CHAPTER 11

PROCESSING TRANSACTIONS

PROCESSING TRANSACTIONS

INTAC has two facilities for entering, changing, or deleting data records: TR and EDIT.
When you have simple data editing requirements (for example, a small number of operations
to perform on one INTAC file}, the EDIT facility is immediate and easy (see Chapter 7).
The TR facility offers much more power and flexibility. Although TR initially requires a
three~step process, once you have created a TR program, you can accomplish even complex
operations easily and guickly.

The system you set up with TR (for TRansaction) can automate the updating process so that
a user needs no Knowledge of INTAC or of file structure. TR allows simultancous operations
upon multipie files, use of more than one data item as an external reference, record audit
trails, and batch updating. Use TR to customize your interactive data operations by
specifying your own prompts. Set up a sysiem that interrogates the data on the file and
performs operations depending upon the values in the file. Or let INTAC calculate
additionai. data items when data is entered.

TR can. be used to make changes throughout one or more files based upon your criteria; for
exampie a TR m1ght delete records throughout files ASSET, VENDOR, and ORDER if the
purchase order 15, 1(}'754

Usmg TR you can easﬂy create screen formattmg to highlight entries during an mtexamwe
session. at a video ferminal. Screen formatting simplifies data operations and makes the
system more attr_actwe to users.

To use TR, you create a program definition file using the Ross Editor or other text editor.
This definition file contains your specifications for calculations. The next step is to use the
TR facility to translate your definition into a BASIC program. Once you have compleied
these two steps, anyone can update the file(s) time after time by simply running the
program.

Below is an example of the custom prompting possible with the TR facility. Note that the
prompting updates two files in the Tri-City asset system (ORDER and VENDOR). (The file
definition to produce this prompting is explained later in the chapter.) Since it is not
possible to print dynamic video effects, the example shows an update session for a hardcopy
terminal. However, this chapter will explain how you can give yourself a video
demonstration using a case study file definition.

RUN TRQENH
TRANSACYION PROGRAM TRQENH

Enter purchase order number 7 10086
Vendor number? 11

Vendor #11 not on VENDOR.INT .
Do you wish to add to file <NO>»? YES
Vendor name? THE L IGHTHOUSE

Street address < ,>7 765 MAPLE

Ccity and state <>? GENEVA, IL

Zip code <>? BO105

Revised June 1982 1 1 PROCESSING TRANSACTIONS
‘ 1 -

Order and vendor added to respective files
Enter purchase order number ?
RFrocessing compiete. Have a nice day

ORGANIZATION OF THIS CHAPTER

This chapter is organized into these sections:

-1. HOW TO USE TR Page 11-2

2. OVERVIEW OF TRANSACTION DEFINITION FILES Page 113
3. SKELETON Q: QUESTION FORMAT Page 11-7
4. SKELETON B: SORT AND BREAK Page 11-31
5. TRANSACTION PROGRAM GENERATION | Page 11-60
6. TR DEFINITION FILE REFERENCE PAGES Page 1163

The chapter has: been written to enable non-programmers to write two kinds of TR
definition files. Part 1 explains the ‘overall process and the reason for the two different
kinds of files. Part 2 contains information common to both kinds of files: line number rules,
documenting the file. Parts 3 and 4 begin with explanations of uses of the type of skeleton,
and fully=annotated, simple examples of TR ‘definition files.' Also included are examples that
perform -~ more: complex operatioris. - An" orderly - procedure for planning the TR is
recommended. All file definition sections and commands are explained and iliustrated.

Part 3 explains the simple steps to translate the file definition into BASIC program(s) and 1o

run the programs. Use the quick reference pages at the end of the chapier as you plan your
own file definitions.

HOW TO USE TR

The TR process consists of these three steps:
1. Create a transaction definition file.

Using a text editor, create a definition file using .DEF as an extension. This
line-numbered file is specially formatied, and contains all the information needed
to process/update the data. Follow the instructions in this chapter for the file
definition appropriate to your needs. Save the file for use in step 2.

2. Generate a transaction program.
INTAC validates the statements in the definition file and then merges them with a

partial program called a "skeleton” to form one or more compleie programs.
INTAC allows a choice of two differen: skeletons according to vour needs. (Use

Revised June 1982 1 5 PROCESSING TRANSACTIONS

Skeleton B when you need to sort the file records before performing operations on
selected records. Use Skeleton Q to create a series of questions to be answered for
every record. See the following explanation of the two kinds of processing.)

To initiate this step, enter INTAC, give the TR command, and follow the TR
dialogue as shown in this chapter. You only perform steps 1 and 2 one time. If you
make changes to the file definitions (see Chapter 5, MQ), or to the iransaction
program definition file, you may need to repeat step 2.

3. Run the generated program.

Whenever you wish to update the fiie, you can now simply run the BASIC
program(s), using the appropriate system command. (You specify the names of these
programs in the file definition.) -

TWO KINDS OF PROCESSING

Often you want to set up an interactive updating system that allows interrogation of the data
in ‘the file(s) record by tecord before updatinig operations are pefformed. You want answers
to ‘a“series ‘of quest;ons for each record and then you want to add, delete, or change the
record. Al other tinies; you want io go through the file(s} to select certain records, sori
them, and then perform operations on only the selecied records.

TR has different program skeletons for these two different kinds of processing: Skeleton
for question and answer prompiing and updating; and Skeleton B for sorting and updating
records.

The internal operation of INTAC is significantly different for the two different needs. For
SKELETON Q, the TR command generates one BASIC program. For SKELETON B, the TR
command creates two programs or program segments. The first segment will SELECT and
SORT the data from files specified in the SELECT section of the definition file. The second
segment will then process the sorted and screened data as specified in the LOGIC section.

The file definitions for these two different skeletons use similar sections and statements, but
they differ in many details. In this chapter, the two skeletons are discussed separately.

OVERVIEW OF TR DEFINITION FILES

A TR definition file is divided into sections that must appear in a specific order. Skeleton Q
may use these sections: OPTIONS, DEFINE, FILES, LOGIC, and CODE. Skeleton B may use
these sections: OPTIONS, DEFINE, FILES, SELECT, LOGIC, and CODE.

For each kind of skeieton, this chapter recommends an orderly procedure for planning vour
definition file. The last pages of this chapter supply reference pages to guide planning.
When you are ready to creaie the definition file, use a text file editor such as the Ross

Revised June 1982 3 PROCESSING TRANSACTIONS
11 -

Editor. (Give it an appropriate filename using .DEF as the extension. When you begin step 2
to generate the BASIC program{s) within the TR facility, you will type in this name in
response 1o a prompt.

FILENAME EXAMPLE: asseT.DEF

LINE NUMBER RULES

The definition file is a line-numbered file. Line numbers are used by the TR facility to keep
sections of the file in a necessary order and to control the order of execution of statements
within two of these sections. Ross Systems recommends that you begin sections with line
numbers as indicated throughout this chapter (and on the reference pages) to make the file
easy to read. (Only two sections of a file definition actually require line numbers within a
specific range. These are LOGIC 3500-19999 and CODE 20000-23999.) After creating the
transaction definition file in the Ross Editor, save it with line numbers,

MULTIPLE STATEMENTS ON ONE LINE

INTAC allows you to place more than one statement on a line in a TR program. A "line” is
the code assocxated with a line number ‘A "subline" is a physical line separated from the
previous phys;cal lme by ampersand carriage~return. A “staternent” may be an INTAC or
BASIC statement.’

Each INTAC or BASIC statement should be on its own subline. Between muitiple statements
on one lme ‘use a backslash (\) at the beginning of the subline.

INTAC does not allow statement modifiers after INTAC statements. That is, you CANNOT
have a statement such as 5050 ADD FILEt IF DEPT.ND >2001

Any INTAC file statement to be included on a muiti-statement line must be the last
statement on the line.

EXAMPLE:
5040 IF DEPT.NOS®4001 THEN & carr(ageuretum
DEPT.TOTAL=DEPT.TOTAL + SALES.TOTAL & carriage-return
\SHOW DEPT.TOTAL:COLS & carriage-return
\SKIP+

ERROR HANDLING

Those INTAC LOGIC statements that access INTAC files {for example, ADD a record)
make use of an INTAC variable named ERROR% to indicate the results of the operation.
Your TR program can check the value of BRROR% and take appropriate action based on
the value. INTAC statements that make use of ERROR% are ADD, DELETE, FIND,
FINDNEXT, UPDATE, and UPDATL

Revised June 1982 11 4 PROCESSING TRANSACTIONS

Your TR program should reset ERROR% to zero if you wani processing to continue for a
record for which an error is encountered. Note the use of ERROR% in chapter examples.
See Appendix B for more detail about error handling. including the values possible for
ERROR%.

VIDEO EFFECTS

INTAC statements allow you 1o position prompts and text on the video screen, underline or
highlight user entries, and create dynamic video effects such as clearing the screen between
guestions. To use these statements, you must have a VT100 compatible terminal and you must
specify TERMINAL VT100 in the file definition OPTIONS section. You include the
appropriate video INTAC statements in the LOGIC section.

Occasionally, you will want to run a video program temporarily on a hardcopy terminal. A
file definition that uses screen formatting will run on a hardcopy terminal; however,
terminal displays will be preceded by apparently meaningless characiers as the program
attempts to do something with the video staiements.

In this chapter, video statements are illustrated and explained most fully in the pari on
Skeleton Q. These statements are also included in the part on Skeleton B, but without a
full-scale example.

Revised June 1982 1 5 PROCESSING TRANSACTIONS

DOCUMENTING THE FILE DEFINITION

Place comments directly in your file definition to make it self-explanatory for future users.
Ross Systems recommends use of banner headings (such as those shown on the chapter
worksheets), as well as comments placed throughout the file.

Precede commentis (including any lines of asterisks) with an exclamation point ! Comments
can be placed on the same line as a BASIC statement, but not on the same line with an
INTAC TR statement. For this reason, comments are best placed on lines by thernsalves and
are easiest to read if highlighted by lines of asterisks.

EXAMPLES:

11 !*************************************:k***************************#****
12 1'TR- SKELETON @ FILENAME: TRQSIM.DEF

13- 'PURPOSE OF TR: ADD PURCHASE.ORD.NO AND VENDGR.NQO TO CASE STUDY FILES
14 1AUTHOR: S. HOPE

15 IDATE: MAY 13, 1gs&2

16 L ok o6 ok 3 ok ok ok ok o 3k ok sk o sk sk ok o ok ok ok ke ok sk e ok ke ok ok R 3k ok ol ok 2k K 3k Sk o i Sk e e ok ak e ol B i e N ok e sk ok ok ok ok e ok oK ok S ok ok o ok

50890 b e ot e ok ok ok ok ok o ok ke e OOK o ok i o oK ok K ok kK
5095 . 1¥%% BEGIN PROCESSING***
5095: i S DT) ook s ok of ok o ok sk s ok ok ok e ok o ok R ok ok R

Revised June 1982 1 6 PROCESSING TRANSACTIONS

SKELETON Q: QUESTION FORMAT

Skeleton Q is used for updating one or more files concurrently and selectively. It generates a
single program that prompis the user for data items to add, change, or delete specific
records. . .

The system you set up with Skeleton Q can automate the updating process so that a user
needs no knowledge of file structure or even of INTAC. You can use this skeielon o
customize your interactive data operations by specifying your own prompis. The system can
interrogate the data on, the file and perform operations based on the values in the file. You
can let INTAC calculate additional data items (for example, items based on data in two
different files) when data is entered.

This part of the chapter shows how 1o create special formatting to highlight entries during
an interactive session at a.video terminal.

SUMMARY OF SKELETON Q SECTIONS

A file definition using SKELETON Q may include sections as shown on the following chart.
The section name is on a line by itself and is followed by information appropriate o that
section. Line numbers must keep the sections in the order shown on the chart below.

SECTION
NAMES ' DESCRIPTION OF PURPOSE _ PAGE

QOPTIONS Specifies various processing options, such as data validation, terminal
type, and skeleton. By default, Skeleton Q will be used; therefore, this
section is optional for the Skeleton Q.

11~18
DEFINE Defines temporary data items used by the transaction program. These
are data items not found on any of the INTAC files. {This section is
optional.)
11-18
FILES Specifies the INTAC files to be used in the generated program. If any

of these files specify external files, these external files also must be
listed in this section.

11--20
LOGIC Specifies the processing rules for the various questions. This section
has a question lcop format.
11-21
Revised June 1982 PROCESSING TRANSACTIONS

11 - 7

CODE Reserved for user BASIC subroutines and functions used for processing
the data. (This section is optional.)
11-30

PLANNING THE Q SKELETON TR

As you write a transaction definition file, we recommend that vou write sections in an order
that reflects your planning process: LOGIC, CODE, FILES, DEFINE, OPTIONS. Assign line
numbers to keep the file in the order necessary for the TR facility.

In planning the LOGIC section, first write out the dialogue and decide upon spacing that
will make the display easy to read. You can usually estimate the horizontal position to
provide spacing; however, you may want fo use a formatting ruler. If you are using a VT100
terminal, write down appropriate video effects, such as clearing the line or screen,
highlighting, vertical spacing.

Now: label" the: questions (Q10, Q20; etc.). It is convenient to number questions by ien to
allow for future addition of questions. Work out any special editing for questions (for
exampie, validation against another file).

Once the LOGIC section is planned, it is easy to fill in the FILES, DEFINE, and OPTIONS
sections.. . .

THREE EXAMPLES OF Q SKELETONS

Three versions of essentially the same Q skeleton are included in this chapter. These
examples have been designed to illustrate some of the advantages of TR over the EDIT
facility and to give you an idea of the creative uses that can be made of TR statements.

First is a definition to add a purchase order number and a vendor number to the Tri~City
case study ORDER file. This definition creaies a system even easier than the EDIT command
for a novice because it controls the process completely.

Following this example is an enhanced version of the file definition that updates the
VENDOR file as well as the OQRDER file. The third version adds video effects. For each of
the first two definitions, the chapter includes the file definition, an explanation, and a
print-out of the resulting updating session. For the video definition, the chapier shows the
file definition, explains the commands, and gives instructions for running a demonstration at
your video ferminal.

EXAMPLE 1: Q SKELETON

The Tri~-City planner has written a TR thai‘seis up a session to add iwo data item values
(PURCHASE.ORD.NQ and VENDOR.NO) to the ORDER file. VENDOR.NO is validated by
reference lo the external file VENDOR. (These two files are described in Chapter 2.) The

Revised June 1982 1 8 PROCESSING TRANSACTIONS

TR file definition consists essentially of some simple custom prompts, defined with the
PROMPT statement. Note the use of comments following exclamation marks. Note also the
use of the ampersand {o continue statements to sublines.

F 4§ ko ko ok ok ke vk ok ok ok R o K SR o Tk ok s ok R SRR SR KK oK Sk K KR Sk SR oK o ok ok o ok sk o ok o o R o o s sk s ok ok o ok ok o ek sk ok ok
12 'TR SKELETON Q FILENAME: TRQSIM.DEF

13 !PURPOSE OF TR: ADD PURCHASE.ORD.NOC AND VENDOR.NO TO ORDER FILE

14 PAUTHOR: §. HOPE

15 IDATE: MAY 13, 1882

6 kKKK ok K ko Sk ok ok o ok ok R ok ok R ok OB 3k ok k o sk sk sk ok ok okt s ok ok R SR 3 SR s Sk vk ok ok o 3l ok ok ok R ¥ ok k% ok ok ok ok ok sk ok ke ok o ok ok S

17 ¢

100 OPTIONS

110 SKELETON Q

300 FILES

310 FILE1 ORDER

320. CEXTERNAL VENDOR

3500 LOGIC

5000 BEGIN PROGRAM

6000 Q10

610 PROMPT PURCHASE .ORD.NO "Enter purchase order number " &
EXIT n 4l

6020 FIND FILE1 INDEXY PURCHASE . QRD.NO ERROR=QR20 NOMESSAGE

6030 SHOW "Sorry, purchase order already in ORDER.INT®

6040 - GO0TO Q10

7000, . Q20 .

7010 L ERRORY% = O% tciear FIND error from Q40 &

2 TQ2000 “nnt oo PROMPTY F1,YENDOR.NO *Vendor number" &

7030 ADD FILEAD

7040 TATY done; repeat for next purchase ordep

T080. SHOW "Order entered”

7060 . GOTO Q10

18000 END PROGRAM

EXPLANATION OF FIRST @ FILE DEFINITION

The purpose of this file definition is to add purchase order numbers and vendor numbers 1o
the ORDER file. It will make the process easier than using the EDIT facility chiefly because
a session will be initiated and controlled through one simple command. Even temporary
empioyees with no knowledge of INTAC will be able to run the update.

The program prompts for purchase order number. If a purchase order number is a duplicate
of one already in the file, the user will be given an error message immediately and prompted
again for purchase order number. If the purchase order number is new, then the user is
prompted for vendor number.

Q10

The first question sequence begins at line 6000. (The program author uses questions
incremented by 10 to make it easy to add questions later if desired. In line 6010, the
statement PROMPT defines the prompt for the purchase order number. If the user enters a
carriage return, the PROMPT option EXIT transfers control to the end of the program to
terminate the session. Note the use of the ampersand to continue line 6010 so that the entire
PROMPT statement {with its EXIT option) occupies only one line number.

Revised June 1982 11 9 PROCESSING TRANSACTIONS

Lines 6020 and 6030 define error handling for purchase order numbers that are already on
the ORDER file. (In this system, a duplicate is an error since purchase order numbers are
unique.) The FIND command sends INTAC to the ORDER file (FILEI in the FILES section
at line 310} to retrieve any existing duplicate record for the PURCHASE.ORD.NO data item.
If a duplicate record is found, the program continues to line 6030 to print an appropriate
message (using the SHOW statement) and then on to 6040 to prompt over again for purchase
order number. Note: if the duplicate was not checked here, it would result in an error
condition when ADDed at line 7030.

Most of the time in INTAC, a FIND statement is expecled o find a record. INTAC
considers it an error and prints an error message if no record is found. It also sets an error
flag (ERROR%) to a value that identifies the error. However, in this system, the normal
mode is to add a new number and to reject any number that already exists. If the purchase
order number is not found on the file in line 6020, the user’s response is a new number and
shouid be added. Line 6020 uses an ERROR statement to send the program on to the next
question to add the record. To avoid confusion, the NOMESSAGE statement suppresses any
INTAC error- messages that would normally print.

Q20 S

The second question sequence begins at line 7000. Notc that the program moves to this
question sequence when no record has been found on the file. INTAC has set an error flag
to a code number. Line 7010 is necessary to reset the INTAC error flag to zero. Now the
error flag is available in case another error is made. {The INTAC error codes are explained
in Appendix B.)

Line 7020 uses the PROMPT statement to cause prompting for vendor number. Note use of
the qualified data item name becanse VENDOR.NO is the item name on both files and the
prompt is for the VENDOR.NO 10 be entered in the ORDER record. Also note thal because
of the file definition, the VENDOR.NO entered will be checked in VENDOR.INT.

At line 7030, the statement ADD FILEI causes INTAC to update the ORDER file by adding
the record containing two data item values. Line 7050 displays & message through use of the
SHOW statement. The program returns to the first question io prompt for another purchase
order number.

No provision is made in this TR for error handling if the user makes a typing error for
VENDOR.NO or enters a VENDOR.NO not present on the VENDOR file. The usual
INTAC error messages for invalid data would be displayed.

Two lines in this TR Skeleton Q are not required, but are recommended as good practice:
line 5000 BEGIN PROGRAM and line 19000 END PROGRAM. If you do include these
~ lines, you must include the word PROGRAM.

Note that the case study ORDER file contains only the itwo data items added by this TR
program. A TR file definition must add values for all file data items. If a data item is
omitted, random characters {(often called "garbage”) will be placed in the file when the
program 1is Tun. .

Revised June 1982 10 PROCESSING TRANSACTIONS
11 -

THE RESULTING UPDATING SESSION

The TR program is generated by entering INTAC and using the TR facility. Then the record
containing the two data item values can be added to the ORDER file by giving the command
RUN TRQSIM at the systems level, Below is a sample update session.

RUN TRQSIM
TRANSACTION PROGRAM TRQSIM

Enter purchase order number 7 10053
Vendor number? 10

Order entered

Enter purchase order number 7

END OF TRANSACTION PROGRAM TRQSIM
EXAMPLE 2: ENHANCED Q SKELETON TO UPDATE TWO FILES

This second, enhanced example demonstrates additional TR statements. Explanation of these
additional statements follows the file definition. Note in this file the use of a backslash for
multiple statements on one line number.

1] ook sk sk e v ok sk kool i ok sk ok ok R Sk KR R ok K K K R OR R ok sk ok i 2R ok ok 3K R A sk K sk ok ok oK 3 ok ok TR R SR S SO ok ok sk ok B 3R ok ok ok ok ok o ok ok

12 !TR.SKELETON Q- FILENAME: TRQENH.DEF

13 1PURPOSE OF TR: ADD PURCHASE.GRD.ND AND VENDOR INFO TG CASE STUDY FILES
14 TAUTHOR: § HOPE)

15 IDATE: MAY 13, 1882

T8] o ok ok ook s ko ok ke ok ok SkokooR Sl sl ok ik s sk o8 ok ok B ol sk SR e R Sk M K Ok o 3 Sk i ok oK sk oK R % oK o 3k 3k sk ok 3k sl e SR ok R SR SR SR ok Sk e e sl

17 1
100 OFTIONS
110 SKELETON Q
200 DEFINE
210 YES.OR.ND S 3
300 FILES
310 FILE1 DRDER
320 FILE2 VENDOR
350C LOGIC
5000 BEGIN PROGRAM
G000 Q10
6010 PRCMPT PURCHASE.ORD.NO "Enter purchase order number " &
EXIT v "
6020C FIND FILEY INDEXt1 PURCHASE .ORD.NO ERROR={20C NOMESSAGE
&603C SHOW "Sorry, purchase order already in ORDER.INT®
6040 GOTo Q10
7000 Q20
7010 ERRORY% = Q% icliear FIND error from Q10 &
7020 'input vendor, but do not check vendor file &
'{note STORE will skip exterpal file check) &
7030 PROMPT F1.VENDOR.NO *Vendor number" STORE &
7040 &
ook up wvendor # on VENDOR.INT
7050 FIND FILE2 INDEX{ F4.VENDOR.ND ERROR=Q30 NOMESSAGE
7060 tvendor found on file, must be OK
TCT0 ADD FILEHY
7080 'all done, repeat for next purchase order
Revised June 1982 PROCESSING TRANSACTIONS

11 - 11

7100 SHOW "Order entered"

7140 GOTO ©10

8000 Q30

BC10Q ERRDRY% = O% 'clear FIND error from Q20 &

8020 SHOW "Vendor #" F{.VENDOR.NGC " not on VENDOR.INT"

8030 PROMPT YES.OR.NO "Do vou wish to agd to File® DEFAULT "ND" &
8040 IF YES.OR.NDO < >"YES" AND &

YES.OR.NO < >»"NO" THEN &
SHOW "Enter YES or NO please" &
\GOTD Q30 &

8050 IF YES.OR.NO = "ND" THEN-&
GOTC Q20 &
BO&O F2.VENDOR.ND = F1.VENDOR.NO l!assign vendor # &
8000 Q40
8010 PROMPT VENDOR.NAME "Vencor name" &
10000 Q50
10010 PROMPT STREET.ADDRESS "Street address®
11000 “QRE0
11010 PROMPT CITY.STATE *City and state"
12000 Q70
12010 ... PROMPT ZIP.CODE "Zip codge"
12¢20- T 7 Yadd record to order file
TA20800 T L S ADDTFILE : ' o
12040 . ladd record to vendar file
12080 ADD FILEZ
120800 - treport adds and goio prompt for next order
1207C¢ : SHOW " Qrder and wvendor added to respective files®
12080 - GOTO Q10
18000 END PROGRAM
18010 SHOW ¢ Processing compieta. Have a nice day"

EXPLANATION OF ENHANCED FILE DEFINITION

The purpose of file definition TRQENH is to add purchase order numbers and vendor
numbers to the ORDER file and to add vendor information {including vendor number,
vendor name, address} to the VENDOR file whenever a new vendor is used.

Q10 and Q20

The LOGIC section of the file definition is just like the first TR explained earlier up to line
7030, the prompt for VENDOR.NQO. In this PROMPT statement, STORE is used to turn off
the usual INTAC validation against the edit parameters defined in the file definition. The
author handles customized validation and error messages in lines 7050 through 8020. The
STORE command stores the user’s vendor number response so that the program can use it in
following steps.

The FIND statement in line 7050 retrieves from the VENDOR file any vendor number that
matches the stored vendor number. When a matching vendor number is found, the program
moves on 1o line 7070 to add the purchase order number and the vendor number 10 the
ORDER file {(ADD FILE1), and on to line 7100 to report the ADD. Then the program
returns to question 10 to prompt for another purchase order number. (If an error occurs on
the ADD, INTAC prints a message and terminates the program.)

Revised June 1982 1 12 PROCESSING TRANSACTIONS

If a matching vendor number is not found at line 7050, the ERROR statement sends the
program to question 30 without printing the usual INTAC error messages.

Q30

Question 30 (at line 8000) resets the INTAC error flag to zero. Line 8020 uses the SHOW
command to print a specific message about the new vendor number. Text messages to be
printed are enclosed in quotes. When the program is run, the qualified data item
F1.VENDOR.NO will contain the value entered by the user for vendor nuumber.

Also part of the Q30 sequence are statements to let the user choose whether or not 1o add
information to the VENDOR file. Line 8030 prompts for a new data item named
YES.OR.NO (note that it is included in the DEFINE section because it is used in a PROMPT
statement.} The user response NO is specified as the default in the same line. Line 8040 traps
any user response other than YES or NQ. Notice that line 8040 consists of four sublines that
contain the TR staiements SHOW and GOTOQ. This is an example of a multipie statement
line which uses the backslash before the second statement.

If the user enters NO, line 8050 returns to reprompt for vendor number, If the user wanis
to enter vendor information, a YES response sends the program to line 8060. This line iakes
the new vendor number previously entered by the user and stored by INTAC (at line 7030
and assigns its value to the data item VENDOR.NO in the VENDOR file (FILE2).

Q40 to Q70

The rest of the questlons {4{) through 70) prompt for values to be added to the VENDOR
file. Note that all data items in the file receive values. Line 12050 performs the add of
values to the five items in the VENDOR file. Note: For simplicity, this example indents
lines by using spaces in the SHOW statements at 12070 and 19010. The SHOW staternent has
a print position .option that could be used for such positioning.

THE RESULTING UPDA:’I'E SESSION
Ready
RUN TRQENH
TRANSACTION PROGRAM TRQENH

Enter purchase order numper 7 10086
Vendor number? 11
Vendor # 11 not on VENDOR,INT
Dc you wish to add to file <NO >>7 YES
Vendor name? THE LIGHTHDUSE
Street address <. >7 765 MAPLE
City and state <7 GENEVA, IL
Zip code < >7? B0O105

Order and vendor added to respective files
Enter purchase corder number ?

Processing complete. Have a nice day

END OF TRANSACTION PROGRAM TRGENH

Revised June 1982 1 13 PROCESSING TRANSACTIONS
1 -

EXAMPLE 3: Q SKELETON WITH VIDEC EFFECTS

Here is the same file definition with the addition of statements for screen formatting. .
(These added statements are prinied here in bold for quick reference.) Explanation of the
video statements follows the file definition.

F 1 oo ok e ok ok sk ok e sk sk ok K 3K i K KOR A SKOR SR K TROOR SR ek ok e ok ke ok ok ok o 2R ok ok sk sk vk ok ok Sk ook sk KO sk K K sk ok ok ok ok o ok s ok ok kK

12 ITR SKELETON Q FILENAME: TRQV.DEF

13 !PURPOSE OF TR: UPDATE ORDER FILE; ADD NEW VENDOR INFO TO VENDOR FILE
14 TAUTHORY S. HOPE
15 1DATE: MAY 13, 1982

FE o skook skosk ok ok s ok ok ok ok Rk ok ok ok ok b ko ok S sk o ok o sk ok oK oK e 3k Sk 3k 3k o3t ok 3 ke ok R sk ok sk ok 3k 3R o e ok ok S ok ol s S S e ok ok R ok X%

17 1
100 OPTIONS
110 SKELETON Q
120 TERMINAL VT100
200 DEFINE
210 YES.OR.NO § 3
300 FILES
310 FILEY ORDER
320 FILEZ2 VENDOR
3500 LOGIC
5000 BEGIN PROGRAM
5010 o - CLEAR ALL
B3¢ e o T 2 Q10
BO10 ... PROMPT PURGHASE .ORD.NO "Enter purchass order number " &
: U UEXITH" ¢ REVERSE POS 5: i .
e020 - FIND FILEY INDEX1 PURCHASE.ORD.N{O ERROR=Q20 NOMESSAGE
6030 SHOW "Sorry, purchase order already in ORDER.INT*:10;8
8040 G0TO Qi
7000 : ogzo o
TOAG i oL o ERRORY% = 0% iclear FIND error. from Q10 &
7020 limput vendor, but do not check vendor file &
R t{note STORE will skip external fiie check) &
7030 PROMPT F1 VENDOR.ND "Vendor number® STORE &
CLEAR SCREEN REVERSE PDS 55
7040 &
Prook up vendor # on VENDGR. INT
7050 FIND FILE2 INDEXt F4.VENDOR.ND ERROR=0Q30 NOMESSAGE
7080 tvandor found on file: must be QK
7070 ADD FJItEH4
Fiel:1e] tall done; repeat for next purchase order
7090 CLEAR ALL
7100 SHOW "Order entered":10:5
T410 GOTO Q10
8000 Q30
8C10 ERROR% = O% iciear FIND error from Q20 &
8C20 SHOW "Vendor #%:10;7 F1,VENDOR.ND:t8:;7 " not onh
VENDBOR.INT":25:7
8030 PROMPT YES.OR.NO "Do vou wish to add to file" DEFAULT “*NO" &
REVERSE POS 5:8
8040 IF YES.OR.NO <<>»'VES" AND &
YES.OR.NO <(>»"NO" THEN &
SHOW "Enter YES or NO pilease":5;10 &
\GOTD 030 &
8050 IF YES.OR.NO = "NO" THEN &
GOTO Q20 &
80G0 F2.VENDOR . NO = F1i VENDOR.NO lassign vendor # &
a0o0 Q40
Revised June 1982 PROCESSING TRANSACTIONS

11 - 14

S010 PROMPT VENDOR.NAME "Vendor name’ CLEAR LINE &
REVERSE POS 5;10

10000 @50
10010 PROMPT STREET.ADDRESS "Street address" REVERSE POS 5;12
11000 Q60
11010 PROMPT CITY.STATE "City and state" REVERSE POS 5;14
12000 QT0
12010 PROMPT ZIP.CGDE "Zip code" REVERSE P08 5:18
12020 tadd record to order file
12030 ADD FILEY -
12040 ladd record to vendor file
12060 ADD FILEZ
12060 IClear screen, report adds, return for next order
12070 CLEAR ALL
12080 SHOW "Order and vendor added to respective files":10:5
12080 GCTO Q10
19000 END PROGRAM
18010 CLEAR ALL

18020 . . : SHOW "Processing complete. Have a nice day!":10;58

EXPLANATION OF VIDEO FILE DEFINITION

The third example has the same purpose as the second example. It differs only by the
addition of video effects. Note that the OPTIONS section includes the statement
TERMINAL VT100. Video statements include CLEAR ALL, CLEAR SCREEN, CLEAR
LINE, REVERSE, and POS (or POSITION). The CLEAR statements clear the screen or line.
REVERSE causes the video screen to be the opposite of the usual bright or dark setting, The
space on the screen where the user’s response will appear is thus highlighted.

Notice also that print positions have been added to the SHOW statements {in the format
X;y) to create helpful spacing. Every SHOW statement must have a print position specified.
The print ‘position statement :10;5 in line 12080 begins the message in the tenth horizontal
position on vertical line 5.

DEMONSTRATION OF VIDEQ EFFECTS

To see the effect of the video statements in this file definition, log into any Ross Sysiems
timesharing account and give the command STUDY at the systems level. Necessary files will
be copied to your account. Now give the command RUN STRQV and respond to the
prompts as shown in the example below. {The printed page cannot duplicate the dynamic
video effects. For exampie, the screen clearing between questions is not shown below. An
effort has been made to duplicate the print position effects.) To erase the demostration files
from your account, give the command RUN FINISH.

Ready
RUN TRQV
TRANSACTION PROGRAM TRQV
Enter purchase crder number ? 10086
Vendor rnumber? 11
Venhdor #11 not on VENDOR.INT

Do you wish to add to file <NO>? YES
Vendor name? THE LIGHTHOUSE

Revised June 1982 11 15 PROCESSING TRANSACTIONS

Street address < >? 765 MAPLE
City and state <>7? GENEVA, IL
Zip code <>? BO10S
Order and vendor adcged to respective files
Enter purchase order number ?
Processing complete. Have a nice day

END OF TRANSACTION PROGRAM TRQENH

SKELETON Q OPTIONS SECTION

The OPTIONS sections is used to specify various processing options, such as the type of
program to be generated (in this case, SKELETON Q} and the terminal type.

Each option has a keyword that is followed by one or more values indicating your choice.
You may include options in the file definition in any order. The option need be specified
only if the default is not appropriate. The OPTIONS section is not required if all the
defaults are suitable.

EXAMPLE:
100, - OPTIONS
A0 “ SKELETON @

420 0w TERMINAL VT 100

SUMMARY OF OPTIONS FOR SKELETON Q

KEYWORD - VALUES... DEFALLT MEANTNG

CHAIN ~ filename NONE Name of a prégram to run after the TR program is
: e completed {optional)

SEGMENT filename definition Name te be given generated program (optional)
fitlename :
SKELETCN Q Q Type of program {optional)
TERMINAL ASCII ASCTI Type of terminal
VT 100
VALIDATE ON oN Allows suppression of validation rules
OFF in file definition, Validation will only occur

for PROMPT items

DETAILED EXPLANATION OF OPTIONS

CHAIN filename

This keyword specifies the name of a program to be executed after the generated transaction
program is completed. This program may be another INTAC program or any other type of
program (BASIC, FORTRAN, PASCAL). Use this keyword to set up a stream of automatic
processing.

Revised June 1982 11 16 PROCESSING TRANSACTIONS

EXAMPLE:

100 CPTIONS
200 ' CHAIN UPDATE

The program named UPDATE will be run after the transaction program has been compleied.

DEFAULT: No chaining

SEGMENT filenamel

The segment statement is optional for Skeleton Q becanse INTAC assumes that the Q
Skeleton TR definition filename wili be the name for the generated BASIC program. You
may. override this: assumption by using the SEGMENT option to name the generated
program. The namé you assign may be any valid RSTS/E or VMS name, including account
number: (or - VAX: directory name), device specification, and protection code. INTAC will
create: a2 BASIC program with an extension of BAS {for example, QUEST1.BAS)

EXAMPLES:

100 OPTIONS
200 SEGMENT QUESTH

100 OPTICNS
200 SEGMENT [240C, 11JQUESTH

DEFAULT: SEGMENT filenamel

SKELETON Q

Designates the structure of the prograin to be generated. Since the question and answer
structure {Q} is the default, it is not necessary to include this keyword in the file definition.

TERMINAL ASCII or VT100

Specifies the type of terminal to be used. The default ASCII is appropriate unless you want
to use screen formatting. To achieve screen formatting, you must have a VT100 compatible
terminal and must specify VT100 in the OPTIONS section. In addition, you must include
screen formatting detail in every LOGIC section SHOW statement.

A file definition that uses screen formatting will run on hardcopy terminals, but terminal
display will be preceded by apparently meaningless characters.

EXAMPLE:

100 OPTIONS
200 TERMINAL VT100

DEFAULT: ASCII

Revised June 1982 11 17 PROCESSING TRANSACTIONS

VALIDATE ON or OFF

Specifies whether the answer will be validated automatically against the file definition edit
parameters after it is prompied in the LOGIC section. {Data is always validated for data
type.) Use VALIDATE OFF when you want to do your own data validation in the LOGIC
section.

Similarly, the LOGIC section has statements for VALIDATE and STORE and the LOGIC
section statement PROMPT makes available the options VALIDATE, STORE, and
NOSTORE. VALIDATE and STORE share the store function. In addition 1o performing edit
parameter checks, VALIDATE also maintains the answer to the prompt (a data item- value)
until the next prompt for the same item so that you can perform operations on that data
item value,

If you want to by—pass the edit parameter checks, then specify VALIDATE OFF in the
OPTIONS section. STORE becomes the default for PROMPT statements. The answer is not
subjected to edit.parameter.checks, but it is available for your LOGIC section operations. If
VALIDATE ONis: specified in the OPTIONS section, (or assumed by default), then
VALIDATE becomes the default for all prompt statements in the LOGIC section.

EXAMPLE:
100 BPTIONS
200 VALIDATE OFF

3500 LOGIC
7030 PROMPT F1.VENDOR.NO "Vendor number®
7050 FING FILEZ INDEX1 F1.VENDOR.NC ERRCR=Q30 NOMESSAGE

In this example, the PROMPT statement defaults to the STORE option because
VALIDATE OFF has been specified in the OPTIONS section. The FIND statement
causes INTAC to reirieve the record for the VENDORNO from FILE2
(VENDOR.INT). This use of VALIDATE OFF enables the TR author to have more
control over the process of looking up the vendor in the VENDOR file, When no
record is found on FILEZ, the author can send the program on to prompt for additions
to the VENDOR.INT file, turning off the usual INTAC error messages.

DEFAULT: ON

SKELETON Q DEFINE SECTION

The DEFINE section (in conjunction with the LOGIC section) allows you to define new data
items. For example, define a new item calculated from items in more than one file. Or
define a data item to be prompted for during an interactive update session. Use the defined
items in the TR definition LOGIC section as though they were data items in one of the
accessed files.

Each line in the DEFINE section defines one data item and is formatted with parameters
similar to a data item in an INTAC file (see Chapter 3, CR).

This section is required only when defined items are to be used in a TR program.

Revised June 1982 B g PROCESSING TRANSACTIONS
1 -1

FORMAT: itemname type [xx.y] [DEFAULT "defltvalue"]

where

itemname consists of from 1 to 24 characters. The characters must be alphabestic,
numeric, or periods. The first character must be alphabetic. No spaces or
other special characters allowed, Names which are INTAC or BASIC reserved
words may not be used (See Appendix D for a list of reserved words).

type data type, as used in INTAC files:
S character siring '
R real {floating point) number
I integer
D date field
X% .y print format
xxis the-total width of printed field including commas, decimal points and
sign“or ‘parentheses. For a string field this is the length of the string. For a
DATE field; this will be either 8 or 10.

y is the number of decimal places in floating point numbers only,

A limit of sixteen digiis exists for REAL variables.

DEFAULT defTtvalue® B
This optional valie will be used as the default for this item. If not specified,
no default value will be assumed.

DEFINE SECTION EXAMPLE:

200 DEFINE
210 YES.OR.NO 5 3

WHEN TO DEFINE ITEMS

This chapter suggests that you plan the LOGIC section before the DEFINE section so that
you will know exactly which new data items you need to DEFINE. As you write the LOGIC
section, you can use any valid BASIC variables. (These “variables” may be considered new,
temporary data items.)

Do not DEFINE an item used as a control variable in the LOGIC section (e.g. Do not
DEFINE to control a loop). For best results, use a BASIC variable (e.g. ICOUNT) when
control variables are needed in the LOGIC section.

A maximum of 99 items may be defined in any INTAC TR definition file.

Revised June 1982 11 19 PROCESSING TRANSACTIONS

SKELETON Q FILES SECTION

The FILES section specifies the INTAC files to be used. Any files externally referenced by
an INTAC file definition must also be specified in the FILES section.

FILES SECTION STATEMENTS

FILEn filename [READONLY]

This statement specifies a file to be used by the generated program. Up to three INTAC
files may be specified, for n=1, 2 and 3. (FILE3 cannot be specified if there are one or
more external statements specified. See below, EXTERNAL filename.)

If you will use an INTAC file only to validate or retrieve information (not to update),
READONLY may be specified. This option protects the file by preventing the user from
adding, updating, or deleting records from the file. It is a useful option when multiple users
are allowed,

EXTERNAL filename

An EXTERNAL filename statement should he used when an external file reference occurs in
the INTAC file definition of a file to be accessed. ltems from a file listed only with the
EXTERNAL statement cannot be referenced. If you want io reference items from a file,
then specify it with a FILE2 statement. (It is not necessary then to specify the file with an
EXTERNAL statement.) There is no limit to the number of EXTERNAL statements in a TR
program. The file specified as FILE1 cannot be specified as an EXTERNAL file.

FILES SECTION EXAMPLE:

300 FILES

310 FILE1 ORDER
320 FILE2 ASSET READONLY

330 EXTERNAL VENDOR

In this example, the INTAC files ORDER and ASSET are being used. The EXTERNAL
file VENDOR 1is being used by another file (ORDER) as a check io ensure the values
entered for an item (VENDOR.NQ)} exist in the validation file (VENDOR). This
external reference file must be specified separately. Note that ASSET is being used
only to retrieve information and is specified as READONLY.

Revised June 1982 u 2 PROCESSING TRANSACTIONS

SKELETON Q LOGIC SECTION

The LOGIC section specifies the processing rules for the various parts of the program. The
LOGIC section allows the full flexibility of BASIC statements as well as INTAC statements.
Note that LOGIC statements aliow interrogation of the data in the file before updating
operations are performed.

The Skeleton Q LOGIC section consists of subsections labeled Qn from QI up to Q32767.
Control of the program can be transferred from subsection to subsection based upon the
answers {o prompis or interrogation of the data in the file.

In the definition file, lines 3500 through 19999 are reserved for the LOGIC section.
SUMMARY OF SKELETON Q LOGIC STATEMENTS

In addition’ to the INTAC LOGIC section statements listed below, you may include your own
BASIC code.

STATEMENT _ PURPOSE.
.. ADD | Adds é r:e:’cord to an INTAC file
CLEAR Clears the line or screen before prompting {VT100 only)
DELETE Deletes the cﬁrrent record on an INTAC file
EXIT Transfers coniroi of the TR program to the END PROGRAM section
FIND Searches for and retrieves a record with a specific value
FINDNEXT Retrieves the next record
GOTO Transfers contro! of the TR program to a specified question number

POSITION Moves the VT100 cursor to the specified position on the screen

PROMPT Defines prompting; has several options, including video effects
SHOW Specifies data items to be displayed and position on screen or page
STORE Temporarily stores the answer just entered by user {(used instead of

VALIDATE command)

TEST Tests the answer to a prompt and transfers control of the program
based upon the test

Revised June 1982 11 21- PROCESSING TRANSACTIONS

UPDATE Updates the current record
UPDATI Changes the index for the current data record

VALIDATE Validates and stores the last answer given

The statements CLEAR and POSITION as well as the PROMPT options REVERSE and
UNDERSCORE, allow screen formatting on VT100 compatible terminals. To use these
capabilities, you include the keyword TERMINAL VT100 in the OPTIONS section. Your TR
program can run on a hardcopy terminal: however, apparently meaningless characters will be
printed before the terminal display.

LOGIC SUBSECTIONS

Each questioti 10 be asked is defined in a LOGIC section subsection labeled Qn. Subsections
labeled BEGIN PROGRAM and END PROGRAM can also be used. The TR facility will
transfer from one subsection to the next automatically or you may control -transfer to
another questzon number by using the GOTO statement. Each guestion subsection is
normally used to prompt for and process one INTAC data item. If you use a GOTO
statement: and ‘specify a line number, it should be within the same question subsection or in
the CODE sectum

There ma}r be 1o more than 100 questions. No question may be'give a number greater than
Q32767. Question labels may be in any order in the definition file, but will always be
processed ini ascending numerical order {e.g. Q10; Q20, Q30).

BEG%N PROGRAM
IF...THEN...Q20

END PROGRAM

Between the end of the statements for one question and the beginning of statements for the
- next, there must be at least one available line number. Each Qn subsection may contain only
one PROMPT statement. A PROMPT statement may not exist outside of a Q subsection.

DETAILED DESCRIPTIONS OF LOGIC STATEMENTS

The following LOGIC statements are described in alphabetical order for easy reference. In
addition to these INTAC statements, you may use BASIC statements. For example, you may
assign a value to an INTAC or DEFINE item {(e.g. DEPT.NO=NEW.DEPT.NO).

Revised June 1982 11 2 PROCESSING TRANSACTIONS

ADD FILEn [ERROR
[ERROR

Qnl [NOMESSAGE]
lineno}

H i

Adds a record and indexes to INTAC file nn as defined in the FILE section. This statement
assumes that the processing in some way has filled the record with values for all data items
{other than DATE LAST EDIT and DELETE FLAG). If any data items have not been given
values, random characters may appear in the updated file.

If an error occurs, control is transferred fo the question or line number specified in the
ERROR option. If you specify a line number, it should be within the same question
subsection or in the CODE section. An error message is printed first unless NOMESSAGE is
specified. If you omit ERROR=, the program exils on any error.

Use the NOMESSAGE option when you want to create your own error-handling procedure.
See Appendix B for error-handling information.

EXAMPLE: ADD fILE{ ERROR = G20

CLEAR. [ALL]
 [LINE] -
[SCREEN]

For VT100 compatible terminals, you can use this statement to clear the entire screen, clear
to the end of the current line, or to the end of the screen. Use TERMINAL VTI100 in the
OPTIONS section. The CLEAR statement will be ignored if you omit the TERMINAL
VT100 option in-order to run the TR program on a hardcopy terminal.

EXAMPLES:

CLEAR LINE
CLEAR SCREEN

DELETE FILEn [ERROR
[ERROR

Oni (NOMESSAGE]
lineno]

The DELETE statement will delete the current record and indexes on INTAC FILEn. If an
error occurs, control is transferred to the question or line number specified in the ERROR=
option. If you specify a line number, it should be within the same question subsection or in
the CODE section. An error message is printed first unless NOMESSAGE is specified. If the
ERROR = option is omitted, the program exits on any error. See Appendix B for
error—handling information.

EXAMPLE: DELETE FILEZ2 ERROR = Q20

Revised June 1982 11 23 PROCESSING TRANSACTIONS

EXIT

The EXIT siatement causes control to be transferred to the END PROGRAM section or
terminates the program if there is no END PROGRAM section.

EXAMPLE: Exzv

FIND FILEn INDEXn value [ERROR
[ERROR

Qni [INOMESSAGE]
lineno?

Im i

The FIND statement retrieves a record in the s;iecified file using the value given for the
specified index. FILEn is the file as specified in the FILE section. INDEXn is the index
number in the file definition.

Value can be an INTAC data item name, a DEFINE data itern name, a BASIC variable, or
an actual value for a data item or variable or finally, a combination of the above joined
with a plus sign (+).

I an error occurs, control is fransferred to the guestion or line number in the ERROR=
option. If you specify a line number, it should be within the same question subsection or in
the CODE section. An error message is printed first unless NOMESSAGE is specified. If the
ERROR = option is omitted, the program exiis on any erroz.

If you: specify INDEXO, the record will be retrieved by record number. When you tetrieve
by record:number;: be sure that whatever you are using for value will be an inieger. FIND
by record number will transfer controi to an ERROR routine (if any is specified) when it
finds a deleted record. The value of the error flag (ERROR%) will be —7. See Appendix B
for information on error handling using the FIND command.

EXAMPLES:

FIND FILEY INDEX1 10015 ERROR = Q20

This first example will get a record from FILEl (which in the chapier exampie is
ORDER.INT) with INDEX1 (in the ORDER file, the index on PURCHASE.QORD.NO)
equal to 10015. (In this example, value is a data item value.) Control will transfer ic
question 20 if there is an error.

FIND FILE4 INDEX1 PURCHASE.ORD.ND ERROR = Q20
This second example will get a record from FILE1 with INDEX1 equal to the value in

the data item PURCHASE.ORD.NO. When an error condition i§ detecied, processing
will return to question 20.

FINDNEXT FILEn INDEXn [value] ERROR
[ERROR

= Qn] [NOMESSAGE]

= lineno}

The FINDNEXT statement gets the next record from INTAC FILEn using INDEXn.
FINDNEXT must be preceded by a FIND on the same index. FINDNEXT cannot be used
for INDEXO(record number). If an error occurs, control is transferred to the question or

Revised June 1982 11 24 PROCESSING TRANSACTIONS

line number specified in the ERROR= option. An error message is printed first unless
NOMESSAGE is specified. If the ERROR = option is omitted, the program exits on any
error.

EXAMPLE: FINDNEXT FILE{ INDEX3 ERROR = Q20

GOTO Qn

This statement transfers control to the specified question or line number. If you specify a
line number, it should be within the same question subsection or in the CODE section.

POSITION x;¥

For VT100 compatible terminals, use the POSITION statement to position the cursor to the
specified line y and column x. Use TERMINAL VT100 in the OPTIONS section.

EXAMPLE POSITION 3;7.

"This example will position the cursor to line seven {7} and horizontal position three on
the line. If necessary, use a formatting ruler to estimate the horizontal position.

PROMPT item ["custom message for prompt"] [eption]

This statement defines the question 1o be asked when the TR .program 1s tun. Use a separate
Skeleton Q Qn subsection for each PROMPT statement. A PROMPT statement may not exist
outside of a Q subsection. The shortest form of the statement is. PROMPT item

Item may be an INTAC data itemname or an itemname from the DEFINE section. If you
use this short form of the statement, TR will use the itemname as the prompt. Iiem may be
followed by "custom message for prompt " which is your own prompt message to be used in
place of the itemname at the time of execution of the program.

PROMPT OPTIONS:

The following options may be added to the PROMPT command. They may be given in
any order and should be separated from each other by a space.

BACKSLASH Qn

CLEAR LINE/SCREEN/ALL
DEFAULT "value”/NODEFAULT
EXIT “value” /NOEXIT

HELP "text"

POSITION xy
REVERSE/UNDERSCORE
VALIDATE/STORE/NOSTORE

These options are described in detail below in alphabetical order.

Revised June 1982 1 25 PROCESSING TRANSACTIONS

BACKSLASH Qn

Specifies the question to which control is to return if a backslash (\) is entered for this
question. If you do not include this option, control returns to the previous question.

CLEAR ALL
CLEAR LINE
CLEAR SCREEN

For a VT100 compatible ferminal, you may use this option to clear the entire screen,
clear to the end of the line or to the end of the screen before prompting. Use
TERMINAL VTI160 in the OPTIONS section.

DEFAULT "value”
NODEFAULT

Specifies a default value to be used in place of any default listed in the file definition.
Note that the value must be enclosed in quotation marks. NODEFAULT suppresses use
of the file default value and forces the user to enter a value, If DEFAULT is specified
or the file default is used, the default value will be displayed in the prompt. If you
omit this option, the file definition default value (if any) remains in force.

" HELP "text".

Specifies a help message to be displayed when the user responds to the prompt message
by entering 7 or HELP. R

'POSITION xiy

For VT100 compatible terminals, this PROMPT keyword positions the prompt message
at the VT100 screen position column x, line y (e.g. POSITION 1;5 means pui the cursor
in position 1 and lne five (5) of the VT100 terminal screen). You may abbreviate ithe
PROMPT keyword POSITION as POS. Use TERMINAL VT100 in the OPTIONS
section. ' '

REVERSE

UNDERSCORE

For VT100 compatible terminals, this option causes the space for the prompt answer to
be displayed in reverse video or as an underscore. Use TERMINAL VTI00 in the
OPTIONS section.

VALIDATE
STORE
NOSTORE

This option indicates whether you want INTAC to validate and store the answer
automatically after prompting or not. Validation is done using the edit parameters in
the file definition for this item. VALIDATE validates and stores the answer in the
item. STORE stores the answer temporarily without validating. NOSTORE indicates
that the answer will be neither validated nor stored. If you use STORE, vou will

Revised June 1982 26 PROCESSING TRANSACTIONS
11 -

normally include statements to do your owsn validating. If you use NOSTORE, vou wili
normally be doing your own testing and validating.

If you omit these options, the default depends upon your specification in the OPTIONS
section of the TR definition file.

PROMPT EXAMPLES:

PROMPT VENDOR NO *Vendor Number" VALIDATE

In this first example the INTAC item VENDOR.NQO will be prompted for with the

message "Vendor Number?". If there is a default value in the file the message will be

"Vendor Number <Cdefault>?". The value entered will be validated using the

MINIMUM, - MAXIMUM, TABLE, or EXTERNAL FILE specified in the file
- definition for this item. If the entered value is not valid, the prompt will be repeated.
~If.it is valid, the entered-value will be stored in the item.

6520 PROMPT VENDOR.NO POS 1;5 CLEAR SCREEN UNDERSCORE NOSTORE
6530 TEST = "UNKNOWN® THEN Q17 '
8540, VALIDATE

' In thlS second example the INTAC item VENDOR.NO is prompted for with the
message "VENDOR.NO?" A file default would appear as "VENDOR.NG
<default>7". The screen is cleared before the prompt message is printed. The prompt
‘message will begin at line 5, column 1 on the screen. The space for the answer will be
underscored. The NOSTORE statement in line 6520 enables the TR author 1o use the
TEST statement in line 6530 to take appropriate action if the user eniers the word
"UNKNOWN". After this test, data is validated and stored as a resull of the
VALIDATE statement in line 6540,

SHOW elementl element? ... elementn [+]

The SHOW statement is used to specify the data elements to display. The elements may be
INTAC data items, DEFINED items, BASIC variables or a text message enclosed in quotes.
The SHOW staiement may also specify a print position across the screen or page and a
format. When using video effects for VT100 terminals, you must specify print position in
every SHOW statement.

If a SHOW statement ends with a plus sign (+), the print line is to be continued on another
SHOW statement.

For file definitions in which no special video effects are used, each element in the SHOW
statement may take the form:

itemnamel ;positionn][,format]
*text message’|:positionn][, format}

For file definitions using video effects and sﬁaecifying TERMINAL VT100 in the OPTIONS
section, each element in the SHOW statement can take the form:

itemname{ :positionn;z][, format]
"text message”[:positicnn;z]{,format]

Revised June 1982 1 97 PROCESSING TRANSACTIONS

where

itemname any INTAC datz item name, DEFINE data item name, or BASIC
variable or constant

*texi message” ANy teyl message

{nonvideo}]]] .
positionn For hardcopy terminals, a specific print position on the line. positionn

may be a number (from 1 o the maximum width of your terminal) or
an expression that can be evaluated at execution time. If a position is
omitted, the item will print in the next available print position. If the
VTI00 formatl is being used, refer to the special position staiement
(below) for cursor movement.

(VT100 format) -) . . o . .
positionn:z posﬁionn;z IS a SpeCIf]C prmt pOSltIOﬂ on the screen. pOSIt}OI’ln 15 4d

number from 1 to the maximum width of your terminal-— usually
132) indicating the character position across the screen. z is a number
from 1 to 24 indicating the line on the screen. The print position is
required if the VT100 option is specified in the OPTIONS section.

format ¥x.y 15 an INTAC print format. If it is omitted, the format is taken
from the item definition. If the position is omitted and the format is
o included, the format must be preceded by a comma.

‘XX is' the width of printed field including commas, decimal point and
s signi ¥y is the number of decimal places.

SHOW EXAMPLES: S
SHOW VENDOR.NO VENDOR,NAME TOT .AMT

In this first example, each of the data items will be printed in the next available print
position. All of the elements except for TOT.AMT are data items in the INTAC file
and INTAC will print them from the file. TOT.AMT was defined as a new data item
and used in- the LOGIC section to hold the results of a calculation. The calculated
resulis will print.

SHOW PURCHASE .QRD NU: 1 DESCRIPTION: 10 ASSET TYPE:33,2.0 +
SHOW VENDOR .NO:40 LIFE:48,10.2

In the above example, the first data element is to be printed in position 1. The second
element (DESCRIPTION) will be printed in position 10 on the line using its INTAC
file default print format. The third element, ASSET.TYPE, will be printed in position
33 on the line, using a format of 2.0. The two fields defined in the second SHOW
statement will print on the same line in print positions 40 and 48, respectively.

SHOW "Vendor #" F1.VENDOR.NOD:12 " mnot on VENDOR.INT"
This example will print the fext beginning at print position one and the INTAC item

FL.VENDOR.NO beginning at position twelve followed in the next available print
position by the text.

Revised June 1982 1 8 PROCESSING TRANSACTIONS
1 -2

STORE

This statement temporarily stores the last answer to the last prompt. A check for data type
is performed, but not a check against edit parameters. (STORE performs the same store
function as does the VALIDATE statemient. However, VALIDATE does more: it validates as
weli as temporarily stores the last answer to the last prompt Validation is done using the
edit parameters in the file definition for this item.)

TEST operator "expression” THEN lineno
Qn

The TEST statement tests the user’s answer to the last PROMPT statement and goes 1o the
specified line or 'question humber if the test is true. Operator must be a comparison operator
(>, <, >= <=, = <>, ==) and "expression” must be a string value (that is, a text). The
user § answer is compared with "expression”, a string.

EXAMPLE

__PROMPT_ACTIDN "ENTER UPDATE, DELETE, DR STOP"

TEST "= "57OP" THEN 32000_'
TEST = "UPDATE="THEN 33000
TEST = "DELETE® THEN Q3

In this example, the value entered is contained in the DEFINED item ACTION and is
compared to the texts STOP, UFDATE, or DELETE.

UPDATE FILEn [ERROR=lineno] [NOMESSAGE]
[ERROR=Qn]

The UPDATE statement will change the current record on INTAC FILEn. If an error
oceurs, control is transferred to the line or question number specified. An error message is
printed first unless NOMESSAGE is specified. If you specify a line number, it shouid be
within the same question subsection or in the CODE section. If the ERROR = option is
omitted, the program exits on any error. UPDATI should be used after UPDATE if an index
value has changed.

EXAMPLE: UPrDATE FILE2 ERRDR = Q40

UPDATI FILEn INDEXn old.value [ERROR =Qn] [NOMESSAGE]
[ERROR =lineno]

The UPDATI statement changes the specified index for the current data recoré from the old
value given 1o the new value formed from the current value of the items in the record. Used
after FIND and UPDATE if an index item value changes. If you specify a line number in
the ERROR= option, it should be within the same question subsection or in the CODE
section.

EXAMPLE: UPDATI FILE+ INDEX3 VALUE ERRGOR = Q70

Revised June 1982 11 29 PROCESSING TRANSACTIONS

VALIDATE

The VALIDATE statement validates and stores the last answer to the last prompt. Validation
is done using the edil parameters in the file definition for this item. This statement is
typically used within a question sequence following a NOSTORE or a PROMPT and in
conjunction with specification of VALIDATE OFF in the OPTIONS section.

EXAMPLE: vALIDATE

SKELETON Q CODE SECTION

The CODE section contains user subroutines and functions. Lines 20000 through 23999 are
reserved for the CODE section. The line numbers specified in the CODE section (unlike the
line numbers in other sections) are not changed by the transaction program generator.

The CODE section may contain any BASIC or TR LOGIC section statements and variables,
except the PROMPT statement.

The CODE section may only be referenced from the LOGIC section. Control is transferred
to the CODE section from the LOGIC SECTION in one of the following ways:

function call in a BASIC statement
® . GOTO or GOSUB in a BASIC statement
& ERROR = line number in a LOGIC statement.

If the CODE section is used, it must be the last section in the report definition file. Sec
Appendix B for error handling informatiosn.

Revised June 1982 10 PROCESSING TRANSACTIONS
11 -

SKELETON B: SORT AND BREAK

Use Skeleton B for file updating requiring sorting; for example, to update records selectively
throughout one or more files based upon your criteria. Include criteria directly in the
SELECT section of the TR file definition or create custom prompting to Tequest information
at run time to establish the criteria for record selection and processing.

The system you set up with Skeleton B can control the entire process so thal an
inexperienced person can run the update.

HOW TR SKELETON B WORKS

In order. to. follow your selection criteria, TR creates 2 program to sort records. It creates a
second program or program segment to perform specified operations at points where certain
values (such. as. -department number) change. The points in the processing at which these
values change are called “controfé breaks” and. the skeleton itself is often called the “"sort and
break™ skeleton.

In the SELECT section of the Skeleion B definition file, you define the data and files for
the first. program o select and sort. The second program segment uses your specifications in
the LOGIC section to process the selected and soried data.

SUMMARY OF SKELETON B SECTIONS

A file definition using SKELETON B may include sections as shown on the foilowing chart.
The seclion.name is on a line by itself and is followed by information appropriate to that
section. Line numbers must keep the sections in the order shown on the chart below.

SECTION DESCRIPTION PAGE

OPTIONS Specifies various processing options, such as data validation, and
terminal type (for cursor control). Specify here that SKELETON B
should be used. The names of the two generated BASIC programs must

also be specified here. 11~39
DEFINE Defines temporary data item used by the transaction program. These

are data items are not found in any of the INTAC files. {This section

is optional.) 11-42
FILES Specifies the INTAC files to Be used in the generated program. Files

referenced by external file specifications must also be listed in this

section. 11~-44
Revised June 1982 PROCESSING TRANSACTIONS

11 - 31

SELECT Indicates the records to be selected, the sort sequence, and control

break fields (see explanation of breaks in this chapter). 11-45
LOGIC Specifies the processing tules for the sorted records. The format of
this section follows the pattern of control break fields established in
the SELECT section. 11-49
CODE: - ~Reserved for user BASIC subroutines and functions used for processing
) the data. (This section is optional.) 11-60

PLANNING THE B SKELETON TR

As you write a B skeleton transaction definition file, we recommend that you wrile sections
in an order that reflects your planning process: FILES, SELECT, LOGIC, CODE., DEFINE,
OPTIONS. Assign line numbers to keep the file in the order necessary for the TR facility.

With the B Skeleton, the: data in a-file drives the program. Decide which file should drive it
and make that FILEL in the FILES section. Then plan the SELECT section with appropriate
INCLUDE; or EXCLUDE statements and control breaks. In the LOGIC section, put in the
BEGIN and" END statefients based on the bresks in the SELECT section and fill in
necessary LOGIC.

The data’ i't'e'_ms you will need in the DEFINE section will be clear to you after you complete
the SELECT and 'LOGIC sections. Last fill in the OPTIONS section, using SKELETON B
and giving names to the two generated program segments.

THE CONCEPT OF CONTROL BREAKS

Essential to an understanding of sort and break programs is the concepi of the control
break. The purpose of a control break is to allow specified operations or events to occur at
appropriate moments as data is processed. You define control breaks with a BREAK
statement in the SELECT section of the definition file, Organize the LOGIC seclion into
subsections based upon these control breaks. (Detailed instructions are given in the parts of
this chapter that describe the SELECT and LOGIC sections.)

A control break will occur when the value of an item specified in the BREAK stalement
changes. For example, if a program is to create detail records for each employee and print a

subtotal by department, then a control break will occur when the department number read
for a record is different from that of the previous record.

TYPICAL CONTROL BREAK EVENTS
You use control breaks to cause events such as the following:

® keep a count of records for a group
® At the beginning of a new group defined by a control break, print group headings

Revised June 1982 1 32 PROCESSING TRANSACTIONS

or clear the screen (TERMINAL VT100 option).

® At the end of a group, print group totals and clear the total accumulators for the
next group.

You can see that programs may involve processing at different points:
® at the beginning of the various control breaks

the detail processing of a daia record
e at the end of the control breaks.

CONCEPTUAL DESCRIPTION OF SORT/BREAK PROGRAMS

We can describe the processing that occurs in a typical sort and break program as follows:

100 BEGIN PROGRAM IBREAKO (initialize program)

220 BEGIN DIVISIGN IBREAKA (Print DIVISION headings)

320 BEGIN DEPARTMENT IBREAK?2 (Print DEFPARTMENT
headings)

420 DETAIL PRDCESSING {Prompt for NAME and
AMOUNT : Update AMOUNT oOn
file; Accumatarse

DEPARTMENT ., DIVISION, and
PROGRAM totals)

520 END DEPARTMENT {BREAKZ {show DEPARTMENT totals)
T20 END DIVISION IBREAK {show DIVISION fotals)
1000 END PROGRAM IBREAKO {show REPORT torals}

TWO EXAMPLES OF SKELETON B

Two B Skeleton examples are included in this chapter. The first simple exampie changes one
data item throughout the ASSET file and keeps a count of the number of changes for gach
department. The second example illustrates a common situation: the company has been
reorganized to combine some departments. The assets must be assigned to these new
departments.

For each of these examples, the chapter includes the file definition, an explanation, and a
sample update session.

SIMPLE SKELETON B EXAMPLE

Note the organization of the LOGIC section by control breaks. This example uses suggested
standard line numbers and illustrates the use of the ampersand 1o continue lines. This file
definition was created using the ROSS EDITOR.

411 Ak ok vk ok ok ok sk ok ook ok 3R ok K o ok ok 3R ok ok ok sk K S T i Ak A o ok oK 3 Sk o Ok 3R ok A R ok B ok ok ok e K K o ok A ok ok oK Ok oK

12 TR SKELETON B FILENAME: TRBSIM.DEF

13 IPURPOSE OF TR: CHANGE ASSET TYPES AND LIFE IN ASSET.INT

14 'AUTHOR: 5. HOPE

15 I1DATE: MAY 185, 18982

6 1 ook ok ok ok e ok ok Rk ok R Aok ok ok K e ok R o R K R oK KRR B K R K R Rk R R R RO R K R R KR R
17 !

10C OPTICNS

Revised June 1982 11 13 PROCESSING TRANSACTIONS

110 SKELETON B

120 SEGMENT TRESIM TRBSM2

200¢ DEF INE

210 CHG. TYPE § 1 PROMPT "Enter Asset ftyps to change’

220 NEW.LIFE I 3 PROMPT YNew Asset life (in vears}"

230 COUNT I 3

300 FILES

310 FILE1 ASSET

340 SELECT

350 GETH

360 INCLUDE IF ASSET.TYPE = (QHG.TYPE

7o SORT DEPT .NO

380 BREAK DEPT.NO

3500 LDGIC

5000 BEGIN PROGRAM

000 BEGIN DEPT.NO

5010 COUNT = O treset count for next dept

12000 DETAIL PRODCESSING

12010 LIFE = NEW.LIFE lassign new asset life &
tthen update file &

12020 UPDATE FILEA

12030 tincrement dept count

12040 COUNT = COUNT + A1

18000 END DEPT.NO

18010 SHOW "Department #" DEPT.NO ":" COUNT:25,3 " asset lives

Ehanged” '

18000 END PROGRAM
EXPLANATION OF SIMPLE B SKELETON TR

The purpose of this TR program is io change vaiues for one data item throughout the case
study ASSET.INT file. Four possible assel types are listed in the file definition: F {office
furniture}, C (computer equipment), E {miscelianeous), and O {other}. The Tri-City planner
wants all of the asseis with a type O 1o have a life of 5 vears. This TR refrieves all the O
type assets and changes the associated LIPE values to 5. The TR i5 made more flexibie by
prompiing for values for asset type and for LIFE so that it can be used again for similar
changes.

The OPTIONS section specifies the B Skeleton. It names the two necessary TR programs in
line 120.

The DEFINE section sets up two new data items (CHG.TYPE and NEW.LIFE} to receive
values through prompting at run time. The new data item CHG.TYPE will hold the value of
the asset type to be changed. It will be used in both the SELECT section and the LOGIC
section. NEW.LIFE will be used only in the LOGIC section. It is a good practice to prompt
in the DEFINE section rather than in the LOGIC section whenever possible. In this case,
prompting must be done in the DEFINE section because the value for CHG.TYPE is needed
in the SELECT section. A BASIC variable COUNT is included in the DEFINE section.

The FILES section lists the only file involved in this program, ASSET.INT as the primary
file. In the SELECT section, the GET1 statement reads every record in this primary file. In
line 360, the INCLUDE statement causes the program to select only those records that have
an asset type maiching the value entered by the user in response 1o the DEFINE section
prompt. Lines 370 and 380 sori these records by department number 50 that a count of
changes per department can easily be maintained. The BREAK statement indicates that
processing will take place whenever the department number changes {in this case, a message

Revised June 1982 11 14 PROCESSING TRANSACTIONS

is printed and the count will be reset). The program created by this SELECT section wili
select and sort the records before they are processed by the program defined by the LOGIC
section. Only the records selected will be acted upon by the LOGIC section.

The LOGIC section sets up the necessary processing. At line 6000, the BEGIN statement
indicates the data item break. Line 6010 defines 2 BASIC variable named COUNT that will
keep track of the number of changes made for each department. This variable will be reset
to zero whenever the department number changes. Notice that it is not necessary to include
this BASIC variable in the DEFINE section because it is not used for prompting, nor is it
used in the SELECT section.

For every record, the DETAIL subsection line 12010 changes the value of the data item
LIFE to the value entered by the user in response to the DEFINE section prompt in line
220. Line 12020 updates the file for each record and line 12040 increases the count by one.
As the program is run, line 18010 causes the display of a message reporting the number of
records changed per department. The data item COUNT is positioned to begin in print
position 25. It is given a print format of 3 so that the count can be as high as 999.

THE RESULTING UPDATING SESSION

When the program is run, the dialogue appears as follows.
RUN TRBSIM
TRANSACTION PROGRAM TRESIM

Enter Asset type to change? 0

New Asset life (in vears)? 5

4 RECGRDS SELECTED

Department # 8501%: 3 asset lives changed
Department # 8001; i asset lives changed

END OF TRANSACTION PROGRAM TRBSM2:

SECOND B SKELETON TR EXAMPLE

11 IEEEEEEEREEELEEEREESER R s R RS L T LR L]
12 !TR SKELETON B FILE NAME: REORG.DEF

13 !PURPOSE OF TR: Change Dept #'s in Asset file after re-organization
14 'AUTHOR: 5. Hope

15 !DATE: 15-June-1982

IR EEEE IR EEEEEE SR EE SRS EEEEEEEEE SR EE SRR PR R R F R R R g

17 ¢

100 OPTIONS

110 SKELETON B

120 SEGMENT RECGRG REORG2
200 DEFINE

210 NEW.DEPT.NO I ©
220 COUNT I 3

300 FILES

310 FILEY ASSET

320 FILE2 DEPTY

340 SELECT

350 GET1

380 SORT DEPT.NO
380 BREAK DEPT.NO

3500 LOGIC

Revised June 1982 11 35 PROCESSING TRANSACTIONS

5000

BEGIN PROGRAM

5010 SHOW "Depariment re-organization update”
5020 SHOW " For each old department, enter the correspending®
5030 SHAW " new dept #. If the same dept is entered, no changes"
5040 SHOW " will be made to the Asset file for that department.®
5050 SHOW ¢ " R
8000 BEGIN DEPT.NO
6010 SHOW "Oid gepariment: " DEPT.NOD
6020 PROMPT NEW.DEPT.NC "Erter new department #°"
6030 IF NEW.DEPT.NO = DEPT.NO THEN &
CHG.FL% = 0% &
ELSE CHG.FL% = -1% &
5040 GOSUB 20100 'check 3f valid dept &
6050 IF BAD.DEPT% = ~1% THEN &
GOTO 6620 'try again &
8060 lprint a blank line &
. Tthen dept info &
SHOwW * " &
\SHOwW "Dept name: * DEPT.NAME: 45 &
\SHOW "Manager:* MANAGER:15 &
XCOUNT = O &
12000 DETATIL PRUOCESSING
12010 IF CHG.FL% = -1% THEN &
DEPT.NO = NEW.DEPT.NQ!change dept # &
\COUNT = COUNT + 4 !increment count &
lupdate file &
\UPDATE FILE{ &
12020 I NOTE that update must be on last sub-line &
18000 END DEPT.NO
18010 IF CHG.FL% = -1% THEN &
SHOW COUNT: 10,5 " asset records updated® &
18020 IF CHG.FL% = O% THEN &
SHOW no changes macde for dept"” &
18030 SHOW * " &
CASHOW " &
19000 END PROGRAM
20000 CCDE
20100 !**#****&
P**% Subroutine to check if DEPT.NO exists on DEPT file. &
Px*% If not on DEPT, then it is an invalid DEPT.NO. &
‘**’F
20110 FIND FILE2 INDEX1 NEW.DEPT.ND ERROR=20190 NOMESSAGE
20120 BAD .DEPT% = O% Iclear bad dept flag &
\RETURN tho error, dept found &
20190 SHOW "Dept #" NEW.DEPT.NO " not in department file (DEPT.INT)® &
\SHOW "...please try again" &
\BAD .DEPTY% = ~4% Iset bad dept flag &
\ERROR% = 0% lciear error flag &
\RETURN &
Revised June 1982 11 36 PROCESSING TRANSACTIONS

EXPLANATION OF SECOND B SKELETON TR

The purpose of this TR program is to adjust the ASSET file department numbers to reflect a
reorganization of the Tri~City Company. Because of the reorganization, some assets must be
assigned new department numbers. All of the assets for any given department will require
exactly the same change, so if they are sorted by department, the changes for any
department can be made efficiently. This program sorts the asset records by department and
breaks on department number to allow prompting and other processing.

The changes in department number have already been made in the DEPT.INT file. This TR
program will create custom validation of the new department numbers against the numbers
in the DEPT.INT file. (The ASSET.INT file definition does not specify any kind of
validation for department numbers.) The TR will also keep a count of the number of
changes per department number.

At run time; this program will provide a brief explanation 1o the user and then, department
by department, {not asset by asset) the user will be prompied for a new department number.
Validation of the department number will be done against the DEPT.INT file, changes will
be - made 1o records, and- the user will be given an appropriate report of update and of the
number of ‘records: changed. If- the department number entered by the user maiches the
record, the program will report that no changes have been made.

200 DEFINE

The: DEFINE section includes a new data item named NEW.DEPT.NO 1o coniain the
response 10 a prompt in' the LOGIC section. Prompting must occur in the LOGIC section
for this program because the user must indicate the appropriate new department number for
each old department.

300 FILES

The FILES section lists the ASSET file as the primary file and DEPT as the secondary file.
Since this program uses DEPT.INT only for custom validation (no changes will be made to
DEPT.INT), it could be specified as a READONLY file,

340 SELECT

The SELECT section creates a program to read every record, sort the records by department
number, and break on department number for prompting and processing to be specified in
the LOGIC section. In this program, all records in ASSET.INT will be selected for
processing in the LOGIC section.

3500 LOGIC

The LOGIC section uses the BEGIN PROGRAM break to instruct the user. The instructions
will be printed only once as the session begins. Line 6000 begins the processing by
department number. AT line 6010, the SHOW statement causes display of the text message
and the DEPT.NO of the first sequential record for a department. Line 6020 prompts for a
value for the new department number.

Line 6030 (with its sublines) contains a BASIC IF-THEN-ELSE statement to test if the
prompted department number matches the data item value on the ASSET file. A BASIC
variable named by the author CHG.FL% is assigned the value 0% if the new department

Revised June 1982 11 37 PROCESSING TRANSACTIONS

number matches and the value —1% if there is no match. {This variable need not be included
in the DEFINE seciion. The % sign means that the value should be stored as an integer to
save storage space in the computer.) This variable will be used in lines 12010 and 18010,

Next, the program chiecks to see if the department number entered by the user exists on the
DEPT file. The author has put this validation in a subroutine in the CODE section. Line
6040 sends the program to this subroutine. The FIND statement at line 20110 retrieves the
department number from secondary file DEPT. If no record is found, INTAC considers it
an error and sends the program to line 20190. The NOMESSAGE option suppresses the usual
INTAC error messages because line 20190 creates a custom message. This line also assigns a
valne (-1%) to an error flag (named by the author BAD.DEPT%). The value of this
BAD.DEPT flag will direct the program appropriately.

The iast subline of line 20190 returns control to line 6050 and then to lne 6020 to prompt
for department number again.

If the validation routine finds the department number on the DEPT file, then line 20120
ensures-that. the bad: department flag is reset to 0% (meaning the department number is QK)
and. t'he'n_.ret_umS;controi to .line 6050 which will continue the program to line 6060. SHOW
statements: display the department name beginning in the horizontal position 15 across the
page and the manager on the next line, also al the fifteenth print position. The last subline
assigns the. value-zero to a BASIC variable to contain the count of records changed for the
department.

Detail processing begins at line 12010. The BASIC variable CHG.FL% received a value of
~1%:in. line: 6030 when-the department number entered by the user did not match the
department number. on- the ASSET file record. Whenever the CHG.FL% has the value -1%,
line 12010 will: change. the record. department number to the new number entered by the
user. The count variable will be increased by 1. The statement UPDATE FILE! updates the
primary file, ASSET.INT. Notice that line 12010 contains 2 BASIC assignment statement and
an INTAC UPDATE statement. It is alright to have multiple statements on one Hne number.
The INTAC file statement must be the last statement on the line number.

At Hne 18010, processing to occur at the change of department numbers is indicated. The
count is rteported. Line 18030 creates two blank lines to provide spacing between
departments. The END PROGRAM statement is optional since no processing occurs at the
end of this program.

THE RESULTING UPDATING SESSION

Below is & part of the updating session that occurs when this TR program is run. All
departments in the file are processed by the program, bui below are shown only enough
departments to show how the program handles different sitnations.

RUN REORG
TRANSACTION PROGRAM REDRG

77 RECDRDS SELECTED

Department re-organization update.
For each cld departmani, enter the corresponding
new dept #. If the same dept is entered, no changes
will be made to the Assei file for that depariment

Revised June 1982 1 18 PROCESSING TRANSACTIONS

01d department: 1001
Enter new department #? 1501

Dept name: F INANCE Note that these data items
begin in print position
75,

Manager : PETERS

13 asset records updated

071d department: 2001
Enter new department #? 1501

Dept name: FINANCE
Manager: PETERS
6 asset records updated
01d department: 3001
Enter new department #7 3001
Dept name: PRESIDENT
Manager: EWING

..... no changes made for dept

0id depariment: 7001

Enter new department #7 7001

Dept # 7001 not in department file (DEPT.INT)
...piease try again

Enter new department #7 7501

Dept name: COM. PROD
Manager . SCUDAMORE: -
3 asset records updatead

END OF TRANSACTION PROGRAM REORGZ

SKELETON B OPTIONS SECTION

The OPTIONS sections is used to specify various processing options, such as the type of
program 1o be generated (in this case, SKELETON B) and the terminal type.

Each option has a keyword, which is followed by one or more values indicating your choice.
Each option has a default as shown. The option need be specified only if the default is not
appropriate. Options may be entered in any order.

EXAMPLE:
100 OPTIONS
200 SKELETON B
300 SEGMENT BATCH{ BATCHZ
Revised June 1982 PROCESSING TRANSACTIONS

11 - 39

SUMMARY OF OPTIONS FOR SKELETON B

KEYWORD VALUES DEFAULT MEANING

CHAIN filename NONE Name of a program to be run after the TR program
is completed (optional)

SEGMENT filenamei NONE Two names to be specified for
filenamaZ generated programs or segments
SKELETON B Q Identifies skeleton {(required for B)
TERMINAL ASCII ASCII Tvpe of terminal
VT100
VALIDATE ON ON Allows suppression of validation rules in
OFF file definition. Validation will only occur

for PROMPT items

DESCRIPTIONS OF OPTIONS

CHAIN filename

This keyword specifies the name of a program to be executed after the generated transaction
programs are completed, The program can be another INTAC program or any other type of
program {BASIC, FORTRAN, PASCAL). Use this keyword to set up an automatic processing
strearm.

EXAMPLE:

100 OPTIONS
200 CHAIN UPDATE

The program named UPDATE will be run after the transaction program has been completed.

DEFAULT: No chaining

SEGMENT filenamel filename?2

The SEGMENT keyword assigns program names (o the generated transaction programs. This
SEGMENT statement is required when SKELETON B is used because two program files or
segments are generated: filenamel is a program 1o select and sort records; filemame? is a
segment containing the LOGIC section code. filename may be any valid RSTS/E or VMS
name.

For RSTS/E systems, filenamel may include account number, device specification, and
protection code. (The protection code may not be used if the operating system is VMS.) The
account number must be included in the first filename following the SEGMENT statement
when the transiated program will reside in one account and be run from one or more other
accounts. The generation of these programs should occur in the account designated on the
SEGMENT statement.

EXAMPLES:

Revised June 1982 1 40 PROCESSING TRANSACTIONS
1 -

- 100 OPTIONS
200 SEGMENT REORG REDIS

100 OPTIONS

200 SEGMENT [240, 10IREORG REDIS
100 OPTIONS
200 SEGMENT REORG<S80.> REDIS<EC>

REORG is the name of the program to SELECT and SORT the data. REDIS is the name of
the program which will process the LOGIC section. The second example shows the PDP
11/70 account number where both REORG and REDIS will reside (e.g. 240,10). The third
example shows the protection code (associated with the PDP 11/70) being set.

DEFAULT: none for sort and break programs because two programs are generated and
must be named

SKELETON B

This keyword designates the structure of the program to be generated; in this case,
SKELETON B. Since the default is inappropriate, you must always specify SKELETON B
for a sort and break file definition.

EXAMPLE:

10C OPTIONS
200 SKELETON B

DEFAULT : SKELETON Q

TERMINAL ASCII or VT106

Specifies the type of terminal to be used. If you want to take advantage of screen
formatting, you must have a VT100 compatible terminal and must specify VT100 in the
OPTIONS section. In addition, you must include screen formatting detail in each LOGIC
section SHOW and DISPLAY statement.

A file definition that uses screen formatting will run on hardcopy terminals, but terminal
display will be preceded by apparently meaningless characters.

DEFAULT: ASCII

VALIDATE ON or OFF

Specifies whether an answer will be validated automatically against file definition edit
parameters after it is prompted in the LOGIC section. {Data is always validated for data
type.) Use VALIDATE OFF when you want to do your own data validation in the LOGIC
section.

Revised June 1982 1 41 PROCESSING TRANSACTIONS

Similarly, the LOGIC section has statements for VALIDATE and STORE and the LOGIC
statement PROMPT makes available the options VALIDATE, STORE, and NOSTORE.
VALIDATE and STORE share the store function. In addition to performing edit parameter
checks, VALIDATE also maintains the answer to the prompt (a datz item value) until the
next prompt for the same item so that you can perform operations on that data item value,

If you want to by-pass the edit~parameter checks. then specify VALIDATE OFF in the
OPTIONS section. STORE becomes the default for PROMPT statements. The STORE
statement only maintains the prompt answer in the data item until that item is prompied for
again. The answer is not subjected to edit parameter checks, but is available for your LOGIC
section operations. If VALIDATE ON is specified in the OPTIONS section (or assumed by
default), then VALIDATE becomes the default for all prompt statements in the LOGIC
section.

EXAMPLE:

100 GPTIONS
200 VALIDATE OFF

4000 LOGIC

8030 PROMPT. DEPT .NC "Enter old depariment number"
8040 GOSUE 20200
20200 FIND FILEZ INDEX1 DEPT.NO ERROR= 20300 NOMESSAGE
20300 SHOW "Dept number net in depariment file”

In this example, the PROMPT statement defaults to the STORE option because VALIDATE
OFF has been specified in the OPTIONS section. GOSUB sends the program to a subroutine
to do validation. The FIND statement causes INTAC to retrieve the DEPT.NO from another
+ file for checking. When no record is found on the file, this use of VALIDATE OFF enables
the TR author to send the program to a line with an appropriate message and then 1o
further operations.

DEFAULT: ON

SKELETON B DEFINE SECTION

The DEFINE section (in conjunction with the LOGIC section) allows you to define new data
items. For example, define a new item calculated from items in more than one file accessed
for the updaie operation. Or define a data item to be prompted for during an interactive
update session. Use DEFINE items in the TR definition LOGIC section as though they were
data items in one of the accessed files.

Each line in the DEFINE section defines one data item and is formatted like a data item in
an INTAC file (see Chapter 3, CR).

This section is required only when DEFINED items are to be used in a TR program.

Revised June 1982 11 42 PROCESSING TRANSACTIONS

FORMAT:

itemname type [xx.y] [PROMPT "prompt msg"] [DEFAULT ‘defltvalue”]

where

itemname consists of from 1 to 24 characters. The characters must be alphabetic,
numeric, or periods. The first character must be alphabetic. No spaces
or other special characters allowed. Names which are INTAC or BASIC
reserved words may not be used (See Appendix D for a list of reserved
words).

type data type, as used in INTAC files:
S character siring
R real (floating point) number
1 integer
D date field

XXy ~ 'print format consisting of two elements xx and ¥
' XX . .. total width of printed field including commas, decimal points
: and sign or parentheses. For a string field this is the length
of the string. For a DATE field, this will be either § or 10
depending on the print format specified,

'y the number of decimal places in floating point numbers only.

A limit of sixteen digits exists for REAL variables.

PROMPT ["prompt msg"]
This optional prompt message will be displayed as the prompt for this
item. Otherwise, the itemname will be used as the prompt. Prompted
items must precede unprompted items in the DEFINE section. The
maximum length of prompt message is 32 characters. The PROMPT for
items in the DEFINE section is performed once only.

DEFAULT "defltvalue® .
This optional value will be used as the default for this item. If not

specified, no default value will be assumed.

DEFINE SECTION EXAMPLE:

200 DEFINE
210 NEW.DEPT .NO I &

WHEN TO DEFINE ITEMS

This chapter suggests that you plan the LOGIC section before the DEFINE section so that
you will know exactly which new data items you need to DEFINE. As you write the LOGIC
section, you can use any valid BASIC variables without including them in the DEFINE
section. Variables must be included in the DEFINE section only in two cases: you will
prompt for the value of the data item; the variable will be saved from the SELECT section
and used in the LOGIC sectjon. (You may include other variables as you prefer.}

Revised June 1982 1 43 PROCESSING TRANSACTIONS

DEFINED items should not be used as control variables in the LOGIC section {e.g. do not
define a loop counter). For best results, use a BASIC variable {e.g. ICOUNT) when control
variabies are needed in the LOGIC section.

A maximum of 99 items may be defined in any INTAC TR definition file,

SKELETON B FILES SECTION

The FILES section specifies the INTAC files to be used in the generated program. Any files
externally referenced by a file definition must also be specified in the FILES section.

FILE SECTION STATEMENTS

FILEn filename [READONLY]

This statement specifies a file to be used by the generated program. Up to three INTAC
files may be specified, for-n=1, 2 and 3. (FILE3 cannot be specified if there are one or
more external statements specified. See below, EXTERNAL filename.)

If “you: wilt us¢ an -INTAC file' only to validate or retrieve information (not update).
READONLY may be specified. This option protects the file by preventing the user from
adding; updating, or deleting records from the file. It is also a useful option when multiple
users are allowed, © o i S

EXTERNAL filename

An EXTERNAL filename siatement should be used when an external file reference ogcurs in
the INTAC: file definition of a file to be accessed. Ttems from a file defined as EXTERNAL
cannot be referenced. If vou want to reference items from a file, the file must be specified
with a FILE2 statement. (A file need not be listed twice; you do not need 1o list ¥ with an
EXTERNAL statement if you have listed it with a FILEn statement.) There is no limit to the
number of EXTERNAL statements in a TR program. The fiie specified as FILEL cannot be
specified as an EXTERNAL file,

FILES SECTION EXAMPLE:

300 FILES

31C FILE1 ASSET
320 FILE2 ORDER READONLY
400 EXTERNAL VENDOR

In this example, the INTAC files ASSET and ORDER are being used. Additionally, the
INTAC file VENDOR is used as external reference file in the ASSET file and must be
specified separately. (The EXTERNAL file VENDOR is used by ASSET as a check to ensure
the values entered in ASSET exist in the validation file {e.g. VENDOR). Note that ORDER
is being used only to retrieve information and is specified as READONLY.

Revised June 1982 11 44 PROCESSING TRANSACTIONS

SKELETON B SELECT SECTION

The SELECT section is used in the SORT/BREAK skeleton 1o specify the selection and
sorting of records and to specify the control break fields. It generates a program which will
be run prior 1o the program generated by the LOGIC section. This program will select the
records to be processed, store them in a sort file, call the sort program and cause it to chain
to the logic program after sorting.

The SELECT section may contain BASIC statements as well as the commands shown below.
(See Appendix B.)

SUMMARY OF SELECT STATEMENTS

The SELECT section may contain the following statements. The GET1 statement is required:
the.others-are optional. The order of these statements is significant as is explained below.

VgEry o

GET2 INDEXn itemi item2 ... itemn Useto specify records

GET3 INDEXn itemi item2 ... itemn

INCLUDE IF condition Use o limit record
sefection

EXCLUDE IF condition

SORT itemt item2 ... §temn Use to specily sequence in
whichito sort the selected
records

BREAK itemt item2 ... itemn Useto define break fields

The index may be any index other than index0. The item pame may be any valid INTAC
item except itemn0. Each of these statements is described in detail beginning on page 11-46.

ORDER OF SELECT STATEMENTS

The order of siatements in the SELECT section is significant.
The GET1 statement must always be the first INTAC statement in the SELECT section.

INCLUDE or EXCLUDE statements should be placed afier the GET statement or statements
to which they refer. If no INCLUDE or EXCLUDE statements are specified, every record
in FILE1 is selected along with associated records from FILEZ2 and FILE3 (if GET2Z and
GET3 are specified).

The SORT and BREAK statements must be the last INTAC statements in the SELECT
section. The SORT statement should precede the BREAK statement if both are included in
the TR program. '

Revised June 1982 45 PROCESSING TRANSACTIONS
11 -

ORDER OF EXECUTION
INTAC reads data from the files in the following manner:

® FEach record from FILE] is read by the GETI statement.

¢ FILE!l INCLUDE or EXCLUDE f{ests are made, and if the record is 1o be excluded,
no reading is done from FILE2 or FILE3.

® If the FILEL record is to be included, then the corresponding record on FILE2 is
tead if there is a GET?2 statement.

e INCLUDE or EXCLUDE tests following GET? are executed, and if the record
should be excluded, no reading is done from FILE3.

® FILE3 is read and handled in the same manner as FILE2 if there is a GET3
statement.

® If all INCLUDE and/or EXCLUDE tests have been passed, the record is selected
and stored in the sort file.

BASIC statements preceding the first GET statement are executed only once before the
beginning of the seiection. process. BASIC statements after the SORT statement are execuied
only once at the end of the selection process. No BASIC statements may follow the BREAK
statement in the SELECT section.

INCLUDE/EXCLUDE EXAMPLES

The following examples illustrate how placement of the INCLUDE and EXCLUDE
statements. can _dramatically affect the run time of your program.

EFFICIENT EXAMPLE:

340 SELECT

350 GET
360 . INCLUDE IF EMPL.NO <C{1000
370 GET2 INDEX{ DEPT.NO
380 GET2 INDEX{ DIV.NO

This example illustrates an efficient placement of the INCLUDE statement. Since the
INCLUDE test is based on FILE1 only, FILE2 and FILE3 will not be read unless the FILE?
record is 10 be inciuded.

INEFFICIENT EXAMPLE:

340 SELECT

350 GET1

360 GET2 INDEXY DEPT.NO

370 GET3 INDEXt1 DIV.ND

380 INCLUDE IF EMPL.NO <1000

In this example, each time FILEI is read, FILE2 and FILESJ are also read, even if the record
is not to be selected. If you were including 20 records out of 2000, you will have performed
up to 3960 unnecessary reads on the other 2 files.

Revised June 1982 1 46 PROCESSING TRANSACTIONS
1 -

SELECT STATEMENTS

The following statements are presented in alphabetical order for reference. The order of
SELECT statements in the file definition follows the rules described on the preceding page.

BREAK iteml item2 - itemni:nl,n23i

The BREAK statement is used to define the control break fields for the program. The break
fields are listed from major to minor break field. The first item will control BREAK1, the
second BREAK?Z, and so on. You can name a maximum of 8 control break fields. The items
may be any data items from FILE1l, FILE2, or FILE3. BREAKJ(, the end of program, is
automatically defined as the highest level break.

You can specify a part of an item to be a break field. This is done by following the item
with :n1,n2 where nl is the starting position of the break field within the item. and n2 is the
length of the break field. Partial fields should only be specified for string data items.

The BREAK statement should be placed following all GET. INCLUDE, EXCLUDE, and
SORT statements. A BEGIN and/or END subsection may be included in the LOGIC section
for each item listed on the BREAK statement. No BASIC PLUS or VAX BASIC statements
may appear after the BREAK statement in the SELECT section. The BREAK statement may
be omitted, in which case the entire file will be treated a5 one group.

BREAK items must have been specified as SORT items; but all SORT items need not be
BREAK items, See the followmg section for further d1scussaon of the usage of control
BREAKS

EXAMPLE:

310 BREAK DIVISION DEPT.NO
OR

310 BREAK DUE.DATE POD.NUMBER:3,2
GET1

This statement reads each record from the primary file specified as FILE] in the FILES
section.

GET2 INDEXn iteml item2 ... itemn
This statement specifies an optional corresponding secondary record from FILE2.

INDEXn is used to specify the index number from FILE2 that will be used to access the
file.

The items are names of data items from FILE that can be used to create a lookup key for
INDEXn of FILEZ.

Revised June 1982 47 PROCESSING TRANSACTIONS
. 11 -

EXAMPLE:

Assume FILE1 is an asset file called ASSET.INT which contazins an item called
DEPT.NO. Also, assume FILE2 is a department file called DEPT INT which has
INDEX]1 defined as a department number,

340 SELECT
350 GETH1
360 GET2 INDEX1 DEPT.ND

GET3 INDEXn iteml item2 ... itemn

This statement specifies an optional corresponding record from FILE3. Its format is the
same as the GET2 statement. INDEXn should identify an index from FILE3. The items may
refer to items in FILE] or FILE2. If a name is duplicated on more than one file, be sure 1o
use quaiif ied names,

EXAMPLE
340 SELECT
350 GETH
“360 T GET2 U INDEX2 F 1. MANAGER

IHBTO'.}: ﬁ GETE INGEX1. F1.DEPT.NOQ
INCLUDE IF condition = |
EXCLUDE IF cendition T

The INCLUDE and EXCLUDE statements are used to limit the records selected from the
files. Only one INCLUDE of EXCLUDE statement may oceur after each GET statement.
Once found and tested {according to the condition’) the record will be included or excluded
as indicated.

The condition consists of 2 values separated by a logical operator. The values may be INTAC
dala items, data items from the DEFINE section, numbers, character strings in quotes. or
any valid BASIC PLUS or VAX BASIC variable.

Partial INTAC data items may be specified using BASIC statements (MID, LEPT, etc.).
The operators are:

< LESS THAN

> GREATER THAN

= EQUALS

<= LESS THAN OR EQUAL TO

>= GREATER THAN OR EQUAL TO

<> NOT EQUAL

== APPROXIMATELY EQUAL [Real variables only)

Revised June 1982 1 48 PROCESSING TRANSACTIONS

Conditions may be joined by AND or OR. Parentheses can be used to form more
complicated conditions. '

INCLUDE and EXCLUDE statements should be placed immediately following the GET
statement or statements to which they refer.

EXAMPLE:
350 INCLUDE IF NAME="SMITH"
380 EXCLUDE IF NAME="SMITH” AND DEPT ,>200

SORT iteml item2 ... itemnl:ni,n2]

The SORT statement specifies the sequence in which to sort the selected records. Sorts are
normally in ascending order; however, you may indicate a descending sort by preceding the
item by a hyphen. Enter a list of data items from FILEl, FILEZ, or FILE3 that are to be
used to sort the records. The items are listed from major to minor sort fields (e.g. iteml is
major and itemn is minor).

You may specify a part of a string item to be a sort field. This is done by following the
item with :nln2 where nl. is. the starting position of the sort field and n2 is the length.
Partial fields should only be specified for string data items.

If the SORT stﬁtement is omitted, the program will use INDEX(O of FILEL {the logical
record number), as the sort sequence.

The SORT statement should be placed after all GET, INCLUDE, and EXCLUDE statements
and before any BREAK statement.

EXAMPLES:

340 SORT DEPT.NOC PURCHASE .ORD.NO VENDOR.NOC
or

340 SORT F1.DEPT.NO F2.MANAGER:4, 10

The first example will sort on {major to minor) DEPT.NO, PURCHASE.ORD.NO, and
VENDOR.NO The second example will sort on DEPT (from FILEl), and part of
MANAGER from FILE2 (o sort on last name instead of first initial, a field beginning at
position four with a tota] length of ten characters).

SKELETON B LOGIC SECTION

The LOGIC section specifies the processing rules for the selected records. The LOGIC
section allows the full flexibility of BASIC statements as well as INTAC statements.

In the definition file, lines 3500 through 19999 are reserved for the LOGIC section.

Revised June 1982 49 PROCESSING TRANSACTIONS
11 -

~The Skeleton B

LOGIC section is divided into BEGIN, DETAIL, and END subsections

describing operations to be performed at control breaks and for each detail record.

SUMMARY OF SKELETON B LOGIC STATEMENTS

BASIC code may be interspersed with LOGIC section statements. LOGIC section statements
include the following:

STATEMENT PURPOSE
ADD Adds a record to an INTAC file
CLEAR Clears the line or screen before prompting {VT100 only)
DELETE . Deletes the current record on an INTAC file
| FIND -.S.ez.:l.r.ches for and retrieves a record with a specific value

FINDNEXT Retrieves the next record

:__ G(}TO -
POSITION

* PROMPT
SHOW

STORE
TEST

UPDATE

UPDATI

Transfers control of the TR program to a specified line number
Moves the VT100 cursor to the specified position on the screen

.. Défiﬁes .p;bm.plingi.ha:s options, inciuding video effects
Specifies data items to be displayed and position on screen or page

Stores the answer just enfered by user {used instead of VALIDATE
staiement or option)

Tests the answer to a prompt and transfers control of the program based
upon the test

Umpdates the current record

Changes the index for the current daia record

VALIDATE Validates and stores the last answer given

SKELETON B LOGIC SUBSECTIONS

The subsections of the Skeleton B LOGIC section are named as follows:

3500 BEGIN PROGRAM
3600 BEGIN BREAKn
3700 DETAIL PROCESSING
3800 END BREAKnN
3800 END PROGRAM

or

Revised June 1982 PROCESSING TRANSACTIONS

11 - 50

3500 BEGIN PROGRAM

3510 REGIN BREAK itemname
3520 DETATL PRDOCESSING
3530 END BREAK itemname
3540 END PROGRAM

Only the DETAIL subsection is required. BEGIN and END subsections are necessary only
when you wish 1o indicate special processing.

The format of the BEGIN and END statements is:_

3500 BEGIN [BREAKI itemname
3600 BEGIN [BREAK! number
4500 END [BREAK] itemname
4600 END [BREAK] number

The word BREAK is optional. The itemname must be one of the itemnames on the BREAK
statement in the SELECT séction. If 'you use break number, it must be a relative break
defined on the BREAK statement. BEGIN and END statements are not both required for 2
break item.

EXAMPLES:

The following are é:)'{am:ple,'s' of valid BEGIN and END subsection names.

3700 . BEGIN BREAK 3-

4300 BEGIN 3

4240 BEGIN EMPL.ND

4300 BEGIN BREAK EMPL.ND
3900 END BREAK 3

4500 END 3.

3700 END EMPL.NO

3500 END BREAK EMPL.NO

There may be up to nine BEGIN and nine END subsections, including BEGIN PROGRAM,
END PROGRAM, and one for each control break defined on the BREAK statement in the
SELECT section.

All LOGIC statements must follow one of the subsection headers. The following example
shows the subsections that could be used for an employee file update.

100 SELECT
300 SORT COMPANY DIVISION DEPT EMPL.ND
500 BREAK COMPANY DIVISION EMPL .NC

3600 LOGIC

3650 BEGIN PROGRAM
3700 BEGIN COMPANY
Revised June 1982 PROCESSING TRANSACTIONS

11 - 51

3800 BEGIN DIVISION

3850 BEGIN EMPL .NQ
38%5 DETATIL PROCESSING
3950 END EMPL.ND

39é5 END DIVISION

3950 END COMPANY

39%5 END PROGRAM

To refer to the values in the previous record in the END BREAK sections, prefix the
INTAC orDEFINED item name with OLD (for example, OLD.EMPL.NO). These QLD
items cannot be‘assigned new values. The old items are not used in file updates.

DETAILED DESCRIPTIONS OF LOGIC STATEMENTS

The fbl'lb__\'is}ihg-' LOGIC statements are described in alphabetical order for easy reference. In
addition to. these INTAC statements, you may use BASIC statements. For example, you may
assign 2 value 1o an INTAC or DEFINE item (e.g. DEPT.NO=NEW.DEPT.NO},

ADD FILEn [ERROR = line number] [NOMESSAGE]

Adds a record to INTAC file n as defined in the FILE section. This statement assumes that
the processing in some way has filled the record with values for all data items {other than
DATE.LAST.EDIT and DELETE.FLAG.) In order to get valid data in each field ALL data
items in the INTAC file record must be initialized (other than date last edit and delete flag).
If any data items have not been given values, random characters may appear in the updated
file. : -

If an error occurs, control is transferred to the line number specified in the ERROR option.
The line number should be a line in the same BEGIN, END, or DETAIL section or in the
CODE section. An error message is printed first unless NOMESSAGE is specified. If the
ERROR = option is omitted, the program exits on any error. Use the NOMESSAGE option
when you want to create your own error-handling procedure. See Appendix B for
error—handling information.

EXAMPLE: ADD FILE{ ERROR = 22000

Revised June 1982 11 59 PROCESSING TRANSACTIONS

CLEAR [ALL]
[LINE]
[SCREEN]

For VT100 compatible terminals, you can use this statement to clear the entire screen, clear
from the cursor 1o the end of the current line, or clear to the end of the screen. Use
TERMINAL VT100 in the OPTIONS section. The statement will be ignored if the TR
program is run on a hardcopy terminal.

EXAMPLES:

CLEAR LINE
CLEAR SCREEN

DELETE FILEn [ERROR = line number] [NOMESSAGE]

The DELETE statement will delete the current record on INTAC FILEn. If an error pecurs,
control.is transferred to the line number specified. The line number should be a line in the
same: BEGIN, END, or DETAIL-section or in the CODE section. An error message is
printed : first- unless. NOMESSAGE is. specified. If the ERROR = option is omitted, the
program exits on any error. See Appendix B for error-handling information.

EXAMPLE: DELETE FILE2 ERROR = 23990

FIND FIiLEn INDEXn value [ERROR = lineno] [NOMESSAGE]

The FIND statement retrieves a record in the specified file using the specified index. FILEn
is the file as specified in the FILE section. INDEXn is the index number in the file
definition. :

Value can be any INTAC data item name, a DEFINE data item name, a BASIC variable, or
an actual value for a data item or variable or, finally, a combination of the above joined
with a plus sign (+).

If an INTAC error occurs, control is transferred to the line number specified. The line
number shouid be a line in the same BEGIN, END, or DETAIL section or in the CODE
section. An error message is printed first unless NOMESSAGE is specified. If the ERROR =
option is omitted, the program exits on any INTAC error.

If you specify INDEXU0, the record will be retrieved by record number. When you retrieve
by record number, be sure that value is a real number. FIND by record number will transfer
control 1o an ERROR routine {if you use ERROR = lineno) when it finds a deleted record.
The value of the error flag (ERROR%) will be -7.

See Appendix B for information on error handling using the FIND command.

EXAMPLES:

Revised June 1982 11 53 PROCESSING TRANSACTIONS

FIND FILEZ2 INDEX? 8001 ERROR = 20190

This first example will get a record from FILE2 (which in the chapter example is
DEPT.INT) with INDEX1 (DEPT.NO) equal to 9001. Control will transfer to line 20190
if there is an error.

FIND FILE2 INDEX{ NEW.DEPT.NC ERROR = 20190

This second example will get a record from FILE2 with INDEX1 equal to the value in
the DEFINE data item NEW.DEPT.NQ. This variable could alsc be a BASIC variable
or a data item in one of the accessed files. When an error condition is detected,
processing will return o line 20190.

FINDNEXT FILEn INDEXn [value] [ERROR = lineno.]

The FINDNEXT statement gets the next record from INTAC FILEn using INDEXn.
FINDNEXT must be preceded by a FIND for the same file using the same INDEXn.
FINDNEXT cannot be used for INDEXO{record number}. The line number should be a line
in the same BEGIN; END,.or DETAIL section or in the CODE section. If an error occurs,
control. istransferred to the line number specified. An error message is printed first unless
NOMESSAGE is specified. If the ERROR = option is omitted, the program exits on any
error. Sl L

EXAMPLE: FINDNEXT FILE{ INDEX3 £RROR = 23990

POSITION x5y

For VT100 compatible terminals, use the POSITION statement io position the cursor to the
specified line y and column x. Use the TERMINAL VT100 in the OPTIONS section. On the
VT100 termnal, there are 24 lines and 80 colummns.

EXAMPLE: posiTiOn 3:7

This example will position the cursor to line seven (7) and horizontal column three {3}
on the line. It is usuaily easy fo estimaie the horizontal colurmn number.

PROMPT item {"custorn message for prompt”] [option]

The PROMPT statement is used when you wish to prompt for input data, The shoriest form
of the statement is: PROWMPT item

Item may be an INTAC data ifem name or an itemname from the DEFINE section. Item
may be followed by "custom message for prompt " which is your own prompt message to be
used in place of the itemname at the time of execution of the program.

Revised June 1982 1 54 PROCESSING TRANSACTIONS

PROMPT OPTIONS:

The following options may be added to the PROMPT command. They may be given in any
order and should be separated from each other by a space.

CLEAR LINE/SCREEN/ALL
DEFAULT. "value"/NODEFAULT
HELP "text"

POSITION x;y
REVERSE/UNDERSCORE
VALIDATE/STORE/NOSTORE

These opﬁoﬁs are described in detail below in alphabetical order.

CLEAR LINE
CLEAR SCREEN
CLEAR ALL

For a VT].OO compa‘mble terminal, you ‘may use this _option to clear the entire
. screen o clear from the cursor to the end of the line or screen before prompiing,
Use TERMINAL VT100 m the OPTIONS sect1on

DEFAULT "value"
NODEFAULT

Specifies a default value to be used in place of any defanlt listed in the file
definition. NODEFAULT suppresses use of file default value and forces the user io
enier a value. If DEFAULT is specified or the file default is used, the defanlt value
will be displayed in the prompt. If you omit this option, the file definition default
value (if any) remains in force.

HELP "text" o : .

Specifies a help message to be used when help is requested in response to prompt
message by entering 7 or HELP.

POSITION x;vy

For VT100 compatible terminals, this option positions the prompt message at the
VT100 screen position column x, line y (e.g. POSITION 1;5 means put the cursor in
position 1 and line 5 of the VT100 terminal screen). You may abbreviate the
keyword POSITION to POS. Use TERMINAL VTI100 in the OPTIONS section.

REVERSE
UNDERSCORE

For VT100 compatible terminals, this option causes the space for the prompt answer
to be displayed in reverse video or as an underscore. This special screen formatting

Revised June 1982 1 55 PROCESSING TRANSACTIONS
1 -

instruction is available only when you have given the TERMINAL VT100 option.

VALIDATE
STORE
NOSTORE

This option indicates whether or not you want INTAC 1o validate and store the
answer automatically after prompting. Validation is done using the edit parameters
in the file definition for this item. VALIDATE validates and stores the answer
temporarily in the item. STORE stores the answer without validating. NOSTORE
indicates that the answer will be neither validated nor stored. Use the STORE and
NOSTORE options when you want to specify your own validation routines. If you
use NOSTORE, you will normally be doing your own testing and validating.

If you omit these options, the default depends upon your specification in the
OPTIONS section of the TR definition file.

PROMPT EXAMPLES:

PROMPT VENDOR.NCO *Vendor Numbepr® VALIDATE

In thzs example the INTAC item VENDOR.NO will be prompted for with the message
"Vendor Number?". If there is a default value in the file the message will be "Vendor
Nurmber “<default>7". The’ value entered will be validated using the MINIMUM,
MAXIMUM, TABLE, or EXTERNAL FILE specified in the file definition for this
item. If the entered value is not valid, the prompt will be repeated. If it is valid, the
entered value will be stored in the item.

PROMPT VENDOR.NO PQOS 1;% CLEAR SCREEN UNDERSCODRE NOSTORE

In this example the INTAC item VENDOR.NO is prompted for with the message
"VENDOR.NO" A file default would appear as "VENDOR.NQ <default™>7". The
screen is cleared before the prompt message is printed. The prompt message will begin
at line 5, column 1 on the screen. The space for the answer will be underlined. The
entered value wili not be validated or stored. The PROMPT options POS, CLEAR
SCREEN, and UNDERSCORE in this example will be ignored if the terminal in the
OPTION section is ASCIL

SHOW elementl element2 ... elementn [+]

The SHOW statement is used to specify the data elements to display. The elements may be
INTAC data items, DEFINED items, BASIC variables or a text message enclosed in quotes.
The SHOW statement may also specify a print position across the screen or page and a
format. When using video effects for VT100 terminals, you must specify print position in
every SHOW statement.

If a SHOW statement ends with a plus sign (+), the print line is to be continued on another
SHOW statement.

For file definitions in which no special video effects are used, each element in the SHOW
statement may take the form:

Revised June 1982 1 56 PROCESSING TRANSACTIONS

itemnamel ;positionnl], format]
*text message®[:positionn]], format]

For file definitions using video effects and specifying TERMINAL VT100 in the QPTIONS
section, each clement in the SHOW statement can take the forim:

itemname[:positionn;zi[, format}
"text message [:positicnn;z}{,format]

where

itemname any INTAC data item name, DEFINE data itern name, or BASIC
variable or constant

"text message® ANY text message
{riohvideo)
positionn For hardcopy terminals, a specific print position on the line. positionn
- -+ = may be a number (from 1 to the maximum width of your terminal) or
an expression that can be evaluated at execution time. If a position is
omitied, the item will print in the next available print position. If the

VT100 format is being used, refer to the special position statement
{below)} for cursor movement.

(VT100 format) .
positionn;z positionn;z is a specific print position on the screen. positionn is a
number from 1 to the maximum width of your terminal-— usually 30
- or.132) indicating the character position across.the screen. z is a
_number from 1 to 24 indicating the line on the screen. The print
position is required if the VT100 option is specified in the OPTIONS
section,

format xx.y is an INTAC print format. If it is omitted, the format is taken
from the item definition. If the position is omitied and the format is
included, the format must be preceded by a comma.

xx is the width of printed field including commas, decimal point and
sign. y is the number of decimal places.

SHOW EXAMPLES:

SHOW VENDOR.NO VENDOR . NAME TOT.AMT

In this first example, each of the data items will be printed in the next available print
position. All of the elements except for TOT.AMT are data jtems in the INTAC file
and INTAC will print them from the file. TOT.AMT was defined as a new data item
and used in the LOGIC section to hold the results of a calculation. The calculated
results will print.

SHOW PURCHASE .ORD.NO:1 DESCRIPTION: 40 ASSEY.TYPE:33.2.0 +
SHOW VENDOR.NO:40 LIFE:48,10.2

In the above second example, the first data element is to be printed in position 1. The
second element (DESCRIPTION) will be printed in position 10 on the line using its

Revised June 1982 1 57 PROCESSING TRANSACTIONS

INTAC file default print format. The third element. ASSET.TYPE, will be printed in
position 33 on the line, using a format of 2.0. The two fields defined in the second
SHOW statement will print on the same line in print positions 40 and 48, respectively.

SHOW "Vengor #" F1 VENDOR.NO:12 * not on VENDOR.INT®

This third example will print the text beginning at print position one and the INTAC
item F1.VENDOR.NO beginning at position twelve followed in the next available print
position by the text.

STORE

This statement indicates that you do not want INTAC to validate the answer automatically
after prompting. Validation is usually done using the edit parameters in the file definition
for this item. STORE holds the answer without validating it. If you use STORE, you will
normally include statements to do your own validating. When you omit VALIDATE or
STORE statements, the default depends upon your specification in the OPTIONS section of
the TR definition file..

EXAMPLE: . PROMPT F1.VENDOR .NO "Vendor number® STORE

TEST operator "expression” THEN lineno

The TEST statement tests the answer to the last PROMPT statement {"expression™) and goes
to the specified line number if the test is true. Operator must be a comparison operator {2
< >=, <K=, = <>, ==) and the answer must be a string-valued expression. The answer in
string form' is'compared with this expression. The line number should be 2 line in the same
BEGIN, END, or DETAIL section or in the CODE section.

EXAMPLE:

PROMPT ACTION "ENTER UPDATE,DELETE,STOP®
TEST = "STOP" THEN 32000
TEST "UPDATE" THEN 3800
TEST "DELETE® THEN 4000

In this example, the BASIC variable ACTION receives a value through prompting. That
value is then compared to "STOP", "UPDATE", and "DELETE".

UPDATE FILEn [ERROR=lineno] [NOMESSAGE]

The UPDATE statement will change the current record on INTAC FILEn. If an error
occurs, control is transferred to the line number specified. The line number should be a line
in the same BEGIN, END, or DETAIL section or in the CODE section. An error message is
printed first unless NOMESSAGE is specified. If the ERROR = option is omitted, the
program eXits on any error. UPDATI should be used afier UPDATE if an index value has
changed. .

EXAMPLE: UPDATE FILEZ ERROR = 32000

Revised June 1982 1 58 PROCESSING TRANSACTIONS
1 -

UPDATI FILEn INDEXn eld.value [ERROR =linenol [NOMESSAGE]

The UPDATI statement changes the specified index for the current data record from the old
value given to the new value formed from the current value of the items in the record, The
line number should be a line in the same BEGIN, END, or DETAIL section or in the CODE
section. An error message is printed first uniess NOMESSAGE is specified.

This statement is used after FIND and UPDATE and BASIC assign statements if an index
item changes. Note that if an item is used in multipie indexes, then UPDATI staternents
must be given for each index.

EXAMPLE: UPDATI FILE1 INDEX3 VALUE ERROR = 238990

VALIDATE

The VALIDATE statement validates and stores the answer given to the last prompt.
Validation is done using the edit parameters in the file definition for this item. This
statement is normally used when the NOSTORE option is specified in a PROMPT statement.
It is used in conjunction with specification of VALIDATE OFF in the OPTIONS section.

EXAMPLE: VALIDATE .

Revised June 1982 1 59 PROCESSING TRANSACTIONS
il -

SKELETON B CODE SECTION

The CODE section is for user subroutines and functions. Lines 20000 through 23999 are
reserved for the CODE section. The line numbers specified in the CODE section {unlike the
line numbers in other sections) are not changed by the transaction program generator.

The CODE section may contain any BASIC or INTAC TR LOGIC statements and variables,
except the PROMPT statement.

The CODE section may only be referenced from the LOGIC section. Control is transferred
to the CODE section from the LOGIC SECTION in one of the following ways:

* function call in a BASIC statement
* GOTO or GOSUB in a BASIC statement
® ERROR = line number in a LOGIC statement.

If the CODE section is used, it must be the last section in the report definition file. See
Appendix- B for error-handling information.

TRANSACTION PROGRAM GENERATION

Once you have created a definition file, you must iranslale the definition into a BASIC
program. Then you may run the program whenever you need to update the file.

TR COMMAND

The INTAC TR command is used 10 generate a BASIC PLUS or VAX BASIC transaction
program from a definition file. Here is an example of the dialogne when the TR command
is given.

COMMAND? TR

GENERATE AN INTAC TRANSACTION PROGRAM
DEFINITICN FILE? TRQSIM. DEF

GENERATE A QUESTION LDOP

258 LINES, FILE: USR:TROSIM.BAS
BEGINNING COMPILATION DF SEGMENT: USR:TRQSIM(BP)

COMPILE CONTINUING
END DF COMPILE GENERATED TRANSACTION PROGRAM

COMMAND?

The TR command asks the following question:

DEFINITION FILE? filename/options

Revised June 1982 1 60 PROCESSING TRANSACTIONS
1 -

Enter the name of your transaction definition file, foliowed by the options selected. An
extension of .DEF is assumed if none is given. INTAC will create a file called
progname.BAC (or progname.TSK) which is the generated transaction program on a RSTE/S
system or progname EXE which is generated on the VAX (see SEGMENT statement in
OPTIONS section). On a RSTE/S system, iwo separate programs will be created if
SKELETON B is being used. In response to vour command, RUN filenamel, INTAC runs
both programs in the order they are specified in the SEGMENT statement {e.g. SEGMENT
BATCHI BATCH2 would generate two programs which will be tun in the order BATCHI,
BATCH2). For more information, see detailed explanation of OPTIONS keywords,
SKELETON B.

If a generated program with the same name already exists, you will be asked if vou want to
delete it. If your response is NO, the TR will not be generated.

Occasionally, the TR process will display a warning message {preceded by a percent sign)

generated by the BASIC compiller. For example, a common rnessage 15 "% inconsistent
function usapge at lineno.® These warning messages do not interfere with the TR process

and may be ignored. If a serious problem exists in the TR, an error message will be
displaved and the process will not proceed.

OPTIONS

Any logical combination of options may be specified. Oplions are separated {rom the
filename and from each other by a slash. If no options are specified the default is to
compile the program in BASIC PLUS or VAX BASIC and not run the program.

The available options are:

RUN run the generated program(s) immediately after they are generated and
compiled .

NOK do not kill source code (progname.BAS) (normally the .BAS file is deleied
when the generation is completed.)

BP2 on the PDP 11’s, compile in BASIC-PLUS-2 (creates progname.TSK rather
than progname.BAC) (default is BASIC-PLUS)

NCO do not compile the generated source code

NOS do not append skeleton code (for debugging purposes)

KB: output generated code to terminal (should use /NOS ioo for debugging
purposes)

DIS display the commands used to compiie the program

EXAMPLE: DEFINITION FILE? SALES/BP2/NOK

Revised June 1982 61 PROCESSING TRANSACTIONS
11 -

The above example will translate the file SALES.DEF into a BASIC program and then
compite in BASIC-PLUS-2 creating SALES.TSK. It wil! also preserve the BASIC code in a
file called SALES.BAS.

SUBSEQUENT PROCESSING

Once the BASIC program has been generated from the transaction definition file you may
run the program by entering the command: RUN programname

Prdgramname is the name specified on the SEGMENT statement in the OPTIONS section.
For a sort and break program, this is the name of the sort segment. If no segment name was
specified for a question loop program, programname is the same as the name of the

definition file.
EXAMPLE:
RUN TRQSIM _
TRANSACTION PROGRAM TRGSIM
Enter purchase order number 7 10083
Vendor number? 10

Order entered
Enter purchase crder number ?

Revised June 1982 11 62 PROCESSING TRANSACTIONS

REFERENCE WORKSHEET FOR Q SKELETON TR

Use the following worksheet as a reference as vou write your own Q TR programs.

14 b ok s ke ok T ok ok ke ok ok e ok ke ke ok oK ok o oK ok ok 3k o o ok R KR ok K R R SRR KK SRR R K K R SO K K ok oK % K ok ok o ok o
12 ITR SKELETDON @ FILE NAME:

13 {PURPRSE of TR:

14 YAUTHOR

15 fDATE: :

16 F ok 3k sk sk s ok ok ok o ok e ok R R R O 0K ok Sk ok S ok K o KRR Tk S SRR ok R S R R R KR K o R K R R Kk ok
17 t

100 OPTIGNS

110 SKELETON Q

120 SEGMENT segmentname foptional}

130 TERMINAL ASCII or VTi00 [default ASCII]
140 VALIDATE ON or GFF {default ONJ
150 CHAIN fitename (opticnal)

200 DEFINE

itemname type [xx.y}[DEFAULT “deflitvalue’]

3020 FILES

310 FILE1 filename
FILEZ filename foptional)
FILE3 f1ilename (optional)
EXTERNAL
Revised June 1982 PROCESSING TRANSACTIONS

11 - 63

3500

53000
6000

LOGIC

BEGIN PROGRAM
Q10

In the LOGIC section, use any of the following statements in a question structure.

ADD FILEn [ERROR @n] INOMESSAGE]
{ERROR = 1ineno]
CLEAR [aLL]

i

FLINE]
[FSCREEN]
DELETE FILEn [ERRGR = Qn} ENOMESSAGE]
[ERRGR = 1ineno]
EXIT
FIND FILEn INDEXn value [ERROR = {nl [NOMESSAGE]
[ERROR = lineno]

FINDNEXT:FILEn: INDEXn [value] [ERROR = Qn]
[ERROR = 1ineno]

GOTC [qn]
[tineno]

POSITICN x;vy

PROMPT item ["custom message for prompt"] foption]
--whereoption may be aty of the following:

BACKSLASH Gn
CLEAR LINE/SCREEN/ALL
DEFAULT “value"/NODEFAULT
EXIT "wvalue™/NOEXIT

MELP "text"

POSITION X:v.-.
REVERSE/UNDERSCORE
VALIDATE/STORE/NOSTORE

SHOW element! element2 ... elementn [+1
whereeach element can take the form

itemname:position, format
‘text message’ :position,format

STORE .

TEST operator *expression' THEN [Qn]
[1ineno]

UPDATE FILEnN [ERRDR“QH] [NDMESSAGE]

[ERROR=11ineno]

UPDATI FILEm INDEXn old.value [ERROR =Qn] ENDMESSAGE]
[ERROR=1 ineno}

VALIGATE

19000

20000 CODE

END PRCGRAM

20100 _t**********ﬁ***************’k*i’-************************************

20140 1 #x=

USER SUBROUTINES

DO 20) o ook gk oo sk ok sk o ok ok sk ook ook ok sk ok ok ok ok K R S M Sk Sk M 3ok o o R ok K Sk R R oK R 3K ok o oK S sk ok R R K ko o

Revised June 1982

11 - 64

PROCESSING TRANSACTIONS

REFERENCE WORKSHEET FOR B SKELETON TR

Use the following worksheet as a reference as you write your own TR programs.

4] ook ok Ok ook ok R ok sk ok ok s ok T ok ok ok g ok ok o ok R ok e o ko o ok ok ok oK R 3 OR SR o oK ok K K R K ok ok ok Rk K K o R K K R R

12 !'TR SKELETON B FILE NAME:
13 'PURPGSE QF TR:

14 'AUTHOR:
15 IDATE:
16 !***
17 !
10C OPTICNS
1o SKELETON B
. 120 SEGMENT segmentnamei segmentnamel
130 TERMINAL ASCII or VTi00 {default ASCII)
140 VALIDATE ON or OFF {default ON}
150 CHAIN filename (optional)
200 DE

FINE
Include newdata item namesin the formeat

itemname type [xx.y] [PROMPT "prompt msg"] IDEFAULT “default value"]

300 FILES

310 FILE1 fitename
FILE2 foptionall
FILES {optional |
EXTERNAL

340 SELECT
350 GET 1

INCLUDE ’

EXCLUDE

GET2 INDEXn itemm
GET3 INDEXn itemn
SORT item(s)

BREAK item(s)

Revised June 1982 11 65 PROCESSING TRANSACTIONS

3500

LOGIC

Use any of the foliowing statements in a SORT and BREAK structure as indicated

below:;

ADD FILEn [ERROR = Tineno] {[NOMESSAGE]
CLEAR [ALL]

[LINE]
[SCREEN]

DELFTE FILEn [ERROR = lineno] [NOMESSAGE]

FIND FILEn INDEXn value [ERROR = lineno] [NOMESSAGE }
FINDNEXT FILEn INDEXn Ivaiue] [ERROR = linenocl [NOMESSAGE]
POSITION x;y

PROMPT item {['"custom message for prompt"] [option]

whereoption may be any of the following:

CLEAR LINE/SCREEN/ALL
DEFAULT “"vatue"/NODEFAULT
HELP "text"

POSITION x;v
REVERSE/UNDERSCORE
VALIDATE/STORE/NOSTORE

SHOW &l@ment1 element2 ... elementn [+]

whereeach element can take the form

itemname:pesition, format
"raxt o message":position, format

STORE R L

TEST operator ¥éxpression” THEN [1inenol

UPDATE FILENn [ERROR=1inenc] [NOMESSAGE]

UPDATI FILEn INDEXn old.vailus [ERRDOR =tinenco] [NOMESSAGE]

VALIDATE
5000 BEGIN PROGRAM
8000 BEGIN ITEM1
7000 BEGIN ITEM2
12000 DETATIL PROCESSING
17000 END ITEM2
18000 END ITEM?
19C0C END PROGRAM
20000 CODE
DA O] s sk o o oo e ko o o KRR R SR R K o 3 R R R R KR R o R R R SR KR SR KRR O
20110 tx** UUSER SUBROUTINES
DOAZO § ek ko R o o KR R R o o K o KR S K KR R R R R K kS
) '
Revised June 1982 PROCESSING TRANSACTIONS

11 - 66

