP level., The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT,

KhkAhkkkkkhkhkhkk kA ARk hhhkkh kA A kkhhhAkkhkk

* *
* FUNCTION 1: CONSOLE INPUT *
* *
khkhkhhkhkhkhkhkAhkkhkhkhhAhkhkhkhhhkhhkhhhkhkhkhhkhhkhxhkhkkkx
* Entry Parameters: 5
* Register C:. 018 -
* *
* Returned Value: %
* Register A: ASCII Character *
Ahkkhhkhkhkhkhkhkhkhkhhkhkhkhkhkhhkhrhhhhkhkhkhkhhkrhhkhhk

The console input function reads the next console character to
register A, Graphic characters, along with carriage return, linel
feed, and backspace (ctl-H) are echoed to the console. Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P).
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

Ahkhhhkhkhhhhhkhhhkhhhhkhhkhhhhhhhhhhhhhhhhkhx

* *
* FUNCTION 2: CONSOLE OUTPUT *
* *
khkkhkkkhkhkhkhhkhhkhhkhhkhkhhkhhhhhhkhhkhkkhkhkhkhkhkhkkhhkhk
* Entry Parameters: =
* Register. | * C:l % B2H 5
. Register E: ASCII Character *
* *

Ahkkkhkhhhkhhkhhkhhkhkhkhhkhkhkhkkkhkhkhkkhkhkhkhhkdhk

The ASCII character from register E 1is sent to the console
device, Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

8

J))

KKK KKRKKARKARRKR AR AR AR A AR Ak hkhhhhkk

* *
* FUNCTION 3: READER INPUT *
* *
khkhkkhkhkhhhkkkkkkkhkkhkhkkkkkkkkhkkhkkkhkkkkkhkkkhhihk
* Entry Parameters: ' *
® Register Cy . 030 "
* *
* Returned Value: ¥
5 Register A: ASCII Chatacter *
khkhkkhkkhkkhkhkhhkkkhkhkhkkkkhkhkhkhkhkhkhkhhkhkhkhkhkhhkhhhhhx

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"). Control does not return until the character has
been read,

Khkkkhhhhhkhkhkhhhhhkhhhhhhhkhkhhhkhhkhhrhhhk

* *
* FUNCTION 4: PUNCH OUTPUT *
* *
AhkkhhhkhAkkkkkhkhkkkhkkhkhkhkhkhkhkkhkhkhhkhkhhkhkhkkhhhkk
* Entry Parameters: %
4 Register - Cs: 04H v
= Register ‘E: ASCII Character *
* *

khkkkhkhkhkhkhkhhhkhkhkhkAhhkhkhhkhhhhkkhkhkhkhhkhhhkkhkkhkk

The Punch Output function sends the character from register E to
the logical punch device.

khkkkkkhkhkkkhkkhkkhhhkkhhkhhkhkkkkhkkhhhhhkkhkkhkhkkk

* *
* PUNCTION 5: LIST OUTPUT *
* *
khkkhkkkkhkhkhkkkhkhkhhkhkhkhhhkdhkhkhkhkhkhkhkhhhdhkhhhkk
* Entry Parameters: ¥
¥ Register €i" “BsH *
* Register Bt ASCII GCharackter :
*

Ahkhkhkkhhhkhhhkhkhkhhkhxhhkhhdhhhhhhhkhhkhhkhkhhhhkhk

The List OQutput function sends the ASCII character in register E
to the logical listing device.

(All Information Contained Herein is Proprietary to Digital Research.)

3

khkkkhhkhhkhkhkhkhkhkhkhhkkhkhkhkhkhkrhhkhkhkdhhkhkhhhkhkhkhhk

* *
* FUNCTION 6: DIRECT CONSOLE I/0 ®
* *

LRSS EE RS SRS RS A EREE R LR R LRSS

* Entry Parameters: '

Register C: »E6H

Register E: @OFFH (input) or
char (output)

Returned Value:

Register A: char or status
(no value)
KhhkhkhkhkhkhkhkhkhRkhkhkhhkrAhkhkhhkhkhkhhkhkhhkhhkhx

* Ok k * ¥ *
* F F %k % * ok * F

Direct console I/0 is supported under CP/M for those specialized
applications where unadorned console input and output is required.
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g., control-S and
control-P) ., Programs which perform direct I/0 through the BIOS under
previous releases of CP/M, however, should be changed to wuse direct
I/0 under BDOS so that they can be fully supported under future
releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character, If the input value is FF, then function 6 returns A = 00

if no character is ready, otherwise A contains the next console input
character.

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

10

b))

RS S SRR R RS EE R RS EEEE RS EEE S S

* *
* FUNCTION 7: GET I/O BYTE *
* *
KAXAXRXAA AR I ARk Ak Ak hkhhkdhdhhhhhhkhkhkhkhhkkhkik
* Entry Parameters: ’
* Register C: @7H 2
* *
* Returned Value: "
* Register A: 1I/0 Byte Value *
kXA k kXA XA A XA XA A XA A XA Ak kA khkkkhkhkkk

The Get I/O Byte function returns the current value of IOBYTE in
register A, See the "CP/M Alteration Guide" for IOBYTE definition.

khkkkkhhkhkkhhkhhhhkhhhhkhkhhkhkhkhhkhkhhkhhhkkhx

* *
* FUNCTION 8: SET I/O BYTE .
* *
AhkXRXKAKAAAAhhhhhhhhhhhhhhhhhhhhhhhkhkkk
* Entry Parameters: ”
* Registesr 4.C2; OBH A
* Register E: I/0 Byte Value *
* *

khkhhkhkkhkhkhkkxkhhkhkhhhkhhkhhhkhhhxhkhhhkhhhkhhhx

The Set I/O Byte function changes the system IOBYTE value to
that given in register E.

khkkkhhkhkhkhkhkhkhkhkhhhhkhkhkhhkhkhkhkhhkhkhkhkhhkhhhhhhkkk

* *
* FUNCTION 9: PRINT STRING =
* *
khkhkkkhkkhkhkhkhkhkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkk
* Entry Parameters: v
% Register C*™ N9l i
* Registers DE: String Address *
* *

Kk hkhkhkhkhkhkhhkhhhAxhkhkhkhkhkhhhkhhkhkhxkkhkhhkhkhhhhhx

The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a "$"
is encountered in the string. Tabs are expanded as in function 2, and

checks are made for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research,)

11

Akhkkkkhkhhhkhhkhhkkhkhkhhhkhkkhhhkkkhhkkhkhkhkkkhhhk

* *
* FUNCTION 1@: READ CONSOLE BUFFER L
* *

hhkhkkkhkhhhhhhhhhhhhhhhhkhhhhhhhhhhhhkkx
* Entry Parameters:

Register CyiBAH

Registers DE: Buffer Address

*

Console Characters in Buffer

*
*
*
*
*
KhkAkhhkhkhhhhkhhhhkhhkhhkhhkhkhhkhkhhhhkhhhhkhkk

*
*
*
* Returned Value:
*
*

The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE. Console input is terminated

when either the input buffer overflows. The Read Buffer takes the
form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 ok & +n

o e o o o o o e e e o

. ———————— —— — — T —————— ————— —— — —

where "mx" is the maximum number of characters which the buffer will

hold (1 to 255), "nc" is the number of characters read (set by FDOS
upon return), followed by the characters read from the console. if nc
< mx, then uninitialized positions follow the last character, denoted
by. S22 sibusthe . above figure. A number of control functions are
recognized during line editing:

rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
ctl-E causes physical end of line

ctl-H backspaces one character position

ctl-J (line feed) terminates input line

ctl-M (return) terminates input line

Ctl-R retypes the current line after new line
ctl-U removes currnt line after new line
Ctl-X backspaces to beginning of current line

Note also that certain functions which return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to

the extreme 1left margin). This convention makes operator data input
and line correction more legible.

(A1l Information Contained Herein is Proprietary to Digital Research.)

12

khkhkkhkhkhhkhkhkhkhhhhhkhkhkhkhkhhkhkhkhkhhkhkhhkhkhkhhhik

* *
* FUNCTION 11: GET CONSOLE STATUS %
* *
khkkkkhkkhhhhhkhkhhhhkhkhhhhhhkhhkhhkhhkhhhkhhkhkik
* Entry Parameters: ”
" Register C: 0@BH *
* *
* Returfied"© 'Value: *
% Register A: Console Status *
Khhkkdhhkhkhkhhkhhkhhkhkhhkhkhkhhhhkhhkhhkhhkhkhhhhhkkkk

The Console Status function checks to see if a character has
been typed at the console. If a character is ready, the value OFFH is
returned in register A. Otherwise a @0H value is returned.

khkkhkhkhhhhkhhkhhkhhhhkhhkhdxhkhkhhkhhkhkhkhhhhkhkhkkkkk

* *
* FUNCTION 12: RETURN VERSION NUMBER *
* *
hkhkhkkhkhkhkkhkhkhkhkhkhkAkkrArkhkhkhkxhkhkhkhkhkdhhkhhhhkhkhkkkx
* Entry Parameters: i
* Register C: @CH *
* *
* Returned Value: =
» Registers HL: Version Number *
AKhkhkhkhkkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhhkhkhkhkhhhkhhkhkhkhkhhhxk
Function 12 provides information which allows version
independent programming. A two-byte value is returned, with H = 00

designating the CP/M release (H = @01 for MP/M), and L = @0 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 1in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

13

khkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkkhkhhkhkhkkhkhkhkkhkkhkkk

* * il
|

* FUNCTION 13: RESET DISK SYSTEM * &

:*************************************:

* Entry Parameters: 4

* Register C: ODH *

* *

Khkhkkhkhkhhhkkhhhkhkhhhkhkhhhkhkkhhhhkkkhhhkhhkhhhk

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected, and the
default DMA address is reset to BOOT+@@8@H. This function can be
used, for example, by an application program which requires a disk
change without a system reboot,

khkkkkkhhhhhkhkkhkhkhkhkkhkhkhkhkhkhkhhkhhhkhhhkhhhhkhkkk

* *
* FUNCTION 14: SELECT DISK *
* *
khkkhkhkhkhkhhhhhhkhhhhhhkhhkhkhkhkhkhkhkhkhhhhhhhhhkk
* Entry Parameters: -
* Register C: W@EH *
o Register E: Selected Disk *
* *

khkkkhkhkkhkkhkhkhkrhkhkhhhhkrhhhhkhhkhhkhhkrhhhhhhhkkx

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
= @ for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
"on-line" status which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation., If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see
function 28). FCB's which specify drive code zero (dr = @0H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P,

(All Information Contained Herein is Proprietary to Digital Research,)
14

Khkhkhkkhhkhkkkhhhhhrkhhhohkhdhkhhkhkhhkhkk

* *
* PUNCTION 15: OPEN FILE .
* *
AhkhhkhkkhhkhhhkhhhkkAhhrkhkr Ak hhhkhhhkhhhkkk
* Entry Parameters: *
* Regiester. C:3: OFH 4
* Registers DE: FCB Address X
* *
* Returned Value: ¥
% Register A: Directory Code *
I E R E R X T T TR R R I L EEEEE R R RS E &8 8 8 0 8

The Open File operation is wused to activate a file which
currently exists in the disk directory for the currently active user
number., The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII question mark (3FH) matches any
directory character in any of these positions. Normally, no guestion
marks are included and, further, bytes "ex" and "s2" of the FCB are
zero.

If a directory element 1is matched, the relevant directory
information is copied into bytes d@ through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a “directory code" with the value # through 3 if the open was
successful, or @FFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB is
activated. Note that the current record ("cr") must be zeroed by the
program if the file is to be accessed sequentially from the first
record,

(All Information Contained Herein is Proprietary to Digital Research.)

1.5

khkkhkkkhhkhkhhkkhkkhkhhkhhhkhkhhhhkhhhhkhkhhhkhkhhkhhkxk

* *
* PUNCTION 16: CLOSE FILE %
* *
khkhkhkkhhhhhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhhhhhhhkhhhhkhhdk
* Entry Parameters: .
* Register G¢, LBH *
* Registers DE: FCB Address *
* *
* Returned Value: "
. Register A: Directory Code *
khkhkhhkhkhkhkhkhkhkhkhhkhhkhkkhkhhhkhkhhhkhkhkhkhkhhkhhhhkxk

The Close File function performs the inverse of the open file
function, Given that the FCB addressed by DE has been previously
activated through .an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory., The FCB matching process for the close 1is identical
to the open function., The directory code returned for a successful
close operation is @8, 1, 2, or 3, while a @FFH (255 decimal) is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place, If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information,

(All Information Contained Herein is Proprietary to Digital Research.)

16

.l;:
L

KhkkAKAhkhhkkhhhkhkhkhhkkhkhkhkhhkhhkhhhhhkdhhhhkhhdhik
* *

* FUNCTION 17: SEARCH FOR FIRST :
*

Ahkkhkkkkhkhkhhhhhhhkhkhkhkhkhhhkhhhhhhhhhhhhhhhxk
* Entry Parameters:
Register € e
Registers DE: FCB Address

* % % % ¥ *

*
*
x
* Returned Value:
*
*

Register A: Directory Code
Fhkhkhkkkkkkhhkhhhkhkhkhhhhkkhhhhkhkhhhkhhhhkhhhk

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The ' value 255 (hexadecimal FF) is
returned if the file is not found, otherwise @8, 1, 2, or 3 is returned
indicating the file is present. In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position,

An ASCII question mark (63 decimal, 3F hexadecimal) 1in any
position from "f1" through “"ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
"dr" field contains an ASCII question mark, then the auto disk select
function 1is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number, This 1latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the "dr" field is not a question mark,
the "s2" byte is automatically zeroed,

khkhkhkhkhkhkhkkhkhkhkhhhkhkhhhkhkhhhkhkhkhhhhkhhhkkhhkkhhkkk

* *
* FUNCTION 18: SEARCH FOR NEXT *
* *
khkhkkhkhkkhkhhkhkkkkkkhkkkkkkhkkhkkhkkkhkhkhkkhkkhkkkkhkkkkkkkk
* Entry Parameters: %
4 Register . €:').128 3
* Returned Value: *
w Register A: Directory Code *
khkkkhkhkhhkkhkhkhhkhkhkhkhhkkkhhhkhhkkhhkkhkhkhkhkhhhhkhkhkhkkk

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last

matehedsentry. BSimilar to function 17, funection 18 returns the
decimal value 255 in A when no more directory items match.

(All Information Contained Herein is Proprietary to Digital Research.)

17

khkhkhkkkkkhkhkkhkhhhhhkhkhhhkhhhhhkhhdhhhhhhxk

* *
* FUNCTION 19: DELETE FILE %
* *
KAkKAKAkhhkAkhkkkhdhhkhkhkhhhkhhkhhhhkhhhkhkhhhhhhk
Bty Pavametevrs: -
v Registerr C: 13H "
* Registers DE: FCB Address *
* *
* Returned Value: 3 -
* Register A: Directory Code *
kAN hAkkAKARK KRR A Rk Ak hhhhhkhhdhhhhkdhhkhhkk

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., guestion marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the referenced file or

files cannot be found, otherwise a wvalue in the range @ to 3 is
returned.

khkhkhkkhhkhhhhhkhkkhhhkkkhhhkhkkkhkhkhkhkhkhhkhhkk

* *
* FUNCTION 20: READ SEQUENTIAL ¥
* *
Ak kkhkhhhhhdhhhhkhhkhkhkhhhhhkhkhkhkkkkkkhhkkkkhkk
* Entry Parameters: ¥
g Register 'C: 14H X
w Registers DE: FCB Address ¥
* *
* Returned Value: .
2 Register A: Directory Code *
kkkkhhkhkkhkhkkkhkhkhkhkhkhkhkkkhkhkhkhhhkkhkhkkhkhhkhhhkkkkk

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. the record is read from position "cr" of the
extent, and the "cr" field is automatically incremented to the next
record position. If the “cr" field overflows then the next logical
extent is automatically opened and the “"cr" field is reset to zero in
preparation for the next read operation. The value @@H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information Contained Herein is Proprietary to Digital Research,)

18

Ak Ak kA A A A A A KA A AR AR AR AR KA KK

* *
* FUNCTION 21: WRITE SEQUENTIAL &
* *

Fhhkkdhkhhhkhhhkhhkhhhhkhkhhhhhhhhhrhhhhhkhhkhx
* Entry Parameters: *
Register &= 15H
Registers DE: FCB Address

Register A: Directory Code
AhkhkhkhkkkhkhkhkkhkhkhkhhkhkhkhhArhhhkdrhhhkhdhrhhhkx

* *
* *
* *
* Returned Value: *
* *
* *

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write Seguential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position "cr" of
the file, and the "cr" field is automatically incremented to the next
record position, If the "cr" field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next write operation. Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A = @@H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

hhkhkhkhkhhkhhkkdhkhhhhhhhhhhhkhkhhhhhhkkrhhkhkhk

* *
* FUNCTION 22: MAKE FILE #
* *
KhkAkhkhhhkkkhkkkhkkhkhkhkhkkhkhkhkhkkkkkkkkkhkkkkhkhkk
* Entry Parameters: 5
i Register B: clob X
x Registers DE: FCB Address *
* *
* Returned Value: *
% Register A: Directory Code *
khkkkhhkkhkhkkhkhkhhkhkhkkhkhkkkhkxkhhkhkhkhhkhkhhkhkkhhhkkkkx

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero "dr" code, or the default disk if "dr" is zero). The FDOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A = 0,
1, 2, or 3 if the operation was successful and @FFH (255 decimal) if
no more directory space 1is available, The make function has the
side-effect of activating the FCB and thus a subsequent open 1is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research.)

19

LRSS E A E R R R R R R R R Y Y Y R R EEE

* *
* FUNCTION 23: RENAME FILE %
* %

LR R RS R R R R R
* Entry Parameters:

Register Cis: 17H
Registers DE: FCB Address

»*

*
*
*
*
*
*

Register A: Directory Code

*
*
*
Returned Value: ¥
*
LR R R R R R R R R R T

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code "dr" at position # is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between # and 3 if the rename was successful, and

@FFH (255 decimal) if the first file name could not be found in the
directory scan.

LR R R Y R R s T L]

* *
* FUNCTION 24: RETURN LOGIN VECTOR %
* *
KhkhhkhkhkhhkhhhhhhkhhkhhkAhhhkhhhhkxkkhkhhhkkk
* Entry Parameters: *
¥ Register s 18H x
* *
* Returned Value: Ty ¥
Registers HL: Login Vector *
KRR KRAKR KRR KRR RR AR KNIk ARk hhhhhhhhhhihkkhk

The login vector value returned by CP/M is a 16-bit value in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H corresponds to the sixteenth drive,
labelled P. A "@" bit indicates that the drive is not on-line, while
a "1" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero "“dr" field. Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return.

(All Information Contained Herein is Proprietary to Digital Research.)

20

Khkkkkhhkhkkhkhkhkhkhkhkkhkhkkhhhhkhxhhhhhhhkkhkhhdd

* *
*¥ FUNCTION 25: RETURN CURRENT DISK =
* *
IR R R R R R R R R R R E R R R s R E SR 2
* Entry Parameters: *
¥ Register s 19K ®
* *
* Returned Value: %
= Register A: Current Disk *
KEkkhkhkhkkhkhkhkkhkkhkkkkkhkkhkhkkhkhkhkhkhhkrdhkhkkkxhkhkhkkhkkhkhkkkxk

Function 25 returns the currently selected default disk number

in register A, The disk numbers range from § through 15 corresponding
to drives A through P.

AKhkhkkhhhhhkhhAhhkhkhhhhhhhhhhhhhkhhhhkhhkhkkhhk

* *
* FUNCTION 26: SET DMA ADDRESS 2
* *
khkkkkkhkhhkkkhhkhhkhhkhkhkhrahhkhkhkhhkhhkkhkhkhhhhkhhhkkk
* Entry Parameters: 3
* Register €: 1AH 5
i Registers DE: DMA Address *
* *

A SRS EEEEEEEE SRR E R SRR RS EEEEEE]

"DMA" is an acronym for Direct Memory Address, which 1is often
used 1in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
subsystem., Although many computer systems use non-DMA access (i.e.,
the data is transfered through programmed I/0O operations), the DMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the DMA address is
automatically set to BOOT+@@8@fH. The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset,.

(All Information Contained Herein is Proprietary to Digital Research.)

21

KAk kkhkhhkhhkhkhhhhkhhhhhhkhkhhhhkhhkhkhkhhhkhhhkhkk

* *
* FUNCTION 27: GET ADDR (ALLOC) %
* *
Kkhkkkhkhkhkhkhhkhkhkhkhkhkhkkhhkhkhhkhhkhkhkhkhkhkhkhkhkdhxkk
* Entry Parameters: b
¥ Register , ,C: _1BH A
* *
* Returned Value: =
* Registers HL: ALLOC Address *
KKkhkhkhkhkhhkkkhkhhhkhkh kA hkhkhhhrahhkhhhhkhx

An "allocation vector" is maintained in main memory for each
on-line disk drive, Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally
used by application programs, additional details of the allocation
vector are found in the "CP/M Alteration Guide." _

LEE R SR ERE S SRS ERESE S SRR SRS SR SRR R LR ER S

* *
* FUNCTION 28: WRITE PROTECT DISK :
x

KhhkhhhkhkhkhkhkhkhkhhkhkhhkkhkhkAhhkhkhhk kA hk kX kA kA hk*x
* Entry Parameters: "
i Register ot o] R
* . *

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produces the

message

‘Bdos"Err on d: R/0

(All Information Contained Herein is Proprietary to Digital Research.)

22

"

khkkhkkhkrkAhkdhkhhkhhkhkhkhkdhhhkrhhkkhkhhhkkhkhkhkhkrkkk

* *
* FUNCTION 29: GET READ/ONLY VECTOR *
* *
Ahkkhkhkkkhkkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhhkkhkhkkhkhkhkkhkhkhhk
* Entry Parameters: "
¥ Register Cie » 1DE X
* *
* Returned Value: *
* Registers HL: R/O Vector Value*
Ahkkkkhkhkhkhkhkhkhkhkhkhkhkhhhhkhkhkhhhhkhkhkhkhkhhkhkhkhhhkh

Function 29 returns a bit wvector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks,

KAKIA Kk kA Kk kA kA hkhkAkhkhkh Ak khh kA kA hkAXKK KK

* *
* FUNCTION 36: SET FILE ATTRIBUTES £
* *

Khkhkkhkhkhkhkhkhhhhhhkhkkhkhkhkhkhkhkhkhkhkhhhhhhhhhhkkkx
* Entry Parameters: i

* Register Gtg dEH F
= Registers DE: FCB Address *
* *
* Rekturhesh, Value: 3
e Register .. A: Directory Code *
KA ARk ARAXAKRAARA KA Ak I A hhkh Ak Ak hkhkkkkhkk

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
varticular, the R/O and System attributes (tl' and t2') can be set or
reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 38 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators fl' through f4' are not presently used, but

may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.

Indicators £5' through £8' and t3' are reserved for future system
expansion,

(All Information Contained Herein is Proprietary to Digital Research.)

23

khkkhkkkkhhhkhkhkhkhkhkhhhkxhk Ak hkhkhkhhhhrhik

* *
* FUNCTION 31: GET ADDR(DISK PARMS) *
* *

* Entry Parameters: *
* Register @ s TEH *
* *
* Returned Value: "
¥ Registers HL: DPB Address *
hhhkhkkXkkhkkhkkhrhkXkhhkkhkhkhhohkhrhhhhhhhhhxhkhkkk

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes, First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk enviromment changes, if required. Normally, application
programs will not reguire this facility.

hhkkhkkhkhkhkkkkkhkhkhkdhohkhhhhhhkhhhkhkhkhhkhhhhkkhxk

* *
* FUNCTION 32: SET/GET USER CODE *
* *
KKK AXKRKAKR A KA A A A A AR KA AR AN A A A AR T A I Ak kXK
* Entry Parameters: ¥
* Register C: 20]
* Register E: OFFH (get) or *
¥ User Code (set} *
* *
* Returned Value: : &
¥ Register A: Current Code or *
* (no value) ¥
#********************************

An application program can change or interrogate the currently

active user number by calling function 32, If register E = @FFH, then
the value of the current user number is returned in register A, where

the value is in the range 8 to 31. If register E is not QEFH, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research.)

24

"

AXKKKkK K IRk Fhhhhkhhhhkhhkdhhhkhkhhhkhkhhkhhkhhanrhkhk

* *
* FUNCTION 33: READ RANDOM x
* *

LR R E R R R R R R R R R R R R E R E R R R R TR
* Entry Parameters: "
Register s 2 IH
Registers DE: FCB Address

Register A: Return Code
LR R R Y R R R R R R R R R R

* *
* *
* *
* Returned Value: *
* *
* *

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r@ at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits 1is stored with least significant byte first (r@), middle
byte next (rl), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2

must be zero, however, since a non-zero value indicates overflow past
the end of file,

Thus, the r#,rl byte pair is treated as a double-byte, or "word"
value, which contains the record to read. This value ranges from @ to
65535, providing access to any particular record of the 8 megabyte
file. In order to process a file using random access, the base extent
(extent @) must first be opened. Although the base extent may or may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and 1is visible in DIR reguests. The
selected record number is then stored into the random record field
(r@,rl), and the BDOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value @0 indicating the operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the seguential read operation, the
record number 1is not advanced. Thus, subsequent random read
operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set, Thus, the file can be

sequentially read or written, starting from the current randomly
accessed position, Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a segquential I/O operation,

Error codes returned in register A following a random read are
listed below.

(All Information Contained Herein is Proprietary to Digital Research.)

25

Pl reading unwritten data

@2 (not returned in random mode)
@3 cannot close current extent

@4 seek to unwritten extent

@5 (not returned in read mode)

f6 seek past physical end of disk

Error code @1 and 04 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does

not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code @6 occurs whenever byte r2

is non-zero under the current 2.0 release, Normally, non-zero return
codes can be treated as missing data, with =zero return codes

indicating operation complete,

(All Information Contained Herein is Proprietary to Digital Research.)

26

"

khkhkkkhkhhhkhhhkkrkhhkkhkhh kKA hhkkkhhkkkhkkk

* *
* FUNCTION 34: WRITE RANDOM o
* *
AKAkkAkhkhkkhkhARhkhARhk AR Akhhhkhkhkhkhkkhkhhhhhkhhkhhdk
* Entry Parameters: %
% Register C: 22H A
“ Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Return Code o
khhkkhhhkhkkhkhhhkhkhhhhhkhhhhhhhhhhhhhhhhhhhk

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which 1is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues, As in the Read Random
operation, the random record number is not changed as a result of the

write, The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can

commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a seguential
write operation., Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in sequential mode,

The error codes returned by a random write are identical to the
random read operation with the addition of error code 65, which
indicates that a new extent cannot be created due to directory
overflow.

(A1l Information Contained Herein is Proprietary to Digital Research.)

27

khhkhkkkhkhkhkhkhkhhkhkhkhk kAR A KA XKk IK A A hkhhhkhkhhkkk

* *
* FUNCTION 35: COMPUTE FILE SIZE *
* *
khkkkkhkkkhkhkkhkkdhhkhdhkhkhdhhkhkhhhkhkhkhkhkhkhkhkhkhhhsk
* Entry Parameters: ¥
* Register C: 238 %
¥ Registers DE: FCB Address %
* *
* Returned Value: *
* Random Record Field Set x
khkkkkkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhhhhhhhhhhhhhhhhhk

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r@, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual™ file size ‘which is, in effect, the® record address ofio the
record following the end of the file. PE ol lowing .acall to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536. Otherwise, bytes rf@ and rl constitute a
16-bit value (r@ is the least significant byte, as before) which is
the file size. -

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of

file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates, Ifso tiEor
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the wvirtual size 1is

65536 records, although only one block of data is actually allocated.

28

==

khkkhhkhkkkhkhkhhhhhhhkhkhkhhkkhkhhxhkhkhhhhhrhhkhkhkk

* 3 *
* FUNCTION 36: SET RANDOM RECORD Pt
* *
kkhkkhhkhkhhhhh kAR AR kAR ARk AR ARk hkkkk
* Entry Parameters: %
* Register C: 24H P
* Registers DE: FCB Address X
* *
* Returned Value: %
o Random Record Field Set *
khkkkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhhkhkhkhhdhhkhkhhhhkhkkkik

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point. The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields, As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier,
The scheme is easily generalized when variable record lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time,.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write, A file is
sequentially accessed to a particular point in the file, function 36
is called which sets thé record number, and subsequent random read and
write operations continue from the selected point in the file,

(All Information Contained Herein is Proprietary to Digital Research.)

29

3. A SAMPLE FILE-TO-FILE COPY PROGRAM.

The program shown below provides a relatively simple example of
file operations. The program source file is created as COPY.ASM using
the CP/M ED program and then assembled using ASM or MAC, resulting in
a "HEX" file. The LOAD program is the used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting
the stack pointer to a 1local area, and then proceeds to move the
second name from the default area at @@6CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination FCB's are ready for processing since the SFCB at 005CH is
properly set-up by the CCP upon entry to the COPY program, That is,
the first name is placed into the default fcb, with the proper fields
zeroed, including the current record field at @@7CH. The program
continues by opening the source file, deleting any exising destination
file, and then <creating the destination file. FE®Sall thiscis
successful, the program loops at the label COPY until each record has

been read from the source file and placed into the destination file,
Upon completion of the data transfer, the destination file is <closed

and the program returns to the CCP command level by jumping to BOOT.

sample file-to-file copy program
at the ccp level, the command
Copy asx.yib:u.v

copies the file named x.y from drive
a to a file named u.v on drive b,

B wme e M e ws e W W

0008 = boot egu @ 0006h ; system reboot
0ees5 = bdos equ #005h ; bdos entry point
@g@sc = fcbl eqgu @@5ch ; first file name
@@5¢c = sfcb equ fchil ; source fcb
gB6c = febZ equ g@dé6ch ; second file name
po8e = dbuff equ 0080h ; default buffer
0106 = tpa equ #100h ; beginning of tpa
0ee9 = printf equ 9 ; print buffer func#
pORf = openf equ 15 ; open file func#
0610 = closef equ 16 ; close file func#
P13 = deletef egqu 19 ; delete file func#
pgl4 = readf equ 20 ; seguential read
g@1s5 = writef equ 21 ; sequential write
gple = makef equ 22 ; make file func#
01lo0 org tpa ; beginning of tpa
0100 311b@2 1xi sp,stack; local stack

; move second file name to dfcb
0103 deld mvi c,16 s half an fcb

(All Information Contained Herein is Proprietary to Digital Research.)

30

01a5
p108
@10b
Bléc
@10d
d10e
G10f
0116

#113
B114

% 18
Blla
@11d

0120
4121

D124
@127

@12a
#12d
0130
2133
@134

@137
@13a

P13d
B13e

141
9144
0147
P14a
@14b

d14e

0151
G154
@157
@15a
@15b

(All Information Contained Herein is Proprietary to Digital Research.)

gd
c20bg1

af
32fagl

115c00
cd69d1
118701

3¢
cc6lal

lldagl
cd7361

11da@gl
cdg82pl

119601
3

ccelpl

115c00
cd7801

b7
c25101

l11dagl
cd7d61
11a961
b7

cd6101
c33701

lldagl
cdéefl
21bb@1
3c

cc6lil

mfcb:

- we

- me wme

- we

() =v =& =s =

- we

I
eofile:

- wma

Ixi d,fcb2 : source of move
1xi h,dfcb ; destination fcb
ldax d ; source fcb

inx d ; ready next

mov m,a ; dest fcb

inx h ; ready next

dcr c secount 16.. .0
jnz mfchb s loep ¢ 16 times

name has been moved, zero cr
Xra a ; a = @0h
sta gdEchbecr i current rec = 0

source and destination fcb's ready

150l d,sfcb ; source file
call open FLerror i f 9h 5
1xi d,nofile; ready message
INE a ; 255 becomes 0
cz finas ; done if no file

source file open, prep destination

Txa d,dfcb ; destination

wall delete ; remove if present
Lx1 d,dfcb ; destination

call make ; create the file

1xi d,nodir ; ready message

inr a ; 255 becomes @

cz finis ; done if no dir space

source file open, dest file open
copy until end of file on source

o= d,sfeb .. source

call read ; read next record
ora a :+ end of file?

jnz eofile ; skip write if so

not end of file, write the record

1xi d,dfcb ; destination
call write : write record
ixi d,space ; ready message
ora a ; B0 if write ok
chz finis ; end if so

jmp COpY astoopauntil eof
; end of file, close destination
1xi d,dfcb ; destination
call close 250N if 6T oL
Jeat h,wrprot; ready message
inr a : 255 becomes 00
cz finis ; shouldn't happen

copy operation complete, end

31

#l5e llccol 1%1 d,normal; ready message

i
finis: ; write message given by de, reboot

P16l 0ed9 mvi c,printf
P163 cdd500 call bdos ; write message
g166 c30000 jmp boot ; reboot system
; system interface subroutines
: (all return directly from bdos)
0169 delf 6pen: mvi c,openf
@leb c30500 jmp bdos
fl6e Beld élose: mvi c,closef
0170 c30500 jmp bdos
0173 0el3 delete: mvi c,deletef
P175 c30500 jmp bdos
0178 Geld read: mvi c,readf
Bl7a c30500 jmp bdos
9174 @el5 &rite: mvi c,writef
P17f c30500 jmp bdos
0182 Gel6 make: mvi c,makef
0184 c30500 jmp bdos
: console messages
P187 6e6f2@fnofile: db 'no source file$'
$196 6e6£209nodir: db 'no directory spaceS$'
fla9 6f7574fspace: db ‘out of data space$'’
Blbb 7772695wrprot: db 'write protected?$’
Blcc 636f700normal: db 'copy complete$'’
; data areas
g1lda dich: ds 33 destination fcb

gdlfa = dfcbcr equ dfcb+32 current record

01lfb ds 32 ; 16 level stack
stack:

921b end

Note that there are several simplifications in this particular
program. First, there are no checks for invalid file names which
could, for example, contain ambiguous references. This situation

could be detected by scanning the 32 byte default area starting at
location @P@5CH for ASCII question marks. A check should also be made

to ensure that the file names have, in fact, been included (check

locations @@5DH and @@6DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file

names are different. A speed improvement could be made by buffering
more data on each read operation. One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

32

the size of memory by fetching FBASE from location #0@6H and use the
entire remaining portion of memory for a data buffer. 1In this case,
the programmer simply resets the DMA address to the next successive

128 byte area before each read. Upon writing to the destination file,
Fhe DMA address is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to

the destination file.

(All Information Contained Herein is Proprietary to Digital Research.)

33

4, A SAMPLE FILE DUMP UTILITY,

The file dump program shown below is slightly more complex than
the simple copy program given in the previous section. The dump
program reads an input file, specified in the CCP command 1line, and
displays the content of each record in hexadecimal format at the
console, Note that the dump program saves the CCP's stack upon entry,
resets the stack to a local area, and restores the CCP's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the end of processing.

; DUMP program reads input file and displays hex data

-
r

0100 org 10 6h
gees5 = bdos egu @005h ;dos entry point
pepl = cons egu 1 sread console
geo2 = typef equ 2 ;type function
pOG9 = printf equ 9 sbuffer print entry
P00b = brk £ equ 2 | ;break key function (true if char
0Rof = openf egu 15 ;file open
0014 = readf equ 20 ;read function
605c = fcb egu 5ch ;file control block address
Qe8Y = buff egu 80h ;input disk buffer address
3 non graphic characters
b@ea = er equ @dh jcarriage return
gbga = if egu Bah :line feed
H file control block definitions
PU5c = fcbdn equ fcb+é ;disk name
gpsd = fcbfn equ fcb+l ;file name
pO65 = fcbft equ fcb+9 ;disk file type (3 characters)
0068 = fcbrl equ fcb+l2 ;file's current reel number
g06b = febre equ fcb+l5 ;file's record count (6 to 128)
B@7c = feber equ fcb+32 ;current (next) record number (@
p@g7d = fcbln equ fcb+33 ;fcb length
H set up stack
0100 210000 ixi h,®
163 39 dad sp
; entry stack pointer in hl from the ccp
9104 221502 shld oldsp
; set sp to local stack area (restored at finis)
9107 3157682 1xi sp,stktop
; read and print successive buffers
PlPa cdclil call setup ;set up input file
0104 feff cpi 255 $255 if file not present
P10f c21bpl jnz openok ;skip if open is ok
: file not there, give error message and return
9112 11£301 1xi d,opnmsg
115 cd9chl call err
#118 c35101 jmp finis ;to return

-

(All Information Contained Herein is Proprietary to Digital Research.)

34

openok: ;open operation ok, set buffer index to end

@11lb 3e80 mvi a,86h
’ p1l1ld 3213082 sta ibp ;jset buffer pointer to 88h
g@ : hl contains next address to print

0120 210000 1xi h,0 ;start with 0000

gloop:

#1233 e5 push h ;save line position

0124 cda201l call gnb

B127 el pop h ;jrecall line position

0128 da5101 e finis ;carry set by gnb if end file

B12b 47 mov b,a

print hex values
check for line fold

- me

Pyl 2c 74 mov a,l
#12d e6df ani Bfh ;check low 4 bits
012f c24401 jnz nonum
. print line number
0132 cd7201 call crlE
: check for break key
#135 cd5901 call break
: accum lsb = 1 if character ready
0138 OF Lrc :INEO Cagey
$139 da5101 e finis ;don't print any more
Bl3c.7e mov a,h
#13d cd8fpl gall phex
@ @140 74 mov a,l
U P141 cdsfgl call phex
nonum:
@144 23 inx h ;to next line number
0145 3e220 mvi ay
8147 cde6e501 calkl pchar
@ld4a 78 mov a,b
@14b cd8f@l gall phex
Plde c32301 jmp gloop

end of dump, return to ccp
(note that a jmp to #000h reboots)

8151 cd7201 call crlt
154 2al502 1hld oldsp
@157 £9 sphl
: stack pointer contains ccp's stack location
3158 c9 ret ;to the ccp
i
; subroutines
break: j;check break key (actually any key will do)
p159.e5d5¢5 push h! push d! push b; enviromment saved
015c Qebdb mvi e, DEKE
B1l5e cdé500 call bdos
(@’ P16l cldlel pop b! pop d! pop h; enviromment restored

(All Information Contained Herein is Proprietary to Digital Research.)

33

#3164 c9 ret

;
pchar: ;print a character

#165 e5d5c5 push h! push d! push b; saved
0168 Oef2 mvi c,typef
gléa 5f ' mov e,a
@l6b cde500 zall bdos
glée cldlel pop b! pop d! pop h; restored
[B el ret
crif:
0172 3ebd mvi a,cr
174 cdebp1 call pchar
8177 3eba mvi e
8179 cd6501 call pchar
Bi’ec c9 ret

Lo JETIT
=
[
o

;print nibble in reg a

P17d4 e60f ani Bfh ;low 4 bits
017f feba cpi 10
p181 d28901 jnc pl@
: less than or egual to 9
9184 c630 adi £
P186 c38b@l jmp prn
$ greater or equal to 10
0189 c637 plo: adi 2 = 18
¥18b cd6501 prn: calid pchar
018e c9 ret
phex: ;print hex char in reg a
d18f f£5 push psw
0190 O£ rre
9191 0f rce
9192 0f rre
9193 Of rLe
#0194 cd7del call pnib :sprint nibble
gins 1l pop psw
0198 cd7d01 call pnib
@19b c9 ret
err: ;print error message
: d,e addresses message ending with "§$"
P19c Ged9 mvi DePrINGE ;print buffer function
P19e cdes500 call bdos
@lal c9 ret
gnb: ;get next byte
Plaz2 3al302 lda ibp
0la5 fe80 cpi 80h
Pla7 c2b3@1 jnz g

read another buffer

-y me

(All Information Contained Herein is Proprietary to Digital Research,)

36

@laa
@lad
@lae

p1bl
@1b2

@1b3
@1b4

0 1b6
@1b7

@1ba
#1bd

@1lbe

@1bf
@1lc@

@lcl
@1lc2

@1lcs
@1c8
@lca

@lcd

@lce
g1d1
@144
#1de6
9149
@1ldc

@1ldd
P1f3

9213
p215

p217

0257

cdcef 1
b7
cab3d1

37 =
c9

5E
1600
3c
321302

218000
19

Te

b7
c9

af
327c00

115c08@
Qel £
cd@s500

c9

e5d5c5
115c@@
feld
cdas500
cldlel
c9

46494cPsignon:
#dladelopnmsg:

-

-

-

diskr:

ibp:
oldsp:

r

stktop:

r

call diskr
ora a ;zero value if read ok
jz g ;for another byte

end of data, return with carry set for eof
stc

ret

;read the byte ‘at bufftreg a

mov e,a ;1s byte of buffer index

mvi a,o ;double precision index to de
inr a ; index=index+1

sta ibp ;back to memory

pointer is incremented
save the current file address

1xi h,buff

dad d

absolute character address is in hl
mov a,m

byte is in the accumulator

ora a ;reset carry bit
ret

;set up file
open the file for input

Xra a ;zero to accum

sta fcber ;clear current record
1%4 d., fob

mvi c,openf

call bdos

255 in accum if open error

ret

;read disk file record
push h! push d! push b
%1 d, Ech

mvi c,readf

call bdos

pop b! pop d! pop h
ret

fixed message area

db 'file dump version 2.0S$’

db cr,1f,'no input file present on disk$'
variable area

ds 2 ;input buffer pointer

ds 2 ;entry sp value from ccp

stack area
ds 64 ;reserve 32 level stack

end

(All Information Contained Herein is Proprietary to Digital Research.)

37

5. A SAMPLE RANDOM ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of random access operation, The program listed below performs
the simple function of reading or writing random records upon command
from * the " terminal. Given that the program has been created,

assembled, and placed into a file labelled RANDOM,.COM, the CCP level
command :

RANDOM X.DAT

starts the test program, The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the

prompt is given, Each prompt takes the form
next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nw nR Q

where n is an integer value in the range # to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and guit processing, respectively. If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
2.DAT - Pile at record iy, If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor, In the interest of brevity, the
only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label “ready" where the individual commands are interpreted. The
default file control block at @05CH and the default buffer at 9080H
are used in all disk operations. The utility subroutines then follow,

which contain the principal input 1line processor, called "readc."
This particular program shows the elements of random access

processing, and can be used as the basis for further program
development.

(A1l Information Contained Herein is Proprietary to Digital Research.)

38

;***

.* *
. ;* sample random access program for cp/m 2.0 A

. % =
;************‘k**************************************

0100 org 100h ibhase of tpa
H

0000 = reboot egqu P00 oh ;system reboot

6005 = bdos equ @005h ;bdos entry point

0001 = éoninp equ b ;console input function

gRe2 = conout egqu 2 ;console output function

pRB9 = pstring equ 9 sprint string until 1$°

gpva = rstring equ 10 sread console buffer

g@odc = version equ 12 ;return version number

0aBf = openf egu 15 ;file open function

0010 = closef equ 16 ;close function

ggle = makef equ 22 ;make file function

gB21 = readr egu 33 ;read random

gR22 = writer equ 34 swrite random

@@5c = feb eqgu @@5ch ;default file control block

go7d = ranrec equ fcb+33 ;random record position

g7t = ranovf equ fcb+35 ;high order (overflow) byte

P80 = buff egu 9@ 80h :buffer address

geed = cE egu @dh ;carriage return

gpda = 1153 equ @ah ;line feed

. ;1\'**

% *
:* load SP, set-up file for random access *
« % *
;***

0100 31bco kxx sp,stack
: version 2.07?

0103 Belc mvi c,version

105 cdeso calil bdos

0108 fe20 cpi 20h ;version 2.0 or better?

@lPda d2160 gnc versok
: bad version, message and go back

P10d 111b@ L d,badver

3110 cdda@ call print

P113 c3600 jmp reboot
versok:
: correct version for random access

0116 PDeBf mvi c,openf ;open default fcb

118 115cH o defeh

@11b cdese call bdos

#1lle 3c iy a serr 255 becomes zero

Bllf 2378 jnz ready

- =

cannot open file, so create it

(All Information Contained Herein is Proprietary to Digital Research,)

39

0122 @Gel6 mvi c,makef

#124 115cH 1xi da, fcb

P127 cdes50 call bdos

@l2a 3c inr a ;jerr 255 becomes zero

B12b c2370 jnz ready
7
: cannot create file, directory full

@l2e 113a0 1xi d,nospace

p131 cddag call pLInt

@134 c3000 jmp reboot ;back to ccp
;***
. % *
;* loop back to "ready" after each command X
.k *
:.**************************'k************************
H
ready:
: file is ready for processing
;

9137 cde50 call readcom ;read next command

@13a 227d0 shld ranrec ;store input record#

@134 217f£0 1xi h,ranovf

0140 3600 mvi m,d ;clear high byte if set

@142 feb1 cpi S8 jquit?

P144 c2560 ng notqg
3 quit processing, close file

3147 Geld mvi c,closef

9149 115c@ 1%3 d,fcb

@l4c cdeso call bdos

P14f 3c inr a ;err 255 becomes @

0150 cab9g 12 error ;error message, retry

@153 c3000 jmp reboot ;back to ccp
;*1\'***
.k *
;* end of guit command, process write g
.* *
;***
notqg:
; not the guit command, random write?

0156 fe57 cpi 'w'

0158 c28990 jnz notw
. this is a random write, fill buffer uREil. cr

@15b 11440 1x1 d,datmsg

P15e cdda® call print ;data prompt

P16l Ge7f mvi (ol 11745 ;up to 127 characters

9163 21800 1% h,buff ;destination
rloop: ;read next character to buff

8166 cb5 push b :save counter

0167 e5 push h ;jnext destination

@168 cdc2#d call getchr ;character to a

016b el pop h ;restore counter

(All Information Contained Herein is Proprietary to Digital Research.)

49

Blec
@1led
@lef

0172
0173
p174
8175

p178

gl7a
Bl7c
g17f
0182
0183
P186

8189
p18b

g18e
9190
0193
0196

p197

B19a

194
L9

Pla2
@la3
glad
@laé6
@la9
@laa
@lab
@ lad
@1b@
@1bl
#1b2
@1b3
@1b6

(A1l Information Contained Herein is Proprietary to Digital Research.)

e
feld
ca78g

i)
23
a4
c26640

3600

fe22
115cH
cdig 50
b7

c2b9@
c3370

fe52
c2b90

Ge2l
115c8H
cd@seg
b7
c2b90

cdcfp
Ge8O
21800

Te

23
e67f
ca3i@d
c5

e5
fe2@
d4c89
el

cl

dd
c2ag
c3370

-

erloop:

- w8

* o F O ¥

= T we me me we W e
O
t+
=

- =8

- e

wloop:

pop b ;restore next to fill
cpi cr ;end of line?

32 erloop

not end, store character

mov m,a

inx h *hext *to* 144

dcr o] ;counter goes down
jnz rloop ;end of buffer?

end of read loop, store @0
mvi m,0

write the record to selected record number

mvi c,writer

1%1 ds; feb

call bdos

ora a ;error code zero?
jnz error :message if not

jmp ready ;for another record

Fhkhkhkhhhhhkhkkhhhhhhhhkhhhkhkhhkhhhhhhhhhhhkhhhhhkhhhkhhkk

*

end of write command, process read =

*

hkhkkhkhkhhkhkkkkkhkhhkhkkkhkhkhhkhkhhkhhkhhkkhhkhhkhhkhhkhhhhx

not a write command, read record?
cpi YR
jnz error ;skip if not

read random record

mvi c,readr

Jacd dyteb

call bdos

ora a ;return code 0072
jnz error

read was successful, write to console

call crilE ;hew line

mvi c;128 ;max 128 characters
1xi h,buff ;next to get

mov a,m ;next character

inx h ;next to get

ani 7fh ;mask parity

g - - ready ; for another command if 06
push b ;save counter

push h ;save next to get
cpi ent ;graphic?

cnc putchr ;skip output if not
pop h

pop b

dcr (] :count=count-1

jnz wloop

jmp ready

41

KKk hkhkRkhkhhhkhhhhkhhhhkrkhhkhkhkkhhhAXAAA Ak Ak dhdhhhhhhhhhixk
*

end of read command, all errors end-up here %
*

LR SRR SRR RS RS E R ER SRS SRR ERRESEE SRS SRR S

- me wmE wE W - W8
* % * % %

error:
#1b9 115940 11l d,errmsg
f lbc cddad call print
@1bf c3379 jmp ready
;***
.k *
;* utility subroutines for console i/o *
e *
;**************t************************************
getchr:
;read next console character to a
g1lc2 Pefl ' mvi c,coninp
@lcd cdp58 cal 1 bdos
Plei*c9 ret
putche:
;write character from a to console
@1c8 Qe@?2 mvi e, conout
@lca 5f mov e,a :character to send
glcb cd@56 call bdos ;send character
@lce c9 ret
CElLE:
:;send carriage return line feed
Blct 3epd mvi anicr ;carriage return
§1dl cdc8p cail putchr
#1d4 3ela mvi At f ;line feed
#1d6 cdc8g call putchr
@149 c9 ret
r
prink:
;orint the buffer addressed by de until $
@lda d5 push d
@1db cdcfe call criif
fglde dl pop d ;new line
¢ldf 0el9 mvi c,pstring
flel cd@50 call bdos ;brint the string
fled c9 rebidor
readcom:
;read the next command line to the conbuf
Ple5 116bd i d,prompt
#le8 cddad -) print ; command?
gleb deba mvi c,retring
Pled 117a6 g belcal d,conbuf
@1f@ cdos50 call bdos ;read command line

command line is present, scan it

-

(A1l Information Contained Herein is Proprietary to Digital Research.)

42

01f3 21000 1xi h,o ;jstart with 0000

PAEG L1 7cDh il d,conlin;command line

g1f9 1la readc: 1ldax d ;next command character

B1fa 13 inx d ;to next command position

d1fb b7 ora a ;cannot be end of command

DA EcPch L7
: not zero, numeric?

g1fd de30 sui ‘e’

p1ff fepga cpi 10 scarry if numeric

0201 d213¢ jnc endrd
3 add-in next digit

B204 29 dad h %2

@285 4d mov el

0206 44 mov ity :bc = value * 2

@207 29 dad h s k4

0208 29 dad h £ %8

8209 B9 dad b $2 F *8 = 2y

@20a 85 add il ;+digit

220b 6f mov il

P20c d2£90 ne readc ;for another char

W20t 24 1N h ;overflow

02106 c3f90 jmp readc ;for another char
endrd:
: end of read, restore value in a

9213 c630 adi ‘g’ ; command

8215 febl cpi ‘a’ ;transiatecase?

G217 4As Ee
; lower case, mask lower case bits

0218 e65f ani 1901$1111b

B2la c9 ret
;***
. % *
i* string data area for console messages "
« % *
;***
badver:

B21lb 536£79 db 'sorry, you need cp/m version 2$°
nospace:

023a 4e6f29 db 'no directory space$’
datmsg:

924d 547970 db 'type data: $°
errmsqg:

8259 457272 db ‘error, £ty again, 3’
prompt:

B26b 4e6570 db 'next command? $°*

-
r

(All Information Contained Herein is Proprietary to Digital Research.)

43

:***

.* *
r
;* fixed and variable data area "
.* *
;***
g27a 21 conbuf: db conlen ;length of console buffer
g27b consiz: ds il ;resulting size after read
g27c conlin: ds 32 :length 32 buffer
021 = conlen equ S$-consiz
629¢c ' ds 32 ;16 level stack
stack:
@2bc end

Again, major improvements could be made to this particular
program to enhance its operation, In fact, with some work, this
program could evolve into a simple data base management system, One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and
extracts a specific field defined by the operator. For example, the
command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the "“LASTNAME" field from each record, starting at position 10 and
ending at character 2@, GETKEY builds a table in memory consisting of
each particular LASTNAME field, along with its 16-bit record number
location within the file., The GETKEY program then sorts this list,
and writes a new file, called LASTNAME,KEY, which is an alphabetical

list of LASTNAME fields with their corresponding record numbers.
(This list is called an “inverted index" in information retrieval

parlance,)

Rename the program shown above as QUERY, and massage it a bit so

that it reads a sorted key file into memory. The command line might
appear as:

QUERY NAMES.DAT LASTNAME,.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base.
Since the LASTNAME.KEY list is sorted, you can find a particular entry
guite rapidly by performing a "binary search," similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search.
You'll quickly reach the item you're looking for (in log2(n) steps)
where you'll find the corresponding record number, Fetch and display
this record at the console, just as we have done in the program shown
above,

(All Information Contained Herein is Proprietary to Digital Research.)

44

At this point you're just getting started. With a 1little more
work, vyou can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description.
Finally, if your 1lists are getting too big to fit into memory,
randomly access your key files from the disk as well, One note of
consolation after all this work: 1if you make it through the project,
you'll have no more need for this manuall!

(All Information Contained Herein is Proprietary to Digital Research.)

45

6. SYSTEM FUNCTION SUMMARY,

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS

] System Reset none none

18 Console Input none A = char

2 Console OQutput E = char none

3 Reader Input none A = char

4 Punch Output E = char none

5 List OQutput E = char none

6 Direct Console I/0 see def see def

7 Get I/0 Byte none A = IOBYTE

8 Set I/0 Byte E = IOBYTE none

9 Print String DE = .Buffer none
10 Read Console Buffer DE = .Buffer see def
37 Get Console Status none A = @@/FF
]2 Return Version Number none HL= Version*
13 Reset Disk System none see def
14 Select Disk E = Disk Number see def
15 Open File BE =, ECR A = Dir Code
16 Close File DE = .FCB A = Dir Code
T Search for First DE = .FCB A = Dir Code
18 Search for Next none A = Dir Code
19 Delete File DE = ,FCB A = Dir Code
20 Read Sequential DE = .FCB A = Err Code
241 Write Sequential DE = .FCB A = Err Code
22 Make File DE = ,FCB A = Dir Code
23 Rename File DE = .FCB A = Dir Code
24 Return Login Vector none HL= Login Vect*
25 Return Current Disk none A = Cur Disk#
26 Set DMA Address DE = .DMA none

21 Get Addr(Alloc) none HL= .Alloc
28 Write Protect Disk none see def
29 Get R/O Vector none HL= R/0 Vect*
30 Set File Attributes DE = ,FCB see def
31 Get Addr(disk parms) none HL= ,DPB
52 Set/Get User Code see def see def
33 Read Random DE = .FCB A = Err Code
34 Write Random DE = .FCB A = Err Code
35 Compute File Size DE = ,FCB B, rl, 2
36 Set Random Record DE = ,FCB EW, ri, r2

* Note that A = L, and B =

(All Information Contained Herein is Proprietary to Digital Research.)

H upon return

46

