
FUTURE TRENDS IN DATA 

BASE SYSTEMS 

by 

Michael Stonebraker 

Memorandum No. UCB/ERL M88n 

15 January 1988 

ELECTRONICS RESEARCH LABORATORY 
College of Engineering 
University of California, Berkeley, CA 94720 



FUTURE TRENDS IN DATA 

BASE SYSTEMS 

by 

Michael S tonebraker 

Memorandum No. UCBIERL M8817 

15 January 1988 

ELECTRONICS RESEARCH LABORATORY 

College of Engineering 
University of California, Berkeley 

94720 



This work was supported by the U.S. Army Research Office Contract DAAL03-87-K- 
0083. 



FUTURE TRENDS IN DATA BASE SYSTEMS 

Michael Stonebraker 

Department of  Electrical Engineering and Computer Sciences 
University of California Berkeley, C A  94720 

Abstract  

This paper discusses the likely evolution of commercial data managers over the next 
several years. Topics to be covered include: 

Why SQL is becoming an  intergalactic standard. 
Who will benefit from SQL standardization. 
Why the SQL standard has no chance of lasting. 
Why all data base systems will be distributed soon. 
What new technologies are likely to be commercialized 
Why vendor independence may be achievable. 

The objective of this paper is to present the author's vision of the future. As with all 
papers of this sort, this vision is likely to be controversial. Moreover, the reader will detect 
many of the author's biases and is advised to react with the appropriate discounting. 

1. INTRODUCTION 
This paper is written from the perspective of a researcher who has had some opportun- 

ities to observe the commercial marketplace over the last several years. From this expo- 
sure I would like to comment on some of the current trends in this marketplace. In addi- 
tion, I would also like to speculate on some of the likely trends in the marketplace over the 
next several years. 

Due to the position of IBM, the importance of SQL in this evolution cannot be 
discounted. Others have pointed out the numerous serious flaws in SQL [DATE851. Conse- 
quently, this paper will not discuss the technical problems in the language; rather, it will 
focus on the impact of SQL standardization. It will briefly discuss why the standard came 
about. However, more importantly, i t  will make a case that very few organizations will 
benefit directly from the standardization effort. Consequently, considerable effort is being 
spent to construct a standard, and there will be relatively little ultimate gain from this 
exercise. 

Then, the paper will turn to the current collection of prototype data base systems that  
are being constructed in research labs around the world. In particular, the characteristics 
that  make these systems noticeably better than current commercial systems are identified. 
Unless some dramatic slowdown in technology transfer takes place, these ideas will quickly 
move from prototypes into commercial systems. The paper then argues that this movement 
of new features will spell the doom of a standardized version of SQL. 

The paper then considers important technological trends. The most significant one 
appears to be distributed data bases, and the paper turns to this phenomenon and explains 
why all commercial systems are likely to become distributed data managers. It also com- 
ments on what important problems remain to be solved to facilitate "industrial s t r eng th  



distributed data base systems 

In addition, I will comment on other technological and research trends which are 
likely to be significant in future data base manager.: These comments are in the areas of 
data base machines, high transaction rate systems maln memory data base systems, and 
new storage devices. 

Lastly, the paper will address a very serious problem which most users of data base 
systems struggle with. Namely, they are constrained to coping with "the sins of the past," 
namely a large amount of application code written in COBOL or other third generation 
languages which accesses previous generation data managers I such as IMS and other "tired 
technology7' systems as well a s  "home-brew" data managers) This accumulated baggage 
from the past is usually an impediment to taking advantage of future hardware and 
software possibilities. Consequently, the paper closes with a step-by-step procedure by 
which any user can migrate over a period of years into an environment where he is not con- 
strained to the iron of any particular hardware vendor. At the end of this paper, I will 
revisit the issue of standardization in light of the proposed migration path and indicate 
what sort of standardization activity might assist this process. 

2. WHY SQL 
About 1984 the tom-toms started beating very loudly for SQL. The message was con- 

veyed first by hardware vendors (iron mongers) in search of a data manager. In brief the 
message said "IBM will make a big deal of DB 2 and SQL. I want to be compatible with 
IBM." A similar message was conveyed by so-called value-added resellers WARS) who said 
"I want application code that I write to run both on your data manager and on DB 2". Dis- 
cussions with VARS or iron mongers concerning exactly what they meant by SQL and 
exactly what they wanted in terms of compatibility usually evoked an answer of "I don't 
know". Hence the early tom-toms were being beaten by people who were not exactly sure 
of what they wanted. 

Later, the tom-tom pounding was picked up by representatives of large users of data 
base services. Usually, the message they delivered was: 

"I need to run my applications on IBM iron and on the iron of vendors X, Y, and Z. 
I plan to move to DB 2 as my IBM system and I want to ensure that the DB 2 
applications I write can be moved to the iron of these other vendors. SQL is the 
mechanism that  will allow me to achieve this objective." 

The vendors of commercial data managers are not stupid. They listen to the tom-toms and 
react appropriately. Consequently, all vendors of data base systems will support SQL soon, 
if they have not done so already. Moreover, all other query languages re.g. QUEL, Data- 
trieve, etc.), regardless of their intellectual appeal, will become "sunset" interfaces, i.e. they 
are likely to slowly fade away and become a thing of the past. I wish to make two other 
points in a bit more detail. 

First, there is less interest in standardized SQL outside the USA. In fact, offshore 
DBMS users seem much more inclined to use fourth generation languages and thereby are 
less sensitive to the SQL issue. This point is further discussed in the next section. Also, 
users of homogeneous iron (i.e. organizations who exclusively use the iron of one particular 
vendor) tend not to be interested in SQL (unless they have chosen IBM as their supplier). 
For example, organizations exclusively using VAXIVMS tend not to be very concerned with 
SQL. Consequently, interest in SQL varies widely, both geographically and organization- 
ally. 

A second point is that  data base system vendors were immediately divided into two 
camps; those that already had SQL and those that  had to spend a large number of man- 



years to retrofit SQL into their systems. Clearly, this presented a significant advantage to 
vendors in the first category, and helped reshape the competitive positions of various DBMS 
suppliers. In addition, one interesting measure of vendor responsiveness is the date of SQL 
introduction by vendors in category 2. Responsive vendors have SQL now, others promise 
i t  sometime in the future. 

3. WHO WILL BENEFIT FROM STANDARD SQL 

We turn first to a definition of three possible levels of SQL standardization that  might 
make sense and indicate the level a t  which ANSI activity has taken place. Then, we con- 
sider the classes of users who might benefit from the current ANSI standardization. 

3.1. Levels of Standardization 

There are three possible ways of interpreting SQL: 

1) SQL, the data definition language 
2) SQL, the query language 
3) SQL, the embedding in a host language 

Using the first interpretation, one would standardize CREATE, DROP, ALTER and any 
other commands that involve storage management and schema creation or modification. 
This portion of SQL is used by data base administrators (DBAs) and standardization of SQL 
in this area might benefit this class of persons. 

Using the second interpretation, one would standardize SQL, the query language. 
This would entail adding SELECT, UPDATE, INSERT, and DELETE to the list of standard 
commands. In this way an  end user of standard SQL could expect his SQL commands to 
run on any DBMS supporting the standard. 

The third interpretation would standardize SQL as i t  is executed from a host 
language. This interface includes the DECLARE CURSOR, OPEN CURSOR, FETCH, 
UPDATE, and CLOSE CURSOR commands. In this way, a programmer could expect his 
host language program to work across multiple DBMSs that adhered to the standard. 

Loosely speaking we can call these three levels: 

level 1: the DBA level 
level 2: the end user level 
level 3: the programmer level 

It should be clearly noted that  the ongoing ANSI standardization effort is a t  level 3. 
However, vendors often mean something else by standard SQL. The following table indi- 
cates what various vendors mean by standard SQL: 

level 1: nobody 
level 2: Informix, Sybase, Unify 
level 3: ANSI, DB 2, INGRES, ORACLE 

Consequently, the purchaser of a data base system should carefully inquire as to what 
"SQL support" really means when he is contemplating an  SQL-based data manager. 

The last point to note is that  level 3 ANSI SQL, DB 2 and SQLiDS are al l  slightly 
different versions of SQL. Hence, the concept "standard SQL" must be carefully tempered 
to reflect the fact that all level 3 SQL systems are different in a t  least minor ways. This 
corresponds closely to the current UNIX marketplace where the UNIXes offered by various 
vendors also differ in minor ways. 



3.2. Who Will Benefit From SQL Standardization 

3.2.1. Introduction 

As mentioned earlier, ANSI has standardized a level 3 SQL interface. Such standard- 
ization might be of benefit to: 

data base administrators 
end users 
application programmers 
vendors of 4 th generation languages 
vendors of distributed data base systems 

In the next several subsections we indicate which of these groups are likely to benefit from 
SQL standardization. 

3.2.2. Data Base Administrators 
Clearly, a level 3 standard includes a level 1 standard as a subset. Consequently, a 

DBA who garners experience with schema definition on one data manager will be able to 
leverage this experience when designing data bases for a second DBMS. Hence, a DBA 
should benefit from the ANSI standardization effort. However, there are several caveats 
that must be noted. 

First, most relational DBMSs have nearly the same collection of level 1 capabilities. 
Hence, except for minor syntactic variations, level 1 is already effectively standard. and 
there is no need for ANSI machinery in this area. 

Second, differences exist in the storage of data dictionary information (the system 
catalogs). A DBA stores his schema in the dictionary, and then he usually wishes to query 
the system catalogs to retrieve schema information. The current ANSI standard does not 
address this aspect, and each standard SQL system will have a different representation for 
the dictionary. Furthermore, differences exist in the exact form of indexes and the view 
support facilities, which may influence the details of data base design. Lastly, some ven- 
dors offer keys and so-called referential integrity [DATE811 while others do not. Similarly, 
some vendors support default values while others do not. The current SQL standard does 
not address these differences, and they limit the leverage a DBA can expect. It should be 
noted that ANSI is moving to correct some of these issues, which will be addressed by 
addendum 1 to the SQL standard expected during 1988. 

In summary, all current relational systems are standard in that they allow a user to 
construct and index relations consisting of named columns, usually with nearly the same 
syntax. Consequently, data base design methodologies appropriate to one system are 
nearly guaranteed to be appropriate for other systems. At this level, current relational sys- 
tems are already standard, and nothing additional need be done. 

There are also differences between the various systems in the areas of types of indices, 
storage of system catalogs, view support, keys, default values and referential integrity. 
These aspects are not yet addressed by the ANSI standardization effort. As a result, I don't 
perceive that DBAs will benefit greatly from the ANSI effort, relative to what they will 
automatically gain just by using relational systems. 

3.2.3. End Users 

Since the ANSI standardization effort includes a level 2 SQL facility as a subset, one 
could claim that end users will benefit because they can learn the SQL for one data base 
system and then be able to transfer that knowledge to other standard data base systems. 
However, this claim is seriously flawed. 



First, end users are not going to use SQL. Human factors studies and early usage of 
relational systems has shown clearly that end users will use customized interfaces 
appropriate to their application, usually of the "fill in the form" variety [ROWE85]. Such 
customized interfaces will be written by programmers. Consequently, end users will not 
benefit from SQL standardization because they won't use the language. 

Even if end users did use SQL, they are still subject to widely divergent presentation 
services. For example EASESQL from ORACLE is very different from IBMs QMF, yet 
both allow a human to interactively construct and execute SQL commands. These 
differences will limit the leverage obtainable. 

3.2.4. Programmers  

One could argue that programmers will benefit from standardization of the level 3 
SQL interface because the programs that they write for one SQL system will run on 
another standard DBMS. Moreover, once they learn the define-open-fetch cursor paradigm 
for one system, they will immediately be able to write programs for another DBMS. This 
argument is very seriously flawed. 

First, this argument only applies to vendors who have chosen to support the level 3 
standard. It clearly does not apply to Sybase, Informix, Unify and any other vendor who 
has chosen to implement the standard only a t  level 2. 

Second, and perhaps of supreme importance, programmers are not going to use the 
level 3 interface. Most DBMS vendors offer so-called fourth generation languages (4GLs). 
4GL products include Natural, Ramis, Adds-online. Ideal, INGRESiABF, and SQL-forms. 
In general these products allow a programmer to: 

define screens 
define operations to be executed as a result of user input 

into screens 
interactively call subsystems such as the report writer 

Application programmers familiar both with 4GL products and with the level 3 style appli- 
cation programming interface report that there is a factor of 3-10 in leverage from using a 
4GL. Consequently, a client of DBMS technology is generally well advised to use a 4GL 
and to forsake the level 3 programming interface. This advice is nearly universally true in 
business data processing applications. In engineering applications, on the other hand, the 
advantage may be somewhat less. 

In summary, application programmers are going to use 4GLs because of their software 
development leverage, and not the level 3 SQL interface. Moreover, every 4GL is totally 
unique, and there is no standardization in sight. The only company who could drive a 4GL 
standardization activity would be IBM. However, most data base professionals do not 
believe that IBM has a 4GL (not withstanding IBMs marketing of CSF a s  a 4GL). Conse- 
quently, i t  will be several years before there is any possible standardization in this area. 

On the other hand, suppose a user decides not to use a 4GL because he is concerned 
about portability or alleged poor performance in older products. His applications still 
require screen definition facilities, report specifications, and graph specifications. These 
facilities are unique to each vendor and not addressed in any way in the SQL standard. To 
move from one standard DBMS to another, one must relearn the facilities in each of these 
areas. As a result, only perhaps 10-20 percent of the total specification system is covered 
by ANSI SQL, and the remainder must be relearned for each system. To avoid this retrain- 
ing, a user must either write and port his own facilities in these areas, an  obviously dis- 
tasteful strategy, or he must depend on some specific vendor to provide a standard collec- 
tion of facilities on all platforms important to him. SQL is clearly of no assistance in this 
dimension. 



3.2.5. 4GL Vendors 

One could argue that  vendors of 4GL products will benefit from standardization 
because they will be able to easily move their products onto a variety of different data 
managers. Although this argument seems plausible on the surface, i t  is also seriously 
flawed. 

First, as noted before there is no standard for information in the system catalogs. All 
4GLs must read and write information in the dictionary, and this will be code unique to 
each target DBMS. Second, SQL has two different syntaxes. one for commands whose 
structure is known a t  compile time and one for commands whose scope is not known until 
run time. There is no standard for this second class of commands, so-called dynamic SQL. 
Hence, a 4GL vendor must write custom code for each target DBMS in this area. Third, I 
have asked a variety of 4GL users which target DBMSs are of greatest interest to them. 
They typically respond with the following three priority requests: 

1) IMS 
2) DB 2 
3) some "home-brew" data manager 

To satisfy these requests, a 4GL vendor must develop complete custom interfaces for sys- 
tems 1 and 3. Only the interface for system 2 would be assisted by standardization. There- 
fore, any 4GL vendor would be forced to develop 3 custom interfaces for the above systems 
without standardization. With standardization he still has 3 interfaces to construct. 
Hence, there is no particular leverage, and a 4GL vendor is probably neutral to the pres- 
ence of an SQL standard. 

If the 4GL vendor is also a DBMS vendor, then he is forced to spend many man-years 
of development converting his DBMS to the ANSI standard. Consequently, all 4GL!DBI'vIS 
vendors will be substantially inconvenienced by the standard. To them, the net effect of 
the standard will clearly be negative. 

3.2.6. Vendors of Heterogeneous Distributed DBMSs 

One could argue that distributed data base systems should have so-called "open archi- 
tectures" and be able to manage data that  is stored in local data managers written by vari- 
ous vendors. Hence, vendors of open architecture products might benefit from SQL stan- 
dardization, since foreign local data managers will be easier to interface to. 

Basically, a distributed DBMS vendor sees the world in exactly the same way as a 
vendor of a 4GL. Hence, the above section applies exactly to this class of user. 

3.2.7. Summary 

We can summarize the possible groups who might benefit from standardization of SQL 
as follows: 

DBAs This group will benefit from the fact that 
all relational systems use essentially the 
same data definition language, regardless 
of the query language supported. 

end users This group will not use SQL and will be 
unaffected by standardization. 

programmers This group will primarily use 4GLs and 
consequently will be unaffected by 
standardization. 



4GL vendors This group should be neutral to standard- 
ization, unless they also market a DBMS. 
If so, standardization gives them a great 
deal more work to do. 

Distributed They are in the same position as 4GL 
DBMS vendors vendors. 

One draws the unmistakable conclusion that  the large amount of effort that  is being 
poured into SQL standardization will n o t  pay handsome dividends. However. the situation 
is much worse than has been portrayed so far because standard SQL, as currently defined. 
stands no chance of lasting more than a few years. The next section shows why SQL will 
not "stick". 

4. WHY STANDARD SQL IS DOOMED 

4.1. Introduction 

All relational DBMSs were designed to solve the needs of business data processing 
applications. Specifically, they were designed to rectify the disadvantages of earlier 
hierarchical and network data base systems. Most DBMS professionals agree that they 
have succeeded a t  this task admirably. However, equally well understood are the needs of 
other users of DBMS technology in the areas of spatial data, CAD data, documents, etc. 
There is a renaissance of research activity building "next generation prototypes" which 
attempt to rectify the drawbacks of current relational systems. Consequently, one could say 
that there are three generations of systems: 

generation 1: Hierarchical and Network Systems 
generation 2: Relational Systems 
generation 3: Post-relational Systems 

The following research prototypes are all examples of prototype post-relational sys- 
tems: 

EXODUS [CARE861 
GEM [TSUR841 
IRIS [FISH871 
NF2 [DADA861 
ORION [BANE871 
POSTGRES [STON86al 
STARBURST [LIND871 

Although they are exploiting various ideas, one can make the following observation: 

Essentially all ideas that  are being exploited by the above prototype sys- 
tems can be added to current commercial relational data base systems by 
extending or reworking their capabilities. 

Hence, i t  is obvious that  aggressive vendors will quickly extend their current SQL engines 
with relational versions of the successful capabilities of these prototypes. In this way, ven- 
dors will create systems that  are substantial supersets of SQL. Since each vendor will do 
unique extensions, they will all be incompatible. Moreover, IBM will be the slowest to pro- 
vide extensions to DB 2. 

These extensions will solve problems that are so important to large classes of users 
that  they will gladly use the extended capabilities. In this way, any application that a user 
writes for vendor A's system will not run without substantial maintenance on vendor B's 



system and vica-versa. This will effectively doom standard SQL to irrelevance. 

The rest of this section indicates two areas in which seductive next generation capa- 
bilities are expected. 

4.2. Management of Knowledge Bases 

I wish to discuss knowledge bases first with regard to expert systems and then with 
regard to conventional business data processing. I conclude this subsection with a discus- 
sion of why i t  is essential that  knowledge management become a data base service. 

Expert systems typically use rules to embody the knowledge of an expert, and I will 
use interchangeably the concept of a knowledge base and a rule base. One important appli- 
cation area of expert systems is in surveillance systems. The object to be monitored could 
be a physical object, such as manufacturing line, an  oil refinery, or a stock market. I t  might 
also be an area of real estate, such as a battlefield. In either case, an  expert system is 
desired which watches the state of the object and alerts a human if "abnormal" events 
occur. Such surveillance applications fundamentally involve the data base for the moni- 
tored object. Moreover, abnormal events are typically defined by a rule base, developed by 
consultation with human experts. Hence, such applications require a large data base I the 
monitored object) and a large set of rules (the events to watch for). 

In conventional business data processing applications there is also substantial use for 
a rule base. For example, consider the processing of purchase orders. The following rules 
might well apply in a typical company: 

All POs over $100 must be signed by a manager 
All POs over $1000 must be signed by the president 
All POs for computer equipment must be signed by the 

MIS director 
All POs for consultants must have an analysis of need 

attached 

Similar rule systems control allocation of office furniture (e.g. only vice presidents can have 
wood desks), commission plans for salespersons ce.g, commission is paid only on non 
discounted POs), vacation accrual, etc. 

The possible techniques available to support such composite rule and data base appli- 
cations are: 

1) Put  the rules in an  application program and the data in a 
data base. 

2) Put the rules and the data in an expert system shell. 
3) Put the rules in an expert system shell and the data 

in a data base. 
4 )  Put both the rules and the data in a composite 

data!rule base. 

We now argue that only option 4 makes any long term technical sense. Option 1 is widely 
used by business data processing applications to implement rules systems such as our pur- 
chase order example. The disadvantage of this approach is that  the rules are buried in the 
application program and are thereby difficult to understand and tedious to change as busi- 
ness conditions evolve. Moreover, if a new program is written to interact with the data 
base, i t  must be coded to enforce the rules in a fashion consistent with the previously writ- 
ten application programs. The possibility for error is consequently high. In summary, 
when rules are embedded in an  application program, they are hard to code, hard to change, 
and hard to enforce in a consistent fashion. 

The second alternative is to put both the data and the rules in an  expert system 
environment such as Prolog, OPS5, KEE, ART, or S1. The problem with this approach is 



that these systems, without exception, assume that  facts available to their rule engines are 
resident in main memory. It is simply not practical to put a large data base into Lisp vir- 
tual memory. Even if this were possible, such a data base would have no transaction sup- 
port and would not be sharable by multiple users. In short, expert system shells do not 
include data base support, and option 2 is simply infeasible. 

Option 3 is advocated by the vendors of expert system shells and is termed loose cou- 
pling. In this approach rules are stored in main memory in a Lisp environment which con- 
tains an  inference engine. Whenever necessary, this program will run queries against a 
data base to gather any needed extra information. Hence. rules are stored in a rule 
manager and data in a separate data manager. A layer of "glue" is then used to couple 
these two subsystems together. An example of this architecture is KEEIConnection from 
Intellicorp. 

Unfortunately loose coupling will fail miserably on a wide variety of problems, and a 
simple example will illustrate the situation. Suppose one wanted to monitor a single data 
item in a data base, i.e, whenever the data item changes in the data base, i t  should change 
on the screen of a monitoring human. Many investment banking and brokerage houses are 
building automated trading systems that  are much more sophisticated versions of this 
simplistic example. 

The expert system can run a query to fetch the data item in question. However, it 
will become quickly out of date and must be fetched anew. This repeated querying of the 
data base will needlessly consume resources and will always result in the screen being 
some amount of time out of date. Loose coupling will fail badly in environments where the 
expert system cannot fetch a small, static portion of the data base on which to operate. 
Most problems I can think of fail this "litmus test". 

The fourth alternative is to have a single datarule  system to manage both rules and 
data, i.e. to implement t ight  coupling. Such a system must be active in that  i t  must per- 
form asynchronous operations to enforce the rules. This is in contrast to current commer- 
cial DBMS which are passive in that  they respond to user's requests but have no concept of 
independent action. 

An active system can tag the data item being watched by our simplistic application 
and send a message to an  application program whenever the data item changes. This will 
be an efficient solution to our monitoring example. Such a data manager will automatically 
support sharing of rules, the ability to add and drop rules on the fly, and the ability to 
query the rule set. 

Tight coupling can be achieved in a variety of ways. Extensions to the view definition 
facility can be utilized as  well as extensions to the SQL language directly [STON871. 
Query processing algorithms for the resulting queries have been investigated in [ULLM85, 
IOAN87, ROSE86, BANC861. Other processing algorithms are discussed in [STONai, 
LIND871. 

Without a doubt many of these ideas will lead to commercial implementations, and I 
expect that most will be successful. As a result of successful tight coupling implementa- 
tions, the vendors of current expert system shells will see their inference engine move 
inside a companion data manager. They will be left with a large amount of user interface 
code, so called presentation services. Consequently, they will compete with other vendors of 
4GLs selling environments in which to write application programs for data base systems. 
Unfortunately, most vendors of expert system shells do not realize the above point and can- 
not be expected to make a graceful transition into this future role. 

The bottom line is that  rules and inference will almost certainly move into data base 
systems over the next few years. I t  appears feasible to support this feature by supersetting 
the query language, and this will certainly be the method of choice for SQL vendors. 



4.3. Object Management  

If I hear the phrase "everything is an object" once more, I think I will scream. Peter 
Buneman expressed this frustration most concisely in [BUNE86]: "Object-oriented is a 
semantically overloaded term". Moreover, in a panel discussion on Object-Oriented Data 
Bases (OODBs) a t  VLDB/87, six panelists managed to disagree completely on exactly what 
an  OODB might be. 

In any case, there are a class of applications which must manage data that  does not fit 
the standard business data processing world where objects are character strings, integers, 
floating point numbers and maybe date, time, money and packed decimal. Non-business 
environments must manage data consisting of documents, three dimensional spatial objects, 
bitmaps corresponding to pictures, icons for graphical objects, vectors of observations, 
arrays of scientific data, complex numbers, etc. 

In general these applications are badly served by current data base systems, regard- 
less of what data model is supported. This point is discussed in detail in [STON831, and we 
present here only a very simple example. Suppose a user wishes to store the layout of 
Manhattan , i.e. a data set consisting of two-dimensional rectangular boxes. Obviously, a 
box can be represented by the coordinates of its two corner points (X1,Yl) and (X2. Y2). 
Consequently, a reasonable schema for this data is to construct a BOX relation as follows: 

BOX (id, XI, Y1, X2, Y2) 

The simplest possible query in this environment is to place a template over this spa- 
tial data base and ask for all boxes that are visible in the viewing region. If this region 
corresponds to the unit square, i.e. the box from (0.0) to (1,1), then the most efficient 
representation of the above query in SQL is: 

select * 
from BOX 
where X1 s 1 and 

X2 r 0 and 
Yl  5 1 and 
Y2 r 0 

Moreover, i t  generally takes a few tries before a skilled SQL user reaches this representa- 
tion. Consequently, even trivial queries are hard to program. In addition. no matter what 
collection of B-tree or hash indexes are constructed on any key or collections of keys, this 
query will require the run-time execution engine to examine, on the average, half of the 
index records in some index. If there are 1,000,000 boxes, 500,000 index records will be 
inspected by an average query. This will ensure bad performance even on a very large 
machine. 

In summary object management problems are poorly served on existing relational 
DBMSs because even simple queries are difficult to construct in SQL and they execute with 
bad performance. To support such environments, a relational DBMS need only do the fol- 
lowing three things: 

(1) support "box" as a data type. In this way, the BOX relation can have two fields as 
follows: 

BOX (id, description) 

(2) Support && as an SQL operator meaning "overlaps". In this way, the query can be 
expressed as: 

select * 
from BOX 
where description && "(0,0), (1,l)" 



(3) Support a spatial access method such as R-trees [GUTM84] or K-D-B trees 
[ROBI81]. This will ensure that the above extended SQL command can be 
efficiently processed. 

Proposals along these lines are contained in [STON86b, CARE86, BANE85, FISH871, and 
these should move into commercial systems in the near future. The aggressive vendors will 
be include such capabilities as extensions to SQL. 

4.4. Summary 

There is no current ANSI consideration of standards in the areas of knowledge 
management and object management. Since these capabilities are perceived to be 
extremely useful in a wide variety of situations, aggressive vendors will move ahead in 
these areas with vendor-specific capabilities. As a result standard SQL will contain only a 
subset of available commercial functions. In a time of rapid technological change, the stan- 
dard will substantially lag the industry leaders and will be doomed to instantaneous tech- 
nological obsolescence. 

The bottom line is that  standardization is being pursued a t  an inappropriate time in 
the evolution of DBMS interfaces. One can look to the standardization of Fortran for gui- 
dance in this area. The language was invented in the early 50's and then underwent about 
15 years of "seasoning" before the standardization process began. Consequently standardi- 
zation took place after a fair amount of experience with the language had been garnered, 
and the language had "settled down7'. Certainly, the premature standardization of Fortran 
2 in the mid 50s would have been a major mistake and would have probably held up the 
evolution of the language or hindered its widespread acceptance. 

With SQL one sees a very different set of events. The language is just beginning to be 
used by commercial customers. Moreover, there are extremely important issues which SQL 
simply does not address a t  all. The research community has proposed solutions for these 
problems and demonstrated next generation systems incorporating these solutions. In such 
a period of rapid technological change, a standard is an inappropriate exercise, just as i t  
would have been for Fortran 2. 

We conclude this section with a comment on SQL-2, which is a proposed follow-on 
standard being developed by ANSI. This activity is proposing capabilities, such as an if- 
then-else syntax and an  interval data type, that  are not currently in any SQL system. 
Moreover, i t  is designed to be an  upwardly compatible superset of existing standard SQL. 
As such, the goal is to lead the marketplace by suggesting a standard "beacon" toward 
which vendors should proceed. This is reminiscent of the standardization of ADA, which 
was performed in the same fashion. The "beacon" approach works well with new languages 
that are standardized from scratch in advance of an implementation while the "seasoning" 
model is appropriate for older languages which evolve into marketplace importance. 

Of course, i t  is possible for ANSI to switch from the "beacon" model to the "seasoning" 
model as a new language matures. This may well occur in the future evolution of ADA. 
However, i t  makes little intellectual sense to switch from the "seasoning" model to the 
"beacon" model because a mature language will always carry many "sins from the past" 
which impede attempts to use it a s  a beacon. For this reason, one would never propose to 
construct a new language like ADA by extending Fortran177. However, this is exactly 
what the ANSI SQL-2 activity is attempting to do, and I must state my firm opposition to 
their philosophy. They should either "season" the current SQL as the vendors extend i t  
capabilities or they should provide a beacon consisting of a new language that  is not built 
on the design mistakes of SQL. 

Of course, the beacon approach has little chance of succeeding unless there is an 
important force (e.g. DOD, IBM) pushing for it. Such a force appears to be absent in the 
current data base marketplace, so I would encourage ANSI to remain with the seasoning 



model. 

5. DISTRIBUTED DATA BASES 

5.1. Why Distributed DBMSs 

A distributed data base system provides a "seamless" interface to data that  is stored 
on multiple computer systems. Such function can be provided either by: 

a network file system (NFS! or a distributed DBMS 

A user should very carefully check which technique is being using by any vendor who 
claims to sell a distributed data base system. Consider a user in San Francisco who is 
interacting with an EMP relation in London and a DEPT relation in Hong Kong. To find 
the names of employees on the first floor using an NFS solution, both relations will be 
paged over the network and the join accomplished in San Francisco. Using a distributed 
DBMS a heuristic optimizer will choose an intelligent accessing strategy and probably 
choose to move the the first-floor departments to London, perform the join there, and then 
move the end result to San Francisco. This strategy will generally be orders of magnitude 
faster than an  NFS strategy. As Bill Joy once said: 

think remote procedures not remote data 

Put differently, one should send the queries to the data and not bring the data to the query. 

A lazy vendor can quickly implement an NFS-based distributed data manager that 
will offer bad performance. Distributed DBMSs with heuristic optimizers are considerably 
more work, but offer much better performance. A client of distributed data managers must 
develop the sophistication to be able to distinguish the lazy vendors from the serious ones. 

Distributed data base systems will find universal acceptance because they address all 
of the following situations. First, most large organizations are geographically decentralized 
and have multiple computer systems a t  multiple locations. It is usually impractical to have 
a single "intergalactic" DBA to control the world-wide data resources of a company. Rather 
one wants to have a DBA at  each site, and then construct a distributed data base to allow 
users to access the company resource. 

Second, in high transaction rate environments one must assemble a large computing 
resource. While i t  is certainly acceptable to buy a large mainframe computer le.g. an IBM 
Sierra class machine), i t  will be nearly 2 orders of magnitude cheaper to assemble a net- 
work of smaller machines and run a distributed data base system. Tandem has shown that 
transaction processing on this architecture expands linearly with the number of processors. 
In most environments, a very efficient transaction processing engine can be assembled by 
networking small machines and running a distributed DBMS. The ultimate version of this 
configuration is a network of personal computers. 

Third, suppose one wants to offload data base cycles from a large mainframe onto a 
back-end machine, a s  typically advised by data base machine companies including Britton- 
Lee and Terradata. If so, i t  will make sense to support the possibility of more than one 
back-end CPU, and a distributed DBMS is required. In fact, Terradata includes one in 
their machine already. 

Fourth, as will be discussed presently, I expect more and more users to have worksta- 
tions on their desks, replacing standard terminals. I also expect most workstations will 
have attached disks to ensure good I10 performance. In such an environment, one will 
have a large number of data bases, a t  least one a t  each workstation. A distributed DBMS 
is required to seamlessly connect all these data bases to the data base on a shared host. 

Lastly, virtually all users must live with the "sins of the past", i.e. data currently 
implemented in a multitude of previous generation systems. I t  is impossible to rewrite all 
applications a t  once, and a distributed DBMS which supports foreign local data managers 



allows a graceful transition into a future architecture by allowing old applications for 
obsolete data bases to coexist with new applications written for a current generation 
DBMSs. This point is further elaborated in Section 7. 

I expect everybody to want a distributed data base system for one or more of these five 
reasons. Hence, I believe that all DBMS vendors will implement distributed DBMSs and it 
will be hard to find vendors who offer only a single site DBMS in a few years. 

5.2. Research Issues in Distributed DBMSs 

There has been a mountain of research on algorithms to support distributed data 
bases in the areas of query processing [SELIBO], concurrency control [BERN81], crash 
recovery [SKEESB] and update of multiple copies [DAVI85]. In this section, I indicate two 
important problems which require further investigation. 

First, users are contemplating very large  distributed data base systems consisting of 
hundreds or even thousands of nodes. In a large network, it becomes unreasonable to 
assume that each relation has a unique name. Moreover, having the query optimizer 
inspect all possible processing sites as candidate locations to perform a distributed join will 
result in unreasonably long optimizer running times. In short, the problems of "scale" in 
distributed data bases merit investigation by the research community. 

Second, current techniques for updating multiple copies of objects require additional 
investigation. Consider the simple case of a second copy of a person's checking account a t  a 
remote location. When that  person cashes a check, both copies must be updated to ensure 
consistency in case of failure. Hence. a t  least two round trip messages must be paid to the 
remote location to perform this reliably. If the remote account is in Hong Kong, one can 
expect to wait an unreasonable amount of time for this message traffic to occur. Hence, 
there will be no sub-second response times to updates of a replicated object. To a user of 
DBMS services, this delay is unreasonable, and algorithms that address this issue 
efficiently must be developed. Either a lesser guarantee than consistency must be con- 
sidered, or alternatively algorithms that work only on special case updates ie.g, ones 
guaranteed to be commutative) must be investigated. 

6. OTHER TECHNOLOGIES 
In this section I discuss a collection of other interesting trends that  may be significant 

in the future. 

6.1. Data Base Machines 

It appears that the conventional iron mongers are advancing the performance of sin- 
gle chip CPUs a t  about a factor of two per year, and that this improvement will continue 
for a t  least the next couple of years. Bill Joy quotes single chip CPU performance as: 

MIPS = 2 ** (year - 1984) 

In  1990 we can expect 64 MIPS on a chip. Not only is this prognosis likely to happen, but 
also, machines built from the resulting chips are guaranteed to be extremely cheap, prob- 
ably on the order of $ lK - $4K per MIP. In light of these advances in general purpose 
machines, it seems unlikely that  a hardware data base machine vendor can develop cost 
effective CPUs. Because such a vendor makes machines by the 10s, he is a t  a significant 
disadvantage against a conventional iron monger who makes machines by the 10,000s. It 
is generally agreed that  a factor of 3, a t  a bare minimum, is required in the custom archi- 
tecture before a custom machine is feasible. Personally, I don't see where to get such a 
number. As a result, I see hardware data base machines as a difficult business in the corn- 
ing years. 



6.2. High Transaction Ra te  Systems 

It is clear that  relational data base systems will be used for production applications 
which generally consist of repetitive transactions, each of which is a collection of single- 
record SQL commands. The goal is to do 100, 500, even 1000 such transactions per second. 
Most relational systems are getting increasingly nimble and should continue to do so over 
the next couple of years. Moreover, all commercial systems have essentially the same 
architecture, so that  any tactic used by one vendor to increase performance can be quickly 
copied by other vendors. Hence, the "performance wars" tend to be a "leapfroging" sort of 
affair, and the current winner is usually the vendor who came out with a new system most 
recently. Moreover, all systems are expected to converge to essentially the same ultimate 
performance. 

The bottom line is that  all vendors are addressing high transaction rate environment 
because that is where a significant number of customer applications reside. All will offer 
similar performance in this marketplace. The ability of any specific vendor to claim this 
arena as his "turf7 is guaranteed to fail. 

6.3. Main Memory Data Bases 

Not only are CPU prices per MIP plummeting, but also main memory prices are in 
"free fall". Prices are currently under $1000 per megabyte in most environments where 
competition exists, and are continuing to drop. Moreover, the maximum amount of main 
memory that can be put on a machine is skyrocketing in a commensurate manner. This 
increasingly allows a client of data base services to contemplate a data base entirely (or 
mostly) resident in main memory. Current DBMSs have been typically designed under the 
assumption that  all (or most) data is on disk. As a result, they must be changed to 
efficiently handle very large buffer pools, to implement hash-join processing strategies 
[SHAP86], and to deal efficiently with log processing (which may be the only 110 which 
remains in this environment). 

The opportunity of using persistent  main memory is also enticing. One idea would 
be for the memory system to automatically keep the before and after image of any changed 
bits as well a s  the transaction identifier of the transaction making the change. If the tran- 
saction gets aborted, the memory system can automatically roll backwards. Upon commit. 
the before image can either be discarded or spooled to a safe place to provide an additional 
measure of security. With error correcting codes and alternate power used in the memory 
system, this will provide a highly reliable main memory transaction system. My specula- 
tion is that i t  is neither difficult nor expensive to design such a system. 

Such techniques will hopefully become part of commercial iron in the not to distant 
future. 

6.4. New Storage Architectures 

Besides persistent main memory, there are some other ideas that may prove appeal- 
ing. First, one could construct a high speed, write-only device with arbitrary capacity. 
Such an  "ideal logger" could be constructed out of persistent main memory, an auxiliary 
processor and a tape drive or WORM device. Additionally, the log can be substantially 
compressed during spooling. The CPU cycles for such activity seem well worth the benefit 
that  appears possible. 

WORM devices have received considerable attention, and they may well play an 
important part in future memory systems for data managers. Lastly, the most intriguing 
idea concerns the availability of very cheap 5 114" and 3 112" single platter drives. Rather 
than using multiple platter disks (such as the 3380), it seems plausible to construct a large 
capacity disk system out of an  array of single platter drives. It appears that  they could 
offer the possibility of a large  number of arms and modest (if any) higher cost per bit 



compared to 3380 style technology. How to construct such disk arrays is an interesting 
area of research. For instance, should one stripe the array with blocks from a single file? 
Alternately, should one write a parity bit on a ninth drive for the corresponding bits on 
eight associated drives. This architecture would enable one to reconstruct the contents of a 
dead drive by reading the other 7 drives plus the parity drive. This may be an effective 
(and cheap) way of mirroring a collection of drives. 

Utilizing disk arrays effectively is a fruitful area for further investigation. 

7. HOW TO ACHIEVE VENDOR INDEPENDENCE 

The current software and technological environment may allow an  astute client of 
data base services to achieve vendor independence. What follows is a step by step algo- 
rithm by which any user can achieve freedom from his current hardware vendor. Since the 
most common vendor to which clients are firmly wedded is IBM, we use an  IBM customer 
as an example and show in this section how that  client can become vendor independent. 
We assume that  the hypothetical client begins with his data in an IMS data base and his 
application programs running within CICS. 

7.1. Step 1: Get  to a Relational Environment 

The first step is for the client to replace his data manager with a current generation 
system. Many companies are already considering exactly this sort of migration, and there 
are several strategies available to accomplish this step. In this subsection we discuss one 
possible approach. Consider the purchase of a distributed data base system that allows 
data in local data bases to be managed by a variety of local data managers. Such "open 
architecture" distributed data managers are available a t  least from Relational Technology 
and Oracle and without doubt, will soon be available from others. Consequently, the exam- 
ple client should consider purchasing a distributed DBMS that  manages local data within 
both IMS and the target relational data manager. With this software, he can run the fol- 
lowing kinds of programs: 

old applications: can be run directly against IMS local 
data bases 

new applications: can be run directly against the new 
target DBMS 

cross DBMS applications: can be run using the 
distributed DBMS 

Hence, a client can obtain a distributed DBMS and then slowly migrate his data bases from 
IMS to the target environment. Whenever he migrates a data base, he must recode the 
application program to use relational access: however, he can do this code conversion a t  his 
leisure over a number of years (or even decades). At some point he will finish this step and 
have all his data in a modern DBMS. 

7.2. Step 2: Buy Workstations 

It is inevitable that  all "glass teletype" terminals will be replaced by workstations in 
the near future. Hence, 3270-style terminals are guaranteed to become antiques and will 
be replaced by new devices which will be Vaxstation 3000, Sun 3, PC/RT, Apollo, Macin- 
tosh, or PS 2 style machines. Clients will replace their glass teletypes with workstations 
for two reasons: 

1) to get a better human interface 
2) cost 

I t  is obvious to everybody that bitmap-mouse-window environments are much easier to use 
than 3270 style systems. For example, a user can have multiple windows on the screen and 
his application can take as many interrupts as needed since a local CPU is being used. 



There is no need for the cumbersome "type to the bottom of the screen and then hit enter" 
interfaces that are popular with 3270s. Already, knowledge workers !e.g, stock traders, 
engineers, computer programmers) are being given workstations. Later, data workers (e.g, 
clerks, secretaries, etc.) will also get workstations. The basic tradeoff is that  a workstation 
translates into some quantifiable improvement in employee productivity. The cost, of 
course, is the purchase and maintenance of the workstation. This tradeoff will be made in 
favor of workstations for high priced employees and not for lower paid ones. Over time, as 
workstations continue to fall in price, i t  will be cost effective to give one to virtually every- 
body. 

The second reason to give employees a workstation is that i t  enables one to move an 
application program from a mainframe (a 370 in our example! which costs more than 
$100,000 per MIP to a workstation which costs perhaps $1000 per MIP. The overall cost 
savings can be staggering. 

Whether one chooses to move to workstations for human interface reasons or cost con- 
siderations does not matter. To take advantage of either, one must move application pro- 
grams from a 370 to a workstation. Moreover, the only sensible way to do this is to rewrite 
them completely to change from a "type to the bottom of the screen" to a "menu-mouse- 
bitmap-window" style interface. During this rewrite, one must also move the program from 
CICS to some other programming environment (e.g. Unix, OS 2, Apple OS, etc.). This 
leads to step 3. 

7.3. Step 3: Rewrite Application Programs  

Whatever the reason chosen, clients must migrate application programs from CICS to 
the workstation. Of course, a client can run a window on a workstation that  is simply a 
3270 simulator connected to CICS. In  this way, a client can slowly migrate his applications 
to the new environment while the old ones continue to run in CICS through workstation 
simulation of a glass teletype interface. At some point, all CICS applications will have 
been rewritten, and only a relational DBMS remains running on the 370 machine. Of 
course, this migration may take years (or even decades). However a persistent client can 
move a t  a rate appropriate to his resources. This will lead ultimately to step 4. 

7.4. Step 4: Move to  a Server Philosophy 

At this point the example client has application programs running on a workstation 
and a relational data base system running on a shared host. These machines communicate 
over some sort of networking system. Moreover, the applications send SQL commands over 
this network to the shared host and receive answers or status back. In this environment. 
one should move to the following thinking: 

workstations are application servers 
shared hosts are SQL servers 

Moreover, SQL servers should be thought of as a commodity product. To the extent that  a 
client remains within the standard SQL defined by ANSI, i t  should be possible to replace 
an  SQL servers built by one vendor (in this case IBM) with an  SQL server bought from 
another vendor (say DEC) or even by a collection of servers running a distributed data base 
system (say a network of Suns). Vendor independence has been facilitated since i t  is now 
fairly easy to buy SQL cycles from the vendor who offers the best package of 
price/performance/ reliability. If the vendor of choice fails to remain on the performance 
curve compared to his competitors, there is little difficulty in unhooking that  vendor's 
machine and replacing i t  with one built by one of his competitors which offers superior cost 
effectiveness. 

Similarly, one should think of workstations as application servers. If one is careful, 
one can write applications which run on a variety of workstations. If the current vendor 



ceases to offer price competitive iron, the client can simply replace his workstations by 
those built by one of his competitors. In this way i ron independence is achieved. 

7.5. Summary 

During these four steps, a client will choose a t  least the following: 

a relational DBMS 
a workstation Operating System 
a window manager 
networking hardware and software 
an application programming language 

An IBM customer will, of course, be guided by his IBM salesman to choose the following: 

relational DBMS: DB 2 plus the DBMS in the extended 
version of OS 2 

workstation 0s: OS 2 
window manager: IBM Presentation Manager 
networking software: SNA 
application programming language: COBOL (?) 

In addition, he will be sold on the virtues of SAA as part of his solution. If the client 
moves in this direction, he will achieve iron independence to a t  least some degree. He can 
buy workstations from any of the clone manufacturers and can use SQL services that run 
on the various instantiations of IBM iron (e.g, System 36, 38, 370, etc.). 

However, the client can also make an alternate collection of choices: 

relational DBMS: one from an independent vendor 
workstation 0s: Unix 
window manager: X Window System 
networking software: TCPIIP 
application programming language: C 

With these choices he can be assured of buying application servers and data servers from at 
least the following companies: DEC, DG, IBM, HP, Sun, Apollo, ICL, Bull. Siemans. 
Sequent, Pyramid, Gould, and the clone makers. 

This section has pointed out a path by which one may obtain iron independence. 
Along this path, a collection of options must be chosen. These can be the ones suggested by 
the IBM salesperson or the set that will maximize iron independence. This choice can be 
made by each client. 

7.6. Standards  Revisited 

We close this paper with some comments on what can be done to assist a user in 
achieving vendor independence. Clearly, a user can buy an  open architecture distributed 
data base system. In this scenario the client will have available the extended SQL imple- 
mented by that vendor. Statements in extended SQL will run on a local data base that is 
managed by the local data manager provided by the vendor. Standard SQL will be execut- 
able on foreign local data managers. Such distributed data base software will provide a 
seamless interface that hides data location and allows data to be moved a t  will as business 
conditions change without impacting application programs. 

A second possibility is that  a user will remain within standard SQL and build location 
information into his application programs. In this way, he will expect to send SQL com- 
mands onto a network for remote processing by some server. The server must accept the 
remote request and send back a reply. To facilitate being able to replace one server by a 
different one, i t  is crucial  that  a standard format for communication of SQL commands and 
the resulting responses over a network be developed. Standardization of remote data base 



access is being pursued by IS0 but appears not to be an ANSI activity. In my opinion. 
remote data base access will be more important than local data base access from an applica- 
tion program. I would encourage standards organizations to budget their resources accord- 
ingly. 

REFERENCES 
[BANE871 Banerjee, J. et. al., "Semantics and Implementation of Schema Evolution in 

Object-oriented Databases,'' Proc. 1987 ACM-SIGMOD Conference on Manage- 
ment of Data, San Francisco, Ca., May 1987. 

[BANC86] Bancilhon, F. and Ramakrishnan, R., "An Amateur's Introduction to Recursive 
Query Processing Strategies," Proc. 1936 ACM-SIGMOD Conference on 
Management of Data, Washington. D.C., May 1986. 

[BERN811 Bernstein, P. and Goodman, N., "Concurrency Control in Database Systems," 
Computing Surveys, June 1981. 

[BUNE86] Buneman, P. and Atkinson, M., "Inheritance and Persistence in Database Pro- 
gramming Languages," Proc. 1986 ACM-SIGMOD Conference on Management 
of Data, Washington, D.C., May 1986. 

[CARE861 Carey, M., et. al., "The Architecture of the EXODUS Extensible DBMS," Proc. 
International Workshop on Object-Oriented Database Systems, Pacific Grove, 
Ca., September 1986. 

[DADA861 Dadams, P. et. al., "A DBMS Prototype to Support NF2 Relations," Proc. 1986 
ACM-SIGMOD Conference on Management of Data, Washington, D.C., May 
1986. 

[DATE811 Date, C., "Referential Integrity." Proc 1981 VLDB Conference, Cannes. France, 
Sept. 1981. 

[DATE851 Date, C., "A Critique of SQL," SIGMOD Record. January, 1985. 

[DAVI851 Davidson, S. et. al., "Consistency in Partitioned Networks," Computing Sur- 
veys, Sept. 1985. 

[FISH871 Fishman, D. et. al., "Iris: An Object-Oriented Database Management System," 
ACM-TOOIS, January, 1987. 

LGUTM841 Gutman, A., "R-trees: A Dynamic Index Structure for Spatial Searching," Proc. 
1984 ACM-SIGMOD Conference on Management of Data, Boston, Mass. June 
1984. 

[IOAN871 Ioannidis, Y. and Wong, E., "Query Optimization Through Simulated Anneal- 
ing," Proc. 1987 ACM-SIGMOD Conference on Management of Data, San 
Francisco, Ca., May 1987. 

ILIND871 Lindsay, B., "A Data Management Extension Architecture," Proc. 1987 ACM- 
SIGMOD Conference on Management of Data, San Francisco, Ca., May 1987. 

[ROB1811 Robinson, J . ,  "The K-D-B Tree: A Search Structure for Large Multidimen- 
sional Indexes," Proc. 1981 ACM-SIGMOD Conference on Management of 
Data, Ann Arbor, Mich., May 1981. 

[ROSE861 Rosenthal, A. et. al., "Traversal Recursion: A Practical Approach to Supporting 
Recursive Applications," Proc. 1986 ACM-SIGMOD Conference on Manage- 
ment of Data, Washington, D.C., May 1986. 

[ROWE85] Rowe, L., "Fill-in-the-Form Programming." Proc. 1985 Very Large Data Base 
Conference, Stockholm, Sweden, August 1985. 



LSELI801 Selinger, P. and Adiba, M., "Access Path Selection in a Distributed Database 
Management System," PROC ICOD, Aberdeen, Scotland, July 1980. 

[SHAP86] Shapiro, L., "Join Processing in Database Systems with Large Main 
Memories," ACM-TODS, Sept. 1986. 

[SKEESP] Skeen, D., "Non-blocking Commit Protocols," Proc. 1982 ACM-SIGMOD 
Conference on Management of Data, Ann Arbor, Mich., May 1982. 

[STON831 Stonebraker, M., et. al., "Application of Abstract Data Types and Abstract 
Indexes to CAD Data," Proc. Engineering Applications Stream of 1983 Data 
Base Week, San Jose, Ca., May 1983. 

[STON86al Stonebraker, M. and Rowe, L., "The Design of POSTGRES," Proc. 1986 ACM- 
SIGMOD Conference on Management of Data, Washington, D.C., May 1986. 

[STON86bl Stonebraker, M., "Inclusion of New Types in Relational Data Base Systems," 
Proc. Second International Conference on Data Engineering, Los Angeles, Ca., 
Feb. 1986. 

[STON871 Stonebraker M. et. al., "The Design of the POSTGRES Rules System," Proc. 
1987 IEEE Data Engineering Conference, Los Angeles, Ca., Feb. 1987. 

iTSUR841 Tsur. S. and Zaniolo, C., "An Implementation of GEM -- Supporting a Seman- 
tic Data Model on a Relational Back-end," Proc. 1984 ACM-SIGMOD Confer- 
ence on Management of Data, Boston, Mass., June 1984. 

[ULLM85] Ullman, J., "Implementation of Logical Query Languages for Data Bases," 
Proceedings of the 1985 AChI-SIGMOD International Conference on Manage- 
ment of Data, Austin, TX, May 1985. 




	electronics_research_lab.trends_database_systems.1988.062304364.fc.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p01.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p02.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p03.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p04.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p05.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p06.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p07.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p08.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p09.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p10.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p11.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p12.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p13.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p14.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p15.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p16.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p17.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p18.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p19.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p20.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.p21.src.tif
	electronics_research_lab.trends_database_systems.1988.062304364.bc.src.tif

