CPMPIGO.WS4 (= "CP/M-86 Plus Installation Guide", section 0)

kkhkhkhhrhkhkhkhkhkhkhirrrhkhhhhkhkhiririiihhii

* First Edition: November 1983 *

FhhkArkhkArkhkhkkrkhkhkkikhkhkkihkhkkihkhkkihhirhhkiiikiiixkx

(Edited by Emmanuel ROCHE.)

Foreword

CP/M-86 Plus is a single-user, multitasking operating system. It is designed
for use with any disk-based microcomputer using an Intel 8086 or 8088
microprocessor. This "CP/M-86 Plus Installation Guide", (hereinafter cited as
the "Installation Guide") is intended to assist system implementers and OEMSs
who are porting CP/M-86 Plus to a new 8086/8088-based computer.

The central task in porting or customizing CP/M-86 Plus is the creation of a
Basic Input/Output System (BIOS) for the target machine. Sections 1-10 cover
the development of the BIOS.

If you are unfamiliar with customizing Digital Research operating systems,
Appendix A breaks down BIOS development into a series of steps or base levels.
You can use Appendix A as a starting point for planning your own series of
steps to create an operational BIOS.

Part of porting CP/M-86 Plus is the generation of a loader to initially bring
CP/M-86 Plus into memory at power-on or hardware reset. Porting additionally
involves the creation of any needed hardware-dependent utilities, such as a
disk formatter. The loader can be completed before the BIOS, since it entails
writing a simplified loader BIOS, which can then be expanded into the full
BIOS. Another possibility is to leave the loader to last, and strip down the

full BIOS into the loader BIOS. Sections 11 and 12 discuss loader operations
and hardware-dependent utilities, respectively.

The appendixes cover the optional tasks of placing CP/M-86 Plus in ROM,
customizing the Console Command Processor (CCP), and changing system and
utility messages to other languages.
You need the following software and hardware for porting CP/M-86 Plus:

- CP/M-86 1.0 or 1.1 running on the target machine

- RASM-86, the Digital Research Relocatable Assembler, or an assembler
producing Intel Object Module Format

- LINK-86, the Digital Research Linker/Locator, or a linker that accepts
Intel Object Module Format and produces CMD format files

file:///CJ/...servation/Emmanuel%20Roche%20DRI1%20documents%20conversion/CPM-86%20P1us%20Installation%20Guide/ CPMPIG0.TXT[2/6/2012 4:40:22 PM]



- DDT-86 or SID-86, Digital Research "debuggers”, or another debugger

- And ideally, a second CRT device connected to a serial port on the
target machine

Examples in this manual use RASM-86, LINK-86, DDT-86, and SID-86.

This manual assumes extensive knowledge of the 8086/8088 microprocessors, and
also an understanding of the target machine's hardware. You should be familiar
with the following manuals which, together with this manual, document CP/M-86
Plus:

- The "CP/M-86 Plus User's Guide" (hereinafter cited as the "User's
Guide™) describes CP/M-86 Plus, and explains how to use its utilities
and other features used to execute application programs.

- The "CP/M-86 Plus Programmer's Reference Guide™ (hereinafter cited as
the "Programmer's Guide™) explains the operating system for use by the
application programmer. The "Programmer's Guide" discusses system
calls and DDT-86.

- The "Programmer’s Utilities Guide for the CP/M-86 Family of Operating
Systems" (hereinafter cited as the "Programmer's Utilities Guide")
documents the Digital Research utility programs RASM-86 and LINK-86
used to assemble and link software written for CP/M-86 Plus.

Digital Research does not support any additions or modifications made to CP/M-
86 Plus by the OEM or distributor. Any BIOS or utility that is written or
modified by the OEM must be supported by the OEM.

The following are terms, conventions, and abbreviations used in this manual:
- CP/M-86 1.X refers to either CP/M-86 1.0 or CP/M-86 1.1.

- The term "process” is used synonymously with "program”, and refers to
the environment a program executes in, distinct from other
concurrently running programs.

- Initial letters of names of all data structures internal to the
operating system or BIOS are capitalized and are used to form
acronyms; for example, DPB is short for Disk Parameter Block.

- The term "system calls" refers to the functions available to
application programs and performed by the operating system. These
calls, documented in the "Programmer's Guide", have mnemonic names and
appear in all capital letters.

- The names of the BIOS functions invoked by the Basic Disk Operating
System (BDOS) are also mnemonics shown in all capital letters. Each is
prefixed with "10_".

- Variable and label names in the BIOS appear as all capitals, for

file:///CJ/...servation/Emmanuel%20Roche%20DRI1%20documents%20conversion/CPM-86%20P1us%20Installation%20Guide/ CPMPIG0.TXT[2/6/2012 4:40:22 PM]



instance, the BIOSINIT and BIOSENTRY labels.

- The names of utilities, such as RASM-86, GENCPM, and DEVICE, appear in
all uppercase.

- 8086/8088 instructions are in all capital letters using the mnemonics
recognized by RASM-86. They are followed by the instruction name in
parenthesis. The phrase "then executes a CALLF (Call Far instruction)"
shows this convention.

- 8086/8088 memory references are in a segment:offset format; for
example, FOOO:FFFFh is the last byte in the 8086/8088 megabyte address
space.

- Paragraph address or segment address refers to memory locations on
even 16-byte boundaries.

- All numbers are decimal values, unless suffixed by an "h" denoting
hexadecimal (base 16) or a "b" denoting bits. However, the default
base for DDT-86 and SID-86 is hexadecimal.

- An "@" prefixes public variables in the BIOS.

- A "?" prefixes public labels in the BIOS.

Table of Contents

1 Introduction to CP/M-86

CP/M-86 PlusModules . ................. 1-1
Module Communication . ................. 1-3
Hardware Environment . ................. 1-3
Features of CP/M-86Plus . ............... 1-4
2 Customizing CP/M-86 Plus
BIOSModules...................... 2-1
CP/M-86 Plus Customization Tasks ............ 2-2
3 BIOS Kernel
BIOS Kernel Data Header ................ 3-1
BDOS/BIOS Interface .................. 3-11
BIOS Kernel Code Header . ............. 3-11
BIOSENTRY Routine................. 3-12
BI10OS Kernel Functions Called by the BDOS .. ... 3-14
BIOS Kernel/BIOS Modules Interface . .......... 3-15
BIOS Kernel/CHARIO Interface ........... 3-15
BIOS Kernel/BIOS DISKIO Interface......... 3-19
Reentrancy inthe BIOS . ................ 3-20
Public BIOS Kernel Routines .............. 3-20
4 Device Drivers
Interrupt Versus Polled Device Drivers......... 4-1
Interrupt Device Drivers................ 4-2

file:///CJ/...servation/Emmanuel%20Roche%20DRI1%20documents%20conversion/CPM-86%20P1us%20Installation%20Guide/ CPMPIG0.TXT[2/6/2012 4:40:22 PM]



Polled Device Drivers ................. 4-6

5 System and BIOS Initialization

System Initialization ................. 5-1
BIOSINITModule . ................... 5-1
Device Initialization ................. 5-2

6 Character 1/0
Character Device Block (CDB) .............. 6-1
Character Device Block (CDB) Routines ......... 6-9
Interrupt-driven Character 1/O . ............ 6-12
Character Input Interrupt (type-ahead) ...... 6-13
Character Output Interrupt ............ 6-17
Character 1/0 Error Messages . . ............ 6-21

7 BIOS Disk 1/0
BasicDisk 1/O . .................... 7-1
Disk Organization . ................ 7-1
Disk Parameter Block (DPB) ............ 7-2
Disk Parameter Header (DPH) ............ 7-9
IOPB Data Structure .. .............. 7-15
DPH_DISK I/O Routines . . ............. 7-19
Disk I/O Enhancements ................. 7-24
Multiple Logical Disks .............. 7-25
Detecting Media Changes . ............. 7-25
Automatic Density and Side Selection ....... 7-27
Skewed Multisector Disk /O . ........... 7-28
Memory Disk Implementation ............ 7-31
Disk I/O Buffering .. ................. 7-35
Directory Buffer Control Block (DIRBCB) ... ... 7-35
Data Buffer Control Block (DATBCB) ........ 7-38
DPH_HSHTBL and BCB_BUFSEG Initialization . . ... ... 7-39
Disk 1/O Error Messages ................ 7-40

8 Clock Support
Tick Interrupt Routine . ................ 8-1
Example Tick Interrupt . . ............... 8-2

9 System Generation

Assembling the BIOS Modules .............. 9-1

MODEDIT Utility .................... 9-1

Linking the BIOS Modules . .. ............. 9-2

GENCPM Utility .. ................... 9-3
GENCPM Initial Questions ............. 9-4
GENCPM System Generation Main Menu . ....... 9-6
Example GENCPM.DAT File ............. 9-16

10 BIOS Debugging .. ................... 10-1

11 System Boot Operations
Boot Overview ..................... 11-1
CompuPro TracksOand 1 ................ 11-2
Disk Boot Loader .. .................. 11-2
CP/M-86 Plus Loader: CPMLDR .............. 11-3

file:///CJ/...servation/Emmanuel%20Roche%20DRI1%20documents%20conversion/CPM-86%20P1us%20Installation%20Guide/ CPMPIG0.TXT[2/6/2012 4:40:22 PM]



Loader BDOS and Loader BIOS Function Sets ....... 11-6
Boot Tracks Construction . ............... 11-7

Disk Boot and CPMLDR Debugging . ............ 11-9
Other Boot Methods . .................. 11-10

12 Hardware-dependent Utilities
Direct BIOS or Hardware Access .. ........... 12-1
Disk Formatting .................... 12-3

Appendixes

A BIOS Development Method . ............... A-1
B BIOS Kernel Listing .................. B-1
C SYSDAT Format ..................... C-1
D Disk Parameter Block Worksheet . ............ D-1
E Memory Image and CPMP.SYS File............. E-1
F Memory Descriptor Format .. .............. F-1
G Placing CP/M-86 PlusinROM .............. G-1
H Foreign Language Messages
Customizing BDOS Messages . .............. H-1
Customizing Utility Messages . .. ........... H-3
| Files on Distribution Disks .............. -1

Tables, Figures, and Listings

Tables
2-1. OEM-written BIOS Modules . ........... 2-1
3-1. BIOS Data Header Fields ............ 3-4
3-2. BIOS Kernel 10_ Functions ........... 3-14
3-3. Character I/0O Redirection Roots ........ 3-16
3-4. BIOS Kernel Character 10_ Functions . ..... 3-16
3-5. BIOS Kernel Disk 10_ Functions .. ....... 3-19
3-6. Public BIOS Kernel Routines .......... 3-21
4-1. BDOS Interrupt Functions . .. ......... 4-5
6-1. Character Device Block Data Fields . . ... .. 6-3
6-2. CDB_ Character 1/0 Routines .......... 6-9
7-1. Disk Parameter Block Data Fields . . ... ... 7-4
7-2. Disk Parameter Header Data Fields ....... 7-10
7-3. IOPB Data Fields .. .............. 7-17
7-4. DPH_Disk I/O Routines ............. 7-20
7-5. DIRBCB Data Fields . .............. 7-37
11-1. Loader BDOS System Calls ... ......... 11-6
11-2. Required Loader BIOS Functions . ... ..... 11-6
12-1. Directory Label Data Fields .......... 12-5
A-1. BIOS Development Method Steps ......... A-1
C-1. SYSDAT Fields ................. C-1
D-1. DPB_BSH and DPB_BLM Values . .......... D-1
D-2. DPB_ EXM Values . ................ D-2

file:///CJ/...servation/Emmanuel%20Roche%20DRI1%20documents%20conversion/CPM-86%20P1us%20Installation%20Guide/ CPMPIG0.TXT[2/6/2012 4:40:22 PM]



D-3. Directory Entries Per Block Size . ... .... D-3

D-4. DPB_ALO, DPB_AL1Values ............ D-3

D-5. DPB_PSH and DPB_PRM Values . .......... D-5

F-1. Memory Descriptor Format Fields ........ F-1
Figures

1-1. General Memory Organization of CP/M-86 Plus .. 1-1

3-1. Character 1/O Redirection Example ... .... 3-18

7-1. CP/M-86 Plus Disk Organization......... 7-2

7-2. Multiple Logical Drives ............ 7-25

7-3. DMA Address Table for Skewed Multisector 1/0 .. 7-28

9-1. GENCPM Initial Questions Screen ........ 9-5

9-2. GENCPM System Generation Main Menu . .. .. .. 9-6

9-3. GENCPM Help Screen . .............. 9-7

9-4. GENCPM Parameter Screen ............ 9-8

9-5. GENCPM System Parameters Screen ........ 9-9

9-6. GENCPM Memory Allocation Parameters Screen ... 9-12

9-7. GENCPM Disk Buffer Allocation Screen . .. ... 9-13

9-8. GENCPM Generate a System and Exit Screen . ... 9-15

10-1. Debugging Memory Organization ......... 10-2

11-1. Track 0 on the CompuPro 8/16 .......... 11-2

11-2. CPMLDR Organization .............. 11-3

12-1. Directory Initialization Without Time Stamps .. 12-4

12-2. Directory Label Initialization......... 12-4

12-3. Directory Initialization With Time Stamps ... 12-6

C-1. SYSDAT Fields ................. C-1

E-1. Group Descriptors in CPM3.SYS Header Record .. E-1

E-2. CPM3.SYS File Image & CP/M-86 Plus Memory Image E-2

F-1. Memory Descriptor Format .. .......... F-1

G-1. An Example CP/M-86 Plus ROM Image ....... G-1

G-2. CP/M-86 Plus Code in ROM and DATAINnRAM .... G-2

G-3. Debugging the ROM Data Mover .......... G-6
Listings

3-1. BIOS Kernel Data Header ............ 3-2

3-2. BIOS Kernel Code Header ............ 3-12

3-3. Kernel BIOSENTRY Routine . ........... 3-13

6-1. Character Device Block Format ......... 6-1

6-2. Example CDB Definition............. 6-2

6-3. Buffered Interrupt-driven Character Input ... 6-15

6-4. Buffered Interrupt-driven Character Output . .. 6-18

7-1. Disk Parameter Block Format .......... 7-3

7-2. Disk Parameter Block Definition ........ 7-4

7-3. Disk Parameter Header Format . ......... 7-9

7-4. Disk Parameter Header Definition........ 7-10

7-5. Input/Output Parameter Block (IOPB) ...... 7-16

7-6. Multisector 1/0 . ............... 7-23

7-7. Skewed Multisector Disk 1/O .. ........ 7-29

file:///CJ/...servation/Emmanuel%20Roche%20DRI1%20documents%20conversion/CPM-86%20P1us%20Installation%20Guide/ CPMPIG0.TXT[2/6/2012 4:40:22 PM]



7-8. Example M: Disk Implementation .. ....... 7-32
7-9. BCB Header Definition ............. 7-35
7-10. Directory Buffer Control Block (DIRBCB) Format . 7-36
7-11. DIRBCB Definition ............... 7-36
7-12. Data Buffer Control Block (DATBCB) . ... ... 7-38
7-13. DPH_HSHTBL and BCB_BUFSEG Initialization . ... 7-39
8-1. Tick Interrupt Service Routine .. ....... 8-2
9-1. Example GENCPM.DAT File ............ 9-16
10-1. DDT-86 Example Debugging Session . . ... ... 10-3
10-2. SID-86 Example Debugging Session .. ... ... 10-4
11-1. Loader BIOS Code Header ............ 11-4
11-2. Loader BIOS Data Header ............ 11-5
11-3. Boot Tracks Construction .. .......... 11-8
11-4. Sample Debugging of the CPMLDR . ........ 11-9
12-1. Example for Hardware-dependent Utility . . . . . 12-2
B-1. CP/M-86 Plus BIOS Kernel ............ B-1
G-1. Example ROM Data Mover . ............ G-4
H-1. BIOS Kernel Data Header Text Offsets . . . ... H-2

EOF

file:///CJ/...servation/Emmanuel%20Roche%20DRI1%20documents%20conversion/CPM-86%20P1us%20Installation%20Guide/ CPMPIG0.TXT[2/6/2012 4:40:22 PM]



CPMPIGLW3A (= "CP/M-86 Plus Installation Guide", section 1)

(Edited by Emmanuel ROCHE.)

Section 1: Introduction to CP/M-86 Plus

This section provides introductory and background material relevant to system
implementation. It explains the modules of CP/M-86 Plus, communication between
the modules, the hardware CP/M-86 Plus supports, and the features of CP/M-86
Plus. The "Programmer's Guide" provides a more genera overview and
explanations of the CP/M-86 Plus system calls.

CP/M-86 PLUS MODULES

The memory resident part of CP/M-86 Plus consists of the following four
modules: the Basic Disk Operating System (BDOS), the Basic | nput/Output System
(BIOS), the System Data Area (SY SDAT) and, optionally, the Console Command
Processor (CCP).

Figure 1-1 illustrates the layout of CP/M-86 Plusin memory:

FOOO:FFFFN  --->-mmmmmmmmmmmmmmmcmeeeeeaae +
| TPA |

| (Transient Program Area) |

| Buffer Areas Allocated |
| by GENCPM for the BIOS |

LSRR +
| SYSDAT |
| (BDOS/BIOS Data Segment) |
o +
| CCPCodeé& Data |
| (Optional) |
e +
| BIOS Code Segment |
LSRR +
| BDOS Code Segment |
Beginning of O.S.--->+--------mcmmmmmmoeee- +

| TPA |

0:0400h --->4----mmmmmmmmmm oo +
| Interrupt Vectors |

0:0000N --->4----nmmmmmmmmmmoee e +

Figure 1-1. General Memory Organization of CP/M-86 Plus

The BDOS is the invariant and logical nucleus of CP/M-86 Plus. Six sub-modules
divide the nucleus into the following functional groupings:

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG1. TX T[ 2/6/2012 4:40:23 PM]



- Entry to and exit from the operating system
- Loading transient programs from disk

- Performing character 1/0

- Performing file I/O

- Allocating and freeing memory

- Scheduling and managing processes

The BIOS allows CP/M-86 Plus to run on a specific computer. It consists of an
invariant BIOS Kernel and a set of hardware-dependent modules that interface
to the Kernel.

The CCP provides the basic user interface to the facilities of the operating

system and supplies six commands: DIR, DIRS, ERASE, RENAME, TYPE, and USER.
These interna commands are part of the CCP; other commands are called

transient programs (applications) and are disk resident. Transient programs

load into memory, execute, then return control to the CCP. The "User's Guide"
documents the operation of the CCP.

The CCP can be made a part of the operating system memory image, or it can be
loaded and run as a transient program. GENCPM, the system generation utility,
controls this option. Figure 1-1 shows the CCP as a permanent part of the
operating system.

When the CCP is not part of the operating system image, it must be available
through the drive search chain. The drive search chain alows up to four
drives to be searched for a disk resident command or submit file. (See the
SETDEF utility in the "User's Guide").

The BDOS and the BIOS modules cooperate to provide the CCP and other transient
programs with a set of hardware-independent operating system functions.
Because the BIOS is configured for different hardware environments and the
BDOS remains constant, you can transfer programs that run under CP/M-86 Plus
unchanged to systems with different hardware configurations.

The System Data Area (SY SDAT) is the data segment for the BDOS and BIOS. It
contains system variables, including values set by GENCPM, pointers to the

system tables, and most of the data structures used by the BDOS and the BIOS.
Appendix C shows the format of SYSDAT. The S _SYSVAR system call, documented in
the "Programmer's Guide", allows some SY SDAT Data and other internal BDOS data
fields to be queried and changed by transient programs.

The BIOS must be separate code and data, with all stack and extra segments
included in the data. The BIOS Data begins at location OFO0h relative to the
beginning of the SY SDAT segment.

MODULE COMMUNICATION

After the system initialization, the BDOS passes control to the CCP. If the
CCP isnot part of the operating system image, the BDOS loads it from disk and
the CCP runs as atransient program. The CCP prompts for commands and, if
required, requests disk-based transients be loaded and run by the BDOS through
the P_CHAIN system call.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG1. TX T[ 2/6/2012 4:40:23 PM]



Transients communicate with CP/M-86 Plus through system calls. The
"Programmer's Guide" documents these system calls and they are al implemented
within the BDOS.

The BDOS calls the BIOS to perform hardware-dependent functions, requesting a
specific function and passing parameters using a set of register conventions.

HARDWARE ENVIRONMENT

You can customize the BIOS to match any hardware environment with the
following characteristics:

- Intel 8086 or 8088
- 128 Kbytes up to 1 megabyte of Random Access Memory (RAM)

-1 to 16 logica drives, each with upto 512 megabytes, formatted
capacity

-1 to 16 character 1/0 devices; one of which must be the system
console. Other possible character devices are printers, plotters, and
communications hardware.

CP/M-86 Plus without the CCP or BIOS occupies about 21 Kbytes of memory. A
minimum of 128 Kbytes of RAM is recommended for the operation of CP/M-86 Plus
when you use it for general purposes with a variety of application software.

In a dedicated application, CP/M-86 Plus RAM requirements can be just the
operating system, the BIOS, and the application.

Memory does not need to be contiguous other than that occupied by the
operating system image. The Transient Program Area (TPA) is the memory
available for disk-based programs. Several discontiguous memory regions, as
shown in Figure 1-1, can make up the TPA. These regions need not be contiguous
with the operating system. Transient programs, however, require contiguous
memory large enough for all the relocatable groups specified in the
transient's CMD Header Record, since one memory allocation is made for these
groups. The "Programmer's Guide" discusses the CMD format.

CP/M-86 Plus is usualy a disk-based system. However, other mass storage
devices, such as cassette tape and bubble memory, can be madeto appear as
disk drives, storing the operating system image and transient programs. An
example of thisisusing part of RAM to act as a disk drive, resulting in a
high-speed temporary disk.

If CP/M-86 Plusis placed in ROM, sufficient RAM must exist for the operating
system data area. Appendix G discusses putting CP/M-86 Plusin ROM.

If an 8087 numeric processor is present, only one processcan use it at a
time. A program needing the 8087 can not load if another program is currently
using the 8087. The BIOS informs the operating system at initialization time
if an 8087 is present.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG1. TX T[ 2/6/2012 4:40:23 PM]



FEATURES OF CP/M-86 PLUS

CP/M-86 Plus includes many new features representing a major improvement over
CP/M-86 1.X. The following list describes those new features and improvements
pertinent to customizing CP/M-86 Plus.

- Disk performance, especially random I/O, isimproved by hash coding
the directory entries and Least Recently Used (LRU) buffering for
directory and file data.

- The BDOS performs auto-login of removable media drives. The
implementation of door open interrupts on removable media drives is
highly recommended as an additional check on data integrity and for
providing disk I/O performance improvements of up to 30%. The door
open interrupt information alows the BDOS to treat removable media
drives in a manner similar to permanent media drives.

- Thefile system capacity is larger, allowing a storage capacity of up

to 512 megabytes for each of the 16 possible logical drives, and the
maximum file sizeis now 32 megabytes. The file system also provides
time and date stamping.

- Live control characters and type-ahead are supported by cooperating
routines in the BDOS and BIOS. The live control characters are Ctrl-C,
Ctrl-S, Ctrl-Q, and Ctrl-P and their functions are performed when a
keyboard interrupt occurs.

- As noted before, the CCP can be a permanent part of the system, or
loaded as atransient program. When the CCP isa transient, it is
loaded and remainsin memory until the memory is needed by another
transient.

- The mapping of the logical devices CONIN:, CONOUT:, AUXIN:, AUXOUT:,
and LST: onto different physical devices has been standardized and
made more flexible. This alows the dynamic remapping of the console
to another device, such as a graphics console. Logical device output
can be directed to severa physical devices at once. See the DEVICE
utility in the "User's Guide".

- CP/IM-86 Plus can run up to four programs (processes) at once, one in
the foreground and up to three in the background. Only the foreground
program has access to the physical console; the background programs
must have console I/O redirected from and to files.

- The use of RASM-86 and LINK-86 to assemble and link the system modules
simplifies support of different hardware configurations, and allows
the field installation of new drivers.

- The interface to hardware drivers has been ssimplified and improved by

use of a BIOS Kernel. The Kernel isintended for unchanged usein any
BIOS implementation. However, the source is provided if you need to

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG1. TX T[ 2/6/2012 4:40:23 PM]



alter the Kernel.

- The BDOS now performs blocking/deblocking instead of the BIOS. BIOS
disk read and write operations transfer physical sectors up to 16
Kbytes at atime.

- GENCPM creates the CP/M-86 Plus image contained in the CPMP.SYS file
and provides many configuration options. GENCPM can automatically
allocate all buffers while building the system image. This alows the
testing of many combinations of disk and directory buffers, enabling
the system implementor to optimize disk performance and memory usage.

EOF

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG1. TX T[ 2/6/2012 4:40:23 PM]



CPMPIG10.WS4 (= "CP/M-86 Plus Installation Guide", section 10)

(Edited by Emmanuel ROCHE.)

Section 10: BIOS Debugging

This section suggests a method of debugging CP/M-86 Plus that requires CP/M-86
1.X to be running on the target machine. It is aso helpful to have a remote
console, which can serve as the CP/M-86 1.X system console. Hardware-dependent
debugging techniques, such as a ROM monitor and an in-circuit emulator, can
also be used, but are not described in this manual.

Appendix A outlines an example series of BIOS implementation steps designed to
minimize debugging time. Whatever stepsyou use, it is easier to debug a BIOS
using polled device driversasa"first cut", then add interrupt-driven
devicesone at atime.

The tick interrupt routine is usually the last to be implemented. Remember to
replace any software CPU delay loops with callsto ?2DELAY in the BIOS Kernel
after the tick interrupt is running.

The initial system can be run without a tick interrupt, but has no way of
forcing CPU-bound tasksto dispatch. However, without the tick interrupt,
console and disk drivers are much easier to debug. In fact, if problems are
encountered after the tick interrupt has been enabled, it is often helpful to
disable it again to ssimplify the environment. Accomplish this by changing the
tick interrupt handler to execute an IRET instruction instead of performing
JMPF (Jump Far instruction) to INT_DISPATCH, and by disabling the tick
routine€'s CALLFsto INT_SETFLAG.

For you to debug CP/M-86 Plus using CP/M-86 1.X, the CP/M-86 1.X console
device must be separate from the console used by CP/M-86 Plus. Usualy, a
terminal is connected to a serial port, and the console input, console output,

and console status routines in the CP/M-86 1.X BIOS are modified to access the
seria port hardware. In other words, the CP/M-86 1.X logical CON: device must
be mapped to another console device that is not used by CP/M-86 Plus.

You may need to modify the CP/M-86 1.X BIOS memory segment table to reflect
the following requirements. Valuesin the CP/M-86 1.X BIOS memory segment
table must not overlap memory represented by CP/M-86 Plus Transient Program
Area (TPA). However, the CP/M-86 1.X BIOS must have in its memory segment
table the area of RAM that the CP/M-86 Plus system image is to occupy. Thus,
DDT-86 or SID-86 can be loaded under CP/M-86 1.X, and the CPMP.SY S file read
by the debugger to the memory location you specify to GENCPM. The following
figure illustrates one possible memory organization for debugging CP/M-86 Plus
under CP/M-86 1.X.

CPM-86Plus | | |
TPA defined | | |
by GENCPM | ] |

file:/I/C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PI G10. TX T[2/6/2012 4:40:23 PM]



CP/M-86 1.X TPA| | DDT-86 |
described in | +-------mmmmmeeieee- +
1.X BIOS | | CPMP.SYS | <-- CP/IM-86 Plus
memory table | +---------mmmeeeeeee- +

| | CPM.SYS | <-- CP/IM-86 1.X

Foo> e +

| Interrupt Vectors |

Memory Address 0:0 +--------------------- +

Figure 10-1. Debugging Memory Organization

Any hardware shared by both CP/M-86 1.X and CP/M-86 Plus systems is usually
not accessible to CP/M-86 1.X after CP/M-86 Plus has completed its
initialization. Typically, this prevents you from getting out of DDT-86 and

back to CP/M-86 1.X, or executing any disk I/O under DDT-86. DDT-86 and SID-86
use interrupt vectors 1, 3, and 225, which must be preserved by the CP/M-86

Plus BIOS initialization routines. If CP/M-86 1.X uses any interrupt vectors

for 1/O to the remote console, these interrupt vectors must also be preserved

by the CP/M-86 Plus BIOS initialization routines.

The following outline describes the technique for debugging the CP/M-86 Plus
BI1OS with DDT-86 running under CP/M-86 1.X:

1. Switch the CP/M-86 1.X logical CON: device to a remote console. This
remote console cannot be accessed by the CP/M-86 Plus BIOS. (Some
CP/M-86 1.X systems can accomplish this mapping through the IOBY TE and
the 1.X STAT utility.)

2. Ensure the CP/M-86 1.X and CP/M-86 Plus TPAs are set as specified
above.

3. Run DDT-86 on the CP/M-86 1.X system.

4. Read the CPMP.SY S file under DDT-86 using the R (Read) command and the
starting segment address of the CP/M-86 Plus system minus 8 (the
length in paragraphs of the CMD file Header Record). Y ou specify the
starting segment address with the "Base of CP/M-86 Plus ?" question in
GENCPM. Set up the CS and DS registers from the A-BASE values found in
the CPMP.SYS CMD file Header Record. See Appendix D in the
"Programmer’s Guide" for a description of the CMD file Header Record.

5. The double word addresses for the BIOSENTRY and BIOSINIT routines are
in the SYSDAT DATA at offsets 28h and 2Ch respectively.

6. Set breakpoints within the BIOS for debugging using the DDT-86 G (Go)
command. Begin execution at offset O relativeto the CS register,
which is the BDOS code segment.

In the example debugging session that follows, DDT-86 is invoked under CP/M -86
1.X and thefile CPMP.SY S isread into memory starting at paragraph 1000h.
This assumes the GENCPM "Base of CP/M-86 Plus ?" was answered with a segment

file:/I/C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PI G10. TX T[2/6/2012 4:40:23 PM]



address of 1008H. The CMD file Header Record of the CPMP.SYS file can be
displayed using the DDT-86 D (Dump) command. The values contained in the CMD
header A-BASE fields are used for the initial CS and DS register contents.
GENCPM displays these values with the lines beginning " System Code ..." and
"Initialized System Data ..." that are printed at the end of a GENCPM session.

Listing 10-1 shows two DDT-86 G (Go) commands with breakpoints, one to the
beginning of the BIOSINIT routine, and the other to the beginning of the
BIOSENTRY routine. When these breakpoints are executed, DDT-86 and CP/M-86 1.X
regain control, and print a prompt on the remote console. The CP/M-86 Plus

BIOS routines can now be "single-stepped” using the DDT-86 T (Trace) command,

or other breakpoints can be set within the BIOS. See the "Programmer’'s Guide"

for more information on DDT-86.

Listing 10-1. DDT-86 Example Debugging Session

A>ddt86
DDT86
-rcpmp.sys,1000:0
START  END
1000:0000 1000:NNNN
-do
1000:0000 01 FE04 08 10FE04000002920106 159201 ......
+--t--t +o-t--t
-XCS I |
CS 0000 1008 <-------- + |
DS 0000 1506 <-----========mmmmmmmmmmaeoa oo s +
(...)
-sw1506:28
1506:0028 0003 ;use the S (Set) command here to
1506:002A 1467 ;display but not set memory values
1506:002C 0000
1506:002E 1467
1506:0030 XX XX .
-0,1467:0 ;set a breakpoint at BIOS INIT
*1467:0000 ;the INIT routine may now be debugged
(...)
-0,1467:3 ;set a breakpoint at BIOS ENTRY
*1467:0003 ;the BIOS function being called isin AL

()

If you are running DDT-86, the BIOS Kernel code offsets in memory are the same
as the listing generated by RASM-86. The BIOS Kernel data offsets have OFO0h
added to them, since the BIOS data begins at OFOOh. To find code and data
symbols in the other BIOS modules, use the RASM-86 $LO option, which causes
LINK-86 to include local symbols into the symbol file. The symbol file can be
printed out and used as a cross-reference when debugging with DDT-86. A map
file of the BIOS modules generated by the LINK-86 $MAP option can also be
helpful. See the "Programmer's Utilities Guide" for more information on RASM -
86 and LINK-86.

SID-86 simplifies debugging because code and data can be accessed by symbol

names. SID-86 reads the symbol file generated by LINK-86 to find the offsets
of requested symbols. When using SID-86, extend the CPMP.SY Sfileto include

file:/I/C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PI G10. TX T[2/6/2012 4:40:23 PM]



uninitialized buffers not in the file. These buffers include the allocation,
checksum, disk, and directory buffers. (See Appendix E.) This ensures that the
symbols are not placed in memory by SID-86 where they will be written over
during the debugging session. Assuming the same CPMP.SY S file as in the
previous example, Listing 10-2 illustrates how to extend the file.

Listing 10-2. SID-86 Example Debugging Session

A>sid86
#rcpmp.sys,1000:0
START END
1000:0000 1000:NNNN
#xcs
CS 0000 1008
DS 0000 1506
(...)
#sw1506:48
1506:0048 X XXX . ;OSENDSEG value from SYSDAT DATA
#wcpmp.sys,1000:0,X XX X:0 ;note the CPMP.SY S file needs to be
(...) ;extended only once after system
(-.) ;generation by GENCPM.
# ;release memory allocated to SID86
#rcpmp.sys,1000:0 ;read in larger file
START  END
1000:0000 1000:22ZZ
#e*bios3 ;now we can get the BIOS3.SYM file
SYMBOLS
#0,1467:.biosinit ;a'.' requests a symbol lookup by SID-86
(...) ;continue debugging as outlined above for
(...) ;DDT-86
EOF

file:/I/C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PI G10. TX T[2/6/2012 4:40:23 PM]



CPMPIG11.WS (= "CP/M-86 Plus Installation Guide", section 11)

(Edited by Emmanuel ROCHE.)

Section 11: System Boot Operations

Boot operations read the operating system image into memory, then transfer
control to it. You can accomplish this in a variety of ways, including the use

of an aready existing MP/M-86 or Concurrent CP/M loader. This section
presents the boot operations on the CompuPro 8/16 for you to use as a model in
customizing your own hardware environment. Appendix G discusses loading CP/M -
86 Plusin a ROM-based system.

BOOT OVERVIEW

This example CP/M-86 Plus implementation on the CompuPro involves a four-step
procedure. First, a ROM in the CompuPro reads the disk boot loader from track

0 drive A:, then transfers control to it. Second, the disk boot loader reads

the remaining drive A: boot tracks, which contain CPMLDR (the CP/M-86 Plus
loader), then it passes control to CPMLDR. Third, CPMLDR reads the CPMP.SYS
file into memory, then transfers control to the BDOS initialization entry

point. The fourth step is system initialization which occursin the BDOS and

the BIOS.

In this fourth step, the BDOS executes its internal initialization routines,

and calls the BIOSINIT entry point in the system BIOS. The BIOS initialization
routines perform any remaining hardware initialization not done in the disk

boot loader or in CPMLDR. The BIOS returns to the BDOS, and the BDOS passes
control to the CCP, which prompts for commands from the user. Section 5
presents system and BIOS initialization in more detail.

Memory areas used by succeeding steps of the boot sequence cannot overlap. For
example, the memory used by the disk boot loader must be distinct from the
memory used by CPMLDR, and the memory CPMLDR occupies cannot overlap the
target memory for the CPMP.SY S system image.

The distribution disks contain the files used to construct a CP/M-86 Plus disk

boot loader and CPMLDR for the Compupro 8/16. These files are DSKBOOT.AS86, the

disk boot loader; LPROG.A86, the loader program; LBIOS.A86, the loader BIOS;

and LBDOS3.SY S, the loader BDOS. The DSKBOOT.A86, LPROG.A86, and the LBIOS.A86
source files must be customized for your machine, assuming a similar load

sequence as the one used for the CompuPro. The GENLDR utility creates CPMLDR

using the LBDOS3.SY Sfile and your customized loader program and loader BIOS.

COMPUPRO TRACKSOAND 1

CP/M-86 Plus reservestracks 0 and 1 on a CompuPro boot disk for different

file:/I/C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIG11. TX T[2/6/2012 4:40:24 PM]



parts of the boot operation. (See the DPH_OFF field in the "Disk Parameter
Header" subsection in Section 7.) Therest of the tracks are reserved for
directory and file data. Track O isdivided intotwo areas. sectors 1-4,

inclusive, contain the disk boot loader, and sectors 5-26 contain the first

part of CPMLDR. It is assumed that track 0 on CompuPro CP/M-86 Plus boot disk
isalways in single-density format with 26 sectors each 128 byteslong. Track

1 contains the rest of CPMLDR. Figure 11-1 shows the layout of track O of a
CP/M-86 Plus boot disk for the CompuPro 8/16.

Sector 1 | disk boot loader |
| - |
| - |
I : |

Sector 5 +------mmmmmmmmnooon +
| CPMLDR |
- |
| I
N I

Sector 26 +-----------mmoommoe- +

Figure 11-1. Track O on the CompuPro 8/16

Track 1 and the rest of the disk on the CompuPro can be one of severa
different formats. The example disk boot loader determines the format of track
1 before reading the rest of CPMLDR.

DISK BOOT LOADER

The disk boot loader loads CPMLDR from the boot tracks on the boot disk, and
transfers control to it. The disk boot loader usually must be small, since

space on the boot tracks is limited. The disk boot loader resides in a special

area of the boot disk that is read by a ROM at power-on or reset.

The disk boot loader must read the first sector of the CPMLDR, and determine

from the CMD file Header Record the memory location in which to place CPMLDR.
This segment addressisin the A-BASE field in the code group descriptor in

the CPMLDR.CMD file's CMD Header Record, which isin the first 128 bytes of
CPMLDR. (Appendix D in the "Programmer's Guide" shows the CMD file Header
Record format.) Note that the GENLDR setsthe G_LENGTH field in CPMLDR's code
group descriptor to the length of CMPLDR code and data, not just the code.

Once the disk boot loader has read CPMLDR to the requested memory location,

the boot loader performs a IMPF (Jump Far instruction) to the CPMLDR code
segment, offset 0. This code segment is also the CPMLDR code group's A-BASE
value.

The example CompuPro disk boot reads sector 5 from track O, which is the
CPMLDR CMD file Header Record, to determine where to read CPMLDR. The disk
boot |oader then reads the rest of track 0, sectors 6-26, which contain the

first part of CPMLDR. The disk boot |oader determines the format of the rest

of the disk, so track 1 and the last part of CPMLDR can be read next.

file:/I/C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIG11. TX T[2/6/2012 4:40:24 PM]



CP/M-86 PLUS LOADER: CPMLDR

CPMLDR is a simple version of CP/M-86 Plus that contains sufficient file
processing capability to read the operating system image file, CPMP.SYS, from
the boot disk to memory. When CPMLDR completes its operation, the operating
system image receives control, and CP/M-86 Plus begins execution.

CPMLDR consists of three modules:. the loader BDOS, the loader program, and the
loader BIOS. The loader BDOS is used by the loader program to open and read
the system image file from the boot disk. The loader program opens and reads
the CPMP.SY S file, prints the loader sign-on message, and transfers control to

the system image. The loader BIOS implements the hardware specific routines
required by the loader BDOS and the loader program. The loader BIOS must be
customized for your hardware, the loader program can be optionally changed,
and the loader BDOS is invariant for any CP/M-86 Plus CPMLDR.

Figure 11-2 shows the layout of the loader BDOS, the loader program, and the
loader BIOS within CPMLDR. The loader BDOS uses the three-entry jump table to
pass control to the loader program and the loader BIOS. This jump table must
follow immediately after the loader BDOS code, and is usually contained in the
loader BIOS.

high memory:

| Loader BIOS Data |
e +<--- DS:180h
| Loader BDOS Data |

| Loader BIOS Code |

| |

IIMP START |
IMP ENTRY |
IMP INIT |

| Loader BDOS Code |
low memory: +-----------mmmoomoo +<--- CS.0

Figure 11-2. CPMLDR Organization

After receiving control from the disk boot loader, the loader BDOS setsthe DS

and ESregisters to the CPMLDR data segment. The SS and SP registers are set

to a 64-level stack (128 bytes) within the loader BDOS. The assumption is that

the loader BDOS, the loader program, and the loader BIOS will not require more
than 64 levels of stack. If thisis not true, then the loader program, the

loader BIOS, or both, must perform a stack switch when necessary. The three
CPMLDR modules (the loader BDOS, program, and BIOS) execute using a separate
code and data model.

file:/I/C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIG11. TX T[2/6/2012 4:40:24 PM]



The GENLDR utility creates CPMLDR using the files LBDOS3.SY S and LBIOS3.SY S as
input. The LBIOS3.SY Sfile you create must contain the loader BIOS Data Header

and the loader BIOS Code Header. GENLDR requires these headers. The loader

B1OS Code Header consists of three IMP instructions and one word value, making

it 11 byteslong. Listing 11-1 shows the loader BIOS Code Header from the
LBIOS.A86 on the distribution disks.

Listing 11-1. Loader BIOS Code Header
CSEG
public @sysdat

public ?conout, ?pmsg
extrn “?start:near

ORG 0000h

jmp init ;1/O system initialization

jmp entry :1/0O system function entry

jmp ?start ;start of loader program
@sysdat rw 1 ;CPMLDR data segment

:forces CS override

The START label isthe beginning of the loader program, and is declared a
public symbol inthe LPROG.A86 file. The INIT and ENTRY labels address the
loader BIOS initialization routine and the loader BIOS function entry point.

@SY SDAT isthe data segment of CPMLDR that is also the data segment for the
loader BIOS and the loader program. Data for the loader program and the loader
BIOS must start at 180h; the prior bytesin the CPMLDR data segment are
reserved for loader BDOS. Use the LINK-86 ORIGIN option to place the loader
program and loader BIOS data at 180h. (See "Boot Tracks Construction” later in
this section.)

Listing 11-2 shows the loader BIOS Data Header, which consists ssmply of one
word that must be at location 180h in the CPMLDR data segment. This is the
offset of the Disk Parameter Header for the boot drive. GENLDR locates the
DPH, and can optionally create one directory buffer and one data buffer for
the loader BIOS.
Listing 11-2. Loader BIOS Data Header
DSEG
public @bh_dphtable, @dpha
ORG 0000h
;use the LINK -86 [datg] origin[0180]]] option
;to set the origin of the data segment at 0180h
; disk parameter header offset table

@bh_dphtable dw  offset @dpha ;drive A:

file:/I/C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIG11. TX T[2/6/2012 4:40:24 PM]



After initializing local variables and the segment registers, the loader BDOS
performs a CALLF (Call Far instruction) to JIMP INIT in the loader BIOS Code
Header. The INIT routine is the loader BIOS initialization routine, and must

return to the loader BDOS using RETF (Return Far instruction). The loader BDOS
initializes interrupt vector 224, then performs a IMPF (Jump Far instruction)

to IMP START in the loader BIOS Code Header. The START label isthe beginning
of the loader program. The START label is declared as a public symbol in the
example loader program, and as an external in the example loader BIOS.

The loader program performs INT 224 instructions for functions supported in
the loader BDOS. The loader BDOS performs a CALLF (Call Far instruction) to
JMP ENTRY in the loader Code Header to invoke any required loader BIOS
functions. The loader BIOS ENTRY routine returnsto the loader BDOS by
executing a RETF (Return Far instruction).

The loader BDOS does not turn interrupts on or off. If they are needed by the
loader, they must be turned on by the ROM, the disk boot loader, or the loader
BIOS. The example loader BIOS executes a STI (Set Interrupt Enable Flag
instruction) in the loader BIOS INIT routine.

Typicaly, the loader program prints out a short sign-on message by calling a
routine in the loader BIOS directly. The loader program then opens and reads

the CPMP.SY S file using the CP/M-86 Plus system calls supported by the loader
BDOS. The loader program sets the DS register to the A-BASE value found in the
CPMP.SYS CMD file Header Record's data group descriptor. (Appendix D in the
"Programmer's Guide" describes the CMD file Header Record format.) Finally,
the loader program transfers control to CP/M-86 Plus with a IMPF (Jump Far
instruction) at the end the loader program.

LOADER BDOS AND LOADER BIOS FUNCTION SETS

The loader BDOS implements the minimum set of system calls required to open
the CPMP.SY S file, and to transfer it to memory. Invoke these system calls as
under CP/M-86 Plus by executing an INT 224 (O0OEOH). (The "Programmer's Guide"
documents system calls.) The necessary system calls are in the following

table. Any other function, if called, returns a OFFFFh error code in registers

AX and BX.

Table 11-1. Loader BDOS System Calls

Number Mnemonic Description

14 OEh DRV_SET Select Disk

15 OFh  F_OPEN Open File

20 14h F_READ Read Sequential

26 1Ah F DMAOFF Set DMA Offset

32 20h F_USERNUM Set/Get User Number
44 2Ch F MULTISEC  Set Multisector Count
51 33h F DMASEG Set DMA Segment

Blocking/Deblocking has been implemented in the loader BDOS, as well as
Multisector disk I/O.

file:/I/C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIG11. TX T[2/6/2012 4:40:24 PM]



The loader BIOS must implement the following functions required by the |oader
BDOS to read afile.

Table 11-2. Required Loader BIOS Functions

Number Mnemonic Description
9 09h IO_SELDSK  Select Disk
10 OAh IO_READ Read Physical Sectors

The loader BIOS functions are implemented in the same way as the corresponding

CP/M-86 Plus operating system BIOS functions. Therefore, the code used for the

loader BIOS can be a subset of the system BIOS code. The loader BIOS, however,

cannot use the ?FLAGWAIT, ?DISPATCH, ?DELAY, or INT_FLAGSET functions, which
are available in the system BIOS. When waiting for hardware events in the

loader BIOS, test the hardware status within software loops.

Since the loader BDOS performsonly read operations, certain disk data

structures are not needed. The DPH_CSV, DPH_ALV, DPH_HSHTBL, DPH_WRITE, and
DPH_FLAGSfieldsin the Disk Parameter Header are not used by the loader BDOS

or GENLDR. Similarly, the Disk Parameter Block (DPB) fields DPB_ALO, DPB_AL1,

and DPB_CKS are unused by the loader BDOS or GENLDR.

The loader BIOS must have two physical sector disk buffers, one for the

directory, and another for data. Any disk buffers past these two are not used

by theloader BDOS. If the DPH_DIRBCB is defined in the loader BIOS equal to
OFFFFh, GENLDR allocates one BCB Header, DIRBCB, and directory buffer.
Similarly, if DPH_DATBCB is OFFFFh, GENLDR allocates one BCB Header, DATBCB,
and data buffer. The data and directory buffers are not made part of the
CPMLDR.SYS file generated by GENLDR, but are reflected in the G-LENGTH field

in the code group descriptor in the CPMLDR.SY S CMD file Header Record.

Note: If you define the data buffer data structures in the loader BIOS, the

loader BIOS INIT routine must change the BCB_BUFSEG addressin the DATBCB to
be the segment address of the data buffer. "DPH_HSHTBL and BCB_BUFSEG
Initialization" in Section 7 coversthis topic for the system BIOS, and is

also applicable here.

The maximum size of the loader BIOS and the loader program depend on the space

left on the boot tracks after the disk boot loader. To keep the CPMLDR size

small, the loader BIOS and the loader program are contiguous. The example

loader BIOS implements two public console output routines, ?7CONOUT and ?PMSG.

If desired, theloader BIOS can be expanded to support keyboard input, to

allow the loader program to prompt for user options at boot time. However, the

only loader BIOS functions invoked by the loader BDOS are 10_SELDSK and
IO_READ. Any other loader BIOS functions must be invoked directly by the

loader program. The example loader program (LPROG.A86) calls 2CONOUT and ?PM SG
in the loader BIOS.

BOOT TRACKS CONSTRUCTION

file:/I/C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIG11. TX T[2/6/2012 4:40:24 PM]



Use the following procedure to create the loader from the LBDOS3.SY Sfile and
the DSKBOOT.A86, LBIOS.A86, and LPROG.A86 source files.

First, use the following commands to create an executable disk boot loader
file:

A>RASM86 DSKBOOT
A>LINK86 DSKBOOT.SY S=DSKBOOT [DATA[ORIGIN[0]]]

Note that thefile created cannot be used as a transient, nor can the next
file you create.

Next, create the executable CPMLDR.SY S file. First, assemble the loader BIOS
and the loader program contained in the LBIOS.A86 and LPROG.A86 files. Link
these files together to create the file LBIOS3.SY S, as shown in the next
example. The LINK-86 ORIGIN option must be used to set the origin of the
LBIOS3.SY S datato 180h. Y our file that contains the loader BIOS data and code
headers must be the first OBJ file specified on LINK-86 command tail. For the
example loader, this isthe LBIOS.OBJfile, as shown here:

A>RASM86 LBIOS
A>RASM86 LPROG
A>LINKS86 LBIOS3.SY S=LBIOS,LPROG [DATA[ORIGIN[180]]]

Then, use GENLDR to create CPMLDR.SYS from LBDOS3.SYS and the LBIOS3.SYS
files.

A>GENLDR [1008]

The option in this last command specifies the segment address where CPMLDR is
placed and executed in memory. This example command resultsin CPMLDR being
placed at location 1008:0000h. GENLDR placesthis address value in three
places in the CPMLDR.SY Sfile. Thefirst location isin the @SY SDAT word in
the loader code header shown in the example. The second is within the loader
BDOS code segment at offset 6, which the loader BDOS usesto set DS and ES
after receiving control from the disk boot loader. The third isin the A-BASE

field of the CPMLDR.SY Sfile's CMD Header Record code group descriptor. As
mentioned earlier, GENLDR optionally allocates disk 1/O buffers, one each for
directory and data.

Next, combine the DSKBOOT.SYSand CPMLDR.SY Sfilesinto a track image using
one of the debuggers DDT86 or SID-86, and the PIP utility. The following
example names the track image file BOOTTRKS. (The PIP O (Object) option used

in the example specifies object file concatenation.)

Listing 11-3. Boot Tracks Construction

A>SID86
#rdskboot.sys ;load in the DSKBOOT.CMD file
START  END ;aaaa is the segment address
a0a2.0000 aaaa:37F  ;paragraph where SID86 places BOOT.CMD
#wboot,180,37f ;create the file BOOT
#\C ;without a CMD file Header Record
A>PIP BOOTTRKS=BOOT[O],CPMLDR.SY § O]

file:/I/C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIG11. TX T[2/6/2012 4:40:24 PM]



Asafinal step, place the contents of the BOOTTRKS file onto tracks 0 and 1.
Use the TCOPY program to accomplish this:

A>TCOPY BOOTTRKS ;copy the BOOTTRKSfile to tracks 0 and 1

You must run TCOPY under a CP/M-86 1.X system, sinceit makes direct BIOS
calls supported only under CP/M-86 1.X. Y ou must modify TCOPY for different
disk formats, and for a different number of tracks to write. The source is
included in the file TCOPY .A86 on the distribution disks.

DISK BOOT AND CPMLDR DEBUGGING

When debugging a customized disk boot loader, CPMLDR, or TCOPY program, use
scratch diskettes.

Use DDT-86 or SID-86 to debug CPMLDR, which can be done separately from
debugging the disk boot loader. Listing 11-4 shows an example of using SID-86
to debug the CPMLDR:

Listing 11-4. Sample Debugging of the CPMLDR

A>SID86
#rcpmldr.sys,1000:0

START END ;aaaa is the segment location;
aaaa:0000 aaaa:xxxx  ;xxxx isthe size of the CompuPro

;CPMLDR used for this example.

#dO ;show CPMLDR CMD file Header Record
1000:0000 O1LL LL CCCC 00000000000000DD DD 0000......
#XCs
CS 0000 CCCC
DS 0000 DDDD
(...)
#dwds.0
DDDD:0000 0003 XXXX 0000 XXXX 0006 XXXX ??2?? 2?2?27 voevvveeenne

(ENTRY) (INIT) (START)

H#Y,XXXX:3 ;breakpoint at loader BIOS

*XXXX:0003 ;initialization

(...)

#9,XXXX:0 ;breakpoint at loader BIOS

*XXXX:0000 ;entry; the BIOS function
;being called isin AL

(...)

#9,XXXX:6 ;breakpoint at beginning

* XXX X:0006 ;of loader program

(..)

This debugging technique requires that the memory for CPMLDR be available to
DDT-86 or SID-86. Use GENLDR segment address parameter to change where CPMLDR
loads. A remote console (see Section 10) is needed if the loader BIOS

reinitializes the system console hardware. The debuggers use interrupt 225 to

file:/I/C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIG11. TX T[2/6/2012 4:40:24 PM]



communicate with the operating system. This does not conflict with interrupt
224 used by CPMLDR. However, you cannot exit back to the operating system
after CPMLDR has changed interrupt vector 224, unless you copy vector 225 to
vector 224 before typing Ctrl-C at the debugger prompt.

The addresses of the IMP table located in the loader data header are found as
shown in the above SID-86 session. The addresses of the IMP INIT, IMP ENTRY,
and JMP START instructions are double word pointers in the CPMLDR data
segment, as shown. Using these double word addresses, breakpoints can be set

at the loader BIOS initialization, the loader BIOS entry, and the beginning of

the loader program.

To find locations of symbols when using SID-86, use the RASM-86 $LO option
when assembling the loader program and the loader BIOS. This causes LINK-86 to
generate the symbol file LBIOS3.SY M, which contains the symbols local to the
loader program and the loader BIOS. Print out the symbol file, and use it as a
cross-reference while debugging.

SID-86 simplifies debugging because the SYM file created by LINK-86 when the
LBIOS3.SYS file is generated can be used directly with SID-86 to locate
symbols in the CPMLDR image.

To test CPMLDR, useit to load a dummy CPMP.SY S file that ssimply prints a
message to the screen to announce its presence.

Use DDT-86 or SID-86 to debug the disk boot loader in the same way you
debugged CPMLDR.

OTHER BOOT METHODS

Many departures from this example disk boot operation are possible, and they
depend on the hardware environment and your goals. For instance, the boot
loader can be eliminated if the system ROM (or PROM) can read in the entire
CPMLDR at reset. Also, the CPMLDR can be eliminated if the CPMP.SYS file is
placed on boot tracks and the ROM can read in these boot tracks at reset.
However, the latter usually requires too many boot tracks to be practical.
Alternatively, CPMLDR can be placed into a PROM and copied to RAM at reset,
eliminating the need for any boot tracks. (Appendix G discusses placing
CPMP.SYS in ROM.) Any initialization usualy performed by the two modules must
be performed in the BIOS initialization routines.

EOF

file:/I/C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIG11. TX T[2/6/2012 4:40:24 PM]



CPMPIG12WS (= "CP/M-86 Plus Installation Guide", section 12)

(Edited by Emmanuel ROCHE.)

Section 12: Hardware-dependent Utilities

A CP/M-86 Plus implementation often requires OEM-supported utilities. These
utilities are generally specific to the hardware, and usually include methods
for formatting disks, and for copying one disk to another.

DIRECT BIOS OR HARDWARE ACCESS

When special OEM utilities bypass the BDOS by making S BIOS (direct BIOS)
system calls, or by going directly to the hardware, several programming
precautions are necessary to prevent conflicts due to the CP/M-86 Plus
multitasking environment. Take the following steps to prevent other processes
from accessing the disk system:

1. Check for CP/M-86 Plus by using the S BDOSVERS system call. S BDOSVERS
returns AX=1031 for CP/M-86 Plus. If the operating system is not CP/M -
86 Plus, have the program print an error message and terminate.

2. Make sure there are no RSXsin memory. ANYRSX isan RSX that checks
for other RSXsin memory. ANYRSX can be made part of your hardware-
dependent program using the GENRSX utility. GENRSX is documented in
Section 8 of the "Programmer's Guide". If there are RSXs, have the
program print an error message and terminate.

3. Check for other concurrently running processes. Use the S_SYSVAR
function to return the number of running process, which must be one.
If there is more than one process, have the program print an error
message and terminate. This prevents a background program from
accessing the hardware, especially the disk drives, through the BDOS.
This also prevents the hardware-dependent program from being run in
the background viathe BACK utility. (The "User's Guide" describes the
BACK utility.)

4.You can now safely call BIOS functions, or access the hardware
directly.

5. When operations are complete, and if your program accesses the disk
hardware, force the disk system to be reset by makinga DRV_ALLRESET
system call. Resetting the drives ensures removable media drives are
logged back in when next accessed. Y our program can now terminate.

A example COPYDISK utility for the CompuPro 8/16 isfound in source form on
the distribution disk as the file COPY DISK.A86. The following subroutine from
COPYDISK.A86 illustrates the preceding steps for a hardware-dependent utility.
The CHK_ENVIRONMENT routine, or one similar to it, must be called before

file:///C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P1 us%20I nstal | ati on%20Guide/ CPM PIG12. TX T[2/6/2012 4:40:24 PM]



making any hardware-dependent operations.

Listing 12-1. Example for Hardware-dependent Utility

S BDOSVER equ 12 ;system call equates

S SYSVAR equ 49

P_RSX equ 60

CPM_VERS equ 1031h ;CP/M-86 Plus version number

ANYRSXF equ 150 ;ANYRSX subfunction number

NPROCS equ 89h 'S _SYSVAR subfunction number
CSEG

chk_environment:

mov cl,S BDOSVER ;check version number
int 224 ;must be CP/M-86 Plus

cmp ax,CPM_VERS

jne errout

mov dx,offset rsx_pb ;call ANYRSX, if other RSXs

mov cl,P_RSX ;in memory byte 2 in the RSX
int 224 ;parameter block issetto 0

test byte ptr rsx_pb+2,0FFh

jnz errout

mov bx,offset scb_pb ;get the number running
mov byte ptr [bx],NPROCS ;processes from the BDOS
mov byte ptr 1[bx],0
mov dx,bx
mov cl,S SYSVAR
int 224
cmp scb_pb+2,1 ;can only have one running
jeenvr_ok ;process
errout:
mov si,offset errtoomany ;print error message
cal pmsg
jmp exit ;exit program
envr_ok:
ret

DSEG

rsx_pb db ANYRSXF,0,0FFh  ;RSX parameter block
scb_pb db 0,00 ;Sysdat parameter block

err_ too_ many db CR,LF,'This program cannot run when'
db ‘'another program is running’, CR,LF
db ‘in the background or when RSXs are present.’
db CR,LF,0

The source to ANYRSX isincluded on the distribution disk, in the file
ANYRSX.A86. The commands to generate COPY DISK.CMD with the attached ANYRSX are

file:///C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P1 us%20I nstal | ati on%20Guide/ CPM PIG12. TX T[2/6/2012 4:40:24 PM]



shown in the beginning comments of the COPY DISK.A86 sourcefile.

DISK FORMATTING

A format utility, which you create and generally package with CP/M-86 Plus as
a system utility, initializes fresh disk media for use with CP/M-86 Plus. The
physica format of a diskis hardware-dependent, and therefore is not
discussed here. This subsection discusses initialization of the directory area

of anew disk.

A format program can initialize the directory with or without time and date
stamping enabled. This can be a user option in the format program. If time and
date stamps are not initialized, the user can independently enable this
feature through the INITDIR and SET utilities, as documented in the "User's
Guide'.

It is highly recommended that you support the new features of CP/M-86 Plus by
including time and date stamping in the format program. This simplifies the
use of time and date stamping; otherwise, the user must first learn that date
stamps are possible, then use the INITDIR and SET utilitiesto allow the use
of this feature. Complications can arise with INITDIR if the disk directory is
closeto being full; INITDIR does not allow the restructuring of the directory
that is necessary toinclude SFCBs. (The "Programmer's Guide" discusses
SFCBs.)

The cost of enabling the time and date stamp feature on a given disk is 25% of
its total directory space. This spaceis used to store the time and date
information in the special directory entries called SFCBs. For time and date
stamping, every fourth directory entry must be an SFCB. Each SFCB islogically
an extension of the previous three directory entries. This method of storing
date-stamp information allows efficient update of date stamps, since al of

the directory information for a given file resides within a single 128-byte
logical disk record.

A disk under CP/M-86 Plusis divided into three areas: the boot tracks, the
directory area, and the data area. The Disk Parameter Block (see Section 7)
determines the size of the directory and reserved areas. The directory area
starts on the first disk alocation block boundary; the data area immediately
follows the directory area. See Figure 7-1.

The boot tracks and the data area do not need to be initialized to any
particular values before they serve as a non-bootable CP/M-86 Plus disk. The
directory area, on the other hand, must be initialized to indicate that no

files are onthe disk. Also, as discussed later in this section, a format
program can reserve space for time and date information, and can initialize
the disk to enable this feature.

The directory area is divided into 32-byte structures called Directory
Entries. Thefirst byte of a Directory Entry determines the type and usage of
that entry. For the purposes of directory initiaization, three types of
Directory Entries are pertinent: the unused Directory Entry, the SFCB
Directory Entry, and the Directory Label.

file:///C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P1 us%20I nstal | ati on%20Guide/ CPM PIG12. TX T[2/6/2012 4:40:24 PM]



A disk directory initialized without time and date stamps has only the unused
type of Directory Entry. An unused Directory Entry isindicated by a OE5SH in
its first byte. The remaining 31 bytesin a Directory Entry are undefined, and
can be any value.

entry O| OE5H | undefined |
1|O0E5H | undefined |
2| 0OE5H | undefined |

N o S +

Figure 12-1. Directory Initialization Without Time Stamps

A disk directory initialized to enable time and date stamps must have SFCBs as
every fourth Directory Entry. An SFCB has a 021H in the first byte, and all
other bytes must be OH. Also, a directory label must be included in the
directory. This is usually thefirst Directory Entry on the disk. The
directory label must be initialized as shown in Figure 12-2.

Oh 1h OCh 0ODh OEh OFh

N S N S . N S N S N S N S +

| 20h | LABEL ... NAME |DATA | 00h | 00h | 00h |
AR N —— [ AR AR R domeen +

10h 11h 12h 13h 14h 15h 16h 17h
N S N S N S N S N S N S N S N S +

| 20h | 20h | 20h | 20h | 20h | 20h | 20h | 20h |
S S S S S S S S S S S S S S S S +

18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h
S S S S S S S S +

| 00h | 00h | 00h | 00h | 00h | 0Ch | 00h | 00N |
N S N S N S N S N S N S N S N S +

Figure 12-2. Directory Label Initialization
Table 12-1. Directory Label Data Fields

Format: Data Field
Explanation

LABEL NAME

An 11-byte field containing an ASCII name for the drive. Thefield follows the
format for filenames: the first eight bytes are filename, and the last three
bytes are the filetype. The filename and filetype parts of the label name
should be blank-padded and left-justified.

DATA

A bit field that tells the BDOS general characteristics of files on the disk.
The DATA field can assume the following values:

file:///C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P1 us%20I nstal | ati on%20Guide/ CPM PIG12. TX T[2/6/2012 4:40:24 PM]



060H enables date of last modification, and date of last access to be
updated, when appropriate.

030H enables date of last modification, and date of creation to be updated,
when appropriate.

A format program should ask the user for the name of the disk, if time
stamping is desired, and whether to use the date of last access or the date of
creation, since these time stamps share the samefield in the SFCB. The date

of last modification has its own field in the SFCB, and can always be used. If
the DATA field is O0H, or if the Directory Label does not exist, the time and
date stamping is not enabled. The DATA Field must be O0OH if SFCBs are not
initialized in the directory.

Figure 12-3 shows a directory initialized for time and date stamping.

entry 0| 020H | NAME,DATA (Directory Label) |
1| OE5H | undefined (Unused) |
2 | OE5H | undefined (Unused) |
3| 021H | NULLS (SFCB) |
4 | OE5H | undefined (Unused) |
5| OE5H | undefined (Unused) |
6 | OE5H | undefined (Unused) |
7]021H | NULLS (SFCB) |

| OESH | undefined (Unused) |
| OE5H | undefined (Unused) |

n|021H | NULLS (SFCB) |
N . e +

Figure 12-3. Directory Initialization With Time Stamps

EOF

file:///C|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P1 us%20I nstal | ati on%20Guide/ CPM PIG12. TX T[2/6/2012 4:40:24 PM]



CPMPIG2ZW3HA (= "CP/M-86 Plus Installation Guide", section 2)

(Edited by Emmanuel ROCHE.)

Section 2: Customizing CP/M-86 Plus

This section describes the modules of the BIOS that you supply, and gives a
summary of the tasksinvolved in porting CP/M-86 Plus.

BIOS MODULES

CP/M-86 Plusintroduces the use of a BIOS Kernel to standardize and simplify
the porting process. The customization procedure for CP/M-86 Plus entails
writing hardware-dependent drivers that interface with the BIOS Kernel. The
Kernel is a set of routines and data common to any CP/M-86 Plus BIOS. Porting
earlier operating systemsin the CP/M family entailed writing the entire BIOS
that interfaced directly to the Basic Disk Operating System (BDOS).

The hardware-dependent modules you supply and the Kernel are linked together
to form the file BIOS3.SYS. GENCPM uses the files BIOS3.SYS, BDOS3.SY'S, and
optionally, CCP.CMD as input to create the memory image file CPM3.SYS.

Table 2-1 summarizes the hardware-dependent modules you must write. It also
lists the section where each is discussed in detail.

Table 2-1. OEM-written BIOS Modules

Module Description

INIT Initializes al 1/0O device hardware and prints the BIOS sign-on
message. (Section 5)

CHARIO Performs character 1/0O for console and other character devices such as
printers and communications ports. (Section 6)

DISKIO Performs disk I/O, media density selection and handling of removable
media door open interrupts. (Section 7)

CLOCK Updates the time of day variables and forces dispatches when more than
one program is running. (Section 8)

All BIOS modules are separate code and data with any other segments, such as
stack and extra segments, contained in the data segment.

Examples of these modules are on the distribution disks. These example modules
implement a BIOS for operation on a CompuPro 8/16 with at least 64 Kbytes of

RAM. However, 128 Kbytes of RAM or more is recommended. The example modules
arein the files INIT.A86, CHARIO.A86, DISKIO.A86, and CLOCK.A86.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PI G2. TX T[ 2/6/2012 4:40:25 PM]



Appendix B contains a listing of the BIOS Kernel. The Kernel isalso on the
distribution disksin the file BIOSKRNL.AS6.

All the BIOS Kernel functions, data structures, fields, public variables, and
public subroutines are indexed and cross-referenced for easier access to
essential information during design and coding.

CP/M-86 PLUS CUSTOMIZATION TASKS

The entire customization process generally includes the following tasks:

- Prepare the customized hardware-dependent BIOS modules, either by
modifying the example BIOS modules, by modifying an existing CP/M-86
1.X BIOS, or by expanding the loader BIOS if you have written it
first.

- Test and debug the hardware-dependent BIOS modules. Wherever possible,
debug these modules as transient programs under a running CP/M-86 1.X.

- Process all the OBJ BIOS modules through the MODEDIT utility in order
to resolve external references.

- Create the BIOS3.SY Sfile by linking the modules together using LINK -
86.

- Build the CP/M-86 Plus system image using the GENCPM utility. GENCPM
initializes values in the system image according to information given
by the system implementor.

- Debug the BIOS under CP/M-86 1.X using a remote console.

- Prepare, test, and debug the CP/M-86 Plus disk boot loader using an
existing CP/M-86 1.X disk boot loader as a base.

- Prepare the CP/M-86 Plus loader program and BIOS, integrating with the
loader BDOS to create the CP/M-86 Plus loader, CPMLDR. CPMLDR is built
using the GENLDR utility.

- Use the TCOPY program to write the disk boot loader and CPMLDR onto
the boot tracks of a boot disk.

- Boot CP/M-86 Plus from disk using CPMLDR and test.

- Write, test, and debug any hardware-dependent utilities, such as a
disk formatter.

The preceding list presents a formidable task, especially if you are
unfamiliar with porting Digital Research operating systems. Appendix A
outlines a series of base levels or stepsto help organize and simplify the
creation of a new BIOS.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PI G2. TX T[ 2/6/2012 4:40:25 PM]



EOF

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PI G2. TX T[ 2/6/2012 4:40:25 PM]



CPMPIG3WHA (= "CP/M-86 Plus Installation Guide", section 3)

(Edited by Emmanuel ROCHE.)

Section 3;: BIOS Kernédl

This section describes how the BIOS Kernel interfaces with the BIOS modules

you supply and with the BDOS. With the exception of interrupt service
routines, all communication between the BDOS and the hardware drivers
contained in the INIT, CHARIO, DISKIO, and CLOCK modules occurs through the
BIOS Kernel.

The BIOS Kernel and the example BIOS modules prefix public labels with a " ?"
and public data variableswith an "@". Appendix B liststhe BIOS Kernel for
reference in reading this and subsequent sections.

The BIOS Kerndl isintended to be used unchanged in your implementation of
CP/M-86 Plus. Though you can modify the Kernel if necessary, the Kernel Data
and Code Headers as defined in this section must be present in any BIOS.

BIOS KERNEL DATA HEADER

The BIOS data begins with the BIOS Kernel Data Header at offset OFOOh relative

to the SYSDAT segment address. The BIOS data segment is the same as the SY SDAT
segment, and the BDOS setsthe DS register to the SYSDAT segment before
calling the BIOS.

The BDOS, the BIOS Kernel, and the other BIOS modules access the Data Header.
Since the BIOS Data Header isin a fixed format and location, it is possible

to access hardware-dependent information independent of a particular BIOS
implementation. For instance, GENCPM and DEVICE are two utilities that rely on
the Data Header for information about character and disk devices.

The following code fragment from the BIOS Kernel shows the layout of the BIOS
Kernel Data Header.

Variables in the BIOS Kernel Data Header are prefixed with "BH_" to help

identify them. The @CDBA -@CDBP and the @DPHA - @DPHP variables in the header do
not have this prefix, since they are external symbols in the BIOS Kernel and

are defined in the DISKI10O and CHARIO modules.

Listing 3-1. BIOS Kernal Data Header

rhkkhkkhkkhkkkkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhdhdhddhhhhhhhdddrhhhxkhdx%x
k)

BIOS Kernel Data Header

)
rhkkhkkhkkhkkkkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhdhdhddhhhhhhhdddrhhhxkhdx%x

" org  0000h

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



;use the LINK-86 [data] origin[OF00]]] option
;to set the origin of the data segment at OFOOh

@bh delay db 0  ;OFFhif processdelaying

@bh _ticksec db 60 ;ticks per second

@bh gdopen db O  ;OFFhif drive door opened
@bh_inint  do O ;ininterrupt count

@bh nextflag db 4  ;nextavallableflag

@bh_lastflag db 0  ;last availableflag

@bh_intconin db 0  ;OFFhif interrupt driven CONIN:
@bh_8087 do O ;OFFhif 8087 exists

; disk parameter header offset table

@bh_dphtable dw  offset @dpha ;drive A:
dw  offset @dphb ;drive B:
dw offset @dphc ;drive C:
dw offset @dphd ;drive D:
dw offset @dphe ;drive E:
dw  offset @dphf ;drive F:
dw offset @dphg ;drive G:
dw offset @dphh ;drive H:
dw offset @dphi ;drivel:
dw  offset @dphj ;drive J.
dw offset @dphk ;driveK:
dw offset @dphl ;drivelL:
dw offset @dphm ;drive M:
dw  offset @dphn ;drive N:
dw offset @dpho ;drive O:
dw offset @dphp ;driveP:

character device block offset table

@bh_cdbtable dw  offset @cdba ;device A
dw offset @cdbb ;device B
dw  offset @cdbc ;device C
dw offset @cdbd ;device D
dw offset @cdbe ;device E
dw  offset @cdbf ;deviceF
dw  offset @cdbg ;device G
dw  offset @cdbh ;deviceH
dw offset @cdbi ;devicel
dw offset @cdbj] ;deviceJ
dw  offset @cdbk :device K
dw offset @cdbl ;devicelL
dw offset @cdom ;device M
dw offset @cdbn ;device N
dw offset @cdbo :device O
dw offset @cdbp ;device P

Character device roots for console input,

console ouput, auxiliary input, auxiliary output
;  and list output.

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



@bh _ciroot dw  offset @cdba ;console input
@bh _coroot dw  offset @cdba ;console output
@bh_airoot dw  offset @cdbb ;auxiliary input
@bh_aoroot dw  offset @cdbb ;auxiliary output
@bh_loroot dw  offset @cdbc ;list output

@bh _bufbase dw O :offset of buffer
@bh _buflen dw O ;length of buffer

@bh_memdesc rw 323  ;room for 32 memory
;descriptors
; O.S. messages

bh_chain dw chain_msg ;chain error message address
bh prompt dw  prompt_msg ;error CCP prompt message address
bh_user dw  user_str ;error CCP command string
bh_cpmerr dw  cmper_msg ;CP/M error message address
bh_func dw func_msg ;function message address
bh_file dw file_ msg ;file message address

bh_errl dw erl msg

bh_err2 dw  err2_msg

bh_err3 dw er3 msg

bh_err4 dw erd msg

bh_err5 dw er5 msg

bh_err6 dw  err6_msg

bh_err7 dw err7_msg

The following table describes each field in the Data Header. The offset for
each datafield isin parentheses next to the field name.

Table 3-1. BIOS Data Header Fields

Format: Field
Explanation

@BH_DELAY (OF0O0h)

When a program makesa P_DELAY system call, this field is set to OFFh by the
BDOS. When @BH_DELAY isequal to OFFh, the tick interrupt service routine in
the BIOS CLOCK module sets system flag number 1 (thetick flag) on every
system tick. System flags are set through the INT_SETFLAG function described
in Section 4 of this guide. The BDOS in turn decrements the tick count for
delaying processes on each INT_SETFLAG operation made to flag number 1.

When no processes are delaying, @BH_DELAY isset to 0 by the BDOS and the
CLOCK module does not set the tick flag. @BH_DELAY isinitidizedto Oin the
BIOS Kernel Data Header.

@BH_TICKSEC (0F01h)

[Number of system ticks per second]

This field isinitiaized by GENCPM but can be modified by the ?CLOCK_INIT
routine. A transient program can read this variable using the S SYSVAR system
cal and calculate the number of ticks needed for a P_DELAY system call. The

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



tick interrupt service routine also forces dispatches between CPU bound
processes on each system tick. Setting @BH_TICKSEC to O signifies ticks are

not supported by the BIOS and the BDOS does not allow P_DELAY system calls and
does not support multitasking. A typical setting for this field is 60,

specifying a system tick every 16.66 milliseconds.

@BH_GDOPEN (0FO02h)

[Global door open]

This field is set to OFFh by the drive door open interrupt service routine

when any disk drive door has been opened. The BDOS checks this field before
every disk operation to verify the media has not changed. The door open
interrupt service routine must also set the DPH_DOPEN in the Disk Parameter
Header (DPH) associated with the drive. The DPH_DOPEN specifiesto the BDOS
which drives had doors opened.

@BH_GDOPEN isinitialized to 0 in the BIOS Kernel Data Header.

@BH_ININT (0OFO03h)

[In interrupt count]

This field isincremented upon entry to and decremented prior to exiting from
an interrupt service routine. @BH_ININT counts the number of interrupt service
routines currently being executed. This count can become greater than one when
an interrupt service routine reenables interrupts, thereby allowing another
interrupt to occur. Keeping track of the number of interrupts being serviced
prevents waiting for an entire system tick before finishing an interrupt
service routine. "Interrupt Device Drivers' in Section 4 discusses the use of
@BH_ININT.

If interrupts are not reenabled within any of the interrupt service routines,
@BH_ININT does not need to be incremented or decremented. This field is
initialized to 0 in the BIOS Kernel Data Header.

@BH_NEXTFLAG (OF04h)

This is the next system flag available for allocation to an interrupt routine.

(Section 4 describes system flags.) The INIT routines for device drivers that

need a system flag for ?WAITFLAG and INT_SETFLAG operations use this field to
obtain a specific flag number to use. Flags are numbered from zero and the

first four are reserved for use by the BDOS. Thus, GENCPM initializes
@BH_NEXTFLAG to 4.

@BH_LASTFLAG (OF05h)

The valuein this field indicates the last system flag available for system

use. This isthe number of flags in the system minus one. GENCPM sets this
field according to the number of flags requested by BIOS data structures and
the additional number of flags you request when running GENCPM.

The BIOS must ensure @BH_NEXTFLAG islessthan or equal to @BH_LASTFLAG before

dlocating a flag. "Device Initidization" in Section 5 discusses the
allocation of flags at initialization time.

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



@BH_INTCONIN (0F06h)

[Interrupt console input]

When set to OFFh, this field indicates that the CONIN: device (the logical

console input device) isinterrupt-driven. If this field is OFFh, the BDOS

does not call the |O_CONST function in the BIOS Kernel when a transient makes
console output or console input system calls. If @BH_INTCONIN isset to OFFh,
the interrupt service routine associated with the current CONIN: device must

call the BDOSINT_CHARSCAN routine so the BDOS can scan for Ctrl-S, Ctrl-Q,
Ctrl-C, and Ctrl-P.

The current CONIN: deviceis specified by the Character Device Block (CDB),
which is pointed to by the console input root (@BH_CIROQOT, which is explained
later in thistable). A field in the Character Device Block (discussed in

Section 6) indicates whether input from the device is interrupt-driven.

The Kernel BIOSINIT routine initializes @BH_INTCONIN. When the DEVICE utility
changes the @BH_CIROQT, it also updates @BH_INTCONIN.

@BH_8087 (0F07h)

This field is set to OFFh by your INIT module if the 8087 is present and to

00h if it is not. Transient programs are marked as 8087 users by a field in

the CMD file Header Record. The BDOS successfully loads transients needing the
8087 only if @BH_8087 is set to OFFh. Additionally, the BDOS permitsonly one
process to use the 8087 at a time because the 8087 registers are not saved

when two or more processes are running simultaneously. (RSXs cannot "own" the
8087.)

@DPHA-@DPHP (0F08h)

This is thetable of offsets of Disk Parameter Headers (DPHSs) for logica

drives A through P respectively. The DPHSs are declared as externals in the
BIOS Kernel and are publics defined in the DISKIO modules. (DISKIO modules
refer to al the modules you supply containing disk drivers.) GENCPM uses
these offsetsto find DPHs and to build any requested data and disk buffers,
checksum and allocation vectors, and hash tables.

The DPH is a data structure used by the file system for performing disk I/0O on
a particular logical drive. The DPH contains the offsets for drive
initialization, drive login, drive read, and drive write routines as well as

the offset to the Disk Parameter Block (DPB). The DPB defines the
characteristics of a physical drive. Section 7 discusses the DPB and DPH in
detail.

LINK-86 setseach DPH field in this table to the offset of the corresponding
DPH defined in the DISKIO modules or to O if the DPH is not defined.

@CDBA-@CDBP (0F28h)

This isthe table of offsets of Character Device Blocks (CDB) for devices A
through P respectively. The CDBs are declared as externalsin the BIOS Kernel
and are publics defined in the CHARIO modules. (CHARIO modules refer to all
the modules you supply containing character device drivers.)

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



CP/M-86 Plus supports a maximum of 16 character devices, each of which is
described by a CDB. The CDBs contain an ASCII device name and offsets of
device initiaization, device input, device input status, device output, and
device output status routines. The CDB also contains information on baud and
protocol the device is currently programmed to support, as well as other
protocols it can potentially support. Section 6 discusses CDBs in detail.

The DEVICE utility uses the CDB offsets in the Kernel Data Header to change
the mapping of logical character devices to physical devices, and to
dynamically change baud and protocol configurations.

LINK-86 setseach CDB field in this table to the offset of the corresponding
CDB defined in the CHARIO modules, or to O if the CDB is not defined.

@BH_CIROQOT (0F48h)

[Console Input Root]

This isthe offset of the Character Device Block (CDB) currently attached to

the logical console input device CONIN:. Console input comes from the device
associated with this CDB. Initialize this field with the CDB symbol (one of
@CDBA-@CDBP) of theinitial CONIN: device. This CDB externa is resolved by
LINK-86 and must result in a hon-zero value in @BH_CIROOT.

@BH_COROQOT (0F4Ah)

[Console Output Root]

This isthelist of Character Device Blocks (CDBSs) currently attached to the

logical console output device CONOUT:. @BH_COROQT contains the offset of the
first CDB on this list. Each character output to CONOUT: issent to each of

the physical devices represented by the CDBs on this list. Initialize this

field with the CDB symbol (one of @CDBA -@CDBP) of the initial CONOUT: device.
This CDB external is resolved by LINK-86 and must result in a non-zero value

in @BH_COROQT.

@BH_AIROOT (OF4Ch)

[Auxiliary Input Root]

This isthe offset of the Character Device Block (CDB) currently attached to

the logical auxiliary input device AUXIN:. Auxiliary device input comes from

the device associated with this CDB. Initiaize this field with the CDB symbol

(one of @CDBA-@CDBP) of theinitial AUXIN: device. This CDB external is
resolved by LINK-86 and can be 0.

@BH_AOROOT (OF4Eh)

[Auxiliary Output Root]

This isthelist of Character Device Blocks (CDBSs) currently attached to the

logical auxiliary output device AUXOUT:. @BH_AOROOT contains the offset of the
first CDB on this list. Each character output to AUXOUT: issent to each of

the physical devices represented by the CDBs on this list. Initialize this

field with the CDB symbol (one of @CDBA -@CDBP) of the initial AUXOUT: device.
This CDB external is resolved by LINK-86 and can be 0.

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



@BH_LOROOT (0F50h)

[List Output Root]

This isthelist of Character Device Blocks (CDBSs) currently attached to the

logical list device LST:. @BH_LOROQT contains the offset of the first CDB on
this list. Each character output to the LST: is sent to each physical device
represented by the CDBs onthislist. Initialize this field with the CDB

symbol (one of @CDBA-@CDBP) of theinitial LST: device. This CDB external is
resolved by LINK-86 and can be O.

@BH_BUFBASE (0F52h)

This isthe offset of the uninitialized buffer in the SYSDAT segment for use

by the BIOS. Define the size and use of this area of RAM. The BDOS does not
use this buffer. GENCPM setsthis field and reserves the buffer in the CP/M-86
Plus system image. Section 9 discusses GENCPM.

@BH_BUFLEN (0F54h)
This is the size, in paragraphs, of the uninitialized buffer in the SYSDAT
segment optionally created by GENCPM.

@BH_MEMDESC (0F56h)

[Memory Descriptor Table]

This is the table of 32 Memory Descriptors, which are each 6 bytes long.
GENCPM initializes this table when you answer the GENCPM memory definition
guestions. Appendix F shows and discusses the Memory Descriptor format.

BH_CHAIN (1016h)

This isthe offset of the error message used by the BDOS P_CHAIN system call
when an error isencountered after the BDOS has released its memory. The
offset in BH_CHAIN must address a printable string terminated by a "$". The
default string defined in the BIOS Kernel is as follows:

chain_msg db 13,10,'Cannot Load Program’,13,10,'$’

This string can be changed to a foreign language message, though the CRLF
sequences (13,10) should be kept. Appendix H discusses foreign error message
customization.

BH_PROMPT (1018h)

This isthe offset of the prompt used by the Error CCP when the CCP isnot a
permanent part of the system and the CCP.CMD file cannot be found on disk.
(The "User's Guide" describes the Error CCP.) BH_PROMPT must address a
printable string terminated by a"$". The default string defined in the BIOS
Kernel is the following:

prompt_msg db 13,10,'Cannot Load CCP $

This string can be changed to a foreign language message, though the prefixed
CRLF sequence (13,10) should be kept. See Appendix H.

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



BH_USER (101Ah)

The Error CCP uses the string addresses by this offset to recognize the one

internal Error CCP command that changes user numbers. BH_USER must address a
byte followed by the uppercase command. Thefirst byte is the number of
characters in the following string. The default string defined in the BIOS

Kernel is as follows:

user_str db 4,'USER'

This string can be changed to a foreign language as required. See Appendix H.

BH_CPMERR (101Ch)

BH_FUNC (101Eh)

BH_FILE (1020h)

The BDOS uses these three offsets to address strings for printing file-related
error messages. The corresponding default strings as defined in the BIOS
Kernel are the following:

cmperr_msg db 13,10,'CP/M Error On $
func_ msg db 13,10,BDOS Function = $
file msg db 'File=%

These strings can be changed to a foreign language as required. See Appendix
H.

BH_ERR1 (1022h)

BH_ERR2 (1024h)

BH_ERR3 (1026h)

BH_ERR4  (1028h)

BH_ERR5 (102Ah)

BH_ERR6 (102Ch)

BH_ERR7 (102Eh)

The BDOS uses the strings addressed by these seven offsets to display a
particular type of BDOS error. The corresponding default definitions in the
BIOS Kernel are shown here:

errl msg db 'Disk Read/Write Error$
err2_msg db 'Read-Only Disk$
err3_msg db 'Read-Only File$
err4_msg db 'Invalid Drive$

err5 msg db 'Password Error$
err6_msg db 'File Exists$

err7_msg db '?in Filename$

These strings can be changed to a foreign language as required. See Appendix
H.

BDOS/BIOS INTERFACE

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



The BDOS calls the BIOS through two entry pointsin the BIOS Kernel. All
communication to the BIOS is performed through these points.

BIOS Kernel Code Header

The BIOS Kernel Code Header islocated at offset O relative the BIOS code
segment. It consists of jumps to BIOSINIT and BIOSENTRY, aswell as to the
SYSDAT segment address. The BDOS performs a single CALLF (Cal Far
instruction) to JIMP BIOSINIT after system boot. Each time the BDOS must have
access to the hardware, it performsa CALLF to IMP BIOSENTRY . The double word
pointers the BDOS uses to find these two entriesreside at 2Ch and 28H in
SYSDAT. (Appendix C shows the SYSDAT format.)

The SYSDAT segment address, which is also the BIOS data segment, is kept in
the code segment of the BIOS to be accessible from interrupt service routines.

The following code fragment from the BIOS Kernel shows the Code Header.

Listing 3-2. BIOS Kernel Code Header

rhkkhkkhkkkkkkhkhhkhkhkhhhhhhhhhhhhhhhhhhhhdhddhhhhhhhdddrhhhxkhdx%x
k)

. BIOS CODE HEADER

rhkkkhkkhkkkkkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhdhdhddhhhhhhhdkdddhhhxkhdx*x
k)

CSEG
org 0000h

jmp  biosinit ;BIOS initialization entry
jmp biosentry  ;BIOS function entry

@sysdat rw 1 ;OS Data Segment

Section 5 discusses the BIOSINIT routine and the rest of BIOS initialization.

BIOSENTRY Routine

The Kernel BIOSENTRY routine receives from the BDOS, a BIOS function number in
AL, and parametersin CX and DX or on the stack as needed. Fifteen levels of

stack are available to the BIOS when the BDOS calls BIOSENTRY. The value in AL
indexes into the BIOS function table, which islocated in the BIOS Kernel.

Before caling BIOSENTRY, the BDOS sets DS to SYSDAT and ESto the currently
running process environment. DS and ES must be preserved through the Kernel

and the routines in the other BIOS modules. The first comment in Listing 3-3
summarizes the BDOS/BIOS register conventions.

The S BIOS system call in the BDOS does not perform a range check for BIOS
functions 80h and above, to allow BIOS functions specific to your CP/M-86 Plus

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



implementation. The example BIOS supports no functions above 80h, and these
functions return errors as shown in the following BIOSENTRY routine:

Listing 3-3. Kernel BIOSENTRY Routine

CSEG

rhkkhkkhkkkkkkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhddhdhhhhhhhdddddhhxkhdx*x
k)

BIOS ENTRY

)
rhkkkhkkkkkkhkhhkhkhkhhhhhhhhhhhhhhhhhhhhdddhhhhhhhddddhhhhkhdx*x

biosentry: ; BIOS Entry Point

; All callsto the BIOS after INIT, enter through this code

: with a CALLF and must return with a RETF.

; Entry: AL = function number

; CX = first parameter

; DX = second parameter

; DS = system data segment

; ES = process environment (preserved through call)

: Exit: AX = BX = return or BIOS error code

; DS = SYSDAT segment

; ES = process environment (preserved through call)
; SS,SP must a'so be preserved

; CX,DX,SI,DI,BP can be changed by the BIOS

cmp a,80h ! jaerange er ;check for BIOS functions

; above 80h
cld ;Clear direction flag
xor ah,ah ! shl ax,1 ;index into BIOS function
; table
mov bx,ax
call functab[bx] ;call BIOS kernel routine
mov es,rlr ;restore ES
bdos ret:
mov bx,ax BX = AX
retf
range_err:
mov ax,0FFFFh ;function out of range

jmps bdos _ret
DSEG

functab dw io_conist ; 0- console status
dw io_conin ;1- consoleinput
dw io_conout ;2 - console output
dw io listst ; 3- list output status
dw o list ; 4 - list output
dw io_auxin ;5-aux input

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



dw io_auxout ; 6- aux output

dw io_notimp ;7-CCP/M function
dw o notimp ;8- CCP/M function
dw io sedsk ; 9- sdect disk

dw ioread ;10 - read sector

dw io write ;11 - write sector

dw io flush ;12 - flush buffers

dw io_notimp ;13- CCP/M function
dw io_devinit ;14 - char. deviceinit
dw io_conost ;15 - console output status
dw io_auxist ;16 - aux input status
dw io_auxost ;17 - aux output status

As already mentioned, the BIOS Kernel assumes the other BIOS modules preserve
DS and ES. If you change DS or ES, save them using PUSH and POP instructions.
Alternatively, SYSDAT isaways available through the Kernel @SY SDAT public
defined in the code segment, and the segment of currently running process
environment is kept in the word at location 4Eh in the SYSDAT segment.
Location 4Eh in SYSDAT isthe Ready List Root as shown in Appendix C.

BIOS Kernel Functions Called by the BDOS

The BDOS calls the BIOS Kernel through the BIOSENTRY routine to perform any
hardware-dependent actions. The BIOS functions used by the BDOS fall into two
groups. character 1/0 and disk 1/0. BIOS function numbers 7, 8, and 13 are
reserved for compatibility with Concurrent CP/M, and return an OFFFFh in AX

and BX from the CP/M-86 Plus BIOS. All BIOS functions called by the BDOS begin
with the prefix "IO_". The offsets of these functions are defined at the
"FUNCTAB" symbol in Listing 3-3. The following table shows the two groupings
of BIOS functions available to the BDOS:

Table 3-2. BIOS Kernel 10_ Functions
No. Mnemonic Meaning
Character Device I/0O Functions

O IO_CONIST CONSOLEINPUT STATUS

1 10_CONIN CONSOLE INPUT

2 |O_CONOUT CONSOLE OUTPUT

3 IO_LISTST LIST STATUS

4 10_LISTOUT LIST OUTPUT

5 [O_AUXIN AUXILIARY INPUT

6 [|O0_AUXOUT AUXILIARY OUTPUT

14 10_DEVINIT DEVICE INITIALIZATION

15 |10_CONOST CONSOLE OUTPUT STATUS
16 IO_AUXIST AUXILIARY INPUT STATUS
17 10_AUXOST AUXILIARY OUTPUT STATUS
9 I10_SELDSK  SELECT DISK

10 10_READ READ DISK

11 10 WRITE WRITEDISK

12 10_FLUSH FLUSH BUFFERS

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



BIOS KERNEL/BIOS MODULES INTERFACE

All 10_ functions are in the BIOS Kernel. Most of these functions use the
Character Device Blocks (CDBs) and the Disk Parameter Headers (DPHS) to locate
hardware-dependent routines within the other BIOS modules. The BDOS reserves
fifteen levels of stack to be used by the BIOS Kernel on each call to the
BIOSENTRY routine. Thisis extra stack area past any parameters passed to the
BIOS on the stack. The IO_ functions use differing amounts of stack space
before calling the hardware-dependent routines you supply in the other BIOS
modules. If your routines need more stack space, they must switch to a loca
stack.

BIOS Kernel/CHARIO Interface

The BIOS Kernel Character 1O_ functions serve as a layer between the BDOS and

the physical character 1/0 routines addressed from the CDBs. The BDOS calls

the BIOS Kernel functions 10_CONIN, I0_CONIST, I0_CONOUT, IO_CONOST, IO_AUXIN,
IO_AUXIST, 10_AUXOUT, IO_AUXOST, IO_LIST, and IO_LISTST to perform character
I/0. These character 10 _ functions relate the logical CP/M-86 Plus character

devices CONIN:, CONOUT:, AUXIN:, AUXOUT:, and LST: to the physical character

devices; they perform the logical-to-physical mapping of character 1/0.

The three logical output devices are mapped onto physical devices by three

linked lists of CDBs. The offsets of the first CDB in these lists are

contained in the BIOS Kernel Data Header variables @BH_COROOT, @BH_AOROOQT, and
@BH_LOROOT. Thetwo logical input devices are mapped onto physical devices by

the two variables @BH_CIROOT and @BH_AIROQT, which contain the offset of the

one CDB associated with the logical device. These offsets in the Data Header

are called the character 1/0 redirection roots:

Table 3-3. Character 1/0 Redirection Roots
Name Logical Device

@BH_CIROOT CONIN: - Console Input
@BH_COROOT  CONOUT: - Console Output
@BH_AIROOT  AUXIN: - Auxiliary Input
@BH_AOROOT  AUXOUT: - Auxiliary Output
@BH_LOROOT  LST: - List Output

Logical device output can go to any combination of up to the sixteen maximum

physical character devices. The BIOS Kernel routines |O_CONOUT, IO_AUXOUT, and
IO_LIST cal the character output routine in each CDB linked to the

corresponding device root @BH_COROQOT, @BH_AOROQOT, or @BH_LOROOT respectively.
However, logical device input can be received from only the one physical

device since the input device roots, @BH_CIROOT and @BH_AIROOT, are not linked

and address only one CDB.

Table 3-4 summarizes the BIOS Kernel character 10_ functions. Note the specia

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



handling when a character device root is zero, indicating no physical device
is attached to the logical device. The BIOS Kernel listing in Appendix B shows
the register conventions for the 10 _ functions.

Table 3-4. BIOS Kernel Character 10_ Functions

Format: Function
Definition

IO_CONIN
Callsthe CDB_INPUT routine for the CDB addressed by @BH_CIROQOT. If @BH_CIROOT
iSO, then IO_CONIN returns a null (AL=0).

IO_AUXIN
Callsthe CDB_INPUT routine for the CDB addressed by @BH_AIROOT. If @BH_AIROOT
isO, then IO_AUXIN returns a null (AL=0).

IO_CONIST
Cadlls the CDB_INSTAT routine for the CDB addressed by the @BH_CIROOQOT. If
@BH_CIROQOT is0, then IO_CONIST returns a not ready status (AL=0).

IO_AUXIST
Cdls the CDB_INSTAT routine for the CDB addressed by the @BH_AIROOT. If
@BH_AIROQT is 0, then IO_AUXIST returns a not ready status (AL=0).

IO_CONOUT

Callsthe CDB_OUTPUT routine for every CDB on the linked list that starts with

the CDB addressed by @BH_COROQT. CL is set by the BDOS and is the character to
output. 10_CONOUT saves this value and the position in the CDB list between

callsto the CDB_OUTPUT routines. If @BH_COROQT is 0, then IO_CONOUT returns.

IO_AUXOUT

Callsthe CDB_OUTPUT routine for every CDB on the linked list that starts with

the CDB addressed by @BH_AOROOT. CL is set by the BDOS and is the character to
output. 10_AUXOUT saves this value and the position in the CDB list between

callsto the CDB_OUTPUT routines. If @BH_AOROOT is0, then |O_AUXOUT returns.

IO _LIST

Callsthe CDB_OUTPUT routine for every CDB on the linked list that starts with

the CDB addressed by @BH_LOROQOT. CL is set by the BDOS and is the character to
output. 10_LIST savesthis value and the position in the CDB list between

calls to the CDB_OUTPUT routines. If @BH_LOROOT is 0, then 1O_LIST returns.

IO_CONOST

Cadlls the CDB_OUTSTAT routine for every CDB on the linked list that starts

with the CDB addressed by @BH_COROQOT. IO_CONOST returns a ready status
(AL=0FFh) only if all the devicesareready. If @BH_COROQT is 0, then
IO_CONOST also returns a ready status.

IO_AUXOST

Cdlls the CDB_OUTSTAT routine for every CDB on the linked list that starts

with the CDB addressed by @BH_AOROOT. |IO_AUXOST returns a ready status
(AL=0FFh) only if all the devicesareready. If @BH_AOROOT is 0, then
IO_AUXOST aso returns a ready status.

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



|O_LISTST

Cdlls the CDB_OUTSTAT routine for every CDB on the linked list that starts
with the CDB addressed by @BH_LOROOT. IO_LISTST returns a ready status
(AL=0FFH) only if al thedevicesareready. If @BH_LOROQT is O, then
IO_LISTST also returns a ready status.

IO_DEVINIT

Calls the CDB_INIT routine using the CDB offset in BX. The 10_DEVINIT is
available to utilities such as DEVICE through the S_BIOS system call. DEVICE
specifies the CDB offset as part of the S BIOS call and the BDOS sets BX with
this offset before calling IO_DEVINIT. IO0_DEVINIT setsregister DL to 1 before
caling the CDB_INIT routine, indicating this is not the first initialization

cal to the device. The Kernel BIOSINIT routine (discussed in Section 5) sets

DL to 0 before making the first initialization call to all CDB_INIT routines.

Your CDB_INIT routine must return success (AX=0) and failure (AX=0FFFFh) back
to the Kernel 10_DEVINIT function, which returns to the BDOS, and finally back
to utilities such as DEVICE.

Figure 3-1illustrates character 1/0 redirection. Console ouput echoesto the

printer without use of the Ctrl-P command. The @BH_COROQOOT field in the BIOS
Data Header points to the CRTO CDB, and the CDB_COLINK field withinthe CRTO
CDB contains the offset of the LPTO CDB. The IO_CONOUT function in the Kernel
calls the console output routine for each device with every character. The

addresses of the console ouput routines are contained in the CDB for the
respective device. Section 7 defines the CDB structure.

S TS S A +
| @BH_CIROOT | CDB NAME CDB _COLINK
E ——— S A —— + Fommm - R R R
| @BH_COROOT  [-------- > | CRTO | o | (.)
S TS S A + SRR S S S
| @BH_AIROOT | |
E ——— S A —— A +
| @BH_AOROOT | |
S S SR ——— + | - B — B — B —
| @BH_LOROOT | +-->]|LPTO | O000H | (...)
E ——— S A —— + Fommm - R R R
(...)
BIOS Kernel Data Header Character Device Blocks

Figure 3-1. Character 1/0 Redirection Example

BIOS Kernel/BIOS DISKIO Interface

The sixteen DPH offsetsin the BIOS Kernel Data Header correspond to the
sixteen CP/M-86 Pluslogical drives, A:-P.. The DPH structures contain the
offsets of the hardware-dependent routines to perform disk 1/O. Fields within
DPHSs are prefixed with the letters "DPH_". The BIOS Kernel listing in Appendix
B shows the register conventions for the 1O _ functions:

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



Table 3-5 defines the BIOS Kernel Disk 10O_ functions:
Table 3-5. BIOS Kernel Disk 10_ Functions

Format: Function
Description

IO_SELDSK

The Kernel IO_SELDSK routine indexes into the BIOS Data Header DPH table using
the drive requested by the BDOS in register CL. If the DPH field is O, the

drive is not supported by the BIOS and 10_SELDSK returns an error (AX=0). If
the BDOS calls |O_SELDSK with the least significant bit (LSB) of register DL

set to O, itisthefirst time this drive has been selected. On first time

selects, |I0_SELDSK calls the DPH_LOGIN routine, which can check for media type
as discussed in Section 7. If DPH_LOGIN returns successfully, IO_SELDSK aso
returns successfully with the DPH addressin AX. When 10_SELDSK is called with
the least significant bit of DL set, the DPH offset isreturned in AX and no

call to DPH_LOGIN is made.

IO_READ, I0_ WRITE

The Kernel 10_READ and 10_WRITE routines pass al their parameters on the
stack. A structure called the I/O Parameter Block (IOPB), which is based on

the BP register, is used to access these parameters. The Kernel 10_READ and
IO_WRITE routines jump to a common routine that sets up BP, looks up the
appropriate DPH, then uses it to call the DPH_READ or DPH_WRITE routine in the
DISKIO modules.

IO_FLUSH

This routine is usually not needed, since the BDOS reads physical sectors and
performs blocking/deblocking to and from logical sectors. If you must perform
blocking/deblocking in the BIOS, the IO_FLUSH informs you when "dirty" buffers
must be written to disk. The BDOS calls IO_FLUSH when files are closed and
program termination occurs. The example BIOS performs no blocking/deblocking,
and thelO_FLUSH routine simply returns a successful result (AL=0) from the
BIOS Kernel.

REENTRANCY IN THE BIOS

BIOS routines do not need to be reentrant. Although several process can be
running at the same time, the BDOS allowsonly one process to call a
particular BIOS 10 _ function at a time. This does not preclude one process
performing disk 1/O, another list output, while a third is receiving
characters from the keyboard.

The DEVICE utility does not put the same CDB offset in both of the device

input roots, @BH_CIROOT and @BH_AIROOT. Similarly DEVICE does not put the same

CDB offset in more than one of the output character redirection lists rooted

a @BH_COROOT, @BH_AOROQT, and @BH_LOROQT. Thus, when two or more processes
perform [/O to the logical devices CON:, AUX: and LST:, the CDB routines in

your CHARIO module are not reentered. Furthermore, the BDOS ensures two or

more processes cannot access any one of the logical devices CON:, AUX:, and

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



LST:, ssimultaneously.

A BIOS routine that needs to make system calls back to the BDOS can do so by
an INT 224 instruction, as described in the "Programmer's Guide', or by a
CALLF (Cal Far instruction) to the BDOS double word addressin the SYSDAT
segment (see Appendix C). Different system calls require differing amounts of
stack; you may need to provide more stack for system calls made from the BIOS.
The BDOS entry using the CALLF requires less stack and is more efficient than
the INT 224 entry. The BIOS Kernel routines ?DISPATCH, ?DELAY, and ?WAITFLAG
reach the BDOS with the CALLF BDOS instruction, and the register conventions
for these routines are shown in the BIOS Kernel listing (see Appendix B). Note
that, whenever the BDOS s called through the BDOS double word pointer in
SYSDAT, the DS and ES registers must be set to the SYSDAT segment and the
segment of the currently running process environment, respectively. The rest

of the registers follow the conventions for a system call invoked viaan INT

224 instruction.

When making BDOS calls from the BIOS, you must ensure the BDOS is not calling
the same BIOS routine that is making the BDOS call. For instance, do not make

the system call F_ WRITE to the BDOS from within the BIOS disk I/O routines, or
cal C_WRITE when in the device driver currently assigned to CONOUT:. Note
that interrupt service routines cannot make system calls to the BDOS.
"Interrupt Device Drivers' in Section 4 discusses special BDOS entry points

for interrupt service routines.

PUBLIC BIOS KERNEL ROUTINES

Table 3-6 shows the public BIOS Kernel routines that can be used by other BIOS
Modules. Appendix B shows the register conventions for these routines.

Table 3-6. Public BIOS Kernel Routines

Format: Routine
Description

?PMSG
Prints a character string on the current CONOUT: device, using the CDB pointed
to by @BH_COROQOT. A null byte (0) terminates the string.

?WAITFLAG

Waits for an INT_SETFLAG operation from a specific interrupt service routine.

A process that must wait for an interrupt to signal the occurrence of a

hardware event calls this routine. Each different interrupt-driven hardware

event uses a different system flag number. You supply the flag number

associated with a specific event as a parameter to WAITFLAG and INT_SETFLAG.
System flags are alocated using the @BH_NEXTFLAG and @BH_LASTFLAG fields in
the Kernel Data Header. Section 4 further discusses system flags and interrupt

Sservice routines.

?DISPATCH

Gives up the CPU if any other processis ready to run. ?DISPATCH iscalled by
routines polling for hardware status that cannot be interrupt-driven.

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



?DELAY

Gives up the CPU for the specified number of system ticks. ?DELAY is called by
routines that need to wait a specific amount of time when no hardware ready
status is available.

EOF

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG3. T X T[ 2/6/2012 4:40:25 PM]



CPMPIGAWSHA (= "CP/M-86 Plus Installation Guide", section 4)

(Edited by Emmanuel ROCHE.)

Section 4: Device Drivers

Device drivers are software routines that directly control and communicate
with hardware. Usually, there is one driver for each physical device. A device
driver is actually a collection of several routines to perform initialization

and often other 1/O functions. For instance, a CP/M-86 Plus console driver
refers collectively to the routines for initialization, input, input status,

output, and output status. However, a clock driver in CP/M-86 Plus can be
simply initialization and an interrupt service routine.

Devices communicate with driver software through the CPU, typically via
interrupts or by polling. Interrupts asynchronously signal the CPU when a
hardware event occurs. The polling driver, on the other hand, continually
interrogates the hardware to determine the occurrence of a hardware event.

This section contrasts interrupt device drivers and polled device drivers in
CP/M-86 Plus. Specific information for the console, disk, and clock driversis
in subsequent sections.

INTERRUPT VERSUS POLLED DEVICE DRIVERS

CP/M-86 Plus is designed and optimized for an interrupt-driven BIOS that
supplies the operating system atick every 16 milliseconds (60 times a
second). However, CP/M-86 Plus supports a BIOS using polled I/O drivers with
no interrupts and no tick.

Interrupt-driven 1/0O is more efficient than polled 1/0. For CP/M-86 Plus, an
interrupt-driven console input and a system tick allow the support of "type-
ahead", "live keyboard", and "background programs".

Type-ahead lets console input continue independent of what the currently
running application program is doing. When the application requests console
input, the stored (typed-ahead) characters are sent to the application.

Live keyboard refers to the performance of certain keyboard functions by CP/M -
86 Plus independent of what the application program is doing. These functions
are the stopping (Ctrl-S) and starting (Ctrl-Q) of console output, stopping

the running process (Ctrl-C), and the on and off toggling of printer echo
(Ctrl-P). Printer echo isthe duplication of output sent to the CON: device
(usually the console) on the LST: device (usualy the printer).

A polled keyboard forces console output to be less efficient than with
interrupt keyboard input. When keyboard input is polled, the BDOS must make
BIOS 10_CONST calls before each character is output to the console to check
for Ctrl-S, Ctrl-Q, Ctrl-C, and Ctrl-P.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PI G4. TX T[ 2/6/2012 4:40:26 PM]



As mentioned at the end of Section 1, CP/M-86 Plus supports simple
multitasking, allowing up to four processes to share the CPU. A system tick
forces the rescheduling (dispatching) of the processes currently ready to run.
CP/M-86 Plus does not allow the creation of more than one processif a system
tick is not supported by the BIOS.

Multitasking is part of CP/M-86 Plus primarily to support printer spooling and
plotting, communications, and the ability to monitor other hardware while
running a foreground task. Since file protection is not provided in CP/M-86
Plus, multitasking is not a general -purpose tool for the end user as it is
under Concurrent CP/M.

INTERRUPT DEVICE DRIVERS

A process that needs to wait for a specific interrupt from a hardware device

makes a call to the BIOS Kernel ?WAITFLAG routine with the system flag number
reserved for the device. The ?WAITFLAG routine either gives up the CPU and
waits for the interrupt, or returns immediately if the interrupt has already

occurred. The interrupt service routine signals the occurrence of the hardware

event by performing a CALLF (Call Far instruction) to the BDOS INT_SETFLAG
function with the same flag number.

The system flags are data structures manipulated by the ?WAITFLAG and
INT_SETFLAG functions. System flags are allocated by GENCPM, and are located
in the SYSDAT segment. Only one process at a time may wait on a particular
system flag, and only one interrupt service routine may set a particular flag.

If a processiswaiting on a flag, a second ?WAITFLAG operation by another
process specifying the same flag returns an error. Similarly, if a flag is

already set by an interrupt service routine, another INT_SETFLAG operation to

the same flag returns an error. Table 4-1 shows the register conventions for
?INT_SETFLAG; Appendix B shows the BIOS Kernel conventions for WAITFLAG.

If the physical device causing the interrupt is the current logical CONIN:

device, the interrupt service routine performsa CALLF (Call Far instruction)

to the BDOS INT_CHARSCAN function with each character received from the
physical device. This physical deviceisusualy the system or a remote

console, and the INT_CHARSCAN function allows the BDOS to perform the live
keyboard functions.

Interrupt service routines exit by executing a IMPF (Jump Far instruction) to
INT_DISPATCH, which is the address of the dispatcher in the BDOS, or by
performing an IRET (Interrupt Return instruction). An IRET is executed when
other interrupt service routines are "incomplete”. In other words, perform an
IRET when exiting an interrupt service routine that was invoked while
executing a prior interrupt service routine. The interrupt service routines

use the BIOS Data Header variable @BH_ININT to signal an interrupt service
routine in progress. Exiting with an IRET prevents the "incomplete” interrupt
service routine from waiting an entire tick (usually 16 milliseconds) or more
before it completes.

This situation arises when interrupts occur from different devicesat almost

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PI G4. TX T[ 2/6/2012 4:40:26 PM]



the same time. It is assumed interrupts do not occur from the same device
while executing the interrupt service routine for the device, and thus service
routines are not written to be reentrant.

If interrupts are not enabled inside any interrupt service routine in the

BIOS, an interrupt cannot preempt a running interrupt service routine. In this
case, theinterrupt service routine can always exit by executing a CALLF to
INT_DISPATCH. When the interrupt service routine is short, keeping interrupts
off presents no problems. However, if interrupts are off for long periods of

time, it can adversely affect applications depending on rea-time response,

such as communications packages. The example BIOS reenables interrupts within
interrupt service routines to keep interrupt off time to the minimum.

In general, interrupt service routines must follow the steps outlined here.
Listings 6-3, 6-4, and 8-1 show example interrupt service routines.

1. Save the DS register by pushing it on the interrupted process's stack.

2. Set the DS register to @SY SDAT, which is also the BIOS data segment.
The following code fragment shows steps 1 and 2:

CSEG

extrn @SY SDAT:word
push ds

mov  ds,@SYSDAT

Since only the value of CS is known upon entry to an interrupt service
routine, @SY SDAT is defined within the code segment of the BIOS
Kernel. You can force a code segment override by declaring @SY SDAT an
external within the code segment, as shown above.

3. Switch the stack to a local stack. There is no guarantee of the amount
of stack space a transient program provides. Provide at least twelve
extra stack levels beyond that needed for the interrupt service
routine itself. The extrastack is for the BDOS INT_ functions (see
Table 4-1) and the occurrence of another interrupt.

4. If any interrupt service routine in your BIOS reenables interrupts on
the CPU, increment the @BH_ININT variable. The @BH_ININT must be
decremented before the interrupt service routine exits. Interrupts can
now be enabled.

5. Save the register environment of the interrupted process, or at least
the registers to be used by the interrupt service routine. Usually,
registers are saved onthe local stack established in the previous
step.

6. Satisfy the interrupting condition, and perform a CALLF to INT_SETFLAG
if required. The hardware (usually a PIC, a Programmable Interrupt
Controller) should not be reset, allowing another interrupt from the
same device until interrupts in the 8086/8088 are disabled for the
rest of the interrupt service routine, unlessthe interrupt service
routine is reentrant.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PI G4. TX T[ 2/6/2012 4:40:26 PM]



7. Restore the register environment of the interrupted process.
8. Disable interrupts and switch back to the original stack.

9. Ensure interrupts are disabled onthe CPU for the rest of this
interrupt service routine. If this or any of the other interrupt
service routines enable interrupts in your BIOS, then decrement the
@BH_ININT count. When @BH_ININT equals O, no other interrupts are
currently being serviced and a IMPF (Jump Far instruction) to the
dispatcher can be made. Perform a IMPF to INT_DISPATCH with four
words on the stack; the DS register of the interrupted process is
followed by the three words pushed by the interrupt. If @BH_ININT is
not 0, another interrupt is currently being serviced. In this latter
case, execute a POP DS and perform an IRET.

If interrupts are not enabled in any of the interrupt service routines, you

can either perform an IRET (Interrupt Return instruction) or a JMPF to
INT_DISPATCH. If aCALLFto INT_SETFLAG was performed, it is often desirable
for the interrupt service routine to exit by jumping to the dispatcher to

awaken the process waiting for the flag set.

Three INT_ functions are the only BDOS routines or functions that can be used

from an interrupt service routine. The INT_ functions are only for interrupt

service routines, and cannot be used from any other part of the BIOS. These
functions do not go through the BIOS Kernel for efficiency, and to keep

interrupt off time to a minimum. All INT_ functions can be invoked with
interrupts enabled. The addresses of these functions are in SYSDAT, and are
double word pointers; Appendix C shows the SY SDAT format. Table 4-1 summarizes
the three INT_ functions and their register conventions.

Table 4-1. BDOS Interrupt Functions

Format: Function
Explanation
Entry Registers
Exit Registers

INT_SETFLAG
Call Far to this routine to signal the occurrence of a hardware event.

Entry Registers. DL = flag number to set
DS = SYSDAT (BIOS data segment)

Exit Registers: AX = 0 successful operation
AX = OFFFFh then error and
CX = 4 flag number out of range
CX = 5flag dready set (flag overrun)
(In either case: AX, BX, CX, DX are dtered;
all other registers preserved.)

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PI G4. TX T[ 2/6/2012 4:40:26 PM]



INT_CHARSCAN
Cadll Far to this routine to have the BDOS check for the live control keys.

Entry Registers: AL = character received from device
DS = SYSDAT (BIOS data segment)

Exit Registers: AL = character for BDOS to scan
BL = O then discard the character
BL = 1 then place AL in the input buffer for this device
All other registers preserved.

INT_DISPATCH

Jump Far to this routine to exit the interrupt service routines, and to force
rescheduling of the currently ready to run processes. The BDOS assumes the DS
register of the interrupted processis the first word on the stack, followed

by the three words pushed by the interrupt.

Entry Registers: DS = SYSDAT (BIOS data segment)
All registers, except DS, as on entry to the interrupt
service routine.
The original value of DS is the first word on the stack.

Exit Registers. This function does not return.

POLLED DEVICE DRIVERS

A polled 1/O driver can execute software CPU loops when waiting for a hardware
event. Thisisinefficient and precludes keyboard type-ahead, live keyboard,

and background programs (processes). Another type of polling calls the
?DISPATCH routine in the BIOS Kernel when waiting for a hardware event. This
latter method allows background programs to run. Either kind of polling does
not alow live keyboard, or keyboard type-ahead (or more generally buffered
character 1/0). Interrupt-driven character 1/0O allows these features to be
implemented, and is more efficient than polling. For these reasons, you are
encouraged to use interrupt-driven device drivers instead of polling device
drivers in the CP/M-86 Plus BIOS. Polling device drivers can be helpful,
however, during BIOS development and debugging.

Do not call the INT_DISPATCH function in the BDOS to give up the CPU when
polling; instead, use the Kernel ?DISPATCH routine.

Some hardware events provide no status information from an interrupt or
through a port that can be polled. Usually, a specific amount of time must be
delayed, then the hardware is assumed to be ready. An example is a diskette
motor, which once turned on, must reach operational speed before being used.
For this type of event, the BIOS Kernel ?DELAY function can be used to give up
the CPU for a specified number of ticks. The ?2DELAY function invokes the
P_DELAY system call in the BDOS.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PI G4. TX T[ 2/6/2012 4:40:26 PM]



Since the CLOCK Module must support a system tick before P_DELAY works,
drivers should be initially written with software CPU loops for these time-

outs, then replaced with callsto ?DELAY as one of the last stepsin the BIOS
implementation.

EOF

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PI G4. TX T[ 2/6/2012 4:40:26 PM]



CPMPIGE.WHA (= "CP/M-86 Plus Installation Guide", section 5)

(Edited by Emmanuel ROCHE.)

Section 5: System and BIOS Initialization

This section describes system initialization, the BIOS INIT Module, and device
initialization.

SYSTEM INITIALIZATION

The CPM-86 Plus loader, CPMLDR, loads CPMP.SY S into memory and initializes DS
to SYSDAT, then executes a IMPF (Jump Far instruction) to offset O in the BDOS
code segment. This is the beginning of the BDOS initialization routine, which

after performing internal system initialization, makesa CALLF (Cal Far
instruction) to offset 0 in the BIOS code segment. At offset 0in the BIOS

Kernel Code Header, a IMP BIOSINIT instruction startsthe BIOSINIT routine.
Section 11 discusses CPMLDR more fully.

The BIOSINIT routine in the Kernel first calls ?INIT in the INIT module to
perform any general hardware initialization needed. Then, the BIOSINIT routine
cals the initialization routine specified in each DPH and CDB in the system.

On entry to the Kernel BIOSINIT routine, the BDOS reserves 20 words on the
stack for BIOS initialization. Switch to a local stack if more space is needed

by your initialization routines.

When the CDB and DPH initialization routines have been performed, BIOSINIT

locates the character device that istheinitial logical CONIN: device. This

device is represented by the CDB whose offset isin the Kernel Data Header
@BH_CIROQT variable. If adeviceisinterrupt-driven, its associated CDB
CDB_IINPUT field is equal to OFFh; otherwise, itisequal to 0. The BIOSINIT

routine copies the CDB_IINPUT field from the CONIN: CDB to the BIOS Data
Header @BH_INTCONIN variable. Thevalue of @BH_INTCONIN signals the BDOS
whether the current CONIN: device is interrupt-driven.

BIOSINIT then calls ?CLOCK _INIT in the CLOCK module, and lastly prints the
sign-on message using the Kernel public ?PM SG routine. The BIOSINIT routine
next executes a RETF (Return Far instruction) back to the BDOS.

Some hardware initialization is often necessary in the disk boot loader and
CPMLDR. You may not have to duplicate this initialization in the BIOS.

BIOS INIT MODULE

The INIT Module contains the public ?INIT routine, and defines the @SIGNON
message. As already described, the Kernel BIOSINIT routine calls ?INIT during
system initialization to perform any general hardware initialization that is

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G5.TX T[ 2/6/2012 4:40:26 PM]



not accomplished by the subsequent CDB and DPH initialization routines or the
clock initialization routine. A RET (Near Return instruction) must terminate
the ?INIT routine.

The interrupt vectors in the first Kbyte of memory are initialized by the
following sequence. The BDOS setsinterrupt vector 224 to point to the normal
BDOS entry before calling BIOSINIT. After BIOSINIT returns, the BDOS
reinitializes interrupt 224 and copies interrupt vectors 0, 1, 3, 4, 224, and

225to alocal save area.

The BDOS copies the saved interrupt vectors 0, 1, 3, 4, 224, and 225 into the
interrupt vectors in low memory during each P_CHAIN or P TERM system call.
Thus, whenever a program chains or terminates, these six interrupt vectors are
reinitialized.

The BDOS keeps copies of interrupt vectors 0, 1, 3, 4, 224, and 225 for each
process, and reinitializes the interrupt vectorsin low memory before a
process is given the CPU.

The ?INIT routine usudly initializes all interrupt vectors to point to an
interrupt trap routine that prevents spurious interrupts from vectoring to
unknown locations. The interrupt trap routine usually prints out an error
message, enables interrupts, and performsa HLT (Halt instruction). The CPU is
halted since the integrity of the operating system image is not guaranteed
after an uninitialized interrupt.

The device CDB_INIT and DPH_INIT routines for each CDB and DPH device as well
as the ?CLOCK _INIT routine set the specific interrupt vectors they need. All
interrupt vectors should be initialized when BIOSINIT returnsto the BDOS.
However, during debugging you usually leave several interrupt vectors
unchanged to allow CP/M-86 1.X and DDT-86 to monitor your CP/M-86 Plus BIOS.
Section 10 examines debugging.

The ?INIT routine can set the 8087 variable in the BIOS Kernel Data Header. If
the 8087 exists, set the @BH_8087 byte to OFFh.

DEVICE INITIALIZATION

The Kernel BIOSINIT routine performs character and disk device initiaization
by calling the INIT routinesindicated in all the DPHs and CDBs. BIOSINIT
makes no initialization call for DPHs and CDBs whose fields in the BIOS Kernel
Data Header are zero; these devices are considered unsupported by the BIOS.

If severa DPHs or CDBs sharethe same physical device, the routines
associated with the DPHs or CDBs cooperate so as not to reinitialize the same
device or alocate extraflags for interrupt operations. For instance, a

floppy disk controller that can perform 1/O operations to severa drives can

be shared by several DPHs. Only one of the DPH_INIT routines (see Section 7)
should initialize the disk controller in this case.

If a driver isinterrupt-driven and therefore requires one or more system
flags, the specific deviceinit routine alocates a system flag for itself.

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G5.TX T[ 2/6/2012 4:40:26 PM]



This is done by accessing the @BH_NEXTFLAG and @BH_LASTFLAG fieldsin the BIOS
Data Header. During BIOS initialization, the next unused flag number is

present inthe @BH_NEXTFLAG field. The driver must save this flag number and

use it when performing ?WAITFLAG and INT_SETFLAG operations. The driver
initialization routine must also increment the @BH_NEXTFLAG field to reserve

the flag, and thusindicate the next available flag number. @BH_LASTFLAG

contains a value that indicates the last available system flag number. If
@BH_LASTFLAG is less than @BH_NEXTFLAG, no moreflags are available. The
initialization routine for an interrupt-driven device must ensure the required

number of system flags are indeed available, and halt initialization if they

are not. GENCPM sets @BH_NEXTFLAG and @BH_LASTFLAG at system generation time.

EOF

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G5.TX T[ 2/6/2012 4:40:26 PM]



CPMPIG6.WHA (= "CP/M-86 Plus Installation Guide", section 6)

(Edited by Emmanuel ROCHE.)

Section 6: Character 1/0

This section describes the CP/M-86 Plus BIOS Character 1/O routines you supply
for a specific machine. The first subsection describes the Character Device
Block, a data structure you use to define character devicesin the BIOS. The
next subsection describes the hardware specific routines associated with a
device and its Character Device Block. A third subsection presents character
I/0O buffering, including type-ahead and live keyboard. The final subsection
covers character 1/O error messages.

All character 1/0 drivers supporting different kinds of devices, such as

serial and parallel printers, and serial and memory-mapped CRTs, can be
contained in one module, or broken up as convenient into several modules. The
example BIOS supports al character 1/0 devices in the module CHARIO.A86. The
CHARIO.AS8G6 file on the distribution disksis a useful reference while reading

this section.

The BDOS passes eight-bit data to and from the character IO_ functionsin the
Kernel. If necessary, the character device driver must mask the most
significant (parity) bit.

CHARACTER DEVICE BLOCK (CDB)

Each character 1/O device has an associated Character Device Block (CDB) that
contains information about the character device. Throughout this manual and
the example BIOS, fields in the CDB are prefixed with "CDB_". The following
listing shows the CDB format, and is also included in the file CDB.LIB on your
distribution disks.

Listing 6-1. Character Device Block Format

LR R R R R b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b R b b R R R R R R
)

;

; Console Device Block Equates

1
rkkkkkhkkhkkkkhkkkhhkkhkkhhkkhhkhkkhhkkhhkkhkhkkhkhkhkhkhhkkhkkhhkkhkkhhkhkkhhkhkkhkhkkikkkkx*%x
1

: o o S o o o S o +

; 00h: | NAME | SUPCHAR |

, . . N . . . . N . . +

;08h: | CURCHAR |SUPOEM|CUROEM|TXB |RXB | TYPE [[INPUT]
: o o S o o o S o +

; 10n: [NFLAGS|RESVD | COLINK | AOLINK | LOLINK |

: . . R R R +

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



;18h: | INIT | INPUT | INSTAT | OUTPUT |

: E —  — S — E — E —  — S — E — +
; 20h: | OUTSTAT |

: S a—— S — +

CDB_NAME equ byteptrO

CDB_SUPCHAR equ word ptr 6

CDB_CURCHAR equ word ptr 8
CDB_SUPOEM  equ byteptr 10
CDB_CUROEM  equ byteptr11
CDB_TXB equ byteptr 12
CDB_RXB equ byteptr 13
CDB_TYPE equ byte ptr 14
CDB_IINPUT equ byteptr 15
CDB_NFLAGS equ hyteptr 16
CDB_RESVD equ byte ptr 17
CDB_COLINK  equ word ptr 18
CDB_AOLINK  equ word ptr 20
CDB LOLINK  equ word ptr 22
CDB_INIT equ word ptr 24
CDB_INPUT  equ word ptr 26
CDB_INSTAT equ word ptr 28
CDB_OUTPUT equ word ptr 30
CDB_OUTSTAT equ word ptr 32

Listing 6-2 shows an example CDB definition from the CHARIO.A86 file. (The

CRTO_CS, CRTO_CC, and CRTO_CT values are equates defined in CHARIO.A86. The

symbols CRTO_INIT, CRTO_INPUT, CRTO_INSTAT, CRTO_OUTPUT, and CRTO_OUTSTAT are
routines in CHARIO.A86. The BAUD_9600 symbol is defined in the CDB.LIB file.)

Listing 6-2. Example CDB Definition

@cdba db
dw
dw
db
db
db
db
db
db
db
dw
dw
dw
dw
dw
dw
dw
dw

'CRTO '
CRTO CS ;supported characteristics
CRTO_CC ;current characteristics
0,0 ;no OEM characteristics
BAUD_ 9600 ;transmit baud
BAUD 9600 ;receive baud
CRTO CT ;type of device
OFFh ;will support type ahead
2 ;2 flags used
;reserved
;console output link
;aux output link
list output link
crtO_init  ;device A init
crtO_input  ;device A input
crtO_instat  ;device A input status
crtO_output ;device A output
crtO_outstat ;device A output status

;hame

0
0
0
0

Table 6-1 describes each CDB fidld:

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



Table 6-1. Character Device Block Data Fields

Format: Data Field
Explanation

CDB_NAME [Six-character name of this physical device]
The device name must be in capital alphanumeric ASCII characters, left-
justified in the field, and padded on the right with ASCII spaces.

CDB_SUPCHAR [Supported characteristics]

This field indicates the device characteristics supported by the driver
associated with the CDB. The possible set of device characteristics are stop
bits, parity, line polarity, protocols, and data bits. Supported
characteristics are indicated by setting the appropriate bits in the
CDB_SUPCHAR field. These bits are assigned as follows:

B S R R el alos sk oL ST S S P 2

MSB Bit |F|E|D|C|B|A|9]8]7|6|5]4]3]2|1|0] LSB Bit
it st L ST R T R SR R S S T e

||]|1 XON/XOFF supported

|]]1 ETX/ACK supported

|| 1 RTS supported

| 1 DTR supported

1 DTR/RTS polarity supported

ODD parity supported
EVEN parity supported
MARK parity supported
SPACE parity supported

|1
|1
|11
|11
|1
|1
|11
|11
| 1
1

5 data bits supported
6 data bits supported
7 data bits supported
8 data bits supported

|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
| 1
I
1

1 stop bit supported
1.5 stop bits supported
2 stop bits supported

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|1
1

Note the DTR/RTS polarity field signifies that polarity is supported, but not
whether it is positive or negative. Equates for these bits in the CDB_SUPCHAR
field are found in the CDB.LIB file.

CDB_CURCHAR [Current characteristics]

This field specifies the characteristics the device driver is currently using.

Note this field does not correspond one-to-one with the bitsin CDB_SUPCHAR.

The parity, data bits, and stop bits are condensed into binary values in
CDB_CURCHAR. The CDB_INIT routine can thus mask, shift, and jump based on
these CDB_CURCHAR bits. Equates for these operations on the CDB_ CURCHAR field
arein the CDB.LIB file.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



S
MSB Bit |FIE|D|C|BJA[9I8]7]6|5]4]3|2|1[0] LSB Bit
B T T R R sl ok a
[I11]]111 XON/XOFF enabled
[1]1]]111 ETX/ACK enabled
[1]]]1 RTSenabled

|1]]1 DTR enabled

|||1 positive DTR/RTS polarity
|11

|| 1 parity enabled

I
00 ODD parity

01 EVEN parity

10 MARK parity

11 SPACE parity

|

|

|

|

|

|

|

|

|

|

|

|

00 5datahbits enabled
01 6 databits enabled
10 7 data bits enabled
11 8databits enabled
0 1 stop bit enabled

1 1.5 stop bits enabled
0 2 stop bits enabled

1 (reserved)

X X X X (reserved)

Note the DTR/RTS polarity (bit 4) has meaning only when the corresponding bit

is setinthe CDB_SUPCHAR field. When bit 4 of the CDB_SUPCHAR field is set,
the DTR/RTS polarity is negative if bit 4 of the CDB_CURCHAR field is0, and
positive if bit 4 of the CDB_CURCHAR field is 1.

The DEVICE utility alters this field to change the current device
characteristics, and then calls the CDB_INIT routine.

CDB_SUPOEM [Supported OEM characteristics]

This field is defined by the OEM for any device characteristics and protocols

that can not be represented with the CDB_SUPCHAR field. Set CDB_SUPOEM and
CDB_CUROEM to O if thereareno OEM-defined characteristics. The DEVICE
utility displays this field, but is otherwise unused by CP/M-86 Plus.

CDB_CUROEM [Current OEM characteristics]

This field contains the OEM-defined characteristics the device driver
associated with the CDB is currently using. This field is defined by the OEM

when CDB_SUPOEM s defined. The DEVICE utility alters this field to change the
current OEM device characteristics, then callsthe CDB_INIT routine. DEVICE
assumes the definitions of bitsin CDB_SUPOEM are one to one with the bits in
CDB_CUROEM.

CDB_TXB [Transmit baud]

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



This is the vaue representing the current transmit baud of the device
associated with the CDB.

CDB_RXB [Receive baud]
This is the value representing the current receive baud of the device
associated with the CDB.

If the CDB_TYPE field (described later in this table) has the CI_SOFTBAUD hit
set, the DEVICE utility can change the baud by first setting the CDB_TXB and
CDB_RXB fields, then calling the CDB_INIT routine. See the discussion on the
CDB_INIT routine in "Character Device Block (CDB) Routines' later in this
section, regarding unsupported baud settings.

The following are the values that CDB_TXB and CDB_RXB can assume (also in the
CDB.LIB file as equates):

SYMBOL VALUE EXPLANATION

BAUD_NONE 00h No baud rate for this device
BAUD 50 0lh 50 baud
BAUD 625 02h 62.5 baud
BAUD 75 03h 75 baud
BAUD 110 04h 110 baud
BAUD 1345 05h 134.5baud
BAUD_150 06h 150 baud
BAUD 200 07h 200 baud
BAUD_300 08h 300 baud
BAUD 600 09h 600 baud
BAUD_1200 OAh 1200 baud
BAUD_1800 OBh 1800 baud
BAUD_2000 OCh 2000 baud
BAUD 2400 ODh 2400 baud
BAUD_3600 OEh 3600 baud
BAUD_ 4800 OFh 4800 baud
BAUD 7200 10h 7200 baud
BAUD_9600 11h 9600 baud
BAUD_192 12h 19200 baud
BAUD 384 13h 38400 baud
BAUD 56 14h 56000 baud
BAUD_768 15h 76800 baud
BAUD_OEM1 16h OEM-defined
BAUD_OEM2 17h OEM-defined
BAUD OEM3 18h OEM-defined

CDB_TYPE [Devicetype]

The CDB_TY PE byte specifies whether the device is an input or output device,
whether it has a selectable baud rate, and whether it is a serial device. The
following bits are defined for this field, and are also included in the
CDB.LIB file.

SYMBOL VALUE EXPLANATION

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



CT_INPUT  01H Device performsinput
CT_OUTPUT 02H Device performs output
CT_SOFTBAUD 04H Software-selectable baud rate
CT _SERIAL 08H Seria device

CDB_IINPUT [Interrupt input]

Set this field to OFFH if the device associated with the CDB is interrupt-

driven on input; otherwise, set the field to 0. The BIOSINIT routine and the

DEVICE utility use this field to set the @BH_INTCONIN in the BIOS Kernel Data
Header. The @BH_INTCONIN field is set to the CDB_IINPUT value of the CDB on
the console input root, indicating to the BDOS whether console input is
interrupt-driven.

CDB_NFLAGS

Thisfield isinitialized to the maximum number of flags this device needs for
PWAITFLAG and INT_SETFLAG operations. Usually, thereis a flag per interrupt
service routine used by adriver. For example, if your console input is
interrupt-driven, but console input status, output, and output status are not,

then you need one flag for the console 1/0 driver. GENCPM uses this field in
calculating the minimum number of flags needed in the system.

CDB_RESVD
This field is unused by the BDOS or the BIOS Kernel.

CDB_COLINK

This isthe offset of the next CDB representing the next device attached to

the logical device CONOUT: via the list beginning a8 @BH_COROOT. The
CDB_COLINK field of thelast CDB in thelist is set to O.

CDB_AOLINK

This isthe offset of the next CDB representing the next device attached to

the logical device AUXOUT: via the list beginning at @BH_AOROQT. The
CDB_AOLINK field of the last CDB in thelist is set to O.

CDB_LOLINK

This isthe offset of the next CDB representing the next device attached to

logical device LST: viathelist beginning at @BH_LOROOT. The CDB_LOLINK field
of thelast CDB in thelistis set to O.

CDB_INIT

This is the offset of theinitialization routine for this device. The

initialization routine is responsible for setting the protocol and baud rate,

if applicable, for this device, and performing any other necessary

initialization required. Thefirst time CDB_INIT is called, register DL is set

to 0 by the BIOS Kernel. The CDB_INIT routine must set the device to
correspond to the specifications in CDB_CURCHAR, CDB_RXB, CDB_TXB, and

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



CDB_CUROEM fields. CDB_INIT returns AX = 0 if thereis no error in setting the
device to these specifications, or it returns AX = OFFFFh if there is an

error. On entry, DS:BX specifies the address of the CDB for this device.
"Character Device Block (CDB) Routines' in this section supplies more complete
information on this and the following CDB routines.

CDB_INPUT
This isthe offset of the character input routine for this device. On entry,
DS:BX specifies the address of the CDB for this device.

CDB_INSTAT
This is the offset address of the character input status routine for this
device. On entry, DS:BX specifies the address of the CDB for this device.

CDB_OUTPUT
Thisis the offset address of the character output routine for this device. On
entry, DS:BX specifies the address of the CDB for this device.

CDB_OUTSTAT
This is the offset address of the character output status routine for this
device. On entry, DS:BX specifies the address of the CDB for this device.

CHARACTER DEVICE BLOCK (CDB) ROUTINES

The Character Device Block fields CDB_INIT, CDB_INPUT, CDB_INSTAT, CDB_OUTPUT,
and CDB_OUTSTAT are defined by the system implementor to be the offsets of the

routines that perform the functions indicated by the field names. Section 3

explains how the BIOS Kernel callsthese CDB routines. These five CDB

routines, along with the CDB itself, constitute a character 1/0O driver for one

device. Generdly, the CDB routines are not shared among different drivers

since they are usually specific to the physical device. Each of these fields

must be initialized with the offset of a valid routine, even if the routine

only performs a RET (Near Return instruction).

The CDB routines must follow certain conventions when a devicesis input only,
or output only. For example, thereis usually no input associated with a list
device. In this case, when a device is output only, the device's CDB_INPUT
routine is defined to return a null (0), and the CDB_INSTAT routine is defined

to return afalse status (AL=0). When a device isinput only, the CDB_OUTPUT
routine simply returns, and the CDB_OUTSTAT routine is defined to return a
true status (AL=0FFh).

Table 6-2. CDB__ Character 1/0 Routines

Format: Routine
Explanation

CDB_INIT

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



The CDB_INIT routine initializes the 1/0O hardware for the device. The BIOS
Kernel BIOSINIT routine calls the CDB_INIT routine for each CDB in the BIOS
Kernel Data Header. The DEVICE tility calls the Kernel IO_DEVINIT function,
which also calls CDB_INIT for a specific CDB. The DEVICE utility makes a
IO_DEVINIT cal after changing the protocol or baud of the device; in other
words, DEVICE makes the call when it changes any of the CDB fields
CDB_CURCHAR, CDB_CUROEM, CDB_TXB, or CDB_RXB.

If CDB_INIT is called and the device hardware cannot be set in accordance with
the latter CDB fields, CDB_INIT should return an error (AX=0FFFFh). An error
can occur if the baud selected is unsupported, or if there is a hardware

problem. When the CDB_TXB or CDB_RXB fields are set to values representing
unsupported bauds, CDB_INIT should leave the hardware baud setting unaltered,
and return an error. The DEVICE utility recognizes the error return, and
restores the original values of CDB_TXB and CDB_RXB.

The Kernel BIOSINIT routine setsregister DL to O before calling CDB_INIT, and

the Kernel 10_DEVINIT function setsDL to 1 before calling CDB_INIT. This

allows the CDB_INIT routine to distinguish the first initialization call from

subsequent ones. Any one-time initialization code, such as allocating flags

(using @BH_NEXTFLAG and @BH_LASTFLAG), should be skipped on all CDB_INIT
calls, except the first.

The register conventions between the BIOS Kernel and the CDB_INIT routines are
as follows:

Entry Registers: DL = O if first time initialization
DL = 1if not first time initialization
BX = offset of CDB
DS = SYSDAT (BIOS data segment)
ES = process environment

Exit Registers: AX = 0if no error
AX = OFFFFh if error
DS, ES preserved

CDB_INPUT

The CDB_INPUT routine for each character device reads a character from the
device or the input buffer at the request of the BIOS Kernel. Type-ahead
requires the use of an input buffer. (See "Character Input Interrupt” later in

this section.)

CDB_INPUT should return a null (0) when the device is output only. The most
significant (parity) bit of the character is preserved by the Kernel and the
BDOS, and if parity from this deviceis not desired, the CDB_INPUT routine
must mask it off.

The register conventions between the BIOS Kernel and the CDB_INPUT routines
are as follows:

Entry Registers. BX = offset of CDB

DS = SYSDAT (BIOS data segment)
ES = process environment

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



Exit Registers: AL = character
DS, ES preserved

CDB_INSTAT

The CDB_INSTAT routine for each character device returns the device input
status at the request of the BIOS Kernel. The CDB_INSTAT returns a true
(AL=0FFh) value if a character is ready from the device, or if any characters
are available from the device's input buffer.

CDB_INSTAT should return a false status (AL=0) when the device is output only.

The register conventions between the BIOS Kernel and the CDB_INSTAT routines
are the following:

Entry Registers: BX = offset of CDB
DS = SYSDAT (BIOS data segment)
ES = process environment

Exit Registers: AL = OFFh if character ready
AL = 0if character not ready
DS, ES preserved

CDB_OUTPUT

The CDB_OUTPUT routine for each character device sends a character to the
associated device at the request of the BIOS Kernel. CDB_OUTPUT should simply
return when the device isinput only. The most significant (parity) bit of the
character is preserved by the BIOS Kernel and the BDOS,; if parity cannot be

sent to this device, the CDB_OUTPUT routine must mask it off.

The register conventions between the BIOS Kernel and the CDB_OUTPUT routines
are the following:

Entry Registers. CL = character to send to device
BX = offset of CDB
DS = SYSDAT (BIOS data segment)
ES = process environment

Exit Registers: DS, ES preserved

CDB_OUTSTAT

The CDB_OUTSTAT routine for each character device returns the output status of
the associated device at the request of the BIOS Kernel. When output is
interrupt-driven, the output status is true (AL=0FFh) if there is space in the

output buffer. When the device is not ready, or in the interrupt-driven case

when there is no room in the output buffer, CDB_OUTSTAT returns a false status
(AL=0). The next subsection covers interrupt-driven character devicesin more
detail.

CDB_OUTSTAT returns a true status (AL=0FFh) when the device isinput only.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



The register conventions between the BIOS Kernel and the CDB_OUTSTAT routines
are as follows:

Entry Registers. BX = offset of CDB
DS = SYSDAT (BIOS data segment)
ES = process environment

Exit Registers: AL = OFFh if deviceis ready
AL = 0if not ready
DS, ES preserved

INTERRUPT-DRIVEN CHARACTER I/O

Either character input or character output can be interrupt-driven, or both
can be. Asdiscussed in Section 4, interrupt drivers are more efficient, and
allow several featuresto be present in CP/M-86 Plus that are not possible
with polling. Read Section 4 before reading this material.

Each interrupt-driven character 1/0 device typicaly makes use of two
character buffers, one for input, and one for output. The device input

interrupt service routine fills the input buffer, and processes calling the
CDB_INPUT routine to empty it. Processes calling the CDB_OUTPUT routine fill
the output buffer, and the device output interrupt service routine empties the

output buffer.

The process and the interrupt stop and start each other when a character or
buffer space is not available using ?WAITFLAG and INT_SETFLAG operations.

Each character interrupt service routine usually keeps a local variable
indicating if a flag set operation is necessary. This provides even more
efficient 1/0, and is discussed later in this section.

Character Input Interrupt (type-ahead)

A console input interrupt service routine, in conjuction with the CDB_INSTAT

and CDB_INPUT routines for a particular device, can implement type-ahead and
live keyboard. Listing 6-3 at the end of this subsection provides an example
implementation of a CDB_INSTAT routine, a CDB_INPUT routine, and a character
input interrupt service routine. These routines support type-ahead and live
keyboard, and are part of the CHARIO.AS8E6 file on the distribution disks.

A device using interrupt-driven input must have the CDB_IINPUT field set to

OFFh in its CDB. When this CDB is attached to the CONIN: logical device by

putting the offset of the CDB in @BH_CIROOQOT, the CDB_IINPUT valueis copied to

the @BH_INTCONIN field in the BIOS Kernel Data Header. The vaue in
@BH_INTCONIN informs the BDOS that console input is interrupt-driven. When
@BH_INTCONIN is OFFh, the BDOS does not make BIOS 10_CONST calls to check for
Ctrl-C, Citrl-S, Ctrl-Q, and Citrl-P.

When the deviceis attached to CONIN:, the device input interrupt service

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



routine must perform a CALLF (Cal Far instruction) to the INT_CHARSCAN
functions in the BDOS with every character received from the input device. An

interrupt service routine can determineif the CDB that represents the

interrupting deviceis attached to CONIN: by comparing the offset of the CDB

with @BH_CIROOT. Section 4 shows the register conventions for the INT_CHARSCAN
function.

In Listing 6-3, the input interrupt handler CRTO_INPUT _INT checks for a Ctrl-C
when the INT_CHARSCAN function returns register BL equal to 0, signifying the
character should be discarded. When this occurs, the Ctrl-C function was not
disabled by the C_MODE or C_RAWIO system calls (see the "Programmer's Guide"),
and the BDOS terminated the running program. In such instances, it is usually
desirable to discard the type-ahead buffer as shown in CRTO_INPUT _INT.

At system initialization, the BIOSINIT routine ensuresthat @BH_INTCONIN is

set in accordance with the CDB addressed by @BH_CIROQOT. Generally, the DEVICE
utility isthe only way the logical assignments can be subsequently changed.

When DEVICE removes or replaces CDBs from @BH_CIROQT, it updates the
@BH_INTCONIN field in the BIOS Kernel Data Header.

The input buffer shared by the CDB_INPUT routine and the interrupt service
routine must be protected from simultaneous access. In Listing 6-3, interrupts

are disabled in the CRTO_INPUT routine when a process tests for and removes
characters in the buffer. (CRTO_INPUT isin the CDB_INPUT routine for CDBA.)
Interrupts are enabled in the interrupt service routine, sincethe @BH_ININT

(in interrupt count) guarantees a process cannot execute until the interrupt

service routine is complete. If you do not reenable interrupts in any of the
interrupt service routines within the BIOS, the @BH_ININT byte does not need

to be used.

The CDB_INPUT and the interrupt service routines should keep alocal variable

to indicate whether the interrupt routine needs to perform a CALLF (Call Far
instruction) to INT_SETFLAG in the BDOS. When the CDB_INPUT routine finds no
input charactersin the buffer, it setsthe local variable, then performs a

CALL (Call Near instruction) to ?WAITFLAG in the BIOS Kernel. The interrupt
service routine checks this variable, and performsa CALLF to INT_SETFLAG if a
PWAITFLAG is being or has been executed. Thus, a CALLF INT_SETFLAG is executed
only when necessary. (Section 4 shows the register conventions for the BDOS
INT_SETFLAG function.)

In Listing 6-3, this "flag waiting" variable is kept in the character buffer
structure, along with the character count and pointers into buffer. The
CDB_INPUT routine must check for charactersin the buffer, and set the "flag
waiting" variable with interrupts off.

In Listing 6-3, when the interrupt routine finds there is no more roomin the
input buffer (the type-ahead buffer isfull), characters are not saved, and
are lost. If desired, the user can be notified of thisviaa light on the
keyboard, a message on a screen status line, or by a bell tone.

Listing 6-3 assumes the @CDBA definition from Listing 6-2. An input buffer
structure is also defined in this example. Equates for this structure begin

with the letters "BUF_". The BUF_FLAGNO field isthe system flag used for
PWAITFLAG and INT_SETFLAG operations, and is assumed to have been previously

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



allocated and set by the first call to the CDBA_INIT routine for this device.

The SYSDAT.LIB file contains equatesfor the INT_SETFLAG and INT_CHARSCAN
functions. The hardware equates for the CompuPro port addresses and
programmable interrupt controller (PIC) can be found in the PIC.LIB and the
CHARIO.A8G6 files.

Listing 6-3. Buffered Interrupt-driven Character Input

; The following equates define a buffer descriptor used to manage
; circular input and output buffers. The buffer size must be a power of 2,
; since the next buffer position is calculated with an AND instruction.

BUF_LEN equ 256 ;use immediate value
; for efficiency

BUF FLAGN equ byteptr0 ;system flag number to use

BUF_ FWAIT  egqu byteptrl ;OFFhif processisflag waiting
BUF COUNT equ wordptr2 ;charsin buffer

BUF CHAROUT equ wordptr4 ;number of next char to take out
BUF BUFFER equ Dbyteptr6 ;first byte of buffer

CSEG
extrn ?waitflag:near ;routine in Kernel
extrn @sysdat:word ;in Kernel code segment

crtO_instat: ;Input status routine for the CRTO device

: Entry: BX = CDB address

: Exit: AL = OFFh if character ready
; = 0if no character ready

; BX = input buffer offset

mov bx,offset in_buf _desc  ;set BX to input buffer for
XOr ax,ax ; this device
cmp ax,BUF_COUNT[bx] ;is buffer empty?
jecis_empty
dec ax
cis_empty:
ret

crtO_input:  ;character input routine for the CRTO device

; Entry: BX = CDB address
: Exit: AL = character
: BX = input buffer offset

cli ;disable CPU interrupts
call crtO_instat ;is there a char in the buffer?
test a,al ! jnz ci_ready ;if not then wait on flag
mov BUF_FWAIT[bx],0FFh ;request CALLF INT_SETFLAG

i ;from interrupt
mov dl,BUF_FLAGN[BX] ;flag number for this input device
call ?waitflag

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



jmps crtO_input ;test status again to be sure
Ci_ready: ;get char out of buffer
mov si,BUF_CHAROUT[bx] ;offset in buffer of next out char
mov a,BUF BUFFER[bx+s] ;get the next character
incsi ! and si,BUF LEN-1  ;back to Oif past end of buffer
mov BUF_CHAROUT[bx],s ;update next number of next char out
dec BUF_COUNT][bx] ;one less char in buffer
i ;enable CPU interrupts
ret

crtO_input_int: ;Input interrupt service routine for the CRTO device

; Entry: 1P,CS,CPU FLAGS on stack, interrupts off
X Exit: all registers preserved

push ds! mov ds,@sysdat ;save DS on process stack

inc @bh_inint ;stop dispatches
mov crt0_in_ss,ss ;switch stacks
mov crt0_in_sp,sp
mov ss,@sysdat ;DS and SS = BIOS data segment
mov sp,offset crtO_in_tos
sti ;enable interrupts
push ax ! push bx ;save registers that will be altered
ina,SS STATUS ;check status again to ensure
test a,SS RECV_READY ;Character ready
jz cii_done
ina,SS DATA ;get the character
cmp @bh_ciroot,offset @cdba
jnecii_save char ;is this the CONIN: device?
calf INT_CHARSCAN ;yes - let the BDOS check the char
test bl,bl ;if BL=0 don't save the char
jnz cii_save char
cmp a,CTRL_C ;if char isa control-C
jnecii_done ;discard type ahead buffer

mov in_buf_desc+BUF_COUNT,0
jmps cii_done
Cii_save _char:
mov bx,offset in_buf_desc ;put char in buffer if not full
push cx ! mov cx,BUF_COUNT[bx]
cmp cx,BUF_LEN ! jae cii_full ;if buffers full ignore char

push s
mov si,BUF_CHAROUT[bx] ;find next free byte
add si,cx ;in the buffer
and s, BUF _LEN-1 ;back to O if past end of buffer
mov BUF_BUFFER[si+bx],a ;store char
inc cx ;bump char counter
mov BUF_COUNT[bx],cx
pop s
cii_full:
cmp BUF_FWAIT[bx],0FFh ;IS a process waiting on flag ?
jnecii_donel
mov BUF_FWAIT[bx],0 ;yes - set the flag
push dx (?SETFLAG aters AX,BX,CX,DX

mov dl,BUF_FLAGN[bx] ;DL=flag for this input device

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



calf int_setflag
pop dx
Cii_donel:
pop €X

cii_done:
pop bx
cli ;reset the PIC's
mov a,NS_EOI
out MASTER_PIC_PORT,d :PIC ports for Compupro
out SLAVE_PIC _PORT,d
pop ax
mov ss,crt0_in_ss
mov sp,crt0_in_sp

dec @bh_inint Aif in interrupt count
jnz cii_exit ;is 0 then dispatch
jmpf int_dispatch
cii_exit:
pop ds ;otherwise return to the
iret ;previous interrupt service routine
DSEG
extrn @bh_inint:byte ;ininterrupt count in BIOS

;Kernel Data Header
; console input interrupt stack area

ctOinsp rw 1

ctOinss rw 1
rw 32

ctOintos rw O

inbuf_ desc rb 1 ;flag number - set by CDB_INIT
do O ;"flag waiting" variable
dw O :number of charsin buffer
dw O :next char to take out of buffer

b BUF LEN ;buffer

Character Output Interrupt

Interrupt character output consists of a CDB_OUTPUT routine putting characters
into a buffer, and an interrupt service routine taking them out and sending
them to the device. Listing 6-4 at the end of this subsection shows an example
implementation of buffered interrupt-driven character output. It is also found

in the CHARIO.A8G file on the distribution disks.

In Listing 6-4, when the CRTO_OUTPUT routine is first executed, a character is

sent directly to the device. (CRTO_OUTPUT isthe CDB_OUTPUT routine for CDBA.)
During the time the deviceissending the character, processes calling
CRTO_OUTPUT fill the output buffer for the device. The device generates an
interrupt when it is ready to send another character. The interrupt service

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



routine takes a character out of the output buffer, and sends it to the

device. The last interrupt generated from the device finds nothing in the
buffer, and output stops. The next character sent to CRTO_OUTPUT goes directly
to the device, starting the sequence over again.

The CDB_OUTPUT routine must call ?WAITFLAG when thereis no room in the
buffer. The interrupt service routine executes a CALLF INT_SETFLAG to the BDOS
when a process is "flag waiting" and thereis at least one space for a

character in the buffer. Characters cannot be lost on output; thus, the

program generating output characters must wait until buffer space is

available.

Using alocal variable to record whether a processis waiting on a flag (or on

the way to waiting) makes console output more efficient. Note that interrupts

on the CPU are disabled in the CRTO_OUTPUT routine when testing the state of

the buffer and the device ready status, before deciding if the character goes

to the device or into the buffer. Interrupts are enabled in the interrupt

service routine CRTO_OUTPUT_INT, shown in Listing 6-4, since the @BH_ININT (in
interrupt count) guarantees a process cannot execute until the interrupt

service routine is complete. If you do not reenable interrupts in any of

interrupt service routines within the BIOS, the @BH_ININT byte does not need

to be used.

The interrupt service routine can further be "tuned" for performance by
changing the buffer size, and by not making the CALLF to INT_SETFLAG until
more of the output buffer isempty. The CRTO_OUTPUT _INT interrupt service
routine waits for half of the buffer to empty before performing the CALLF to
INT_SETFLAG.

The CDB defined in Listing 6-2 isassumed in Listing 6-4. An output buffer

structure is also defined in this example. Equates for this structure begin

with the letters "BUF_". The BUF_FLAGNO field isthe system flag used for
PWAITFLAG and INT_SETFLAG operations, and is assumed to have been previously
allocated and set by the first call to the CDBA_INIT routine for this device.

The SYSDAT.LIB file contains equates for the INT_SETFLAG and INT_CHARSCAN
functions. The hardware equates for the CompuPro port addresses and
programmable interrupt controller (PIC) can be found in the PIC.LIB and the
CHARIO.A8G6 files.

Listing 6-4. Buffered Interrupt-driven Character Output

; The following equates define a buffer descriptor used to manage
; circular input and output buffers. The buffer size must be a power of 2,
; since the next buffer position is calculated with an AND instruction.

BUF_LEN equ 256 ;use immediate value
; for efficiency

BUF_FLAGN equ byteptr0 ;system flag number to use

BUF FWAIT  equ byteptrl ;OFFhif processisflag waiting
BUF COUNT equ wordptr2 ;charsin buffer

BUF CHAROUT equ wordptr4 ;number of next char to take out
BUF BUFFER equ Dbyteptr6 ;first byte of buffer

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



CSEG

extrn ?waitflag:near ;routine in Kernel
extrn @sysdat:word ;in Kernel code segment

crtO_outstat: ;character output routine for CRTO device

; Entry: BX = CDB address

: Exit: AL = OFFh if character ready
; = 00h if character not ready

; BX = offset of output buffer

mov bx,offset out_buf_desc  ;get offset of output buffer

XOr ax,ax
cmp BUF_COUNT[bx],BUF_LEN ;compare char count with size of buffer
jae cos_full ;is buffer full?
dec ax ;N0 - return ready
cos full:
ret

crtO_output:  ;character output routine for CRTO device
; Entry: CL = character
; BX = CDB address

X Exit: None

push cx ;save char to output
co_stat:

cli

call crtO_outstat ;call output status

testal,a ! jnzco ready  ;check space in buffer
mov BUF_FWAIT[bx],0FFh ;request CALLF INT_SETFLAG

sti

mov dl,BUF_FLAGN[bx] ;from interrupt

call ?waitflag

jmps co_stat ;:check status again to be sure

co_ready:

cmp BUF_COUNT[bx],0 ;is buffer empty and
jne co_putchar

ina,SS STATUS ;device ready?

test al,SS TRANS READY
jz co_putchar

pop ax ;AL = char to output
out SS DATA,d ;yes - send directly to device
jmps co_ret
co_putchar:
pop ax ;AL = char to output
mov s,BUF_CHAROUT[bx] ;put char in buffer
add si,BUF_COUNTI[bx] ;next free buffer space
and si,BUF_LEN-1 ;back to O if past end of buffer
mov BUF _BUFFER][si+bx],a ;store char
inc BUF_COUNT][bx] ;bump char counter
CO_ret:
sti ;enable CPU interrupts

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



ret

crtO_output_int: ;Output interrupt service routine for CRTO device

; Entry: IP,CS,CPU flags on stack, interrupts off
X Exit: all registers preserved

push ds! mov ds,@sysdat ;save DS on process stack

inc @bh_inint
mov crt0_out_ss,ss ;switch stacks
mov crtO_out_sp,sp
mov ss,@sysdat ;DS and SS = BIOS data segment
mov sp,offset crtO_out_tos
sti ;enable interrupts
push ax ! push bx ;save on local stack
mov bx,offset out_buf desc
ina,SS STATUS ;ensure hardware is ready
test a,SS TRANS READY
jz coi_done
cmp BUF_COUNT[bx],0 ;any charsin the buffer?
jecoi_done
push s

mov si,BUF CHAROUT[bx] ;get character out of buffer
mov a ,BUF_BUFFER[bx+si]

out SS DATA a ;Compupro data port

incs ;if past end of buffer go back to 0

and si,BUF_LEN-1

mov BUF_CHAROUT[bx],s  ;update next char out

dec BUF_COUNT][bx] ;one less char in buffer
pop si
cmp BUF_FWAIT[bx],0FFh ;if processis flag waiting
jne coi_done ;and buffer is half empty
cmp BUF_COUNT[bx],BUF_LEN/2
jacoi_done

mov BUF_FWAIT[bx],0

push cx ! push dx ;?SETFLAG dters AX,BX,CX,DX
mov d,BUF_FLAGN[bx] ;then settheflag

callf int_setflag ;al AX,BX aready saved

pop dx ! pop cx

coi_done:
pop bx
cli ;reset the PIC's
mov a,NS_EOI ;signal non-specific end of interrupt
out MASTER_PIC PORT,a ;PIC ports on Compupro
out SLAVE_PIC_PORT .
pop ax
mov ss,crt0_out_ss ;restore stack
mov sp,crtO_out_sp
dec @bh_inint ;reset interrupt count
pop ds
iret
DSEG

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



extrn @bh_inint:byte ;ininterrupt count in BIOS
;Kernel Data Header

; console output interrupt stack area

ctOout sp rw 1

ctOoutss rw 1
rw 32

crtO out tos rw O

out buf desc rb 1 ;flag number - set by CDB_INIT
do O ;"flag waiting" variable
dw O ;number of charsin buffer
dw O ;next char to take out of buffer

ro  BUF_LEN ;buffer

CHARACTER I/O ERROR MESSAGES

The BIOS Kernel and the BDOS define an error return only from the CDB_INIT
routines. The BIOS must handle all other character I/O errorsit encounters.

You can display error messages, and also ask the user what action should be
taken. Usually, the choicesgiven to the user are Retrying the operation

again, Ignoring the error, or Aborting the program causing the error. The
P_TERM system call can be made to terminate the program upon encountering an
error. However, an error detected by an interrupt service routine cannot abort

the running program. A status line, if available, is a preferable location to

display errors, causing fewer conflicts with screen-oriented applications.

If you display error messages on the main part of the console, you should

check the File System Error Mode for the process encountering the character

I/O error. If the Return Error Mode is set, it can be assumed that the
application does not want the screen atered, and you should display messages
only for catastrophic errors. The "Programmer's Guide" describes the File
System Error Mode, which is set by the F ERRMODE system call. The File System
Error Mode is a byte located at byte 46h relative to the process environment
segment. The process environment segment is in register ES on entry to all of

the CHARIO CDB routines. The currently running process environment segment is
also found in the word location at offset 04Eh relative to the SY SDAT segment.
(See Appendix C.) If the process's File System Error Mode byte is equa to
OFFh, the processisin Return Error Mode, and most error messages should not

be displayed.

EOF

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Gui de/ CPM PIG6. TX T[ 2/6/2012 4:40:27 PM]



CPMPIG7TWHA (= "CP/M-86 Plus Installation Guide", section 7)

(Edited by Emmanuel ROCHE.)

Section 7: BIOS Disk 1/0O

This section covers customization of the disk 1/0 routines in the CP/M-86 Plus
BIOS. The materia in this section is separated into four subsectionsin the
order needed for implementation.

The first subsection presents the information to implement the basic disk 1/0
routines. The second subsection describes enhancements to these routines for
multiple logical disks sharing the same physical disk, for automatic density
and side selection, for detection of media changes, for skewed-format disks,
and for memory disk implementations. The third subsection covers the data
structures the BDOS uses for disk 1/0 buffering. Last is a short discussion of
BIOS disk I/O error messages.

Because GENCPM automatically generates the disk 1/0 buffering data structures,
they are a supplementary topic. However, understanding these data structures

is helpful when tuning disk I/O performance by using differing numbers of data
and directory buffers.

BASIC DISK I/O

A CP/M-86 Plus disk driver isacombination of code routines and data
structures you write and define. Each drive has four code routinesto perform
disk initialization, type of media determination, disk reads, and disk writes.
The parameters to the disk read and write routines are passed to the BIOS on
the stack, and are accessed using the 10 Parameter Block. The Disk Parameter
Block (DPB) data structure describes the physical characteristics of a drive,
and the Disk Parameter Header (DPH) data structure represents each of the
logical drives A-P, implemented in the system.

The CP/M-86 Plus disk organization is discussed first, sinceit is affected by
the DPB definition.

Disk Organization

A CP/M-86 disk isdivided into at least two, and often three, areas. The first

N tracks can be reserved for the disk boot loader and CPMLDR, which read the
CPMP.SY S file into memory. These tracks are called the boot tracks. This area
is optional, and is needed only if the disk boots the system. For example, a
hard disk not used for boot operations has no boot tracks.

The second area isthe directory, and starts immediately after the boot
tracks. The directory area keeps the names, the disk data areas, time and date

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



stamps, and attributes of files. It also keeps the directory label for the
disk. You define the size of the directory area, which becomes static after
system boot. The directory size limits the number of files that can be created
on a specific drive. However, the larger the directory, the smaller the data
region that can be allocated to files.

The third areais the data region. This area contains the data allocated to
files and all unallocated disk space.

Figure 7-1 illustrates the organization of a CP/M-86 Plus disk:

Track M --> +--nmmmmmmme oo +
I |
| Data Region |
| |
Data Tracks =~ +-----------mmmmmmmmeoeee +

I |
| Directory Region |

Track N --> +---oommmmmmcoo e +
I I
Optional | CPMLDR |
Boot Tracks | |
| Boot Loader |
I I
Track 0 --> 4 ---mmmmmmmmemeee +

Figure 7-1. CP/M-86 Plus Disk Organization

In Figure 7-1, thefirst N tracks are the boot tracks; CP/M-86 Plus uses the
remaining tracks, the data tracks, for file directory and file data storage.

Note that eight-inch, single-density, IBM 3740-formatted disks should have two
boot tracks and a sector skewing of six to be compatible with other machines
running CP/M with eight-inch, single-density drives. All CP/M-86 Plus disk
accesses after system boot are directed to the data tracks of the disk.

Disk Parameter Block (DPB)

The physical characteristics of a drive are available to the BDOS via the Disk
Parameter Block. Each different type of drive has a separate DPB, while
physical drives with the same characteristics can share DPBs. For instance,
systems with physically identical floppy drives can share the same DPB. Drives
supporting different media typesusually require one DPB per media type
supported. The BDOS never changes any of the fields in the DPB, using it only
as an information structure.

Listing 7-1, contained in the file DISK.LIB on the distribution disks, defines
the DPB format.

Listing 7-1. Disk Parameter Block Format

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



rkkkkkhkkhkkkhkkhhkkkhhkkkhhkhhkhkkhhkkhhkkhkhkkhkhkkhkhkkhkhhkhkkhhkhkkhhkhkkhkhkkhkkkkx*%x
1

Disk Parameter Block Equates

;*******************************************************
: S R—— S R—— S R—— S R—— S R—— S R—— S R—— S R—— +

: 00h | SPT |BSH|BLM|EXM| DSM | DRM..

Fomne- Fomne- Fomne- Fomne- Fomne- Fomne- Fomne- Fomne- +

: 08h .DRM |ALO|AL1| CKS | OFF |PSH |

S R—— S R—— S R—— S R—— S R—— S R—— S R—— S R—— +

: 10h | PHM |

DPB_SPT equ word ptr O
DPB BSH equ byte ptr 2
DPB_BLM equ byteptr3
DPB_EXM equ byteptr4
DPB_DSM equ word ptr 5
DPB_DRM equ word ptr 7
DPB_ALO equ byteptr9
DPB ALl equ byte ptr 10
DPB_CKS equ word ptr 11
DPB_OFF equ word ptr 13
DPB_PSH equ byteptr 15
DPB_PHM equ byte ptr 16

Listing 7-2 isan example DPB definition from the DISKIO.A86 for a single-
sided, single-density, eight-inch disk. (The SIDSM symbol in the listing is
defined in the DISKI10.A86 file as the number of allocation blocks on a single-
sided, single-density disk.)

Listing 7-2. Disk Parameter Block Definition

; 1944: 128 Byte Record Capacity

; 243: Kilobyte Drive Capacity

; 64: 32 Byte Directory Entries

; 64: Checked Directory Entries

; 128: 128 Byte Records/ Directory Entry
; 8: 128 Byte Records / Block

; 8: 128 Byte Records/ Track

X 2. Reserved Tracks

dpbsL: ;single-density, single-sided
dw 26 ;sectors per track
do 3 ;block shift
do 7 ;block mask
do O ;extent mask

dw SIDSM-1 ;disksize-1

dw 64-1 ;directory size- 1

db  1100$0000b ;allocO - 2 directory blocks
db  0000$0000b ;allocl

dw 8010h  ;checksum size- 64/4

dw 2 ;offset by 2 tracks

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



do O ;physical sector shift
do O ;physical sector mask

Table 7-1 describes each field of the Disk Parameter Block. Appendix D
includes a worksheet to help you calculate the DPB values.

Table 7-1. Disk Parameter Block Data Fields

Format: Data Field
Explanation

DPB_SPT  [Sectors per track]

The number of sectors per track equals the total number of physical sectors

per track. Physical sector sizeis defined by DPB_PSH and DPB_PHM, which are
described later in this table.

DBP_BSH [Allocation block shift factor]

This valueis used by the BDOS to calculate a block number, given a logical
record number, by shifting the record number DPB_BSH bits to the right.
(Logical records are 128 byteslong as defined by the file-related system
calls) DPB_BSH is determined by the allocation block size chosen for the disk
drive.

DPB_BLM [Allocation block mask]

This valueis used by the BDOS to calculate a logical record offset within a

given block by masking the logical record number with DPB_BLM. The DPB_BLM is
determined by the allocation block size.

The alocation block size is the minimum allocation unit for file 1/0 under
CP/M-86 Plus. Larger block sizes waste more space at the end of a sequential
file and throughout a random file. But larger block sizes require less
directory space to represent large files, and allow for quicker accessto the
file's data records. The available allocation block sizes are shown below,
along with the corresponding DPB_BSH and DPB_BLM values

Block Sze DPB_BSH DPB_BLM

1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63
16,384 7 127

DPB_EXM [Extent mask]

The extent mask determines the maximum number of 16 Kbyte logical extents that
is contained in a single directory entry. It is determined by the allocation

block size and the number of allocation blocks the drive contains, as shown in

the following information. Note that you cannot have a block size of 1 Kbyte

on a disk containing 256 or more blocks, since one directory entry would only
represent 8 Kbytes, and not an entire extent. In this latter case, you must

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



use a larger block size.

Block If Number of If Number of
Size Blocks < 256, Blocks>= 256,
then DPB_EXM = then DPB_EXM =

1,024 0 Invalid
2,048 1 0
4,096 3 1
8,192 7 3
16,384 15 7

DPB_DSM [Disk storage maximum]

The disk storage maximum defines the total formatted storage capacity of the
disk drive, expressed in alocation blocks. This equals the total number of
allocation blocksfor the drive, minus 1. DPB_DSM must be less than or equal
to 7FFFh.

DPB_DRM [Directory maximum]

The directory maximum defines the total number of directory entries on this
drive. Allocation blocks are reserved for the directory by the DPB_ALO and
DPB_AL1 fields discussed below. DPB_DRM isthetotal number of directory
entries that can be kept in the allocation blocks reserved for the directory,

minus 1. Each directory entry is 32 bytes long. The following table shows the
number of directory entries for one allocation block and for 16 blocks using

the available block sizes.

Directory Directory
Block  Entries Entries
Size PerBlock Per 16 Blocks

1,024 32 512
2,048 64 1024
4,09 128 2048
8,192 256 4096
16,384 512 8192

Choose directory size carefully. Once CP/M-86 Plus writes on disks, the
directory size cannot be changed, though the disk can be copied to another
disk with a larger directory.

DPB_ALO, DPB_AL1 [Directory allocation vector]

DPB_ALO and DPB_AL1 reserve from 1 to 16 allocation blocks for the directory.
The directory is contiguous starting with block 0. The directory allocation

vector is a bit map with each bit representing an allocation block being used

for the directory. Table D-4in Appendix D shows the legal valuesof DPB_ALO
and DPB_AL1, based on the number of alocation blocks desired for the
directory.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



DPB_CKS  [Checksum vector size]

A checksum vector is required for removable media, in order to ensure the data
integrity of the disk system. The lower order 15 bits of DPB_CKS determine the
length of the directory checksum vector addressed by the Disk Parameter Header
(see the next subsection). These 15 bits also determine the number of
directory entries the BDOS will checksum when a driveis"logged in". (The
process of logging in a driveis discussed in "Detecting Media Changes" latter

in this section, and under "Drive Status' in Section 3 of the "Programmer's
Guide"). Each byte of the checksum vector is the checksum of 4 directory
entries.

The high-order bit, when set inthe DPB_CKS field, indicates a drive
containing permanent or nonremovable media. Ensuring data integrity on
permanent media drives requires fewer directory accesses, and allows the
buffering of more datain memory, requiring fewer disk writes. The result is

that permanent media drives can get up to 30% better performance than
removable media drives. Typically, hard disk systems have the DPB_CKS value of
8000h, indicating no checksumming and permanent media.

In systems that can detect the door open for removable media drives,
checksumming is only done when the DPH_DOPEN byte in the DPH is set to OFFh,
indicating that the drive door has been opened. The driveisthus treated as a
permanent media drive until the drive door is opened. The high-order bit in
DPB_CKS issetin this case, and the low-order 15 bits reflect the required
checksum vector size. "Detecting Media Changes' later in this section covers

this topic in more detail.

DPB_OFF  [Track offset]

The track offset is the number of boot tracks at the beginning of the disk.
DPB_OFF is equa to the track number on which the directory starts. Using this
field, more than one logical disk drive can be mapped onto a single physical
drive. See "Multiple Logical Drives' later in this section for more
information.

DPB_PSH [Physical record shift factor]

The physical record shift factor is used by the BDOS to calculate the physical
sector from the logical record number. The logical record number is shifted
the number of DPB_PSH bits to the right to calculate the physical record.
(Logical records are 128 byteslong as defined by the file-related system
calls)

DPB_PHM [Physical record mask]

The physical record mask is used by the BDOS to calculate the logical record
offset within a physical sector by masking the logical record number with the
DPB_PHM value. The following table shows the DPB.

Physical
Sector Size DPB PSH DPB _PHM

128 0 0
256 1 1

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



512 2 3
1024 3 7
2048 4 15
4096 5 31

Disk Parameter Header (DPH)

The drivetable in the BIOS Kernel Data Header (@BH_DRIVETABLE) contains 16
words, which correspond with the logical drive letters A-P. These words

contain offsets of Disk Parameter Headers, or a O value if the drive is not

supported. The BDOS uses the DPHs to access all the other data structures

related to a particular drive. Each DPH must be unique; two logical drives

cannot share the same DPH.

Listing 7-3 shows the format of the DPH, and is part of the file DISK.LIB on
the distribution disks.

Listing 7-3. Disk Parameter Header Format

skkkkkkhkkkkhhkkkhhkkhkkhhkhkkhhkhkkhhkhkkhhkkhkhkkhkhhkhkkhhkhkkhhkhkkhhkkhhkhkkhkkkikkkkx*
’

; Disk Parameter Header Equates

1
skkkkkkhkkkkhhkkkhhkkhkkhhkhkkhhkhkkhhkhkkhhkkhkhkkhkhhkhkhhkhkhhkhkkhhkhkkhkkhkkhkkkikkkkx*
’

: ome- ome- ome- ome- ome- S S S S +

: 00h | XLT | SCRATCH |DOPEN| SCRATCH |

; omne- omne- omne- omne- omne- S N S N S +

:08h| DPB | CSV | ALV | DIRBCB |

: ome- ome- ome- ome- ome- S S S S +

: 10h | DATBCB | HSHTBL | INIT | LOGIN |

; omne- omne- omne- omne- omne- S N S N S +

: 18h | READ | WRITE |UNIT |CHNNL |[NFLAGS]
ome- ome- ome- ome- ome- S S +

DPH_XLT equ wordptr O
DPH_DOPEN equ byteptr5
DPH_DPB equ word ptr 8
DPH_CSV equ word ptr 10
DPH_ALV equ word ptr 12
DPH DIRBCB equ word ptr 14
DPH DATBCB equ word ptr 16
DPH_HSHTBL equ word ptr 18
DPH_INIT equ word ptr 20
DPH_LOGIN equ word ptr 22
DPH_READ equ word ptr 24
DPH_ WRITE equ word ptr 26
DPH_UNIT equ byte ptr 28
DPH_CHNNL equ byte ptr 29
DPH NFLAGS equ byteptr 30

Listing 7-4 shows an example DPH definition from the DISKIO.A86 file on the

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



distribution disks. The symbols XLTD3 and DPBD6 define the offsets of the
trangdlation table and the DPB. The symbols beginning with FD__ are the offsets
of the disk I/O routines for the logical drive represented by this DPH.

Listing 7-4. Disk Parameter Header Definition
; floppy disk O

@dpha dw  xltd3 ;trandate table
do 0,00 ;Scratch area
do O ;door open flag
do 0,0 ;scratch area
dw  dpbd6 ;disk parameter table
dw  OFFFFh ;checksum
dw OFFFFh ;allocation vector
dw  OFFFFh ;directory bcb
dw  OFFFFh ;data bcb
dw  OFFFFh ;hash table
dw fd_ init ;init routine
dw fd_login ;login routine
dw fd read ;read routine
dw fd write  ;writeroutine

d O :unit
d O :channel O
do 1 ;one flag used

Table 7-2 describes the fields in the DPH:
Table 7-2. Disk Parameter Header Data Fields

Format: Data Field
Explanation

DPH_XLT [Trandlation table address]

The trandation table address defines a vector for logical-to-physical sector
trandation. If there isno sector translation (the physical and logical
sector numbers are the same), set DPH_XLT to 0. Disk drives with identical
sector skew factors can share the same trandation tables. This addressis not
referenced by the BDOS, and isonly intended for use by the disk driver
routines. Usually, the trandation table contains one byte per physical
sector. If the disk has morethan 256 sectors per track, the sector
trandation must consist of two bytes per physical sector. It is advisable,
therefore, to keep the number of physical sectors per logical track to a
reasonably small value, to keep the translation table from becoming too large.

SCRATCH [Scratch area)

The 5 bytes of zeroes are a scratch area which the BDOS uses to maintain
various parameters associated with the drive. They must be initialized to 0 by
the INIT routine or the load image.

DPH_DOPEN  [Door open flag]

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



If the BIOS can detect that the drive door has been opened, it can set this

flag to OFFh when it detects that the operator has opened the door. It must

also set the global door open flag, @BH_GDOPEN in the BIOS Header, to OFFh at
the sametime. If @BH_GDOPEN is set to OFFh, the BDOS then checks for a media
change before performing the next file operation on that drive. The BDOS

resets the @BH_GDOPEN flag when checked, as well asany of the DPH_DOPEN
fields checked. Note that the BDOS checks this flag only when a file-related

system call isinitiated within the BDOS. DPH_DOPEN is not checked again until
the next file-related system call is made. Usually, this flag isonly useful

in systems that support door-open interrupts. If the BDOS determines that the

drive contains a new disk, the BDOS relogs-in the drive, and resets the
DPH_DOPEN field to 0.

Note: If adoor open interrupt is available, using this flag improves disk
performance by as much as 30%, making the BDOS treat a removable-media drive
similar to a permanent drive. See the description of the DPB_CKS field in

Table 7-1.

DPH_DPB [Disk parameter block address]
The DPH_DPB field contains the addressof a Disk Parameter Block that
describes the characteristics of the disk drive.

DPH_CSV

This field contains the offset of the checksum vector, a scratchpad area that

the system uses for checksumming the directory to detect a media change. This
address must be different for each Disk Parameter Header. One byte must be in
the checksum vector (CSV) for every four directory entries (or 128 bytes of
directory). In short, Length(CSV) = (DPB_DRM/4)+1 (seethe DPB Worksheet in
Appendix D). If DPB_CKS in the DPB is 0 or 8000h, no checksum area is used,
and DPH_CSV can be 0. Values for DPB_DRM and DPB_CKS are dso calculated as
part of the DPB Worksheet. If this field isinitialized to OFFFFh, GENCPM
automatically creates the appropriate checksum vector structure within SY SDAT,
and initializes the DPH_CSV field.

DPH_ALV

This field contains the offset of the Allocation Vector (ALV). The BDOS uses
the ALYV to track disk-storage allocation information. The allocation vector
must be different for each DPH. The allocation vector is actually two separate
vectors. One vector reflects the allocated blocks as recorded in the drive's
directory; the second vector records the currently allocated blocks not yet
recorded in drive's directory. Each vector contains one bit per each
allocation block on the disk, rounded up to the nearest byte. The length of

the ALV is double the length of one of these allocation vectors, or the
Length(ALV) = (DPB_DSM/4)+2. Calculate the value of DPB_DSM as part of the DPB
Worksheet provided in Appendix D. If thisfield is initialized to OFFFFh,
GENCPM automatically creates the appropriate data structures in the SY SDAT.

DPH_DIRBCB
This field contains the offset of the Directory Buffer Control Block (DIRBCB)
Header. The DIRBCB Header contains the offset of the first of the linked

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



Directory Buffer Control Blocks for this drive. (See "Disk I/O Buffering”

later in this section.) The BDOS uses directory buffers for all accesses of

the disk directory. Severa DPHSs can refer to the same DIRBCB Header, or each
DPH can reference a different DIRBCB Header. If this field is OFFFFh, GENCPM
initializes the DPH_DIRBCB field, and automatically creates the DIRBCB Header,
the DIRBCBS, and the Directory Buffersfor the drive, within SY SDAT.

DPH_DATBCB

This field contains the offset of the Data Buffer Control Block Header
(DATBCB) Address. The DATBCB Header contains the offset of the linked data
buffers for this drive. (See "Disk I/O Buffering" later in this section.) If

the physical sector size of the media associated with a DPH is 128 bytes, the
DATBCB field of the DPH can be set to 0000h and no data buffers are allocated.

If this field is OFFFFh, GENCPM initializes the DPH_DATBCB field,
automatically creates the DATBCB Header and DATBCBs within SYSDAT, and
allocates space for the Data Buffers.

DPH_HSHTBL

This field contains the paragraph address of the optional directory hash table
(HSHTBL) associated with a logical drive. The BDOS assumes that the hash table
offset address to be 0. If you decide not to use directory hashing to save
memory space, set DPH HSHTBL to 0. However, including a hash table
dramatically improves disk performance. Each DPH using hashing must reference
a unique hash table. If ahash table is desired, length(hash_table) =
4*(DPB_DRM+1) bytes, where DPB_DRM = length of the directory - 1. Each entry
in the hash table must contain four bytes for each directory entry of the

disk. If this field is OFFFFh, GENCPM initializes DPH_HSHTBL, and
automatically creates the appropriate hash table.

DPH_INIT

This isthe offset of the first-time initialization code for the drive. The

BIOSINIT routine in the BIOSKRNL module calls each DPH's DPH_INIT routine
during system initialization. DPH_INIT can perform any necessary hardware
initialization, such as setting up the controller and interrupt vectors, if

any. Upon entry, register BX contains the offset of the DPH for this drive.

DPH_LOGIN

This isthe offset of the login routine for the drive. The DPH_LOGIN routine
is called before the BDOS reads the directory for the first time to log in the
drive. The BDOS logs in a drive by reading the directory and computing the
drive free space and other values. If the information is available through the
hardware, DPH_L OGIN allows the automatic determination of the media type.

DPH_READ

This isthe offset of the sector read routine for the drive. When the DPH_READ
routine is called, the base address of the IOPB (see "IOPB Data Structure"
after thistable) is contained in register BP. The parameters necessary for

the read operation are al contained in the IOPB.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



DPH _WRITE

This is the offset of the sector write routine for the drive. When the
DPH_WRITE routine is called, the address of the IOBP is contained in register
BP. The parameters necessary for the write operation are all contained in the
IOPB (see "IOPB Data Structure" after this table).

DPH_UNIT

The DPH_UNIT byte contains the drive code, relative to the disk controller,

for the disk drive referenced by this DPH. For instance, if a disk controller
supports logical drives C: and E:, the DPH_UNIT fieldsin DPHC and DPHE are
set to 2 and 4 respectively. Only the BIOS uses this field.

DPH_CHNNL

The DPH_CHNNL byte contains the ID of the controller that supports this
device. For instance, if a one disk controller handles logical drives A: and

B: while a second controller manages logical drives C: and D:, the DPH_CHNNL
field is set to Oin DPHA and DPHB. Since drives C: and D: use the second
controller, the DPH_CHNNL fields in DPHC and DPHD are set to 1. Only the BIOS
uses this field.

DPH_NFLAGS

The DPH_NFLAGS byte contains the number of system flags used by this drive. If

more than one drive shares a controller, then the first DPH for that

controller should indicate the number of flags used; all other DPHs for drives

that share the controller should have a0 in their DPH_NFLAGS fields. The

first DPH of several that share a controller can be identified by a DPH_CHNNL

value of 0. GENCPM uses DPH_NFLAGS in calculating the minimum number of system
flags to allocate.

10PB Data Structure

The disk Input/Output Parameter Block (IOPB) contains the parameters required

for the I0_READ and IO_WRITE function callsin the BIOS Kernel, and the
DPH_READ and DPH_WRITE functions in the DISKIO modules you supply. The IOPB is
located on the stack when the BDOS calls the BIOSENTRY routinein the BIOS

Kernel. The 10PB structure uses the BP register, since indirect addressing

using the BP register of the 8086/8088 processors is relative to the SS (stack

segment) register. The IOPB is defined relative to the value BP as set by the
READ_WRITE routine in the Kernel. BP obviously cannot be modified by the disk

1/0 routines if the IOPB is going to be used.

DPH_READ and DPH_WRITE can index or modify IOPB parameters directly on the
stack, sincethey are removed by the BDOS after the BIOS IO_READ or 1O0_WRITE
functions return.

Listing 7-5 shows the format of the IOPB. Thisinformationisalso found in

the file DISK.LIB on the distribution disks. Table 7-7 discusses each field in
the IOPB.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



Listing 7-5. Input/Output Parameter Block (IOPB)

rhkkhkkhkkkkkkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhddhdhhhhhhhdddddhhxkhdx*x

; Input/Output Parameter Block Definition

)
rhkkhkkhkkkkkkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhddhdhhhhhhhdddddhhxkhdx*x
k)
’

; Read and Write disk parameter equates

; At the disk read and write entries,
; al disk 1/0 parameters are on the stack
; and the stack at these entry pointsis as

; follows:

: S S S S +

; +14 | DRIVE | MCNT | Drive and Multisector Count
: Fommeee E R +

: +12| TRACK | Track number

: S S S S +

; +10| SECTOR | Physical sector number

: Fommeee E R +

: +8| DMA_SEG | DMA segment

: S S S S +

; +6| DMA_OFF | DMA offset

: Fommeee E R +

: +4| RET_SEG | BDOS return segment

: S S S S +

: +2| RET_OFF | BDOS return offset

; Fo-eee- +--emee- +

; BP+O| RET_ADR | Loca ENTRY return address
: S S . " + (assumes one level of call

; from ENTRY routine)

; These parameters (except for the return addresses)
; may be indexed and modified directly on the stack;
; they are removed on return to the BDOS.

iopb_mcnt  equ  byte ptr 15[bp]
iopb_drive  equ byte ptr 14{bp]
iopb_track equ word ptr 12[bp]
iopb_sector equ word ptr 10[bp]
iopb_dmaseg equ word ptr 8[bp]
iopb_dmaoff equ word ptr 6[bp]

Table 7-3. 10PB Data Fields

Format: Data Field
Explanation

IOPB_DRIVE [Logical drive number]
Thelogical drive number specifiesthe logical disk drive on which to perform

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



the DPH_READ or DPH_WRITE operation. The drive number can range from 0 to 15,
corresponding to drives A through P respectively.

IOPB_MSCNT

To transfer logically consecutive physical disk sectorsto or from contiguous
memory locations, the BDOS issues an |O_READ or IO_WRITE function call with
IOPB_MSCNT set greater than 1. Thisalowsthe BIOS to transfer multiple
sectorsin a single disk operation. The maximum value of the Multisector Count
depends on the physical sector size, ranging from 128 with 128-byte sectors to

4 with 4096-byte sectors. Thus, the BIOS can transfer up to 16 Kbytes directly

to or from the DMA addressin a single operation. Note that the IOPB_MSCNT is
distinct from the Multisector Count set by the F MULTISEC system cal. The
F_MULTISEC system call setsalogical (128-byte sector) Multisector Count for
file 1/0 transfers between the transient and the BDOS.

For a more complete explanation of multisector operations, along with example
code and suggestions for implementation within the BIOS, see "Skewed
Multisector Disk 1/O" later in this section.

IOPB_TRACK

The I0OPB_TRACK defines the track for the specified driveto seek. The BDOS
defines IOPB_TRACK relative to 0. For disk hardware which defines track
numbers beginning with a physical track of 1, your DPH_READ and DPH_WRITE
routines must increment the track number before passing it to the disk

controller.

The BDOS uses the valuesyou definein the DPB to calculate IOPB_TRACK.
Usually the DPB is defined to directly correspond to the physical disk, and

the IOPB_TRACK valueisthe physical track number. However, tracks can be
defined to include both sides of a double-sided drive, or a cylinder of a
multiplatter drive. When a track is defined by the DPB to be more than one
physical track, the BIOS calculates the head from the IOPB_SECTOR number.

|IOPB_SECTOR

The IOPB_SECTOR defines the sector for aread or write operation on the
specified drive. The BDOS defines the IOPB_SECTOR relativeto 0, so for disk
hardware which defines sector numbers beginning with a physical sector of 1,

the DPH_READ and DPH_WRITE routines increment the sector number before passing
it to the disk controller.

The sector size is determined by the parameters DPB_PSH and DPB_PHM defined in
the Disk Parameter Block. Usually, the DPB is defined so the sector size is
equal to the physical sector size of the disk.

If the specified drive uses a skewed-sector format, the DPH_READ and DPH_WRITE

routines must translate the sector number according to the trandation table
specified in the Disk Parameter Header.

IOPB_DMAOFF, IOPB_DMASEG
The DMA offset and segment define the address of the disk data transfer buffer

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



for theread or write operation. This DMA address can reside anywhere in the
one-megabyte address space of the 8086/8088 microprocessor. If the disk
controller for the specified drive can only transfer data to and from a

limited range of addresses, DPH_READ or DPH_WRITE must copy the data between
the DMA address and a local buffer accessible to the controller. (DMA is an
acronym for Direct Memory Address, a term used in the context of the BIOS for

disk 1/0 operations which transfer physical sectors directly to memory, and

vice versa.)

IOPB_RETSEG, IOPB_RETOFF
These two words are used to return to the BDOS from the BIOSENTRY routine, and
must be preserved through DPH_READ or DPH_WRITE.

IOPB_LOCALRET
The local return address returns to the BIOSENTRY routine in the BIOS Kerndl
when the DPH_READ or DPH_WRITE routines finish.

DPH_DISK /O Routines

This section discusses the CP/M-86 Plus BIOS hardware-dependent disk functions

that you supply. The BIOS Kernel accesses these functions through their

offsets contained in the DPH fields DPH_INIT, DPH_LOGIN, DPH_READ, and
DPH_WRITE. There must be a valid routine for each of the four functions in

every DPH in the BIOS; the DPH_INIT, DPH_LOGIN, DPH_READ, and DPH_WRITE fields
cannot be 0.

Table 7-4. DPH_Disk I/0 Routines

Format: Routine
Explanation

DPH_INIT

The DPH_INIT routine initializes the hardware associated with a particular
drive. BIOSINIT calls the DPH_INIT routine for each DPH defined in the BIOS. A
DPH_INIT routine can simply return if the initialization is performed by
another DPH_INIT routine. This occurs when several DPHSs share the same disk
controller.

Entry Registers: BX = address of DPH
DS = SYSDAT (BIOS data segment)
ES = process environment

Exit Registers. DS, ES preserved

DPH_LOGIN

The DPH_LOGIN routine can optionally determine the current mediatype in a
removable media drive. The BIOS Kernel calls DPH_LOGIN when the BDOS calls the
Kernel 10_SELECT routine and indicates a "first time" select. First time

selects occur only when the drive isfirst accessed and after the DPH_READ or

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



DPH_WRITE routines signa a media change to the BDOS. The register conventions
for the call to DPH_LOGIN from the BIOS Kernel are the following:

Entry Registers. BX = offset of DPH
DS = SYSDAT (BIOS data segment)
ES = process environment

Exit Registers. BX = offset of DPH if no error
BX = 0if error
DS, ES preserved

The DPH_LOGIN function call allows the BIOS to determine density, the number
of sides, and any other disk parameters that can change during operation. Once

the new parameters are determined, the hardware might need to be
reinitialized. If the type of drive changes, the DPH_DPB field is changed to

point the DPB defining the new drive. "Automatic Density and Side Selection,”
which appears|later in this section, discusses the DPH_LOGIN routine in more
detail.

DPH_READ, DPH_WRITE

The CP/M-86 Plus BDOS performs disk 1/0 with a single BIOS call to the BIOS

Kernel 10_READ or I0_WRITE functions, using the parameters contained in the
IOPB. The BIOS Kerndl, in turn, cals the OEM-written disk routines DPH_READ
and DPH_WRITE, which perform the disk operations.

If a physical error occursduringa DPH_READ or DPH_WRITE operation, the
function should perform several retries (ten is recommended) to attempt to
recover from the error before returning an error condition.

The following are the register conventions for DPH_READ and DPH_WRITE:

Entry Registers: BX = offset of DPH
BP = offset of IOPB on stack
DS = SYSDAT (BIOS data segment)
ES = process environment

Exit Registers: AL =0 if no error
AL =1 if physical error
AL = 2 if read-only disk
AL = OFFh if media density has changed
DS, ES preserved

If the IOPB_MSCNT field isequal to one, DPH_READ and DPH_WRITE routines
transfer the single physical sector specified in the IOPB. If a physical error

occurs, DPH_READ and DPH_WRITE return 1in AL after attempting retries.
DPH_WRITE can additionally return AL equal to 2 if adriveis physically read-

only.

For drives supporting several types of media, DPH_READ and DPH_WRITE should
return an OFFhin AL if the BIOS detects a change in media density. After
returning an OFFh, the BDOS calls the IO_SELECT routine in the Kernel, which

in turn calls the DPH_LOGIN routine for the same drive. See "Automatic Density

and Side Selection” later in this Section.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



If the IOPB_MSCNT isgreater than 1, the DPH_READ or DPH_WRITE routines
transfer the specified number of physical sectors before returning to the BIOS

Kernel. The DPH_READ and DPH_WRITE routines transfers as many physical sectors
as the specified drive's disk controller can handle in one operation.

Additional calls to the disk controller are required when the disk controller
cannot transfer the requested number of sectorsin a single operation. If a
physical error occurs during a multisector transfer or write, a 1is returned

in AL.

If the disk controller hardware for the specified drive does not have a

feature for making multisector transfers, DPH_READ and DPH_WRITE can make the
number of single physical-sector transfers defined by the IOPB_MSCNT. Making
multiple single physical-sector transfers is recommended when first bringing

up the disk I/O routines, unless you already have multisector 1/0O routines

working from another implementation. DPH_READ and DPH_WRITE must increment the
sector number, and add the number of bytesin each physical sector to the
IOPB_DMAOFF address for each successive single physical -sector transfer.

The BDOS initializes the IOPB_DMAOFF and IOPB_DMASEG such that a multisector
transfer will not cause the value of IOPB_DMAOFF to overflow. If, during a
multisector transfer, the sector number exceeds the number of the last

physical sector of the current track, DPH_READ and DPH_WRITE routines
increment IOPB_TRACK, and reset IOPB_SECTOR to 0.

Listing 7-6 after this table shows a ssimple implementation of a multisector
read/write routine that performssingle sector operations until all the
sectors are transferred. The DISKIO.A86 module on the distribution disks
contains a read/write routine that performs multisector transfers at the
controller level. The RW64.A86 file provides another example showing a
multisector read/write routine that cannot transfer acrossa 64-Kbyte page
boundary, because of hardware restrictions.

In Listing 7-6, if IOPB_MSCNT isO0, the routine returns with an error.
Otherwise, it calls the read/write routine (IOHOST:) for the present sector

specified by the current values of IOPB_TRACK and IOPB_SECTOR. If thereis no
error, the IOPB_MSCNT value is decremented. When IOPB_MSCNT equals 0, the read
or writeisfinished, and the routine returns. If not, the sector number to

read or writeisincremented. If, however, the sector number now exceeds the
number of sectors on a track (MAXSEC), the IOPB_TRACK number is incremented,
and the IOPB_SECTOR number is set to 0. Then, the routine performs the number

of reads or writes remaining to equal IOPB_MSCNT, each time adding the size of

a physical sector to IOPB_DMAOFF. Listing 7-6 illustrates multisector
operations assuming a disk controller only supporting single sector 1/0O.

Listing 7-6. Multisector 1/0

include disk.lib
maxsec equ 8 ;sectors per track (example)
secsiz equ 512 ;sector size (example)
hd_io: ;common code for disk read and writes

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



X Entry: BP = 10PB on stack
; RFLAG = trueif reading, else writing
; Exit: AL = 0if success

X AL = 1if error
; Use IOPB to form a series of single sector read or write
; operations.
push es ;Save process environment
mov al,1 ;error return
cmp iopb_ment,0 ;if Multisector Count = 0
jereturn_rw ;return error
hdiol:
call iohost ;read/write physical sector
or ala ;test for error
jnz return_rw ;return error
dec iopb_mcnt ;decrement Multisector Count
jz return_rw ;if multisector = O return
mov ax,iopb_sector
inc ax ;next sector
cmp ax,maxsec
jb same_track ;is sector < sectors per track
inciopb_track ;no - next track
XOr ax,ax ;initialize sector to 0
same_track:

mov iopb_sector,ax ;save sector #
add iopb_dmaoff,secsiz ;increment DMA offset by
;Sector size
jmps hdiol ;read/write next sector
return_rw:
pop es ;restore process environment
ret ;return with error code in AL

iohost: ;single physical sector read/write

; entry: BP = 10PB on stack

; RFLAG = trueif reading, else writing

; exit: AL = 0if success

X AL = 1if error

; DS preserved

Transfer one physical sector as indicated by the IOPB
; parameters IOPB_SECTOR, IOPB_TRACK, IOPB_DRIVE to or from
; IOPB_DMASEG:10PB:DMAOFF.

Y our hardware-dependent single sector transfer

; routine goes here.

ret

DSEG
rflag rb 1

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



DISK 1/O0 ENHANCEMENTS

Y ou can modify the CP/M-86 Plus disk I/O system in several ways. A large hard
disk can be divided into several logical drives to provide a more convenient

file organization. Door open interrupts on removable media drives can be
detected to improve disk I/O performance and improve data integrity. The
automatic detection of media types prevents the user from having to invoke a
utility that informs the BIOS of the current media type. Thisis helpful when

a removable media drive supports single- and double-density media. Other
modifications include the support of skewed disk formats for compatibility
with media written from other machines or operating systems, and the
implementation of a "memory disk".

Multiple Logical Drives

A large nonremovable-media storage device, such as a hard disk, can be divided
into several logical drives for user convenience. Thisis done using the
DPB_OFF (track offset) field in the DPB.

The DPB_OFF field can define the beginning of a logical drive as shown:

e +
| Data Region | Logical Drive
| Directory Region |

Track M+2M  +-----mmmm oo +
| Data Region | Logical Drive
| Directory Region |

Track N+M  #----mmmmmmmmeee +
| Data Region | Logical Drive
| Directory Region |

Track N --> +---oommmmmmcoo e +
| Optional System Tracks |

Track 0 --> 4 ---mmmmmmmmemeee +

Figure 7-2. Multiple Logical Drives

Figure 7-2 shows threelogical drives mapped onto one physical drive. Three
separate DPBs and DPHs are required for each drive. Even if the logical drives
are identical in size, three different DPBs are necessary, since the DPB_OFF
is different for each drive, and is set to N, N+M, and N+2M.

Detecting Media Changes

Disk drives under CP/M-86 Plus are classified whether the media they contain
is permanent or removable. "Removable media drives' support media changes;
"permanent media drives' do not. The discussion in this subsection considers
media changes when the media type is preserved. The next subsection treats the

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



detection of different media types, such as single- or double-density
formatted disks.

If adrivesmediais permanent, the BDOS always accepts the contents of the
physical sector buffers as valid. In addition, it also accepts the results of
hash table searches on the drive.

On removable media drives, the validity of the physical sector buffers is
conditional, in order to protect against writing to a drive whose media has
changed. The BDOS logs in removable media drives by computing and storing
checksums and hash codes for the drive'sdirectory. The checksums for a
particular drive are stored in the checksum vector whose offset resides in the
DPH_CSV field. The hash codes are stored in the hash table whose offset
resides in the DPH_HSHTBL field. (These fields and data areas are usually set
and allocated automatically by GENCPM.)

Before the BDOS performs certain directory-related functions, it verifies that

the disk has not changed. The BDOS does this by computing checksums for the
parts the disk directory being used, and comparing them with the corresponding
checksums previously computed. If the checksums differ, the operation is
denied.

A similar situation occurs with directory hashing on removable media drives.
When an unsuccessful hash table search occurs, the BDOS attempts to locate the
directory entry by reading the directory. During this pass through the
directory, the checksums are computed and compared with the ones stored in the
checksum vector.

When the checksum values do not match, the BDOS assumes the media has changed.
The BDOS logs out the drive by invalidating its directory and data buffers,

then again attempts to log in the disk which forces the entire directory to be

read.

The net result of these actions is that thereis a significant performance

penalty associated with removable media drives, as compared to permanent media
drives. In addition, the protection provided by classifying a drive's media as
removable is not complete. Media changes are only detected during directory
operations. If the media is changed while writing file data when no directory
accesses are required, the data on the new disk will be overwritten.

Another option for supporting drives with removable media is availableif an
interrupt can be generated when the drive door is opened. This option allows
the BDOS to treat the drive as if it contained permanent media until the
occurrence of a door open interrupt. If your hardware provides this support,
you can increase disk 1/0 performance up to 30%, and improve the integrity of
removable media, by the following procedure:

- Compute the normal DPB_CKS value for a removable media drive. This is
the size of the checksum vector, and is equal to the total number of
directory entries, divided by four. Then, set the most significant bit
in the DPB_CKS by adding the value of 8000h to the DPB_CKS field. For
example, set the CKS field for a disk with 96 (60h) directory entries
to 8018h. This bit signals the BDOS to treat the drive specially.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



- Implement an interrupt service routine that setsthe @BH_GDOPEN byte
to OFFh in the BIOS Kernel Data Header and the DPH_DOPEN byte to OFFh
for the drive that signaled the door open condition.

The BDOS checks @BH_GDOPEN on certain disk-related function calls. If
@BH_GDOPEN isequal to O, it implies that no drive doors have been opened in

the system. If @BH_GDOPEN is set to OFFh, the BDOS checks the DPH_DOPEN byte
of each currently logged-in drive. If the DPH_DOPEN byte is OFFh, the BDOS

reads the entire directory on that drive, then computes and compares

checksums. Any directory buffers for this drive are temporarily ignored,

forcing the verifying directory reads to the disk. If the checksums match, it

is assumed that the door was opened, but the media was not changed. If the
checksums differ, the driveis logged out, then logged in again as required.

Automatic Density and Side Selection

Some physical drives can support severa different kinds of media. For
example, floppy disk drives and controllers can often accept several densities
formatted on one or two sides of the disk. If the BIOS can detect the media
type, automatic (auto) density and side selection can be implemented.
Automatic selection of the media type in the BIOS replaces the need for a
specia transient program written by you. This transient must be invoked by
the end-user each time the media type is changed.

To support auto density and side selection, the DPH_READ and DPH_WRITE
routines must be able to determine when the media has changed. Additionaly,
the BIOS must be able to determine the media type.

To implement auto density support, a DPB isincluded in the BIOS for each

media type expected, or routines to alter DPB values to reflect the media type

currently being used. When the DPH_READ or DPH_WRITE routines detect a media
change, they must return AL equal to OFFh back to the BDOS. The BDOS then
makes a "first time" select call to the BIOS Kernel IO_SELDSK function. In

turn, the IO_SELDSK function calls the DPH_LOGIN routine for the drive. The
DPH_LOGIN function which you supply determines the media type, and sets the
DPH_DPB field to the offset of the DPB that describes the media.

If unable to determine the format, the DPH_LOGIN function can return a 0,
indicating that the select operation was not successful. The 1O_SELDSK
function returns the error, and the BDOS prints a message or returns an error

to the application, depending on the BDOS error mode. (See F ERRMODE system
cal in the"Programmer's Guide"). Table 7-4 shows the DPH_LOGIN register
conventions.

Once the DRV_LOGIN routine has determined the format of the disk, the BDOS

assumes that this format is correct, and uses the DPB currently associated
with the drive for subsequent read and write operations.

Skewed Multisector Disk 1/0

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



CP/M-86 Plus supports multiple physical sector read and write operations at
the BIOS level, to minimize rotational latency on block disk transfers.
Multisector /O isimplemented in the BIOS by using the Multisector Count
passed in the IOPB.

When the disk format uses a skew table to minimize rotational latency for
single-sector transfers, it is more difficult to optimize transfer time for
multisector operations. One method of doing this is to have the BIOS
read/write routine translate each logical sector number into a physical sector
number. Then, it creates a table (Figure 7-3) of DMA addresses with each
sector's DMA address indexed into the table by the physical sector number.

PHYSICAL
SECTOR DMA ADDRESS
NUMBER FOR TRANSFER

S +
00 | DMA_ADDR |
ol +
01 | DMA_ADDR |
S +
02 | DMA_ADDR |
ol +
S +
N | DMA_ADDR |
ol +

Figure 7-3. DMA Address Table for Skewed Multisector 1/0

As a result, the requested sectors are sorted into the order in which they
physically appear on the track. Often, the required sectors on the track can
be transferred in one disk rotation. As a sector isread or written, it is
transferred to or from its proper DMA address.

During a multisector data transfer, if the sector number exceeds the number of
the last physical sector of the current track, the BIOS increments IOPB_TRACK,
and resets the IOPB_SECTOR to zero. It can then complete the operation for the
balance of sectors specified in the DPH_READ or DPH_WRITE function call.

Listing 7-7 illustrates multisector 1/O for a skewed disk. The disk parameters

are taken from the DPH and DPB to be stored in local variables. Once the
physical sector sizeis computed from the DPB values, the DMA address table
can beinitialized. The INITDMATBL routine fillsthe DMA address table with
OFFFFh word values. The size of the DMA table equals one word greater than the
number of sectors per track, in casethe physical sectors are numbered
relative to one for that particular drive.

The DMA table (DMATBL) isfilled with the DMA addresses for the requested
sectors on the current track. The RW_SECTS routine transfers the sectors to

the proper DMA addresses, and returns to READ_WRITE if more sectors areto be
read on the next track. The READ_WRITE routine continues to calculate the DMA
addresses on succeeding tracks, and transfer the sectors by calling RW_SECTS
until all requested sectors are transferred.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



In this example, local values that begin with "I" (such as ISECTOR and ITRACK)
are initialized by RW_SECTS, and are parameters used by the read or write
routine whose offset isin register Sl.

The following code fragment illustrates multisector unskewing. It is assumed
that this fragment is called from the DPH_READ and DPH_WRITE routines you
supply with the registers set as indicated.

Listing 7-7. Skewed Multisector Disk I/O

include disk.lib
CSEG
rw_skew: ;unskews for reads/writes of multiple sectors

; entry: S| = offset of read or write routine

: BX = DPH
: BP = 10PB
: DS = SYSDAT

X ES = process environment
X exit: AL = return code
; DS and ES preserved

ret_error:
mov al,1 :return error if not
ret
dsk_ok:
mov ax,DPH_XLT[bx]
mov XxItbl,ax :save trandation table address

mov bx,DPH_DPB[bx]
mov ax,DPB_SPT[bx]

MOV Maxsec,ax ;Save maximum sector per track
mov cl,DPB_PSH[bx]
mov ax,128
shl ax,cl ;compute physical sector size
MOV SEecsiz,ax ;and save it
call initdmatbl ;initialize DMA offset table
cmp iopb_ment,0
jeret_error
rw_1:

mov ax,iopb_sector ;is sector < sectors per track

cmp ax,maxsec

jb same _trk
call rw_sects  ;no - read/write sectors on track
call initdmatbl ;reinitialize DMA offset table
inciopb_track  ;next track

XOr ax,ax
mov iopb_sector,ax ;initialize sector to O
same_trk:
mov bx,xItbl ;get trandation table address
or bx,bx! jz no_trans ;if xlt<>0
xlat al ;tranglate sector number

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



no_trans:

xor bh,bh
mov bl,al :sector # is used as the index
shl bx,1 :into the DMA offset table

mov ax,iopb_dmaoff

mov dmatbl[bx],ax ;save DMA offset in table
add ax,secsiz ;increment DMA offset by the
mov iopb_dmaoff,ax ;physical sector size

inc iopb_sector  ;next sector

dec iopb_mcnt ;decrement Multisector Count
jnzrw_1 ;if IOPB_MCNT<>0 store next
; sector DMA
rw_sects: ;read/write sectors in DMA table
mov a1 ;preset error code
xor bx,bx ;initialize sector index
rw_sl:
mov di,bx
shl di,1 ;compute index into DMA table
cmp word ptr dmatbl[di],0ffffh
jeno_rw ;nop if invalid entry

push bx! push'si  ;saveindex and routine address
mov ax,iopb_track ;get track # from 10OPB

mov itrack,ax

mov isector,bx ;sector #isindex value

mov ax,dmatbl[di] ;get DMA offset from table

mov idmaoff,ax

mov ax,iopb_dmaseg ;get DMA segment from |IOPB
mov idmaseg,ax

cal s ;call read/write routine
pop si! pop bx ;restore routine address & index
or a,al! jnz err_ret ;if error occurred return
no_rw:
inc bx ;next sector index
cmp bx,maxsec ;if not end of table
jberw_sl ;9o read/write next sector
err_ret:
ret ;return with error code in AL
initdmatbl : ;initialize DMA offset table
mov di,offset dmatbl
MOV CX,Mmaxsec ;length = maxsec + 1 sectors
inc cx ;may index relativeto O or 1
mov ax,0ffffh
push es ;Save process environment
push ds! pop es
rep stosw ;initialize table to Offffh
pop es ;restore process environment
ret

ckkkkkkhkkkhkkhkkhkkhhkkhkhhkkhkkhhkkhkhhkhkkhhkhkhhkhkhhkhkhhkhkhhkkhhkkhkhkkikhkkikkkk,%x
1

-k

;*  DISK I/O DATA AREA

-k
’

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



rkkhkkkkhkkkkhkkhkkhkkhkkhkkhhkkhkkhhkkkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhkhkkhkhkkhkkkikkk**x
1

DSEG

isector rw 1 ;parameters for single sector
itrack rw 1  ;read/write operation
idmaoff rw 1

idmasegrw 1

xltbl dw O ;trandation table address
maxsec dw 0  ;max sectors per track
secsiz dw O :sector size

dmatbl rw 50 ;DMA addresstable

Memory Disk Implementation

In CP/M-86 Plus, adisk driveisany I/O device that has a directory, and is
capable of reading and writing data in sectors up to 4 Kbytesin size. The
BIOS can thereforetreat a wide variety of peripherals as disk drives, if
desired. A memory disk is an example of this flexibility.

A memory disk (RAMdisk) uses an area of RAM to simulate a disk drive, making a
very fast temporary disk. GENCPM can specify the M: disk as the temporary
drive. This section discusses the M: disk implementation as shown in Listing

7-8.

In Listing 7-8, the M: disk memory space begins at the 0CO00h paragraph
boundary, and extends for 128 Kbytes through the ODFFFh paragraph. The
BIOSINIT routine callsthe DPH_INIT routine in DPHM, which initializes the
directory area of the M: disk, the first 16 Kbytes to OE5h. OE5h's signify
unused directory entries to the BDOS.

Both the M: disk DPHM_READ and DPHM_WRITE routines first call the MDISK_CALC:
routine. This code calculates the paragraph address of the current sector in

memory, and the number of words of datato read or write. The number of

sectors per track for the M: disk is set to 8, simplifying the calculation of

the sector addressto a ssimple shift-and-add operation. The M: disk sector

size is defined by the DPB to be 128 bytes, making the calculation of a

paragraph address ssimply a shift operation. The IOPB_MSCNT (Multisector Count)

is multiplied by the length of a sector to give the number of words to

transfer.

The READ_M_DISK: routine gets the current DMA address from the IOPB on the
stack, and using the parameters returned by the MDISK_CALC: routine, block-
moves the requested datato the DMA buffer. The WRITE_M_DISK: routine is
similar, except for the direction of data transfer.

A Disk Parameter Block (DPB) for the M: disk, shown at the end of the example,
is provided for reference. A hash table can be provided for the M: disk Disk
Parameter Header, in order to further increase performance. (GENCPM is usually
used to automatically create the hash table.)

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



Listing 7-8 illustrates an M: disk implementation:
Listing 7-8. Example M: Disk Implementation
include disk.lib

mdiskbase  equ 0CO0O0Oh ;base paragraph
;address of M: disk
CSEG

dphm_init:  ;initialize M: disk RAM directory area
mov cx,mdiskbase
push es! mov es,cx

xor di,di
mov ax,0E5E5h ;check if already initialized
cmp es;[di],ax ! je mdisk_end
mov ¢x,2000h ;initialize 16 Kbytes
rep stos ax ;of M: disk directory to OE5h's
mdisk_end:
pop es
ret

dphm_login: ;no media change possible for M: disk
; entry: BX = DPH
; exit: BX = DPH

ret

dphm_read:  ;read from M: disk

: entry: BX = DPH

; IOPB on stack

; exit: AL =0 (always successful)

; Reads the sectors specified by the IOPB
; to the DMA address also specified in the |OPB.

call mdisk_calc ;calculate byte address
push es ;Save process environment
les di,dword ptr iopb_dmaoff

;load destination DMA address

Xor §i,S ;setup source DMA address

push ds ;save current DS

mov ds,bx ;load pointer to sector in memory
rep movsw ;execute move of 128 bytes....
pop ds ;then restore user DS register

pop es ;restore process environment

XOr ax,ax ;return with good return code

ret

dphm_write:  ;write to M: disk

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



; entry: BX =DPH

X |OPB on stack

; exit: AL =0 (always successful)

; Write the sectors specified in the IOPB

; to the DMA address also specified in the IOPB

call mdisk_calc ;calculate byte address

push es ;Save process environment

mov es,bx ;setup destination DMA address
xor di,di

push ds ;save user segment register

Ids si,dword ptr iopb_dmaoff
:load source DMA address

rep movsw ;move from user to disk in memory
pop ds ;restore user segment pointer

pop es ;restore process environment

XOr ax,ax ;return no error

ret

mdisk_calc:

; entry: 1OPB on the stack
; exit: BX = sector paragraph address
; CX = length in words to transfer

mov bx,iopb_track  ;pickup track number

mov cl,3 ;times eight for sector relative

shl bx,cl ;to beginning of M: disk

mov cx,iopb_sector  ;plus IOPB_SECTOR number

add bx,cx ;gives relative sector number to
;transfer

mov cl,3 ;times eight for paragraph
:relative number

shl bx,cl ;of starting sector to transfer

add bx,mdiskbase ;plus base address of M: disk

mov cx,64 ;length in words for 1 sector move

mov al,iopb_ment

xor ah,ah

mul cx ;length * Multisector Count

MoV cX,ax

cld

ret

DSEG

dpbm rb O ;Disk Parameter Block

dw 8 ;Sectors Per Track

do 3 ;Block Shift

do 7 ;Block Mask

do O ;Extnt Mask

dw 126 ;Disk Size- 1

aw 31 ;Directory Max

do 128 ;AllocO

do 0 ;Allocl

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



dw O ;Check Size
dw O ;Offset

do O ;Phys Sec Shift
do O ;Phys Sec Mask

DISK 1/0 BUFFERING

Directory and file datais buffered in physical sectors within the system. (A
physical sector is the sector size as defined by the DPB for the drive.) Since
GENCPM generates the data structures, and initializes the fieldsin the DPH
for disk buffering, this material is optional.

The BDOS uses Buffer Control Blocks (BCBs) to locate and manage physica
sector buffers. A BCB describes each physical sector buffer. Directory BCBs
(DIRBCBS) describe directory buffers, and Data BCBs (DATBCBS) describe file
data buffers. The BCBs are linked together to describe multiple buffers with
directory and data BCBs kept on separate lists.

Each logical drive has directory and data buffers associated with it via the

Disk Parameter Header (DPH) representing the drive. The DPH fields DPH_DIRBCB
and DPH_DATBCD contain the offsets of BCB Headers. The BCB Header isa three-
byte structure that contains the offset of the first of the linked BCBs.

Several logical drives as represented by different DPHs can specify the same

list of BCBs.

Each BCB hasaBCB_LINK field containing the address of the next BCB in the
list, or Oif itisthe last BCB. All BCB Headers and BCBs must reside within

the SYSDAT segment.

Listing 7-9 is an example BCB Header definition:

Listing 7-9. BCB Header Definition

bcb_head dw  dirbcbO ;offset of first DIRBCB
do Offh ;used by BDOS

The first word of the BCB Header, as previously mentioned, contains the offset
of thefirst BCB inalist of BCBs. Thethird byte in the BCB Header is used
by the BDOS, and must be initialized to OFFh.

Directory Buffer Control Block (DIRBCB)

The Directory Buffer Control Block (DIRBCB) is used by the BDOS to manage disk
directory buffers in the BIOS. The buffer associated with the BCB must be

large enough to accommodate the largest physical sector associated with any

drive using the BCBs.

Listing 7-10 shows the DIRBCB format:

Listing 7-10. Directory Buffer Control Block (DIRBCB) Format

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



skkkkkkkkkhkkkkhhkkhkkhhkkkhhkkhhkkhkkkikkk*k
’

-k
1

* DIRBCB Format

ok

1
skkkkkkkkkhkkkkhhkkhkkhhkkkhhkkhhkkhkkkikkk*k
’

: S S R S S S R S +
:00h; |[DRV | RECORD |WFLG|00h | TRACK |
; S N S xS . S N S xS . +
:08h: | SECTOR | BUFOFF | LINK | RESERVED |
: S S R S S S R S +

BCB_DRV equ byteptrO
BCB RECORD equ byteptrl
BCB_WFLG equ byte ptr 4
BCB_TRACK equ word ptr 6
BCB SECTOR equ wordptr 8
BCB BUFOFF equ word ptr 10
BCB_LINK equ word ptr 12

Listing 7-11 illustrates a DIRBCB definition:

Listing 7-11. DIRBCB Definition

skkkkkkkkkhkkkkhhkkhkkhhkkkhhkkhhkkhkkkikkk*k
’

-k
1

* DIRBCB Definition

ok

1
kkkkkkkkkhkkkhhkkhkkhhkkkhhkkhhkkhkkkikkk*k
’

dirbcbOdb  Offh :Drive
rb 3 :Record
b 2 ;Write Pending
rw 2 :Track, Sector

dw  dirbufO :Buffer Offset
dw  dirbcbl :BCB Link
dw O ‘Reserved

Table 7-5 defines the DIRBCB fidlds:
Table 7-5. DIRBCB Data Fields

Format: Data Field
Explanation

BCB_DRV

This field is the logical drive number that identifies the disk drive

associated with the physical sector contained in the buffer. Theinitial value

of the BCB_DRV must be OFFh. If BCB_DRV = OFFh, then the BDOS considers the
buffer available for use. The BDOS initializes al other BCB fields when a BCB

and its buffer are used.

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



BCB_RECORD

The BCB_RECORD number identifies the first logical record contained in the BCB
buffer. Since the size of the BCB buffer is a physical sector, it can contain

several 128-byte logical records. The logical record number is relative to the
beginning of the logical drives, where the first record of the directory is

logical record number O.

BCB_WFLG  [Write pending flag]

The BDOS sets the BCB_WFLG to OFFh to indicate that the buffer contains
unwritten data. When the datais written to disk, the BDOS setsthe BCB_ WFLG
to 0.

00h
Reserved for system use.

BCB_TRACK
The BCB_TRACK is the track number associated with the BCB's buffer. The
BCB_TRACK number is calculated by the BDOS from drive's DPB values.

BCB_SECTOR

BCB_SECTOR is the sector number associated with the BCB's buffer. The
BCB_SECTOR number is caculated by the BDOS from the drive's DPB. Thus,
BCB_SECTOR is usualy defined to be the same as the physical sector number.

BCB_BUFOFF
For DIRBCBS, this field equals the offset address of the buffer within SY SDAT.

BCB_LINK
The BCB_LINK field contains the offset address of the next BCB in the linked
list, or O if thisisthe last BCB.

BCB_RESERVED
Reserved for system use.

The BCB_DRYV field isthe logical drive the buffer is associated with, or is
set to OFFh indicating that the buffer is unallocated. Theinitial value of
the BCB_DRYV field must be OFFh.

When the BCB_WFLG field equals OFFh, the buffer contains datathat the BDOS
has to write to the disk before the buffer is available for other data.

For file system integrity, the data and directory BCBs must be separate. Since
directory buffers are never "write pending”, having separate directory buffers

ensures that a buffer is available when the BDOS reads the directory to detect

media changes. If data and directory buffers were mixed, al of the buffers

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



could contain "write pending" data, and the directory could not be read prior
to awrite.

Data Buffer Control Block (DATBCB)

Listing 7-12 shows the format of the Data Buffer Control Block (DATBCB):

Listing 7-12. Data Buffer Control Block (DATBCB)

rhkhkkkhkkkkkhkhkkhhkhkhkhhhhhkkhkhkhkhkhhhhkhkxx
k)

-k

* DATBCB Format

-k
1

rhkhkkkhkkkkkhkhkkhhkhkhkhhhhhkkhkhkhkhkhhhhkhkxx
k)

; S N S xS . S N S xS . +
:00h; |[DRV | RECORD |WFLG|00h | TRACK |
: S S R S S S R S +
:08h; | SECTOR | BUFSEG | LINK | RESERVED |
: S N S xS . S N S xS . +

BCB DRV equ byteptrO
BCB_RECORD equ byteptr1
BCB WFLG equ byteptr 4
BCB TRACK equ word ptr 6
BCB_SECTOR equ word ptr 8
BCB_BUFSEG equ word ptr 10
BCB LINK equ word ptr 12

The DATBCB isidentical to the DIRBCB, except for the BCB_BUFSEG field.

BCB_BUFSEG equalsthe segment address of the Data Buffer. The offset of the
buffer isassumed to be zero. The data buffer can not share memory with the
Transient Program Area (TPA), and must be on a paragraph boundary.

DPH_HSHTBL and BCB_BUFSEG Initialization

The hash table address for a particular logical driveis a paragraph address

kept in the DPH_HSHTBL field. The address of the data buffer associated with a
DATBCB is also a paragraph address. If you define the hash tables or the data
buffers in the BIOS, you must "fix-up" these addresses to be paragraph address
values at BIOS initialization time. The following code fragment accomplishes
this, and can be made part of your INIT module. Note that GENCPM automatically
sets the paragraph address of the hash tables and data buffers it creates in

the appropriate DPH_HSHTBL and BCB_BUFSEG fields.

Listing 7-13. DPH_HSHTBL and BCB_BUFSEG Initialization

; Initialize DPH_HSHTBL and BCB_BUFSEG fields. The hash
; table and data buffers must be paragraph aligned. This

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



; code fragment fixes up the offset addresses in DPH_HSHTBL and
; BCB_BUFSEG to be paragraph addresses. This code must be

; executed during BIOS initiaization if GENCPM is not used

; to generate the hash tables or the data buffers. This code

; assumes NONE of the hash tables or data buffers are created

; by GENCPM. If you use GENCPM to generate some of the hash
; tables and data buffers, then this code must be modified to

; only fix up the appropriate structures and not those

; already set to paragraph addresses by GENCPM. This code

; also assumes all of the data buffers in the BIOS are shared

; with drive A:'s and thus only A:'s are fixed up.

include disk.lib

CSEG

extrn @bh_dphtable:word ;in BIOS Kernel
extrn @dpha:word ;in DISKIO module

BCB BUFSEG equ wordptr10 ;DATBCB fields
BCB_LINK equ word ptr 12

mov ¢X,16 ;16 maximum drives
Xor si,g Sl=0
hash_init:
push cx ;save drive count
mov bx,@bh_dphtable[si] :BX = next DPH address
test bx,bx
jz next_dph ;if not 0, BX = DPH

mov ax,DPH_HSHTBL[bx] :AX = hash table offset
or ax,ax ! jz next_dph ;if 0, no hash table

mov cl,4 ;compute paragraphs from
shr ax,cl ;start of SYSDAT
mov dx,ds ;add SYSDAT segment
add ax,dx ;AX = hash table segment
mov DPH_HSHTBL[bx],ax  ;make the fixup
next_dph:
pop X ;restore the drive count
add si,2 ;index for next DPH offset
loop hash_init

X Initialize data BCB segment addresses
: al drives share the same set of data buffers

mov bx,offset @dpha ;DPHA from DISKIO module
mov bx,DPH_DATBCB[bx] ;BX=DATBCB header
mov bx,[bx] :BX=DATBCB

next_datbchb:
mov ax,BCB_BUFSEG[bx] ;AX=data buffer offset
mov cl,4 ;calculate paragraphs from
shr ax,cl ;SYSDAT
mov dx,ds ;add in SYSDAT to get
add ax,dx ;paragraph address
mov BCB_BUFSEG[bx],ax ;make fixup

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



mov bx,BCB_LINK[bx] ;BX=next BCB
or bx,bx ;0if end of linked list
jnz next_datbch

; ... therest of your initialization code ...

DISK I/O ERROR MESSAGES

The BIOS Kernedl and the BDOS define error returns from the DPH_READ,
DPH_WRITE, and DPH_LOGIN routines. The DPH_INIT routine has no error return
defined. When an error is returned from the DISKIO module, the BDOS displays
error messages on the console, unless the program encountering the error isin

Return Error Mode. (See the F ERRMODE system call in the "Programmer's
Guide"). If aphysica error (AL=1) isreturned from DPH_READ and DPH_WRITE,
the BDOS displays the following message:

CP/M ERROR on d: Disk Read/Write Error
BDOS Function = xx File = filespec

Note that d: is one of the logical drives A-P, xx isthelast BDOS function
the program encountering the error made with an INT 224 operation, and
filespec is the filename and filetype.

The DPH_WRITE routine can aso return a "Read/Only Disk" error (AL=2) that
results in the following BDOS message:

CP/M ERROR on d: Read-Only Disk
BDOS Function = xx File = filespec

The "Read-Only Disk" error can aso be returned if an attempt is made to write
to a drive set to Read-Only through the DRV_SETRO system call. If the
DPH_LOGIN routine returns an error (BX=0), the following BDOS message is

displayed:

CP/M ERROR on d: Invalid Drive
BDOS Function = xx File = filespec

Appendix H discusses changing or transating the BDOS messages.

If you plan to display more information about a specific hardware error, the
discussion in "Character I/0O Error Messages' in Section 6 applies here also.
As stated in Section 6, if you display error messages on the main part of the
console, you should check the File System Error Mode for the process
encountering the character 1/0 error. If the Return Error Mode is set, it can

be assumed that the application does not want the screen altered, and you
should display messages only for catastrophic errors. The File System Error
Mode is a byte located at byte 46h relative to the process environment
segment. The process environment segment is in register ES on entry to all of
the DISKIO DPH__ routines. The currently running process environment segment is
also found in the word location at offset 04Eh relative to the SY SDAT segment.
(See Appendix C.) If the process's File System Error Mode byte is equa to
OFFh, the processisin Return Error Mode, and most error messages should not

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



be displayed.

EOF

file:///CJ/...servation/Emmanuel %20Roche%20D R1 %20documents¥20conversion/CPM-86%20P us%20I nstal | ation%20Guide/ CPM PIG7.TX T[ 2/6/2012 4:40:28 PM]



CPMPIGBWHA (= "CP/M-86 Plus Installation Guide", section 8)

(Edited by Emmanuel ROCHE.)

Section 8: Clock Support

This section discusses the functions provided by the CP/M-86 Plus CLOCK
module. The CLOCK module must perform clock hardware initialization, and
provide a periodic "system tick" interrupt for dispatching and maintaining the
time and date variables within the SY SDAT segment.

TICK INTERRUPT ROUTINE

The tick interrupt is used primarily to generate dispatches that force
compute-bound processes to relinquish the CPU, so that other processes can

run. The system tick rate, which you define, determines the dispatch frequency

for compute-bound processes. The recommended tick unit is 16.67 milliseconds,
corresponding to atick 60 times a second or 60 Hertz. When operating on 50-
Hertz power, use aunit of 20 millisecondsif itis more convenient. The
@BH_TICKSEC field in the BIOS Data Header must be set to the number of ticks
per second, to permit accurate use of the P_DELAY system call.

For CP/M-86 Plus to run more than one program at a time, the tick interrupt

service routine must execute a IMPF (Jump Far instruction) to INT_DISPATCH.

The DS register on entry to the interrupt service routine must be on the stack

when a IMPF to INT_DISPATCH ismade. INT_DISPATCH is the double word address
of the process dispatcher within the BDOS. The dispatcher saves the

environment of the running process, and restores the environment of the next

process ready to run. If thereis no other processto run, the dispatcher

performs a POP DS instruction and an IRET (Interrupt Return instruction) back

to the interrupted process. The changing of process environments by BDOS
dispatcher is also referred to as "context switching”.

Once every system tick, the system tick flag (system flag #1) must be set by

the tick interrupt if the @BH_DELAY field in the BIOS Kernel Data Header is

set to OFFh. The BDOS sets @BH_DELAY to OFFh when a process makes a P_DELAY
system call. @BH_DELAY is set to 0 by the BDOS when no processes are delaying.

The tick interrupt routine must also update the system time of day structure
once per second. Thetime of day structureis kept in the SY SDAT segment, and
is shown in Appendix C. The BDOS accesses this structure for file time and
date stamping, as well as for the system calls that set and return the time

and date.

For systems with a time of day and calendar chip, the clock interrupt service
routine must ensure that the SY SDAT time-of-day variables correspond to the
chip's time of day. If a date and calendar chip is part of the hardware, you

may need to supply a utility that would replace the DATE utility for setting
the time of day and date on the chip.

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG8.TX T[ 2/6/2012 4:40:29 PM]



EXAMPLE TICK INTERRUPT

The following tick interrupt listing is similar to the one contained in the
example CLOCK.A86 file on thedistribution disks. The equates for the
Programmable Interrupt Controller and the SYSDAT variables are from the files
PIC.LIB and SYSDAT.LIB aso on the distribution disks. Thetick interrupt in
the example BIOS is generated by a counter timer chip approximately 60 times a
second. Thetick interrupts are counted by the interrupt service routine to
determine time periods of a second, a minute, and an hour. Thetime of day
variablesin the SYSDAT segment are updated accordingly. In this example, the
tick intervals are not exactly 1/60 of a second, so the number of ticks
counted in a second is switched between 60 and 61 for more accuracy over long
periods of time.

Section 4 discusses the general structure of an interrupt service routine
under CP/M-86 Plus. Note that the TICK_INT routine in Listing 8-1 uses the
@BH_ININT (in interrupt count), since other interrupt service routinesin the
example BIOS reenable interrupts.

Listing 8-1. Tick Interrupt Service Routine

;equates for 8259A
NS EOI equ 20h ;nonspecific end of interrupt
MASTER_PIC_PORT equ  50h
SLAVE _PIC PORT equ 52h

;include sysdat.lib ;contains the following equates

int_dispatch equ dword ptr .34h ;exit from interrupt handler
int_setflag equ dword ptr .38h ;interrupt SETFLAG function

tod_day equ word ptr .5Fh ;number of days since 1/1/78
tod_hr equ byte ptr .61h ;current hour in packed BCD
tod_min equ byte ptr .62h ;current minute in packed BCD
tod sec equ byteptr .63h ;current second in packed BCD

CSEG

extrn ?waitflag:near ;BIOS Kernel routines

extrn ?dispatch:near

extrn @sysdat:word ;system and BIOS data segment

rkkkkkhkkhkkkhkkhkkkhhkkkhhkkhhkkhhkkhhkkhkhkkhkhhkhkhkkhkhhkhkkhhkhkkhhkhkkhkhkkhkkkikx*%x
1

; Tick Interrupt Service Routine

rkkkkkhkkhkkkhkkhkkhkkhhkkkhhkkhhkhkkhhkkhhkkhkhkkhkhhkhkhkkhkhhkhkkhhkhkkhhkhkkhkhkkhkkkikx*%x
1

tick_int:

push ds! mov ds,cs:@sysdat  ;get BIOS data segment
inc @bh_inint ;signal executing interrupt handler

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG8.TX T[ 2/6/2012 4:40:29 PM]



mov Ssaveax,ax

dec tick_cnt ;tick count

jnz cont_tick ;if second not yet up, branch to exit
mov a,last_cnt ;get previous tick count
xor al,1 ;toggle low order bit
mov last_cnt,al
mov tick_cnt,al ;TICK_CNT = either 60 or 61
mov al,tod_sec ;TOC_SEC is packed BCD
inc a ! daa ;keep it packed BCD

mov tod_sec,al

cmp a,60h ! jb cont_tick ;compare with 60h BCD
mov tod_sec,0
mov al,tod_min ;TOD_MIN is packed BCD
inc al ! daa ;keep it packed BCD
mov tod_min,al
cmp al,60h ! jb cont_tick ;compare with 60h BCD

mov tod_min,0

mov al,tod_hr ;TOD_HR is packed BCD
inca ! daa ;keep it packed BCD
mov tod_hr,al
cmp al,24h ! jb cont_tick ;compare with 24h BCD
mov tod_hr,0
inc tod_day ;TOD_DAY isabinary value
cont_tick:
cmp @bh_delay,0FFh ;are any processes delaying
jne not_delaying ;viathe P_DELAY system call?
mov tick _ssreg,ss ;switch to local stack
mov tick_spreg,sp ;for CALLF to INT_SETFLAG
mov ss,@sysdat ;BIOS data segment
mov sp,offset tick_tos ;Set to tick interrupt stack
push bx ! push cx ;registers used by INT_SETFLAG
push dx ;AX aready saved in SAVEAX
mov dl,1 ;system flag #1 is the tick flag
calf int_setflag ;set it
pop dx ! pop cx ! pop bx
mov ss,tick_ssreg ;restore stack
mov sp,tick_spreg
not_delaying:
mov a,NS_EOI ;signal PIC's interrupting
out MASTER _PIC PORT,d ;condition has been
out SLAVE_PIC _PORT,d ;satisfied
mov ax,saveax ;restore AX
dec @bh_inint ! jz tick_exit
pop ds :go back to incompleted
iret ;interrupt service routine
tick_exit:
jmpf int_dispatch ;if more than one process

;is ready to run, give the
;CPU to another ready process

skkkkkkhkkkkhhkkkhhkkhkkhhkhkkhhkhkkhhkhkkhhkkhkhkkhkhhkhkkhhkhkhhkhkkhhkhkhkkhkhkkkikkkk*x*%
’

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG8.TX T[ 2/6/2012 4:40:29 PM]



Clock Data Segment

rhkkhkkhkkkkkkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhddhdhhhhhhhdddddhhxkhdx*x

DSEG
extrn @bh_inint:byte ;variables in BIOS Kernel
extrn @bh_delay:byte ;Data Header

rw 15
tick_tos rw 0 ;tick interrupt stack
tick ssseg w1 ;save registers
tick spreg w1 ;during tick interrupt
saveax rw 1 ;here
last_cnt do 61 ;adjust for counter
tick_cnt dbo 61 ;timer chip's tick frequency

EOF

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIG8.TX T[ 2/6/2012 4:40:29 PM]



CPMPIGO.WSHA (= "CP/M-86 Plus Installation Guide", section 9)

(Edited by Emmanuel ROCHE.)

Section 9: System Generation

This section describes the procedures necessary to generate the CP/M-86 Plus
system contained in the CPMP.SY S file. The CompuPro BIOS modules on the
distribution disks are used for specific examples. Note that the number of,

and names for, the BIOS modules for your machine are likely to differ from the
examples.

Generation of the CPMP.SY S fileisafour-stage process. First, you must
assemble all BIOS modules into OBJ-format files using RASM-86. (OBJ refers to
Intel Object Module Format.) Next, use the MODEDIT utility to examine all BIOS
module OBJ files to resolve any mulitple CDB or DPH symbol definitions. Third,
use LINK-86to link all of the OBJ-format BIOS modules together to create the
BIOS3.SYS file. Finally, use GENCPM to create the system image file CPMP.SYS
from the BIOS3.SY S, BDOS3.SY'S, and optionally, the CCP.CMD files.

ASSEMBLING THE BIOS MODULES

The following RASM-86 commands assemble the example BIOS modules on the
distribution disks. The "Programmer's Utilities Guide" documents RASM -86.

A>RASM86 BIOSKRNL
A>RASMS6 INIT
A>RASM86 CHARIO
A>RASM86 DISKIO
A>RASM86 CLOCK

The assembly of these modules resultsin the OBJ format files BIOSKRNL.OBJ,
INIT.OBJ, CHARIO.OBJ, DISKIO.0BJ, and CLOCK.OBJ. Similarly, you must aso
assemble each of your BIOS modules. If you are debugging a particular module,

use the RASM-86 $L O option to cause local symbols to be included in the symbol

file generated by LINK-86. The RASM-86 $NC (no case) option, which prevents
RASM-86 from automatically translating symbol names to uppercase, should not

be used to generate the BIOS modules. Thisis because the MODEDIT utility
searches for specific symbol namesin uppercase.

MODEDIT UTILITY

MODEDIT is an OBJfile editor that resolves conflicts between CDB and DPH
public and external declarations. It takes the following command line form.
The arguments in brackets are optional.

MODEDIT Kernel Mod1 [ Mod2 Mod3 Mod4 ... ]

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



MODEDIT alows new device drivers to be added to an existing BIOS when the
names of the CDBs and DPHSs in the existing BIOS are not known by the writer of
the device driver. Both the BIOS and the new device drivers must be in OBJ
format. MODEDIT modifies the files specified on the command line, and creates
no new output files.

The CDB and DPH labels in the BIOSKRNL and the other BIOS modules you supply
must take the form @CDBX and @DPHX, where X isan ASCII character A through P.

MODEDIT scansthefirst file specified on the command linefor the external

symbols with the names @CDBA through @CDBP and @DPHA through @DPHP. This first
file must be the BIOS Kerndl, or at least contain the BIOS Kernel Data Header.

The rest of thefiles specified are other BIOS modules containing public

declarations for CDBs and DPHs. There can be as many as 16 public CDB
declarations, and as many as 16 public DPH declarations. BIOS modules that do

not contain public declarations of CDBs or DPHs need not be modified by

MODEDIT.

MODEDIT relabels CDB and DPH public symbolsin the OBJ fileson the command
line in the order in which the OBJ files are specified in the line from |eft

to right. If more than one @CDBX or @DPHX public symbol occurs withinan OBJ
file, the names are assigned in the order of appearance within the file.

For example, consider the following command:
A>MODEDIT BIOSKRNL, CHAR1, CHAR2, DISK1, DISK2

Assume the public declarations for the symbols @CDBE, @CDBD, and @CDBA appear
in the file CHARL1.OBJin the same order as they appear in this sentence.

MODEDIT changes these symbol hamesto @CDBA, @CDBB, and @CDBC respectively. If
CHAR2.0BJ contains the public symbols in the order @CDBA then @CDBB, MODEDIT
renames the symbols to @CDBD and @CDBE respectively. This occurs because
@CDBA, @CDBB, and @CDBC were used for the first three Character Device Blocks

in the CHAR1.OBJfile. Also, notice that the symbol namesin the different

modules, or within the same module, do not have to be unigue. In this example,

the symbol name @CDBA occurs in both files, MODEDIT changes the two @CDBA
symbols to the unique names @CDBC and @CDBD respectively. MODEDIT handles DPH
symbols similarly.

LINKING THE BIOS MODULES

After you use MODEDIT to rename the CDBs and DPHS, link the separate BIOS OBJ
modules to form the BIOS3.SY Sfile. The following command links the example
BIOS modules. The "Programmer's Utilities Guide" describes LINK-86in greater
detail.

A>LINK86 BIOS3.SY'S = BIOSKRNL,INIT,CHARIO,DISKIO,CLOCK,ZERO.L 86
[DATA[ORIGIN[OF00]], SEARCH]

All of your BIOS modules OBJ files must be present in similar commands that
create the BIOS3.SY Sfile. Since the BIOS data starts at OFOOh, the ORIGIN

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



option must be present in the LINK-86 command when creating the BIOS3.SY S
file. This usage of the ORIGIN option assumes there are no ORG statements in
your BIOS modules. (The BIOS Kernel starts the code and data segments with an
ORG 0000h statement.) The BIOSKRNL must be the first OBJfile in the LINK-86
command line, since the BIOS Kernel Data Header and the BIOS Kernel Code
Header must start the data and code groups (CMD format) in the BIOS3.SY Sfile.
The order of the other BIOS modules does not usually matter, except that the
ZERO.L86 module must be last. ZERO.L86 is supplied on the distribution disks,
and is alibrary file containing public definitions for the symbols @CDBA
through @CDBP and @DPHA through @DPHP. If these symbols are not defined in one
of the BIOS modules you supply, LINK-86 and ZERO.L86 force their definitions
to a zero value.

Generally the LINK-86 command takes the following form:

A>LINK86 BIOS3.SYS = BIOSKRNL,MOD1,M0OD2,...MODN,ZERO.L 86
[DATA[ORIGIN[OF0Q]], SEARCH]

The OBJfiles labeled MOD1,MOD2,...MODN are replaced by the names of the BIOS
modules you supply. If, for example, another module called HDISKIO for hard

disk support isto be added to the example BIOS, the LINK-86 command would
take the following form:

A>LINK86 BIOS3.SY'S = BIOSKRNL,INIT,CHARIO,DISKIO,HDISKIO,
CLOCK ,ZERO.L 86 [DATA[ORIGIN[OF00]], SEARCH]

The LINK-86 INPUT optionis helpful when you are repeatedly generating a
BI10S3.SY Sfile during development. The INPUT option allows the command tail to
be read from afile. For instance, if you place the command tail in the file
BIOS.INP, the LINK-86 command becomes the following:

A>LINKS6 BIOS[I]

GENCPM UTILITY

You can use the GENCPM uitility to create the operating system memory image
contained in the file CPMP.SY S. This file becomes the memory resident part of

the CP/M-86 Plus operating system. You must read CPMP.SY S into memory at a
specific location, then transfer control to it. GENCPM runs under either CP/M -

86 1.X, CP/M-86 Plus, Concurrent CP/M, or MP/M-86.

GENCPM builds the CPMP.SY Sfile from the files BDOS3.SYS, BIOS3.SYS, and
optionally, CCP.CMD. Y ou can use GENCPM to allocate and create several data
structures needed by the BIOS. These structures are the disk buffers, buffer

control blocks, disk allocation vectors, disk checksum vectors, and disk hash

tables. GENCPM can also reserve extramemory for use by the BIOS.

The following paragraphs explain how to invoke and respond to the questions of
GENCPM. The items in parentheses that are a part of GENCPM questions are
default values. A default-value numeric is hexadecimal unlessitis preceded

by a pound sign (#), which indicates that the numeric is decimal. You can
answer any question either in hexadecimal or decimal. Four-digit (16-bit)

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



values, such as 0108, are displayed and accepted as input by GENCPM in
paragraph units (16 bytes). These paragraph values are memory addresses or
memory lengths.

Invoke GENCPM by using one of these command lines:

A>GENCPM
A>GENCPM [AUTO]

The first command runs GENCPM interactively, causing a series of questions you

must answer to be displayed. The [AUTO] option (abbreviated to [A]) alows
GENCPM to run without console input, and is useful as part of a submit file to
generate the CPMP.SY S file. When you use the [AUTQ] option, answers to the
questions normally displayed by GENCPM are read from the file GENCPM.DAT. You
can also use the GENCPM.DAT file to supply the default answers to the GENCPM
guestions when GENCPM isrun interactively. GENCPM.DAT isan ASCII file that
you can create by using an editor, or by using a GENCPM option.

GENCPM displays one Main Menu and several different screens of questions. Each
of these screens relates to a single topic such as disk buffer allocations. In

this section, each screen appears as a figure, followed by an explanation for

each question displayed in the screen. Note that the default values shown in

the GENCPM screens used in this section were chosen for tutorial purposes and
are not meant to be used to generate a working CPMP.SY S file from the example
BIOS on the distribution disks.

In the following discussion, a question that can be answered in the GENCPM.DAT
file is referred to as a question variable. GENCPM searches the GENCPM.DAT
file for the question variable keywords and the associated answer. A line in

the GENCPM.DAT file takes the following general form, in which value equals
the answer for that question:

Question Variable = value <CR>

The easiest way to create a GENCPM.DAT fileisto have GENCPM do it for you by
responding with a'Y to the "Use GENCPM.DAT file for defaults' question in
Figure 9-1. If modifications are needed, edit the file directly, or run GENCPM

again to generate another GENCPM.DAT. The end of this section shows an example
GENCPM.DAT file.

GENCPM Initial Questions

Figure 9-1 shows theinitial questions displayed by GENCPM. The answers to
these questions configure GENCPM each timeitisrun, and do not directly
ater the CPMP.SY Sfile.

CP/M-86 Plus System Generation
Copyright (C) 1983, Digital Research, Inc.

Use GENCPM.DAT file for defaults (Y)?

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



Clear screen sequence (1B,45)?
Home cursor sequence (1B,48)?

Accept new GENCPM parameters (Y)?

Figure 9-1. GENCPM Initial Questions Screen

The following are the questions asked by the initial screen:

Use GENCPM.DAT file for defaults (Y)?
Enter Y - GENCPM getsits default values from the file GENCPM.DAT. Default
values are displayed in parentheses to the left of the ?. If you ssimply press
<CR> after a GENCPM question, the default value is the answer to the question.
Enter N - GENCPM uses the built-in default values. The GENCPM utility has its
own set of defaults "built-in" to the GENCPM.CMD file that are used in this
case.

Note that this question does not appear if no GENCPM.DAT file currently exists
on the default drive and user.

No question variable is associated with this question.

Clear screen sequence (1B,45)?

Enter the clear screen character sequence for this terminal. The values shown
here are the hex ASCII codes for ESC and E. Values must be separated by
commas. You may want to answer this question with a null (0) when using the
Ctrl-P function to echo GENCPM's consol e output to a printer.

Question Variablee CLRSCR

Home cursor sequence (1B,48)?
Enter the character sequence for moving the cursor to the home position on the
terminal. Values must be separated by commas. The values shown here are the
ASCII codesfor ESC and H. Y ou may want to answer this question with a null

(0) when using the Ctrl-P function to echo GENCPM's console output to a
printer.

Question Variablee HOMSCR

Accept new GENCPM Parameters (Y)?
Enter Y - GENCPM proceeds to the main menu. GENCPM is configured for this
session, and you are ready to start generating the CPMP.SYS file. These
initial questions cannot be repeated after you enter a'yY.

Enter N - GENCPM repeats the previous questions, and displays your previous

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



input in the parentheses, so you can correct any mistakes.

No question variable is associated with this question.

GENCPM System Generation Main Menu

GENCPM displays the Main Menu screen after you exit the initial menu. The Main
Menu gives options for GENCPM help, four sub-menus, and two different ways of
terminating the GENCPM session. The questions asked by GENCPM are divided into
severa categories, each of which is represented by a sub-menu. Figure 9-2

shows the Main Menu:

CP/M-86 Plus System Generation
Copyright (C) 1983, Digital Research, Inc.

CP/M-86 Plus GENCPM System Generation Main Menu

GENCPM Help.

Display/Change GENCPM Parameters.
Display/Change System Parameters.
Display/Change Memory Allocation Parameters.
Display/Change Disk Buffer Allocation.
Generate a system and exit.

Exit without generating a system.

NogokrwpdhrE

Enter Number:

Figure 9-2. GENCPM System Generation Main Menu

The following explains the GENCPM System Generation Main Menu:

Enter Number:
The Main Menu requests one of the option numbers be entered. No question
variable is associated with this question. When you finish with the help
option or one of the sub-menus, you return to the Main Menu. When you change a
value in the sub-menus, the new value appears in parentheses, and becomes the

default value for this session of GENCPM. Thus, if you select a sub-menu
again, your previous answers appear in parentheses.

Option 1. GENCPM Help
Selecting option 1 from the Main Menu displays the following screen:

GENCPM HELP

GENCPM lets you edit and generate a system image

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



from operating system modules on the default disk
drive. A detailed explanation of each GENCPM
parameter may be found in Section 9 of the
CP/M-86 Plus Installation Guide.
GENCPM assumes the default values shown within
parentheses. All numbers are in hexadecimal
unless preceded with "#', indicating a decimal
value. All four digit values are in paragraph
units. To change a parameter, enter the new
value and type <CR>.
Press RETURN to return to the main menu.

Figure 9-3. GENCPM Help Screen

The help display asks no questions, and has no associated question variables.

Option 2: Display/Change GENCPM Parameters
Selecting option 2 of the Main Menu causes the GENCPM Parameter Screen to

appear. The answers you supply in response to this screen inform GENCPM  about
filesit needs to find, create, or delete.

CP/M-86 Plus GENCPM Parameter Setup

Create a new GENCPM.DAT file (N)?
Destination drive (A)?

Delete (instead of rename) old CPMP.SY Sfile (N)?
Permanently attach the CCP to the operating system (N)?
Accept new GENCPM parameters (Y)?

Figure 9-4. GENCPM Parameter Screen

The following explains each GENCPM Parameter Screen question:
Create a new GENCPM.DAT file (N)?
Enter N - GENCPM does not create a new GENCPM.DAT file.

Enter Y - If option 6 (Generate a system and exit) of the Main Menu is
selected to exit GENCPM, a new GENCPM.DAT file is created.

Question Variablee CRTDATF

Destination drive (A)

Enter the drive letter on which the CPMP.SY Sfileisto be created. If you

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



want to use the default drive, and you are using the GENCPM.DAT file for
defaults, removethe DESTDRYV linein GENCPM.DAT. The CPMP.SY S fileis placed
in the current default user area of the destination drive.

Question Variablee DESTDRV

Delete (instead of rename to CPMP.OLD) CPMP.SY S file (N)?
Enter N - GENCPM renames the existing CPMP.SY S file to CPMP.OLD.

Enter Y - GENCPM deletes the existing CPMP.SY S file, and creates a new
CPMP.SY Sfile.

Question Variable: DELSYS

Permanently attach the CCP to the Operating System (N)?
Enter Y - GENCPM includes the CCP.CMD file found on the current default drive
and default user in the operating system image. When the resulting CP/M-86
Plus system is booted up, it does not require a CCP.CMD file on disk. However,

the memory area occupied by the operating system is larger, sinceit includes
the CCP.

Enter N - GENCPM does not attach the CCP to the operating system. A CCP.CMD
file must exist on theinitial default drive when the system is run.

Question Variablee CCPYES

Accept new GENCPM Parameters (Y)?
Enter Y - GENCPM returns to the Main Menu.

Enter N - GENCPM repeats the previous questions, and displays your replies as
the defaults. You can modify your earlier answers if a mistake was made.

No question variable is associated with this question.

Option 3. Display/Change System Parameters

Selecting option 3 of the Main Menu resultsin the following screen. The
answers to this screen affect internal variables within CP/M-86 Plus, change
the memory location of CP/M-86 Plus, reserve space for extra system flags, and
allocate extra buffer space for the BIOS.

CP/M-86 Plus GENCPM System Parameter Setup

Backspace echoes erased character (N)?
Rubout echoes erased character (N)?

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



Number of console columns (#80)?

Number of lines in console page (#24)?
Initial default drive (A)?

Ticks per second (#60)?
Number of additional flags (#0)?
Base of CP/M-86 Plus (0040)?
Data Base of CP/M-86 Plus (0000)?

Amount of space reserved in OS data segment (0000)?
Accept new system definition (Y)?

Figure 9-5. GENCPM System Parameters Screen

The following explains the questions in the System Parameters Screen:
Backspace echoes erased character (N)?

This question only affects the behavior of the C_ READBUF system call. The

backspace character (Ctrl-H, 08h) deletes a character from the buffer when

using the C_READBUF system call.

Enter N - A backspace moves the cursor back one column, and erases the
character at the new cursor position.

Enter Y - A backspace prints the deleted character, then moves the cursor
forward one column.

Question Variablee BACKSPC

Rubout echoes erased character (N)?
This question only affects the behavior of the C_ READBUF system call. The
rubout character (DEL, 7Fh) deletes a character from the buffer when using the
C_READBUF system call.

Enter N - A rubout moves the cursor back one column, and erases the character
at the new cursor position.

Enter Y - A rubout prints the deleted character, then moves the cursor forward
one column.

Question Variable: RUBOUT

Number of console columns (#80)?
Enter the number of columns (characters-per-line) for your console. The answer
to this question is accessible to transient programs through the S SYSVAR
system call.

The C_READBUF system call uses the answer to this question for line editing. A
character in the last column should not force a new line for console editing

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



in CP/M-86 Plus. If your terminal does force a new line automatically, enter
the number of columns minus one.

Question Variable: PAGWID

Number of lines in console page (#24)?
Enter the number of lines per screen for your console. The answer to this
question is used by transients to prompt before scrolling information off the
screen. It is accessible through the S_SY SVAR system call.

Question Variablee PAGELEN

Initial default drive (A:)?
Enter the drive letter the prompt isto display after booting up the system.
This driveisnot "logged in", when the system first boots up, unlessthe CCP
must be read off it.

Question Variablee BOOTDRV

Ticks per second (#60)?
Enter the number of ticks per second the system clock generates. GENCPM  sets
the @BH_TICKSEC field in the BIOS Kernel Data Header using the answer to this
question. The BIOS ?CLOCKINIT routine can aso change this field. It is
accessible to transient programs through the S_SY SVAR system call.

Question Variable: TICKS

Number of additional flags (#0)?
Enter the number of additional system flags to be used. GENCPM allocates the
number of flags requested in all the CDBs and DPHs found in the BIOS3.SY S
file, plus the four flags reserved by CP/M-86 Plus for interna use.
Additional flags requested here can be used by the BIOS for other devices,
such as field installable device drivers.

Question Variablee ADDFLGS

Base of CP/M-86 Plus (0040)?

Enter the starting paragraph address of the operating system. This value is
also the code segment of the BDOS.

Question Variable: OSBASE

Data base of CP/M-86 Plus (0000)?

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



Enter the paragraph address of the operating system data segment. Change the
default value only if the operating system image isto be placed in ROM. See
Appendix G for more information on placing CP/M-86 Plusin ROM.

Question Variablee OSDBASE

Amount of space reserved in OS data segment ~ (0000)?

Enter the sizein paragraphs of an uninitialized data buffer that is within

the SYSDAT segment. Use the default value to allocate no memory. GENCPM  sets
@BH_BUFLEN in the BIOS Kernel Data Header to the number of paragraphs
reserved, and places the offset of the reserved areain the @BH_BUFBASE field.

Question Variable:. ADDMEM

Accept new system definition ()2
Enter Y - GENCPM returns to the Main Menu.

Enter N - GENCPM redisplays this menu with your previous answers as the new
default values.

No question variable is associated with this question.

Option 4: Display/Change Memory Allocation Parameter.

Selecting option 4 from the Main Menu causes the following screen to display:

CP/M-86 Plus GENCPM Available Physical Memory Table Setup

(0040, 1FC0)?
(2001, OFFF)?
(0000, 0000)?
(0000, 0000)?
0000)?
(0000, 0000)?
(0000, 0000)?
(0000, 0000)?

~N~Nooah~wWwNEO
~
(=]
(@]
(@]
o

Accept new memory definitions (Y)?
Figure 9-6. GENCPM Memory Allocation Parameters Screen
This screen requests the base and length of all available RAM, excluding the

interrupt vector areain the lowest 1 Kbyte of memory. The memory specified
must include memory where the operating system is to be placed as determined

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



by the "Base of CP/M-86 Plus' question in the System Parameter Screen (see
Figure 9-5).

GENCPM reduces the memory specified by this menu, to define the memory
available for loading transient programs. This remaining memory is called the

Transient Program Area (TPA). GENCPM initializes the Memory Descriptor table

in the BIOS Kernel Data Header (@BH_MEMDESC) to define the TPA memory. The
BIOS INIT module can adjust the Memory Descriptor table according to the
memory present on a particular machine. See Appendix F, "Memory Descriptor
Format" and the example BIOS INIT modulein the INIT.A86 file on the
distribution disks.

The first partition shown in Figure 9-6 specifies memory from 40:0 thru
1FFF:0, the second partition skips one paragraph and specifies memory from
2001:0 thru 2FFF:.0, inclusive. Because these two memory areas are
noncontiguous, the BDOS cannot coalesce them into one area. Physically
contiguous memory is thus made logically noncontiguous, thereby preventing one
transient program from allocating al memory with one memory allocation
request. However, bear in mind that each separate memory area defined requires
a Memory Descriptor, and that the total number of Memory Descriptors available
to describe memory fragmentation during system operation is limited to 32. See
"Memory Management” in Section 5 of the "Programmer's Guide".

Question Variablee MEMPART# (where "#" isin the range 0 to 7)

Option 5: Display/Change Disk Buffer Allocation

Selecting option 5 of the Main Menu causes the following screen to display.
Use this screen to alocate directory and data buffers, and hash tables for
the drives defined in the BIOS3.SY Sfile.

CP/M-86 Plus GENCPM Disk Buffer Setup

Accept new buffer definitions (Y)?
Figure 9-7. GENCPM Disk Buffer Allocation Screen

GENCPM finds each defined DPH in the BIOS3.SY Sfile, and displays its drive

letter in this menu. GENCPM can only set the DPH_HSHTBL, DPH_ALV, DPH_CSV,
DPH_DATBCB, and DPH_DIRBCB fieldsif they areinitialized in the BIOS to
OFFFFh. If they are not, GENCPM assumes each field is the offset of the
appropriate data structure already defined within the BIOS. "Disk Parameter

Header (DPH)" in Section 7 explains how to manualy calculate the memory

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



needed for these DPH__ data structures.

If DPH_ALV or DPH_CSV, or both, are set to OFFFFh, GENCPM automatically
calculates and reserves the amount of memory the drive requires for allocation

and checksum vectors. DPH_ALV and DPH_CSV are set to the offset of the
appropriate vector. GENCPM displays no questions or messages when it
automatically creates allocation and checksum vectors.

DPH_HSHTBL ishandled similarly to DPH_ALV by GENCPM, except that directory
hashing is optional. When hashing is selected for a drive, GENCPM reserves a
separate hash table, and places the paragraph address of the hash table in the
corresponding DPH_HSHTBL field. Directory hashing provides a substantial
performance improvement, and is encouraged.

When DPH_DATBCB and DPH_DIRBCB are set to OFFFFh, GENCPM creates the number of
buffers specified under the Dirbufs and Databufs headings. More directory

buffers than data buffers are usually specified, since directory buffers

provide more performance benefit. GENCPM also creates the linked list of BCBS,

and a BCB Header associated with the buffers.

GENCPM also allocates uninitialized buffer space to the BIOS if you answer the
"Amount of space reserved in OS data segment” question in Figure 9-5 with a
non-zero value.

Initialized data structures and buffers created by GENCPM become part of the
CPMP.SY S file. Uninitialized areas are reserved for the operating system, but

are not made part of the CPMP.SY S file. This keeps the CPMP.SYS file sizeto a
minimum, and improves system boot time. Appendix E contrasts the CPMP.SY S file
and the memory image of CP/M-86 Plus.

GENCPM assumes that the disk drivers are able to transfer datato and from
memory wherever GENCPM places the directory and the data buffers.

If you want drives to share a linked list of buffers, define the number of
buffers for one of the drives, and use its drive |etter for all other drives

to share the buffers. Buffers are usually shared among drives to keep memory
consumption down. Separate buffers can be useful though, when the physical
sector sizes on different drives are highly disparate. In Figure 9-7 drives B:
and C: share directory and data buffers with drive A:; drive E: shares only
data buffers with drive D:. The buffer size of a shared list of buffers must

be the largest sector size used by any of the drives. The "Memory Allocated"
column in this screen reflects only the sector buffers and the BCBs allocated,
not any other space allocated for the drive's hash table, checksum vector, or
alocation vector. (A 16 byte BCB isrequired for each sector buffer.)

Each drive must have at least one directory buffer availableto it. Several
drives can share a directory buffer, but if directory buffers are not shared,
each drive must have at least one directory buffer of its own. Similarly, if
the sector sizeislarger than 128 bytes, each drive must have at least one
data buffer availableto it.

Question Variable: PARMDRVd where d = drives A - P.

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



Option 6: Generate a System and Exit

Selecting option 6 of the Main Menu creates a new CPMP.SYS file and,
optionally, a new GENCPM.DAT file to be generated. Option 6 displays the
following screen:

CP/M-86 Plus ROMing Information

Base Length
System Code 0040H 052CH
Initialized System Data 056CH 018AH
Total System Data  056CH 0879H

Operating System Memory Table:
Partition Base Length

0 ODESH 121BH
1 2001H OFFFH

CPMP.SY S file created on drive B:
*** CP/M-86 Plus SYSTEM GENERATION DONE ***
Figure 9-8. GENCPM Generate a System and Exit Screen.

This information isimportant if you are placing CP/M-86 Plus in ROM (see
Appendix G). The System Code is the segment address and length in paragraphs
of the CP/M-86 Plus code segment. The Initialized System Data is the segment
address and length in paragraphs of data that must be copied from ROM to the
RAM data area specified by the answer to "Data Base of CP/M-86 Plus" question
shown in Option 3. The length in paragraphs in the Total System Data is the
amount of contiguous RAM needed for the initialized and uninitialized data
areas for the operating system. The memory table shows the memory partitions
defined in Option 4 after they have been trimmed to eliminate overlap with the
operating system.

Option 7: Exit without Generating a System
Selecting option 7 of the Main Menu returns you to the CP/M-86 Plus prompt.

GENCPM does not modify any existing CPMP.SYS or GENCPM.DAT files.

Example GENCPM.DAT File

The following shows the contents of a GENCPM.DAT file that can be used to
generate a CPMP.SY S file from the example BIOS on the distribution disks. A
GENCPM.DAT fileisaso included on the distribution disks.

Listing 9-1. Example GENCPM.DAT File

CRTDATF =N

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



CLRSCR =1B, 45
HOMCSR =1B, 48

DESTDRV = B:
DELSYS =N
CCPYES =Y
BACKSPC =N
RUBOUT =Y
PAGWID =50
PAGELEN = 18
BOOTDRV = A:
TICKS =3C

ADDFLGS =00

OSBASE = 0040
OSDBASE = 0000
ADDMEM = 0000
MEMPARTO = 0040, 1FCO
MEMPART1 = 0000, 0000
MEMPART2 = 0000, 0000
MEMPARTS3 = 0000, 0000
MEMPART4 = 0000, 0000
MEMPARTS = 0000, 0000
MEMPARTG6 = 0000, 0000
MEMPART7 = 0000, 0000
PARMDRVA = 04,02, Y
PARMDRVB = 04, 02, Y
PARMDRVC = 04, 02, Y
PARMDRVD = 04, 02, Y
PARMDRVE = 04, 02, Y
PARMDRVF = 04, 02, Y
PARMDRVG =04, 02, Y
PARMDRVH =04, 02, Y
PARMDRVI = 04,02, Y
PARMDRVJ= 04,02, Y
PARMDRVK = 04,02, Y
PARMDRVL = 04, 02, Y
PARMDRVM = 04,02, Y
PARMDRVN = 04, 02, Y
PARMDRVO =04, 02, Y
PARMDRVP = 04, 02, Y

There is a PARMDRYV Question Variable for each possible drive, A-P. If a

drive's DPH offset in the BIOS Kernel Data Header @BH_DPHTABLE is 0, GENCPM
ignores the corresponding PARMDRYV Question Variable. The three value parts of

a PARMDRYV Question Variable are also ignored if a OFFFFh value is not found in

the corresponding DPH_DIRBUF, DPH_DATBUF, and DPH_HSHTBL fields of the DPH.

EOF

file://IC|/...servation/Emmanuel %20Roche%620D RI %20documents¥20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PI G9.TX T[ 2/6/2012 4:40:30 PM]



CPMPIGAWS (= "CP/M-86 Plus Installation Guide", appendix A)

(Edited by Emmanuel ROCHE.)

Appendix A: BIOS Development Method

This appendix presents an approach for implementing a CP/M-86 Plus BIOS in
which the BIOSisincreasingly refined in a series of steps. The purpose of

this approach isto reduce the complexity of implementation and debugging
during each step of the customization process. Each step consists of coding a
section of the BIOS, creating the CPMP.SY S file with GENCPM, then debugging
the new part of the BIOS under CP/M-86 1.X. Once this new part of the BIOS
works, embark upon implementing the next step.

As you implement these steps, you might need to read or skim topics explained
in the main body of this guide. For instance, as you work on the first step,

you might need to read or review BIOS Kernel Data Header fields in Section 3,
and Character Device Block fieldsin Section 6.

Use this BIOS development approach as simply a guideline, because experience
varies, aswell asthe availability of hardware drivers already implemented

for CP/IM-86 1.X, Concurrent CP/M, or other operating systems. For example, if
you already have Multisector disk 1/O routines working, you can choose to skip
the implementation of single sector 1/0. Or, if you already have interrupt-
driven console I/O routines, you can skip implementing polling character 1/0
drivers.

Table A-1. BIOS Development Method Steps

Step Explanation

1 Implement simple input, input status, and output routines for the
system console.

a. Put the minimal amount of initialization code in the INIT module to
allow console I/O to occur.

b. Write code for console input, input status, and output in the CHARIO
module. Define Character Device Block A (@CDBA) in the CHARIO module
with the offsets of these drivers. Section 6 describes the CDB.

c. Set the 2CLOCK _INIT routine to simply return. Do not enable a counter
timer interrupt or a real-time clock interrupt.

d. Assemble and link the BIOSKRNL, INIT, CHARIO, and CLOCK modules, as
outlined in Section 9. The DISKIO moduleis excluded at this point,
forcing all of the DPH symbolsin the Kernel Data Header to a zero
value. The MODEDIT utility is not needed for this development
procedure. Use GENCPM to create the CPMP.SY S file. Answer the GENCPM
question "Ticks per second ?" with a zero.

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/ CPM -86%20PI us%620I nstal | ati on%20Guide/ CPM PIGA . TX T[2/6/2012 4:40:31 PM]



e. As described in Section 10, debug the character 1/O routines. If you
have not made the CCP resident, CP/M-86 Plus attemptsto log in the
initial default driveto read the CCP.CMD file. Asnone of the DPHs
are defined, the Kernel IO_SELDSK (select disk) function returns an
error, then the BDOS prints error messages to the console, and the
Error CCP prompts with the following:

A>Cannot Load CCP

The Error CCP is built into the operating system, and is discussed in
the "User's Guide". The Error CCP alowsyou only to change user
numbers at this point. When you add the disk drivers, the default
drive can be changed, and transients loaded through the Error CCP.

If you make the CCP a part of the memory image, the CCP attempts to
read the STARTUP.SUB file, and the BDOS prints appropriate error
messages. Then, the CCP displays the usual prompt. The BDOS aso
prints error messages on the logical CONOUT: device each time you
attempt to load a transient when running the CCP or the Error CCP.

Use the command line editing functions to further test your console
I/0 routines (see C_ READBUF in the "Programmer's Guide™).

2 Add simple disk read routine.

To the DISKIO module, add a driver that reads physical sectors one at

a time from drive A:. Specify A: to GENCPM as the initial default

drive. Use the information in Section 8, and the Disk Parameter Block
worksheet in Appendix D, to help you define a DPH named "@DPHA™" and a
DPB in the DISKIO module. Ensure @DPHA is declared a public symbol in
your DISKI1O module. LINK-86 places the offset of @DPHA that you define
in the DISKIO moduleinto the Kernel Data Header DPH table.

Provide the initialization code for the general hardware support of

the disk in the INIT module. For instance, a DMA controller may need

to beinitialized. Set the DPH fields DPH_INIT, DPH_LOGIN, DPH_READ,
and DPH_WRITE in the DISKIO moduleto the drive init, drive login,
drive read, and drive write routines, which are also in your DISKIO

module. For this step, set the drive login routine to ssmply return,

and the drive write routine to return an error.

Translate multisector requests into single sector requests. Use simple
CPU software loops for polling the disk controller, and use no
interrupts. If necessary, reinitialize the PIC (Programmable Interrupt
Controller) or similar hardware to disable interrupts from the disk
controller.

After debugging, you should be able to perform DIR (directory)
commands and load transients, but not write to the disk.

3 Add the disk write routine.

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/ CPM -86%20PI us%620I nstal | ati on%20Guide/ CPM PIGA . TX T[2/6/2012 4:40:31 PM]



Use the same procedure as you used for disk read in step 2. Begin
using scratch diskettes, if you are not already doing so, during
debugging and testing.

4 Make console /O routines interrupt-driven with type-ahead on input.
Section 4 describes interrupt devicesin CP/M-86 Plus;, Section 6
discusses interrupt character 1/0 in detail. Section 6 also supplies

example routines, and the example BIOS for the CompuPro shows these
routines in a working CHARIO module.

5 Make the disk I/O routines interrupt-driven. (Section 7)

6 Add other disk drivers and character drivers.

Consider implementing each device polled, then making it interrupt-
driven, depending on how complex you expect the debugging task to be.

It ismuch easier to implement and test all the drivers required for
your system before complicating matters with the tick interrupt in the
CLOCK module.

7 Implement automatic density select and door open interrupt on the
drives that support it. (Section 7)

8 Implement the tick interrupt, and test the system with background
tasks. (Section 8)

EOF

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/ CPM -86%20PI us%620I nstal | ati on%20Guide/ CPM PIGA . TX T[2/6/2012 4:40:31 PM]



CPMPIGB.W34 (= "CP/M-86 Plus Installation Guide", appendix B)

(Edited by Emmanuel ROCHE.)

Appendix B: BIOS Kernel Listing

The BIOS Kernd isreproduced here for reference while reading the System
Guide. The Kernel is also on the distribution disks in the file BIOSKRNL.AS86.

This BIOS Kernel listing includes the files SYSDAT.LIB, CDB.LIB, and DISK.LIB.
A cross reference isincluded at the end of the listing.

Listing B-1. CP/M-86 Plus BIOS Kernel

1

2 titte 'CP/M-86 Plus BIOS Kernel'

3 ;*******************************************************
4 ; Last Modification:  10/11/83

S) ,

6 ; BIOS - 86

7 :

8 ;

9 ; CP/M-86 PLUS Basic I/0 System Kernel

10 ;

11 ;*******************************************************
12 ;

13 ; Generation of BIOS3.SY Sfile

14 ;

15 ; RASM86 bioskrnl

16 ; RASMS86 init

17 ; RASM86 chario

18 ; RASM86 fdiskio

19 ; RASM86 clock

20 ;

21 ; LINK86 bios3.sys = bioskrnl,init,chario,fdiskio,clock,zero.|86
22 ; [search, data[origin[OFO0Q]]]

23 ;

24 ;*******************************************************
25 ;

26 ; Register usage for BIOS interface routines:

27 :

28 ; Entry: AL = function number (in entry)

29 ; CX = first parameter

30 ; DX = second parameter

31 ; DS = system data segment (in entry and init)

32 ; ES = process environment (preserved through call)

33 ; Exit: AX = return or BIOS error code

34 ; BX = AX (in exit)

35 ; DS = SYSDAT segment

36 ; ES = process environment (preserved through call)

37 ; SS,SP must aso be preserved

38 ; CX,DX,SI,DI,BP can be changed by the BIOS

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
0
91
92

file///C)...

1
skkkkkkhkkkkhkkkhhkkhkkhhkhkkhhkhkkhhkhkkhhkkhkhkkhkhhkhkkhhkhkkhhkhkkhkkkhhkkhkkkikkkk*x*%
’

; BI1OS Kernel Coding Conventions

1
skkkkkkhkkkkhhkkkhhkkhkkhhkhkkhhkhkhhkhkkhhkkhkhkkhkhhkhkhhkhkkhhkhkkhhkhkkhkkhkkhkkkikkkk*x*
’

; @ as the first character of a symbol denotes
; a public variable

; ? as the first character of a symbol denotes
; a public label

;  All labels, and code are in lowercase

; for easier reading.

; All immediate values (literals) are in uppercase.
; Fields within data structures have leading

; letters followed by an underbar and the field
; name. The data structures defined are the following:

; BH_ - BIOS Header

; cbB_ - Character Device Block
; DPB_ - Disk Parameter Block

; DPH_ - Disk Parameter Header
; IOPB_ - I/O Parameter Block

; Underscores are used for readiablity; otherwise,
; symbols, code mnemonics, registers are in all uppercase
; within comments to distinguish them from the code.

; Each BIOS module has its publics and externals declared
; all together within the code or data.

rkkkkkhkkhkkkkhhkkkhhkkkhhkkhhkhkkhhkkhhkkhkhkkhkhhkhkhkkhkhhkhkhhkhkkhhkhkkhkhkkikkkikx*%x
1

include sysdat.lib

rhkkkhkkkkkkhkhhkhkhkhkhhhhhhhhhkhkhkhkhhhhhhhkhkhkhhkhhhhhhhkhkdkdhkhxkkx*x
)
’

; System Data Definitions

rhkkkhkkkkkkhkhhkhkhkhhhhhkhkhhhkhkhhkhhhhhhhhkhkhkhkhhhhhhhhkdddkhhhkxx*x
)

0030 bdos equ dword ptr .30h ;entry into operating system
0034 int_dispatch equ dword ptr .34h ;exit from interrupt handler
0038 int_setflag equ dword ptr .38h ;interrupt SETFLAG function
003C int_charscan equ dword ptr .3Ch ;interrupt live key scanner
0046 osbaseseg equ word ptr .46h ;base of the OS in para's
0048 osendseg equ word ptr .48h ;first para after OS

004E rlr equ word ptr .4Eh ;ready list root

ervation/Emmanuel %20Roche%20D RI %20documents%20conversion/CPM -86%20P us%20I nstal | ation%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



93

94 = 005F tod_day equ word ptr .5Fh ;number of days since 1/1/78
95 = 0061 tod_hr equ byte ptr .61h ;current hour in bed

96 = 0062 tod_min equ byte ptr .62h ;current minute in bed

97 = 0063 tod_sec equ byte ptr .63h ;current second in bcd

98 =

99 = 0066 con_width  equ byte ptr .66h ;console width

100 = 0067 con_len equ byte ptr .67h ;console length

101 =

102 = 0046 err_mode equ es:byte ptr.46h ;process error modein
103 = ;in process descriptor

104

105

106 = include cdb.lib

107

108 — ;*******************************************************
109 = ;

110 = ; Console Device Block Equates

1-1-]2- — ;*******************************************************
113 = :

114 = , S S S S S S S S +
115 = ; 00h: | NAME | SUPCHAR |

116 = : S R S S S +ennna- S R S S S +ennna- +
117 = ; 08h: | CURCHAR |SUPOEM|CUROEM|TXB | RXB | TYPE |IINPUT]|
118 = , S S S S S S S S +
119 = ; 10h: [NFLAGS| RESRV| COLINK | AOLINK | LOLINK |
120 = : S R S TR TR TR +
121 = ;18h: | INIT | INPUT | INSTAT | OUTPUT |
122 = , S S S S S S S S +
123 = ; 20h: | OUTSTAT |

124 = : Foeeee- +oaee- +

125 =

126 = 0000 CDB_NAME equ byteptrO

127 = 0006 CDB_SUPCHAR equ word ptr 6

128 = 0008 CDB_CURCHAR equ wordptr8

129 = 000A CDB_SUPOEM  equ byteptr 10

130 = 000B CDB_CUROEM  equ byteptr11

131 = 000C CDB_TXB equ byte ptr 12

132 = 000D CDB_RXB equ byte ptr 13

133 = 000OE CDB_TYPE equ byteptr 14

134 = 000F CDB_IINPUT equ byteptr 15

135 = 0010 CDB_NFLAGS equ byteptr 16

136 = 0011 CDB_RESRV  equ byteptr 17

137 = 0012 CDB_COLINK  equ word ptr 18

138 = 0014 CDB_AOLINK  equ word ptr 20

139 = 0016 CDB_LOLINK  equ word ptr 22

140 = 0018 CDB_INIT equ word ptr 24

141 = 001A CDB_INPUT  equ word ptr 26

142 = 001C CDB_INSTAT equ word ptr 28

143 = 001E CDB_OUTPUT equ word ptr 30

144 = 0020 CDB_OUTSTAT equ word ptr 32

145 =

146 = ; Equates for CDB_SUPCHAR fields

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



147

148 = 0001 CS _XON equ 0001h

149 = 0002 CS ETX equ 0002h

150 = 0004 CS RTS equ 0004h

151 = 0008 CS DTR equ 0008h

152 = 0010 CS POL equ 0010h

153 = 0020 CS ODD equ 0020h

154 = 0040 CS EVEN equ 0040h

155 = 0080 CS MARK equ 0080h

156 = 0100 CS SPACE equ 0100h

157 = 0200 CS 5 DBITS equ 0200h

158 = 0400 CS 6 DBITS equ 0400h

159 = 0800 CS 7. DBITS equ 0800h

160 =

161 = 1000 CS 8 DBITS equ 1000h

162 = 2000 CS 1 SBITS equ 2000h

163 = 4000 CS 15 SBITS equ 4000h

164 = 8000 CS 2 SBITS equ 8000h

165 =

166 = ; Equates for CDB_CURCHAR fields

167 =

168 = 0001 CC_XON equ 0001h

169 = 0002 CC _ETX equ 0002h

170 = 0004 CC_RTS equ 0004h

171 = 0008 CC DTR equ 0008h

172 = 0010 CC_POL equ 0010h

173 = 0020 CC ENABLE equ 0020h ;enable parity
174 = 0000 CC_ODD equ 0000h ; odd parity

175 = 0040 CC_EVEN equ 0040h ; even parity

176 = 0080 CC_MARK equ 0080h ; mark parity

177 = 00CO CC_SPACE equ 00COh ; Space parity

178 = 0000 CC 5 DBITS equ 0000h ;5 data bits

179 = 0100 CC 6 DBITS equ 0100h ;6 data bits

180 = 0200 CC_7 DBITS equ 0200h ;7 data bits

181 = 0300 CC 8 DBITS equ 0300h ;8 data bits

182 = 0000 CC_1 SBITS equ 0000h ; 1 stop bit

183 = 0400 CC_15 SBITS equ 0400h ;1.5 stop bit

184 = 0800 CC 2 SBITS equ 0800h ; 2 stop bit

185 =

186 = ; Bit patterns to mask, and shift CDB_ CURCHAR

187 =

188 = OOEO CC PARITY_MSK equ 0OEOh ;parity enable and type mask
189 = 0005 CC PARITY_SHF equ 5 ;shift right for parity index
190 = 0300 CC DBITS MSK equ 0300h ;data bits mask
191 = 0008 CC DBITS SHF equ 8 ;shift right for data bit index
192 = 0CO00 CC_SBITS MSK equ 0COOh ;stop bits mask
193 = 000A CC SBITS SHF equ 10 ;shift right for stop bit index
194 =

195 = : Equates for CDB_TY PE field

196 =

197 = 0001 CT_INPUT equ O01h ;input device

198 = 0002 CT_OUTPUT equ 02h ;output device
199 = 0004 CT_SOFTBAUD equ 04h ;software selectable baud
200 = 0008 CT_SERIAL equ 08h ;serial device

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



201

202 = ; Equates for CDB_BAUD field

203 =

204 = 0000 BAUD_NONE equ 0O0Oh ; No baud

205 = 0001 BAUD_50 equ Olh ; 50 baud

206 = 0002 BAUD_625 equ 02h ; 62.5 baud

207 = 0003 BAUD_75 equ 03h ;75 baud

208 = 0004 BAUD_110 equ 04h ; 110 baud

209 = 0005 BAUD 1345 equ 05h ;134.5 baud

210 = 0006 BAUD_150 equ 06h ; 150 baud

211 = 0007 BAUD_200 equ O0O7h ; 200 baud

212 = 0008 BAUD_300 equ 08h ; 300 baud

213 =

214 = 0009 BAUD_600 equ 0%h ; 600 baud

215 = 000A BAUD_ 1200 equ OAh ; 1200 baud

216 = 000B BAUD_1800 equ OBh ; 1800 baud

217 = 000C BAUD_ 2000 equ OCh ; 2000 baud

218 = 000D BAUD 2400 equ 0Dh ; 2400 baud

219 = 000E BAUD_3600 equ OEh ; 3600 baud

220 = 000F BAUD 4800 equ OFh ; 4800 baud

221 = 0010 BAUD 7200 equ 10h ; 7200 baud

222 = 0011 BAUD 9600 equ 11h ; 9600 baud

223 = 0012 BAUD_192 equ 12h ;19200 baud

224 = 0013 BAUD_384 equ 13h ;38400 baud

225 = 0014 BAUD_56 equ 14h ;56000 baud

226 = 0015 BAUD_768 equ 15h ;76800 baud

227 = 0016 BAUD OEM1 equ 16h

228 = 0017 BAUD OEM2 equ 17h

229 = 0018 BAUD_OEM3 equ 18h

230

231

232 = include disk.lib

233 = ;*~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k*~k*************************
234 = ;

235 = ; Disk Parameter Header Equates

236 = ;

237 = ;*~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k*~k*************************
238 = ;

239 = ) B —— R ——— S —— E —— B —— R ——— S —— E —— +
240 = ; 00h |  XLT | | DOPEN]| |

241 = : S TR S SR— S — S —— S TR S SR— S — S —— +
242 = ;08h| DPB | CSY | ALV | DIRBCB |

243 = ) T S S SR T T S S SR T +
244 = ; 10h | DATBCB | HSHTBL | INIT | LOGIN |
245 = : S TR S SR— S — S —— S TR S SR— S — S —— +
246 = ; 18nh | READ | WRITE |UNIT | CHNNL|NFLAGS|
247 = ) B —— R ——— S —— E —— B —— R ——— S —— +

248 =

249 = 0000 DPH_XLT equ word ptr O

250 = 0005 DPH_DOPEN equ byteptr5

251 = 0008 DPH_DPB equ word ptr 8

252 = 000A DPH_CSV equ word ptr 10

253 = 000C DPH_ALV equ word ptr 12

254 = 000E DPH_DIRBCB equ word ptr 14

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



255 = 0010 DPH_DATBCB equ word ptr 16

256 = 0012 DPH HSHTBL equ word ptr 18

257 = 0014 DPH_INIT equ word ptr 20

258 = 0016 DPH_LOGIN equ word ptr 22

259 = 0018 DPH_READ equ word ptr 24

260 = 001A DPH_WRITE equ word ptr 26

261 = 001C DPH_UNIT equ byte ptr 28

262 = 001D DPH_CHNNL equ byte ptr 29

263 = 001E DPH_NFLAGS equ byteptr 30

ggg - ;*******************************************************
266 = ;

267 = X

268 = ; Disk Parameter Block Equates

ggg — ;*******************************************************
271 = X

272 = , S — S — S — S — S — S — S — S — +
273 = ; 00h | SPT |BSH|BLM|EXM| DSM | DRM..
274 = : +----- +----- +----- +----- +----- +----- +----- +----- +
275 = ; 08h ..DRM |ALO|AL1| CKS | OFF |PSH|
276 = , S — S — S — S — S — S — S — S — +
277 = ; 10h | PHM |

278 = ; +----- +

279 =

280 = 0000 DPB_SPT equ word ptr O

281 = 0002 DPB_BSH equ byteptr 2

282 = 0003 DPB_BLM equ byteptr 3

283 = 0004 DPB_EXM equ byteptr4

284 = 0005 DPB_DSM equ word ptr 5

285 = 0007 DPB_DRM equ word ptr 7

286 = 0009 DPB_ALO equ byteptr 9

287 = 000A DPB_AL1l equ byte ptr 10

288 = 000B DPB_CKS equ word ptr 11

289 = 000D DPB_OFF equ word ptr 13

290 = O00F DPB_PSH equ byteptr 15

291 = 0010 DPB_PHM equ byte ptr 16

38:23 - ;*******************************************************
294 = ;

295 = ; Input/Output Parameter Block Definition

gg? - ;*******************************************************
298 = ;

299 = ; Read and Write disk parameter equates

300 = ;

301 = ; At the disk read and write entries,

302 = ;al disk I/O parameters are on the stack

303 = ; and the stack at these entries appears as

304 = ; follows:

305 = ;

306 = : Fommeee- Fommeeee +

307 = ;  +14| DRV | MCNT | Drive and Multisector count
308 = ; LEEEEEEE oo +

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



309 = ;,  +12| TRACK | Track number

310 = , S S +

311 = ; +10| SECTOR | Physical sector number

312 = : Fommeee- Fommeeee +

313 = ; +8| DMA_SEG | DMA segment

314 = , S S +

315 = ; +6| DMA_OFF | DMA offset

316 = ; SEEEEEEE +oeee- +

317 = ; +4| RET_SEG | BDOS return segment

318 = , S S +

319 = ;

320 = ; +2| RET_OFF | BDOS return offset

321 = , S —— S +

322 = ; BP+0| RET_ADR | Local ENTRY return address
323 = ; Fommeee- oo + (assumesone level of cal

324 = ; from ENTRY routine)

325 = ;

326 = ; These parameters may be indexed and modified

327 = ; directly on the stack and will be removed

328 = ; by the BDOS after the function is complete.

329 =

330 = 000F iopp_ment  equ  byte ptr 15[bp]

331 = 000E iopb_drive equ byte ptr 14[bp]

332 = 000C iopb_track equ word ptr 12[bp]

333 = 000A iopb_sector equ word ptr 10[bp]

334 = 0008 iopb_dmaseg equ word ptr 8[bp]

335 = 0006 iopb_dmaoff equ word ptr 6[bp]

336

337

338 ;*******************************************************
339 ;

340 ; BIOS Kernel Code Publics and Externals

332]2- ;*******************************************************
343 CSEG

344

345 public @sysdat ;force CS override

346 public ?waitflag, ?delay, ?dispatch, ?pmsg

347

348 extrn ?init:near, ?clock_init:near

349

350 ;*******************************************************
351 ;

352 ; BIOS Code Header

353 ;

354 ;*******************************************************
355 org 0000h

356

357 0000 E90500 0008 Jmp biosinit :BIOS initialization entry
358 0003 E94000 0046 jmp biosentry ;BIOS function entry
359

360 0006 @sysdat rw 1 ;OS Data Segment

22]2- BRI R R b b b b b b b b b b b b b S b b b b b b R b b b b b b b b b b b b b b b b b b b b b b b b b b b b

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



363

364 ; BIOS Kernel Data Publics and Externals

ggg ;*******************************************************
367 DSEG

368

369 public @bh_delay, @bh_ticksec, @bh_gdopen, @bh_inint

370 public @bh_nextflag, @bh_lastflag, @bh_intconin, @bh_8087
371 public @bh_dphtable, @bh_cdbtable

372

373 public @bh_ciroot, @bh_coroot, @bh_airoot, @bh_aoroot, @bh_|oroot
374 public @bh_bufbase, @bh_buflen, @bh_memdesc

375

376 extrn @dphaword, @dphb:word, @dphc:word, @dphd:word
377 extrn @dphe:word, @dphf:word, @dphg:word, @dphh:word
378 extrn  @dphi:word, @dphj:word, @dphk:word, @dphl:word
379 extrn @dphm:word, @dphn:word, @dpho:word, @dphp:word
380

381 extrn @cdbaword, @cdbb:word, @cdbc:word, @cdbd:word
382 extrn @cdbe:word, @cdbf:word, @cdbg:word, @cdbh:word
383 extrn  @cdbi:word, @cdbj:word, @cdbk:word, @cdbl:word
384 extrn @cdbm:word, @cdbn:word, @cdbo:word, @cdbp:word
385

386 extrn @signon:byte

387

388 ;*******************************************************
389 ;

390 ; BIOS Data Header

391 ;

392 ;*******************************************************
393 org 0000h

394 ;use the LINK -86 [data] origin[ OFOQ]]] option

395 ;to set the origin of the data segment at OFOOh

396

397 000000 @bh dday db O ;OFFh if process delaying

398 0001 3C @bh ticksec db 60 ;ticks per second

399 000200 @bh_gdopen db O ;OFFh if drive door opened
400 000300 @bh_inint db O ;ininterrupt count

401 0004 04 @bh_nextflag db 4 ;next available flag

402 0005 00 @bh_lastflag db O ;last available flag

403 0006 00 @bh_intconin db O ;OFFh if interrupt driven CONIN:
404 0007 00 @bh_8087 do 0 ;OFFh if 8087 exists

405

406 ; disk parameter header offset table

407

408 0008 0000
409 000A 0000
410 000C 0000
411 0OOE 0000
412 0010 0000
413 0012 0000
414 0014 0000
415 0016 0000
416 0018 0000

@bh_dphtable dw  offset @dpha ;drive A:

dw offset @dphb ;drive B:

dw offset @dphc ;drive C:

dw offset @dphd ;drive D:

dw offset @dphe ;drive E:

dw offset @dphf ;driveF:

dw offset @dphg ;drive G:

dw  offset @dphh ;drive H:

dw offset @dphi ;drivel:

mmMmMmMMmmmMm

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



417 001A 0000 E dw offset @dphj ;drive J:

418 001C 0000 E dw offset @dphk ;drive K:

419 001E 0000 E dw offset @dphl ;drivelL:

420 0020 0000 E dw  offset @dphm ;drive M:

421 0022 0000 E dw offset @dphn ;drive N:

422 0024 0000 E dw offset @dpho ;drive O:

423 0026 0000 E dw offset @dphp ;drive P:

424

425

426 character device block offset table

427

428 (0028 0000 E @bh cdbtable dw offset @cdba ;device A

429 002A 0000 E dw offset @cdbb ;device B

430 002C 0000 E dw  offset @cdbc ;device C

431 002E 0000 E dw offset @cdbd ;device D

432 0030 0000 E dw offset @cdbe ;device E

433 0032 0000 E dw  offset @cdbf ;device F

434 0034 0000 E dw offset @cdbg ;device G

435 0036 0000 E dw offset @cdbh ;deviceH

436 0038 0000 E dw offset @cdbi :devicel

437 003A 0000 E dw offset @cdbj ;deviceJ

438 003C 0000 E dw  offset @cdbk ;device K

439 003E 0000 E dw  offset @cdbl ;device L

440 0040 0000 E dw  offset @cdbm :device M

441 0042 0000 E dw offset @cdbn ;device N

442 0044 0000 E dw offset @cdbo ;device O

443 0046 0000 E dw offset @cdbp ;device P

444

445 Character device roots for console input,

446 console ouput, auxiliary input, auxiliary output

447 and list output.

448

449 0048 0000 E @bh_ciroot dw offset @cdba ;console input

450 004A 0000 E @bh_coroot dw offset @cdba ;console output

451 004C 0000 E @bh_aroot dw offset @cdbb ;aux input

452 004E 0000 E @bh aoroot dw offset @cdbb ;aux output

453 0050 0000 E @bh_loroot dw offset @cdbc ;list output

454

455 0052 0000 @bh_bufbase dw O :offset of buffer

456 0054 0000 @bh buflen dw O ;length of buffer

457

458 0056 @bh_memdesc rw  32*3 ;room for 32 memory descriptors
459

460 ; O.S. error messages

461

462 0116 5401 R bh _chain dw chan_msg ;chain error message address
463 0118 6C01 R bh prompt dw prompt msg ;error CCP prompt message address
464 O011A 7F01 R  bh user dw  user_str ;error CCP command string
465 011C 8401 R bhcpmer dw cmper_msg ;CP/M error message address
466 011E 9501 R bh_func dw  func_msg ;function message address
467 0120 A801 R  bh file dw file_ msg ;file message address

468 0122 B101 R bh erl dw erl msg

469 0124 C701 R bh er2 dw  err2_msg

470 0126 D601 R bh er3 dw  err3_msg

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



471 0128 ES01 R bh er4d dw errd _msg

472 012A F301 R  bh_er5 dw  err5 msg

473 012C 0202 R  bh_er6 dw er6_msg

474 012E OEO2 R  bh_er7 dw  er7_msg

475

476 ;*******************************************************
477 ;

478 ;

479 ; BIOS Code Segment

480 ;

481 ;*******************************************************
482 CSEG

483

484 i========

485 biosinit:

486 i========

487 ; Entry: DS = system data segment

488 ; ES = process environment (preserved through call)

489 ; Exit: DS = SYSDAT segment

490 ; ES = process environment (preserved through call)

491

492 0008 EB0000 E cal ?init ;perform any generd initialization
493

494 000B 33F6 Xor s,si ;index into tables

495 000D B91000 mov cx,16 ;16 total drives and devices
496 next_device:

497 001051 push cx

498 00118B9C2800 R mov bx,@bh_cdbtable[si] ;offset of CDB in table
499 0015 0BDB or bx,bx ;s offset zero

500 0017 7407 0020 jzinit_drv ;yes no character device

501 0019 32D2 xor di,di ;DL =0, first call to CDB init

502 001B 56 push s

503 001C FF5718 cal CDB_INIT[bx]

504 001F 5E pop si

505 init_drv:

506 00208B9C0800 R mov bx,@bh_dphtable[si] ;offset of DPH in table
507 0024 0BDB or bx,bx Jisit zero

508 0026 7405 002D jz zero_entry ;yes get next device

509 0028 56 push s

510 0029 FF5714 cal DPH_INIT[bx]

511 002C 5E pop si

512 zero_entry:

513 002D 4646 incs!incs

514 002F 59 pop cX

515 0030 E2DE 0010 loop next_device

516

517 00328B1E4800 R mov bx,@bh_ciroot

518 0036 8A470F mov a,CDB_IINPUT[bx]

519 0039 A20600 R mov @bh_intconin,a ;Setup console input interrupt flag
520

521 003C E80000 E call ?clock_init ;initialize the system clock
522

523 003FBEOOOO E mov si,offset @signon ;sign-on message defined in INIT module
524 0042 ESFEQO 0143 cal ?pmsg ;print the BIOS sign-on message

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



525 0045CB retf

gg? ;*******************************************************
528 ;

529 ; BIOS Entry Function Dispatch

530 ;

531 ;

532 ;*******************************************************
533

534 i=========

535 biosentry: ; BIOS Entry Point

536 i=========

537 ; All callsto the BIOS after INIT, enter through this code

538 ; with a CALLF and must return with a RETF.

539 ; Entry: AL = function number

540 ; CX = first parameter

541 ; DX = second parameter

542 ; DS = system data segment

543 ; ES = process environment (preserved through call)

544 ; Exit: AX = BX = return or BIOS error code

545 ; DS = SYSDAT segment

546 ; ES = process environment (preserved through call)

547 ; SS,SP must also be preserved

548 ; CX,DX,SI,DI,BP can be changed by the BIOS

549

550 0046 3C807312  005C cmp al,80h ! jaerange err  ;check for BIOS functions above 80h
551 004A FC cld ;Clear direction flag

552 004B 32E4D1EO xor ah,ah ! shl ax,1 ;index into BIOS function table
553 004F 8BD8 mov bx,ax

554 0051 FF973001 R call functab[bx] ;call BIOS kernel routine
555 0055 8EO64E00 mov es,rlr ;restore ES

556 bdos ret:

557 0059 8BD8 mov bx,ax ;BX = AX

558 005B CB retf

559 range_err:

560 005C B8FFFF mov ax,0FFFFh ;function out of range

561 O05F EBF8 0059 jmps bdos _ret

22:23 ;*******************************************************
564 ;

565 ; BIOS Device Initialization Routines

gg? ;*******************************************************
568

569 io_devinit: ;BIOS function 14

570 i==========

571 ; Entry: CX = Offset of CDB

572 ; Exit: AX = 0if successful

573 X = OFFFFh if error

574

575 0061 8BD9 mov bx,cx

576 0063 B201 mov dl,1 ;DL =1, not first call to CDB init
577 0065 FF6718 jmp CDB_INIT[bx]

578

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



579 rhkhkkkkhhkkkhhkkhhkkhhhkkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkkhhkkhhkkhkhkkhkhkkhkhkkkkkx%
)

580 :

581 ; BIOS Character Input Status Routines

ggg ;*******************************************************
584

585

586 io_conist:  ;BIOS function 0

587 ;:::::::::

588 X Entry: None

589 ; Exit: AL = OFFH if ready

590 ; AL = 000H if not ready

591

592 0068 8B1E4800 R mov bx,@bh_ciroot ;console input root
593 ;  jmpsist_scan ;fal through to IST_SCAN
594

595 ist_scan:

596 jmmmmm—-

597 006C 0BDB7403 0073 or bx,bx ! jzno_stat_dev

598 0070 FF671C jmp CDB_INSTAT[bx]

599 no_stat_dev:

600 0073 33C0 Xor ax,ax

601 0075 C3 ret

602

603 io_auxist:  ;BIOS function 16

604 i=========

605 ; Entry: None

606 ; Exit: AL = OFFH if ready

607 ; AL = 000H if not ready

608

609 0076 8B1E4ACO0 R mov bx,@bh_airoot ;aux input root
610 007A EBFO 006C jmps ist_scan

gi% ;*******************************************************
613 ;

614 ; BIOS Character Output Status Routines

gig ;*******************************************************
617

618 io_listst:  ;BIOS function 3

619 i=========

620 X Entry: None

621 ; Exit: AL = OFFH if ready

622 ; AL = 000H if not ready

623

624 007C 8B1E5000 R mov bx,@bh_loroot ;list root

625 0080 BF1600 mov di,CDB_LOLINK

626 0083 EBO7 008C jmps ost_scan

627

628 io_conost:  ;BIOSfunction 15

629 i=========

630 ; Entry: None

631 X Exit: AL = OFFH if ready

632 ; AL = 000H if not ready

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



633

634 00858B1E4A00 R mov bx,@bh_coroot ;console output root
635 0089 BF1200 mov di,CDB_COLINK

636 ;  Jmps ost_scan ;fall through to OST_SCAN

637

638

639 ost_scan: ;output status scanner

640 e

641 ; Entry: BX = offset of CDB

642 ; DI = offset within CDB to next link

643 ; Exit: AL = OFFH if ready

644 ; AL = 000H if not ready

645

646 008C OBDB740F  O09F or bx,bx ! jz ost_rdy ;if zero status's defined ready
647 0090 5357 push bx ! push di

648 0092 FF5720 call CDB_OUTSTATI[bx] ;perform output status check
649 0095 5F5B pop di ! pop bx

650 0097 0ACO07406  00A1 ora,a !jzost_notrdy ;if one device not ready,none are.
651

652 009B 8B19 mov bx,[di+bx]

653 009D EBED 008C jmps ost_scan

654 ost_rdy:

655 O009F BOFF mov al,0FFh

656 ost_notrdy:

657 00A1C3 ret

658

659 io_auxost:  ;BIOS function 17

660 i=========

661 X Entry: None

662 X Exit: AL = OFFH if ready

663 ; AL = 000H if not ready

664

665 00A2 8B1E4E00 R mov bx,@bh_aoroot ;aux output root
666 00A6 BF1400 mov di,CDB_AOLINK

667 OOA9 EBE1 008C jmps ost_scan

ggg ;~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k
670 ;

671 ; BIOS Character Input Routines

g;g ;********~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k
674

675 io_conin: ;BIOS function 1

676 i========

677 X Entry: None

678 ; Exit: AL = character

679

680 OOAB 8B1E4800 R mov bx,@bh_ciroot ;console input root
681 ;  jmpsin_scan ;fall through to IN_SCAN

682

683 in_scan: ;Character output

684 e

685 ; Entry: BX = offset of CDB

686 ; Exit: AL = character

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



687
688 OOAF OBDB7403  00B6 or bx,bx ! jz no_input_dev

689 00B3 FF671A jmp CDB_INPUT[bx] ;get character
690

691 no_input_dev:

692 00B6 33C0 XOr ax,ax

693 00B8 C3 ret

694

695 10_auxin: ;BIOS function 5

696 i========

697 ; Entry: None

698 ; Exit: AL = character

699

700 00B9 8B1E4ACO0 R mov bx,@bh_airoot ;aux input root
701 00BD EBFO 00AF jmps in_scan :get character

;gg ;~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k***********************
704 X

705 ; BIOS Character Output Routines

;8? ;***~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k***********************
708

709 io_conout:  ;BIOS function 2

710 i=========

711 ; Entry: CL = character

712 ; Exit: None

713

714 00BF 8B1E4A00 R mov bx,@bh_coroot ;console output root
715 00C3 BF1200 mov di,CDB_COLINK

716 ;  jmpsout_scan ;fall through to OUT_SCAN
717

718 out_scan: ;Character output

719 jmmm -

720 ; Entry: CL = character

721 ; BX = offset of CDB

722 ; DI = offset within CDB to next link

723 ; Exit: None

724

725 00C6 0BDB740D  00D7 or bx,bx ! jz out_exit ;zero = done
726 00CA 535157 push bx ! push cx ! push di ;save the character
727 00CD FF571E cal CDB_OUTPUT[bx] ;output the character
728 00DO 5F595B pop di ! pop cx ! pop bx

729 00D38B19 mov bx,[di+bx] ;get next cdb offset
730 00D5 EBEF 00C6 jmps out_scan

731 out_exit:

732 00D7 C3 ret

733

734 io_list: ;BIOS function 4

735 i=======

736 ; Entry: CL = character

737 ; Exit: None

738

739 00D8 8B1E5000 R mov bx,@Dbh_loroot ;list output root
740 00DC BF1600 mov di,CDB_LOLINK

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



741 OODF EBES5 00C6 jmps out_scan

742

743

744 io_auxout:  ;BIOS function 6

745 j=========

746 ; Entry: CL = character

747 ; Exit: None

748

749 OOE18B1E4E00 R mov bx,@bh_aoroot ;aux output root

750 O0OE5 BF1400 mov di,CDB_AOLINK

751 OOE8 EBDC 00C6 jmps out_scan

;gg ;~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k************************
754 X

755 ; BIOS Disk I/0O Routines

756 ;

757 ;~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k************************
758

759 io_seldsk:  ;BIOSfunction 9

760 i=========

761 ; Entry: CL = disk to be selected

762 ; DL = (Bit 0): Oif first select

763 ; Exit: AX = 0if illegal select

764 ; = offset of DPH relative to OS data segment

765

766 OOEA 33DB xor bx,bx

767 OOEC 80F90F7714 0105 cmpcl,15! jase ret ;if not valid drive exit
768 OO0F1 8AD9D1E3 mov bl,cl ! shl bx,1 ;double drive number
769 O00F58B9F0800 R mov bx,@bh_dphtable[bx] ;index into drive table
770 O0F90BDB7408 0105 or bx,bx ! jz sel_ret ;zero = bad select

771 OOFD F6C2017503 0105 testdl,1!jnzsel_ret ;first time select?

772 0102 FF5716 cal DPH_LOGIN[bx] ; yes

773 sel_ret:

774 0105 8BC3 mov ax,bx

775 0107 C3 ret

776

777 i0_read: ;BIOS function 10

778 i=======

779 ; Entry: IOPB filled in (on stack)

780 ; Exit: AL = Oif noerror

781 ; = 1if physica error

782 ; = OFFH if media density has changed

783

784 0108 BF1800 mov di,DPH_READ ;DPH read routine offset
785 010B EBO5 0112 jmps read_write ;jump to common i/o routine
786

787 io_write: :BIOS function 11

788 i========

789 ; Entry: 10PB filled in (onstack)

790 X Exit: AL = Oif noerror

791 ; = 1if physical error

792 ; = 2if Read/Only disk

793 ; = OFFH if media density has changed

794

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



795 010D BF1A00 mov di,DPH_WRITE ;DPH write routine offset
796

797 0110 EBOO 0112 jmps read_write ;jump to common i/o routine
;gg ;*******************************************************
800 ;

801 ; BIOS Disk I/0 Common Read/Write Routines

ggg ;*******************************************************
804

805 read_write: ;checksfor valid disk and calls read or write

806 jmmmmmmmme ; routine for that drive

807 ;

808 ; Entry: DI = offset of read or write routine in DPH

809 ; Exit: AX = return code

810

811 0112 8BEC mov bp,sp ;SS:BP points to IOPB

812 0114 8ASEOE mov bl,iopb_drive

813 0117 32FFD1E3 xor bh,bh ! shl bx,1

814 011B 8B9F0800 R mov bx,@bh_dphtable[bx] ;get DPH address
815 011F0BDB7402 0125 or bx,bx! jz ret_error ;check if valid

816 0123 FF21 jmp word ptr [bx+di] ;jump to DPH read or write routine
817 ret_error:

818 0125 B001 mov al,1 ;return error if not valid

819 0127 C3 ret

820

821 io_flush: ;BIOS function 12

822 i========

823 X Entry: None

824 ; Exit: AL = 0if no error

825 ; = 1if physical error

826 ; = 2if Read/Only disk

827

828 0128 33C0 XOr ax,ax ;flush not necessary

829 012A C3 ret ;when BDOS deblocking

ggg ;*******************************************************
832 ;

833 ; Concurrent-86 Functions Not |mplemented

ggg ;*******************************************************
836

837 io_notimp:  ;BIOSfunction 7,8,13

838 i=========

839 012B 33C0 XOor ax,ax ;return success

840 012D C3 ret

841

842 ;*******************************************************
843 ;

844 ; Public Routine Code Segment

gig ;*******************************************************
847

848 ?2waitflag:  ;FLAG WAIT - Wait for pseudo interrupt

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



849

850 i=========

851 ; Entry: DL = number of flag to wait on.

852 ; Exit: AL=0

853

854 012E B184 mov cl,132 ;flagwait function number
855 0130 FF1E3000 calf bdos ;call the OS

856 0134 C3 ret ;return to BIOS caller

857

858 ?delay: ;DELAY - Delay specified no. of system ticks
859 i======

860 ; Entry: DX = number of system ticks to delay

861 ; Exit: None

862

863 0135B18D mov cl,141 ;delay function number
864 0137 FF1E3000 calf bdos ;call the OS

865 013B C3 ret ;return to BIOS caller

866

867 ?2digpatch:  ;DISPATCH - force a dispatch

868 i=========

869 X Entry: None

870 ; Exit: None

871

872 013C B18E mov cl,142 ;dispatch function number
873 013E FF1E3000 callf bdos ;call the OS

874 0142 C3 ret ;return to BIOS caller

875

876 ?pmsg: ;Print String

877 ;:::::

878 ; Entry: DS:SI = offset of string terminated by 0.

879 ; ES = process environment segment

880 ; Exit: None

881

882 0143 26803E4600FF cmp err_mode,0FFh ;if return error mode is set
883 0149 740E 0159 je pmsg_exit ; dont print message
884 next_char:

885 014B 8A0C mov cl,[sI] ;get character from buffer
886 014D 0AC97408 0159 orcl,cl ! jzpmsg_exit  ;check for O terminater
887 0151 56 push s

888 0152 ES6AFF 00BF call io_conout ;output character in CL
889 0155 5E pop si

890 0156 46 incs

891 0157 EBF2 014B jmps next_char ;get next character
892 pmsg_exit:

893 0159 C3 ret

894

895 ;*******************************************************
896 ;

897 ; BIOS Data Segment

898 ;

899 ;*******************************************************
900 DSEG

901

902

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



903 : BIOS Function Table

904

905 01306800 R  functab dw io_conist ; O- console status
906 0132 AB0O dw io_conin ; 1 - console input
907 0134 BFOO dw io_conout ;2 - consoleoutput
908 0136 7C00 dw io listst  ; 3- list output status
909 0138 D800 dw o list ; 4 - list output

910 013A B900 dw io_auxin ; 5 - aux input

911 013C E100 dw io_auxout ;6 - aux output

912 013E 2B01
913 0140 2B01
914 0142 EA00
915 0144 0801
916 0146 0D0O1
917 0148 2801
918 014A 2B01
919 014C 6100
920 014E 8500
921 0150 7600
922 0152 A200
923

924 0154 ODOA43616E6E chain msg db 13,10,'Cannot Load Program',13,10,'$
925 6F74204C6F61

926 642050726F67

927 72616D0D0A24

928 016C ODOA43616E6E prompt msg db  13,10,'Cannot Load CCP $

929 6F74204C6F61

930 642043435020

931 24

932 017F 0455534552 user_str do 4'USER'

933 0184 0D0OA43502F4D cmperr_ msg  db  13,10,,CP/M Error On $

934 204572726F72

935 204F6E2024

936 0195 0D0A42444F53 func_msg do  13,10,BDOS Function = $

937 2046756E6374

938 696F6E203D20

dw io_notimp ;7- CCP/M function
dw io notimp ;8- CCP/M function
dw io_seldsk ;9 - select disk
dw o _read ;10 - read sector

dw io write :11 - write sector
dw io_flush ;12 - flush buffers

dw io notimp ;13- CCP/M function
dw io_devinit ;14 - char. deviceinit
dw io_conost ;15 - console output status
dw io auxist ;16 - aux input status
dw i0_auxost ;17 - aux output status

DAV ODgPA P gD o ogXOOg

939 24
940 01A8 2046696C6520 file_msg do 'File=¢
941 3D2024

942 01B1 4469736B2052 errl msg db 'Disk Read/Write Error$
943 6561642F5772

944 697465204572

945 726F7224

946 01C7 526561642D4F err2_msg db  'Read-Only Disk$
947 6E6C79204469

948 736B24

949 01D6 526561642D4F err3_msg db  'Read-Only File$
950 6E6C79204669

951 6C6524

952 01E5 496E76616C69 errd_msg do  'Invalid Drive$
953 642044726976

954 6524

955

956 01F350617373776F err5 msg do  'Password Error$

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



957 726420457272

958 6F7224

959 0202 46696C652045 err6_msg do 'File Exists$
960 786973747324

961 020E 3F20696E2046 err’_msg db  "?in Filename$
962 696C656E616D

963 6524

964

965 END

966

967

968 END OF ASSEMBLY. NUMBER OF ERRORS: 0. USE FACTOR: 10%

?CLOCK_INIT 0000L 348 521

?DELAY 0135L 346 858#
?DISPATCH 013CL 346 867#
?INIT 0000 L 348 492
?PMSG 0143 L 346 524 876#

?WAITFLAG 012EL 346 848#

@BH_8087 0007V 370 404#

@BH_AIROOT  004CV 373 451# 609 700
@BH_AOROOT  004EV 373 452# 665 749
@BH_BUFBASE 0052V 374 455#
@BH_BUFLEN 0054V 374 456#
@BH_CDBTABLE 0028V 371 428# 498
@BH_CIROOT 0048V 373 449# 517 592 680
@BH_COROOT  004A V 373 450# 634 714
@BH_DELAY 0000V 369 397#
@BH_DPHTABLE 0008V 371 408# 506 769 814
@BH_GDOPEN 0002V 369 399

@BH_ININT 0003V 369 400#
@BH_INTCONIN 0006V 370 403# 519
@BH_LASTFLAG 0005V 370 402#
@BH_LOROOT 0050V 373 453# 624 739
@BH_MEMDESC 0056V 374 458#
@BH_NEXTFLAG 0004V 370 401#
@BH_TICKSEC 0001V 369 398#

@CDBA 0000V 381 428 449 450
@CDBB 0000V 381 429 451 452
@CDBC 0000V 381 430 453
@CDBD 0000V 381 431

@CDBE 0000V 382 432

@CDBF 0000V 382 433

@CDBG 0000V 382 434

@CDBH 0000V 382 435

@CDBI 0000V 383 436

@CDBJ 0000V 383 437

@CDBK 0000V 383 438

@CDBL 0000V 383 439

@CDBM 0000V 384 440

@CDBN 0000V 384 441

@CDBO 0000V 384 442

@CDBP 0000V 384 443

@DPHA 0000V 376 408

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



@DPHB
@DPHC
@DPHD
@DPHE
@DPHF
@DPHG
@DPHH
@DPHI
@DPHJ
@DPHK
@DPHL
@DPHM
@DPHN
@DPHO
@DPHP
@SIGNON
@SY SDAT
BAUD 110
BAUD_1200
BAUD_1345
BAUD_150
BAUD_1800
BAUD_192
BAUD_200
BAUD_2000
BAUD_2400
BAUD_300
BAUD_3600
BAUD 384
BAUD_4800
BAUD_50
BAUD 56
BAUD_600
BAUD_625
BAUD_7200
BAUD_75
BAUD_768
BAUD_9600
BAUD_NONE
BAUD_OEM1
BAUD_OEM2
BAUD_OEM3
BDOS
BDOS RET
BH_CHAIN
BH_CPMERR
BH_ERR1
BH_ERR2
BH_ERR3
BH_ERR4
BH_ERR5
BH_ERR6
BH_ERR7
BH_FILE

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]

0000V 376 409
0000V 376 410
0000V 376 411
0000V 377 412
0000V 377 413
0000V 377 414
0000V 377 415
0000V 378 416
0000V 378 417
0000V 378 418
0000V 378 419
0000V 379 420
0000V 379 421
0000V 379 422
0000V 379 423
0000V 386 523
0006 V
0004 N 208#
000A N 215#
0005 N 209#
0006 N 210#
000B N 216#
0012 N 223#
0007 N 211#
000OC N 217#
000D N 218#
0008 N 212#
O0OOE N 219#
0013 N 224#
O000OF N 220#
0001 N 205#
0014 N 225#
0009 N 214#
0002 N 206#
0010N 221#
0003 N 207#
0015 N 226#
0011 N 222#
0000 N 204#
0016 N 227#
0017 N 228#
0018 N 229#

0030V 84# 855 864 873

0059 L 556# 561
0116V 462#
011CV 465#
0122V 468#
0124V 469#
0126V 470#
0128V 471#
012A V 472#
012CV 473#
012EV 474#
0120V 467#

345 360#



BH_FUNC 011EV 466#
BH_PROMPT 0118V 463#
BH_USER 011A V 464#
BIOSENTRY  0046L 358 535#
BIOSINIT ~ 0008L 357 485#

CC 15 SBITS 0400N 183#

CC_1 SBITS 0000N 182#

CC 2 SBITS 0800N 184#

CC 5 DBITS 0000N 178#

CC 6 DBITS 0100N 179#

CC_7 DBITS 0200N 180#

CC_8 DBITS 0300N 181#
CC_DBITS MSK 0300N 190#
CC_DBITS SHF 0008N 191#
CC_DTR 0008N 171#
CC_ENABLE  0020N 173#
CC_ETX 0002N 169#
CC_EVEN 0040N 175#
CC_MARK 008ON 176#
CC_ODD 0000N 174#
CC_PARITY_MSK O00EON 188#
CC_PARITY_SHF 0005N 189#
CC_POL 0010N 172#
CC_RTS 0004 N 170#
CC_SBITS MSK OCOON 192#
CC_SBITS SHF 000A N 193#
CC_SPACE  00CON 177#
CC_XON 0001 N 168#
CDB_AOLINK  0014N 138# 666 750
CDB_COLINK  0012N 137# 635 715
CDB_CURCHAR 0008N 128#
CDB_CUROEM  000B N 130#
CDB_IINPUT  00OF N 134# 518
CDB_INIT  0018N 140# 503 577
CDB_INPUT  001A N 141# 689
CDB_INSTAT  00ICN 142# 598
CDB_LOLINK  0016N 139 625 740
CDB_NAME  0000N 126#
CDB_NFLAGS 0010N 135#
CDB_OUTPUT  001EN 143# 727
CDB_OUTSTAT 0020N 144# 648
CDB_RESRV  0011N 136#
CDB_RXB 000D N 132#
CDB_SUPCHAR 0006 N 127#
CDB_SUPOEM  000A N 120%#
CDB_TXB 000C N 131#
CDB_TYPE  O000EN 133#
CHAIN_MSG 0154V 462 924#
CMPERR MSG 0184V 465 933#
CON_LEN 0067V 100#
CON_WIDTH 0066V 99#

CS SREG V

CS 15 SBITS 4000N 163#

CS 1 SBITS 2000N 162#

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



CS 2 SBITS 8000N 164#

CS 5 DBITS 0200N 157#

CS 6 DBITS 0400N 158#

CS 7 DBITS 0800N 159#

CS 8 DBITS 1000N 161#

CS DTR 0008N 151#

CS ETX 0002N 149#

CS EVEN 0040N 154#

CS MARK 0080N 155#

CS ODD 0020N 153#

CS POL 0010N 152#

CS RTS 0004 N 150#

CS SPACE  0100N 156#

CS XON 0001 N 148#
CT_INPUT  000LN 197#
CT_OUTPUT  0002N 198#
CT_SERIAL  0008N 200#
CT_SOFTBAUD 0004N 199#
DPB_ALO 0009 N 286#
DPB_AL1 000A N 287#
DPB_BLM 0003N 282#
DPB_BSH 0002N 281#
DPB_CKS 000B N 288#
DPB_DRM 0007 N 285#
DPB_DSM 0005 N 284#
DPB_EXM 0004 N 283#
DPB_OFF 000D N 289#
DPB_PHM 0010N 291#
DPB_PSH 000F N 290#
DPB_SPT 0000N 280#
DPH_ALV 000C N 253#
DPH_CHNNL 001D N 262#
DPH_CSV 000A N 252#
DPH_DATBCB  0010N 255#
DPH DIRBCB  000EN 254#
DPH_DOPEN  0005N 250#
DPH_DPB 0008N 251#
DPH_HSHTBL  0012N 256#
DPH_INIT  0014N 257# 510
DPH LOGIN  0016N 258# 772
DPH_NFLAGS 001EN 263#
DPH_READ  0018N 259# 784
DPH UNIT  00ICN 261#
DPH_ WRITE  001A N 260# 795
DPH_XLT 0000 N 249#

DS SREG V

ERRL MSG  01B1V 468 942#
ERR2 MSG  01C7V 469 946#
ERR3 MSG  01D6V 470 949%
ERR4 MSG  O1E5V 471 952#
ERR5 MSG  O01F3V 472 956#
ERR6 MSG 0202V 473 959#
ERR7 MSG  020EV 474 961#
ERR MODE 0046V 102# 882

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



ES SREGV 102 555
FILE MSG  O1A8V 467 940#
FUNCTAB 0130V 554 905#
FUNC MSG 0195V 466 936#
INIT_ DRV 0020L 500 505#

INT_ CHARSCAN 003CV 87#
INT_DISPATCH 0034V 85#
INT_SETFLAG 0038V 86#

IN_SCAN O0AF L 683# 701
IOPB_DMAOFF 0006V 335#
IOPB_DMASEG 0008V 334#
IOPB_DRIVE  000EV 331# 812
IOPB_MCNT  O0OFV 330#
IOPB_SECTOR 000A V 333#
IOPB_TRACK  000CV 332#

IO AUXIN  00BOL 695# 910
IO_AUXIST  0076L 603# 921
IO_AUXOST  00A2L 659 922
IO_AUXOUT  OOELL 744# 911
IO_CONIN  O00AB L 675# 906
IO_CONIST  0068L 586# 905
IO_CONOST  0085L 628# 920
IO_CONOUT  00BF L 709% 888 907
IO DEVINIT  0061L 569 919

IO FLUSH  0128L 821# 917

IO LIST  00DSL 734# 909
|IO_LISTST  007CL 618# 908

IO NOTIMP  012BL 837# 912 913 918
|0_READ 0108L 777# 915

IO SELDSK  O0EA L 759 914

IO WRITE 010D L 787# 916

IST SCAN  006CL 595# 610

NEXT CHAR  014B L 884# 891
NEXT DEVICE 0010L 496# 515

NO INPUT DEV 00B6L 6838 691#
NO STAT DEV  0073L 597 599#
OSBASESEG 0046V 89#
OSENDSEG 0048V 90#
OST_NOTRDY  00AlL 650 656#
OST_RDY 009F L 646 654#
OST_SCAN  008CL 626 639% 653 667
OUT EXIT  00D7L 725 731#
OUT_SCAN  00C6L 718# 730 741 751
PMSG EXIT  0159L 883 886 892#
PROMPT MSG  016CV 463 928#
RANGE ERR  005CL 550 550#
READ WRITE 0112L 785 797 805#
RET ERROR  0125L 815 817#

RLR 004EV O2# 555

SEL_ RET  0105L 767 770 771 773#
ss SREG V

TOD DAY 005FV  94#

TOD_HR 0061V 95#

TOD_MIN 0062V 96#

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



TOD_SEC 0063V 97#
USER_STR 017FV 464 932#
ZERO_ENTRY 002D L 508 512#

EOF

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversi on/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGB. TX T[2/6/2012 4:40:31 PM]



CPMPIGCWHA (= "CP/M-86 Plus Installation Guide", appendix C)

(Edited by Emmanuel ROCHE.)

Appendix C: SYSDAT Format

This appendix discusses SY SDAT segment fields that are pertinent to the system
implementor. The SYSDAT segment is the same as the BIOS data segment. The BIOS
data starts at offset OFOOh, and the SY SDAT fields are at the beginning of the
segment with the offsets shown in Figure C-1. Table C-1 describes each field.

O O O O O O O O +

280 BIOS ENTRY | BIOSINIT |
S S S S S S S S S S S S S S S S +
30h|  BDOS | INT_DISPATCH |
domne- domne- domne- domne- domne- domne- domne- domne- +
38| INT_SETFLAG | INT_CHARSCAN |

R R R R R R R R +

40n:] RESERVED | RESERVED | OSBASESEG |
domne- domne- domne- domne- domne- domne- domne- domne- +

48n:] OSENDSEG| RESERVED | RLR |
S S S S S S S S S S S S S S S S +
50h:| RESERVED |
domne- domne- domne- domne- domne- domne- domne- domne- +
58h| RESERVED |

60h:| TOD_DAY | TOD | TOD | TOD | RESE|CON_ |[CON_|
| | HR|_MIN|_SEC| RVED|WIDTH|LEN |
S R—— S R—— S R—— S R—— S R—— S R—— S R—— S R—— +

Figure C-1. SYSDAT Fields

Listing C-1. SYSDAT.LIB

skkkkkkhkkkkhkkkhhkkhkkhhkhkkhhkhkkhhkhkkhhkkhkhkkhkhhkhkhhkhkkhhkhkkhhkkhkkhkkhkkkikkkkx*
’

; System Data Definitions

1
skkkkkkhkkkkhkkkhhkkhkkhhkhkkhhkhkkhhkhkkhhkkhkhkkhkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhkkkikkkk*x*
’

bdos equ dword ptr .30h ;entry into operating system
int_dispatch equ dword ptr .34h ;exit from interrupt handler
int_setflag equ dword ptr .38h ;interrupt SETFLAG function
int_charscan equ dword ptr .3Ch ;interrupt live key scanner

osbaseseg equ word ptr .46h ;base of the OS in paras
osendseg equ word ptr .48h ;first para after OS

rlr equ word ptr .4Eh ;ready list root

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGC. TX T[2/6/2012 4:40:32 PM]



tod_day equ word ptr .5Fh ;number of days since 1/1/78
tod_hr equ byte ptr .61h ;current hour in becd

tod_min equ byte ptr .62h ;current minute in bcd
tod_sec equ byte ptr .63h ;current second in bed

con_width  equ byte ptr .66h ;console width
con_len equ byte ptr .67h ;console length

err_mode equ esbyte ptr.46h ;process error modein
;in process descriptor

Table C-1. SYSDAT Fields

Format: Data Field
Explanation

BIOS ENTRY
[Double word address of the IMP BIOSENTRY instruction in the BIOS Kernel Code
Header] All BDOS calls to the BIOS go through this entry point.

BIOS INIT

[Double word address of the IMP BIOSINIT instruction in the BIOS Kernel Code
Header] Hardware initialization not performed by the disk boot loader or
CPMLDR is performed by the BIOSINIT routine.

BDOS

[Double word address of the BDOS entry point for system calls made when
already in the operating system] All BIOS calls back to the BDOS, except from
interrupt service routines, use this double word address. See the public BIOS
Kernel ?DISPATCH and ?DELAY routines for examples. The register conventions
for this entry require DSto contain the SYSDAT segment (the BIOS data
segment), and ES to contain the running process's environment segment. The
other registers follow the conventions shown in the "Programmer's Guide" for a
system call using INT 224 instruction, except that the BDOS puts the return
code only in BX, and not in both AX and BX. The amount of stack required by
the BDOS depends on the system call and the resulting BIOS functions that are
required. However, performing an INT 224 instruction from the BIOS to invoke a
system call requires more stack space. When the BIOS performsan INT 224, it
is reentering the BDOS through the same path the application previously used.
The BDOS only switches stacks on the first entry viaan INT 224; otherwise,
the same stack is used. Section 3 discusses the stack guaranteed by the BDOS

on afirst level cal to the BIOS from the BDOS.

INT_DISPATCH

[Double word address of the BDOS dispatcher entry point]

INT_DISPATCH can only be used to exit an interrupt service routine. Executing
a JMPF instruction to this address is equivalent to executing a POP DS and an
IRET (Interrupt Return instruction). The dispatcher saves the context of the
running process, and restores the context of a second processthat has been
waiting for the CPU. The dispatcher then gives the CPU to this second process.
See "Interrupt Device Drivers' in Section 4.

INT_SETFLAG

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGC. TX T[2/6/2012 4:40:32 PM]



[Double word address of the BDOS interrupt setflag function]
INT_SETFLAG can only be called from an interrupt service routine. See
"Interrupt Device Drivers' in Section 4.

INT_CHARSCAN

[Double word address of the BDOS interrupt character scanner]
INT_CHARSCAN can only be caled from an interrupt service routine. The
character scanner is provided for live keyboard support of the physical device
currently attached to the logical input device CONIN:. See "Interrupt Device
Drivers' in Section 4, and "Interrupt-driven Character 1/0" in Section 6.

OSBASESEG

[Starting paragraph of the operating system code]

OSBASESEG is set by GENCPM, and is the code segment of the BDOS. See Figure E-
2.

OSENDSEG

[First paragraph past the end of the operating system data]

OSENDSEG includes al buffers allocated to the operating system by GENCPM, but
not made part of the CPMP.SY S file. See "GENCPM Utility" in Section 9, and
also Figure E-2.

RLR

[Ready list root]

RLR is the segment address of currently running process environment. The BDOS
calls the BIOS with this value in the ES register, and the BIOS preserves or
restores this value in ES before returning to the BDOS.

TOD_DAY
Number of days since January 1, 1978.

TOD_HR
Hour of the day in packed binary coded digits (BCD).

TOD_MIN
Minute of the hour in packed binary coded digits (BCD).

TOD_SEC
Second of the minute in packed binary coded digits (BCD).

CON_WIDTH
Number of columns of screen.

CON_LEN

Number of rows of screen.

EOF

file:/IIC|/...ervation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/CPM -86%20P us%20I nstal | ati on%20Guide/ CPM PIGC. TX T[2/6/2012 4:40:32 PM]



CPMPIGD.W$4 (= "CP/M-86 Plus Installation Guide", appendix D)

(Edited by Emmanuel ROCHE.)

Appendix D: Disk Parameter Block Worksheet

This worksheet is intended to help in creating a Disk Parameter Block (DPB)
containing the specifications for the particular disk hardware you are
implementing. Y ou can photocopy the DPB worksheet and use it to record your
DPB calculations for each drive you define in the BIOS. Severa of the steps

in the worksheet represent intermediate cal culations that are not part of the

DPB. Steps that result in values to be placed in the DPB are labeled "field in
Disk Parameter Block™.

<A> Allocation Block Size

CP/M-86 Plus allocates disk space in a unit known as an allocation block. This
is the minimum disk allocation unit for files on this drive. This value can be
1024, 2048, 4096, 8192, or 16,384 decimal bytes, or 400h, 800h, 1000h, 2000h,
or 4000h bytes, respectively. Choosing a large allocation block size alows
more efficient usage of directory space for largefiles and allows a larger
number of directory entries. On the other hand, choosing a smaller block size
increases the size of the allocation vectors since there are more blocks on an
equivalent drive. A large alocation block size increases the average wasted
space per disk file. Thisisthe alocated disk space beyond the logical end

of afile.

There are several restrictions on the block size. If the block size is 1024
bytes, there cannot be more than 255 blocks present on alogical drive. In

other words, if the disk is larger than 256 Kbytes, it is necessary to use an
allocation block size of at least 2048 bytes.

<B> DPB_BSH (Block Shift) field in Disk Parameter Block

<C> DPB_BLM (Block Mask) field in Disk Parameter Block

Determine the values of DPB_BSH and DPB_BLM from the following table given the
allocation block size from step <A>.

Table D-1. DPB_BSH and DPB_BLM Values

<A> DPB BSH DPB_BLM

1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63
16,384 7 127

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/ CPM -86%20PI us%620I nstal | ati on%20Guide/ CPM PIGD . TX T[2/6/2012 4:40:33 PM]



<D> Totda Allocation Blocks

Determine the total number of alocation blocks on the disk drive. First,
calculate the total available space onthedrive in bytes. Do this by
multiplying the total number of tracks onthe disk (minus reserved boot
tracks) by the number of sectors per track and the physical sector size.
Divide this figure by the allocation block size determined in <A> earlier.
This quotient, rounded down to the next lowest integer value, is the total
allocation blocks for thedrive. (The boot tracks are determined by the
DPB_OFF field.)

<E> DPB_DSM (Disk Size Max) field in Disk Parameter Block
The value of DPB_DSM equals the total number of allocation blocks that this
particular drive supports, minus 1.

<F> DPB_EXM (Extent Mask) field in Disk Parameter Block

Obtain the value of DPB_EXM from the following table, using the values from
steps <A> and <BE>.

Table D-2. DPB_EXM Values

If <E>is If <E>isgreater
lessthan 256  than or equal to
<A> thenDPB_EXM = 256 then DPB_EXM =

1,024 0 INVALID
2,048 1 0

4,096 3 1

8,192 7 3
16,384 15 7

<G> Directory Blocks

Determine the number of allocation blocks reserved for the directory. This
value must be between 1 and 16.

<H> Directory Entries per Block

Use the following table to determine the number of directory entries per
directory block based upon the allocation block size from step <A>.

Table D-3. Directory Entries Per Block Size

<A> Number of entries

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/ CPM -86%20PI us%620I nstal | ati on%20Guide/ CPM PIGD . TX T[2/6/2012 4:40:33 PM]



2,048 64

4,096 128
8,192 256
16,384 512

<I> Total directory entries

Determine the total number of directory entries by multiplying the values
found in steps <G> and <H>.

<J> DPB_DRM (Directory Max) field in Disk Parameter Block

Determine DPB_DRM by subtracting 1 from the value found in step <I>.

<K> DPB_ALO, DPB_ALZ1 (Directory Allocation vectors 0 and 1)

Determine DPB_ALO and DPB_AL1 from the following table, given the number of
directory blocks from in step <G>.

Table D-4. DPB_ALO, DPB_AL1 Vaues

<G> DPB ALO DPB AL1 <G> DPB_ALO DPB AL1
80h  00h 9 OFFh 80h

0COh  0Oh 10 OFFh 0COh

OEOh  00h 11 OFFh OEOh

OFOh  00h 12 OFFh OFOh

OF8h  00h 13 OFFh OF8h

OFCh  00h 14 OFFh OFCh

OFEh  00h 15 OFFh OFEh

OFFh  00h 16 OFFh OFFh

O~NO U WNPF

<L> DPB_CKS (Checksum field) in Disk Parameter Block

Determine the size of the checksum vector. If the disk drive media is

permanent, then set DPB_CKS to 8000h. If the disk drive media is removable,

the value should be (<J>/4)+1. If the disk drive media isremovable and if
@BH_GDOPEN is set by a door open interrupt, DPB_CKS equals ((<J>/4)+1)+ 8000h.
For removable media drives, the checksum vector is CKS-bytes long and is
addressed in the DPH. When the Disk Parameter Header field DPH_CSV isset to
OFFFFh, GENCPM uses the DPB_CKS valueto construct the checksum vector
automatically.

<M> DPB_OFF (Offset) field in Disk Parameter Block
The DPB_OFF field determines the number of tracks that are skipped at the
beginning of the physical disk. The BDOS automatically adds this to the value

of IOPB_TRACK parameter and can be used as a mechanism for skipping tracks
reserved for boot operations, or for partitioning a large disk into smaller

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/ CPM -86%20PI us%620I nstal | ati on%20Guide/ CPM PIGD . TX T[2/6/2012 4:40:33 PM]



logical drives.

<N> Size of Allocation Vector

In the DPH, the allocation vector is addressed by the DPH_ALYV field. The size

of this vector is determined by the number of alocation blocks. The
alocation vector is actually two separate concatenated bit vectors. The

length of each vector isone bit per allocation block rounded up to the

nearest byte. Thus, the size of allocation vector is equal to (<E>/4)+2.
GENCPM uses the DPB_DSM value (step <E>) to automatically construct the
checksum vector if the DPH_ALYV field is set to OFFFFh.

<O> Physical Sector Size

Specify the physical sector size of the disk drive. Note that the physical
sector size must be 128, 256, 512, 1024, 2048, or 4096 bytes. The physical
sector size must also be less than or equal to the allocation block size. If
your sector size is not one of these values, you must perform
blocking/deblocking to and from the sector size chosen in this step.

<P> DPB_PSH (Physical Record Shift) field in Disk Parameter Block

<Q> DPB_PHM (Physical Record Mask) in Disk Parameter Block

Determine the values of DPB_PSH and DPB_PHM from the following table, given
the physical sector size from step <O>.

Table D-5. DPB_PSH and DPB_PHM Values

<O> DPB_PSH DPB_PHM
128
256
512
1024
2048
4096

WE Wk Oo

= o1

DPB Worksheet Parameter List

<A> Allocation Block Size
<B> DPB_BSH field in Disk Parameter Block
<C> DPB_BLM field in Disk Parameter Block

<D> Tota Allocation Blocks

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/ CPM -86%20PI us%620I nstal | ati on%20Guide/ CPM PIGD . TX T[2/6/2012 4:40:33 PM]



<E> DPB_DSM field in Disk Parameter Block
<F> DPB_EXM field in Disk Parameter Block
<G> Directory Blocks

<H> Directory Entries per Block

<I> Total directory entries

<J> DPB_DRM field in Disk Parameter Block
<K> DPB_ALO, DPB_AL1 fieldsin Disk Parameter Block
<L> DPB_CKSfield in Disk Parameter Block
<M> DPB_OFF field in Disk Parameter Block
<N> Size of Allocation Vector

<O> Physical Sector Size

<P> DPB_PSH field in Disk Parameter Block

<Q> DPB_PHM field in Disk Parameter Block

EOF

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/ CPM -86%20PI us%620I nstal | ati on%20Guide/ CPM PIGD . TX T[2/6/2012 4:40:33 PM]



CPMPIGEWS4 (= "CP/M-86 Plus Installation Guide", appendix E)

(Edited by Emmanuel ROCHE.)

Appendix E: Memory Image and CPMP.SY S File

The CPMP.SY S file, generated by GENCPM and read by the CPMLDR, is prefixed by
a 128-byte CMD file Header Record. (Appendix D in the "Programmer's Guide"
presents more detail onthe CMD file Header Record.) The CMD file Header
Record contains the following two group descriptors:

G-Form G-Length A-Base  G-Min G-Max

S TSR ——— Fommmmmeeeee Fommmmme e TR ——— +
(Code) | O1h| xxxx | (varies) | xxxx | Xxxx |
S S S L R —— S RE—— S R +
(Data) | 02h| xxxx | (varies) | xxxx | xXxxx |
S TSR ——— Fommmmmeeeee Fommmmme e TR ——— +

Figure E-1. Group Descriptorsin CPMP.SY S Header Record

The first group descriptor represents the code group of the CPMP.SY S file, and

the second represents the data. The code and data A-BASE values are set by
GENCPM, depending on the your answer to the "Base of CP/M-86 Plus' (Code) and
the "DataBase of CP/M-86 Plus’ (Data) questions (see Section 9). The entire
CPMP.SY S file appears on disk as shown in Figure E-2.

CPMP.SYSImage CP/M-86 Plus Image In Memory
(high memory)

| (Transient Program Ared) |
e e EEEEEEE R + <--- OSENDSEG
| Buffer Areas Allocated | (variable

(file end) | by GENCPM for the BIOS |  in SYSDAT)

| CPMP.SYS| | SYSDAT |

IDATA GROUP| | (BDOS/BIOS Data Seg) |
LEEEEEEEEEE e + <--- data group
| | | CCPCode& Data | A-BASE

| | | (Optional) |

| CPMP.SYS|  4----mmmmmmmmmmmmo oo +

|CODE GROURP| | BIOS Code Segment |

Fomeeeeee- F =eeD [eeeemmeeeecmeeee s + <--- code group
| CPMP.SYS| | TPA | A-BASE and

| HEADER | . OSBASESEG

S + : . (variable

(CPMP.SYS) : in SYSDAT)

file:/lIC|/...servation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/ CPM-86%20P! us%20I nstal | ati on%20Gui de/ CPM PIGE. TX T[2/6/2012 4:40:33 PM]



| (Transient Program Aresa) |
oo + <--- 0040:0000

oo + <--- 0000:0000
Figure E-2. CPMP.SY S File Image and CP/M-86 Plus Memory Image

CPMLDR reads into memory the CPMP.SY S file, beginning at the segment address
given by code group A-BASE (OSBASESEG), which isfound in the CMD Header, as
shown in Figure E-1. CPMLDR setsthe DS register to the value in the data

group A-BASE field. Control is passed to the BDOS initialization code when
CPMLDR executes a IMPF (Jump Far instruction) to OSBASESEG:0000h. Thus, the
BDOS initialization routine starts with the CS register set to the code group

A-BASE value, the IP register equal to zero, and the DS register equal to data

group A-BASE value.

EOF

file:/lIC|/...servation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/ CPM-86%20P! us%20I nstal | ati on%20Gui de/ CPM PIGE. TX T[2/6/2012 4:40:33 PM]



CPMPIGF.WS4 (= "CP/M-86 Plus Installation Guide", appendix F)

(Edited by Emmanuel ROCHE.)

Appendix F: Memory Descriptor Format

Memory Descriptors are three word structures kept in the BIOS Kernel Data
Header. The Kernel Header reserves space for 32 Memory Descriptors, a total
area of 192 bytes. GENCPM sets the first 8 Memory Descriptors to reflect the
memory partitions you define. GENCPM initializes the rest of the Memory
Descriptors for use by CP/M-86 Plus during memory allocation and de-allocation
operations.

Figure F-1 shows the structure of each Memory Descriptor:

O O O O O O +

| BASE | LENGTH |PID |RESRV|
S S S S S S +

Figure F-1. Memory Descriptor Format
Table F-1 describes the Memory Descriptor format fields.
Table F-1. Memory Descriptor Format Fields

Format: Field
Explanation

BASE
Paragraph base (segment address) of this memory partition.

LENGTH
Length, in paragraphs, of this memory partition.

PID
If PID = OFFh, the Memory Descriptor is unused.

If PID = OFEh, the Memory Descriptor describes a currently available memory
partition.

If PID is set to any other value, the memory described by the Memory
Descriptor is alocated. GENCPM initializes the PID fieldsin all of the
Memory Descriptors to OFFh or OFEh.

RESRV
Reserved for system use.

The free memory described by the Memory Descriptorsis the size of the TPA at
any given time. The memory manager submodule of the BDOS coalesces Memory
Descriptors representing adjacent memory areas when memory is de-allocated. If

file:///CJ/...servation/Emmanuel %620Roche%20D Rl %20documents¥20conversi on/CPM-86%20P! us%20I nstal | ati on%20Gui de/ CPM PI GF. TX T[2/6/2012 4:40:34 PM]



you do not want memory partitions to be coalesced, use GENCPM to define them
as separated by one or more paragraphs. See Figure 9-6.

The BIOS INIT module can dynamically size memory at system boot time, and
modify the Memory Descriptors. If the system's memory configuration can vary,

the Memory Descriptors must be initialized by the BIOS INIT routine at boot

time. If you need to locate the operating system image at BIOS initialization

time, the start of the CP/M-86 code can be found in the SYSDAT variable
OSBASESEG, and the paragraph after the CP/M-86 Plus datais found in the
OSENDSEG variable. The beginning of CP/M-86 Plus datais the SY SDAT segment.

If there is no hardware support to determine the machine's memory
configuration, memory can be sized by writing a pattern to the entire address
space of the processor (excluding the operating system area), and reading it

back to confirm the existence of RAM in each location. The example BIOS INIT
module in the file BIOS.A86 on the distribution disks sizes memory in this

way.

EOF

file:///CJ/...servation/Emmanuel %620Roche%20D Rl %20documents¥20conversi on/CPM-86%20P! us%20I nstal | ati on%20Gui de/ CPM PI GF. TX T[2/6/2012 4:40:34 PM]



CPMPIGG.WS4 (= "CP/M-86 Plus Installation Guide", appendix G)

(Edited by Emmanuel ROCHE.)

Appendix G: Placing CP/M-86 Plusin ROM

The CP/M-86 Plus operating system was developed with separate code and data,
to allow you to place CP/M-86 Plus in ROM. The contents of the CPMP.SYS file,
code, and initialized data are placed in ROM, and at power-on, or hardware
reset, the datais copied to RAM. This appendix assumes familiarity with the
material covered in Sections 9 and 10 on using GENCPM and BIOS debugging.

Y ou supply a "data mover" routine that receives control when the 8086 or 8088
isreset and copies the initialized data from the ROM to RAM. Figure G-1 shows
one possible CP/M-86 Plus ROM image. In this example, at location OFFFF:0000h
is a JMPF (Jump Far instruction) to the START_MOVER: label at alower memory
location in the ROM. The data mover must exit by setting DS to the SYSDAT
segment and performing a IMPF (Jump Far instruction) to the beginning of the

BDOS code.
CPMP.SYS File CP/M-86 Plusin ROM
Image (high memory)
e +

| JIMPFSTART_MOVER | <--- OFFFF:0000h

E TR F e e +

| CPMP.SYS| | SYSDAT |

|Data Group| | (BDOSBIOS Data Seg) |

R T +

| | | CCP Data Group (Optional) |
L + <--- ROMing data

| CPMP.SYS | | CCP Code Group (Optional) |  base

| Code |  +---------emee +

| Group | | BIOS Code Segment |

| | o - +

| | | BDOS Code Segment |

Foneeeee F ooeS e + <--- OSBASESEG

| CPMP.SYS | | Data Mover |

|CMD Header| — +-------mmmmmmmmmoeee- + <--- START_MOVER

B S —— +

(CPMP.SYYS)

Figure G-1. An Example CP/M-86 Plus ROM Image

Figure G-2 shows the execution image after the initialized data has been moved
to RAM.

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/ CPM -86%20PI us%620I nstal | ati on%20Guide/ CPM PIGG. TX T[2/6/2012 4:40:34 PM]



.| SYSDAT |
R | (BDOSBIOSDataSeg) |

(@] | CCP Data Group (Optional) |

M | CCP Code Group (Optional) |

| BDOS Code Segment |
Fommm o + <--- OSBASESEG

S + <--- START_MOVER

| (Transient Program Area) |
I SREEETEELEEEEEEEEEER e + <--- OSENDSEG
R | Uninitialized Data |

| Buffers |

| SYSDAT | ]
M | (BDOSBIOSDataSeg) | |Areacopied
B RGGGEEEEEEEEEEE PR + | from ROM

| CCP Data Group (Optional) | |

Figure G-2. CP/M-86 Plus Code in ROM and DATA in RAM

In Figure G-2, OSBASESEG is the starting paragraph of the operating system
code, and OSENDSEG is the next paragraph after the operating system RAM area.

The size of the ROM required depends on the size of the BIOS, and aso if you
make the CCP a permanent part of the Operating System. The BDOS aone is about
21 Kbytes. The CCP is an additional 5 Kbytes.

The answer to the GENCPM "Code Base of CP/M-86 Plus" question (see Section 9)
sets the segment address where CP/M -86 Plus system code must be located in RAM
or ROM. The answer to the GENCPM "Data Base of CP/M-86 Plus’ question (see
Section 9) determines the RAM segment address where the uninitialized and
initialized data areas must reside. The areain RAM reserved by GENCPM for the
data must be large enough to contain both the initialized data and the
uninitialized data required by the operating system. Note that the CPMP.SYS

file created by GENCPM contains only the initialized data. See Figure E-2.

GENCPM displays the length in paragraphs of the operating system code, the
initialized system data, and the total system data at theend of a GENCPM
session (see Figure 9-8). The total system datais the sum of the initialized

and uninitialized data. GENCPM resolves al references to the system data.
GENCPM also adjusts the Memory Descriptorsin the BIOS Kernel Data Header to
exclude the data area reserved for the operating system. The following is an

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/ CPM -86%20PI us%620I nstal | ati on%20Guide/ CPM PIGG. TX T[2/6/2012 4:40:34 PM]



example of the GENCPM display when the system code is set at segment OF800h,
and the system data at 40h:

CP/M-86 Plus ROMing Information
Base Length
System Code F800H 04FO0H
Initialized System Data 0040H 0179H
Total System Data  0040H 0514H

Operating System Memory Table:
Partition Base Length

0 0554H 1AECH
CPMP.SY S file created on drive D:
*** CP/M-86 Plus SYSTEM GENERATION DONE ***

Listing G-1 shows an example data mover using this GENCPM information. At
power-on or after a hardware reset, the hardware must transfer control to the
START_MOVER: label.

Note: The SYSDAT valueisfound in the word at offset 6 within the BDOS code
segment. When the CCP is made part of the system, the RAM data area begins
with the CCP data, and not with the SYSDAT data segment.

Listing G-1. Example ROM Data Mover

; Construct a ROM image file using this program (DMOVER.A86),
; the CPMP.SY S file, and the following instructions:

; A>rasm86 dmover ;assemble this program

: A>link86 dmover.sys=dmover

. A>5id86

; #rdmover.sys

; START END

X Z777:0000 ZZZZ:01FF ;create afile containing
;  #wdmover,80,ff ;the 1st 128 bytes of code

; #C ;from this program

; A>sid86

; #rcpmp.sys

; START END

; ZZ7Z7:0000 ZZZZ:XXXX  ;strip the CMD file Header Record
; #wcpmp,80,X XXX ;from the CPMP.SY S file
X #°C

; A>pip rom.sys=dmover[o],cpm3[0]

; Thefile ROM.SY S has the format:

: (file tart) (file end)

G oo o +

; | Mover Code | System Code | Initialized System Data |
i S Fommmm e o +

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/ CPM -86%20PI us%620I nstal | ati on%20Guide/ CPM PIGG. TX T[2/6/2012 4:40:34 PM]



fase equ O
true equ not false

sysdat equ word ptr .6

debug equ true

if debug
SYSTEM_CODE equ 2000h
endif
if not debug
SYSTEM_CODE equ OF800h
endif
CODE_LENGTH equ 4BAh ;as displayed by GENCPM
INIT_DATA LENGTH equ 179h ;as displayed by GENCPM

INIT_ DATA_IN_ROM equ SYSTEM_CODE + CODE_LENGTH
INIT_ DATA_IN_RAM equ 3000h

CSEG

start_mover: ;JMPF instruction at OFFFF:0000h goes here
; Entry: none required

; (after reset to 8086 or 8088

; DS,ES,SS = O, flags are reset, and

; all other registers are unknown)

; Exit: DS = SYSDAT

; JMPF's to start of BDOS

mov ax,INIT_DATA IN_ROM

mov ds,ax ;start of datato move

mov cx,INIT_DATA_LENGTH*8 ;words of initialized data
mov ax,INIT_DATA IN_RAM

mov es,ax :ES=RAM destination for

Xor si,g :DS=ROM source of initialized data
mov di,si :DI=SI=0

rep movsw ;copy from ROM to RAM

mov ax,SYSTEM_CODE

mov ds,ax

mov ds,sysdat ;get SYSDAT segment address

;out of BDOS code
jmpf cs: dword ptr bdos init ;transfer control to BDOS

bdos init dw O
dw SYSTEM_CODE

The example data mover is made into a 128-byte file by the SID-86 command
shown in the comment that begins the mover listing. The 128-byte length is
used for simplicity and ease of manipulation. Y our data mover can certainly be
smaller if need be. After the initialized data is moved, the data mover must

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/ CPM -86%20PI us%620I nstal | ati on%20Guide/ CPM PIGG. TX T[2/6/2012 4:40:34 PM]



set the DS register to the SYSDAT segment, then perform a JMPF to the
beginning of the BDOS code. The SY SDAT data segment addressis found at offset
6 within the BDOS code segment.

To debug a data mover similar to the example in Listing G-1 under CP/M-86 1.X
or CP/M-86 Plus, create the ROM.SY Sfile where SID-86 or DDT-86 can read and
execute it in RAM. Set the "Code Base of CP/M-86 Plus’ to this location in
RAM, dlowing 8 paragraphs for the data mover. Set the "Data Base of CP/M-86
Plus" to a RAM arealarge enough for the uninitialized and initialized data.
Additionally, the data mover must be assembled reflecting the segment address

of where the dataisto be copied. Listing G-1 includes a debug toggle for
testing in RAM. The layout of memory for debugging the ROM.SY Sfileis similar
to the layout for debugging the CPMP.SY S file, except the CMD file Header
Record of the CPMP.SY S fileisreplaced with the data mover. Section 10
discusses the debugging of the CPMP.SY S file.

When your data mover works in RAM, run GENCPM, specifying the segment in ROM
where the system code isto reside. Answer the "Data Base of CP/M-86 Plus’
guestion with desired segment address in RAM for the initialized and
uninitialized system data. If you have a debug togglein your data mover

routine, set it to false and reassemble it. Place the CPMP.SY Sfile and the

data mover in ROM, such that the data mover receives control on power-on or
hardware reset.

EOF

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥%20conversi on/ CPM -86%20PI us%620I nstal | ati on%20Guide/ CPM PIGG. TX T[2/6/2012 4:40:34 PM]



CPMPIGHWS4 (= "CP/M-86 Plus Installation Guide", appendix H)

(Edited by Emmanuel ROCHE.)

Appendix H: Foreign Language Messages

All English messages CP/M-86 Plus displays can be modified or translated to
foreign languages. This appendix describes the procedures for changing these
messages or replacing them with the tranglations you supply. Error messages
and utility options, as well as the headers for tabular displays, can al be
altered.

The text strings CP/M-86 Plus displays come from two sources. The first is

from the BDOS and the BIOS modules contained in the system image. The second
source is from the Digital Research utilities. The trandation of any BIOS
messages is the responsibility of the system implementor.

CUSTOMIZING BDOS MESSAGES

The text stringsthe BDOS displays are al defined in the BIOS Kernel. To
change messages, you edit the Kernel, reassemble it, and generate a new system

as outlined in Section 9. The BDOS prints file-related error messages, a chain

error message, and the Error CCP prompt. The BDOS does not print file-related
error messages if the program that encountered the error isrunning in Return

Error Mode. See Section 3 and F_ ERRMODE system call in the "Programmer's
Guide'. The BDOS displays the chain error message when a program calls the
P_CHAIN system call and the BDOS has released the calling program’'s memory
when the error is encountered. (The CCP displays a similar error when control

can be returned to the calling processon a P_CHAIN call.) The Error CCP,
described in the "User's Guide", displays a prompt message, and uses a string

to recognize its one internal function.

The offsets of the strings used by the BDOS are contained in the BIOS Kernel
Data Header. Listing H-1 shows this part of the Data Header. "BIOS Kernel Data
Header" in Section 3 describes each field. These messages are defined at the

end of the BIOS Kernel shown in Appendix B.

Listing H-1. BIOS Kernel Data Header Text Offsets

bh_chain dw chain_msg ;chan error message

;address

bh_prompt dw  prompt_msg ;error CCP prompt message
;address

bh_user dw user_str ;error CCP command string

bh_cpmerr dw  cmperr_msg ;CP/M error message address
bh_func dw func_msg ;function message address
bh_file dw file. msg ;file message address

bh_errl dw erl msg filerelated errors

bh_err2 dw er2 msg ;1-7

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥20conversi on/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIGH. TX T[2/6/2012 4:40:34 PM]



bh_err3 dw  err3_msg
bh_err4 dw  errd_msg
bh_err5 dw  err5 msg
bh_err6 dw er6_msg
bh_err7 dw  err7_msg

The carriage returns (decimal 13) and the linefeeds (decimal 10) that are part
of the string definitions in the Kernel should be preserved in any
modifications you make. The termination character $ must also be preserved.

File-related error messages are printed in the following form:

CP/M ERROR on d: file_error_message
BDOS Function = xx File = filespec

This list shows how the BDOS prints these error messages:

1. The string associated with BH_CPMERR field is displayed. The default
definition is 13,10,'CP/M Error On $.

2. The drive spec "d:" is printed, which is one of the logical drives A:-
P..

3. Next, the"file_error_message" is printed. Thisisone of the seven
messages addressed by BH_ERR1, BH_ERR?2, ... BH_ERR?7.

4. The BDOS prints the string whose offset is contained in the BH_FUNC
field. The default definition is 13,10,'BDOS Function = $'.

5. The system call number "xx" is printed. Thisisthe last system call
the program made by performing an INT 224 (Interrupt instruction).

6. The string addressed by BH_FILE is printed. The default definition is
'File=$.

7. Findlly, the file name and file type that make up the filespec are
printed by the BDOS.

CUSTOMIZING UTILITY MESSAGES

The following subsection describes the process of customizing the text strings
that are displayed by CP/M-86 Plus utilities (CMD files). The distribution
disks contain the object module files for al CP/M-86 Plus utilities, plus two
libraries containing the messages the utilities display. To create a CMD file
for a specific utility, the utility's OBJfile or files are linked with the
libraries of messages. The customization of utility messages consists of the
generation of new libraries of messages, then "relinking" the utilities.

Each utility has a set of external symbols that must be resolved at link time

to reference the correct message. Some utilities share messages. This occurs
whenever the same externally defined symbol appearsin more than one utility.
LINK-86 alows public symbols to be defined only once; thus, the message

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥20conversi on/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIGH. TX T[2/6/2012 4:40:34 PM]



libraries can contain just one definition for any one external message symbol.

There are approximately 500 different message symbols and their strings that
must be defined by the libraries. Each public message symbol and its message
must be assembled in a separate file. The OBJ files for each message must then
be placed in one of the message libraries. A procedure for modifying the
utility messages using several special programs and submit filesis discussed
later in this section. The messages must be in separate modules in the library
files, to alow LINK-86 to include only the messages required in the utility

CMD file. Two separate libraries are necessary, since LIB-86 allowsa maximum
of 256 modules.

The following steps form the procedure for atering the utility messages:
1. Edit the message files to contain the new text strings.

2. Create the libraries by running the STRIP.CMD program and the
RASMLIB.SUB submit sequence.

3. Link the utilities to the new messages using the UTILITY.SUB submit.

The MESSG1.TXT and MESSG2.TXT files contain all the symbols used to generate
the two libraries, MESSG1.L86 and MESSG2.L86. Use a standard text editor to
modify or translate the strings in these two ASCII TXT files. The format of

each symbol name and its string definition must be in the following form. Note

that the text string must be defined by single quotations.

message name DB  'text string'<CRLF>
1 <CRLF>

The message _name cannot be modified, since this is the external symbol name.
Since each line becomes part of a file assembled by RASM-86, the 'text string'
followsthe rules for the RASM-86 DB directive.

Each symbol and its string definition must be separated from the next symbol

and its string definition by a carriage return, line feed, two semicolons, and

another carriage return and line feed. The STRIP utility uses the
<CRLF>;;<CRLF> sequence to recognize each symbol definition. (The last message
of the file need not end in the <CRLF>;;<CRLF> sequence.) The following symbol
definitions are from the MESSG1.TXT file.

msg0090 db  'Directory full - $

’r’nsg0175 db  ‘'Filenot found: $

A valid modification to these messages could be the following German
tranglation:

msg0090 db  'Speicher voll - $

msg0175db  'Dokument besteht nicht: $

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥20conversi on/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIGH. TX T[2/6/2012 4:40:34 PM]



The $ signisthe delimiter for these two messages, and must be preserved.
Many messages such as these two examples precede file or drive specifications
that are printed by the utility, thusthe" - " and the ": " strings are also
preserved in the example tranglation.

Generadly, knowing the context in which a specific error message is produced
helps you to decide the appropriate size of the new message. If a message ends
with a specific delimiter, usually a 0 or a $, you must preserve it.

The first message file, MESSG1.TXT, contains the error messages in the order

in which Appendix D of the "User's Guide" discusses them. Since not only the

utility error messages can be modified, but also the informational messages

and the headers for tabular displays produced by the utilities, the
CMDMESSG.TXT file isincluded on the distribution disks. The CMDMESSG.TXT file
lists al the utilities and the strings produced by them. Print this file and

use it as a reference along with Appendix D in the "User's Guide" when

modifying the utility strings. It is also helpful to print for reference the

two symbol definition files, MESSG1.TXT and MESSG2.TXT, as they are unmodified
on the distribution disks.

The MESSGL.TXT and MESSG2.TXT files, and the corresponding libraries
MESSG1.L86 and MESSG2.L.86, are organized as follows:

- MESSG1.L86
This file contains all the error messages (M SG0000 - MSG0380) for all
the utilities. It also contains the strings for BACK, CCP, DATE, DIR,
ERASE, GET, INITDIR, PIP, PUT, SHOW, SUBMIT, and TYPE, plus
miscellaneous messages and strings.

- MESSG2.L86
This file contains the strings for DEVICE, GENRSX, HELP, SET, and
SETDEF, as well as additional strings for the DIR utility.

The STRIP program starts a cycle of creating an A86 file, then invoking a

submit job to assemble and place the new message definition in one of the two
library files. STRIP copies one symbol definition from the MESG.TXT, and
insertsit, along with the public declaration syntax and any other information

required by RASM-86, into a source file named using the first 8 characters of

the symbol name. STRIP uses the file named MESG.TXT for the symbol and string
definitions. You can copy the MESSGL1.TXT or MESSG2.TXT filesto MESG.TXT, or
create a MESG.TXT file with only the symbol definitions you are currently
working on. STRIP savesits location in the MESG.TXT filein the temporary

file SAVE.$$$. STRIP then makesa P_CHAIN system call to SUBMIT, specifying
the RASMLIB.SUB submit file and a single parameter, which is the first 8
characters of the symbol name. RASMLIB.SUB contains commands to assemble and
place the new message OBJ modulein one of the message library files. The

first 8 charactersin the symbol name inform LI1B-86 which module to replace in

the library. A command in the submit file erases the files named using the

first 8 characters of the symbol which were created by STRIP and RASM-86. The
last linein the RASMLIB.SUB file reinvokes the STRIP program. STRIP reads the
SAVE.$$$ file to find the next symbol definition to copy from the MESG.TXT
file. The SAVE.$$% file consists of one word value at offset Oin the file.

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥20conversi on/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIGH. TX T[2/6/2012 4:40:34 PM]



This value is the number of the next symbol definition for STRIP to process.

If you create a MESG.TXT file containing only the two example symbol
definitions shown earlier, STRIP would first create the file MSG0090.A86
containing the following:

DSEG
PUBLIC msg0090

msg0090 db  'Speicher voll - $

STRIP constructs the name MSGO0090.A86 from the first 8 characters of the
symbol name. STRIP then saves the number of messages processed in the file
SAVE.$$$, which at this point would be 1. Next, it chains to SUBMIT and
specifies RASMLIB as the submit file, and the first 8 letters of the symbol
name as the only parameter to the submit. The chain command buffer is the
following:

SUBMIT RASMLIB MSG0090

The RASMLIB.SUB file must contain the following commands when you are
modifying the MESSG1.L86 library:

RASM86 $1

LIB86 MESSG1 = MESSG1.L.86 [REPLACE[$1]]
ERASE $1.*

STRIP

The example chain command used by STRIP resultsin the following commands
being executed by SUBMIT:

RASM86 MSG0090

LIB86 MESSG1 = MESSG1.L86 [REPLACE[M SG0090]]
ERASE MSG0090.*

STRIP

When you are modifying messages in the MESSG2.L 86 library, the RASMLIB.SUB
file should contain the following commands:

RASM86 $1

LIB86 MESSG2 = MESSG2.L.86 [REPLACE[$1]]
ERASE $1.*

STRIP

Y ou can edit the RASMLIB.SUB file, or create it using PIP and one of two files

on the distribution disks, RASMLIB1.SUB or RASMLIB2.SUB. The STRIP program is
in source form on the distribution disksin the file STRIP.A86, if you must

modify it. For a complete description of RASM-86 and LIB-86, please consult

the "Programmer's Utilities Guide". Usually, you should run STRIP and record

what it does by using the PUT command to echo console output to a file, or by

using the Ctrl-P function to echo console output to the printer. If STRIP,

RASM-86, or LIB-86 encounter an error while processing the MESG.TXT file, you
can stop STRIP with a Ctrl-C, correct the problem, and restart STRIP. To do

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥20conversi on/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIGH. TX T[2/6/2012 4:40:34 PM]



this, read the SAVE.$$$ using the R (Read) command under one of the debuggers
(SID-86 or DDT-86), decrement the first word in the file with the SWO (Set
Word) command, then use the W (Write) command to update the SAVE.$$$ file on
disk. When you now invoke STRIP, it continues from the prior symbol definition

in the MESG.TXT file. You can also set the SAVE.$$$ file to start STRIP with

any symbol definition in the MESG.TXT file. The lowest value in the SAVE.$$$
word can be 0, corresponding to the first symbol definition.

Alternatively, you can redefine a symbol and its message by manually
performing the assembly and library commands. This procedureis useful when
you have afew errors and do not want to process a large symbol definition
file again. For example, if MSGO0090 did not have a closing quote mark, fix the
main file, and create M SG0090.A86. Proceed to execute the individua steps of
the RASMLIB.SUB file for the MSG0090 files.

It isagood ideato keep master symbol definition files for each of the two

libraries. If you need to generate an entire library, you can copy the master

file for the library to the MESG.TXT file. Then, copy to the RASMLIB.SUB file
either the RASMLIB1.SUB or RASMLIB2.SUB files, depending on the library being
created. Finally, invoke STRIP. Whenever you intend to define all of the

symbols contained in the current MESG.TXT file, ensure the SAVE.$$$ file is
erased before starting STRIP.

Some trial and error is necessary when testing new messages. The closer the
new messages are to the origina format, then the easier the translation or
modification process. Testing can be accomplished quickly by making
incremental changes to the libraries. Once you have working symbol
definitions, be sureto update your master symbol definition file for the
appropriate library.

In summary, perform the following steps to update a message symbol library
after editing the symbol definition file:

1. Erase SAVE.$$%.
2. Ensure that MESG.TXT contains the correct messages.

3. Run PUT to maintain a log of the output of STRIP, or activate printer
echo with Ctrl-P.

4. Run STRIP.
5. Verify that each message was correctly processed.

6. Update your master symbol definition file for the appropriate library.

The following items outline some conventions and restrictions in modifying the
utility messages.

- If the message is a column heading, the column width governs the
maximum length of substrings in the heading. For example, the output
of SHOW [LABEL] uses the strings associated with the symbols SHO_LINE1
through SHO_LINEA4. (See the symbol definition file MESSG1.TXT.) The

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥20conversi on/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIGH. TX T[2/6/2012 4:40:34 PM]



command SHOW [LABEL] on a drive with a directory label resultsin the
display of the following header:

Directory Passwds Stamp Stamp
Label Reqd Create Update Label Created Label Updated

The substring 'Stamp’, which is part of the SHO _LINEL definition,
labels a column six characters wide. Thus, if 'Stamp' is changed, the
new string must not exceed six characters in length.

- The command line options to al the utilitiesare included in the

libraries. One string contains al the options separated by

delimiters, and another string of bytesis an array of offsets into

the option string. The options can be renamed and their length changed

as desired, but the start of each option in the string must be updated

in the respective offset array. For example, the ERASE utility uses

the options list symbol ERA_OPT and its definition
"XFCBOCONFIRM',0FFh. ERASE uses the symbol ERA_OFF and its array of
offsets 0,5,12 to locate the start of XFCB, CONFIRM, and OFFh. If the

options are changed to 'PASSWORDOCONFIRM',0FFh, then the ERA_OFF
symbol must be defined as 0,9,16. The semantics of the options are
dependent on their position in the option string. Note that OFFh marks

the end of the option lists for different utilities, that _OPT is

appended to option list symbols, and _OFF appended to symbols
associated with the option list offsets. The symbols ERA_OPT and
ERA_OFF are defined in the MESSGL.TXT file.

- Most options are separated by the number O, as just shown for ERASE.
PUT, GET, and DEVICE are exceptions using the tilde (~) to separate
their options. These utilities use the symbol PUT_EOSMARK,
GET_EOSMARK, and DEV_EOSMARK to define the tilde option separator. It
IS easiest to maintain the same separators, but if you must change
them, you must also change the corresponding symbol suffixed with
_EOSMARK for the corresponding utility.

- The delimiters each utility uses are defined by the symbols suffixed
with _DLM, for instance, ERA_DLM and PUT_DLM. These characters are
likely to change with different keyboards and international character
codes. Aswith the option lists, the position in the delimiter string
defines the semantics of the delimiters. If left and right brackets,
[ ], are replaced with some other option delimiters, then the original
order in the delimiter string must be preserved. For instance, in the
string associated with ERA_DLM, the default delimiters are
0,]=, ',0,0FFh. These can become 0,{} =, ',0,0FFh, but the positions
of left and right brackets are maintained.

The user interface should be consistent. Thus, if you change the
option delimiters|[ ] in one utility, they should be replaced with the
same option delimitersfor the rest of the utilities. Note that the
CCP option symbol is named CCP_OPTSY M.

- Four symbols and their default strings that are of major importance
for obvious reasonsare MSG_LYES, defined as 'yes; MSG_UYES, defined

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥20conversi on/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIGH. TX T[2/6/2012 4:40:34 PM]



as'YES; MSG_LNO, defined as 'no’; and MSG_UNO defined as 'NO'.

- The ASCII character set isthe basisfor all string processing in
CP/M-86 Plus. Trandation from lowercase to uppercase by subtracting
20h, is made if the character isin the range of a-z. Thisrestriction
isimportant when translating to a phabets with more than 26 |etters.

Furthermore, CP/M internals and standards are still expected. For
example, drives are till 1abeled from A-P, the colon (":") is used as
a drive separator, the semicolon (";") in the file specification
serves as a password delimiter, and so forth. See the "Programmer's
Guide" and the "User's Guide" for more information on file
specifications.

- Do not use the RASM-86 $NC (No Case) option. This option causes
symbols to be created in the OBJ file in whatever case they appear in
the source file. Without this option, the symbols are translated to
uppercase in the OBJfile. The external symbol declarations in the
utility OBJ files are in uppercase.

- The messages produced by the ED.CMD uitility cannot be customized.

- The BACK utility options, defined by the symbol BAK_OPTS, must be
unigue to BACK, and cannot be shared by any other utility. BACK
removes any options in the command tail that match those in the
BAK_OPTS definition. Then BACK passes the command tail to the program
to which it chains.

- The messages for GENCPM are found in the GENMSG.TXT and the
corresponding library file GENMSG.L86. To change the GENCPM messages,
you modify the GENMSG.TXT file, copy it to MESG.TXT, copy the
RASMLIBG.SUB file to RASMLIB.SUB, and then invoke STRIP.

- The HELP.HLP file can modified as show in the "User's Guide" to change
the text displayed by HELP.CMD. The messages displayed by the HELP
utility itself, however, are modified as outlined in this section.

The UTILITY.SUB file on the distribution disks contains the commands to link
the utility object modules and the message libraries to create the utility CMD
files. For example, the SET.CMD fileis created with the command from the
UTILITY.SUB file:

LINK86 SET = SCD2,SET,MESSG1.L86[9],
MESSG2.L86[S,DATA[ORIGIN[0], MAX[O]]]

The filetype (L86) signals LINK-86 that the MESSG files are libraries. The S
(SEARCH) option specifiesto LINK-86 to only include the modules necessary to

resolve external references, and not the entire library. The file SCD2.0BJ is
an interface module between the utilities and CP/M-86 Plus.

EOF

file://IC|/...ervation/Emmanuel %20Roche%20D RI %20documents¥20conversi on/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIGH. TX T[2/6/2012 4:40:34 PM]



CPMPIGI.WSA (= "CP/M-86 Plus Installation Guide", appendix 1)

(Edited by Emmanuel ROCHE.)

Appendix I: Files on Distribution Disks

This appendix describes the several sets of files contained in the OEM version
of CP/M-86 Plus:

- BDOS3.SYS and LBDOS.SYS are binary image files, containing the
operating system kernel and the loader kernel.

- The source files used to construct the example BIOS for the CompuPro
8/16 are the following:

BIOSKRNL.A86, CHARIO.A86, DISKIO.A86, CLOCK.A86, INIT.A86, SYSDAT.LIB,
DISK.LIB, CDB.LIB, PIC.LIB

- RW64.A86 is an example source file not used in the CompuPro BIOS.
RW64.A86 illustrates Multisector I/O for machines that cannot perform
disk reads or writes over 64 Kbyte segment boundaries.

- The following files are also used in BIOS construction (see Section
9):

MODEDIT.CMD, GENCPM.CMD, ZERO.L86

- Thefollowing source files are used to construct the example disk boot
header and loader for the CompuPro 8/16 (see Section 11):

DSKBOOT.A86, LPROG.A86, LBIOS.A86, TCOPY .A86
- GENLDR.CMD is used to construct the CPMLDR.SY Sfile.

- The following programmer's utilities are provided for system
implementation:

RASM86.CMD, LINK86.CMD, LIB86.CMD, XREF86.CMD, SID86.CMD, DDT86.CMD

- The following files are used to modify the utility messages (see
Appendix H):

MESSG1.TXT, MESSG1.L86, MESSG2.TXT, MESSG2.L86, GENMSG.TXT,
GENMSG.L86, RASMLIB1.SUB, RASMLIB2.SUB, RASMLIBG.SUB, STRIP.A86,
STRIP.CMD, CMDMESSG.TXT, UTILITY.SUB

- Several utilities are distributed to the OEM in source form.
COPYDISK.A86 iswritten for the CompuPro 8/16, and isintended as an
example for similar utilities on your hardware. ANYRSX.A86 isan RSX
that is made part of the example COPYDISK utility (see Section 12).
DEVICE.PLM isincluded in source form, since it manipulates the BIOS

file:/lIC|/...servation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIGI. TX T[2/6/2012 4:40:35 PM]



Character Device Blocks in the BIOS. If you define special

characteristics in the CDB, you can modify DEVICE to display and set

them. DEVICE is written in PLM, and the OEM must provide a PLM
development environment, or translate DEVICE to another language.
DUMP-86 is an example assembly level language program that can be
distributed to end-users. The CCP.A86 (Console Command Processor) is

the user interface, or shell. Y ou can rewrite the CCP and replace it,

if needed. The distributed CCP expects certain files to be on disk and

accessible through the drive search chain. These files are DIR.CMD,
ERASE.CMD, RENAME.CMD, TYPE.CMD, GETRSX.RSX, and PUTRSX.RSX.

- The following utilities are distributed to the OEM in CMD form. The
OBJ and other files used to create these utilitiesare also listed.
Use these filesto re-link the utilities after the utility message
libraries are altered.

BACK.CMD, BACK.OBJ, BACK49.0BJ, GETF.OBJ, GETRSX.RSX, PUTF.OBJ,
PUTRSX.RSX

CCP.CMD, CCP.OBJ

DATE.CMD, DATE.OBJ

DEVICE.CMD, DEVICE.OBJ

DIR.CMD, MAIN.OBJ, DISP.OBJ, SCAN.OBJ, DPB86.0OBJ, SEARCH.OBJ,
SORT.OBJ, TIMEST.OBJ, UTIL.OBJ

DDT86.CMD (messages cannot be customized)

DUMP86.CMD

ED.CMD (messages cannot be customized)

ERASE.CMD, ERASE.OBJ

GENCPM.CMD, GENCPM.OBJ, SETBOF.OBJ, GETDEF.OBJ, CRDEF.OBJ, GENDATA.OBJ
GENRSX.CMD, GENRSX.0OBJ

GET.CMD, GET.OBJ, GETF.OBJ, GETRSX.RSX

HELP.CMD, HELP.OBJ

INITDIR.CMD, INITDIR.OBJ, ANYRSX.OBJ, INITDIRA.OBJ, DIOMOD.OBJ,
PRTMSG.OBJ

PATCH86.CMD, PATCHB86.0BJ

PIP.CMD, PIP.OBJ, INPOUT.OBJ

PUT.CMD, PUT.OBJ, PUTF.OBJ, PUTRSX.RSX

RENAME.CMD, RENAME.OBJ

SET.CMD, SET.OBJ

SETDEF.CMD, SETDEF.OBJ

SHOW.CMD, SHOW.OBJ, SHOWF.OBJ

STOP.CMD, STOP.OBJ, STOPF.OBJ

SUBMIT.CMD, SUBMIT.OBJ, GETF.OBJ, SUBRSX.RSX

TYPE.CMD, TYPE.OBJ

- The SCD2.0BJ fileis an interface modul e between the utilities and
CP/M-86 Plus. The HELP.HLP file contains the text for the HELP
utility. You can modify the file as documented in the "User's Guide".

EOF

file:/lIC|/...servation/Emmanuel %20Roche%620D RI %20documents¥%20conversion/ CPM -86%20PI us%20I nstal | ati on%20Guide/ CPM PIGI. TX T[2/6/2012 4:40:35 PM]



	CPMPIG0
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG0.TXT


	CPMPIG1
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG1.TXT


	CPMPIG10
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG10.TXT


	CPMPIG11
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG11.TXT


	CPMPIG12
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG12.TXT


	CPMPIG2
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG2.TXT


	CPMPIG3
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG3.TXT


	CPMPIG4
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG4.TXT


	CPMPIG5
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG5.TXT


	CPMPIG6
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG6.TXT


	CPMPIG7
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG7.TXT


	CPMPIG8
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG8.TXT


	CPMPIG9
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG9.TXT


	CPMPIGA
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGA.TXT


	CPMPIGB
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGB.TXT


	CPMPIGC
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGC.TXT


	CPMPIGD
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGD.TXT


	CPMPIGE
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGE.TXT


	CPMPIGF
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGF.TXT


	CPMPIGG
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGG.TXT


	CPMPIGH
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGH.TXT


	CPMPIGI
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGI.TXT



