
file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMBYTE.TXT[2/6/2012 4:20:25 PM]

CCPMBYTE.WS4 (= Concurrent CP/M article in BYTE magazine)

- "Concurrent CP/M"
 Joe Guzaitis
 BYTE, November 1983, p.257

(Retyped by Emmanuel ROCHE.)

"By permitting a 16-bit microcomputer to execute several processes that seem
to occur simultaneously, this Operating System efficiently uses computer and
operator resources"

A growing sentiment at Digital Research can be expressed as:

 CCP/M : 16 :: CP/M : 8

that is, Concurrent CP/M is to 16-bit microcomputers as CP/M is to 8-bit
machines. Bold stuff. But not really, when you consider that CP/M (Control
Program for Microcomputers) has come to dominate the 8-bit market.

But what exactly is concurrency, the major enhancement of this Operating
System? Concurrency does not allow two processes to occur at the same time in
the same place, but it does permit many processes to occur sequentially in
round-robin fashion in infinitesimal time slices, so that they seem to occur
simultaneously in the same place. Therefore, although most systems spend a lot
of time waiting for input from a person or process, Concurrent CP/M permits a
computer to perform a task while waiting for input from another process.

Multitasking, multiprogramming, and concurrency allow as much of a system's
resources as possible to perform useful work for as much of its operating time
as possible. Concurrency increases throughput, which in turn results in
increased efficiency and cost-effectiveness.

16-bit Advantages

Concurrent CP/M has the potential of stimulating the 16-bit microcomputer
market the way Visicalc stimulated the early 8-bit field -- by giving the
world a powerful example of a microcomputer's capabilities.

Let us face it: 16-bit computers are not inherently faster or more versatile
than 8-bit machines. In fact, an 8-bit computer can often run rings around a
16-bit machine. In addition, a wider variety of applications software is
available for 8-bit computers than for 16-bit machines. Why spend the extra
money for this new technology?

There are two good reasons. The first is memory. Getting an "OUT OF MEMORY"
message in the middle of a program is a frustrating experience that nearly
every computer user will encounter eventually. But this problem is not
insurmountable; there is usually a way to work around memory limitations.

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMBYTE.TXT[2/6/2012 4:20:25 PM]

A better reason to choose a 16-bit machine is concurrency. Its large memory
requirements make its use within an 8-bit architecture impractical. Concurrent
CP/M takes up as much as 90K bytes; 256K bytes are actually needed to make it
useful.

How Concurrency Works

To understand how concurrency is possible, we can look at our work habits,
which resemble a type of concurrent processing. For example, as I sit here at
my word processor typing away, I break momentarily to jot down an appointment
on my calendar, go back to typing, break away again to use my calculator,
return to the keyboard, stop to look up a word in the dictionary, then go back
to typing, all the while waiting for a phone call.

Breaks can be self-generated, such as those made to check a word in the
dictionary, or they can be imposed from the outside. We work in an interrupt-
driven manner, allowing phone calls, messages, or fellow workers' inquiries to
tear us from the task at hand. Many users of Concurrent CP/M say that the
operating system seems like a natural extension of the way they work because
it enables them to switch among tasks without losing the thread of any of
them.

Because it provides the capability for processes to seemingly execute
simultaneously, Concurrent CP/M increases processing efficiency much the way
online processing proved more efficient than batch processing. In batch
processing, similar types of data are accumulated over a period of time and
processed in one run. Online processing, on the other hand, allows a computer
to appear to handle many sources of input simultaneously, then usually returns
to the task's origin. Batch processing works serially; online processing
allows another task to begin before the first is completed, and it appears to
handle both processes at the same time.

Similarly, single-tasking operating system must process sequentially, and
multitasking systems such as Concurrent CP/M rapidly go from one process to
another, appearing to perform many tasks at once. And, whereas single-tasking
systems left the operator idle much of the time, waiting for a process to be
completed, Concurrent CP/M has the machine waiting for the operator, ready to
do more work. Concurrent processing involves one user at a time, who feeds
various types of input into the processor via several virtual consoles,
whereas online processing provides for many users at many consoles, all
feeding into a central computer.

How Concurrency Looks to the User

The concept of virtual consoles helps some users understand concurrent
processing, but confuses others. The computer can be thought of as having only
one actual console (the terminal) but several virtual consoles -- equivalent
consoles that can also interact with the central processor. The terminal can
monitor one process at a time. A concurrent operating system allows a user to
go from one process to another, switching to various virtual consoles to

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMBYTE.TXT[2/6/2012 4:20:25 PM]

monitor different processes.

This procedure is analogous to the way a television user can switch from one
channel to another, sequentially viewing several programs. Both the television
and Concurrent CP/M permit screen switching. Use of a computer differs from
that of a television, though, because a computer allows a user to interact
with its programs, whereas a television does not (we will ignore those few
cable-TV experiments that permit user participation).

Another way to think of concurrency is to picture a computer operator sitting
among several computers, each running a different applications program. By
swiveling around, the operator can interact with each application -- use the
output from one process to inform another, print one letter while writing
another, and compile one program while editing another and debugging a third.
With Concurrent CP/M, swiveling is replaced by a keystroke, which summons the
program you want to monitor to the terminal screen.

Processes and Data Modes in CP/M

In Concurrent CP/M, we talk of processes more than programs. In this
environment, a program is a static piece of code, and a process is what is
executed. Whenever a program is loaded into memory, a process is created that
involves code from the program, the operating system, and housekeeping data
that indicates, for example, which virtual console to use. The operating
system monitors the process, not the program.

There are two modes in which console output generated by a process can be
handled: dynamic and buffered. Whatever task you have selected to be in the
foreground directs its output to the console screen, and you monitor the
virtual console assigned to that selected process on the terminal. You must
set each virtual console to either dynamic or buffered mode, so that the
system knows how to handle console output in your absence.

However, a process not being monitored on the screen is considered to be in
the background, and its output is not monitored. In dynamic mode, when you
select a virtual console, you do not see the procedure as it happened;
instead, you see the net results. For instance, if your word processor was
performing a search-and-replace procedure in a lengthy file, you would return
to see the strings replaced but would have missed the replacements as they
occurred.

Output is handled differently in buffered mode. To return to our TV analogy,
buffered mode works as though you had a videotape recorder connected to a
channel you are not viewing, recording everything that was going on in your
absence. When you return to that virtual console, it replays all the updates
that happened on that console while you were away in the sequence and context
in which they occurred.

Depending on the implementation, information on which mode you are in is
usually available on the status line at the bottom of the screen. The status
line also typically tells which virtual console is being displayed and the
name of the process running, and may also include information such as time of

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMBYTE.TXT[2/6/2012 4:20:25 PM]

day, printer assigned to that console, and disk drive in use. As you switch
screens, the status line changes, providing information for the next virtual
console you want to monitor.

Shared Files

Another feature that Concurrent CP/M provides is a shared file structure. By
using BDOS calls, programs can open files in one of three modes: locked, read-
only, and unlocked. Two or more concurrent processes can access the same file;
that access is controlled by the file-access mode.

The locked mode is the default one. In that mode, a file can be opened only if
no other process has that file open already. Once opened in locked mode, the
file must be closed before any other process can open, access, or delete it.
(An extended lock feature allows a process to keep the file locked after it is
closed.)

If a file was opened in read-only mode, no process can write to it, but any
process can read from it. But, if a file was opened in unlocked mode, it can
be read from or written to by any process.

For a process to access either a read-only or unlocked file, it must open the
file in that mode. Record locks are also available in unlocked file mode, to
deny access to individual records within an otherwise unlocked file.

Advanced Features

As more software vendors realize the power of concurrency, applications
programs will share common data structures that allow the packages to work
interactively. Shared files gives us a hint of what is possible. Other
features that lend themselves to the interactive environment Concurrent CP/M
affords are queue management, and priority setting.

A queue, a line of items waiting for the processor's attention, is a way for
one concurrent application to communicate with another. In other words, a
process on one virtual console can be made to share data with a process on a
different virtual console. Because queues operate entirely in RAM, they work
quickly and efficiently. Queues can be created, opened, closed, and deleted
just as disk files can, and you can read or write to them on a conditional or
unconditional basis. The data structures of the programs must be compatible,
however, to allow for queue management.

Another advanced feature that concurrency permits is priority setting.
Specifically, it allows you to set a priority level on each process, so that
important processes are not hindered by lesser ones. Because a system's
processes all share the same central processor, they affect each other's
operation. For instance, if your modem is attached to one console and is
receiving data, you want to ensure that the data is not slowed down by work
you are performing on another console. Moreover, because data integrity and
telephone charges are involved, the task receiving the data demands top

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMBYTE.TXT[2/6/2012 4:20:25 PM]

priority. Less important tasks can run more slowly.

To ensure that the more crucial task gets preferential handling, you need not
use such tactics as postponing "saves" as you work in your word processor, or
stopping the compiler while data is being sent or received. The priority-
setting capability lets you assign the reception of data priority over other
processes. If the modem is using bits-per-second (bps) rates above 1200, other
processes may slow down when the modem is receiving or sending data. A lower
bps rate, however, should cause no problem.

Priority setting will probably be a standard feature of applications packages
designed to run under Concurrent CP/M. Until those packages are available,
however, it must be accomplished via a system-function call.

Another advanced capability that is also implemented through a system-function
call is process detachment, which allows certain processes that need not be
monitored, such as print spooling, to be detached from a virtual console and
run unattended, thus freeing a virtual console for other tasks. Concurrent
CP/M also provides the program logic for other features that do not actually
reside in the operating system. Until they are made available in software
packages, though, the only way to get them is to program them yourself. Those
packages should also encourage software designers to standardize user
interfaces, because when users can rapidly switch back and forth among
programs, the differences between software packages can affect operator
efficiency.

Additional Benefits

Because printing can take a great deal of time and use little of the
processor's power, many people invest in a hardware or software spooler, which
allows printing to operate as a background task while another task is carried
out in the foreground.

With concurrency, a spooler is unnecessary, because the operating system
allows you to print a file from one virtual console while working on several
others. Moreover, each virtual console can be assigned to a different printer,
so you can print several files, each from a different console, on the same or
different printers, while working with other programs. If two files are trying
to print a file on the same printer, the first to begin printing "owns" the
printer, and the other one must wait until the first is finished. During that
time, all activity on the waiting console is suspended.

Communications is another task for wich concurrency will prove useful. Linking
many microcomputers in your organization can increase the efficiency of each
operator, because it makes available such features as shared files, shared
resources, and electronic mail. CP/NET and Concurrent CP/M permit each
computer to share files and other resources (such as printers and disk drives)
with other computers in the network.

The next level of utility is having several virtual consoles running the same
or different programs at the same time. Running the same programs can be of
help to writers or reporters, for instance, who may be working on several

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMBYTE.TXT[2/6/2012 4:20:25 PM]

articles or stories at the same time. As an idea strikes you for story two
while you are in the middle of story one, merely hit a key and type some notes
in that story file. To non-writers, this feature may seem unnecessary, but I
assure you it is an efficient way to work. Flashes of inspiration are best
recorded quickly.

This feature would also be helpful to a financial analyst who might have
several spreadsheets running side by side in different currencies, and who
might want to use the same base-line data and generates figures in pound,
franc, mark, and yen denominations. By switching screens and entering common
base-line data, the appropriate currency spreads can be generated instantly.

Theoretical and Realistic Limits

The number of virtual consoles that may someday be supported by a system
depends ultimately on the memory available. Let us imagine we manufacture
computers. Knowing that 8086/8088 systems provide as much as 1 megabyte of
memory and that Concurrent CP/M can use as much as 90K bytes (supporting four
virtual consoles with full-screen buffers), we have about 900K bytes to work
with. By dividing that value by the number of applications programs that are
to run concurrently, we can determine how much memory we can use for each
application program.

Taking another approach, we could divide 900K bytes by an estimated average of
how much memory each application (including files) will require, to see how
many virtual consoles we could expect to have in our system. This result is
still only a rough estimate, because the operating system must grow when the
number of virtual consoles increases beyond four if additional screen buffers
are added.

Sixteen-bit microprocessors other than the 8086/8088 have even more memory.
Motorola's 68000 provides up to 16 megabytes of RAM, and the 80286 from Intel
furnishes much more than that. Clearly, with such abundant memory, tomorrow's
machines will be able to handle many consoles, as well as highly sophisticated
integrated applications packages.

Two to eight virtual consoles will probably be offered in the first wave of
Concurrent CP/M implementations. Four will probably be the average number.
After the first wave, manufacturers may find themselves in a race to add
consoles to get the attention of increasingly adept users.

Concurrent CP/M supports up to 16 logical disk drives -- separate floppy
drives or several virtual drives on a hard disk, or combinations of the two.
Any virtual console can log on to any disk drive to access programs or files.

And as do other Digital Research operating systems, each disk drive supports
as many as 16 user numbers (areas), numbered 0 through 15. These areas are
partitions within the file system's environment for grouping files. Files that
are to be accessed by any or all user numbers on the drive are placed in user
number 0 and given the system attribute. Otherwise, you must be working in the
user number to access files within it.

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMBYTE.TXT[2/6/2012 4:20:25 PM]

Concurrent CP/M does have some limitations. Because disks are frequently
shared by processes on different virtual consoles, you must be careful not to
have an open file on a disk you are removing. In many implementations, you
will be able to tell this from the status line.

Occasionally, you will come across a program that requires a lot of memory.
Certain spreadsheets, debuggers, and assemblers fit into this category. If
they are loaded first, they could use all available memory and prevent you
from loading other programs. It is wise, therefore, to load these last, so
that they can use only what memory is left.

Certain applications programs create temporary files during their operation
that never appear in the directory. For that reason, if you load several
programs from the same drive, they should be loaded in different user numbers
to prevent the process on one console from overwriting the temporary file of a
proces on another.

Concurrency on the IBM PC

The most popular implementation of Concurrent CP/M thus far is on the IBM
Personal Computer. The PC is designed to support four virtual consoles with a
minimum 256K bytes. Because the PC version of the operating system requires
90K bytes (with all four screen buffers used), you really would not want to
run the system with less than 256K bytes.

A PC running Concurrent CP/M requires at least two disk drives. To load the
system, the boot disk must be placed in drive A and a system disk in drive B.
When the system is running, the boot disk is removed and applications programs
are loaded from drive A. On the XT hard-disk version of the PC, the system can
be automatically booted from hard disk when the power is turned on.

The system supports both serial and parallel printers, the number of which is
determined by the number of printer cards installed, either in the main
motherboard, or in an expansion interface. Both color and monochrome monitors
can also be used with Concurrent CP/M.

Other Machines That Can Run Concurrent CP/M

The list of OEMs (Original Equipment Manufacturers) signed up for Concurrent
CP/M is a lengthy one and is growing longer every day. It includes Digital
Equipment Corp., Texas Instruments, National Cash Register, Fujitsu, Nippon
Electric, Olympia, Eagle, Corona, Commodore, MADD, Vector Graphic, and
Toshiba.

Computer systems using Concurrent CP/M may differ; they will probably boot
differently, support different subsets of the CCP/M utility superset, or have
a different status line. Most of the initial hardware implementations will
support two to eight virtual consoles, and some OEMs will also provide unique
hardware enhancements that will later build upon the operating system's
inherent power.

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMBYTE.TXT[2/6/2012 4:20:25 PM]

Popular Application Combinations

One of the beauties of concurrency is that it becomes more useful as the
operator becomes more adept. It is also immediately useful, even to the
novice. A typical novice might, for example, run only one applications program
and use another console to run system utilities. It is helpful to a beginner
to be able to have the disk directory on one virtual console and the HELP
utility on another, so that while he learns how to use the system, useful
reference tools are always on line, only a keystroke away.

For those who make intense use of a particular applications program, it can be
useful to have several versions of that program on the computer at one time.
Such a setup would permit you to jump from one process to another without
having to save, unload, and load another file. Managers can thus have several
department's budgets on line on different virtual consoles, for instance, to
permit quick comparisons of the impact of a percentage change on each.

More popular applications configurations will combine programs that will be
more powerful to a user when run concurrently, rather than serially. Consider
the programmer who can simultaneously run a debugger, an editor, and a
compiler or assembler. As the debugger turns up bugs on one virtual console,
the programmer can switch to another console and begin editing the program
immediately, while on a third console the compiler works on a program that had
been debugged earlier that day. After each edit, the programmer can then
switch back to the first console, find the next bug, switch back to the
editor, and continue in that manner until all the required tasks are
completed. What used to be a long tedious linear process thus becomes an
interactive one, eliminating much idle time.

Similarly, consider the busy project manager, who may have a word processor on
one virtual console, a spreadsheet on another, a database-management program
on a third, and the fourth connected to a modem awaiting a call. When the data
is phoned in, it is stored in a file that can be shared by any of the other
processes. It can be entered into the database or used by the spreadsheet as
input for other projections, which may then be entered into the report being
written on the word processor. Moreover, the data can be made available to
different processes in a fraction of the time and by fewer people than it
would have taken otherwise.

Consider the secretary who is connected to a network and has a word processor
on one virtual console, a critical-path schedule on another, and an
appointment calendar on a third. That secretary can receive input and transmit
output to a large number of sources efficiently and, more important, be more
up to date each time information is sent out than was ever possible before.

The Future of Concurrency

Concurrent CP/M is having an impact on software developers. Integrated
software packages represent the first step in the development cycle of a new

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMBYTE.TXT[2/6/2012 4:20:25 PM]

generation of software, and other enhancements are appearing. For example, it
has already become possible to interact with processes on several virtual
consoles by means of dynamic windowing. As you work on one console, you can
use one or more windows, of whatever size you specify, to show you what is
going on in real time in other consoles. Furthermore, you can log on to any
console being monitored and send input to it. A programmer can thus see which
bugs are turning up on the debugger without ever having to leave the editor
and simultaneously see how the compiler is running without having to log on to
its virtual console.

Similarly, a project manager can use dynamic windowing to monitor data being
received by a modem through a window in his word processor without having to
switch screens. Furthermore, the manager can also work on those consoles
because they are dynamic (i.e., it is possible to interact with them). In
other words, if he presses the function key to log on to console 3 and has
customized the window so that he can see enough output, the manager can work
right there without switching screens, while also monitoring several other
consoles. It may take some effort to customize each window to be able to see
the crucial screen output needed, but the results can be impressive. Going
back to the TV analogy, it is like having a small window in the corner of your
TV screen showing you what is happening on the news while you are watching
MASH. When a commercial comes up during MASH, you can always switch the big
screen to the news and put the MASH channel in the window to wait for that
commercial to end.

The hardware implications of concurrent processing are not as easy to
speculate about. Because many machines handle concurrency well, it may be some
time before we see hardware designed around concurrent processing. However,
features that are desirable for this environment include the hard disk, which
can alleviate file-storage problems; multiple floppy drives, for those who
want to eliminate shared drives; and larger monitor screens to allow
additional and bigger windows.

Conclusion

Three concepts can be used to summarize the effects of concurrency: synergy,
holism, and heuristics. Synergy is the total effect of separate processes
working together. It describes the cooperative action that single-user
Concurrent CP/M permits.

Holism is the tendecy in nature to produce larger organisms from ordered
groupings of smaller organisms. It is exemplified by people exploring the
manifold possibilities that 16-bit computing technology represents and
applying it to their needs.

Finally, heuristics, the principle of discovery as it applies to learning,
will be practiced as computer users and designers discover the capabilities of
concurrency. Concurrent processing will exert a powerful influence on the
development of hardware and software, and the user interfaces to both.

Computer users have become more aware of how human thinking differs from the
way a computer "thinks", and are not as easily impressed by computers as they

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMBYTE.TXT[2/6/2012 4:20:25 PM]

once were. Users now want enhancements that are extensions of the way they
work; they don't want to be forced to adjust to the way a computer works.
Concurrency is such an enhancement. It is an idea whose time has come.

EOF

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMDDJ.TXT[2/6/2012 4:20:26 PM]

CCPMDDJ.WS4 (= Concurrent CP/M article in DDJ magazine)

- "16-Bit Software Toolbox"
 Ray Duncan
 DDJ, Vol.8, No.2, February 1983, p.18

(Retyped by Emmanuel ROCHE.)

This month, I will devote the column to a review of Concurrent CP/M (CCPM),
which has recently been released by Digital Research for the IBM Personal
Computer. The CP/M-86 operating system was customized and marketed for the PC
as an IBM software product, but apparently Digital Research was displeased
with the result, and undertook to implement and sell the Concurrent version
directly. This is fortunate from the standpoint of evaluating the operating
system's performance, since it gives us an "official" version which has been
presumably optimized and polished to the complete satisfaction of its
inventors -- we don't need to concern ourselves with the hardware-dependent
foibles that sometimes creep into OEM implementations. Versions of Concurrent
CP/M for other 8086/88 microcomputers will be available eventually, but will
probably be many months in arriving.

A Little Background Information

For those of you who are not familiar with the Digital Research family of
operating systems, a brief overview may be in order. The original CP/M, now
known as CP/M-80, is a single-user operating system for 8080/Z-80
microcomputers that provides hardware-independent console, printer, and file
handling services for application software and program development tools.
CP/M-80 has become the industry standard for 8-bit microcomputers. There are
several hundreds of thousands of licensed installations, and an unknown but
probably also enormous number of unlicensed copies in circulation (as well as
a large number of licensed users of "CP/M compatible" operating systems such
as CDOS, SDOS, and TurboDOS). The third major revision of CP/M-80 has just
been released, with an improved file manager, enhanced utilities, and
provision for powerful graphics extensions.

The multi-user version of CP/M-80 is known as MP/M-80, and is now in its
second major release. The original version of MP/M had irksome deficiencies in
performance, was difficult to configure, and included no provision for file or
record locking, so that the integrity of data could not be protected when
several programs were executing simultaneously. These problems were virtually
eliminated in MP/M-80 version II, which is a very acceptable real-time, multi-
tasking operating system; however, it is inherently limited by the speed and
power of the host 8-bit microprocessor, and cannot practically support more
than about four consoles in standard systems.

CP/M-86 is a translated version of CP/M-80 for the Intel 8086/88 family of
microcomputers. From the user's point of view, operation of CP/M-86 is
extremely similar to that of CP/M-80, with most of the same commands. Disk

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMDDJ.TXT[2/6/2012 4:20:26 PM]

allocation and file management are identical to that of CP/M-80, so that data
may be easily transported between programs running on either operating
system. CP/M-86 has been a fairly stable operating system since its release,
and has not required any major revisions. The performance of CP/M-86 has been
limited somewhat by the constraint of compatibility with the 8-bit systems,
and it has run into stiff competition for the hearts of microcomputer
manufacturers and users from the Microsoft counterpart "MS-DOS".

Finally, MP/M-86 is available as the upward-compatible, multi-user version of
CP/M-86. This is an exceedingly powerful microcomputer operating system,
readily capable of supporting up to sixteen users. It offers many additional
sophisticated services to the programmer, such as queue management, dynamic
memory allocation, easy installation of Resident System Processes (RSPs),
multiple printer support, and task spawning. It requires a comparatively large
amount of memory (256 Kbyte RAM systems are common) and is usually hard-disk
based. Efficient implementations of MP/M-86 with proper interrupt handling and
buffered I/O are quite complex and require several man-months of work. For
this reason, it has been slow to appear on the market for the various 8086/88
microcomputers. An unusual variant called MP/M 8-16 is sold by G&G Engineering
for the CompuPro 8085/8088 dual processor board. It allows the interleaved
execution of programs coded for the 8080 or 8086 on the same microcomputer
without any special intervention by the user.

What is Concurrent CP/M?

To quote Digital Research, "Concurrent CP/M is a single-user, multi-tasking
operating system that lets you run multiple programs simultaneously by
dividing tasks between virtual consoles". Inspection of the documentation,
services, and utilities of CCPM reveals it to be a slightly stripped-down
version of MP/M-86, with some rather novel modifications. From the operating
system's perspective, there are four user consoles which can originate and
interact with executing processes. From the user's point of view, there is one
physical console which serves as a "window" and can be switched at will
between any of the four virtual consoles.

The terminal handlers for the four virtual consoles buffer output
independently; when a program writes to a virtual console that is not
currently being viewed by the user, the characters are stored into a RAM
swapping buffer and optionally spooled into a disk file, so that no output is
lost. When that virtual console is finally selected by the user, the saved
output is recalled from the swapping buffer, and displayed on the screen.
Toggling the physical console between the four virtual consoles is
accomplished merely by holding down "Control" and keying a number between 0
and 3 on the numeric keypad; the response by the operating system is
instantaneous. While the system is running, the status line at the bottom of
the screen displays the following information for the currently-selected
virtual console: the name of the active task, the unit number of the attached
printer, names of disk drives with any open files, the time, and the status of
certain keys such as CAPS LOCK and NUM LOCK.

System Requirements

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMDDJ.TXT[2/6/2012 4:20:26 PM]

The power of Concurrent CP/M carries a hefty price tag for both hardware and
software. The first requirement, of course, is that you fork over $350.00 to
Digital Research for a single-user license.

Next comes the hardware. A minimum of 256 Kbytes of RAM is recommended by
Digital Research; at least 192 Kbytes must be present in order to boot up the
system. If more memory is available, part of it can be allocated as a "virtual
disk".

Two disk drives are mandatory; double-sided drives make the system much more
pleasant to use, due to the large amount of disk storage occupied by the
various system utilities and the HELP text file.

Commands and Utilities

Users of CP/M-80 and CP/M-86 will find much that is familiar. The well-known
commands DIR, ED, ERA, PIP, REN, STAT, SUBMIT, TYPE, and USER that hearken
back to the early days on the 8080 operate in the same old tried-and-true
manner.

The utilities ABORT (terminate executing task), DSKRESET (log in new
diskette), ERAQ (selective file erase with query), PRINTER (select list
device), SDIR (formatted directory with file sizes and attributes similar to
STAT *.* or LST), SHOW (display system and disk parameters), SET (control disk
and file attributes, passwords, and time stamping), and TOD (set or display
system time and date) work in the same manner as their counterparts on MP/M
systems.

The program development tools ASM-86 (8086/88 assembler), DDT-86 (interactive
debugger), and GENCMD (create executable command files) are identical to their
CP/M-86 counterparts.

Finally, there are a number of utilities which are unique to the IBM Personal
Computer implementation of Concurrent CP/M. CONFIG allows the user to control
the baud rate, word length, parity, and stop bits of the serial ports.
DSKMAINT provides formatting and copying of single- or double-sided diskettes.
FUNCTION allows the user to specify character strings for each of the
programmable function keys. HELP provides interactive, on-line explanation and
examples for any of the system commands. SYSDISK allows the user to specify
which disk drive will be searched for a program if it is not found on the
"current" or default disk. Finally, VCMODE is used to control the
characteristics of each of the virtual consoles. See Table 1 below for a more
condensed list of the system commands.

Table 1. Concurrent CP/M Commands and Utilities

CMD Name Action
-------- ------
ABORT Stops execution of a task
ASM86 8086/88 assembler

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMDDJ.TXT[2/6/2012 4:20:26 PM]

CONFIG Sets operating parameters for serial ports
DDT86 8086/88 interactive debugger
DIR Display disk directory
DSKMAINT Initialize or copy disks
DSKRESET Log in diskette
ED Line editor
ERA Erase file(s)
ERAQ Erase file(s) with query
FUNCTION Program special function keys
GENCMD Create executable file from assembler output
HELP On-line assistance for system commands
PIP Transfer and manipulate files, among other things
PRINTER Select or display attached printer number
REN Rename file(s)
SDIR Sorted directory listing with many options
SET Controls password protection and file attributes
SHOW Display disk and system parameters
STAT Display file information, assign attributes
SUBMIT Batch processing utility
SYSDISK Designate the "system" disk drive
TOD Set or display time and date
TYPE Display contents of a text file
USER Select or display the current user number
VCMODE Set mode and buffer size for virtual consoles

File Handling

Concurrent CP/M incorporates the Digital Research BDOS (Basic Disk Operating
System) version 3, which is also embedded in MP/M version II and supports many
advanced file management options. This BDOS apparently will become the
standard for all of the DRI operating systems, including the new CP/M-80
version 3.0 (also known as CP/M Plus).

On the command level, diskettes and individual files can be protected by
passwords. Time stamping for the creation, update, or last access of a file is
supported. In addition, files may be marked with the attributes SYSTEM, READ-
ONLY, and ARCHIVED.

On the programming level, executive service calls available to application
programs provide full support for file and record locking. If a file is opened
in "unlocked" mode by a program, it remains accesssible to any other task
which is also willing to open it in "unlocked" mode. A file can be opened and
shared in "read-only" mode by any number of concurrent processes. If a program
wishes exclusive access to a file, it can open it in "locked" mode; the
operating system will deny any requests by other tasks to open the same file.

When two or more processes share a file in "unlocked" mode, both having the
privilege of write access, there is a potential danger of loss of information.
Consider the following situation: task #1 reads a record from the disk into
memory. By coincidence, task #2 reads the same record immediately thereafter.
Task #1 makes some changes to the record and writes it back to disk. Task #2
makes some different modifications to the data and writes it to the disk.

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMDDJ.TXT[2/6/2012 4:20:26 PM]

Depending on which task happens to get serviced for its disk write request
first, one or the other set of changes will be permanently lost. In addition,
one of the tasks may take some erroneous action based on the contents of the
disk record which was not yet updated by the other task.

The capability called "record-locking" is designed to forestall such disasters
in a multi-tasking environment. When a program issues a read request for a
record, it can optionally specify that the record should be "locked", that is,
the record is made unavailable for updating by any other process until it is
released by the program that issued the "lock" request.

This allows a record to be safely modified by one program without fear of
interference by other tasks that may be executing simultaneously. As an
alternative to file and record locking (which consumes system resources and
can slow down the system), a "Test and Write Record" function is provided,
which verifies that the disk copy of the record is unchanged before honoring a
request to update it.

Additional file security is provided by extensive checksum verification of
disk directory entries and all active file control blocks. This is designed to
prevent any compromise of data integrity by a task which has crashed, run out
of control, or is performing disk access in a non-standard manner. It should
be noted that some techniques of file access which were legal under earlier
versions of CP/M, especially those involving direct manipulation of the File
Control Block (FCB) or simultaneous access to different file "extents", are
intercepted and aborted by Concurrent CP/M and the other operating systems
which use the third generation BDOS.

Even with the safeguards described above, concurrent access to multiple files
by more than one program is tricky business. It requires careful analysis and
a programmer experienced with multi-tasking operating system in order to be
done safely. For example, it is quite easy to have two programs get into a
"race condition" where each has locked a record that the other needs, and thus
neither one can continue to execute -- system resources are tied up
irrevocably, and usually the operating system will slow down and "die".

Executive Services

Concurrent CP/M offers a multitude of function calls for use by the
application programmer; a complete list of the Concurrent CP/M operating
system services is given in Table 2.

Table 2. Concurrent CP/M Function Calls

Where I have designated console functions as "compatible" with CP/M-86 or
MP/M, I am ignoring issues of "virtual" versus "physical" consoles. Where I
have called file and record functions "compatible" with CP/M, I am assuming an
application running as the sole task, and disregarding problems of file or
record sharing/locking.

Function Action
-------- ------

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMDDJ.TXT[2/6/2012 4:20:26 PM]

 0 % System reset -- terminate calling process
 1 + Console input
 2 + Console output
 3 # Raw console input
 4 # Raw console output
 5 + Output to defaut list device
 6 * Direct console I/O
 7 # Get I/O byte (not implemented)
 8 # Set I/O byte (not implemented)
 9 + Print string
 10 + Buffered console input
 11 + Read console status
 12 % Return BDOS version number
 13 % Reset disk system
 14 + Select disk
 15 + Open file
 16 + Close file
 17 + Search for first directory match
 18 + Search for next directory match
 19 + Delete file
 20 + Read sequential
 21 + Write sequential
 22 + Make file
 23 + Rename file
 24 + Return log-in vector
 25 + Return current disk
 26 + Set memory address for disk transfer
 27 + Get address of disk allocation table
 28 + Write-protect disk
 29 + Get disk readn-only vector
 30 * Set file attributes
 31 + Get address of Disk Parameter Block
 32 + Get/Set user code
 33 # Read random record
 34 # Write random record
 35 + Compute file size
 36 + Set random record
 37 + Reset disk drive (to not logged-in state)
 38 # Access drive (place on lock list)
 39 # Free drive (remove from lock list)
 40 * Write random with zero fill
 41 # Test and write record
 42 # Lock record
 43 # Unlock record
 44 # Set multi-sector transfer count
 45 # Set BDOS error mode
 46 # Get amount of free disk space
 47 # Chain to program
 48 # Flush buffers
 49 (Not inplemented)
 50 * Direct BIOS call
 51 * Set segment address for disk transfers
 52 * Return segment address for disk transfers
 53 * Get largest available memory region

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMDDJ.TXT[2/6/2012 4:20:26 PM]

 54 * Allocate maximum memory available at absolute address
 55 * Allocate memory segment
 56 * Allocate memory segment at absolute address
 57 * Free memory segment
 58 * Free all memory segments
 59 * Program load
 100 # Set directory label
 101 # Return directory lable
 102 # Read extended file contol block
 103 # Write extended file control block
 104 # Set date and time
 105 # Get date and time
 106 # Set default password for file access
 107 # Return serial number
 128 # Memory segment allocation
 129 # Memory segment allocation
 130 # Free memory segment
 131 # Poll device (test logical interrupt flag)
 132 # Wait for a system flag
 133 # Set a system flag
 134 # Create system queue
 135 # Open queue
 136 # Delete queue
 137 # Read message from system queue
 138 # Conditionally read message from queue
 139 # Write message into system queue
 140 # Conditionally write message into queue
 141 # Delay for a specified number of clock ticks
 142 # Call system dispatcher
 143 # Terminate calling process
 144 # Create (spawn) a process
 145 # Set priority of calling process
 146 # Attach console
 147 # Detach console
 148 # Set default console number
 149 # Assign console to another process
 150 # Interpret and execute a command line
 151 # Call function in resident procedure library
 152 # Parse filename
 153 # Return number of default console
 154 # Get address of System Data Area
 155 # Get date and time
 156 # Return address of process descriptor
 157 # Abort specified process
 158 # Attach list device
 159 # Detach list device
 160 # Select default list device
 161 # Conditionally attach list device
 162 # Conditionally attach console device
 163 # Return Concurrent CP/M version number
 164 # Return number of defaut list devices

Where:

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMDDJ.TXT[2/6/2012 4:20:26 PM]

 + = Compatible with CP/M-80, CP/M-86, and MP/M
 * = Compatibel with CP/M-86 and MP/M
 # = Compatible with MP/M-86
 % = Similar to CP/M-86 or MP/M-86, but with subtle differences

In addition to the usual functions 1-40 which are present in ordinary CP/M
2.2 systems, there are entire new repertoires of capabilities which are highly
reminiscent of a powerful minicomputer real-time operating system such as
DEC's RSX-11M. For example, functions 53 through 58 and 128 through 130 allow
a program to dynamically request, use, and release memory from the system
pool, based on requirements determined at run-time. Functions 131 through 133
allow peripheral device drivers to communicate with other tasks through use of
"semaphores" or software-controlled flags.

Functions 134 through 140 allow tasks to create and maintain "queues", which
can be used to pass information asynchronously between processes. Functions
146 through 149 and 158 through 162, among others, allow a given program to
attach or detach itself for input and output from any of the virtual consoles
or printer devices. Functions 150 and 152 assist an application program in
parsing filenames and interpreting command lines. Lastly, function 144 allows
a task to initiate or "spawn" other processes which can run concurrently.

An interesting observation in passing is that BDOS function 12, which fetched
a simple one-byte operating system version number in CP/M-80, has been
drastically extended. It now returns a sixteen-bit parameter that is broken up
into a number of bit fields to specify the BDOS version, the environment
(whether CP/M, Concurrent CP/M, MP/M, or any of the preceding with networking)
and the CPU type. Digital Research is evidently planning well ahead here. The
day is not far off when the entire DRI family of compilers and operating
systems will be running on the 8080, Z-80, 8086/88, 68000, Z-8000, and 16000
microprocessors.

Noteworthy Features

As we have already seen, Concurrent CP/M contains much that is new and
different from the CP/M systems that we are all accustomed to, but there are a
few features which are especially welcome and should be mentioned here.

 - File access has been enhanced with a special "burst mode", which
 allows the transfer of one to sixteen records with a single function
 call.

 - A complete set of BDOS disk error codes are defined, and an
 application program may choose to handle all physical and logical disk
 errors. This makes it possible for editors, disk utilities, and other
 critical programs to handle formerly fatal events (such as the disk
 drive door not being closed) in a graceful way. The dreaded message
 "BDOS ERROR ON XX", which has been the cause of so much cursing by
 users and programmers alike, can now be eliminated forever.

 - The new system utilities, DSKMAINT, CONFIG, and FUNCTION, are screen-

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMDDJ.TXT[2/6/2012 4:20:26 PM]

 oriented, menu-driven, make extensive use of the programmable function
 keys and video attributes, and are practically idiot-proof. I hope
 that this is sign of the trend to be taken by future Digital Research
 products.

 - A "virtual disk" capability, sometimes known as "RAMDISK" or "M-
 DRIVE", is built into Concurrent CP/M. If the operating system finds
 that the system has memory installed at the proper address, the
 virtual disk is automatically made accessible as drive M. It can be
 used to store the commonly needed system utilities such as PIP and
 STAT, and any temporary files created by SUBMIT, improving the
 perceived responsiveness of the system dramatically.

Documentation

The manuals for Concurrent CP/M demonstrate a quantum jump in usability as
well as flashiness. The documentation is divided into the 204-page "Users'
Guide" which describes operation of the various common system commands and
utilities, and a 338-page "Programmer's Reference Guide" which covers the file
system BDOS function calls, assembler, and debugger in detail. Colored text is
employed to emphasize example of actual system interactions. Liberal use of
tables, diagrams, and appendices make information easy to locate. The manuals
are packaged together in a hardboard, three-ring binder with accompanying box
cover that is slightly larger than the IBM format.

As is usual for Digital Research documentation, the manuals are aimed at a
relatively sophisticated reader, but they are well organized and lucid. There
are a vanishingly small number of typographical and grammatical errors. In
fact, the only technical error I have found so far that might affect a
programmer is in Appendix H of the "User's Guide", and involves an overlap
between the video escape sequence for "Erase Entire Line" and "Insert Blank
Line". Clearly, the new department Digital Research set up to enforce
standards of documentation quality has made its presence felt.

What Price Concurrency?

With 320 Kbytes of main memory, I have found it possible to run three 64-Kbyte
tasks simultaneously. This implies that the operating system with its various
buffers requires about 128 Kbytes of RAM. The load image "CPM.SYS" on the disk
drive occupies 92 Kbytes.

Naturally, operating system support for concurrent task execution entails a
certain amount of overhead for servicing the system clock, maintaining various
queues and lock lists, saving task contexts, and dispatching tasks based on
their priority and demand for system resources. To try to assess the actual
effect of this overhead on task execution time, I ran a well-known Forth prime
number sieve benchmark program on the conventional IBM implementation of CP/M-
86 and on Digital Research Concurrent CP/M. This is a classic "CPU-bound"
program, with no disk I/O and only a small amount of terminal I/O. The program
completed in 27 seconds on ordinary CP/M-86, and in 28 seconds on the

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMDDJ.TXT[2/6/2012 4:20:26 PM]

Concurrent version (with no other active tasks) -- approximately a 4% decrease
in throughput. It is interesting to note that this benchmark under Microsoft
MS-DOS requires only 25.7 seconds; the difference can probably be attributed
to the time which is wasted updating the status line display on IBM's CP/M-86.

Then I ran the same CPU-bound benchmark on Concurrent CP/M as two simultaneous
tasks. They each completed in 56 seconds, exactly twice the amount of time
required when the benchmark executed as a single task. This implies that the
operating system overhead to support concurrency is relatively independent of
the number of processes that are active.

To assess the effect of concurrent tasks on disk performance, I coded a small
routine which performed 100 random reads of 1-Kbyte records in a 50-Kbyte
contiguous data file. This is a truly disk-I/O-bound benchmark, since it
performs almost no computation at all (except for the random number generator)
and simply requests one disk access after another. On IBM's version of CP/M-
86, the program completed in 75 seconds -- a surprisingly poor performance. On
Concurrent CP/M, with one task running, the benchmark executed in 52 seconds,
approximately a 30% improvement! However, when the system was really put to
the acid test with two copies of the disk-bound benchmark running
simultaneously (accessing the same file on the same drive), its performance
really fell apart, and each task required about 430 seconds to complete. This
seemed to be largely due to a large amount of disk "thrashing" that took place
as the two tasks requested records in different extents, forcing many
inspections of the disk directory.

I expect that the most common use of multi-tasking by the average user will be
with one CPU-intensive program, such as a spreadsheet or word-processor
executing concurrently with spooling of a file or some other peripheral-bound
process. Under such circumstances, the decrease in responsiveness that can be
attributed to multi-tasking is practically unnoticeable. To verify this
impression, I ran the two previously described types of benchmarks
simultaneously. The CPU-bound program completed in 32 seconds, and the disk-
bound routine finished in 59 seconds, each showing only 14% degradation over
the tasks executing alone.

A Few Small Gripes

In using Concurrent CP/M for one month, I have not found any earth-shaking
bugs or omissions. There are a few minor annoyances which I have taken the
liberty of itemizing below.

There is no check for the disk drive door being closed; if a diskette is not
loaded into a drive when it is accessed, the system will hang indefinitely
without an error message.

There is no provision for accessing the bit-mapped graphics capabilities of
the PC, even at the minimal level of simply plotting points. Control of cursor
position, character attributes, selective erasing, and foreground and
background colors in text mode is provided by means of escape sequences --
very nice. But for unclear reasons, Digital Research did not choose the same
escape sequences for screen control as were used in the IBM version of CP/M-

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMDDJ.TXT[2/6/2012 4:20:26 PM]

86, so that vendors of program packages will have to maintain and sell two
separate versions.

Output to the video screen is inexplicably slow. Text appears to write on the
screen at the equivalent of somewhere around 4800 baud. I realize that there
is unavoidable overhead involved in buffering output for four virtual
consoles. Still, on such a powerful machine with memory-mapped video to boot,
one might hope for a somewhat better effective speed of display.

The state of the CAPS LOCK, NUM LOCK, and WRAP parameters is not maintained
individually for each virtual console. This is a minor point, but when you are
flipping back and forth between an editor and some other utility, it is a
nuisance to have to toggle these keys when the operating system could just as
easily keep track of them for you.

The 8086/88 assembler does not include the mnemonics for the Intel 8087
numeric coprocessor. Although they can be implemented by the user with the
CODE-MACRO facility, this is a very laborious process.

The system boot file, startup batch files, and all of the commonly-used system
utilities will fit nicely on a double-sided disk in drive A, making the two-
diskette system distributed by Digital Research unnecessary. But, even if
everything the system needs is on drive A and no auto-start batch files are
present, it will still try to access drive B during the cold boot sequence. I
have found no way to configure the system so that it will leave drive B alone.

Summary

Concurrent CP/M provides the power to implement applications on a desktop
machine that would have been unthinkable even two or three years ago. Even for
the casual user, the flexibility and conveniences that will result from the
ability to execute several programs concurrently is going to cause a rapid
"revolution of rising expectations" that will have to be answered by the other
manufacturers of microcomputer operating systems. I rate this software
"Excellent".

- "CP/M Exchange"
 Robert Blum
 DDJ, Vol.9, No.1, January 1983, p.78

(...) I recently visited the Dallas office branch of Digital Research. While
there, I was fortunate enough to be given a demonstration of Concurrent CP/M
with windows on what appeared to be a plain vanilla IBM PC. Not that there is
anything wrong with the PC. It is a fine machine, backed microcomputers that I
have had the opportunity to use.

We began by bringing up WordStar, my favorite word processing package, in task
area one. We then reduced WordStar's screen by two lines, from 24 to 22, to
make room for three 2-line tall, 25-character wide windows to be used by other
tasks. Next, dBase II was executed in task area two. As demonstrations go,
there were two submit files available to perform various utility tasks, such

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMDDJ.TXT[2/6/2012 4:20:26 PM]

as copying files from one disk to another. These were started in task areas
three and four.

After typing in a short letter and saving it, I commanded WordStar to print
while I used dBase II. The transition from WordStar to dBase II required only
one control sequence. After telling dBase II to find some bogus data, I
switched over to task area three to see how things were going there. Again,
only one control sequence was necessary. The printer had stopped, so I
switched back to WordStar, where I was greeted with the "no file" menu. My
attention was drawn to window two, because dBase II had completed its job and
was waiting for another command.

And so it went: readily jumping from one task to another, without ever losing
track of what was happening in other areas. The only problem I had was keeping
the machine busy. This demonstration emphasized, however, that the PC's
memory-mapped video display is, to a large degree, accountable for this
amazing performance. If it had been necessary to wait for an entire screen of
data to be written to a terminal at 9600 or 19.2K baud when swapping tasks,
much of the system's performance would have been nullified.

Concurrent CP/M is a software package that can transform a machine of modest
capabilities into a real workhorse. (...)

EOF

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMMAM.TXT[2/6/2012 4:20:26 PM]

CCPMMAM.WS4 (= Concurrent CP/M article in "Mprocs And Msystems")

- "Concurrent CP/M-86 and recent advances in operating systems"
 Howard Kornstein
 "Microprocessors and Microsystems", Vol.7, No.8, October 1983, p.391

(Retyped by Emmanuel ROCHE.)

Concurrent CP/M-86 provides a multi-window environment for executing standard
application software in real time.

When the first personal computers were being designed, CP/M was proposed as an
operating system to match their low cost, small memory and small disc storage.
Concurrent CP/M-86 allows simultaneous execution of real-time application
software. The structure of the operating system is described. The development
of the user interface is sketched. Concurrent CP/M has also been extended with
a graphics interface. Future trends in concurrency are suggested.

CP/M is one of the key products that is associated with the growth of the
personal computer industry. When the first personal computers were being
designed, Gary Kildall determined to provide an operating systems environment
for the emerging low-cost personal computers. CP/M was originally scaled to
match the capabilities of these early personal computers, which provided small
amounts of memory space, minimal disc storage systems, and Intel 8080 or Zilog
Z-80 processors. The design goals for CP/M-80 were compaction of code to
conserve memory resources, provision of a robust file-handling system and,
above all, portability of the operating system over a wide range of machine
models.

CP/M-80 was designed as a single-user single-tasking batch-oriented operating
system, and proved an ideal match of system software with the personal
computer hardware available in the late 1970s. Perhaps the most significant
concept that CP/M introduced was the capability for machine model
independence, i.e. the operating system could be ported to a wide range of
machine configurations made by different manufacturers, as long as those
machines provided a minimal memory space, an Intel 8080 or Zilog Z-80
processor, a floppy disc system, and keyboard and screen functions. To
accomplish this, CP/M was partitioned into machine-independent and machine-
dependent parts known as the BDOS and BIOS, respectively.

As the personal computer system developed, CP/M expanded into a family of
operating systems to suit different personal computer environments. Other
members of this family include MP/M II and MP/M-86, respectively 8- and 16-bit
multi-user multi-tasking operating systems, which allow a number of users to
share a common computer system, and file and printers peripherals.

CP/NET was introduced to provide for distributed personal computing systems,
where a number of workers in an office had local computing power, but wanted
to share global resources, e.g. a shared database.

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMMAM.TXT[2/6/2012 4:20:26 PM]

This year, Digital Research has introduced Concurrent CP/M-86, which
represents a significant advance in the functionality and capability of a
personal computer operating system. Concurrent CP/M was designed as an
operating system complementing the advanced-performance personal computer, and
enhancing the overall system performance for application software. Concurrent
CP/M was designed especially to provide an advanced multi-window environment,
allowing simultaneous execution for several real-time applications, in a way
that was simple for a user to understand.

Let us explore these capabilities, and how they are implemented in Concurrent
CP/M-86.

Internal structure of Concurrent CP/M

Concurrent CP/M-86 was created to provide an environment for execution of
standard application software in an enhanced hardware, and an advanced user-
friendly environment. To accomplish these objectives, the Concurrent CP/M-86
operating system was structured on a real-time multi-tasking operating system
which has a kernel that allows 256 tasks to co-reside in a system, and which
schedules task execution based on both priority pre-emption and round-robin
scheduling.

A priority pre-emptive kernel is typical of many real-time operating systems
which have been used in time-critical control applications, examples being
DEC's RSX-11 or Intel's RMX-86. Such real-time systems allow for critically
time-dependent functions to be acted on with good response time from the
computer system. This allows real-time activity, such as communications
processing or real-time control, to be brought into the environment of the
personal computer.

Round-robin scheduling is typical of time-sharing systems, Unix being a very
good example. In such systems, we want to share out a computer system among
equal-priority users, giving an equal slice of computer resource to each user.
This is very much the environment of commercial processing. The personal
computer today needs to do a mixture of time-dependent and equal-resource
processing, hence the structure of Concurrent CP/M's despatching mechanisms.
The Concurrent CP/M real-time supervisor provides for process creation,
process deletion, process despatching, process communications, queue
management, flag management, and device control.

The operating system supervisor interfaces with 4 major software subsystems:
the real-time monitor, memory pool manager, basic disc operating system, and
character I/O module. The operating system supervisor can maintain a number of
CP/M processes simultaneously.

It is interesting to note that any individual CP/M application can be written
without any knowledge of other CP/M applications, which will co-exist with it
in the concurrent environment. Fundamentally, each runs in a separate
independent operating partition. The operating systems calls which are made by
a concurrent application are a slightly extended set of standard CP/M
operating system calls. This allows for portability of a CP/M application from
a single-tasking to a multi-tasking environment, with minimal design change by

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMMAM.TXT[2/6/2012 4:20:26 PM]

the software author.

The extended I/O system (XIOS) provides the same function as the previously
mentioned BIOS of conventional CP/M. It connects the virtual operating systems
environment with the real machine environment for a particular machine model
of personal computer.

The things that make Concurrent CP/M user-friendly are the technical
capabilities provided by the virtual console session manager and the
permanently resident terminal message process. This system software provides
the replication of 4 console equivalents to which an application may talk when
Concurrent CP/M is running.

Concurrent CP/M-86 user interface

What we have been describing up to now is a high-performance operating system
environment, allowing multiple CP/M applications to run in real-time. We now
consider the CP/M-86 interfacing.

The advanced concepts of user interface provided by the operating system are
especially noteworthy in Concurrent CP/M. The personal computer is
characterized by having a naive computer user. He has little experience, and
little interest, in the complexity of the user interface of a sophisticated
operating system. His interests lie in executing important applications
packages in a way which maximizes the use of his personal computer system, and
makes the use of his own time on the personal computer most efficient.

There has been much progress in defining an efficient user interface for a
more naive computer user. Much of this pioneering work was done by Xerox
Corporation in its Xerox Star program, and has been emulated in the
microcomputer world with Apple Lisa and VisiCalc VisiOn technology. The
Concurrent CP/M user interface is structured on similar principles, but has
been able to implement a more modern system than any of these alternatives by
providing an application-independent environment. The personal computer has
evolved from being a system which is used at short intervals of time during
the working day into a workstation which is continuously operative throughout
the working day, and is the one instrument on which all office-related
activity is taking place. In essence, it provides one paperless environment as
pioneered in the Xerox Star system. As users go through the working day, they
tend to get involved with many different applications, first initiating them,
and then suspending a particular job while a more important office activity
takes place. Ideally, users would like to see some of their work continued in
the background, while they concern themselves with matters of greater
priority. The user interface of Concurrent CP/M allows users to accomplish
this by providing for virtual computer systems. Each computer system has its
own console and keyboard. Switching between these machines is done at one
keystroke; thus, operators can begin word processing on one virtual screen, be
interrupted and begin business model computation, then go back to the word
processor later in the work session, begin a compilation on a third virtual
screen, and allow it to run while going back to complete the letter on the
word processor. Users never have to reload their software or back out of the
context of the job that they had stopped looking at on their physical console.

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CCP-M%20Articles%20in%20the%20press/CCPMMAM.TXT[2/6/2012 4:20:26 PM]

The 4 or more screens that are part of the Concurrent CP/M user interface can
be presented as separate screens available at a keystroke, or can be
overlapped or coresident windows which simultaneously show work in progress on
the various CP/M applications running on the system.

Graphics interface for Concurrent CP/M

The modern personal computer typically provides graphics capabilities in its
hardware. To provide a graphics interface to applications packages which may
want to exploit good visual presentation, Concurrent CP/M has been further
developed to allow for graphics extensions which are totally machine-
independent. This is accomplished by modelling operating systems extensions on
standards defined in the Virtual Device Interface pioneered as part of the
Graphics Kernel System proposed by the Internation Standards Organization.

The GSX graphics systems extensions allow applications packages with graphics
capability to be machine-independent. They can obtain graphic input from
digitizing tablets, selector functions, or pointer devices such as the mouse
or joystick and light pen.

Graphics output can be provided to the graphics screen of the personal
computer, or to various graphics plotters or printers. To accomplish machine-
independent graphics, the graphics system extensions are partitioned in much
the same way as CP/M itself. The GSX system consists of a machine-independent
and a machine-dependent subsection. The machine-independent system is known as
the graphics disc operating system (GDOS). The machine-dependent system is the
graphics I/O system (GIOS). The configuration of the GIOS is carried out by a
particular personal computer manufacturer.

Future trends in concurrency

The capabilities of Concurrent CP/M are established in its real-time kernel.
Based on the real-time capabilities of Concurrent CP/M, this product can
naturally evolve into a high-performance networking operating system, or a
distributed multi-user system. Such products will be the natural derivatives
of this new generation of personal computer operating systems.

EOF

	CCPMBYTE
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CCP-M Articles in the press\CCPMBYTE.TXT

	CCPMDDJ
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CCP-M Articles in the press\CCPMDDJ.TXT

	CCPMMAM
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CCP-M Articles in the press\CCPMMAM.TXT

