DM80.WS4 (= Display Manager-80 version 1.0 article)

- "Display Manager from DRI"
Alan Simpson
"Microsystems”, February 1984, p.96

(Retyped by Emmanuel ROCHE.)

Most professional programmers wince a bit when they hear the term "1/O code.
Not because writing code for data entry screens and reports is difficult, but
rather because it is a boring and tedious task. Typically, the programmer
designs displays on graph paper, then laboriously writes line after line of
code to format displays on the screen and printer. The process becomes even
more unpleasant if the program is to be used with many different terminals.
The programmer then needs to take into consideration the control codes for
various CRTs. This is a very time-consuming process, particularly if one plans
on making one's software compatible with 50 different terminals. Most
professional programmers get around some of the tedium by writing general-
purpose 1/O routines, and storing displays and terminal codes on data files.

Digital Research has come up with an even better method. You, the programmer,
buy Display Manager, then you "draw" your input and output displays directly
on the screen, exactly as you wish them to appear at run-time. Display Manager
then takes care of writing the 1/O functions, storing displays on a data file,

and providing control codes for a variety of terminals. Sounded good to me, so

I thought | would give it a try.

Display Manager (DM-80) is one of Digital Research Incorporated's ("DRI")
"Productivity Tools" (ROCHE> The other one is "Access Manager", providing ISAM
(Indexed Sequential Access Method) to DRI's compiled languages.), and works
with any of their 8-bit programming languages (CB-80, Pascal/MT+, or PL/1-80),
and 16-bit languages, including Pascal/MT+86, CB-86, PL/1-86, and DRC. Version
1.0 of DM-80, the one | used for this review, supports 55 different terminals,

and allows the programmer to include extra terminals. Display Manager also
includes a program written in CB-80 (CBASIC Compiler Version 2) that allows
the end user to install the program to his particular terminal. DM-80 requires

that you use CP/M, CP/NET, or MP/M, and have at least 40 Kilobytes available

in the Transient Program Area of your main memory. Display Manager will also
run under PC DOS with any of the DRI 16-bit programming language.

Using Display Manager

When | first received DM-80, | read the manual from cover to cover. Like most
software manuals, the DM-80 manual tends to be more descriptive than tutorial.
The first thought that came to mind after reading the manual was "What?" The
manual is about 100 pages in length, with the usual addenda that tell you what
the manual forgot to mention, as well as changes that have been made since the
printing of the manual (yes, even though this is Version 1.0). At first, | was
dubious as to whether or not this product was truly going to help increase my

file:///CJ/...rvation/Emmanuel%20Roche%20DRI1%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

productivity. Since | have already developed a number of my own canned
functions to handle 1/0 screens, it seemed unlikely that learning this new and
seemingly complex tool would be worth the effort. When 1 actually sat down and
used DM-80, | found it much easier to use than expected, and well worth
learning.

Using DM-80 is essentially a 3-step process: 1) Install DM-80 to your
particular terminal; 2) Create and edit displays using the DM-80 editor; and
3) Write the application programs that access the displays. | will discuss my
experiences with each step in the process.

1. Installation

Installing DM-80 to your particular CRT is a simple process, unless you happen
to be using 5 1/4" disks. DM-80 is delivered on two 8" disks, and one needs to

do quite a bit of wading through the manual to determine exactly which files
must be resident on disk during the various phases of designing screens. |
managed to get DM-80 up and running on a single-sided double-density (180K)
disk through a little trial and error. Once you have the correct files on

disk, the rest is easy. DM-80 is menu-driven, and the program itself is
somewhat tutorial.

If you are using one of the DM-80 supported terminals, installing the program
is as simple as selecting that terminal from a menu of choices. Of the 55
terminals that DM-80 supports, many are different models from the same
manufacturer. For purposes of brevity, | will just list the manufacturers
here:

A.B.M.

A.D.D.S.

Apple

Beehive

Control Data
Cromemco

Digital Equipment Corporation (DEC)
Direct

Hazeltine

Heath
Hewlett-Packard
I.S.C.

Lear-Siegler
Microterm
Osborne

Radio Shack (Tandy)
Soroc

Teleray

Televideo

Toshiba

Vector Graphic
Visual Technology
Xerox

Zenith

file:///CJ/...rvation/Emmanuel%20Roche%20DRI1%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

If you are not using one of the supported terminals, you will have to provide
the control codes for a custom terminal. This is not difficult, provided that

the custom terminal has enough documentation to supply the appropriate codes.
The DM-80 manual has a simple questionnaire to fill out about custom terminal
characteristics. Then, the install program asks the same questions that the
questionnaire did, and you fill in the blanks. The installation program has a
very convenient test capability that allows you to check, to make sure you
have installed a custom terminal properly. It does so by trying each function
(clear screen, position cursor, reverse video, etc.) on the screen, and asking

if the function worked correctly. If you discover a mistake during the test
phase, you can edit the terminal codes using a reinstall option. Once you have
DM-80 installed for your system, you can begin creating displays.

2. Creating displays

I never thought | would see the day | would actually enjoy creating 1/0
screens. DM-80 changed that, by allowing me to draw and edit displays on the
screen in an interactive, visual manner.

When you call up Display Manager's editor, it asks if you want to edit an
existing display, or create a new one. If you create a new one, it must have a
unique number, as this number is used by the application program for finding
the display. When you are ready to create your display, the editor presents a
blank screen with the cursor in the upper left-hand corner, and you can just
start drawing your display on the screen as you wish it to appear to the user
at run-time.

The manual tends to make this process more difficult than it is. There are
well over 40 distinct control-key commands (some 3 characters long!) that the
editor uses. Personally, my brain's RAM space for storing control-key
sequences is just about full, but DRI was quite considerate in making
memorization a bit easier. For instance, many of the control-key sequences are
identical to those used in other software packages (*V toggles insert mode,
AOC centers, while "A, ~S, “E, "D, "X, S, “F move the cursor about on the
screen, etc.). DRI also provides abbreviated reference cards, kindly laminated
in clear plastic, for quick reference. When you first start designing
displays, however, be prepared to do a good deal of wading through the manual.
Control-key definitions are interspersed throughout the text, and the
reference cards are too brief for first-time use.

When you are developing a display, you simply type out the prompts, headings,
and borders where you want them to appear on the screen. You can also enter a
control key command to specify that either an input or output field be
displayed. You can easily move text and fields about the screen, as you zero

in on just the format you wish. You can also include template characters in
input fields, such as"(__) - " for phone numbers. Then, you can
determine visual characteristics for the various fields in a simple and
pleasant manner. To do so, simply position the cursor at the beginning of a
field, and enter a control key command to call up the status window. The
following then appears on the screen.

file:///CJ/...rvation/Emmanuel%20Roche%20DRI1%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

| Field No. Row Col Len Posts Type-OUTPUT |
| 000 000 000 000 YY *rrcc*nnn |

| Validate :X: X,A,C,D,F,I,LU Beep :N: N)Y |
| Format :L: L,R,N,0-9,C,M AutoRet :N: N,Y |
| |

| End input---Cursor :N: BadC :N: FKey :N: N,Y |
| Video :N: :N: :N: :N: :N: :N: :N: :N: N)Y |

| Invs Half Invr Flsh Undl Usrl Usr2 Usr3 |

This window presents the DM-80 default characteristics for a single input
field on the screen display. You can use the default characteristics for this
field, or change them by simply moving the cursor about the status window. Of
course, you can change default characteristics also.

The top line of the status window presents the field number (automatically
assigned as the display is being designed), the row, column, and length of the
field, whether or not it is surrounded by blank spaces (posts), and the type

of field (INPUT or OUTPUT). The letters rr and cc are the row and column
numbers of the cursor's present position on the screen, and nnn is the number
of fields in the display.

The Validate prompt allows the programmer to provide error checking with the
simple press of a key. The options are X (accepts any printable character), A
(accepts only alpha characters), C (all characters, including control
characters), D (decimal numbers only), F (allows Function keys only), |
(integer only), and U (same as X, but input is changed to uppercase). Beep
determines whether or not an illegal entry by the user causes the terminal's

bell to ring (Y/N).

Format for the fields can be L (left-justify), R (right-justify), N (numeric
output), 0-9 (number of digits to the left of the decimal point), C (send
control keys to the screen), and M (money fields with leading dollar [or other
currency] sign and 2 digits to the right of the decimal point).

The AutoRet option determines whether data entry terminates when the field's
capacity is full (Y/N). The End-Input options allow the programmer to specify
various methods for terminating data entry. If cursor is selected (Y), then

the terminal's up/down arrow keys terminate data entry for the field. If BadC
is Y, any illegal character for the field terminates entry for that field.

FKey terminates entry if a Function key is entered.

The remaining options Invs, Half, Invr, FIsh, Undl, Usrl, Usr2, Usr3 allow the
programmer to specify visual attributes for a field. By filling ina Y above
an option, the programmer can cause the field to be invisible, half intensity,
inverse video, underlined, or flashing. The programmer can also define up to 3
user-defined visual attributes, and include these in various fields.

The whole procedure is simple and fast. You just draw the display as you want
it to appear to the end user at run-time, then set the cursor to the beginning

of each input and output field, and use the status window to determine the
basic characteristics and visual attributes of the individual field. Any

file:///CJ/...rvation/Emmanuel%20Roche%20DRI1%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

programmer who has ever written 1/0O code to include as many options as Display
Manager provides will probably see that this is a far quicker and easier
method. | was certainly convinced.

As if this were not enough, Digital Research took it a step further, and made
Display Manager self-documenting. Once the display is created, the programmer
can store a print-image ASCII file of the display on a disk file. This image

file can be pulled directly into most word-processing systems, to ease the
development of a user's manual. Also, the disk file contains detailed
documentation for each field in the display, which helps with the technical
documentation, as well as with debugging and modification. The final step in
the process is to link your displays with your application program.

3. Write the application program

Once the displays have been designed, you need to write the actual programs
that will use the displays. Display Manager adds the following functions to
the programmer's present language:

INITDM
Initializes the application program to use a specific terminal's control codes
and capabilities.

OPENDIS
Opens a DM-80 display file.

RETDM
Returns visual attributes supported by a given CRT, so the programmer knows
which of DM-80's options are readily available for a particular CRT.

CLRSCR
Clear-the-screen command.

CURS
Set cursor to visible or invisible.

DISPD
Places a display from the display file onto the screen.

CLSDIS
Closes a display file.

For managing the actual fields in the display from the application program,
DM-80 provides the following functions:

POSF
Positions the cursor to a given field.

NXTF
Positions the cursor to the next field.

SETF

file:///CJ/...rvation/Emmanuel%20Roche%20DRI1%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

Modifies the visual attributes of a field during run-time.

RETF
Returns the field position, length, and type.

PUTF
Outputs data to the current field.

GETF
Accepts and validates data entered to a field by the end user.

UPDF
Updates and validates data entered for a field.

ENDF
Determines how user ends data entry.

RESF
Resumes operation at last field.

The syntax for using most of DM-80's functions (using CB-80 as an example) is:
integer variable = FUNCTION (integer expression)

Since DM-80 uses functions rather than commands, it is the programmer's
responsibility to determine whether or not a function is successful, and to
return an error message describing the problem to the user, should an error
occur. This adds a bit of bulk to an application program, but then again, it
does provide the programmer with some flexibility in handling errors.

There are some minor annoying inconsistencies among the functions that the
programmer must deal with. For example, some functions return a zero when the
function is successful (Boolean false?), and negative value when the function

is unsuccessful (Boolean true?). Some functions, like the CURS function, allow
various numeric arguments (e.g., 0-3), but the value must be expressed as a
string. Other functions do not use strings for numeric arguments. Until you

get used to the exact syntax of the various functions, plan on doing a bit of
debugging. You may find some of the syntax awkward and counter-intuitive at
first.

The final step is to write the program in the language of your choice, and use
the various DM-80 routines to access displays and manage field data. In your
source program, you need to include DM-80's prewritten functions. For example,
in CB-80, you need to include the command:

%INCLUDE dm80extr.bas
Digital Research provides external functions for all the supported languages.
Then, when you link the compiled code, you need to include the DM-80
relocatable library as an overlay. In CB-80, the command to do so is:

A>LK8O0 testprog,dm80ch80.irl

Digital Research provides run-time libraries for each of the supported

file:///CJ/...rvation/Emmanuel%20Roche%20DRI1%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

languages. The manual provides sample programs written in CB-80, Pascal/MT+,
and PL/1-80 as useful examples of programming techniques.

Incidentally, once the source code is written and is capable of putting
displays on screen, the end-user can use control keys or arrow keys to move
the cursor about on the screen. DM-80 defaults to both the ANSI standard keys
for moving the cursor about ("H, ~J, ~K, ~L), as well as the more popular "S,
X, "E, "D keys. The programmer needs not write any code to provide these
capabilities.

Similar products

To my knowledge, there are no products similar to Display Manager for
compilable languages. Ashton-Tate's dBase Il, however, includes a program
called ZIP that provides a capability similar to, but not as flexible as, DM-

80. Both ZIP and dBase Il have one advantage over DM-80 and the DRI compilable
languages: they are easier to use. With ZIP, the programmer draws the display

on the screen, and follows prompts with the actual field or variable name that

the prompt will be expecting. The programmer can also place commands on the
screen that will later be embedded in the source code. ZIP then generates

source code for the screen displays.

The programmer pays a heavy price for this ease of use, however, and here is
where Display Manager shows its true advantages. First, DM-80 can be used with
high-performance native-code compilers, whereas ZIP can only be used with
dBase I, a slow-running interpretive language. For the independent software
developer, DM-80 allows the user to write programs that will run on just about
any 8- or 16-bit based systems, and Digital Research does not charge royalties

to the developer. ZIP and dBase Il narrow the market to customers who already
own dBase 11, unless the developer is willing to pay some rather astronomical
"royalty" fees ($70-$100 per copy!) to Ashton-Tate for a run-time package that
allows non-dBase Il owners to use the package. Unfortunately, the dBase I
run-time package slows the applications programs down even further. Also,
dBase Il is a very high-level database management system which, while
providing powerful commands, robs the more sophisticated programmer of some
lower-level flexibility, such as arrays, mathematical functions, and the

ability to have more than 2 data files active at any time. Basically, if you

are already an experienced programmer and you prefer a compilable language,
DM-80 is your best bet. If not, perhaps ZIP and dBase 11 are preferable.

Recommendation

I found DM-80 to be a very powerful and productive programming tool. It is
also a pleasure to work with, though somewhat awkward at first. 1 would
recommend it highly to any professional programmer who is already fluent in
any of the DRI compilable languages. | would especially recommend DM-80 to
anyone thinking about writing marketable software, as it will greatly reduce

the labor inherent in making your programs compatible with a variety of
terminals.

file:///CJ/...rvation/Emmanuel%20Roche%20DRI1%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

Display Manager is available from Digital Research, and costs $400 for the 8-
bit version, $500 for the 16-bit version. You can call Digital Research at
(...) for a dealer or distributor nearest you.

EOF

file:///CJ/...rvation/Emmanuel%20Roche%20DRI1%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

DMCARD1.W34 (= Display Manager Card #1)

- "Digital Research -- Display Manager Editor Commands"
(Retyped by Emmanuel ROCHE.)

Hold Ctrl key down for all commands

Cursor movement commands

DorL Cursor right

SorH Cursor left

EorK Cursor up

XorJ Cursor down
RETURN key Cursor next line

Genera editing commands

A L eft word

F Right word

G Delete character under cursor
T Delete right word

\% Insert space

I Tab

DEL key Delete left character

Field-specific commands

UA Cursor to previous field

ucC Copy field

UD or UL Cursor to end of field

UF Cursor to next field

uG Delete field

ul Define input field begin -- ESC ends
UM Move field to cursor

uo Define output field begin -- ESC ends
UR Renumber fields

US or UH Cursor to beginning of field

uv Move field one space right, or Add space before cursor
uw Set current status window as default
uz Delete field, turninitial valuesto literals

Miscellaneous commands

file:/lIC|l...n"Emmanuel %20Roche%20DRI %20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/ DMCARD1.TXT[2/6/2012 4:31:23 PM]

B Show field boundaries -- next key resets

P Set initial value character as template

wW Change field attributes in status window -- ESC ends
OB Turn border move on/off, Cursor sets char -- ESC ends
oC Center line

ESC key End certain commands (No Ctrl needed)

Accelerated commands

QB Show boundaries of all fields -- ESC ends
QD or QL Screen right

QSor QH Screen |eft

QE or QK Screen top

QG Delete line

Qv Insert line

QW Leave status window on -- Ctrl-QW ends

QX or QJ Screen bottom

QY Show visual attributes all fields -- next key ends

Output commands

OUN Save and edit next display

OUP Save and edit previous display
ouQ Abandon and exit to main menu
ousS Save display and continue editing
ouT Save display and exit to main menu
ouw Write documentation (file/printer)

Field status window defaults

| Fleld No. Row Col Len Posts Type-INPUT |
| 000 000 000 000 YY *rrcc* nn |

| Validate :X: X,A,CD,FI,U Beep :N: N,Y |
| Format :L: L,RN,0-9,CM AutoRet :N: N,Y |
| |

| End Input -- Cursor :N: BadC :N: Fkey :N: N,Y |

I I
[:N: :N: GN:z GN: GNE GNE iN: NG NYY |
| Invs Half Invr Fish Undl Usrl Usr2 Usr3 |

Output field status window

file:/lIC|l...n"Emmanuel %20Roche%20DRI %20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/ DMCARD1.TXT[2/6/2012 4:31:23 PM]

| Field No. Row Col Len Posts Type-OUTPOUT |
| 000 000 000 000 YY *rrcc* nn |

| Format :L: L,RN,0-9CM Comma:N: N,Y |
| |

| :N: :N::N:oGN: GN: GN: N NG NVY |

| Invs Haf Invr Flsh Undl Usrl Usr2 Usr3 |

file:/lIC|l...n"Emmanuel %20Roche%20DRI %20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/ DMCARD1.TXT[2/6/2012 4:31:23 PM]

DMCARD2.W34 (= Display Manager Card #2)

- "Digital Research -- Display Manager Run-time Functions®

(Retyped by Emmanuel ROCHE.)

Run-time functions

| =CLRSCR Clear screen

| =CLSDIS Close current display file

C$ = CURS(D$) Make cursor visible or invisible, return current setting

| =DISPD(J) Show display with reference number J from current display file

K = ENDF Return Oif last input terminated normally; otherwise, value
of terminating character or negative Function key number.

C$=GETF Get input from field

INITDM(D$) Initialize Run-time Library with CRT control code

NXTF(J) Move to next or previous field in screen order

OPNDIS(D$) Open display file

POSF(J Move to field with number J

PUTF(D$) Write D$ to current input or output field

C$=RESF(J) Resume input from field stored with call to -J. Return al
datain field.

C$=RETDM Return attribute capabilities of CRT

C$=RETF Returnfield position, length and type

C$=SETKH(D$) Set or reset video attributes of field; return current
Settings.

C$=UPDF Get datafrom field. If input field, get input to update data.

Notes:

-1, Jand K are integers.

- C$ and D$ are character strings.

- All functions returning to |, return a negative number if error occurs.
- Pascal/M T+ string returning functions use the following convention:
char := STRINGFUNCT(PARAM,STRINGRET).

Specific function values

CURS "0" = Reset to normal mode "0" = Currently set to normal
SETF "1" = Set to specia mode "1" = Currently set to special
"2" = Switch to opposite
"3" = No change
RETDM "0" = Not supported
"1" = Supported as PAINT
"2" = Supported as PLANT

file:/lIC|l...n"Emmanuel %20Roche%20DRI %20documents%20conversi on/Displ ay%20M anager%20Programmers¥%20Guide/DMCARD2.TX T[2/6/2012 4:31:23 PM]

NXTF FIELD TYPE Current field number; -1 if error
MOVE either input output

next| 1 2 3
prev | -1 -2 -3
last | 10 20 30
first] -10 -20 -30

RESF -J= Store current field number If Jis negative, then RESF
cursor position and field data returns a null string.
(J=1to 8).
J = Write back datain field If Jis positive, then RESF
at time of input termination; returns all data input using
resume input. the previous input function.

Attribute value positions

Function
Attribute CURS SETF RETDM
Cursor on/off 1 1
Visibility 1
Half intensity 2 2
Reverse video 3 3
Flashing 4 4
Underlining 5 5
User def. 1 6
User def. 2 7
User def. 3 8

0o ~NO

Note: Values = string position

EOF

file:/lIC|l...n"Emmanuel %20Roche%20DRI %20documents%20conversi on/Displ ay%20M anager%20Programmers¥%20Guide/DMCARD2.TX T[2/6/2012 4:31:23 PM]

DMFS.W$4 (= Display Manager Function Summary)

- "Digital Research -- Display Manager Function Summary
First Edition: September 1983

(Retyped by Emmanuel ROCHE.)

Table of Contents

1 Introduction

2 Status windows

2.1 Validation codes

2.2 Format codes

2.3 Video codes

2.4 Color codes

2.5 Other status window codes

3 Editor commands

4 Summary of functions
CLRSCR
CLSDIS
CURS
DISPD
ENDF
GETF
INITDM
NXTF
OPNDIS
POSF
PUTF
RESF
RETDM
RETF
SETF
UPDF

5 Run-time errors

1 Introduction

The "Display Manager Function Summary" contains information extracted and
summarized from your other Display Manager manuals. Explanations of the
commands and functions provided here are brief. If you require more detailed
information, please consult your Display Manager manuals.

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

Display Manager commands are used in conjunction with the Editor program.
Display Manager functions are routines contained in the run-time library.

The "Display Manager Function Summary" does not contain information specific
to any operating system or programming language. Consult the appropriate
programmer's guide for this information.

Note: Due to limitations of 8-bit microprocessors, color features are not
available. If your computer is based onthe Zilog Z-80 or Intel 8080
microprocessor, you should disregard any references to color.

2 Status windows

To display the status window for afield, place the cursor within the
boundaries of the field and enter a Ctrl-W. The status window appears on the
screen with the cursor positioned inside.

To display the status window constantly, regardless of cursor location, use
the Ctrl-QW command. The cursor is not positioned inside the window.

Both Ctrl-W and Ctrl-QW are toggle commands; re-enter the command to remove
the status window from your screen. Use the cursor movement commands, the
RETURN key, or the space bar to move the cursor while inside the status
window.

Status windows for input and output fields are similar, but distinctly and
logically different.

Sy S +

| Field No. Row Col Len Posts Type-OUTPOUT |
| nnn nn nnn nnn - YY *rr,cc* nn |
T S S +

| Format :L: L,RN,0-9,CM Comma:N: N)Y |
|

| Video :N: :N: :N: :N: :N: :N: NN NY |

| Invs Half Invr Filsh Undl Usrl Usr2 Usr3 |

| Color :N: :N: :N: :N: :N: :N: :N: :N: N)Y |

| fls RED GRN BLU Int red grn blu |

T S S +
| FieldNo. Row Col Len Posts Type-INPOUT |
| nnn nnn nnn nnn YY *rr,cc* nn |
S — +

| Vdidate :X: X,A,CD,FILU Beep :N: N)Y |
| Format :L: L,RN,0-9CM AutoRet :N: N,Y |
| |

| End Input -- Cursor :N: BadC :N: Fkey:N: N,Y |
| Video :N: :N: :N: :N: :N: :N: N :N: NY |

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

| Invs Half Invr Flsh Undl Usrl Usr2 Usr3 |
| Color :N: :N: :N: :N: :N: :N: :N::N: NY |
| fls RED GRN BLU Int red grn blu |

Figure 2. Input field status window

2.1 Validation codes

Vaidate :X: X,A,CD,F,IU

The code you enter between the colons (":") specifiesthe type of validation
you want performed on an input field.

Code Meaning
X Any -p;ri ntable character is accepted (X is the default).

A Only aphabetic characters, including spaces, are accepted.

C Any characters, including control characters, are accepted; function
key input is not interpreted. Data entry for these fields can only be
terminated using the RETURN key.

D Only signed, decimal datais accepted.

F Only function keys are accepted.

| Only signed, integer datais accepted.

U Sameastype X, except that all information is converted to uppercase.

2.2 Format codes

Format :L: L,R,N,0-9,C,M

The format code you enter between the colons (":") specifies a particular
output format for a field.

Code Meaning
L Left-justified.
R Right-justified.

N Numeric format. Numbers are right-justified, and leading zeros
removed.

0-9 Decimal format. The number indicates how many positions to the right
of the decimal point.

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

C Use for sending control charactersto the screen. Information is
displayed unformatted. See your reference manual for further
information.

M Money format. Inserts a currency symbol, and aligns two digitsto the
right of the decimal point.

2.3 Video codes

Video :N: :N: :N: :N: :N: :N: :N: :N: NY
Invs Half Invr Flsh Undl Usrl Usr2 Usr3

If color is available on the run-time terminal, Display Manager uses the color
codes in place of the video codes. The following descriptions explain the
results of setting the video code in the field's status window to Y (the
default is N). With the exception of Invs, all codes require that the feature
selected must be available on the run-time terminal.

Code Result

Invs The initial value for the field does not appear when the display is
shown on the run-time terminal.

Half Thefield isdisplayed in half-intensity.
Invr Thefield is displayed in inverse video.
Flsh Charactersin the field flash on and off.
Undl Characters in the field are underlined.

Usrl-3 User-defined video attributes one, two, and three, respectively, are
activated for the field.

2.4 Color codes

Color :N: :N: :N: :N: :N: :N: :N: :N: NY
fls RED GRN BLU Int red grn blu

Set the "fls" color code to Y to cause the field to flash on and off, provided
this feature is available on the run-time terminal.

The following tables show the colors that normally result when you see these
color code combinations in the field's status window.
Background color codes

RED GRN BLU Result

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

Black
Blue
Green
Cyan
Red
Magenta
Brown
White

< <K<K <K<Z2Z2Z2Z2
<<Z2zZ2<<Z2Z2
<Z2<XKZ2<KZ2<Z2

Foreground color codes

Int red grn blu Result

Gray

Light blue
Light green
Light cyan
Light red
Light magenta
Yellow

Bright white

K<< <<X<X<<Z2Z2222222Z
K<<X<ZZZZ2<X<<X<Z222Z
K<ZZ<X<ZZ<X<KZ2Z2<X<X2Z22Z
KZ<XZ<KZ<Z<Z<KZ2<2<Z

=

=

@

2.5 Other status window codes

The following descriptions explain the results of setting the codes in the
field's status window to Y. The default setting for these codes is N.

Code Result

Beep Sounds the terminal's audio beeper (if available) when the end-user
enters unacceptable information into the field based on the field's
validation code.

Comma Inserts a comma to the left of every third digit to the left of a
decimal point in a numeric field.

AutoRet Automatically terminates data entry when the end-user fills the field
with information.

Cursor Automatically terminates data entry when the end-user enters the up or
down cursor movement or cursor arrow keys.

BadC Automatically terminates data entry when the end-user enters a

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

character not conforming to the field's validation code.

Fkey Automatically terminates data entry when the end-user enters one of
the supported function keys.

3 Editor commands

Editor commands are listed here alphabetically according to their description.
There are aternate commands to many of those listed. Please refer to your
Display Manager manuals for more information.

Command description Command

Abandon without saving display Ctrl-OUQ
Beginning of field Ctrl-Us

Beginning of next line RETURN key (Ctrl-M)
Boundary display (all fields) Ctrl-QB

Boundary display (single line) Ctrl-B

Center line Ctrl-OC
Changefield to litera Ctrl-Uz
Change global values/save display Ctrl-OUG
Copy field to cursor location Ctrl-UC
Define input field Ctrl-Ul

Define output field Ctrl-UO
Delete character to left DEL key (Ctrl-H)
Delete character under cursor Ctrl-G
Delete field Ctrl-UG

Delete line Ctrl-QG

Delete word to right Ctrl-T

Down half screen Ctrl-QX
Down one line Ctrl-X

Draw border Ctrl-OB

End of field Ctrl-uD

Insert line Ctrl-Qv

Insert space Ctrl-Vv

Left half screen Ctrl-QS

L eft one space Ctrl-S

Move field right Ctrl-uv

Move field to cursor location Ctrl-UM
Next field Ctrl-UF

Next word Ctrl-F

Prepare documentation for display Ctrl-OUW
Previousfield Ctrl-UA
Previous word Ctrl-A
Renumber fields Ctrl-UR

Right half screen Ctrl-QD

Right one space Ctrl-D

Save display, edit next one Ctrl-OUN
Save display, edit previous one Ctrl-OUP
Save display, edit same one Ctrl-OUS

Save display, return to Main Menu Ctrl-OUT

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

Set status window as default Ctrl-uw

Status window display Ctrl-w
Status window display (constant) Ctrl-QW
Tab TAB key (Ctrl-1)
Template insertion toggle Ctrl-P

Up half screen Ctrl-QE

Up one line Ctrl-E

Video/Color attributes display (*) Ctrl-Y
Video/Color attributes display Ctrl-QY

(* = This command is inoperative in the 8-bit version of Display Manager.)

4 Summary of functions

This section summarizes the Display Manager functions. A syntax line, an
explanation, and, when appropriate, additional information is provided for
each function. Thefollowing isalist of the functions explained in this

section.

Function description Mnemonic
Clear screen CLRSCR

Close display file CLSDIS
Determine data entry termination method ENDF
Determine field position, length, type RETF
Display datain field PUTF
Initialize run-time terminal and program INITDM
Modify field attributes SETF

Open display file OPNDIS

Place cursor in relative field NXTF

Place cursor in specific field POSF

Place display on screen DISPD
Resume data entry RESF
Retrieve/validate user-entered field input GETF
Retrieve/validate field input (with initial value) UPDF
Return run-time terminal attributes RETDM
Set cursor visible/invisible CURS
CLRSCR

Syntax:

<integer variable> = CLRSCR
Explanation:

Clears the screen of the run-time terminal to blanksin all positions.
Always returns zero.

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

Syntax:
<integer variable> = CLSDIS
Explanation:
Closes the currently open display file. Returns zero if close is

successful; otherwise, returns a negative value.

CURS

Syntax:
<string variable> = CURS (<string expression>)
Explanation:

Makes the cursor visible or invisible, provided the run-time terminal
has this feature.

Argument values:
0 Set cursor to visible state
1 Set cursor to invisible state
2 Change current setting
3 Do not change current setting

Return values:

0 Cursorisvisble
1 Cursorisinvisible

Syntax:

<integer variable> = DISPD (<integer expression>)
Explanation:

Places the display you specify on the screen of the run-time terminal.
Argument values:

Display reference number (1 to 250).

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

Return values:

Returns the display reference number if the display is located;
otherwise, returns a negative value.

ENDF

Syntax:
<integer variable> = ENDF
Explanation:
Returns a value indicating how the end-user terminated data entry.
Return values:
0 (ASCII null) Normal termination.
X Abnormal termination. X isthe ASCII value of the invalid character

causing termination.
-n -nisanegative number indicating the function key that was pressed.

GETF

Syntax:
<string variable> = GETF
Explanation:
Returns information entered into the field. Initial field values are

not returned.

INITDM

Syntax:
<integer variable> = INITDM (<string expression>)
Explanation:

Initializes the run-time application program and the run-time
terminal.

Argument values:

Program attributes and terminal control codes for the run-time
terminal must be passed in the following format:

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

<program attributes> / <terminal control codes>
Table 1. Program attributes string

Position Attribute

1 Money symbol

2 Decima delimiter

3 Alphabetic character set
4 Cursor movement keys
5 Clock set

The default value for these program attributesis A.
Return values:

Returns zero if initialization is successful. See your Display Manager
manuals for other possible values.

NXTF

Syntax:
<integer variable> = NXTF (<integer expression>)
Explanation:

Locates the cursor at the beginning of afield you specify in the
argument.

Argument values:

1 NEXT input or output field
2 NEXT input field
3 NEXT output field

10 LAST field in display
20 LAST input field in display
30 LAST output field in display

-1 PREVIOUS input or output field

-2 PREVIOUS input field
-3 PREVIOUS output field

-10 FIRST field in display

-20 FIRST input field in display
-30 FIRST output field in display
Return values:

Returns the field reference number if the field is located; otherwise,
returns a negative value.

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

OPNDIS

Syntax:
<integer variable> = OPNDIS (<string expression>)
Explanation:

Opens a display file you specify. If thereis a display file currently
open, it is closed before the new display file is opened.

Argument values:
Name of display file to be opened.
Return values:
Returns zero if the file is opened successfully; otherwise, returns a

negative value.

POSF

Syntax:

<integer variable> = POSF (<integer expression>)
Explanation:

Places the cursor in a field you specify.
Argument values:

Field reference number of the field to receive the cursor. If zero is
passed, the field reference number of the current field is returned.

Return values:
If thefield islocated or zero is passed as the function argument,
the current field reference number is returned. If zero is passed as

the function argument but no field is current, zero isreturned. If a
specified field cannot be located, a run-time error results.

PUTF

Syntax:

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

<integer variable> = PUTF (<string expression>)
Explanation:

Displays datain the current field.
Argument values:

Information to display in field. Must not exceed 132 characters.
Return values:

Returns zero if the function is successful; otherwise, returns a

negative value.

RESF

Syntax:
<string variable> = RESF (<integer expression>)

Explanation:
Provides a way for your application program to resume data entry in a
field following abnormal termination. This requires that the RESF
function be called twice. Initialy, itiscalled with a negative
argument value that causes Display Manager to 'remember’ the cursor
location and the function (GETF or UPDF) in use at the time. RESF can
then be subsequently called with a corresponding positive value to
restore the cursor to its original location and resume data entry.
Note that data entry does not resume with the original GETF or UPDF
function call issued by your program.

Argument values:
A value (negative or positive) ranging from 1 to 8.

Return values:

Returns the same value as that returned by the original GETF or UPDF
function used to retrieve data from the field.

Syntax:
<string variable> = RETDM

Explanation:

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

Returns values indicating what features are available on the run-time
terminal and the version of the Display Manager run-time library in
use.

Return values:
Returns a 16-character string; only the first 11 characters are used.

Cursor visibility

Half intensity

Inverse video

Flashing field

Underline

User-attribute #1
User-attribute #2
User-attribute #3
Function keys

10 Run-time version number
11 Color/Monochrome indicator

Coo~NoOOOTh,WNPE

Position 1 returns a"1" if the invisible cursor feature is available;
otherwise, "0" isreturned.

Positions 2 through 8 interpret as follows:
Feature is not available.

Feature available; requires Paint method.
Feature available; requires Plant method.

N~ O

Position 9 indicates the number of function keys available.

Position 10 indicates the version of the run-time library currently in
use.

Position 11 returns "0" if the run-time terminal is monochrome; "1" if

the run-time terminal is color-equipped.

RETF

Syntax:
<string variable> = RETF
Explanation:

Returns values indicating the position, length, and type (input or
output) of the current field.

Return values:

Returns a 16-character string; only positions 1, 3,5, 7,and 8 are

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

used.

1 Row number of the current field.

3 Column number where the current field begins.

5 Length of the current field.

7 "0" in this position meansthere is not a space on both sides of the
field. "1" meansthere is a space on both sides of the field.

8 "I" in this position means the current field is an Input field; alpha
"O" means the field is an Output field.

SETF

Syntax:
<string expression> = SETF (<string expression>)

Explanation:
Sets video or color attributes on the run-time terminal.

Argument values:
A 16-character string referring to specific attributes on the run-time
terminal that can be set for the field. The following table shows the
meaning of each character in the string with its normal (default) and

special setting.

Table 2. SETF argument values

Position Attribute Nrm Spc

Video: 1 Invisibility N Y

2 Haf intensity N Y

3 Reversevideo N Y

4 Flashing field N Y

5 Underlining N Y

6 User-defined attribute#1 N Y

7 User-defined attribute#2 N Y

8 User-defined attribute#3 N Y
Color: 9 Fashing N Y
Background color codes:

10 RED N Y

11 GREEN N Y

12 BLUE N Y
Foreground color codes:

13 Intensity N Y

14 Red Y Y

15 Green Y Y

16 Blue Y Y

The value of each position in the string indicates how you want the
attribute set, as follows:

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

Normal setting.

Special setting.

Change current setting (normal to special, or vice versa).
Do not change current setting.

WNEFLO

If the argument contains less than 16 characters, those for which no
code is sent default to ‘3.

Return values:

Returns a 16-character string indicating how attributes are currently
set. The characters correspond to the attributes shown in the
preceding table. If the corresponding position contains "0", the
attribute is in the normal state; if it contains "1", itis in the
specia state.

UPDF

Syntax:
<string variable> = UPDF

Explanation:

Returns the character string entered into the field or its initial
value.

5 Run-time errors

Run-time error codes contain two characters. The first identifies the function
called when the error occurred; the second indicates the nature of the error.
The following list shows the value and the corresponding function of the first
error code character.

Letter Function
CLRSCR
CLSDIS
CURS
DISPD
ENDF
GETF
INITDM
NXTF
OPNDIS
POSF
PUTF
RESF

m RETDM

—XT T oSoDKQTTOD QOO0 TO

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

n RETF
o SETF
p UPDF

The following lists the value of the second error code character and a
description of the error.

Vaue Meaning

Function called prior to calling INITDM.

No display file currently open.

There is no current display on the terminal.

There is no current field in the display on the screen.
Second attempt made to use INITDM function.
RESF argument value is not between 1 and 8.

RESF function not previously called with negative argument value.
Not enough memory to show this display.

Target field of POSF function non-existent.

10 Wrong version of display file.

11 Not avalid display file.

©CoOo~NOOTA~,WNE

EOF

file:/lIC|/...rvation/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM FS. TX T[2/6/2012 4:31:24 PM]

DMPG80.W3 (= Display Manager Programmer's Guide)

- "Display Manager Programmer's Guide"
for the CP/M Family of Operating Systems

First Edition: July 1983

(Retyped by Emmanuel ROCHE.)

--> To be found... <--

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG80.TX T[2/6/2012 4:31:24 PM]

DMPG86.W3 (= Display Manager Programmer's Guide)

- "Display Manager Programmer's Guide"
for the CP/M-86 Family of Operating Systems

First Edition: July 1983

(Retyped by Emmanuel ROCHE.)

Foreword

The "Display Manager Programmer's Guide for the CP/M-86 Family of Operating
Systems" explains how to use Display Manager with Digital Research programming
languages.

This "Programmer's Guide" is designed as a supplement to the "Display Manager
Reference Manual". Y ou need both books to make full use of Display Manager.

Section 1 describes general considerations for installing Display Manager.
This section includes two tables that list and describe files on your Display
Manager distribution disks.

The remaining sections explain how to use Display Manager with application
programs written in one of the Digital Research programming languages
supported by Display Manager.

Tables of Contents

1 Installation guidelines

Getting started
Display Manager distribution files

2 CBASIC Compiler (CB-86) user's guide

Linking CBASIC Compiler programs
CBASIC Compiler externa declarations
Function arguments and return values
Sample program (SAMPLE.BAS) listing

3 PL/1-86 user's guide

Linking PL/1-86 programs

PL/1-86 external declarations

Function arguments and return values
Minimizing data space in PL/I-86 programs
Sample program (SAMPLI.PLI) listing

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

4 Pascal/MT+86 user's guide

Linking Pascal/MT+86 programs
Pascal/MT+86 external declarations
Function arguments and return values
Specia Pascal/MT+86 functions
INTSTR function
FPSTR and BCDSTR functions
INTVAL function
FPVAL and BCDVAL functions
DMALLO function
Sample program (SAMPAS.PAY) listing

Section 1. Installation guidelines

This section explains how to install Display Manager with an operating system
in the CP/M-86 family of Operating Systems. You must complete the steps
described below before you can use this productivity tool.

Getting started

1. Make a copy of your Display Manager distribution disks. Store the
original disks in asafe place, and use the copy for all future
processing.

2. Read the licensing agreement that comes with Display Manager. Complete
the warranty/registration card, and return itto Digita Research.
This registers you with our Customer Serviceand Technical Support
departments. Then, you will be sure to receive news of changes madein
the product.

3. Study your Display Manager documentation to become familiar with its
contents and organization.

4. Display the directories of the disk copiesmade in Step 1. Your disks
must contain the files listed in the following table. In the table,
files are listed alphabetically by filename. This makesit easy to
match them against your disk. If any Display Manager files are
missing, contact Digital Research immediately.

5. Study the two tables in this section to determine which files you need
for your particular situation. Then, configure one or more disks
(preferably new disks containing an operating system) with the Display
Manager files you require. For example, you might have one disk
containing the terminal setup program and associated files, another
containing the Editor program, and yet another containing the Run-time
Library modules.

6. Create the Editor program for your design termina by running the
DMSET program. When you have completed this step, you are ready to

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

begin using the Editor to design displays.

Display Manager distribution files

The following tables list the files that should be on your distribution disks,
with an explanation of what each file contains.

Table 1-1. Display Manager required files

Format: Filename
File description

DMCB.L86
The Run-time Library containing Display Manager functions used in CBASIC
Compiler (CB-86) source programs.

DMDRC.L86
The Run-time Library containing Display Manager functions used in small or
compact storage model C language source programs.

DMDRCBIG.L86
The Run-time Library containing Display Manager functions used in medium and
big storage model C language source programs.

DMEDHLP.OVR and DMEDOVR.OVR
Program overlays used with the Editor. Use DMEDHLP.OVR for extended help. Use
DMEDOVR.OVR for limited help.

DMEDU.CMD

The origina version of the Editor program. Note that this version has not
been created for use with any design terminal. See "Option E--Create Editor
for Design Termina" in Section 3 of your "Display Manager Reference Manual".

DMEXTR.BAS
Contains external declarations of Display Manager functions used with CBASIC
Compiler (CB-86) source programs.

DMEXTR.C
Contains external declarations of Display Manager functions used with Digital
Research C source programs.

DMEXTR.PAS
Contains external declarations of Display Manager functions used with
Pascal/MT+86 source programs.

DMEXTR.PLI
Contains external declarations of Display Manager functions used with PL/I-86
source programs.

DMPASC.ERL

The Run-time Library containing Display Manager functions used in Pascal/M T+86
source programs.

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

DMPLI.L86
The Run-time Library containing Display Manager functions used in PL/I-86
source programs.

DMSET.CMD

Terminal setup program. Thisfile is used to create the Editor for the design
terminal, create afile of terminal control codes, change termina control
codes in the file, and other functions. DMSET.CMD s fully described in
Section 3 of your "Display Manager Reference Manual™.

DMSET.OVR, DMSET1.OVR, DMSET2.0VR, DMSET3.0VR, DMSET4.0VR, and DMSET5.0VR
Various program overlays used by the terminal setup program. These files must
be on the same disk as the DMSET program.

TERMS.DM

A file containing the terminal control codes for terminals used with Display
Manager. Appendix A of your "Display Manager Reference Manual" describes this
file and the codes contained therein. This file must be on the same disk as

the DMSET program.

Y our distribution disks also contain other files that are not critical to the
operation of Display Manager. These include sample programs and aids. These
files are listed and explained in the following table.

Table 1-2. Other Display Manager files

Format: Filename
File description

INSTALL.BAS

The source code for a program written in CBASIC Compiler. This program is
designed for use in the run-time environment, to help the end-user set up the
run-time terminal. The program uses the terminal control codes in the TERMS.DM
file. You can make whatever changes you want to this program, and distribute

it with your complete application programs.

ORDERS.DIS
A Display Manager display file containing displays used by the sample programs
described later in this table.

PARTS.LST
A datafile also used by the sample programs.

READ.ME
If present, this file contains information supplemental to your Display
Manager documentation. Read this file before using Display Manager.

SAMDRC.C
A sample program, the same as SAMPLE.BAS, but written in Digital Research C.

SAMPAS.PAS
A sample program, the same as SAMPLE.BAS, but written in Pasca/MT+86. When

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

compiling this program, use the $B toggle, and link with BCDREALS.ERL and
FULLHEAP.ERL.

SAMPLE.BAS
The source code for asample program coded in CBASIC Compiler. You can
examine, modify, and use this program in any way you want.

SAMPLE.CMD
A compiled form of SAMPLE.BAS. Y ou can run this program by following these two

steps:

1. Use the DMSET program to write the terminal control codes for your
terminal into a file named CURRENT.TRM.

2. Type SAMPLE and press RETURN at your Operating System prompt.

SAMPLI.PLI
A sample program, the same as SAMPLE.BAS, but written in PL/I.

Section 2: CBASIC Compiler (CB-86) user's guide

This section explains how to use Display Manager with application programs
written in CBASIC Compiler.

Linking CBASIC Compiler programs

To link a CBASIC Compiler program to the Display Manager Run-time Library, use
the following command format in response to your Operating System prompt:

LINK86 <program name>,DMCB.L86

where <program name> is replaced by the name of the object module produced by
CBASIC Compiler. For example, tolink a program named MY PROG, use the
following command line:

LINK86 MY PROG,DMCB.L86

Because DMCB.L86 is an indexed, relocatable library, the linker placesit in
the root module, in the event that |anguage overlay structures are used.

CBASIC Compiler externa declarations

CBASIC Compiler requires that you explicitly declare external functions.

External functions are those not coded in the source program, but referenced

by it. Thefile DMEXTR.BAS contains external declarations for al Display
Manager functions. Use the %INCLUDE feature of CBASIC Compiler to make these
external declarations a part of your application program.

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

Note: The %INCLUDE statement must precede any calls to Display Manager
functions in your application program source code. Refer to the program
listing at the end of this section for an example.

Function arguments and return values

Numeric values used as function arguments, or returned to your application
program, must be of type integer. You can declare them with the INTEGER
statement, or follow the name with a percent sign, %.

Character values used as function arguments, or returned to your application
program, must be of typestring. You can declare them with the STRING
statement, or follow the name with a dollar sign, $.

The following example illustrates how you should declare function arguments
and return values.

INTEGER Int.Vaue
STRING Str.Vaue

INIT% = INITDM (Str.Vaue) REM INIT% isan integer

Moreln$ = RESF (Int.Value) REM MORE.IN$ isa string

Sample program (SAMPLE.BAS) listing

The following listing shows the source code for program SAMPLE.BAS, which is
provided on your distribution disks. The program is written in CBASIC Compiler
language; you can modify or use it in any way you want. Thislisting is for
reference only. Always treat the program on your distribution disks as the
definitive version.

Listing 2-1. SAMPLE.BAS source code

REM
REM oo
REM
REM DISPLAY MANAGER -- CBASIC COMPILER SAMPLE PROGRAM
REM
REM JUNE 1, 1983
REM
REM oo
REM
REM All data entered with GETF and UPDF isin string form
REM
REM oo oo oo
STRING \
CUSTOMER, \ Customer name

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

ADDRESS, \ Address

CITY, \ City

STATE, \ State

ZIP, \ Numeric value
PHONE, \ Numeric value

PAYMENT(1), \ Method of payment, and account number
QTY(D), \ Quantity of each item

DESCRIPTION(2), \ Item description

PART.NO(1), \ 5 numeric digits (checked for validity)
PRICE.EA(1), \ Normal priceinserted, but may be sale price
TOTAL(2) \ QTY * PRICE.EA

REM —-- oo oo oo e

REM Constants and arrays used by the program...

REM = o m oo oo o e e e e
ON$ ="0" REM Make afield visible
OFF$="1" REM Make afield invisible
LST.SZ% =50 REM Size of parts list
TABS$=" ! REM Tabs for output
DIM \

PAYMENT(1), \ Account number is second value
QTY(4), \ Only 5 different items allowed on one order
DESCRIPTION(4), \

PART.NO(4), \

PRICE.EA(4), \

TOTAL(4), \

PART.LST$(LST.SZ%,1),\

PRICE$(LST.SZ%) \

REM oo

REM

REM Include the Display Manager runtime library definitions

REM

REM oo
%INCLUDE DMEXTR.BAS

REM oo

REM

REM Get termina control code from "CURRENT.TRM" file

REM

REM oo
IF END # 1 THEN ERR1 REM If no file present, abort program
OPEN "CURRENT.TRM" AS 1
READ # 1, TERM$ REM Read the terminal control code
CLOSE 1 REM Close thefile

REM oo oo oo

REM Set up the Part Number List for the Help screen

REM —-- - oo oo e
IF END # 2 THEN ERR2 REM If no file present, abort program
OPEN "PARTS.LST" AS2
IF END #2 THEN S.LS REM Test for end of file

FORCNT% =0TOLST.SZ%- 1 REM Loop to build list of part numbers

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

READ # 2; PART.LST$(CNT%,0),PART.LST$(CNT%,1),PRICES(CNT%)

NEXT

SLSPART.LSTH(CNT% + 1,0) =" REM When end of list reached,
CLOSE 2 REM closethefile.

REM oo

REM

REM Assign display reference numbers to displays

REM

REM (these can be changed as neededby your program)

REM

REM oo
PHONE.ORDER% = 1 REM Order Form display
HELP% = 2 REM Part Number reference display

REM oo

REM

REM ERROR MESSAGES FOR FATAL DISPLAY MANAGER ERRORS

REM

REM oo

INIDM$ = "ERROR: Initialization failure"
OPNIS$ = "ERROR: Display file not found"
DISD$ = "ERROR: Display not found"

POS$ = "ERROR: Field missing"

NXT$ = "ERROR: Next field missing"

PUT$ = "ERROR: Write to field failure"
CURS$ = "ERROR: Cursor On/Off failure"
CLSDIS$ = "ERROR: Can't close display file"

REM kkhkkhkkkkhhkkkhhkhkkhhkhkkhhkhkkhkhkkhkhhkhkhhkhkhhkhkhhkhkkhhkhkhhkhkhhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkkhkkkhkkk,kkk,kkx***%

REM
REM ALL NON-DISPLAY MANAGER FUNCTIONS ARE DEFINED HERE...
REM

REM kkhkkhkkkkhhkkhkkhhkkhkkhhkhkkhhkhkkhkhkkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhkhkkhkhkkhkhkkhkhhkkhkhkkkhkkkhkkk,kkk,kkxk**%

REM

REM Thisroutine checks the value returned by any Display Manager
REM function. Most functions return -1 if an error occurs. These
REM arefatal errors, so the program is aborted.

REM
REM oo
DEF DM.ERR(F.RET%,ERR.TY PE$)
IF F.RET% >= 0 THEN RETURN REM Not an error
PRINT : PRINT REM Clear some space for err
PRINT ERR.TYPE$ REM Output message
STOP REM Fatal, so quit
FEND
REM oo
REM
REM Thisroutine checks to see if the entered part number exists
REM
REM oo

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

DEF SEARCH(PART.NO$)
INTEGER SEARCH REM Return array position
FOR CNT% = 0TO LST.SZ%- 1
IF PART.LST$(CNT%,0) = PART.NO$ \
THEN SEARCH = CNT% : \
RETURN
IF PART.LST$(CNT%,0) = " \
THEN GOTO ELST

NEXT
ELST: SEARCH =-1
FEND
REM oo
REM
REM Data entry routine
REM
REM oo
DEF GET.ENTRY
STRING GET.ENTRY
RET.ERR% = NXTF(2) REM Move to next input field
CALL DM.ERR(RET.ERR%,NXTF$) REM Check for error in func
ATTR$ = SETF(PRM.ON$) REM Turn on the prompt
INP$ = GETF REM Get field input
CONT: IF ENDF = 27\ REM ESC key to exit?
THEN CALL SETF ("000000") :\ REM Y es-Reset attributes
CALL CLRSCR :\ REM Clear the screen
RET.ERR% = CLSDIS:\ REM Close display file
CALL DM.ERR(RET.ERR%,CLSDIS$) : \
STOP
IF ENDF <> 0 AND ENDF <> 26\ REM Normal end, or *Z entered?
THEN GOTO RETR REM No-ignore char and cont...
GET.ENTRY = INP$ REM Y es-Store the input
ATTRS$ = SETF(PRM.OFF$) REM turn off the prompt
RETURN REM Go back
RETR: RET$ = RESF(-1) REM Save curr. field position
REM RET.ERR% = PUTF(INP$ + PROMPT$) REM Replace datain field
REM CALL DM.ERR(RET.ERR%,PUTF$) REM Check for error...
INP$ = RESF(1) REM Resume input in org field
GOTO CONT REM Continue data entry...
FEND
REM oo
REM
REM Display error or help message
REM
REM oo
DEF ERR.M SG(POS%,0ONOFF$)
RET% = POSF(0) REM Store current field numb.
RET.ERR% = POSF(POS%) REM Move curs. to spec. field
CALL DM.ERR(RET.ERR%,POSF$%) REM Check for error
ATTRS$ = SETF(ONOFF$) REM Turn message OFF or ON
RET.ERR% = POSF(RET%) REM Return to original pos.
CALL DM.ERR(RET.ERR%,POSF$) REM Check for error
FEND

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

REM kkhkkhkkkkhkkhkkhhkkhkkhhkhkkhhkhkkhkhkkhkhhkhkhhkhkkhhkhkkhhkhkkhhkhkhhkhkhhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkkhkkkhkkk,kkk,kkx***%

REM

REM PROGRAM MAINLINE BEGINS HERE...

REM

REM ****%kkkkkhkkhkhhkhkhhhhhhhhkhhhrhhhhkhhhkhhhhhhhhkhhhkhhhrhhhhkhkhrhkhkrhk
RET.ERR% = INITDM(TERM$) REM Init Terminal and Library
CALL DM.ERR(RET.ERR%,INITDM$) REM Check for error
AVAIL.ATTR$ = RETDM REM Get terminal attributes

IF MID$(AVAIL.ATTRS$,3,1) <>"0"\ REM If inv. video available,
THEN PRM.ON$ = "031" : \
PRM.OFF$ = "330" : \ REM use for prompts.
ELSE PRM.ON$="0" :\ REM Otherwise,
PRM.OFF$ = "3" REM justinitials.

REM - - oo oo e e e e
REM Open display file, show it, and position to the first field
REM —-- - oo oo e
RET.ERR% = OPNDIS("ORDERS.DIS") REM Open display file
CALL DM.ERR(RET.ERR%,0OPNDIS$) REM Check for error
L OOP:RET.ERR% = DISPD(PHONE.ORDER%) REM Show Phone Order display
CALL DM.ERR(RET.ERR%,DISPD$) REM Check for error
RET.ERR% = NXTF(-10) REM Put cursor in first field
CALL DM.ERR(RET.ERR%,NXTF$) REM Error check
PROMPTS$ =" " REM Initials

REM - oo oo oo

REM If inverse video available, use for all prompts; otherwise, underline

REM oo oo oo
CUSTOMER = GET.ENTRY REM Use the Data Entry routine
ADDRESS = GET.ENTRY REM to enter data for these
CITY = GET.ENTRY REM fields...
STATE = GET.ENTRY REM
ZIP= GET.ENTRY REM
PHONE = GET.ENTRY REM

PAYM:PAYMENT(0) = GET.ENTRY REM Payment code must be A, B,
IF MATCH(PAYMENT(0),"ABC",1) =00OR\ REM or C only.

PAYMENT(Q) ="" \ REM If not A, B, or C,

THEN CALL ERR.MSG(100,0N$%) : \ REM display error message,
RET.ERR% = NXTF(-2) : \ REM cursor to previous
CALL DM.ERR(RET.ERR%,NXTF$) :\ REM input field,

GOTO PAYM \ REM and retry.

ELSE RET.ERR% = NXTF(3) : \ REM Code o.k., next outp field

CALL DM.ERR(RET.ERR%,NXTF$) REM Check for error
IF PAYMENT(0) = "A" \ REM If payment on Account,

THEN RET.ERR% = PUTF("CCOUNT") :\ REM complete the word,
CALL DM.ERR(RET.ERR%,PUTF$) : \ REM check for errors,
PAYMENT(1) = GET.ENTRY \ REM and get account number.

ELSE IF PAYMENT(0) = "B" \ REM If payment by bank card,

THEN RET.ERR% = PUTF("ANK CARD") :\ REM complete the word,
CALL DM.ERR(RET.ERR%,PUTF$) : \ REM check for errors,
PAYMENT(1) = GET.ENTRY \ REM and get account number.

ELSE IF PAYMENT(0) = "C" \ REM If Cash On Délivery,

THEN RET.ERR% = PUTF(".O.D."):\ REM complete the word,

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

CALL DM.ERR(RET.ERR%,PUTF$) REM check for errors.

CALL ERR.MSG(100,0FF$) REM Turn message off
REM o oo oo
REM Get ready to take the order...

REM o oo oo
RET.ERR% = POSK(75) REM Move cursor to msg field
CALL DM.ERR(RET.ERR%,POSF$) REM Check for error
ATTR$ = SETF("0") REM Make the field visible
PROMPTS$ =" " REM Initial characters
ORDER.NO% =0 REM Init to first of 5 possi-

REM ble order entry items.
ORDR:QTY (ORDER.NO%) = GET.ENTRY REM Get quantity for this item

IF QTY(ORDER.NO%) = "0" THEN GOTO TTLS REM If O, order is complete
DESCRIPTION(ORDER.NO%) = GET.ENTRY REM Get item description

CALL ERR.MSG(76,0N$) REM Turn on ~Z reference msg
PART:PART.NO(ORDER.NO%) = GET.ENTRY REM Get part number (PN)
HRET:IF ENDF = 26\ REM If ~"Z entered,

THEN GOTO HELP REM show parts list display.

PART% = SEARCH(PART.NO(ORDER.NO%)) REM Otherwise, find PN in list
IF PART% = -1\ not valid part number ~ REM If part number not found,
THEN CALL ERR.MSG(101,0N$) : \ REM show the error message,

RET.ERR% = NXTF(-2) : \ REM replace cursor in field,
CALL DM.ERR(RET.ERR%,NXTF$) :\ REM check for error,
GOTO PART REM and try again...
CALL ERR.MSG(101,0FF$%) REM Turn error message off
CALL ERR.MSG(76,0FF$) REM Turn "Z message off
RET.ERR% = NXTF(2) REM Move cursor to Pricefield
CALL DM.ERR(RET.ERR%,NXTF$) REM
RET.ERR% = PUTF(PRICE$(PART%)) REM Display the price
CALL DM.ERR(RET.ERR%,PUTF$) REM
ATTRS$ = SETF(PRM.ON$) REM Turn on the prompt
PTRY :PRICE.EA(ORDER.NO%) = UPDF REM if CR, get initial value
REM —-- - oo oo e
REM The pricefield does not trap bad characters or the ESC key
REM = mm o e e oo e e
ATTRS$ = SETF(PRM.OFF$) REM Turn off the prompt
RET.ERR% = NXTF(3) REM Move cursor to total field
CALL DM.ERR(RET.ERR%,NXTF$) REM Check for errors

TOTAL(ORDER.NO%) = STR$(VAL(QTY (ORDER.NO%)) * \
VAL (PRICE.EA(ORDER.NO%))) REM Compute total for item
RET.ERR% = PUTF(TOTAL (ORDER.NO%)) REM Show the item total

CALL DM.ERR(RET.ERR%,PUTF$) REM
ORDER.NO% = ORDER.NO% + 1 REM Get ready for next item
IF ORDER.NO% < 5 THEN GOTO ORDR REM Up to 5 items accepted
REM —-- - oo oo e
REM Compute the total sale amount
REM oo oo oo
ORDER.NO% = 4 REM Initialize loop control
REM (0 to 4 for 5 items)
TTLS:SALE=0 REM Init the sale amount
FOR CNT% = 0 TO ORDER.NO% REM
SALE = SALE + VAL(TOTAL(CNT%)) REM Add each item total
NEXT REM

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

RET.ERR% = POSF(26) REM Put cursor in Total Sale

CALL DM.ERR(RET.ERR%,POSF$) REM Check for error
RET.ERR% = PUTF(STR$(SALE)) REM Write Total Sale amount
CALL DM.ERR(RET.ERR%,PUTF$) REM Check for error
RET.ERR% = NXTF(20) REM Move to last input field
CALL DM.ERR(RET.ERR%,NXTF$) REM
ATTR$ = SETF("0") REM Make the field visible
RET$ = GETF REM wait for CR to be entered
IF ENDF = 27\ REM If ESC entered,
THEN GOTO DONE REM that's all, folks!
REM oo
REM

REM This program does not output the order information to a storage file.
REM Insert your output routing(s) here to create a file with the order
REM information...

REM

REM oo

REM
REM The following subroutine restores the original form to the screen
REM after the part numbers help screen has been shown. (See "HELP" below.)
REM This routine restores all information to the screen that was previously
REM entered by the end-user.
REM
REM oo
DEF WRITEF(OUT$)
RET.ERR% = NXTF(2) REM Move to next input field
CALL DM.ERR(RET.ERR%,NXTF$) REM Check for error
ATTR$ = SETF("0") REM Make thefield visible
RET.ERR% = PUTF(OUTS$) REM Show old datain field
CALL DM.ERR(RET.ERR%,PUTF$) REM Check for error
RET$ = RETF REM Get current field specs
IF POSF(0) =8 \ REM If cursor isin Payment
THEN RET.ERR% = NXTF(3) :\ REM field, move to next
CALL DM.ERR(RET.ERR%,NXTF$) : \ REM output field.
RET.ERR% = PUTF(MID$(OUT$,2,LEN(OUTY))) : \ REM Display
CALL DM.ERR(RET.ERR%,PUTF$)

REM

REM The following routine show the part numbers from the PARTS.LST file
REM when the end-user enters ~Z on the order form. This routine also

REM restores the original order form to the screen following the display

REM of the part numbers list. Also, note the use of the WRITEF routine
REM immediately above in restoring the original display.

REM

REM oo

HELP:RET$ = RESF(-1) REM Save current field no.
CALL CURS("1") REM Make cursor invisible
RET.ERR% = DISPD(HEL P%) REM Put HEL P display on screen

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

CALL DM.ERR(RET.ERR%,DISPD$) REM Check for error

FIRSCNT% =0 REM Initialize counter
PAGE% = 0 REM Init screen line count
NXTL:RET.ERR% = POSF(CNT% + 1) REM Place cursor in field
CALL DM.ERR(RET.ERR%,POSF$) REM Check for error

IF PART.LSTS(CNT% + PAGE%,0) <>""\ REM Display al itemsin list
THEN TEMP$ = PART.LST$(CNT% + PAGE%,0) + TABSS$ + \
PART.LST$(CNT% + PAGE%,1) : \
RET.ERR% = PUTH(TEMPS) : \
CALL DM.ERR(RET.ERR%,PUTF$) : \
CALL SETF("0") \
ELSE CNT% = -1

CNT% = CNT% + 1 REM Bump the counter
IF CNT% <> 0 AND CNT% < 22 REM End-list or screen full?
THEN GOTO NXTL REM No-display next line

RET.ERR% = POSF(100) REM Y es-cursor to end message

CALL DM.ERR(RET.ERR%,POSF$) REM Check for error
HRTR:RET$ = GETF REM Get end-user's response

IF RET$ = CHR$(27) THEN GOTO REDS REM ESC, redisplay order form

IF RET$ <> CHR$(26) \ REM If not ~Z,

THEN GOTO HRTR REM retry input response.

IF CNT% = 0 THEN GOTO FIRS REM If end of list, start over

PAGE% = PAGE% + 21 REM Otherwise, next page

CNT% =0 REM Re-initialize counter

GOTO NXTL REM Display the lines
REM o oo oo
REDS.RET.ERR% = DISPD(PHONE.ORDER%) REM Bring back original disp

CALL DM.ERR(RET.ERR%,DISPD$) REM

RET.ERR% = NXTF(-10) REM Put cursor in first field

CALL DM.ERR(RET.ERR%,NXTF$) REM of display.

CALL WRITEF(CUSTOMER) REM WRITEF replaces original

CALL WRITEF(ADDRESS) REM datain each field.

CALL WRITEF(CITY) REM

CALL WRITEF(STATE) REM

CALL WRITEF(ZIP) REM ...

CALL WRITEF(PHONE) REM

ON MATCH(PAYMENT(0),"ABC",1) GOTO ACCT,BANK,PCOD
ACCT:CALL WRITEF("ACCOUNT")
CALL WRITEF(PAYMENT(L))
GOTO HCON
BANK:CALL WRITEF("BANK CARD")
CALL WRITEF(PAYMENT(1))
GOTO HCON
PCOD:CALL WRITEF("C.O.D.") REM Cash On Delivery
RET.ERR% = NXTF(2)
CALL DM.ERR(RET.ERR%,NXTF$)

HCON:CALL ERR.MSG(75,0N$%) REM Turn on the exit message
FOR CNT% = 0 TO ORDER.NO% - 1 REM For each COMPLETED item

CALL WRITEF(QTY (CNT%)) REM in order, redisplay QTY,
CALL WRITEF(DESCRIPTION(CNT%)) REM description,
CALL WRITEF(PART.NO(CNT%)) REM part number,
CALL WRITEF(PRICE.EA(CNT%)) REM and unit price.
RET.ERR% = NXTF(3) REM Move cursor to Total field
CALL DM.ERR(RET.ERR%,NXTF$) REM

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

RET.ERR% = PUTF(TOTAL(CNT%)) REM and redisplay the total.
NEXT REM Continue for all COMPLETED items
CALL WRITEF(QTY (ORDER.NO%)) REM For the INCOMPLETE item,
CALL WRITEF(DESCRIPTION(ORDER.NO%)) REM redisplay quantity, des-
CALL WRITEF(PART.NO(ORDER.NO%)) REM cription, and part number.
CALL SETF(PRM.ON$) REM Turn on the prompt
CALL CURS("0") REM Make the cursor visible
PART.NO(ORDER.NO%) = RESF(1) REM Replace cursor in field
CALL SETF(PRM.OFF$) REM Turn off the prompt
GOTO HRET REM and resume where entry left off...

REM oo

REM If thereisno CURRENT.TRM file on the disk...

REM o oo oo

ERRL:PRINT "ERROR: No current terminal file" REM Print error messages
PRINT "(put control code in 'CURRENT.TRM")"

STOP REM Stop program

REM oo

REM If thereisno PARTS.LST file on the disk...

REM oo oo oo

ERR2:PRINT "ERROR: No part no. reference file" REM Print error message
STOP REM Stop program

REM oo

REM

REM NORMAL PROGRAM TERMINATION

REM

REM oo

DONE:CALL SETF ("000000") REM Reset terminal attributes
CALL CLRSCR REM Clear the screen.
RET.ERR% = CLSDIS REM Close display file
CALL DM.ERR(RET.ERR%,CL SDIS$) REM Check for err during close
STOP REM Return to Operating System

Section 3: PL/I-86 user's guide

This section explains how to use Display Manager with application programs
written in PL/1-86.

Linking PL/1-86 programs

To link a PL/I-86 program to the Display Manager Run-time Library, use the
following command format in response to your Operating System prompt:

LINK86 <program name>,DMPLI.L86[S)
where <program name> is replaced by the name of the object module produced by

the PL/I-86 compiler. For example, to link a program named MY PROG, use the
following command line:

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

LINK86 MY PROG,DMPLI.L86[S]

PL/I-86 external declarations

PL/I-86 requires that you explicitly declare external functions. External
functions are those not coded in the program source code, but referenced by

it. The file DMEXTR.PLI contains external declarations for all Display Manager
functions. Use the %INCLUDE feature of PL/I-86 to make these external
declarations a part of your application program. See the listing at the end of
this section for an example.

Function arguments and return values

You must declare numeric values that are used as function arguments, or that
are returned to your application program, as 15-bit, signed, fixed-length,
binary variables.

Y ou must declare character values that are used as function arguments, or that
are returned to your application program, as character varying variables.

The following example illustrates how you should declare function arguments
and return values.

DECLARE Arg_Int FIXED BINARY(15), /* Integer */
Ret_Str CHARACTER(80) VARYING; /* String */

Ret_Str = RESF (Arg_Int);

Minimizing data space in PL/I-86 programs

The PL/I-86 compiler compares the arguments for each function call with the
origina argument definition. If you call a function with a string size other

than that of the original string, the compiler allocates enough space to copy

the string in the function call. Because the compiler alocates this space for

each function call, large amounts of memory space can be used very quickly. To
avoid this when calling the PUTF function, assign the argument to a global
string before making the call. This assignment ensures that the compiler does
not allocate extra space. For example,

DCL Glob_Str CHAR(132) VAR; /* PUTF's argument isaso */
[* declared as 132 bytes. */

Glob_Str = Mystring;

CALL PUTF (Glob_Str); /* No extra space allocated */

élob_Str = "Thisistext for PUTF";
CALL PUTF (GlOb_StI‘), /* Aga| n’ no extraspace */

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

This technique is not necessary for the other Display Manager functions,
because they require only a few bytes.

When using the INITDM function, declare the string that passes the terminal
control codes in the following way:

CHAR(254) VAR.

This ensures that the PL/I-86 compiler does not create extra space, and saves
the copying time. For example,

DCL InitStr CHAR(254) VAR,
}; Put control codesin INITSTR here... */

IF InitDM(InitStr) < 0 THEN
GOTO Err_Cond;

Sample program (SAMPLI.PLI) listing

The following listing is the source code for a sample program written in PL/I-
86. Your distribution disks provide the code in the file named SAMPLI.PLI.
This listing is for reference only. Always consider the program on your
distribution disks as the definitive version.

Listing 3-1. SAMPLI.PLI source code
program: PROC options(main);

%replace onn by '0'; /* Make afield visible. */
%replace off by '1'; /* Make afield invisible. */
%replace Ist_sz by 50; /* size of parts list */

/* Include the Display Manager runtime library definitions. */
%include 'dmextr.pli';
/¥ 12345678901234 */
dcl tabs static char(14) init(' "); [*tabs for output */

dcl
(phone_order,
order_no,
page,
part_fbl5,
cnt,
CLRSCR ret,
ret,
ret_err,
helpf) fixed;

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

dcl
(qty_dec, [/* quantity of each item */
price_ ea dec) /* normal price output, but there may be a sale */
fixed dec (6,2); /* max is9,999.99 */
dcl
total_dec(0:4) I* QTY times PRICE_EA */
fixeddec (7,2); /* maxis99,999.99 */
dcl
sale dec fixed dec (8,2); /* max is999,999.99 */

dcl term250_str char (250) var;
dcl putf132_str char(132) var;

dcl
(initdm_str,
temp,
retf60_str,
dispd_str,
opndis_str,
posf_str,
nxtf_str,
putf_str,
cur_str,
CLSDIS str,
customer, /* customer name */
address,
city,
State,
zip, /* vaidated for numerical value */
phone, [* numerical */
payment(0:1), /* method of payment and account no. */
qty(0:4), /* quantity of each item */
price_ea(0:4), /* norma price output, but there may be a sale */
total (0:4), I* QTY times PRICE_EA */
sale, /* max is999,999.99 */
description(0:4), /* brief written description */
part_no _chr60(0:4), /* 5-digit number, checked for validity */
part_Ist(O:lst_sz,0:1),
price(lst_sz)) char(60) var; /* All data entered w/ GETF &
UPDF isin string form. */

dcl
(prm_off,
prm_on,
retf16_str,
avail_attr)
char(16) var;

dcl
curstat char(l) var ;

dcl

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

(file 1,
file 2) file;

/***/

[* Thefollowing corresponds to lines 34- 64 in the CB-80 sample program. */

/***/

I* Get the screen-handling control code from the installation file. */
on undefinedfile (file_1)
gotoerrl; /* noterm file, abort */
on endfile (file_1) goto errl;
open file (file_1) stream input title(‘current.trm’);
get file (file_1) edit(term250_str) (a);
closefile (file_1);

[* Set up the list of part numbers. */
on undefinedfile (file_2) goto err2; /* noinput file, abort */
open file(file_2) stream input title('parts.Ist’);
on endfile (file 2) goto s Is,
do cnt=0to Ist_sz-1,

get file(file_2) list(part_Ist(cnt,0),part_lst(cnt,1),price(cnt));
end;

s s
part_Ist(cnt+1,0)="; /* indicates end of list */
closefile(file_2);

[* Assign display numbers. These can be changed as needed. */
phone order=1; /* maindisplay */
helpf=2; /* main part number reference */

[* Set error output messages for fatal Display Manager errors. */
initdm_str="ERROR: Initialization failure’;

opndis_str="ERROR: Display file not found’;

dispd _str="ERROR: Display not found',

posf_str="ERROR: Field missing’;

nxtf_str="ERROR: Next field missing’;

putf_str="ERROR: Write to field failure’;

cur_str="ERROR: Cursor On/Off failure’

CLSDIS str="ERROR: Can"t close display fil€;

/***/

[* Thefollowing corresponds to lines 65-122 in the CB-80 sample program. */

/***l

[* Most DM functions return -1 if thereis an error. */
[* They are fatal, so abort. */
dm_err: PROC (f_ret,err_type);
dcl
err_type char(60) var,
f ret fixed;
if f_ret>=0 then

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

return; [* not an error */
put skip(2) list(err_type);
stop; /* It'sfatal, so abort. */
end dm_err;

* 1f the part number exists, return it. */
search: PROC (part_no_chr60) returns(fixed);
dcl
part_no_chr60 char(60) var;
docnt=0to Ist_sz-1; /* returnsthe array index */
if part_Ist(cnt,0)=part_no_chr60 then
return(cnt);
if part_Ist(cnt,0)="then
go to elst;
end;
elst:
return(-1);
end search;

[* Move relative to the next input field, turn on the prompt, & get input. */
get_entry: PROC returns(char(60) var);
dcl inp60_local char(60) var;
ret_err=nxtf(2); /* next input field */
call dm_err(ret_err,nxtf_str);
avail_attr=setf(prm_on); /* Turn on the prompt. */
inp60_local=getf(); /* Input from the field. */
cont:
if endf()=27 then /* escape key to exit */
do;
CLRSCR_ret = CLRSCR(); /*added11-8*/
ret_err=CLSDIS();
call dm_err(ret_err,CLSDIS str);
stop,
end;
if endf()"=0 & endf()"=26 then /* control character, not ctrl-Z */
go to retr; /* Ignore the character and continue. */
avail_attr=setf(prm_off); /* Turn off the prompt. */
return(inp60_local);
retr:
retf60_str=resf(-1); /* Save the position. */
inp60_local=resf(1); /* Resume input. */
gotocont; /* Continue. */
end get_entry;

err_msg: PROC (pos,onoff);
dcl
pos fixed,
onoff char(1);
ret=posf(0); /* Store the current position. */
ret_err=posf(pos);
call dm_err(ret_err,posf_str);
avail_attr=setf(onoff); /* Turn the message on/off. */
ret_err=posf(ret); /* Return to the origina position. */
call dm_err(ret_err,posf_str);

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

end err_msg;

/***/

* START PROGRAM HERE */

/***/

/***/

[* The following corresponds to lines 123-232 in the CB-80 sample program. */

/***l

ret_err=initdm(term250_str); /* Initialize the library. */
call dm_err(ret_err,initdm_str);
avail_attr=retdm(); /* Which CRT attributes are available? */
if substr(avail_attr,3,1)*='0"then /* If inverse video is supported */
do;
prm_on='031",
prm_off="330; /* then use it for prompts */
end;
else
do;
prm_on='0';
prm_off='3; /* just initials */
end;

/* Open the display file, show it, and move to the first field. */
ret_err=opndis('ORDERS.DIS); /* Open thefile. */
cal dm_err(ret_err,opndis_str);

loop:
ret_err=dispd(phone_order); [* Show the display. */
call dm_err(ret_err,dispd_str);
ret_err=nxtf(-10); [* 1st field */

call dm_err(ret_err,nxtf_str);

/* All prompts are inverse video if possible, or underlined otherwise. */
customer=get_entry(); /* Use relative movement */
address=get_entry(); /* and GETF */
city=get_entry();
state=get_entry(); /* alphabetic only */
zip=get_entry(); /* numerical validation by DM */
phone=get_entry();
paym:
payment(0)=get_entry(); /* A, B, or Conly */
/* A null string is also not a valid entry. */
if index('ABC',payment(0))=0"! payment(0)=" then
do;
call err_msg(100,0nn);
ret_err=nxtf(-2);
call dm_err(ret_err,nxtf_str); /* Output an error message */
go to paym; [* and re-try. */
end;
else
do;

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

ret_err=nxtf(3);
call dm_err(ret_err,nxtf_str); /* Go to next column. */
end;
if payment(0)="A'" then
do; /* It'sa personal credit account. */
putf132_str = 'CCOUNT";
ret_err=putf(putf132_str); /* Show the rest of the word. */
payment(1)=get_entry(); /* Get the account number. */
end;
else
if payment(0)="B' then /* bank credit card */
do;
putf132_str = 'ANK CARD’;
ret_err=putf(putf132_str);
call dm_err(ret_err,putf_str);
payment(1)=get_entry();
end;
else
if payment(0)="C' then /* cash ondelivery */
do;
putf132_str ='.0.D.";
ret_err=putf(putf132_str);
call dm_err(ret_err,putf_str);
end;
call err_msg(100,0ff); /* Turn it off. */

[* Takethe order now. */
ret_err=posf(75); /* Turn onthe message */
call dm_err(ret_err,posf_str); /* about the ending entry. */
avail_attr=setf('0");
order no=0; /* upto5*/
ordr:
qgty(order_no)=get_entry(); /* quantity of items*/
if gqty(order_no)="0"then /* Stop entry. */
goto ttls;
description(order_no)=get_entry();
call err_msg(76,0nn); /* control-Z reference message */

part_lbl:
part_no_chr60(order_no)=get_entry(); /* only for this input */
hret:
if endf()=26 then /* control-z for part number refernce display */
cal help();

part_fb15 = search(part_no_chr60(order_no)); /* complete input */
if part_fbl5=-1then /* not avalid part number */
do;
cal err_msg(101,0nn);
ret_err=nxtf(-2);
call dm_err(ret_err,nxtf_str);
goto part_lbl; /* Re-try. */
end;
call err_msg(101,0ff); /* Turn off the error message. */
call err_msg(76,0ff); /* Turn off the control-z message. */
ret_err=nxtf(2); /* Write the normal price. */
call dm_err(ret_err,nxtf_str);

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

putf132_str = price(part_fbl5);

ret_err=putf(putf132_str);

call dm_err(ret_err,putf_str);

avail_attr=setf(prm_on);

ptry:

price_ea(order_no)=updf(); /* If it'sa CR, get theinitial value. */

avail_attr=setf(prm_off);

ret_err=nxtf(3); /* thefield for the total */

call dm_err(ret_err,nxtf_str);

gty_dec = gty(order_no);

price_ea dec = price_ea(order_no);

total_dec(order_no) = gty _dec * price_ea dec;

total (order_no) = total_dec(order_no);

total (order_no) = substr(total (order_no),3);

putf132_str = total(order_no);

ret_err=putf(putf132_str);

cal dm_err(ret_err,putf_str);

order_no=order_no+1; /* Only 5are alowed. */

if order_no < 5then [* can break w/QTY = 0*/
go to ordr;

order_no=4; /* Only Oto 4 are allowed. */

ttls:

sale dec =0;

do cnt=0to order_no; /* Calculate the total bill. */
sale _dec = sale_dec + total_dec(cnt);

end;

sdle= sde dec;

sale = substr(sale,3);

ret_err=posf(26);

call dm_err(ret_err,posf_str);

putf132_str = sale;

ret_err=putf(putf132_str); [* Write the total sale. */
do cnt= 0 to order_no;
total_dec(cnt) = 0; [* zero out intermediate totals */
end;
call dm_err(ret_err,putf_str);
ret_err=nxtf(20); I* wait until ready */

call dm_err(ret_err,nxtf_str);
avail_attr=setf('0"); [* Turn on the prompt. */
retf60_str=getf(); [* Wait for a carriage return. */
if endf()=27 then

go to done;

[* output data to file */
gotoloop; /* next order */

/***/

[* The following corresponds to lines 233-249 in the CB-80 sample program. */

/***l

writef: PROC (out);
dcl
out char(60) var;

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

ret_err=nxtf(2); /* Go toinputfield. */

call dm_err(ret_err,nxtf_str);

avail_attr=setf('0"); /* Turn onthefield. */
putf132 str = out;

ret_err=putf(putf132_str); /* Put in the old data. */
call dm_err(ret_err,putf_str);

retf16_str=retf(); [* Check if it'sa payment. */
if posf(0) = 8 then /* Output the rest in the adjoining
field. */
do;

ret_err=nxtf(3);
call dm_err(ret_err,nxtf_str);
putf132_str = substr(out,2,length(out));
ret_err=putf(putf132_str);
call dm_err(ret_err,putf_str);
end;
end writef;

/***/

[* The following corresponds to lines 250-310 in the CB-80 sample program. */

/***l

help: PROC ; [* Save your place. */
retf60_str=resf(-1); [* Show the part number list. */
curstat = curs(off);
ret_err=dispd(helpf);
call dm_err(ret_err,dispd_str);
firs:
cnt=0;
page=22; [* Write out thelist. */
nxtl:
ret_err=posf(cnt+1);
call dm_err(ret_err,posf_str);
if part_Ist(cnt,0) ~=" then /* Output to the end of the list. */
do;
temp=part_Ist(cnt,0)|[tabs]||part_lst(cnt,1);
putf132_str = temp;
ret_err=putf(putf132_str);
call dm_err(ret_err,putf _str);
avail_attr = setf('0);
end;
else
cnt=-1;
cnt=cnt+1;
if cnt ~=0& cnt < 22 then
go to nxtl;
ret_err=posf(100); /* next page, or exit */
cal dm_err(ret_err,posf_str);
retf60_str=getf();
if retf60_str=ascii(27) then
gotoreds, /* escape, return */
if retf60_str=ascii(26) then
if cnt=0then /* control-Z, next with wrap */

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

gotofirs;
page=page+21; /* next page */
cnt = 0;
go to nxtl;
reds. /* bring back old display */
ret_err=dispd(phone_order);
call dm_err(ret_err,dispd_str);

ret_err=nxtf(-10); [* 1st field, then 1st */
call dm_err(ret_err,nxtf_str); /* infield to write */
call writef(customer); /* old data to */

call writef(address);
call writef(city);
call writef(state);
call writef(zip);

call writef(phone);

if payment(0) ="A' then
go to acct;
elseif payment(0) = 'B’ then goto bank ;
elseif payment(0) ='C'then
goto pcod ;

acct:
call writefCACCOUNT); [* specia handling */
cal writef(payment(1)); /* done in writef */
go to hcon;
bank:
call writef(BANK CARD";
call writef(payment(1));
go to hcon;
pcod:
call writef('C.0.D.";
ret_err=nxtf(2); [* pass acount number */
call dm_err(ret_err,nxtf_str);
hcon:
call err_msg(75,0nn); /* QTY exit message */
docnt=0to order_no-1; /* Writeany */
call writef(qty(cnt)); /* previousitems. */
call writef(description(cnt));
call writef(part_no_chr60(cnt));
call writef(price_ea(cnt));
ret_err=nxtf(3); [* total isoutput -- */
call dm_err(ret_err,nxtf_str); /* field, not input */
putf132_str = total(cnt);
ret_err=putf(putf132_str);
end;
call writef(qty(order_no)); [* linein progress */
call writef(description(order_no));
call writef(part_no_chr60(order_no));
avail_attr = setf(prm_on);
curstat = curs(onn);
part_no_chr60(order_no) = resf(1);
avail_attr = setf(prm_off);
goto hret;

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

end help;

/***/

[* The following corresponds to lines 311-319 in the CB-80 sample program. */

/***l

errl:

put list('ERROR: No current terminal fil€);
put list('(put control code in "CURRENT.TRM"));
stop; /* notermina codes*/

err2:

put list('ERROR: No part no. reference fil€);
stop; /* nopricelist -- */

done:

CLRSCR ret = CLRSCR();

ret_ err=CLSDIS(); /* closedisplay file*/
call dm_err(ret_err,CLSDIS str);

stop;

end program;

Section 4: Pascal/MT+86 user's guide

This section explains how to use Display Manager with application programs
written in Pascal/MT+86. This section also describes special Pascal/MT+86
functions needed to use Display Manager.

Linking Pascal/MT+86 programs

To link a Pascal/MT+86 program to the Display Manager Run-time Library, use
one of the following command formatsin responseto your Operating System
prompt:

LINKMT <program name>,DMPAS/S FULLHEAP,FPREALS/SPASLIB/S
or
LINKMT <program name>,DMPAS/S,FULLHEAP,BCDREALS/S,PASLIB/S/X:1000

where <program name> is replaced by the name of the object module produced by
the Pascal/MT+86 compiler. For example, to link a program named MY PROG, use
one of the following command lines:

LINKMT MYPROG,DMPAS/S FULLHEAP,FPREALS/SPASLIB/S
or
LINKMT MYPROG,DMPAS/SFULLHEAP,BCDREALS/SPASLIB/S/X:1000

You can exclude FULLHEAP if you use stack alocation. The real-number
libraries are aso optional; the Run-time Library does not have to use
FULLHEAP.ERL. If you do not want to use Heap management, a routine is
available in the Run-time Library that you can use to alocate space when

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

needed for your largest display, and when the stack version of NEW/DISPOSE is
being used. You can make full use of MARK/RELEA SE with this routine.

To simplify the linking process, you can use the librarian LIBMT to create a
single, searchable library with DMPASC.ERL, FULLHEAP.ERL, and either
FPREALS.ERL or BCDREALS.ERL. In such cases, you need only specify one
additional run-time library. For example,

LINKMT MYPROG,DMLIBS/S,PASLIBS/'S

Pascal/MT+86 external declarations

Pascal/MT+86 requires that you explicitly declare external functions. External
functions are those not coded in the program source code, but referenced by

it. The file DMEXTR.PAS contains external declarations for al Display Manager
functions. Use the Include File compiler toggle of Pascal/MT+86 to make these
external declarations a part of your application program. For example, the
following statement in your program includes the external declarations:

{$| DMEXTR.PAS}

Function arguments and return values

Numeric values used as function arguments, or returned to your application
program, must be of type integer. Character values used as function arguments,
or returned to your application program, must be of type string. Character
strings are returned from Display Manager to an extra parameter in the call.
The extra parameter must be of type string, because the function returns a
character. Consider the following example:

VAR
Arg_Str: STRING,;
Ret_Int: INTEGER;
Ret_Str: STRING,;
Ret: CHAR

E{.et_l nt := INITDM (Arg_Str)

Ret := RESF (1, Ret_Str);

Specia Pascal/MT+86 functions

The Display Manager Run-time Library for Pascal/MT+86 contains a number of
specia functions for your use. These functions are described on the following

pages.

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

INTSTR function

Syntax: <char> := INTSTR (<integer>,<string>)

Explanation:
This function converts an integer to its string value.

Function arguments and return values:

The first argument (<integer>) isthe constant or integer variable to be
converted. The second argument (<string>) is the string variable to receive
the converted value. The converted value is in the form given by
WRITE/WRITELN.

Example:
This example returns the string value 123.

Ret_Char := INTSTR (123, Str);
WRITELN (Str);

FPSTR and BCDSTR functions

Syntax: <char> := FPSTR (<floating real>,<string>)
<char> := BCDSTR (<binary real>,<string>)

Explanation:

These functions convert a real number to its string value. You must use the
function that corresponds to the real-number library you are using. That isto
say, if you are using the FPREALS library, use the FPSTR function; if you are
using the BCDREALS library, use the BCDSTR function.

Function arguments and return values:

The first argument (<floating real> or <binary real>) is the constant or
real variable to be converted. The second argument (<string>) is the string
variable to receive the converted value. The converted value of the number is
in the form given by WRITE/WRITELN.

Example:
The following example shows the use of the FPSTR function. This example
returns the string 1.23450E+02.

Ret_Char := FPSTR (123.45, Str);
WRITELN (St);

The next example shows the use of the BCDSTR function. This example returns
the string 123.4500.

Ret_Char := BCDSTR (123.45, Str);

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

WRITELN (Str);

INTVAL function

Syntax: <integer> := INTVAL (<string>)

Explanation:
This function converts a string to its integer value.

Function arguments and return values:

The argument (<string>) is the string value of the number to be converted. The
integer value of the argument is returned. If the argument contains a real
number, it is truncated to the value to the left of the decimal point. If the
argument isin E form, an incorrect value is returned.

Example:
The following example returns a value of 1234.

Int:= INTVAL ('1234);
WRITELN (Int);

The next example returns a value of 1.

Int := INTVAL ('1.234E+02):
WRITELN (Int);

FPVAL and BCDVAL functions

Syntax: <floating real> := FPVAL (<string>)
<binary real> := BCDVAL (<string>)

Explanation:

These functions convert a string to its real-number value. You must use the
function that corresponds to the real-number library you are using. That isto
say, if you are using the FPREALS library, use the FPVAL function; if you are
using the BCDREALS library, use the BCDVAL function.

Function arguments and return values:

The argument (<string>) is the string value of the number to be converted. The
value of the argument is returned as a real number. The standard format of the
real-number type being used is accepted.

Example:

The first example shows the use of the FPVAL function, and returns the real
number 1.23450E+02.

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

Real := FPVAL ("123.45):
WRITELN (Real):

The next example shows the use of the BCDVAL function, and returns the real
number 123.4500.

Real := BCDVAL ('123.45);
WRITELN (Real);

DMALLO function

Syntax: <integer> := DMALLO (<integer>)

Explanation:

The DMALLO function alocates space for displays when FULLHEAP.ERL is not
being used. If you use FULLHEAP.ERL, you should not use DMALLO, because space
is automatically allocated.

Function argument and returned values:

The argument (<integer>) is a number ranging from 1 to 6. The number indicates

how many Kilobytes are to be allocated, and must be sufficient to accomodate

the largest display used in your program (5KB is almost always sufficient). If

MARK and RELEASE are used in your program and you release space allocated with
DMALLO, you must call the DMALLO function again before using the DISPD
function.

If the argument valueislessthan 1, or greater than 6, avalue of -1 is
returned to your application program. If no space is available for the DMALLO
function, a run-time error results.

Example:

Int := DMALLO (5);
Err_Ret := DISPD (1);

Sample program (SAMPAS.PAS) listing

The following listing is the source code for a sample program written in
Pascal/MT+86. Your distribution disks provide the code in the file named
SAMPAS.PAS. Thislisting isfor reference only. Always consider the code on
your distribution disks as the definitive version of the program.

The sample Pascal/MT+86 program must be compiled and linked for use with BCD

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

numbers, as follows:

MT86 SAMPAS $B
LINKMT SAMPASDMPAS'SBCDREALS,FULLHEAP,PASLIB/S/X:100

If you encounter problems using the special Display Manager functions BCDVAI
and BCDSTR, request an updated version of the Pasca/MT+86 library
BCDREALS.L86 from Digital Research.

Listing 4-1. SAMPAS.PAS source code

program sample;
const
onn="'000; { Makeafieldvisble.}
off ='100; { Makeafieldinvisible. }
Ist sz=25; { sizeof partslist}
{ Assign display numbers. These can be changed as needed. }
phone order =1; { maindisplay }
helpf = 2; { main part number reference }

{ Set error output messages for fatal Display Manager errors. }
initdm_str = 'ERROR: Initialization failure’;

opndis_str = 'ERROR: Display file not found';

dispd_str = 'ERROR: Display not found';

posf_str = 'ERROR: Field missing’;

nxtf_str = 'ERROR: Next field missing';

putf_str = 'ERROR: Write to field failure’;

cur_str = 'ERROR: Cursor On/Off failure’;

CLSDIS str = 'ERROR: Can"t close display fil€;

{ 12345678901234 }
tabs=" ", { tabs for output }

type

com_str = string[40];

ptr = Ninteger;
var

order_no,

page,

part_fbl5,

cnt,

CLRSCR ret,

ret,

ret_err :integer;

retchr : char;

gty_dec, { quantity of each item }
price_dec: redl; { normal price given, but may be sale }

total_dec : array[0..4] of real; { QTY times PRICE_EA }

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

sde dec :red;

term250_str: string[250];

retf60_str,

customer, { customer name }

address,

city,

State,

zip, { validated for numerical value}
phone, { numerical }

sde :com str;

qty, { quantity of each item}
price_ea, { normal price shown, but may be sale }
total, { QTY times PRICE_EA }
description, { brief written description }

part_no_chr60: array[0..4] of com_str;

part_Ist : array[O..Ist_sz,0..1] of com_str;

price : array[0..Ist_sz] of com _str;

payment : array[0..1] of com_str;{ method of payment and account no. }
buff rd : string[60];

temp :string;

prm_off,

prm_on,

retf16 str,

avail_attr : string[16];

curstat : string[1];

file_1,
file 2 :text;

{ Include the Display Manager runtime library definitions. }
{$l dmextr.pas}
external procedure @hlt;

{***}

{ Thefollowing corresponds to lines 65-122 in the CB-80 sample program. }

{***}

procedure halt;
begin

@hlt; { stop the program }
end;

{ Most DM functions return -1 if thereis an error. }
{ They arefatal, so abort. }
procedure dm_err(f_ret : integer;err_type : com_str);
begin
if f ret<O
then begin

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

writeln; writeln;
writeln(err_type);
halt; { It'sfatal, so abort. }
end;
end; { dm_err }

{ If the part number exists, return it. }
function search(part_no_chr60 : com_str) : integer;
var cnt : integer;
begin
forent :=0tolst_sz-1do { returns the array index }
begin
if part_Ist[cnt,0] = part_no_chr60
then begin
search := cnt;
exit;
end;
if part_lIst[cnt,0] ="
then begin
search := -1; { -1unlessfound }
exit;
end;
end;
search := -1; { -1unlessfound }
end; { search}

{ Move relative to the next input field, turn on the prompt, & get input. }
procedure get_entry(var retval : com_str);
var inp60_local : com_str;
begin
ret_err ;= nxtf(2); { next input field }
dm_err(ret_err,nxtf_str);
retchr := setf(prm_on,avail_attr); { Turn on the prompt. }
retchr := getf(inp60_local); { Input from the field. }
while true do begin

if endf = 27
then begin { escape key to exit }
CLRSCR ret := clrscr; {added11-8}

ret_err ;= clsdis;
dm_err(ret_err,CLSDIS str);

halt;
end;
if (endf <> 0) and (endf <> 26)
then begin { control character, not ctrl-Z }

retchr := resf(-1,retf60_str); { Save the position. }
retchr := resf(1,inp60_local); { Resume input. }

end else begin
retchr ;= setf(prm_off,avail_attr); { Turn off the prompt. }
retval :=inp60_local;
exit;

end;

end;
end; { get_entry }

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

procedure err_msg(pos : integer;onoff : string);

begin
ret := posf(0); { Store the current position. }
ret_err := posf(pos);
dm_err(ret_err,posf_str);
retchr := setf(onoff,avail_attr); { Turn the message on/off. }
ret_err := posf(ret); { Return to the original position. }
dm_err(ret_err,posf_str);

end; { err_msg }

{***}

{ The following corresponds to lines 233-249 in the CB-80 sample program. }

{***}

procedure writef(out : com_str);

begin
ret_err := nxtf(2); { Gotoinput field. }
dm_err(ret_err,nxtf_str);
retchr ;= setf(onn,avail_attr); { Turn on thefield. }

ret_err := putf(out); { Put in the old data. }
dm_err(ret_err,putf_str);
retchr := retf(retf16_str); { Check if it'sa payment. }
if posf(0) =8
then begin { Output rest in adjoining field. }

ret_err := nxtf(3);
dm_err(ret_err,nxtf_str);
ret_err := putf(copy(out,2,length(out)-1));
dm_err(ret_err,putf_str);
end;
end; { writef }

{***}

{ Thefollowing corresponds to lines 250-310 in the CB-80 sample program. }

{***}

procedure help;
var cnt : integer;
begin

while endf = 26 do begin

retchr := resf(-1,retf60_str); { Show the part number list. }
retchr := curs(off,curstat);
ret_err := dispd(helpf);
dm_err(ret_err,dispd_str);
retf60_str := chr(0);
cnt :=0;
page .= 22; { Write out the list. }
repeat

ret_err := posf(cnt+1);

dm_err(ret_err,posf_str);

if part_lst[cnt,0] <> "

then begin { Output to the end of thelist. }
temp := concat(part_Ist[cnt,0] tabs,part_Ist[cnt,1]);

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

ret_err := putf(temp);
dm_err(ret_err,putf_str);
retchr := setf(onn,avail_attr);
end elsecnt := -2,
cnt ;= cnt+1;
if (cnt =-1) or (cnt >= 22)
then begin
ret_err := posf(100); { next page, or exit }
dm_err(ret_err,posf_str);
retchr := getf(retf60_str);
if retf60_str <> chr(27)
then begin
if retf60_str = chr(26)
thenif cnt <> -1
then begin { control-Z, next with wrap }
page := page+21; { next page }
cnt ;= 0,
end else begin
cnt :=0;
page ;= 22;
end;
end;
end;
until retf60_str = chr(27);
ret_err := dispd(phone_order);
dm_err(ret_err,dispd_str);
ret_err := nxtf(-10); { 1st field, then 1st }
dm_err(ret_err,nxtf_str); { infield to write }
writef(customer); { old datato }
writef (address);
writef(city);
writef(state);
writef(zip);
writef(phone);
case payment[0,1] of
‘A’ : begin
writefCACCOUNT); { specia handling }
writef(payment[1]); { donein writef }
end;
'‘B' : begin
writef'(BANK CARD);
writef(payment[1]);
end;
'C': begin
writef('C.O.D.";
ret_err := nxtf(2); { pass acount number }
dm_err(ret_err,nxtf_str);
end;
end;
err_msg(75,0nn); { QTY exit message }
for cnt := Oto order_no-1do { Write any }
begin
writef(qty[cnt]); { previous items. }
writef (description[cnt]);

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

writef(part_no_chr60[cnt));
writef(price_ea[cnt]);
ret_err := nxtf(3); { total isoutput -- }
dm_err(ret_err,nxtf_str); { field, not input }
ret_err := putf(total[cnt]);
end;
writef(qty[order_no]); { linein progress }
writef(description[order_no));
writef(part_no_chr60[order_no));
retchr := setf(prm_on,avail_attr);
retchr := curs(onn,curstat);
retchr ;= resf(1,part_no_chr60[order_no));
retchr := setf(prm_off,avail _attr);
end; { while }
end; { help }

{***}

{ Thefollowing corresponds to lines 34- 64 in the CB-80 sample program. }

{***}

{ The errors below correspond to lines 311-319 in the CB-80 sample program. }

procedure init_data;
begin
{ Get the screen-handling control code from the installation file. }
open(file_1,'current.trm’,ret_err);
if ret_err <> 255
then begin
readin(file_1,term250_str);
if ioresult <> 0
then ret_err := 255;
end;
if ret_err = 255
then begin
writeln('ERROR: No current terminal file);
writeln('(put control code in "CURRENT.TRM")");
halt; { stop}
end;
{ Set up the list of part numbers. }
open(file_2,'parts.Ist',ret_err);
if ret_err <> 255
then begin
cnt := O
while (not eof (file_2)) and (cnt < Ist_sz) do
begin
readin(file_2,buff_rd);
part_|st[cnt,0] := copy(buff _rd,1,5);
buff_rd[6] :="";
page := pos(’,',buff_rd);
part_Ist[cnt,1] := copy(buff_rd,8,page-9);
price[cnt] := copy(buff_rd,page+1,length(buff_rd)-page);
cnt ;= cnt+1;
end;

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

end else begin
writeln('ERROR: No part no. reference fil€);

halt; { stop }
end;
part_Ist[cnt+1,0] := "; { indicatesend of list }

close(file_2,ret_err);
close(file_1,ret_err);

end; { init_data}

procedure head;

begin
{ All prompts are inverse video if possible, or underlined otherwise. }
get_entry(customer); { Use relative movement }
get_entry(address); { and GETF}
get_entry(city);
get_entry(state); { aphabetic only }
get_entry(zip); { numerical validation by DM }
get_entry(phone);
get_entry(payment[0]); { A, B,or Conly }

{ null string not avalid entry. }
while (pos(payment[0],'ABC') = 0) or (payment[0] = ") do
begin
err_msg(100,0nn);
ret_err ;= nxtf(-2);
dm_err(ret_err,nxtf_str); { Output an error message }
get_entry(payment[Q]); { retry }

end;
ret_err ;= nxtf(3);
dm_err(ret_err,nxtf_str); { Go to next column. }
case payment[0,1] of
‘A" begin { It'sa persona credit account. }
ret_err ;= putf(CCOUNT"); { Show the rest of the word. }
get_entry(payment[1]); { Get the account number. }
end;
'‘B': begin { bank credit card }

ret_err ;= putfCANK CARD);
dm_err(ret_err,putf_str);
get_entry(payment[1]);

end;

'C': begin { cash on delivery }
ret_err := putf(".O.D.";
dm_err(ret_err,putf_str);
end;

end;
err_msg(100,off); { Turn it off. }
end; { head }

begin { program }

{***}

{ START PROGRAM HERE }

{***}

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

{***}

{ Thefollowing corresponds to lines 123-232 in the CB-80 sample program. }

{***}

init_data;
ret_err := initdm(term250_str); { Initialize the library. }
dm_err(ret_err,initdm_str);

retchr := retdm(avail_attr); { Which CRT attributes are available? }
if aval_attr[3] <>'0'
then begin { If inverse video is supported }
prm_on :='031
prm_off := '330; { then use it for prompts }
end else begin
prm_on :="'0';
prm_off :="3’; { justinitials}
end;

{ Open the display file, show it, and move to the first field. }
ret_err := opndis(ORDERS.DIS); { Openthefile.}
dm_err(ret_err,opndis_str);
repeat
ret_err ;= dispd(phone_order); { Show the display. }
dm_err(ret_err,dispd_str);

ret_err := nxtf(-10); { 1st field }
dm_err(ret_err,nxtf_str);

head;

{ Takethe order now. }

ret_err := posf(75); { Turn on the message }
dm_err(ret_err,posf_str); { about the ending entry. }
retchr := setf(onn,avail_attr);

order no:=0; {upto5}

repeat

get_entry(gty[order_no)); { quantity of items}
gty_dec := BCDVAL(qgty[order_nq]);

if gty dec<>0
then begin { Stop entry. }
get_entry(description[order_no));
err_msg(76,onn); { control-Z reference message }
repeat
get_entry(part_no_chr60[order_no]);
help; { "Z gives part # display }
part_fb15 := search(part_no_chr60[order_no]);
if part_fb15 =-1
then begin { not avalid part number }

err_msg(101,onn);
ret_err := nxtf(-2);
dm_err(ret_err,nxtf_str);

end,
until part_fbl5 <> -1; { retry }
err_msg(101,off); { Turn off the error message. }
err_msg(76,0off); { Turn off the control-z message. }

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

ret_err := nxtf(2); { Write the normal price. }
dm_err(ret_err,nxtf_str);

ret_err := putf(price[part_fb15]);
dm_err(ret_err,putf_str);

retchr := setf(prm_on,avail_attr);

retchr := updf(price_eaorder_no]);{ If CR, get the initial value. }
retchr := setf(prm_off,avail_attr);

ret_err ;= nxtf(3); { thefield for the total }
dm_err(ret_err,nxtf_str);

price_dec := BCDVAL (price_eg[order_no]);
total_dec[order_no] := qty_dec * price_dec;

retchr := BCDSTR(total _dec[order_no],total[order_no]);
ret_err := putf(total[order_no));

dm_err(ret_err,putf_str);

order_no := order_no+1; { Only 5 are alowed. }

end;
until (qty_dec = 0) or (order_no >=5);
order_no := 4; { Only Oto 4 are allowed. }
sale dec :=0;

for cnt := Oto order_no do { Calculate the tota bill. }
sale _dec := sdle _dec + total_dec[cnt];

retchr := BCDSTR(sale_dec,sale);

ret_err := posf(26);

dm_err(ret_err,posf_str);

ret_err := putf(sae); { Write the total sae. }
for cnt := Oto order_no do
total_dec[cnt] :=0; { zero out intermediate totals }
dm_err(ret_err,putf_str);
ret_err := nxtf(20); { wait until ready }

dm_err(ret_err,nxtf_str);
retchr := setf(onn,avail_attr); { Turn on the prompt. }
retchr ;= getf(retf60_str); { Wait for a carriage return. }
until endf = 27;
{ output datato file }
clrscr_ret := clrscr;

ret_err ;= clsdis; { close display file }
dm_err(ret_err,clsdis_str);

exit;

end.

EOF

file:/lIC|/...tion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PG86.TX T[2/6/2012 4:31:25 PM]

DMPGPCW$S4 (= Display Manager Programmer's Guide)

- "Display Manager Programmer's Guide"
for PC DOS

First Edition: July 1983

(Retyped by Emmanuel ROCHE.)

--> To be found... <--

file://IC|l...ion/Emmanuel %20Roche%20D R1%20documents%20conversi on/Displ ay%20M anager%20Programmers%20Guide/DM PGPC. TX T[2/6/2012 4:31:26 PM]

DMRM.W$S4 (= Display Manager Reference Manual)

- "Display Manager Reference Manua"
First Edition: July 1983

(Retyped by Emmanuel ROCHE.)

Display Manager, a productivity tool from Digital Research, isa quick, easy-
to-use, efficient tool to help you design and use display screens in your
application programs.

For system designers, Display Manager offers the ability to design display
screens exactly as they appear to the end-user of a program. Display design
takes place on a computer terminal screen, not on paper worksheets.

For programmers, Display Manager simplifies programming tasks, reduces the
size and complexity of programs, and makes it possible for a program to work
on many different computer terminals with virtually no changes required in the
program code. In many ways, Display Manager is an automatic programming tool.

Y our Display Manager documentation includes the following:

1) "Display Manager Reference Manual"
2) "Display Manager Programmer's Guide"

Y our "Reference Manua™ describes how to create displays and use themin your
application programs. Y our "Programmer's Guide" contains information specific
to using Display Manager with a particular operating system and programming
languages. Y ou need both the "Reference Manual" and "Programmer's Guide" to
make proper use of Display Manager.

Note: Due to the limitations of the hardware of 8-bit microcomputers, the Help
and Color facilities in Display Manager are not available to computers based
on these chips. If you are using Display Manager on such equipment, disregard
all references in your documentation to these facilities.

Table of Contents

1 Introduction to Display Manager

Major Components
Benefits

What You See IsWhat You Get
Reduced Program Size

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Easier Program Maintenance

Simplified Display Designing Methods
Automatic Documentation

Uses the Features of any Computer Terminal
Separates Designing and Programming Tasks
Optimum Response Times

2 How Display Manager Works

Terminal Setup Environment

Editor Environment

Applications Programming Environment
Run-time Environment

Summary

3 Terminal Setup Program

Starting the Terminal Setup Program
Overview of Termina Setup Program Options

Option E--Create Editor Program for Design Terminal
Option W--Write Termina Control Codesto Disk File
Option C--Custom Terminal Setup

Option T--Test Terminal Control Codes

Option ESC--Stop Terminal Setup Program

Option E--Create Editor for Design Terminal

Option W--Write Termina Control Codesto Disk File
Option C--Custom Terminal Setup

Option T--Test Terminal Control Codes

4 Display Design Concepts

Displays
Display Files
Display Fields

Literal Fields
Input Fields
Output Field

Video Attributes
Color Attributes
Status Window
Status Window Elements

Status Window Video Attributes
Status Window Color Attributes

5 Editor options

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Starting the Editor
Editor main menu
Option E--Edit A Display

Creating New Displays
Global Values

Copying Existing Displays
Editing Existing Displays

Option D--Delete a Display
Option R--Renumber The Displays

Renumbering Groups of Displays
Renumbering Individual Displays

Option O--Open A Display File
Option Q--Help and Instructions
Option X--Exit From the Editior

6 Editor Commands
Cursor Movement Commands

Beginning of Field: Ctrl-US or Ctrl-UH
Beginning of Next Line: RETURN
Down Half Screen: Ctrl-QX or Ctrl-QJ
Down One Line: Ctrl-X or Ctrl-J

End of Field: Ctrl-UD or Ctrl-UL

Left Half Screen: Ctrl-QS or Ctrl-QH

L eft One Space: Ctrl-Sor Ctrl-H

Next Field: Ctrl-UF

Next Word: Ctrl-F

Previous Field: Ctrl-UA

Previous Word: Ctrl-A

Right Half Screen: Ctrl-QD or Ctrl-QL
Right One Space: Ctrl-D or Cirl-L
Tab: Ctrl-I

Up Half Screen: Ctrl-QE or Ctrl-QK
Up One Line: Ctrl-E or Ctrl-K

Field Editing Commands

Boundary Display (All Fields): Ctrl-QB

Boundary Display (Fields on a Single Line): Ctrl-B
Change Field to Literal: Ctrl-UZ

Copy Field to Cursor Location: Ctrl-UC

Define Input Field: Ctrl-Ul

Define Output Field: Ctrl-UO

Delete Field: Ctrl-UG

Move Right Field: Ctrl-UV

Move Field to Cursor Location: Ctrl-UM
Renumber Fields: Ctrl-UR

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Set Status Window Values as Default: Ctrl-UW
Status Window Display: Ctrl-W

Status Window Display (Constant): Ctrl-QW
Template Insertion: Ctrl-P

Video/Color Attributes Display: Ctrl-QY or Ctrl-Y

Display Design Commands

Center Line: Ctrl-OC

Delete Character to Left: DEL ("<--"
Delete Character Under Cursor: Ctrl-G
Delete Line: Ctrl-QG

Delete Word to Right: Ctrl-T

Draw Border: Ctrl-OB

Insert Line: Ctrl-QV

Insert Space: Ctrl-V

Print Documentation: Ctrl-OUW

Display File Commands

Abandon Work, Do Not Save Display: Ctrl-OUQ
Change Global Vaues: Ctrl-OUG

Save Display, Edit the Next One: Ctrl-OUN

Save Display, Edit the Previous One: Ctrl-OUP
Save Display, Resume Editing Same One: Ctrl-OUS
Save Display, Return to Main Menu: Ctrl-OUT
Write Documentation: Ctrl-OUW

Help Instructions: Ctrl-OU?

Editor Commands Summary

7 Applications Programming

Overview of Applications Programming
Function Categories
Function Descriptions

CLRSCR
CLSDIS
CURS
DISPD
ENDF
GETF
INITDM
NXTF
OPNDIS
POSF
PUTF
RESF
RETDM
RETF
SETF
UPDF

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

8 Run-time Environment

Appendixes

A Termina Control Codes
TERMS.DM File

Display Manager-supported Terminals
User-supported Terminals

Terminal Control Code Structures
Display Manager-supported Terminals
User-supported Terminals

B Summary of Restrictions and Limitations

Terminals
Display Files
Fields

Run-time Library

C Custom Terminal Setup

Option T--Set Up Control Codes for this Terminal
Option F--Set Up Control Codes for a Different Terminal
Option C--Change Terminal Control Codes

Option D--Delete Terminal Control Codes

Option E--Examine Terminal Control Codes

Custom Terminal Setup Questions

Screen Size Questions

Clear Screen Questions

Cursor Positioning Questions
Start-up Codes Questions

Standard Video Attributes Questions
User-defined Attributes Questions
Multiple Attributes Questions
Cursor Arrow Keys Questions
Function Keys Questions

Cursor ON/OFF Questions

Completing Custom Terminal Setup

Tables and Figures

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Video Attributes

Color Attributes

Input Field Validation Codes
Interpretation of Input Validation Types
Field Format Codes

Background Color Codes

Foreground Color Codes

Editor Main Menu Options

Editor Commands by Category
Editor Commands Summary

Display Manager Functions by Category
CURS Function Argument Values
ENDF Return Values

Data Entry Editing Control Keys
Program Attributes String

INITDM Run-time Errors

NXTF Argument Values

RETDM Terminal Features

Field Information from RETF

SETF Argument Values

Run-time Error Function Codes
Run-time Error Values

Display Manager-supported Terminals
User-supported Terminals

Custom Termina Setup Options
Other Display Manager Files

Basic Principles

Terminal Setup Program Main Menu

Create Editor for Design Terminal

Terminal Control Codes/Editor Name Screen
Terminal Control Code Filename Prompt
Write Terminal Control Codesto Disk File
Terminal Test Menu

Editor Environment

Sample Menu Display
Output Field Status Window
Input Field Status Window

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Editor Start-up Screen

Display File Name Prompt

New Display File Prompt

Display File Open Message

Editor Main Menu

Edit a Display Screen (New Display File)
New Display Title Screen

Global Values Prompt

Copy Existing Display Prompt

Copy Existing Display Options Menu

Edit a Display Screen (Existing Display File)
Delete a Display Screen

Renumber Displays Screen

Example of Renumbering Groups of Dispiays
Example of Renumbering an Individual Display
Display File Closing Message

Open Another Display File Prompt

Editor Exit Screen

Documentation Options Menu
Sample Display

Sample of Display Documentation
Output Options Menu

Application Programming Environment
Termina Control Code Example String

Run-time Environment
Example of Terminal Control Code

Custom Terminal Setup Options Menu

Set Up Control Codesfor This Terminal

Set Up Control Codes for a Different Terminal
Change Terminal Control Codes

Custom Terminal Setup Questions Menu
User-supported Terminal Setup Screen

Section 1: Introduction to Display Manager

A time-consuming, tedious task in developing computer programsis designing,
creating, and maintaining the displays that show on the screen at the time the
program isrun. For example, if you write a program in CBASIC Compiler, you
need alarge number of PRINT and PRINT USING statements to show displays on
the screen. If the program has many displays, it might require hundreds of

such statements. Furthermore, the displays require a large amount of main
memory, and make the program difficult to debug and maintain.

Display Manager solves these and other problems by making it possible to
design displays directly on your terminal screen. When a display |ooks exactly
as you want it to appear when your program isrun, you can store itin a disk
file for subsequent use by the program. When the program needs to show a

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

display on theterminal, it reads the display from the disk file, and places
it on the screen.

You can design displays on one terminal, then show them on the same or
different terminals. Display Manager makes it possible to design displays that
work properly on a wide variety of terminals.

1.1 Major components

Display Manager has 3 mgjor components:

1) The Terminal Setup Program makesit possible for your application
programs to work with whatever computer terminals you require. Under
most circumstances, ssmply run the program, and select the terminals
that you want to use from a list.

2) The Editor Program helpsyou design, create, change, and delete
displays directly on your terminal screen. Many additional options are
available to you in this program.

3) The Run-time Library isalibrary of routinesthat your application
programs can use to manage and manipulate the displays created with

the Editor program.
e e
S + / Design and create displays
LGEEEEEEEEEE > | Terminal | \ using any computer terminal...
B S —— F N\l
|

| Display | / ... then store them
| file | \inadiskfile...

T R + AT N

| These can be | |

| thesameor | +---------- L e L L e

| different | | Program | / ... to be used later

| terminals. | | | \ by your program...

S R S S S Y 4+ \eomemmmmmmeeaas
| I
| S ——— t
T > | Terminal | / ... when they are shown on a

R + \ terminal asthe program isrun.
L

(Displays can be designed to work on a wide variety of terminals.)

Figure 1-1. Basic Principles

1.2 Benefits

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

The following sections describe the most significant benefits of using Display
Manager.

1.2.1 What You See Is What Y ou Get

Y ou design displays with Display Manager on a terminal screen to look exactly
as you want them to appear when your application program runs. Display Manager
also simplifies using available features on a terminal, such as highlighting,
inverse video, underlining, color, and others.

1.2.2 Reduced Program Size

Programs written using Display Manager require fewer lines of code. Here are
the primary reasons:

- You can virtualy eliminate PRINT- and PRINT USING-type statements,
replacing them with asingle statement calling a Display Manager
routine to perform the same functions.

- Display Manager routines provide the necessary logic to check the
validity of information entered on a termina by an end-user.
Consequently, your programs do not need extensive data validation
routines. Display Manager's validation routines provide you with
severa options for handling invalid input.

- The actual image of each display in a program is stored in a compacted
file ondisk, and not as part of your program. This reduces the size
of both the source and object program; consequently, the program
requires less memory to run.

1.2.3 Easier Program Maintenance

Because your programs contain fewer lines of code, they are shorter, simpler,

and much easier to debug and maintain. In many programs, PRINT or PRINT USING
and data validation routines alone comprise much of the code. Their
elimination reduces the complexity and size of your programs.

1.2.4 Simplified Display Designing Methods

Without Display Manager, the smplest method for designing displaysisto lay
them out on worksheets as a means of determining the row and column numbers
for each field. With Display Manager, you type the information that you want
shown in your display on the screen of your terminal. Y ou reserve space in the
display for entering information, and displaying information derived by your
program. Row and column numbers are no longer a major concern.

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Also, changesin the design of a display do not require poring over endless
formatting statements, such as PRINT USING, to find and change the correct
ones. Simply use the Display Manager Editor to place the display back on your
terminal screen, make the necessary changes, and store the modified display
back in the disk file.

1.2.5 Automatic Documentation

By entering a single command on your terminal keyboard, you can instruct
Display Manager to prepare detailed documentation for each display you create.
You can either print the documentation, or storeitin adisk file. You can
then use a word processor to enhance the information as required. This is a
simple, effective method for creating user manuals and program documentation.

1.2.6 Uses the Features of any Computer Terminal

Without Display Manager, creating an application program to work with a
variety of terminalsis a complex task. You must determine what codesto send
to the terminal to activate its features, then code them into your program.
Because terminals vary significantly in their features and codes, this can add

a great deal of time and difficulty to the task.

With Display Manager, creating programsto work with different terminals
requires minimum effort on your part. In most cases, you only must enter one
line of code in your source program to make it work with different terminals.
This is even true when you design applications to work on both monochrome and
color terminals.

1.2.7 Separates Designing and Programing Tasks

With Display Manager, designing displays is independent of coding the program.
A systems analyst can develop asaseparate step all displays for an
application. A programmer can then use the displays, specifications, and
documentation created with Display Manager to do the coding in the most
efficient manner. This separation of tasks means that the user-interface for

your applications is designed and created independently of the actual program
logic, thus making your applications more user-oriented.

1.2.8 Optimum Response Times

Display Manager handles screen display, validation of input information, and
output formatting using optimized assembly code. This provides response times
unattainable by other methods, and frees you from these basic tasks.

Many additional benefits become apparent as you begin to use Display Manager.

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Section 2: How Display Manager Works

This section explains how Display Manager works by discussing the various
environments in which it functions. For this discussion, environment refers to
your computer hardware and software. Because several terms and concepts unique
to Display Manager first appear in this section, you might want to study the
Glossary before reading this material.

Y ou use Display Manager in 4 primary environments:

1) Termina Setup

2) Editor

3) Applications Programming
4) Run-time

A brief discussion of each environment follows. Sections 3 through 8 contain
detailed descriptions of each environment and its options.

2.1 TERMINAL SETUP ENVIRONMENT

Display Manager works with most terminals on the market today. Because these
terminals vary in their features, capabilities, and operation, you must

specify to Display Manager which terminals you will use. The terminal setup
program, named DM SET, helps you do this.

Display Manager sends control codes to a terminal to activate it and use its
features. Therefore, to function properly with aterminal, Display Manager

must know what control codes to send. On your distribution disksis a file
named TERMS.DM, which contains the control codes for those terminals that you
can use with Display Manager.

When run, the DMSET program shows you a list of the terminalsin the TERMS.DM
file, and asks you to pick the terminal or terminals that you want to use from

that list. In most cases, that is the only step needed to set up a terminal

for use with Display Manager (see Section 3 for more detailed information). If

you want to use Display Manager with aterminal not in TERMS.DM, you must
provide the control codes for that termina by answering a series of questions

that the DMSET program asks. These questions are in common English but, to
answer them, you need the manual for the terminal in question (see Appendix C

for more detailed information).

A termina used with Display Manager can fall into one, or both, of two
categories:

1) A design terminal servesto actually create the displays for your
application program. Y ou use this terminal with the Editor program in
the Editor environment. The Editor program can only be set upto use
one, specific design terminal, but you can set up different versions
of the Editor for use with other design terminals.

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

2) Run-time terminals function at the time the application program runs,
to present the displays created on the design terminal. You can use
run-time terminals in the run-time environment. You can design
application programs to work with any terminal in the TERMS.DM file.

Section 3 and Appendix C describe the options available in the termina setup
environment. Appendix A describes terminal control codes and the TERMS.DM
file.

2.2 THE EDITOR ENVIRONMENT

In this environment, you use the design terminal to create the displays that
your application program uses in the run-time environment.

While using the Editor, you create a display directly on the screen of the
design terminal. When the display is exactly as you want it to appear at run-
time, you store that display in adisplay file on disk. Your application
program can use the displays in this file at run-time.

Besides creating displays, you can use the Editor to change displays after
they are created, remove displays from the file when they are no longer
needed, prepare documentation for individual displays, and more.

Sections 4 through 6 describe how to use the Editor.

2.3 APPLICATIONS PROGRAMMING ENVIRONMENT

Once you have created the displays that you want to use at run-time, you can
write your application program using one of the Digital Research programming
languages that works with Display Manager (refer to your "Display Manager
Programmer's Guide").
Asyou create the source code for your program, you code in function calls to
Display Manager routines. These routines are in the Display Manager Run-time
Library, and provide the logic needed to do these and other things:

- Place a display on the run-time terminal screen.

- Retrieve information entered by the end-user.

- Show information on the display.

- Place the cursor in a specific location in the display.

- Activate or deactivate features on the run-time terminal, such as
inverse video, half intensity, color, and graphics.

After your application program iscompiled using the appropriate Digita

Research compiler, link the resulting object module to the Run-time Library to
include the necessary routines as part of your program. Y ou can then use the

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

object module, with the included routines, in the run-time environment.

Section 7 describes the applications programming environment. It also includes
descriptions of the various Display Manager routines (functions) that you can
use in your application programs.

24 RUN-TIME ENVIRONMENT

Everything created and accomplished in the 3 preceding environments comes
together in the run-time environment. This includes the following:

- the file of terminal control codes created with the DMSET program

- the display file created with the Editor containing the displays to be
used by your application program

- your application program object module including the routines linked
in from the Run-time Library

In the run-time environment, the end-user runs your program using a run-time
terminal. Your program retrieves displays from the display file, and shows
them on the run-time terminal screen.

Section 8 describes the run-time environment. It also lists and describes
possible run-time errors.

2.5 SUMMARY

To summarize, here are the steps usually required to use Display Manager:

1. Create aversion of the Editor program for use with your particular
design terminal. This step need only be completed once for a
particular design terminal, and is accomplished using the DMSET
program.

2. Specify the terminals with which your application program will be used
by setting up the control codes for each. Use the DMSET program to
accomplish this step, too.

3. Create the displays that you will usein your application program
using the version of the Editor program created in step 1. Prepare
documentation for your displaysusing an option available in the
Editor program.

4. Write your application programs using one of the Digital Research
programming |languages supported by Display Manager. Prepare the code
using whatever Display Manager functions your program requires.

5. Compile your programs, and link to the necessary modules in the
Display Manager Run-time Library.

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Section 3: Terminal Setup Program

You can use DMSET, the terminal setup program, to tell Display Manager the
characteristics of a termina. You can also useit to create the Editor
program for use with a design terminal, and to set up one or more run-time
terminals for use with your application program.

The only requirements of a terminal used with Display Manager are that it have
an addressable cursor, a clear screen command, and a minimum screen size of 24
rows by 52 columns. All other features are optional.

3.1 STARTING THE TERMINAL SETUP PROGRAM

To start DM SET, type the following command at your operating system prompt:
DMSET

The screen shows the Digital Research copyright banner, and a message asks you
to wait while the terminal control codes from the TERMS.DM file are loaded
into memory. The program then asks whether you want to run in Help or non-Help
mode. Help mode provides detailed descriptions of each procedure beforeit is
run; non-Help mode bypasses most of these descriptions, and permits the
program to run faster. After you make this selection, the main Menu appears on
your screen, as shown in the following figure.

MAIN MENU
Option Function
E Create EDITOR Program for Design Terminal
W WRITE Terminal Control Codesto disk file
C CUSTOM Termina Setup

T TEST Terminal Control Codes
ESC Stop Termina Setup Program (press ESC Key)

Please enter Y our selection --> : :

Figure 3-1. Terminal Setup Program Main Menu

3.2 OVERVIEW OF TERMINAL SETUP PROGRAM OPTIONS

The next table provides brief explanations of the options available on this
menu. Detailed explanations of these options occur later in this section,
except for option C, which is explained in Appendix C.

Table 3-1. Terminal setup options

Format: Option

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Explanation

Option E--Create Editor Program for Design Terminal

Before you can use the Editor program to design and create displays, you must
create a version of it for a specific design terminal. Completing this option
provides you with aversion of the Editor tailored for use with a specific
terminal.

Option W--Write Termina Control Codesto Disk File

Use this option to create or extend adisk file containing the terminal
control codes for the run-time terminals to be used with your application
program. Your application program can later use the codesin this file to
properly initialize the run-time terminal.

Option C--Custom Terminal Setup

Use this option to add, change, delete, or examine terminal control codes in
the TERMS.DM file. Appendix C contains detailed instructions for custom
terminal setups.

Option T--Test Terminal Control Codes
Use this option to verify that the control codes for atermina in TERMS.DM
are correct.

Option ESC--Stop Terminal Setup Program
Press the ESC key to stop the program and return control to your operating
system.

3.2.1 OPTION E--CREATE EDITOR FOR DESIGN TERMINAL

DMEDU.typ isa program file found on your distribution disks. (The "typ" is

the filetype used for program files in your operating system: COM for CP/M

2.2, CMD for CP/M-86, or EXE for MS-DOS.) Thisfile contains a version of the
Editor which is non-specific to any design terminal. When you create the

Editor for your design terminal, you create a new version of DMEDU with a
different name. Y ou cannot use DMEDU as your Editor, or unpredictable results
occur. Note that DMEDU, DM SET, and the TERMS.DM file must be on the same disk
when creating the Editor.

The following figure "Create Editor for Design Termina" illustrates the
environment where you enter when creating the Editor for use with a design
terminal. When you select option E from the Main Menu, a list of the terminals
contained in the TERMS.DM file shows on your screen. You can scroll through
this list to find the terminal that you want to set up as the design terminal

for use with the Editor.

SRR +
| The editor | ... without design terminal
| (DMEDU.typ)|
Fommmmmeeeee +
|
S S +
o + - \ | Termind| /------------- T +

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

| Design terminal | Option E > | Setup | < Control codes | TERMS.DM file |

Fommmmm e + - / | program | \------------- o +
n S T +
| |
| TSR +
o > | The editor | ... with design terminal
| (DMED.typ) |
S +

Figure 3-2. Create Editor for Design Terminal

When you see the design terminal on the list, you also see a 3-character code
listed with it, such as A4l or Z11. Typethis code to select the terminal

from the list. If you type the code correctly, the word "FOUND" appears on the
screen. Press RETURN, and terminal selection is complete.

If you type an incorrect code when selecting the terminal, the words "NOT
FOUND" appear. Use the DEL key ("<--") to erase your entry, then enter a
correct code. Note that you can also use the scroll commands Ctrl-W and Citrl-
Z, or the ESC key, at this time.

If you do not see your design terminal listed, you have 2 options as to how to
proceed:

1. It might be that the design terminal uses the same control codes as
another termina aready in the TERMS.DM file. If thisis the case,
select the terminal from thelist, and then use the test option
(option T on the Main Menu) to verify that the design terminal
operates correctly.

2. If the design terminal is neither in the displayed list, nor uses the
same codes as one that is, press ESC to return to the Main Menu. Then,
select option C to do a custom terminal setup. See Appendix C for
instructions.

After you select a terminal from the displayed list, your selection is
displayed, along with its terminal control codes. The program then asks what
name you want to assign to the version of the Editor that you are now
creating. Y our screen appears similar to the next figure.

The selected terminal iS: <XXXXXXXX>
Terminal Control Codes: ABCD EFG3 MNPA BCDZ FGH9

Please select a name for the Editor. Press RETURN
to name the Editor DMED, type a different name,
or Press ESC to exit --> DMED

The Editor is now named DMED.typ
Press any Key to continue.

Figure 3-3. Terminal Control Codes/Editor Name Screen

Before proceeding, verify that you have selected the correct terminal. The
name of the terminal that you selected replaces <xxxxxxxx>. If you selected

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

the wrong terminal, press ESC to make a different selection.

If you press RETURN, the Editor that you are creating is assigned the name
DMED. The program automatically appends the appropriate filetype for your
operating system, such as COM (for CP/M 2.2), CMD (for CP/M-86), or EXE (for
MS-DOS).

To store the Editor on a drive other than your current one, precede the name
with a drive specifier. For example, if you are logged to drive A but want to
store the Editor on drive B under the name DMED, enter the following response:

B:DMED

Y ou can assign any valid filename to the Editor except DMEDU.typ, where "typ"
isthe filetype used for program files in your operating system. For example,
DMEDU.COM is an unacceptable name in a CP/M -86 operating system environment.

After you have assigned a name for the Editor, press any key to return to the
Main Menu. To run the Editor, exit from the DMSET program, and type the
assigned name at your operating system prompt.

3.2.2 OPTION W--WRITE TERMINAL CONTROL CODESTO DISK FILE

This option allows you to write your application programs independent of the
run-time terminals on which they are used. When you select this option, the
terminals in the TERMS.DM file list on your screen. You can then select the
terminals that you want to support in your application program from that list,
and have them stored in a disk file that you name. Your application program
can ask the end-user what run-time terminal is being used, and then read the
correct control codes for that terminal from this file. The following figure
"Write Terminal Control Codesto Disk File" illustrates this environment.

R +
| TERMS.DM |
| file |
S — +
I
S +
e + - \ | Termind |
| Any terminal | Option W > | setup |
R + e /| program |
S +
I
T +
Fomm e + | Termina |
| Run-time terminal(s) | - - -> | control code |
Fo + | file |
T +
I
S T +
| Application |
| program |

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Figure 3-4. Write Terminal Control Codesto Disk File

After you select option W from the Main Menu, a prompt asks you to enter the
name of the file to which you want to write the termina control codes, as
shown in the following figure.

WRITE TERMINAL CONTROL CODES TO DISK FILE

STEP 1-Indicate name of disk file to store code
STEP 2-Select codes to writein disk file

(Press ESC to exit this option.)
Enter file to write control code to:

Figure 3-5. Terminal Control Code Filename Prompt

The name that you enter must be an acceptable filename and filetype. If you
enter the name of an existing file, you are asked if you want to add the codes
for the terminals that you select to the end of that file, or overwrite it. If

the file does not exist, you have the option to create it. Note that you
cannot assign the name TERMS.DM to thisfile.

To create or access a file on a drive other than the one to which you are
logged, precede the name with a valid drive specifier.

Next, you see thelist of terminalsin the TERMS.DM file. You can scroll
through this list until you find the terminal that you want to add, then enter

its 3-character code. If you enter a code that is not in the list, the words

"NOT FOUND" appear. Usethe DEL key ("<--") to erase the code, then enter a
correct one. If you enter a code that the DMSET program cannot recognize, the
words "BAD ENTRY" appear, and you must press ESC to re-enter the code.

When you enter an acceptable code, the word "FOUND" appears. Press RETURN, and
you are shown which termina you selected, along with its terminal control
codes.

A series of prompts then ask you to do the following:

- Verify that you want to use the codes that you have selected as they
are shown to you, one at a time.

- Indicate whether or not you want to select any more terminal control
codes for your file.

- Confirm whether or not you want to write the selected codes into the
file.

At the conclusion of this procedure, the program returns you to the Main Menu.
Note: Your Display Manager distribution disks contain a CBASIC Compiler

program named INSTALL.BAS. This program is designed to install the end-user's
terminal at run-time, using the control codes in the TERMS.DM file. Thisisan

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

alternate method to the one just described for installing the run-time
terminal. You can modify INSTALL.BAS any way you want, and distribute it along
with the TERMS.DM file and your application programs.

3.2.3 OPTION C--CUSTOM TERMINAL SETUP

The overview at the beginning of this section explains when you might need to
use this option. Because this is not a commonly used option, it is discussed
in Appendix C.

3.24 OPTION T--TEST TERMINAL CONTROL CODES

Y ou can use this option to verify that the control codes for a design or run-
time terminal are correct. Y ou can only conduct this test using the actual
terminal whose codes you want to verify. Testing the control codes for one
terminal while using a different one gives unpredictable results, and might
hang-up your terminal, forcing you to reboot your system.

When you select this option, the Terminal Test Menu appears on your screen, as
shown in the following figure.

TERMINAL TEST MENU for <terminal name>

Option Tests. ..
A ... ALL features
S..... Terminal STARTUP code
P..... Cursor POSITIONING
cC..... CLEAR screen
Z Screen SIZE
O..... Cursor ON/OFF
T STANDARD video attributes
u..... USER-defined attributes
M MULTIPLE attributes
R..... Cursor ARROW KEYS
F..... FUNCTION KEY S

Please enter Y our selection --> : :
Figure 3-6. Terminal Test Menu

You conduct all testsinteractively. Display Manager shows you a message
explaining what results to expect, and asks if you want to continue. If you

do, thetest is performed, and the results show on your terminal screen. The
program then asks you to confirm if the expected results happened. You then
have the option to go on to the next test, or return to the Terminal Test
Menu. Display Manager cannot determine whether or not the test was successful;
you must decide on its successor failure, and react accordingly. If a
particular test fails, it usually indicatesthat you need to change the

control codes for the terminal that you are testing (see Appendix C).

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Note that the Terminal Test Menu provides the optionto test al features
shown on the menu (option A), or only specific ones. If you select option A,
the program conducts each of the other tests on the menu in turn. If you
select an individual test, the program completesit, and then returns you to
the Terminal Test Menu.

3.2.5 OPTION ESC--STOP TERMINAL SETUP PROGRAM

You can press ESC during any test, to terminate the testing procedures and
return to the Main Menu.

Section 4. Display Design Concepts

A concept basic to understanding display design with the Editor is that
designing the displays, and creating application programs to use those
displays, are 2 separate steps. This section explains the fundamentals of
display design. Section 5 describes the options found on the Editor Main Menu.
Section 6 lists and discusses the Editor commmands. Section 7 explains how to
use displays in your application programs.

The following figure "Editor Environment" illustrates the environment where
you enter when using the Editor. In that environment, you design displays on
the design terminal while running the Editor program (usually named DMED).
When you compl ete the design of the display, you can store it in a file on one

of your disks (adisplay file). Y our application program subsequently reads
the displays from the display file at run-time, and shows them on the run-time
termina when needed.

S S — +
| Design terminal | <----------- +
o + |
| |
TSR + |
| The editor | |
| (DMED) | |
LT e—— + |
| |
SRR + |
| Up to No.250 | |
S e S R +
| No.n+1 |/---->| Display file (.DIS) |
S S e O O +
| Display No.1 |/ |
S T + R +
| Your application program |
TR +

Figure 4-1. Editor Environment

You can also use the Editor to keep your display files accurate and up-to-

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

date. Y ou can do the following:

- Recall displays from the display file to make corrections or changes.
- Delete a display from the file when it is no longer needed.
- Copy a display from afile, to useasa model when creating new

displays.

Section 5 gives detailed explanations of these and other options.

4.1 DISPLAYS

A display istheinformation shown onaterminal screen. Displays usually
cover the entire screen, but they can also cover only a portion of it. They
serve to present information or instructions to the end-user, ask questions,
present a list of options from which to choose, establish a form for data
entry, or virtually any other purpose. The following figure is an example of a
display showing alist of options for the end-user to choose. (Displays of
this type are known as menus.)

ACCOUNTSPAYABLE

MAIN MENU

Option Function

1..... Accounts Payable transaction maintenance

2 Vendor maintenance

3..... Print Accounts Payable checks

4 Print Accounts Payable reports

X ... Stop Program/return to operating system
e Please enter your selection

Figure 4-2. Sample Menu Display

Each display inadisplay file receives a unique display reference number,
ranging from 1 to 250, that you assign when creating the display. You can
assign a new number at any time. Display reference numbers do not have to be
contiguous.

Optionally, you can assign adisplay title in addition to the display
reference number. Thetitle bears no relationship to any other elements; it is
strictly for your convenience in identifying one display from another when
they list on your screen. Display titles can contain as many as 30 characters,
including spaces. For example, "APOL/Accts Pay Main Menu" is an acceptable
display title for the display shown in the preceding figure.

The Editor computes the screen size required to accommodate each display. The
display size is based on the number of rows and columns required for the
display. If your application program attempts to show a display on a screen
with too few rows or columns, the display appears correctly only if al fields
(including literal fields) are within the boundaries of the screen. Otherwise,

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

the results are unpredictable. This flexibility makesit possible to create
displays for different sized screens.

Note: Y ou cannot use the last column of the last row on the screen because, on
many terminals, a character in this position causesthe screen to scroll
upward.

You can assign each display global values specifying whether or not to clear
the run-time terminal screen before showing the display and, if your operating
system supports the use of color, the color attributes to be applied. Section

5 discusses global values.

4.2 DISPLAY FILES

A display file contains the displays designed and saved using the Editor. You
can store up to 250 displaysin a display file. Y our application program can
use as many different display files as disk space on the run-time computer
permits. However, only one display file can be open at any given time.

Assign your display files unique filenames that are compatible with your
operating system. Filetypes can be used, and an informal standard of DIS is
recommended. For example, a recommended name for an accounts payable display
file might be ACCTSPAY .DIS.

4.3 DISPLAY FIELDS

Each display consists of one or more display fields. A display field is a
portion of the display beginning at a particular row and column, and ending on
the same row. Thelength of a display field can be from one column to an
entire row, but fields cannot overlap.

Primarily, display fields do the following at run-time:
- Retrieve information entered by the end-user. These are input fields.

- Display variable information derived by your program from computations
and datafiles. These are output fields.

- Display constant information, such as instructions, prompts, and field
labels. These are literal fields.

The Editor assigns each input and output field in adisplay afield reference
number when you create it. The Editor also provides an option to renumber one
or more fields if needed. Field reference numbers range from 1 to 250.

You can assign video attributes to input and output fields. These attributes
are the special effects that may be available on the run-time terminal, such
asinverse video, full/haf intensity, underlining, and color. If you assign a
field a video or color attribute, but the feature is not available on the run-
time terminal, the attribute is ignored.

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

4.3.1 Literal Fields

Literal fields contain information that is constant. For example, literal
fields can serve as labels for input and output fields, column headings, data
entry prompts, and instructions.

Literal fields cannot be changed during run-time. In fact, the end-user cannot
move the cursor into a literal field.

Any field in a display not specifically defined as an input or output field is

aliteral field. Literal fields are not numbered, and cannot be assigned video
attributes.

4.3.2 Input Fields

The end-user can enter information into input fields during run-time. Y our
application program can usethe GETF (Get Field) or UPDF (Update Field)
functions to retrieve information from input fields. Section 7 describes these
and other functions.
Here are some of the ways you can control the input fields in your displays:

- Assign video or color attributes to the field.

- Assign initia (or default) valuesto the field.

- Place template charactersin the field to aid the end-user during data
entry.

- Retrieve information that the end-user enters into the field.

- Specify the type of data, such as alphabetic or numeric, that can be
entered in the field.

- Specify what should happen if the end-user enters a specia character
into the field, such as an up-arrow or function key.

- Specify what should happen if the end-user enters an illegal
character, such as the letter "a" in a numeric field.

- Display information in the field.
You can assign video or color attributes, or both, to an input field for
special effects or increased visibility. The end of this section discusses
these attributes.
When you define an input field with the Editor, you can enter an initial value

in the field. When the display shows on the run-time terminal, the initia
value appearsin the field. Initial values can greatly simplify data entry for

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

an end-user, by showing the most commonly-entered value for afield. Consider
the following example of a data entry prompt using an initial value:

Enter employee's hourly pay rate --> 12.00

The portion of the prompt "Enter employee's hourly pay rate-->" isa literal
field. Theinput field beginsin the column immediately following "-->" and
has been assigned an initial value of 12.00. When the display appears on the
run-time terminal, the prompt appears exactly as shown in the example. If the
end-user presses RETURN without entering anything in the field, the value
12.00 is returned to the application program. The UPDF (Update Field) function
retrieves information from a field containing an initial value.

Template characters are another way to smplify dataentry for an end-user.
Here is an example of a prompt using template characters:

Enter telephone number --> :() -

The portion of the prompt "Enter telephone number -" and the two colons (:)

are literal fields. Theinput field begins immediately following the first

colon and ends at the column preceding the second colon. The parentheses, the
space immediately following the parentheses, and the hyphen are all template
characters. When the telephone number is entered, the cursor jumps over each
template character. They cannot be typed over or erased. Theinput field in

our example accommodates ten characters, for example, (206) 555-1212. Template
characters are never returned to the application program.

Y ou can combine template characters and initial valuesin an input field. Here
is an example prompt:

Enter Social Security Number: nnn-nn-nnnn

The hyphens are template characters; the n's are theinitial value of the

field. This example of initial values differs from the preceding one in that,

here, the value is not the most common response to the prompt; instead, each n
serves as a place marker which you expect the end-user to replace with a
number. As the n'sindicate, the field accommodates nine characters, for
example, 123-45-6789. The GETF (Get Field) function retrieves information from
afield without returning its initial value.

You can definean input field in such a way that Display Manager validates
each character as the end-user enters it at run-time. Y ou can tell the Editor
what type of data, such as alphabetic or numeric, you expect to receivein a
field at run-time. Display Manager then ensures that only that type of datais
returned to your program.

The Editor provides you with several ways to specify how the end-user must
terminate data entry for a field. Data entry can be terminated when the field

is full, anillegal character is entered (such as a number in an alphabetic

field), an up or down cursor movement key is pressed, or a function key is
pressed. The ENDF (End Field input) function can be called by your application
program to determine precisely how the end-user terminated data entry. You can
use the RESF (Resume Field entry) function to signal to the end-user that he
entered an illegal character without terminating data entry for the field.

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Your program can display information in an input field using the PUTF (Put
data in Field) function. You can specify a format for the information when
creating the field with the Editor. Thisis useful for assigning or changing a
field'sinitial values.

4.3.3 Output Fields

You can use output fields to display variable information derived by your
program. Use the PUTF (Put data in Field) function for this purpose.

Here are some of the ways you can control output fields in your displays:

- Display information in the field.

- Assign the field video or color attributes.

- Specify a format for the way information should appear in the field.
- Place template characters in the field.

- Assign the field initial values.

You can assign video or color attributes, or both, to an output field for
specia effects or increased visibility. This section explains these
attributes in detail later.

When creating an output field with the Editor, you can specify a format for
the way the information should appear. The format can specify that the
information be left- or right-justified, a certain number of positions follow
a decima point, and more. Table 4-5, "Field Format Codes’, later in this
section explains the codes that determine the field format.

Y ou can aso place template characters and initial valuesin an output field.
Template characters can enhance the appearance of an output field; initial
values ensure the field's appearance when initially displayed.

Y our program can retrieve information from an output field using the GETF (Get
Field) or UPDF (Update Field) functions.

4.4VIDEO ATTRIBUTES

You can assign video attributes to input and output fieldsto activate any
special features available onthe run-timeterminal. You can assign the
attributes when you create the field with the Editor. Of course, for the
attribute to take effect, the specified feature must be available on the
terminal; otherwise, Display Manager ignores the request.

Because video attributes cannot be assigned to literal fields, you might want

to set up some of your prompts, help messages, and error description areas as
input or output fields. For example, you might reserve the bottom row of your
display for showing error messages. By making the row an output field, you can
use video attributes to make the messages invisible until needed and
highlighted when shown. Y our application program can use the SETF function to

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

control video attributes during run-time.

Display Manager can accommodate up to 8 different video attributes for each
display field. Each attribute has 2 settings, ON or OFF. You can assign a
field 2 separate video attributes at the same time, provided that the terminal

can handle combinations of features, and that the control codes for the
terminal have been set up accordingly with the DMSET program (see Section 3
and Appendix C). If you assign multiple attributes but the run-time terminal
cannot accommodate one or both, it ignores unsupported-attributes.

Y ou cannot use simultaneous, multiple video attributes on some terminals, even
though the attributes might be available individually. In such cases, Display
Manager uses a priority scheme. The following table lists video attributes in
their order of priority. Field visibility has the highest priority, followed

by intensity, inverse video, flashing, underlining, and user-defined
attributes one, two, and three.

You can assign these video attributes with the Editor. Section 7 explains
which commands allow you to assign the attributes. In the following table,
each attribute's normal state appearsfirst; its special state shows second.

Table 4-1. Video attributes

Format: Attribute/Setting
Feature/Effect

VISIBILITY
Determinesif a field shows when initialy displayed at run-time. It is useful
for suppressing initial values, template characters, and so forth.

Visible
The field's contents appear on the screen.

Invisible
The field's contents are suppressed. The field can be made visible at
run-time using the SETF (Set Field attributes) function.

INTENSITY
Determines how brightly the charactersin the field are displayed.

Full
Charactersin the field are displayed with full brightness.

Half
Characters in the field are displayed with 50% brightness. This
setting is useful for prompts and help messages.

INVERSE VIDEO
Determines if characters are displayed as light images on a dark background or
dark images on a light background.

Normal

Characters in the field are displayed as light images on a dark
background.

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Inverse
Characters are displayed as dark images on a light background.

FLASHING
Determines if charactersin the field flash ON and OFF.

Normal
Characters in the field are displayed as constant images.

Flashing
Characters in the field blink ON and OFF continually. Flashing can
attract attention to a field, but it annoys if overused.

UNDERLINING
Determines if the charactersin the field are underlined.

Normal
Characters in the field are not underlined.

Underline
Characters in the field are underlined.

USER-DEFINED

Three user-defined attributes are available. They are used to activate Special
features (such as color) that might be available on some terminals. The codes
to activate these features must be included in the terminal’s control codes
(see Section 3).

Normal
The corresponding feature is not activated.

Special
The corresponding feature is activated for the field.

On some terminals, you must reserve a blank space on either side of afield in
order for a video attribute to take effect. This technique of activating video
attributes is the Plant method. Other terminals do not require blank spaces.

They use the Paint method. Display Manager provides a function (RETDM) that
can be called by your application program to determine which method (Plant or
Paint) the run-time terminal uses.

If you are not sure whether the run-time terminals use the Plant or Paint
method, you can always be safe by assuming the Plant method, and by reserving
a space on either side of every input and output field in your displays.

4.5 COLOR ATTRIBUTES

Y ou can assign distinct background and foreground colors to displays. You can
also assign different background and foreground colors to the individua
fieldsin adisplay. You have a choice of 8 different colors for backgrounds,
and 16 different colors for foregrounds.

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Of course, for color to take effect, the run-time terminal must have this
feature. If the terminal is monochrome (black and white), Display Manager uses
the video attributes in place of the color attributes. Consequently, itis a
simple matter to design a display that works equally well on monochrome or
color terminals. Your application program, at run-time, need not really be
concerned with which type of terminal isin use.

While it is possible with Display Manager to design displays on a monochrome
monitor for eventual use on a color monitor, do this with considerable care.
This is also true when designing displays on one color monitor or video board
for use on another. Colors vary significantly from one monitor to another, and
do not always produce the anticipated result. A combination of colors that
sounds good, or even looks good, on one monitor might wash out on another,
rendering the information on the screen almost unreadable.

If you cannot test color combinations on the terminals where they will be
used, use only those combinations of basic colors that provide high-contrast,
or always use a black background.

Also be cautious of overusing colors in your displays. Reading a screen that
islit up like a Christmas tree can be both difficult and annoying.

The following table lists and explains the various color attributes that you
can assign with Display Manager. The "Status Window" section explains how to
set the attributes, and provides more detailed information.

Table 4-2. Color attributes

Format: Attribute
Use and effect

Flashing

This can be set to cause the field to flash ON and OFF when the display is
shown. Use with caution; a flashing field attracts attention, but can be
overly distracting.

Background

While there are only 3 background color codes (RED, GREEN, and BLUE), they can
be set in combinations to provide up to 8 different colors. In most cases,

these 3 colors can be mixed as they would be on an artist's palette. For

example, mixing RED and BLUE produces magenta.

Intensity

This applies only to the foreground color for the field. It can be set so
that, when the foreground color is displayed, it is shown in bold intensity.
This has the effect of producing a different color.

Foreground

The foreground color codes work in a manner identical to background codes,
with one exception. When the intensity attribute is set, the result is a
different color. For example, if red is selected as the foreground color and
the intensity attribute is set, the actual color produced is light red. This
doubles the number of available foreground colors, to 16.

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

4.6 STATUS WINDOW

Every input and output field in a display has a status window associated with
it. You can make entries in the status window to assign various
characteristics to each field. To gain accessto a field's status window,

place the cursor anywhere within the boundaries of the field, then press Ctrl-
W. The status window appears on your screen with the cursor positioned inside.

Status windows for input and output fields are similar, but distinctly and
logically different. The following figure shows a status window for an output
field.

| Fleld No. Row Col Len Posts Type-OUTPUT |
| 000 000 000 000 YY *rr,cc*nnn |

| Format :L: L,RN,0-9CM Comma :N: N)Y |

I I

| Video :N: :N: :N: :N: :N: :N: :N: :N: N)Y |

| Invs Half Invr Fish Undl Usrl Usr2 Usr3 |

| Color :N: :N: :N: :N: :N::Y: :Y::Y: NY|
LGLIEEEEE fls--RED--GRN--BLU--Int--red--grn--blu------ +

Figure 4-3. Output Field Status Window

The next figure shows a status window for an input field. Note that it
contains everything that you find in an output field's status window (with one
exception), plus 2 additional lines, the Validate/Beep line and the End Input
line. The exception is that AutoRet replaces the Comma element.

| Field No. Row Col Len Posts Type INPUT |
| 000 000 000 000 YY *rr,ccrnnn |

| Vdidate :X: X,A,CD,FI,U Beep :N: N)Y |

| Format :L:L,RN,0-9,C,M AutoRet :N: N,Y |

|

| End input---Cursor :N: BadC :N: FKey :N: N,Y |

| Video :N: :N: :N: :N: :N: :N: :N: :N: N)Y |

| Invs Half Invr Fish Undl Usrl Usr2 Usr3 |

| Color :N: :N: :N: :N: :N::Y: :Y::Y: NY|
LGLIEEEEE fls--RED--GRN--BLU--Int--red--grn--blu------ +

Figure 4-4. Input Field Status Window

4.6.1 Status Window Elements

Because the elements within a status window are similar for input and output
fields, the following discussion of these elements pertains to both windows.

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

When a distinction is necessary, [INPUT] or [OUTPUT], whichever applies,
precedes the text.

Field No.

The number currently assigned to the field appears beneath the label. The
Editor assigns every input and output field a unique number, ranging from 1 to
250, when it creates the field. You can use the renumber option (described in
Section 6) to assign new numbers to one or more fields in your display. Note,
however, that renumbering fields does not change their relative position
within the display.

Row
This number indicates the row on your screen that contains the field. The top
row on the screen isrow 1.

Cal
A number indicating the column of the first position in the field. The
leftmost column on the screen is column 1.

Len
Indicates the number of positions (columns) in the field. Any template
characters are included in the count.

Posts

The first letter indicatesif the columnimmediately preceding the field
contains a space (Y=Yes, N=No). The second letter indicates if a space
immediately followsthe field. These indicators are significant if any run-
time terminal uses the Plant method to activate video attributes. In such
cases, the values here should be Y.

If the run-time terminals use the Paint method, a space isnot required on
either side of the field, and the values here are unimportant.

Type-
Indicates whether the field is used for INPUT or OUTPUT.

rr,cc

These vaues indicate the row (rr) and column (cc) where the cursor is
currently located. This can be different from the Row and Column numbers
described earlier if the cursor is not in the first position of the field.

nnn
The value replacing nnn indicates the number of input and output fields in the

display.

Validate :X: X,A,C,D,I,U,F

[INPUT] The code that you enter between the colons tells Display Manager how
to validate information that the end-user typesinto this field at run-time.

There are 7 different forms of validation from which to select, as explained
in the following table.

Table 4-3. Input field validation codes

Format: Code

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Validation type

X

Any printable character is accepted. Thisis the default for al input fields
when they are first created (unless you assign other status window defaults
using the Ctrl-UW command, see Section 6).

A
Only alphabetic characters and spaces are accepted. A numeric entry is treated
as an illegal character.

C

Any characters, including control characters, are accepted, though function
key input is not interpreted. Information entered by the end-user is not
echoed back to the run-time terminal.

D

Only signed, decimal datais accepted. Alphabetic characters and more than one
decimal point are treated as illegal characters. Spaces are allowed, but when
the field contents are echoed, they are truncated starting at the first
embedded or trailing space. Signs are moved next to the number, to eliminate
embedded spaces.

I
Only signed, integer data is allowed. Alphabetic characters and decimal points
are treated as illegal characters. Spaces and signs are handled as for code D.

U
Same as type X, except that all information entered by the end-user converts
to upper case.

F
Only function keys are accepted as valid input for this field.

During run-time, Display Manager routines validate each keystroke as the end-
user enters it. These routines do not pass unacceptable information to your
application program.

Y ou can select only one input data validation type code for each input field.

The next table shows what happens at run-time when different keys are pressed
and a specific data validation code is in effect. Acceptable input is marked
with Y; illega or unacceptable input is marked N. Numbers refer to notes
following the table.

Table 4-4. Interpretation of input validation types

Type of Data Entered Validation Code used

by End-user X A C D I u F
Alphabetic (A-Z,a-z) Y Y Y N N Y N
Period Y N Y 1 N Y N
Plusor MinusSign Y N Y 2 2 Y N

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Number (0-9) Y N Y Y Y Y N
Space Y Y Y 3 3 Y N
Other printable

character (1," #,etc.) Y N Y N N Y N
Control Key (Ctrl-A

through Ctrl-Z) other

than cursor movement N N Y N N N N
Cursor movement

(control keys and

standard cursor arrow

keys for editing) Y Y 4 Y Y Y N
Function Key 5 5 5 5 5 5 Y

Notes:
1. A decimal field can have only one decimal point.
2. A single sign character can precede the digitsin the field.

3. Spaces are adlowed. When thefield content is returned, it is
truncated starting at the first embedded or trailing space. Signs are
moved next to the number to eliminate embedded spaces.

4. The end-user cannot edit control fields because the control keys are
stored as part of the field. The only way to terminate data entry in a
control field is by pressing the RETURN key, or filling the field when
AutoRet is appropriately set.

5. Function keys generate several, separate ASCII codes that appear to
the computer as though several keys were pressed. Unless the FKey code
is set, the generated characters are treated as though they were
entered into the field individually. When FKey is set and the end-user
presses a function key, Display Manager returns (via the ENDF
function) only the appropriate negative value to indicate which
function key. This assumes that the control codes passed via the
INITDM function indicated that the terminal has function keys.

Beep :H:

[INPUT] If settoY and the run-time terminal is equipped with an audible
beeper, the beeper sounds when the end-user enters unacceptable information in
the field. If N, the beeper does not sound under these same conditions.

Format :L: L,R,N,0-9,CM

Specifies the way data should be formatted when placed in an input or output
field. The next table describesthe codesthat you can use to specify
formatting.

Table 4-5. Field format codes

Format: Code
Resulting Format

L
Left-justify. Aligns characters with the leftmost column of the field.

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

R
Right-justify. Aligns characters with the rightmost column of the field.

When afield'sformat code isL or R (signifying Left or Right justification,
respectively) and truncation is necessary, information is always truncated
from the right side of the datafield.

N

Formats information in the field as pure, numeric data. Numbers are right-
judtified in the field, and leading zeros are removed. If, a run-time, the
number istoo long to fit in the field, the least significant digits to the
right of the decimal point are truncated. If the number still does not fit,
the field isfilled with asterisks.

0-9

Formats information in the field as a decima number. Enter a value from 1 to
9 to indicate the number of digitsto the right of the decimal point. For
example, if you enter 4, four digits follow the decimal point. Trailing zeros
are inserted if the number contains less than four digits after the decimal
point. If the number with the specified decimal places does not fit in the
field, right truncation occurs, as in the "N" field. Leading zeros are removed
and truncation, not rounding, eliminates extradecimal digits.

C

You can use this format code to send control keys to the screen. Information

in the field is not formatted, and any number of characters can be sent to the
field. You can use this command to go outside Display Manager and use specia
screen features, but use the command with caution. For example, this output
format type is useful if you want to use atermina feature that Display
Manager does not support. To do this, create an output field with format code
C, position the cursor in this field, send the control sequence for the
terminal feature, and then make sure the cursor is back in this field before
returning control to Display Manager.

M

Formats the field to contain money values. This automatically inserts a dollar
sign or other currency symbol in the first space of the field, and formats it
with 2 digits after the decimal point.

Comma :N:

[OUTPUT] Thisisthe numerical separator code. If Y, acommais inserted to
the left of every 3rd digit to the left of the decimal point. For example, one
million displays as 1,000,000.00. If N, commas are not inserted automatically.

AutoRet :N:

[INPUT] This code indicates whether or not data entry ends automatically when
the input field isfull. If Y, the end-user's datais returned to the program

when a character is entered in the last position of the field or RETURN is
pressed. If N, the end-user must press RETURN to terminate data entry.

Cursor :N:

[INPUT] This s the cursor arrow code. If Y, the up or down cursor arrow key,
or the up/down cursor movement control key, causes data entry termination.

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Note that cursor arrows might not be supported for a particular terminal. |If
N, the keys have no effect.

BadC :N:

[INPUT] This istheillegal character code. If Y, any illegal key entered
forces data entry to end for the input field. Anillegal key isany character
that does not conform to the input format specified for the field (see Table
4-3, "Input Field Validation Codes"). Line editing keys are exempt from this
check, unless the validation type is C (control field).

FKey :N:

[INPUT] Thisisthe function key code. If Y, any supported function key that
IS entered causes data entry to terminate for this field. If N, any function

key that isentered is not interpreted, and the characters sent when the key

is pressed are treated as normal input for the field, unless the validation
typeis F (function key field).

For any given field, more than one code for ending data entry can be set at
the same time. For example, setting the Cursor and FKey codesto Y terminates
data entry if a cursor-positioning key or function key isentered. In this

case, these keys provide the same functionality as the RETURN key. At run-
time, the ENDF function can be used to find out how data entry was actually
terminated (see Section 7).

4.6.2 Status Window Video Attributes

The next 8field characteristics relate to the video attributes described
earlier. Note that you can use the SETF function at run-time to override any
of these settings. Also note that, with the exception of Invs, the run-time
termina must have the designated features available for these video
attributes to take effect. Invs functions independent of terminal features.

:N: Invs
Set to Y to makethefield invisible, so that it does not appear on the
screen. The default, N, makes the field visible.

‘N: Half
Set to Y to show the field in half intensity (50% brightness). The default, N,
shows the field in full intensity.

N: Invr

Set to Y to show thefieldininverse video (dark images on a light
background). The default, N, shows thefield aslight images on a dark
background.

'N: Flsh
Set to Y to show the charactersin the field flashing. The default, N, causes
the characters not to flash.

:N: Undl

Set to Y to underline the charactersin the field. The default, N, causes
underlining not to take effect.

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

:N: Usrl
Set to Y to activate user-defined field attribute #1.

‘N: Usr2
Set to Y to activate user-defined field attribute #2.

‘N: Usr3
Set to Y to activate user-defined field attribute #3.

User-defined attributes can activate features available on the run-time

terminal that are not otherwise supported by Display Manager. For example, if

the terminal has a graphics mode capability, it can be defined as one of the

user attributes. This requires that the control codes needed to activate this

feature be included in TERMS.DM. (Section 3 and Appendix C explain how to do
this.) If, for example, the graphics mode codes are set up as user-defined
attribute number 1, and Usrl isset to Y, the corresponding field is shown as

a string of graphic symbols.

4.6.3 Status Window Color Attributes

The following are descriptions of the color attributes. Note that, with the
exception of the "Invs' video attribute, color attributes always take
precedence over the video attributes. Display Manager examines the control
codes for the run-time terminal and, if color is available, uses the color
attributes; otherwise, it uses the video attributes. Note that the resulting
colors indicated might vary with different color graphics boards and
terminals.

:N: Fls
Set to Y to cause the field to flash ON and OFF when the display is shown. A
flashing field attracts attention but can also be distracting. Use cautioudly.

:N: RED :N: GRN :N: BLU

These 3 codes specify the background color for the field. Any codes specified
here take precedence over the global background color selected for the
display. The codes are used in combinations to produce up to 8 different
colors. The following table shows the colors normally produced by each
combination.

Table 4-6. Background color codes

RED GRN BLU Result

<<<=<zZzZZZ

<<KZ2Z2<<<Z2Zz2

<Z2<zZ2<xzZ2<Z2
3

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

The final 4 attributes serve together to specify the foreground color for the
field.

:N: Int
When setto Y, the foreground color appearsin full intensity. When N, it is
shown in half intensity.

Y:red:Y:grn:Y: blu

The foreground color codes function the same way as the background codes.
However, when used in conjunction with the Intensity attribute (immediately
preceding), up to 16 different colors are available. The next table shows the
colors normally produced by each combination.

Table 4-7. Foreground color codes

Int red grn blu Result

Gray

Light Blue
Light Green
Light Cyan
Light Red
Light Magenta
Yellow

Bright White

K<< <<X<X<<Z2Z2222222Z
K<< <XZZZZ<X<X<X<ZZZZ
K<ZZ<X<XZZ<X<XZZ<X<XZ22Z
KZ<Z<XZ<Z<XZ<2Z<Z2<Z

Section 5: Editor Options

Y ou can do these things with the Editor:

- Create new displays

- Make changes to existing displays

- Delete obsolete displays from a display file
- Renumber the displaysin a display file

- Change the currently open display file

The latter part of this section explains the Editor options in detail.

However, before you can select an option from the Editor Main Menu, you must
complete some preliminary steps to get the menu on your design terminal.

5.1 STARTING THE EDITOR

file://IC|/...ation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/Display%20M anager%20Programmers%620Guide/ DMRM.TXT[2/6/2012 4:31:27 PM]

Unless the Editor was installed with a name other than the default, enter the
following command at your operating system prompt to start the Editor running:

DMED

If the Editor was installed with a different name, enter that name (instead of
DMED) to start the Editor.

Y our screen then appears similar to the following figure.

Display Manager 8x Version 1.0
Serial No. xxxx-0000-634321 All Rights Reserved
Copyright (c) 1983 Digital Research Inc.

Display Manager installed for <xxxxxxxx>

(Press ESC to exit)
Press RETURN to continue

Figure 5-1. Editor Start-up Screen

Before moving on from this screen, check 2 important things. First, make sure
that the copyright banner appears with your Display Manager version and serial
number. If the banner does not appear, or has been modified, you m