
file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG0.TXT[2/6/2012 4:40:22 PM]

CPMPIG0.WS4 (= "CP/M-86 Plus Installation Guide", section 0)

CP/M-86 Plus -- Installation Guide

* First Edition: November 1983 *

(Edited by Emmanuel ROCHE.)

Foreword

CP/M-86 Plus is a single-user, multitasking operating system. It is designed
for use with any disk-based microcomputer using an Intel 8086 or 8088
microprocessor. This "CP/M-86 Plus Installation Guide", (hereinafter cited as
the "Installation Guide") is intended to assist system implementers and OEMs
who are porting CP/M-86 Plus to a new 8086/8088-based computer.

The central task in porting or customizing CP/M-86 Plus is the creation of a
Basic Input/Output System (BIOS) for the target machine. Sections 1-10 cover
the development of the BIOS.

If you are unfamiliar with customizing Digital Research operating systems,
Appendix A breaks down BIOS development into a series of steps or base levels.
You can use Appendix A as a starting point for planning your own series of
steps to create an operational BIOS.

Part of porting CP/M-86 Plus is the generation of a loader to initially bring
CP/M-86 Plus into memory at power-on or hardware reset. Porting additionally
involves the creation of any needed hardware-dependent utilities, such as a
disk formatter. The loader can be completed before the BIOS, since it entails
writing a simplified loader BIOS, which can then be expanded into the full
BIOS. Another possibility is to leave the loader to last, and strip down the
full BIOS into the loader BIOS. Sections 11 and 12 discuss loader operations
and hardware-dependent utilities, respectively.

The appendixes cover the optional tasks of placing CP/M-86 Plus in ROM,
customizing the Console Command Processor (CCP), and changing system and
utility messages to other languages.

You need the following software and hardware for porting CP/M-86 Plus:

 - CP/M-86 1.0 or 1.1 running on the target machine

 - RASM-86, the Digital Research Relocatable Assembler, or an assembler
 producing Intel Object Module Format

 - LINK-86, the Digital Research Linker/Locator, or a linker that accepts
 Intel Object Module Format and produces CMD format files

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG0.TXT[2/6/2012 4:40:22 PM]

 - DDT-86 or SID-86, Digital Research "debuggers", or another debugger

 - And ideally, a second CRT device connected to a serial port on the
 target machine

Examples in this manual use RASM-86, LINK-86, DDT-86, and SID-86.

This manual assumes extensive knowledge of the 8086/8088 microprocessors, and
also an understanding of the target machine's hardware. You should be familiar
with the following manuals which, together with this manual, document CP/M-86
Plus:

 - The "CP/M-86 Plus User's Guide" (hereinafter cited as the "User's
 Guide") describes CP/M-86 Plus, and explains how to use its utilities
 and other features used to execute application programs.

 - The "CP/M-86 Plus Programmer's Reference Guide" (hereinafter cited as
 the "Programmer's Guide") explains the operating system for use by the
 application programmer. The "Programmer's Guide" discusses system
 calls and DDT-86.

 - The "Programmer's Utilities Guide for the CP/M-86 Family of Operating
 Systems" (hereinafter cited as the "Programmer's Utilities Guide")
 documents the Digital Research utility programs RASM-86 and LINK-86
 used to assemble and link software written for CP/M-86 Plus.

Digital Research does not support any additions or modifications made to CP/M-
86 Plus by the OEM or distributor. Any BIOS or utility that is written or
modified by the OEM must be supported by the OEM.

The following are terms, conventions, and abbreviations used in this manual:

 - CP/M-86 1.X refers to either CP/M-86 1.0 or CP/M-86 1.1.

 - The term "process" is used synonymously with "program", and refers to
 the environment a program executes in, distinct from other
 concurrently running programs.

 - Initial letters of names of all data structures internal to the
 operating system or BIOS are capitalized and are used to form
 acronyms; for example, DPB is short for Disk Parameter Block.

 - The term "system calls" refers to the functions available to
 application programs and performed by the operating system. These
 calls, documented in the "Programmer's Guide", have mnemonic names and
 appear in all capital letters.

 - The names of the BIOS functions invoked by the Basic Disk Operating
 System (BDOS) are also mnemonics shown in all capital letters. Each is
 prefixed with "IO_".

 - Variable and label names in the BIOS appear as all capitals, for

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG0.TXT[2/6/2012 4:40:22 PM]

 instance, the BIOSINIT and BIOSENTRY labels.

 - The names of utilities, such as RASM-86, GENCPM, and DEVICE, appear in
 all uppercase.

 - 8086/8088 instructions are in all capital letters using the mnemonics
 recognized by RASM-86. They are followed by the instruction name in
 parenthesis. The phrase "then executes a CALLF (Call Far instruction)"
 shows this convention.

 - 8086/8088 memory references are in a segment:offset format; for
 example, F000:FFFFh is the last byte in the 8086/8088 megabyte address
 space.

 - Paragraph address or segment address refers to memory locations on
 even 16-byte boundaries.

 - All numbers are decimal values, unless suffixed by an "h" denoting
 hexadecimal (base 16) or a "b" denoting bits. However, the default
 base for DDT-86 and SID-86 is hexadecimal.

 - An "@" prefixes public variables in the BIOS.

 - A "?" prefixes public labels in the BIOS.

Table of Contents

1 Introduction to CP/M-86
 CP/M-86 Plus Modules 1-1
 Module Communication 1-3
 Hardware Environment 1-3
 Features of CP/M-86 Plus 1-4

2 Customizing CP/M-86 Plus
 BIOS Modules . 2-1
 CP/M-86 Plus Customization Tasks 2-2

3 BIOS Kernel
 BIOS Kernel Data Header 3-1
 BDOS/BIOS Interface 3-11
 BIOS Kernel Code Header 3-11
 BIOSENTRY Routine 3-12
 BIOS Kernel Functions Called by the BDOS 3-14
 BIOS Kernel/BIOS Modules Interface 3-15
 BIOS Kernel/CHARIO Interface 3-15
 BIOS Kernel/BIOS DISKIO Interface 3-19
 Reentrancy in the BIOS 3-20
 Public BIOS Kernel Routines 3-20

4 Device Drivers
 Interrupt Versus Polled Device Drivers 4-1
 Interrupt Device Drivers 4-2

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG0.TXT[2/6/2012 4:40:22 PM]

 Polled Device Drivers 4-6

5 System and BIOS Initialization
 System Initialization 5-1
 BIOS INIT Module . 5-1
 Device Initialization 5-2

6 Character I/O
 Character Device Block (CDB) 6-1
 Character Device Block (CDB) Routines 6-9
 Interrupt-driven Character I/O 6-12
 Character Input Interrupt (type-ahead) 6-13
 Character Output Interrupt 6-17
 Character I/O Error Messages 6-21

7 BIOS Disk I/O
 Basic Disk I/O . 7-1
 Disk Organization 7-1
 Disk Parameter Block (DPB) 7-2
 Disk Parameter Header (DPH) 7-9
 IOPB Data Structure 7-15
 DPH_DISK I/O Routines 7-19
 Disk I/O Enhancements 7-24
 Multiple Logical Disks 7-25
 Detecting Media Changes 7-25
 Automatic Density and Side Selection 7-27
 Skewed Multisector Disk I/O 7-28
 Memory Disk Implementation 7-31
 Disk I/O Buffering 7-35
 Directory Buffer Control Block (DIRBCB) 7-35
 Data Buffer Control Block (DATBCB) 7-38
 DPH_HSHTBL and BCB_BUFSEG Initialization 7-39
 Disk I/O Error Messages 7-40

8 Clock Support
 Tick Interrupt Routine 8-1
 Example Tick Interrupt 8-2

9 System Generation
 Assembling the BIOS Modules 9-1
 MODEDIT Utility . 9-1
 Linking the BIOS Modules 9-2
 GENCPM Utility . 9-3
 GENCPM Initial Questions 9-4
 GENCPM System Generation Main Menu 9-6
 Example GENCPM.DAT File 9-16

10 BIOS Debugging . 10-1

11 System Boot Operations
 Boot Overview . 11-1
 CompuPro Tracks 0 and 1 11-2
 Disk Boot Loader . 11-2
 CP/M-86 Plus Loader: CPMLDR 11-3

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG0.TXT[2/6/2012 4:40:22 PM]

 Loader BDOS and Loader BIOS Function Sets 11-6
 Boot Tracks Construction 11-7
 Disk Boot and CPMLDR Debugging 11-9
 Other Boot Methods 11-10

12 Hardware-dependent Utilities
 Direct BIOS or Hardware Access 12-1
 Disk Formatting . 12-3

Appendixes

A BIOS Development Method A-1
B BIOS Kernel Listing B-1
C SYSDAT Format . C-1
D Disk Parameter Block Worksheet D-1
E Memory Image and CPMP.SYS File E-1
F Memory Descriptor Format F-1
G Placing CP/M-86 Plus in ROM G-1
H Foreign Language Messages
 Customizing BDOS Messages H-1
 Customizing Utility Messages H-3
I Files on Distribution Disks I-1

Tables, Figures, and Listings

Tables

 2-1. OEM-written BIOS Modules 2-1
 3-1. BIOS Data Header Fields 3-4
 3-2. BIOS Kernel IO_ Functions 3-14
 3-3. Character I/O Redirection Roots 3-16
 3-4. BIOS Kernel Character IO_ Functions 3-16
 3-5. BIOS Kernel Disk IO_ Functions 3-19
 3-6. Public BIOS Kernel Routines 3-21
 4-1. BDOS Interrupt Functions 4-5
 6-1. Character Device Block Data Fields 6-3
 6-2. CDB_ Character I/O Routines 6-9
 7-1. Disk Parameter Block Data Fields 7-4
 7-2. Disk Parameter Header Data Fields 7-10
 7-3. IOPB Data Fields 7-17
 7-4. DPH_Disk I/O Routines 7-20
 7-5. DIRBCB Data Fields 7-37
 11-1. Loader BDOS System Calls 11-6
 11-2. Required Loader BIOS Functions 11-6
 12-1. Directory Label Data Fields 12-5
 A-1. BIOS Development Method Steps A-1
 C-1. SYSDAT Fields C-1
 D-1. DPB_BSH and DPB_BLM Values D-1
 D-2. DPB_EXM Values D-2

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG0.TXT[2/6/2012 4:40:22 PM]

 D-3. Directory Entries Per Block Size D-3
 D-4. DPB_AL0, DPB_AL1 Values D-3
 D-5. DPB_PSH and DPB_PRM Values D-5
 F-1. Memory Descriptor Format Fields F-1

Figures

 1-1. General Memory Organization of CP/M-86 Plus . . 1-1
 3-1. Character I/O Redirection Example 3-18
 7-1. CP/M-86 Plus Disk Organization 7-2
 7-2. Multiple Logical Drives 7-25
 7-3. DMA Address Table for Skewed Multisector I/O . . 7-28
 9-1. GENCPM Initial Questions Screen 9-5
 9-2. GENCPM System Generation Main Menu 9-6
 9-3. GENCPM Help Screen 9-7
 9-4. GENCPM Parameter Screen 9-8
 9-5. GENCPM System Parameters Screen 9-9
 9-6. GENCPM Memory Allocation Parameters Screen . . . 9-12
 9-7. GENCPM Disk Buffer Allocation Screen 9-13
 9-8. GENCPM Generate a System and Exit Screen 9-15
 10-1. Debugging Memory Organization 10-2
 11-1. Track 0 on the CompuPro 8/16 11-2
 11-2. CPMLDR Organization 11-3
 12-1. Directory Initialization Without Time Stamps . . 12-4
 12-2. Directory Label Initialization 12-4
 12-3. Directory Initialization With Time Stamps . . . 12-6
 C-1. SYSDAT Fields C-1
 E-1. Group Descriptors in CPM3.SYS Header Record . . E-1
 E-2. CPM3.SYS File Image & CP/M-86 Plus Memory Image E-2
 F-1. Memory Descriptor Format F-1
 G-1. An Example CP/M-86 Plus ROM Image G-1
 G-2. CP/M-86 Plus Code in ROM and DATA in RAM G-2
 G-3. Debugging the ROM Data Mover G-6

Listings

 3-1. BIOS Kernel Data Header 3-2
 3-2. BIOS Kernel Code Header 3-12
 3-3. Kernel BIOSENTRY Routine 3-13
 6-1. Character Device Block Format 6-1
 6-2. Example CDB Definition 6-2
 6-3. Buffered Interrupt-driven Character Input . . . 6-15
 6-4. Buffered Interrupt-driven Character Output . . . 6-18
 7-1. Disk Parameter Block Format 7-3
 7-2. Disk Parameter Block Definition 7-4
 7-3. Disk Parameter Header Format 7-9
 7-4. Disk Parameter Header Definition 7-10
 7-5. Input/Output Parameter Block (IOPB) 7-16
 7-6. Multisector I/O 7-23
 7-7. Skewed Multisector Disk I/O 7-29

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG0.TXT[2/6/2012 4:40:22 PM]

 7-8. Example M: Disk Implementation 7-32
 7-9. BCB Header Definition 7-35
 7-10. Directory Buffer Control Block (DIRBCB) Format . 7-36
 7-11. DIRBCB Definition 7-36
 7-12. Data Buffer Control Block (DATBCB) 7-38
 7-13. DPH_HSHTBL and BCB_BUFSEG Initialization 7-39
 8-1. Tick Interrupt Service Routine 8-2
 9-1. Example GENCPM.DAT File 9-16
 10-1. DDT-86 Example Debugging Session 10-3
 10-2. SID-86 Example Debugging Session 10-4
 11-1. Loader BIOS Code Header 11-4
 11-2. Loader BIOS Data Header 11-5
 11-3. Boot Tracks Construction 11-8
 11-4. Sample Debugging of the CPMLDR 11-9
 12-1. Example for Hardware-dependent Utility 12-2
 B-1. CP/M-86 Plus BIOS Kernel B-1
 G-1. Example ROM Data Mover G-4
 H-1. BIOS Kernel Data Header Text Offsets H-2

EOF

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG1.TXT[2/6/2012 4:40:23 PM]

CPMPIG1.WS4 (= "CP/M-86 Plus Installation Guide", section 1)

(Edited by Emmanuel ROCHE.)

Section 1: Introduction to CP/M-86 Plus

This section provides introductory and background material relevant to system
implementation. It explains the modules of CP/M-86 Plus, communication between
the modules, the hardware CP/M-86 Plus supports, and the features of CP/M-86
Plus. The "Programmer's Guide" provides a more general overview and
explanations of the CP/M-86 Plus system calls.

CP/M-86 PLUS MODULES

The memory resident part of CP/M-86 Plus consists of the following four
modules: the Basic Disk Operating System (BDOS), the Basic Input/Output System
(BIOS), the System Data Area (SYSDAT) and, optionally, the Console Command
Processor (CCP).

Figure 1-1 illustrates the layout of CP/M-86 Plus in memory:

 F000:FFFFh --->+---------------------------+
 | TPA |
 : :
 | (Transient Program Area) |
 +---------------------------+
 | Buffer Areas Allocated |
 | by GENCPM for the BIOS |
 +---------------------------+
 | SYSDAT |
 | (BDOS/BIOS Data Segment) |
 +---------------------------+
 | CCP Code & Data |
 | (Optional) |
 +---------------------------+
 | BIOS Code Segment |
 +---------------------------+
 | BDOS Code Segment |
 Beginning of O.S.--->+---------------------------+
 | TPA |
 0:0400h --->+---------------------------+
 | Interrupt Vectors |
 0:0000h --->+---------------------------+

Figure 1-1. General Memory Organization of CP/M-86 Plus

The BDOS is the invariant and logical nucleus of CP/M-86 Plus. Six sub-modules
divide the nucleus into the following functional groupings:

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG1.TXT[2/6/2012 4:40:23 PM]

 - Entry to and exit from the operating system
 - Loading transient programs from disk
 - Performing character I/O
 - Performing file I/O
 - Allocating and freeing memory
 - Scheduling and managing processes

The BIOS allows CP/M-86 Plus to run on a specific computer. It consists of an
invariant BIOS Kernel and a set of hardware-dependent modules that interface
to the Kernel.

The CCP provides the basic user interface to the facilities of the operating
system and supplies six commands: DIR, DIRS, ERASE, RENAME, TYPE, and USER.
These internal commands are part of the CCP; other commands are called
transient programs (applications) and are disk resident. Transient programs
load into memory, execute, then return control to the CCP. The "User's Guide"
documents the operation of the CCP.

The CCP can be made a part of the operating system memory image, or it can be
loaded and run as a transient program. GENCPM, the system generation utility,
controls this option. Figure 1-1 shows the CCP as a permanent part of the
operating system.

When the CCP is not part of the operating system image, it must be available
through the drive search chain. The drive search chain allows up to four
drives to be searched for a disk resident command or submit file. (See the
SETDEF utility in the "User's Guide").

The BDOS and the BIOS modules cooperate to provide the CCP and other transient
programs with a set of hardware-independent operating system functions.
Because the BIOS is configured for different hardware environments and the
BDOS remains constant, you can transfer programs that run under CP/M-86 Plus
unchanged to systems with different hardware configurations.

The System Data Area (SYSDAT) is the data segment for the BDOS and BIOS. It
contains system variables, including values set by GENCPM, pointers to the
system tables, and most of the data structures used by the BDOS and the BIOS.
Appendix C shows the format of SYSDAT. The S_SYSVAR system call, documented in
the "Programmer's Guide", allows some SYSDAT Data and other internal BDOS data
fields to be queried and changed by transient programs.

The BIOS must be separate code and data, with all stack and extra segments
included in the data. The BIOS Data begins at location 0F00h relative to the
beginning of the SYSDAT segment.

MODULE COMMUNICATION

After the system initialization, the BDOS passes control to the CCP. If the
CCP is not part of the operating system image, the BDOS loads it from disk and
the CCP runs as a transient program. The CCP prompts for commands and, if
required, requests disk-based transients be loaded and run by the BDOS through
the P_CHAIN system call.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG1.TXT[2/6/2012 4:40:23 PM]

Transients communicate with CP/M-86 Plus through system calls. The
"Programmer's Guide" documents these system calls and they are all implemented
within the BDOS.

The BDOS calls the BIOS to perform hardware-dependent functions, requesting a
specific function and passing parameters using a set of register conventions.

HARDWARE ENVIRONMENT

You can customize the BIOS to match any hardware environment with the
following characteristics:

 - Intel 8086 or 8088

 - 128 Kbytes up to 1 megabyte of Random Access Memory (RAM)

 - 1 to 16 logical drives, each with up to 512 megabytes, formatted
 capacity

 - 1 to 16 character I/O devices; one of which must be the system
 console. Other possible character devices are printers, plotters, and
 communications hardware.

CP/M-86 Plus without the CCP or BIOS occupies about 21 Kbytes of memory. A
minimum of 128 Kbytes of RAM is recommended for the operation of CP/M-86 Plus
when you use it for general purposes with a variety of application software.
In a dedicated application, CP/M-86 Plus RAM requirements can be just the
operating system, the BIOS, and the application.

Memory does not need to be contiguous other than that occupied by the
operating system image. The Transient Program Area (TPA) is the memory
available for disk-based programs. Several discontiguous memory regions, as
shown in Figure 1-1, can make up the TPA. These regions need not be contiguous
with the operating system. Transient programs, however, require contiguous
memory large enough for all the relocatable groups specified in the
transient's CMD Header Record, since one memory allocation is made for these
groups. The "Programmer's Guide" discusses the CMD format.

CP/M-86 Plus is usually a disk-based system. However, other mass storage
devices, such as cassette tape and bubble memory, can be made to appear as
disk drives, storing the operating system image and transient programs. An
example of this is using part of RAM to act as a disk drive, resulting in a
high-speed temporary disk.

If CP/M-86 Plus is placed in ROM, sufficient RAM must exist for the operating
system data area. Appendix G discusses putting CP/M-86 Plus in ROM.

If an 8087 numeric processor is present, only one process can use it at a
time. A program needing the 8087 can not load if another program is currently
using the 8087. The BIOS informs the operating system at initialization time
if an 8087 is present.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG1.TXT[2/6/2012 4:40:23 PM]

FEATURES OF CP/M-86 PLUS

CP/M-86 Plus includes many new features representing a major improvement over
CP/M-86 1.X. The following list describes those new features and improvements
pertinent to customizing CP/M-86 Plus.

 - Disk performance, especially random I/O, is improved by hash coding
 the directory entries and Least Recently Used (LRU) buffering for
 directory and file data.

 - The BDOS performs auto-login of removable media drives. The
 implementation of door open interrupts on removable media drives is
 highly recommended as an additional check on data integrity and for
 providing disk I/O performance improvements of up to 30%. The door
 open interrupt information allows the BDOS to treat removable media
 drives in a manner similar to permanent media drives.

 - The file system capacity is larger, allowing a storage capacity of up
 to 512 megabytes for each of the 16 possible logical drives, and the
 maximum file size is now 32 megabytes. The file system also provides
 time and date stamping.

 - Live control characters and type-ahead are supported by cooperating
 routines in the BDOS and BIOS. The live control characters are Ctrl-C,
 Ctrl-S, Ctrl-Q, and Ctrl-P and their functions are performed when a
 keyboard interrupt occurs.

 - As noted before, the CCP can be a permanent part of the system, or
 loaded as a transient program. When the CCP is a transient, it is
 loaded and remains in memory until the memory is needed by another
 transient.

 - The mapping of the logical devices CONIN:, CONOUT:, AUXIN:, AUXOUT:,
 and LST: onto different physical devices has been standardized and
 made more flexible. This allows the dynamic remapping of the console
 to another device, such as a graphics console. Logical device output
 can be directed to several physical devices at once. See the DEVICE
 utility in the "User's Guide".

 - CP/M-86 Plus can run up to four programs (processes) at once, one in
 the foreground and up to three in the background. Only the foreground
 program has access to the physical console; the background programs
 must have console I/O redirected from and to files.

 - The use of RASM-86 and LINK-86 to assemble and link the system modules
 simplifies support of different hardware configurations, and allows
 the field installation of new drivers.

 - The interface to hardware drivers has been simplified and improved by
 use of a BIOS Kernel. The Kernel is intended for unchanged use in any
 BIOS implementation. However, the source is provided if you need to

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG1.TXT[2/6/2012 4:40:23 PM]

 alter the Kernel.

 - The BDOS now performs blocking/deblocking instead of the BIOS. BIOS
 disk read and write operations transfer physical sectors up to 16
 Kbytes at a time.

 - GENCPM creates the CP/M-86 Plus image contained in the CPMP.SYS file
 and provides many configuration options. GENCPM can automatically
 allocate all buffers while building the system image. This allows the
 testing of many combinations of disk and directory buffers, enabling
 the system implementor to optimize disk performance and memory usage.

EOF

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG10.TXT[2/6/2012 4:40:23 PM]

CPMPIG10.WS4 (= "CP/M-86 Plus Installation Guide", section 10)

(Edited by Emmanuel ROCHE.)

Section 10: BIOS Debugging

This section suggests a method of debugging CP/M-86 Plus that requires CP/M-86
1.X to be running on the target machine. It is also helpful to have a remote
console, which can serve as the CP/M-86 1.X system console. Hardware-dependent
debugging techniques, such as a ROM monitor and an in-circuit emulator, can
also be used, but are not described in this manual.

Appendix A outlines an example series of BIOS implementation steps designed to
minimize debugging time. Whatever steps you use, it is easier to debug a BIOS
using polled device drivers as a "first cut", then add interrupt-driven
devices one at a time.

The tick interrupt routine is usually the last to be implemented. Remember to
replace any software CPU delay loops with calls to ?DELAY in the BIOS Kernel
after the tick interrupt is running.

The initial system can be run without a tick interrupt, but has no way of
forcing CPU-bound tasks to dispatch. However, without the tick interrupt,
console and disk drivers are much easier to debug. In fact, if problems are
encountered after the tick interrupt has been enabled, it is often helpful to
disable it again to simplify the environment. Accomplish this by changing the
tick interrupt handler to execute an IRET instruction instead of performing
JMPF (Jump Far instruction) to INT_DISPATCH, and by disabling the tick
routine's CALLFs to INT_SETFLAG.

For you to debug CP/M-86 Plus using CP/M-86 1.X, the CP/M-86 1.X console
device must be separate from the console used by CP/M-86 Plus. Usually, a
terminal is connected to a serial port, and the console input, console output,
and console status routines in the CP/M-86 1.X BIOS are modified to access the
serial port hardware. In other words, the CP/M-86 1.X logical CON: device must
be mapped to another console device that is not used by CP/M-86 Plus.

You may need to modify the CP/M-86 1.X BIOS memory segment table to reflect
the following requirements. Values in the CP/M-86 1.X BIOS memory segment
table must not overlap memory represented by CP/M-86 Plus Transient Program
Area (TPA). However, the CP/M-86 1.X BIOS must have in its memory segment
table the area of RAM that the CP/M-86 Plus system image is to occupy. Thus,
DDT-86 or SID-86 can be loaded under CP/M-86 1.X, and the CPMP.SYS file read
by the debugger to the memory location you specify to GENCPM. The following
figure illustrates one possible memory organization for debugging CP/M-86 Plus
under CP/M-86 1.X.

 +--> +---------------------+
CP/M-86 Plus | | |
TPA defined | | |
by GENCPM | | |

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG10.TXT[2/6/2012 4:40:23 PM]

 | | |
 +--> +---------------------+
CP/M-86 1.X TPA | | DDT-86 |
described in | +---------------------+
1.X BIOS | | CPMP.SYS | <-- CP/M-86 Plus
memory table | +---------------------+
 | | CPM.SYS | <-- CP/M-86 1.X
 +--> +---------------------+
 | Interrupt Vectors |
Memory Address 0:0 +---------------------+

 Figure 10-1. Debugging Memory Organization

Any hardware shared by both CP/M-86 1.X and CP/M-86 Plus systems is usually
not accessible to CP/M-86 1.X after CP/M-86 Plus has completed its
initialization. Typically, this prevents you from getting out of DDT-86 and
back to CP/M-86 1.X, or executing any disk I/O under DDT-86. DDT-86 and SID-86
use interrupt vectors 1, 3, and 225, which must be preserved by the CP/M-86
Plus BIOS initialization routines. If CP/M-86 1.X uses any interrupt vectors
for I/O to the remote console, these interrupt vectors must also be preserved
by the CP/M-86 Plus BIOS initialization routines.

The following outline describes the technique for debugging the CP/M-86 Plus
BIOS with DDT-86 running under CP/M-86 1.X:

 1. Switch the CP/M-86 1.X logical CON: device to a remote console. This
 remote console cannot be accessed by the CP/M-86 Plus BIOS. (Some
 CP/M-86 1.X systems can accomplish this mapping through the IOBYTE and
 the 1.X STAT utility.)

 2. Ensure the CP/M-86 1.X and CP/M-86 Plus TPAs are set as specified
 above.

 3. Run DDT-86 on the CP/M-86 1.X system.

 4. Read the CPMP.SYS file under DDT-86 using the R (Read) command and the
 starting segment address of the CP/M-86 Plus system minus 8 (the
 length in paragraphs of the CMD file Header Record). You specify the
 starting segment address with the "Base of CP/M-86 Plus ?" question in
 GENCPM. Set up the CS and DS registers from the A-BASE values found in
 the CPMP.SYS CMD file Header Record. See Appendix D in the
 "Programmer's Guide" for a description of the CMD file Header Record.

 5. The double word addresses for the BIOSENTRY and BIOSINIT routines are
 in the SYSDAT DATA at offsets 28h and 2Ch respectively.

 6. Set breakpoints within the BIOS for debugging using the DDT-86 G (Go)
 command. Begin execution at offset 0 relative to the CS register,
 which is the BDOS code segment.

In the example debugging session that follows, DDT-86 is invoked under CP/M-86
1.X and the file CPMP.SYS is read into memory starting at paragraph 1000h.
This assumes the GENCPM "Base of CP/M-86 Plus ?" was answered with a segment

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG10.TXT[2/6/2012 4:40:23 PM]

address of 1008H. The CMD file Header Record of the CPMP.SYS file can be
displayed using the DDT-86 D (Dump) command. The values contained in the CMD
header A-BASE fields are used for the initial CS and DS register contents.
GENCPM displays these values with the lines beginning "System Code ..." and
"Initialized System Data ..." that are printed at the end of a GENCPM session.

Listing 10-1 shows two DDT-86 G (Go) commands with breakpoints, one to the
beginning of the BIOSINIT routine, and the other to the beginning of the
BIOSENTRY routine. When these breakpoints are executed, DDT-86 and CP/M-86 1.X
regain control, and print a prompt on the remote console. The CP/M-86 Plus
BIOS routines can now be "single-stepped" using the DDT-86 T (Trace) command,
or other breakpoints can be set within the BIOS. See the "Programmer's Guide"
for more information on DDT-86.

Listing 10-1. DDT-86 Example Debugging Session

 A>ddt86
 DDT86
 -rcpmp.sys,1000:0
 START END
 1000:0000 1000:NNNN
 -d0
 1000:0000 01 FE 04 08 10 FE 04 00 00 02 92 01 06 15 92 01
 +--+--+ +--+--+
 -xcs | |
 CS 0000 1008 <--------+ |
 DS 0000 1506 <-----------------------------------+
 (...)
 -sw1506:28
 1506:0028 0003 ;use the S (Set) command here to
 1506:002A 1467 ;display but not set memory values
 1506:002C 0000
 1506:002E 1467
 1506:0030 XXXX .
 -g,1467:0 ;set a breakpoint at BIOS INIT
 *1467:0000 ;the INIT routine may now be debugged
 (...)
 -g,1467:3 ;set a breakpoint at BIOS ENTRY
 *1467:0003 ;the BIOS function being called is in AL
 (...)

If you are running DDT-86, the BIOS Kernel code offsets in memory are the same
as the listing generated by RASM-86. The BIOS Kernel data offsets have 0F00h
added to them, since the BIOS data begins at 0F00h. To find code and data
symbols in the other BIOS modules, use the RASM-86 $LO option, which causes
LINK-86 to include local symbols into the symbol file. The symbol file can be
printed out and used as a cross-reference when debugging with DDT-86. A map
file of the BIOS modules generated by the LINK-86 $MAP option can also be
helpful. See the "Programmer's Utilities Guide" for more information on RASM-
86 and LINK-86.

SID-86 simplifies debugging because code and data can be accessed by symbol
names. SID-86 reads the symbol file generated by LINK-86 to find the offsets
of requested symbols. When using SID-86, extend the CPMP.SYS file to include

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG10.TXT[2/6/2012 4:40:23 PM]

uninitialized buffers not in the file. These buffers include the allocation,
checksum, disk, and directory buffers. (See Appendix E.) This ensures that the
symbols are not placed in memory by SID-86 where they will be written over
during the debugging session. Assuming the same CPMP.SYS file as in the
previous example, Listing 10-2 illustrates how to extend the file.

Listing 10-2. SID-86 Example Debugging Session

 A>sid86
 #rcpmp.sys,1000:0
 START END
 1000:0000 1000:NNNN
 #xcs
 CS 0000 1008
 DS 0000 1506
 (...)
 #sw1506:48
 1506:0048 XXXX . ;OSENDSEG value from SYSDAT DATA
 #wcpmp.sys,1000:0,XXXX:0 ;note the CPMP.SYS file needs to be
 (...) ;extended only once after system
 (...) ;generation by GENCPM.
 #e ;release memory allocated to SID86
 #rcpmp.sys,1000:0 ;read in larger file
 START END
 1000:0000 1000:ZZZZ
 #e*bios3 ;now we can get the BIOS3.SYM file
 SYMBOLS
 #g,1467:.biosinit ;a '.' requests a symbol lookup by SID-86
 (...) ;continue debugging as outlined above for
 (...) ;DDT-86

EOF

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG11.TXT[2/6/2012 4:40:24 PM]

CPMPIG11.WS4 (= "CP/M-86 Plus Installation Guide", section 11)

(Edited by Emmanuel ROCHE.)

Section 11: System Boot Operations

Boot operations read the operating system image into memory, then transfer
control to it. You can accomplish this in a variety of ways, including the use
of an already existing MP/M-86 or Concurrent CP/M loader. This section
presents the boot operations on the CompuPro 8/16 for you to use as a model in
customizing your own hardware environment. Appendix G discusses loading CP/M-
86 Plus in a ROM-based system.

BOOT OVERVIEW

This example CP/M-86 Plus implementation on the CompuPro involves a four-step
procedure. First, a ROM in the CompuPro reads the disk boot loader from track
0 drive A:, then transfers control to it. Second, the disk boot loader reads
the remaining drive A: boot tracks, which contain CPMLDR (the CP/M-86 Plus
loader), then it passes control to CPMLDR. Third, CPMLDR reads the CPMP.SYS
file into memory, then transfers control to the BDOS initialization entry
point. The fourth step is system initialization which occurs in the BDOS and
the BIOS.

In this fourth step, the BDOS executes its internal initialization routines,
and calls the BIOSINIT entry point in the system BIOS. The BIOS initialization
routines perform any remaining hardware initialization not done in the disk
boot loader or in CPMLDR. The BIOS returns to the BDOS, and the BDOS passes
control to the CCP, which prompts for commands from the user. Section 5
presents system and BIOS initialization in more detail.

Memory areas used by succeeding steps of the boot sequence cannot overlap. For
example, the memory used by the disk boot loader must be distinct from the
memory used by CPMLDR, and the memory CPMLDR occupies cannot overlap the
target memory for the CPMP.SYS system image.

The distribution disks contain the files used to construct a CP/M-86 Plus disk
boot loader and CPMLDR for the Compupro 8/16. These files are DSKBOOT.A86, the
disk boot loader; LPROG.A86, the loader program; LBIOS.A86, the loader BIOS;
and LBDOS3.SYS, the loader BDOS. The DSKBOOT.A86, LPROG.A86, and the LBIOS.A86
source files must be customized for your machine, assuming a similar load
sequence as the one used for the CompuPro. The GENLDR utility creates CPMLDR
using the LBDOS3.SYS file and your customized loader program and loader BIOS.

COMPUPRO TRACKS 0 AND 1

CP/M-86 Plus reserves tracks 0 and 1 on a CompuPro boot disk for different

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG11.TXT[2/6/2012 4:40:24 PM]

parts of the boot operation. (See the DPH_OFF field in the "Disk Parameter
Header" subsection in Section 7.) The rest of the tracks are reserved for
directory and file data. Track 0 is divided into two areas: sectors 1-4,
inclusive, contain the disk boot loader, and sectors 5-26 contain the first
part of CPMLDR. It is assumed that track 0 on CompuPro CP/M-86 Plus boot disk
is always in single-density format with 26 sectors each 128 bytes long. Track
1 contains the rest of CPMLDR. Figure 11-1 shows the layout of track 0 of a
CP/M-86 Plus boot disk for the CompuPro 8/16.

 +---------------------+
 Sector 1 | disk boot loader |
 | . |
 | . |
 | . |
 Sector 5 +---------------------+
 | CPMLDR |
 | . |
 | . |
 | . |
 Sector 26 +---------------------+

 Figure 11-1. Track 0 on the CompuPro 8/16

Track 1 and the rest of the disk on the CompuPro can be one of several
different formats. The example disk boot loader determines the format of track
1 before reading the rest of CPMLDR.

DISK BOOT LOADER

The disk boot loader loads CPMLDR from the boot tracks on the boot disk, and
transfers control to it. The disk boot loader usually must be small, since
space on the boot tracks is limited. The disk boot loader resides in a special
area of the boot disk that is read by a ROM at power-on or reset.

The disk boot loader must read the first sector of the CPMLDR, and determine
from the CMD file Header Record the memory location in which to place CPMLDR.
This segment address is in the A-BASE field in the code group descriptor in
the CPMLDR.CMD file's CMD Header Record, which is in the first 128 bytes of
CPMLDR. (Appendix D in the "Programmer's Guide" shows the CMD file Header
Record format.) Note that the GENLDR sets the G_LENGTH field in CPMLDR's code
group descriptor to the length of CMPLDR code and data, not just the code.
Once the disk boot loader has read CPMLDR to the requested memory location,
the boot loader performs a JMPF (Jump Far instruction) to the CPMLDR code
segment, offset 0. This code segment is also the CPMLDR code group's A-BASE
value.

The example CompuPro disk boot reads sector 5 from track 0, which is the
CPMLDR CMD file Header Record, to determine where to read CPMLDR. The disk
boot loader then reads the rest of track 0, sectors 6-26, which contain the
first part of CPMLDR. The disk boot loader determines the format of the rest
of the disk, so track 1 and the last part of CPMLDR can be read next.

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG11.TXT[2/6/2012 4:40:24 PM]

CP/M-86 PLUS LOADER: CPMLDR

CPMLDR is a simple version of CP/M-86 Plus that contains sufficient file
processing capability to read the operating system image file, CPMP.SYS, from
the boot disk to memory. When CPMLDR completes its operation, the operating
system image receives control, and CP/M-86 Plus begins execution.

CPMLDR consists of three modules: the loader BDOS, the loader program, and the
loader BIOS. The loader BDOS is used by the loader program to open and read
the system image file from the boot disk. The loader program opens and reads
the CPMP.SYS file, prints the loader sign-on message, and transfers control to
the system image. The loader BIOS implements the hardware specific routines
required by the loader BDOS and the loader program. The loader BIOS must be
customized for your hardware, the loader program can be optionally changed,
and the loader BDOS is invariant for any CP/M-86 Plus CPMLDR.

Figure 11-2 shows the layout of the loader BDOS, the loader program, and the
loader BIOS within CPMLDR. The loader BDOS uses the three-entry jump table to
pass control to the loader program and the loader BIOS. This jump table must
follow immediately after the loader BDOS code, and is usually contained in the
loader BIOS.

 high memory:
 +---------------------+
 | Loader Program Data |
 +---------------------+
 | Loader BIOS Data |
 +---------------------+<--- DS:180h
 | Loader BDOS Data |
 +---------------------+
 | Loader Program Code |
 +---------------------+
 | Loader BIOS Code |
 | |
 |JMP START |
 |JMP ENTRY |
 |JMP INIT |
 +---------------------+
 | Loader BDOS Code |
 low memory: +---------------------+<--- CS:0

 Figure 11-2. CPMLDR Organization

After receiving control from the disk boot loader, the loader BDOS sets the DS
and ES registers to the CPMLDR data segment. The SS and SP registers are set
to a 64-level stack (128 bytes) within the loader BDOS. The assumption is that
the loader BDOS, the loader program, and the loader BIOS will not require more
than 64 levels of stack. If this is not true, then the loader program, the
loader BIOS, or both, must perform a stack switch when necessary. The three
CPMLDR modules (the loader BDOS, program, and BIOS) execute using a separate
code and data model.

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG11.TXT[2/6/2012 4:40:24 PM]

The GENLDR utility creates CPMLDR using the files LBDOS3.SYS and LBIOS3.SYS as
input. The LBIOS3.SYS file you create must contain the loader BIOS Data Header
and the loader BIOS Code Header. GENLDR requires these headers. The loader
BIOS Code Header consists of three JMP instructions and one word value, making
it 11 bytes long. Listing 11-1 shows the loader BIOS Code Header from the
LBIOS.A86 on the distribution disks.

Listing 11-1. Loader BIOS Code Header

 CSEG

 public @sysdat
 public ?conout, ?pmsg
 extrn ?start:near

 ORG 0000h

 jmp init ;I/O system initialization
 jmp entry ;I/O system function entry
 jmp ?start ;start of loader program

@sysdat rw 1 ;CPMLDR data segment
 ;forces CS override

The START label is the beginning of the loader program, and is declared a
public symbol in the LPROG.A86 file. The INIT and ENTRY labels address the
loader BIOS initialization routine and the loader BIOS function entry point.
@SYSDAT is the data segment of CPMLDR that is also the data segment for the
loader BIOS and the loader program. Data for the loader program and the loader
BIOS must start at 180h; the prior bytes in the CPMLDR data segment are
reserved for loader BDOS. Use the LINK-86 ORIGIN option to place the loader
program and loader BIOS data at 180h. (See "Boot Tracks Construction" later in
this section.)

Listing 11-2 shows the loader BIOS Data Header, which consists simply of one
word that must be at location 180h in the CPMLDR data segment. This is the
offset of the Disk Parameter Header for the boot drive. GENLDR locates the
DPH, and can optionally create one directory buffer and one data buffer for
the loader BIOS.

Listing 11-2. Loader BIOS Data Header

 DSEG

 public @bh_dphtable, @dpha

 ORG 0000h
 ;use the LINK-86 [data[origin[0180]]] option
 ;to set the origin of the data segment at 0180h

; disk parameter header offset table

@bh_dphtable dw offset @dpha ;drive A:

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG11.TXT[2/6/2012 4:40:24 PM]

After initializing local variables and the segment registers, the loader BDOS
performs a CALLF (Call Far instruction) to JMP INIT in the loader BIOS Code
Header. The INIT routine is the loader BIOS initialization routine, and must
return to the loader BDOS using RETF (Return Far instruction). The loader BDOS
initializes interrupt vector 224, then performs a JMPF (Jump Far instruction)
to JMP START in the loader BIOS Code Header. The START label is the beginning
of the loader program. The START label is declared as a public symbol in the
example loader program, and as an external in the example loader BIOS.

The loader program performs INT 224 instructions for functions supported in
the loader BDOS. The loader BDOS performs a CALLF (Call Far instruction) to
JMP ENTRY in the loader Code Header to invoke any required loader BIOS
functions. The loader BIOS ENTRY routine returns to the loader BDOS by
executing a RETF (Return Far instruction).

The loader BDOS does not turn interrupts on or off. If they are needed by the
loader, they must be turned on by the ROM, the disk boot loader, or the loader
BIOS. The example loader BIOS executes a STI (Set Interrupt Enable Flag
instruction) in the loader BIOS INIT routine.

Typically, the loader program prints out a short sign-on message by calling a
routine in the loader BIOS directly. The loader program then opens and reads
the CPMP.SYS file using the CP/M-86 Plus system calls supported by the loader
BDOS. The loader program sets the DS register to the A-BASE value found in the
CPMP.SYS CMD file Header Record's data group descriptor. (Appendix D in the
"Programmer's Guide" describes the CMD file Header Record format.) Finally,
the loader program transfers control to CP/M-86 Plus with a JMPF (Jump Far
instruction) at the end the loader program.

LOADER BDOS AND LOADER BIOS FUNCTION SETS

The loader BDOS implements the minimum set of system calls required to open
the CPMP.SYS file, and to transfer it to memory. Invoke these system calls as
under CP/M-86 Plus by executing an INT 224 (00E0H). (The "Programmer's Guide"
documents system calls.) The necessary system calls are in the following
table. Any other function, if called, returns a 0FFFFh error code in registers
AX and BX.

Table 11-1. Loader BDOS System Calls

 Number Mnemonic Description
 -------- -------- -----------
 14 0Eh DRV_SET Select Disk
 15 0Fh F_OPEN Open File
 20 14h F_READ Read Sequential
 26 1Ah F_DMAOFF Set DMA Offset
 32 20h F_USERNUM Set/Get User Number
 44 2Ch F_MULTISEC Set Multisector Count
 51 33h F_DMASEG Set DMA Segment

Blocking/Deblocking has been implemented in the loader BDOS, as well as
Multisector disk I/O.

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG11.TXT[2/6/2012 4:40:24 PM]

The loader BIOS must implement the following functions required by the loader
BDOS to read a file.

Table 11-2. Required Loader BIOS Functions

 Number Mnemonic Description
 -------- --------- -----------
 9 09h IO_SELDSK Select Disk
 10 0Ah IO_READ Read Physical Sectors

The loader BIOS functions are implemented in the same way as the corresponding
CP/M-86 Plus operating system BIOS functions. Therefore, the code used for the
loader BIOS can be a subset of the system BIOS code. The loader BIOS, however,
cannot use the ?FLAGWAIT, ?DISPATCH, ?DELAY, or INT_FLAGSET functions, which
are available in the system BIOS. When waiting for hardware events in the
loader BIOS, test the hardware status within software loops.

Since the loader BDOS performs only read operations, certain disk data
structures are not needed. The DPH_CSV, DPH_ALV, DPH_HSHTBL, DPH_WRITE, and
DPH_FLAGS fields in the Disk Parameter Header are not used by the loader BDOS
or GENLDR. Similarly, the Disk Parameter Block (DPB) fields DPB_AL0, DPB_AL1,
and DPB_CKS are unused by the loader BDOS or GENLDR.

The loader BIOS must have two physical sector disk buffers, one for the
directory, and another for data. Any disk buffers past these two are not used
by the loader BDOS. If the DPH_DIRBCB is defined in the loader BIOS equal to
0FFFFh, GENLDR allocates one BCB Header, DIRBCB, and directory buffer.
Similarly, if DPH_DATBCB is 0FFFFh, GENLDR allocates one BCB Header, DATBCB,
and data buffer. The data and directory buffers are not made part of the
CPMLDR.SYS file generated by GENLDR, but are reflected in the G-LENGTH field
in the code group descriptor in the CPMLDR.SYS CMD file Header Record.

Note: If you define the data buffer data structures in the loader BIOS, the
loader BIOS INIT routine must change the BCB_BUFSEG address in the DATBCB to
be the segment address of the data buffer. "DPH_HSHTBL and BCB_BUFSEG
Initialization" in Section 7 covers this topic for the system BIOS, and is
also applicable here.

The maximum size of the loader BIOS and the loader program depend on the space
left on the boot tracks after the disk boot loader. To keep the CPMLDR size
small, the loader BIOS and the loader program are contiguous. The example
loader BIOS implements two public console output routines, ?CONOUT and ?PMSG.
If desired, the loader BIOS can be expanded to support keyboard input, to
allow the loader program to prompt for user options at boot time. However, the
only loader BIOS functions invoked by the loader BDOS are IO_SELDSK and
IO_READ. Any other loader BIOS functions must be invoked directly by the
loader program. The example loader program (LPROG.A86) calls ?CONOUT and ?PMSG
in the loader BIOS.

BOOT TRACKS CONSTRUCTION

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG11.TXT[2/6/2012 4:40:24 PM]

Use the following procedure to create the loader from the LBDOS3.SYS file and
the DSKBOOT.A86, LBIOS.A86, and LPROG.A86 source files.

First, use the following commands to create an executable disk boot loader
file:

 A>RASM86 DSKBOOT
 A>LINK86 DSKBOOT.SYS=DSKBOOT [DATA[ORIGIN[0]]]

Note that the file created cannot be used as a transient, nor can the next
file you create.

Next, create the executable CPMLDR.SYS file. First, assemble the loader BIOS
and the loader program contained in the LBIOS.A86 and LPROG.A86 files. Link
these files together to create the file LBIOS3.SYS, as shown in the next
example. The LINK-86 ORIGIN option must be used to set the origin of the
LBIOS3.SYS data to 180h. Your file that contains the loader BIOS data and code
headers must be the first OBJ file specified on LINK-86 command tail. For the
example loader, this is the LBIOS.OBJ file, as shown here:

 A>RASM86 LBIOS
 A>RASM86 LPROG
 A>LINK86 LBIOS3.SYS=LBIOS,LPROG [DATA[ORIGIN[180]]]

Then, use GENLDR to create CPMLDR.SYS from LBDOS3.SYS and the LBIOS3.SYS
files.

 A>GENLDR [1008]

The option in this last command specifies the segment address where CPMLDR is
placed and executed in memory. This example command results in CPMLDR being
placed at location 1008:0000h. GENLDR places this address value in three
places in the CPMLDR.SYS file. The first location is in the @SYSDAT word in
the loader code header shown in the example. The second is within the loader
BDOS code segment at offset 6, which the loader BDOS uses to set DS and ES
after receiving control from the disk boot loader. The third is in the A-BASE
field of the CPMLDR.SYS file's CMD Header Record code group descriptor. As
mentioned earlier, GENLDR optionally allocates disk I/O buffers, one each for
directory and data.

Next, combine the DSKBOOT.SYS and CPMLDR.SYS files into a track image using
one of the debuggers DDT86 or SID-86, and the PIP utility. The following
example names the track image file BOOTTRKS. (The PIP O (Object) option used
in the example specifies object file concatenation.)

Listing 11-3. Boot Tracks Construction

 A>SID86
 #rdskboot.sys ;load in the DSKBOOT.CMD file
 START END ;aaaa is the segment address
 aaaa:0000 aaaa:37F ;paragraph where SID86 places BOOT.CMD
 #wboot,180,37f ;create the file BOOT
 #^C ;without a CMD file Header Record
 A>PIP BOOTTRKS=BOOT[O],CPMLDR.SYS[O]

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG11.TXT[2/6/2012 4:40:24 PM]

As a final step, place the contents of the BOOTTRKS file onto tracks 0 and 1.
Use the TCOPY program to accomplish this:

 A>TCOPY BOOTTRKS ;copy the BOOTTRKS file to tracks 0 and 1

You must run TCOPY under a CP/M-86 1.X system, since it makes direct BIOS
calls supported only under CP/M-86 1.X. You must modify TCOPY for different
disk formats, and for a different number of tracks to write. The source is
included in the file TCOPY.A86 on the distribution disks.

DISK BOOT AND CPMLDR DEBUGGING

When debugging a customized disk boot loader, CPMLDR, or TCOPY program, use
scratch diskettes.

Use DDT-86 or SID-86 to debug CPMLDR, which can be done separately from
debugging the disk boot loader. Listing 11-4 shows an example of using SID-86
to debug the CPMLDR:

Listing 11-4. Sample Debugging of the CPMLDR

 A>SID86
 #rcpmldr.sys,1000:0
 START END ;aaaa is the segment location;
 aaaa:0000 aaaa:xxxx ;xxxx is the size of the CompuPro
 ;CPMLDR used for this example.
 #d0 ;show CPMLDR CMD file Header Record
 1000:0000 01 LL LL CC CC 00 00 00 00 00 00 00 DD DD 00 00
 #xcs
 CS 0000 CCCC
 DS 0000 DDDD
 (...)
 #dwds:0
 DDDD:0000 0003 XXXX 0000 XXXX 0006 XXXX ???? ????

 (ENTRY) (INIT) (START)
 #g,XXXX:3 ;breakpoint at loader BIOS
 *XXXX:0003 ;initialization
 (...)
 #g,XXXX:0 ;breakpoint at loader BIOS
 *XXXX:0000 ;entry; the BIOS function
 ;being called is in AL
 (...)
 #g,XXXX:6 ;breakpoint at beginning
 *XXXX:0006 ;of loader program
 (...)

This debugging technique requires that the memory for CPMLDR be available to
DDT-86 or SID-86. Use GENLDR segment address parameter to change where CPMLDR
loads. A remote console (see Section 10) is needed if the loader BIOS
reinitializes the system console hardware. The debuggers use interrupt 225 to

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG11.TXT[2/6/2012 4:40:24 PM]

communicate with the operating system. This does not conflict with interrupt
224 used by CPMLDR. However, you cannot exit back to the operating system
after CPMLDR has changed interrupt vector 224, unless you copy vector 225 to
vector 224 before typing Ctrl-C at the debugger prompt.

The addresses of the JMP table located in the loader data header are found as
shown in the above SID-86 session. The addresses of the JMP INIT, JMP ENTRY,
and JMP START instructions are double word pointers in the CPMLDR data
segment, as shown. Using these double word addresses, breakpoints can be set
at the loader BIOS initialization, the loader BIOS entry, and the beginning of
the loader program.

To find locations of symbols when using SID-86, use the RASM-86 $LO option
when assembling the loader program and the loader BIOS. This causes LINK-86 to
generate the symbol file LBIOS3.SYM, which contains the symbols local to the
loader program and the loader BIOS. Print out the symbol file, and use it as a
cross-reference while debugging.

SID-86 simplifies debugging because the SYM file created by LINK-86 when the
LBIOS3.SYS file is generated can be used directly with SID-86 to locate
symbols in the CPMLDR image.

To test CPMLDR, use it to load a dummy CPMP.SYS file that simply prints a
message to the screen to announce its presence.

Use DDT-86 or SID-86 to debug the disk boot loader in the same way you
debugged CPMLDR.

OTHER BOOT METHODS

Many departures from this example disk boot operation are possible, and they
depend on the hardware environment and your goals. For instance, the boot
loader can be eliminated if the system ROM (or PROM) can read in the entire
CPMLDR at reset. Also, the CPMLDR can be eliminated if the CPMP.SYS file is
placed on boot tracks and the ROM can read in these boot tracks at reset.
However, the latter usually requires too many boot tracks to be practical.
Alternatively, CPMLDR can be placed into a PROM and copied to RAM at reset,
eliminating the need for any boot tracks. (Appendix G discusses placing
CPMP.SYS in ROM.) Any initialization usually performed by the two modules must
be performed in the BIOS initialization routines.

EOF

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG12.TXT[2/6/2012 4:40:24 PM]

CPMPIG12.WS4 (= "CP/M-86 Plus Installation Guide", section 12)

(Edited by Emmanuel ROCHE.)

Section 12: Hardware-dependent Utilities
--

A CP/M-86 Plus implementation often requires OEM-supported utilities. These
utilities are generally specific to the hardware, and usually include methods
for formatting disks, and for copying one disk to another.

DIRECT BIOS OR HARDWARE ACCESS

When special OEM utilities bypass the BDOS by making S_BIOS (direct BIOS)
system calls, or by going directly to the hardware, several programming
precautions are necessary to prevent conflicts due to the CP/M-86 Plus
multitasking environment. Take the following steps to prevent other processes
from accessing the disk system:

 1. Check for CP/M-86 Plus by using the S_BDOSVERS system call. S_BDOSVERS
 returns AX=1031 for CP/M-86 Plus. If the operating system is not CP/M-
 86 Plus, have the program print an error message and terminate.

 2. Make sure there are no RSXs in memory. ANYRSX is an RSX that checks
 for other RSXs in memory. ANYRSX can be made part of your hardware-
 dependent program using the GENRSX utility. GENRSX is documented in
 Section 8 of the "Programmer's Guide". If there are RSXs, have the
 program print an error message and terminate.

 3. Check for other concurrently running processes. Use the S_SYSVAR
 function to return the number of running process, which must be one.
 If there is more than one process, have the program print an error
 message and terminate. This prevents a background program from
 accessing the hardware, especially the disk drives, through the BDOS.
 This also prevents the hardware-dependent program from being run in
 the background via the BACK utility. (The "User's Guide" describes the
 BACK utility.)

 4. You can now safely call BIOS functions, or access the hardware
 directly.

 5. When operations are complete, and if your program accesses the disk
 hardware, force the disk system to be reset by making a DRV_ALLRESET
 system call. Resetting the drives ensures removable media drives are
 logged back in when next accessed. Your program can now terminate.

A example COPYDISK utility for the CompuPro 8/16 is found in source form on
the distribution disk as the file COPYDISK.A86. The following subroutine from
COPYDISK.A86 illustrates the preceding steps for a hardware-dependent utility.
The CHK_ENVIRONMENT routine, or one similar to it, must be called before

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG12.TXT[2/6/2012 4:40:24 PM]

making any hardware-dependent operations.

Listing 12-1. Example for Hardware-dependent Utility

S_BDOSVER equ 12 ;system call equates
S_SYSVAR equ 49
P_RSX equ 60

CPM_VERS equ 1031h ;CP/M-86 Plus version number
ANYRSXF equ 150 ;ANYRSX subfunction number
NPROCS equ 89h ;S_SYSVAR subfunction number

 CSEG

chk_environment:
;---------------
 mov cl,S_BDOSVER ;check version number
 int 224 ;must be CP/M-86 Plus
 cmp ax,CPM_VERS
 jne errout

 mov dx,offset rsx_pb ;call ANYRSX, if other RSXs
 mov cl,P_RSX ;in memory byte 2 in the RSX
 int 224 ;parameter block is set to 0
 test byte ptr rsx_pb+2,0FFh
 jnz errout

 mov bx,offset scb_pb ;get the number running
 mov byte ptr [bx],NPROCS ;processes from the BDOS
 mov byte ptr 1[bx],0
 mov dx,bx
 mov cl,S_SYSVAR
 int 224
 cmp scb_pb+2,1 ;can only have one running
 je envr_ok ;process
errout:
 mov si,offset errtoomany ;print error message
 call pmsg
 jmp exit ;exit program
envr_ok:
 ret

 DSEG

rsx_pb db ANYRSXF,0,0FFh ;RSX parameter block
scb_pb db 0,0,0 ;sysdat parameter block

err_too_many db CR,LF,'This program cannot run when '
 db 'another program is running', CR,LF
 db 'in the background or when RSXs are present.'
 db CR,LF,0

The source to ANYRSX is included on the distribution disk, in the file
ANYRSX.A86. The commands to generate COPYDISK.CMD with the attached ANYRSX are

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG12.TXT[2/6/2012 4:40:24 PM]

shown in the beginning comments of the COPYDISK.A86 source file.

DISK FORMATTING

A format utility, which you create and generally package with CP/M-86 Plus as
a system utility, initializes fresh disk media for use with CP/M-86 Plus. The
physical format of a disk is hardware-dependent, and therefore is not
discussed here. This subsection discusses initialization of the directory area
of a new disk.

A format program can initialize the directory with or without time and date
stamping enabled. This can be a user option in the format program. If time and
date stamps are not initialized, the user can independently enable this
feature through the INITDIR and SET utilities, as documented in the "User's
Guide".

It is highly recommended that you support the new features of CP/M-86 Plus by
including time and date stamping in the format program. This simplifies the
use of time and date stamping; otherwise, the user must first learn that date
stamps are possible, then use the INITDIR and SET utilities to allow the use
of this feature. Complications can arise with INITDIR if the disk directory is
close to being full; INITDIR does not allow the restructuring of the directory
that is necessary to include SFCBs. (The "Programmer's Guide" discusses
SFCBs.)

The cost of enabling the time and date stamp feature on a given disk is 25% of
its total directory space. This space is used to store the time and date
information in the special directory entries called SFCBs. For time and date
stamping, every fourth directory entry must be an SFCB. Each SFCB is logically
an extension of the previous three directory entries. This method of storing
date-stamp information allows efficient update of date stamps, since all of
the directory information for a given file resides within a single 128-byte
logical disk record.

A disk under CP/M-86 Plus is divided into three areas: the boot tracks, the
directory area, and the data area. The Disk Parameter Block (see Section 7)
determines the size of the directory and reserved areas. The directory area
starts on the first disk allocation block boundary; the data area immediately
follows the directory area. See Figure 7-1.

The boot tracks and the data area do not need to be initialized to any
particular values before they serve as a non-bootable CP/M-86 Plus disk. The
directory area, on the other hand, must be initialized to indicate that no
files are on the disk. Also, as discussed later in this section, a format
program can reserve space for time and date information, and can initialize
the disk to enable this feature.

The directory area is divided into 32-byte structures called Directory
Entries. The first byte of a Directory Entry determines the type and usage of
that entry. For the purposes of directory initialization, three types of
Directory Entries are pertinent: the unused Directory Entry, the SFCB
Directory Entry, and the Directory Label.

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG12.TXT[2/6/2012 4:40:24 PM]

A disk directory initialized without time and date stamps has only the unused
type of Directory Entry. An unused Directory Entry is indicated by a 0E5H in
its first byte. The remaining 31 bytes in a Directory Entry are undefined, and
can be any value.

 0h 1h 20h
 +-------+-----------------+
 entry 0 | 0E5H | undefined |
 1 | 0E5H | undefined |
 2 | 0E5H | undefined |
 : : :
 n | 0E5H | undefined |
 +-------+-----------------+

 Figure 12-1. Directory Initialization Without Time Stamps

A disk directory initialized to enable time and date stamps must have SFCBs as
every fourth Directory Entry. An SFCB has a 021H in the first byte, and all
other bytes must be 0H. Also, a directory label must be included in the
directory. This is usually the first Directory Entry on the disk. The
directory label must be initialized as shown in Figure 12-2.

 0h 1h 0Ch 0Dh 0Eh 0Fh
 +-----+-------...-------+-----+-----+-----+-----+
 | 20h | LABEL ... NAME |DATA | 00h | 00h | 00h |
 +-----+-------...-------+-----+-----+-----+-----+

 10h 11h 12h 13h 14h 15h 16h 17h
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | 20h | 20h | 20h | 20h | 20h | 20h | 20h | 20h |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | 00h | 00h | 00h | 00h | 00h | 00h | 00h | 00h |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 Figure 12-2. Directory Label Initialization

Table 12-1. Directory Label Data Fields

Format: Data Field
 Explanation

LABEL NAME
An 11-byte field containing an ASCII name for the drive. The field follows the
format for filenames: the first eight bytes are filename, and the last three
bytes are the filetype. The filename and filetype parts of the label name
should be blank-padded and left-justified.

DATA
A bit field that tells the BDOS general characteristics of files on the disk.
The DATA field can assume the following values:

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG12.TXT[2/6/2012 4:40:24 PM]

 060H enables date of last modification, and date of last access to be
 updated, when appropriate.

 030H enables date of last modification, and date of creation to be updated,
 when appropriate.

A format program should ask the user for the name of the disk, if time
stamping is desired, and whether to use the date of last access or the date of
creation, since these time stamps share the same field in the SFCB. The date
of last modification has its own field in the SFCB, and can always be used. If
the DATA field is 00H, or if the Directory Label does not exist, the time and
date stamping is not enabled. The DATA Field must be 00H if SFCBs are not
initialized in the directory.

Figure 12-3 shows a directory initialized for time and date stamping.

 0h 1h 20h
 +------+------------------------------+
 entry 0 | 020H | NAME,DATA (Directory Label) |
 1 | 0E5H | undefined (Unused) |
 2 | 0E5H | undefined (Unused) |
 3 | 021H | NULLS (SFCB) |
 4 | 0E5H | undefined (Unused) |
 5 | 0E5H | undefined (Unused) |
 6 | 0E5H | undefined (Unused) |
 7 | 021H | NULLS (SFCB) |
 : : :
 | 0E5H | undefined (Unused) |
 | 0E5H | undefined (Unused) |
 | 0E5H | undefined (Unused) |
 n | 021H | NULLS (SFCB) |
 +------+------------------------------+

 Figure 12-3. Directory Initialization With Time Stamps

EOF

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG2.TXT[2/6/2012 4:40:25 PM]

CPMPIG2.WS4 (= "CP/M-86 Plus Installation Guide", section 2)

(Edited by Emmanuel ROCHE.)

Section 2: Customizing CP/M-86 Plus

This section describes the modules of the BIOS that you supply, and gives a
summary of the tasks involved in porting CP/M-86 Plus.

BIOS MODULES

CP/M-86 Plus introduces the use of a BIOS Kernel to standardize and simplify
the porting process. The customization procedure for CP/M-86 Plus entails
writing hardware-dependent drivers that interface with the BIOS Kernel. The
Kernel is a set of routines and data common to any CP/M-86 Plus BIOS. Porting
earlier operating systems in the CP/M family entailed writing the entire BIOS
that interfaced directly to the Basic Disk Operating System (BDOS).

The hardware-dependent modules you supply and the Kernel are linked together
to form the file BIOS3.SYS. GENCPM uses the files BIOS3.SYS, BDOS3.SYS, and
optionally, CCP.CMD as input to create the memory image file CPM3.SYS.

Table 2-1 summarizes the hardware-dependent modules you must write. It also
lists the section where each is discussed in detail.

Table 2-1. OEM-written BIOS Modules

Module Description
------ -----------
INIT Initializes all I/O device hardware and prints the BIOS sign-on
 message. (Section 5)

CHARIO Performs character I/O for console and other character devices such as
 printers and communications ports. (Section 6)

DISKIO Performs disk I/O, media density selection and handling of removable
 media door open interrupts. (Section 7)

CLOCK Updates the time of day variables and forces dispatches when more than
 one program is running. (Section 8)

All BIOS modules are separate code and data with any other segments, such as
stack and extra segments, contained in the data segment.

Examples of these modules are on the distribution disks. These example modules
implement a BIOS for operation on a CompuPro 8/16 with at least 64 Kbytes of
RAM. However, 128 Kbytes of RAM or more is recommended. The example modules
are in the files INIT.A86, CHARIO.A86, DISKIO.A86, and CLOCK.A86.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG2.TXT[2/6/2012 4:40:25 PM]

Appendix B contains a listing of the BIOS Kernel. The Kernel is also on the
distribution disks in the file BIOSKRNL.A86.

All the BIOS Kernel functions, data structures, fields, public variables, and
public subroutines are indexed and cross-referenced for easier access to
essential information during design and coding.

CP/M-86 PLUS CUSTOMIZATION TASKS

The entire customization process generally includes the following tasks:

 - Prepare the customized hardware-dependent BIOS modules, either by
 modifying the example BIOS modules, by modifying an existing CP/M-86
 1.X BIOS, or by expanding the loader BIOS if you have written it
 first.

 - Test and debug the hardware-dependent BIOS modules. Wherever possible,
 debug these modules as transient programs under a running CP/M-86 1.X.

 - Process all the OBJ BIOS modules through the MODEDIT utility in order
 to resolve external references.

 - Create the BIOS3.SYS file by linking the modules together using LINK-
 86.

 - Build the CP/M-86 Plus system image using the GENCPM utility. GENCPM
 initializes values in the system image according to information given
 by the system implementor.

 - Debug the BIOS under CP/M-86 1.X using a remote console.

 - Prepare, test, and debug the CP/M-86 Plus disk boot loader using an
 existing CP/M-86 1.X disk boot loader as a base.

 - Prepare the CP/M-86 Plus loader program and BIOS, integrating with the
 loader BDOS to create the CP/M-86 Plus loader, CPMLDR. CPMLDR is built
 using the GENLDR utility.

 - Use the TCOPY program to write the disk boot loader and CPMLDR onto
 the boot tracks of a boot disk.

 - Boot CP/M-86 Plus from disk using CPMLDR and test.

 - Write, test, and debug any hardware-dependent utilities, such as a
 disk formatter.

The preceding list presents a formidable task, especially if you are
unfamiliar with porting Digital Research operating systems. Appendix A
outlines a series of base levels or steps to help organize and simplify the
creation of a new BIOS.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG2.TXT[2/6/2012 4:40:25 PM]

EOF

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

CPMPIG3.WS4 (= "CP/M-86 Plus Installation Guide", section 3)

(Edited by Emmanuel ROCHE.)

Section 3: BIOS Kernel

This section describes how the BIOS Kernel interfaces with the BIOS modules
you supply and with the BDOS. With the exception of interrupt service
routines, all communication between the BDOS and the hardware drivers
contained in the INIT, CHARIO, DISKIO, and CLOCK modules occurs through the
BIOS Kernel.

The BIOS Kernel and the example BIOS modules prefix public labels with a "?"
and public data variables with an "@". Appendix B lists the BIOS Kernel for
reference in reading this and subsequent sections.

The BIOS Kernel is intended to be used unchanged in your implementation of
CP/M-86 Plus. Though you can modify the Kernel if necessary, the Kernel Data
and Code Headers as defined in this section must be present in any BIOS.

BIOS KERNEL DATA HEADER

The BIOS data begins with the BIOS Kernel Data Header at offset 0F00h relative
to the SYSDAT segment address. The BIOS data segment is the same as the SYSDAT
segment, and the BDOS sets the DS register to the SYSDAT segment before
calling the BIOS.

The BDOS, the BIOS Kernel, and the other BIOS modules access the Data Header.
Since the BIOS Data Header is in a fixed format and location, it is possible
to access hardware-dependent information independent of a particular BIOS
implementation. For instance, GENCPM and DEVICE are two utilities that rely on
the Data Header for information about character and disk devices.

The following code fragment from the BIOS Kernel shows the layout of the BIOS
Kernel Data Header.

Variables in the BIOS Kernel Data Header are prefixed with "BH_" to help
identify them. The @CDBA-@CDBP and the @DPHA-@DPHP variables in the header do
not have this prefix, since they are external symbols in the BIOS Kernel and
are defined in the DISKIO and CHARIO modules.

Listing 3-1. BIOS Kernal Data Header

;***
;
; BIOS Kernel Data Header
;
;***
 org 0000h

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

 ;use the LINK-86 [data[origin[0F00]]] option
 ;to set the origin of the data segment at 0F00h

@bh_delay db 0 ;0FFh if process delaying
@bh_ticksec db 60 ;ticks per second
@bh_gdopen db 0 ;0FFh if drive door opened
@bh_inint db 0 ;in interrupt count
@bh_nextflag db 4 ;next available flag
@bh_lastflag db 0 ;last available flag
@bh_intconin db 0 ;0FFh if interrupt driven CONIN:
@bh_8087 db 0 ;0FFh if 8087 exists

; disk parameter header offset table

@bh_dphtable dw offset @dpha ;drive A:
 dw offset @dphb ;drive B:
 dw offset @dphc ;drive C:
 dw offset @dphd ;drive D:
 dw offset @dphe ;drive E:
 dw offset @dphf ;drive F:
 dw offset @dphg ;drive G:
 dw offset @dphh ;drive H:
 dw offset @dphi ;drive I:
 dw offset @dphj ;drive J:
 dw offset @dphk ;drive K:
 dw offset @dphl ;drive L:
 dw offset @dphm ;drive M:
 dw offset @dphn ;drive N:
 dw offset @dpho ;drive O:
 dw offset @dphp ;drive P:

; character device block offset table

@bh_cdbtable dw offset @cdba ;device A
 dw offset @cdbb ;device B
 dw offset @cdbc ;device C
 dw offset @cdbd ;device D
 dw offset @cdbe ;device E
 dw offset @cdbf ;device F
 dw offset @cdbg ;device G
 dw offset @cdbh ;device H
 dw offset @cdbi ;device I
 dw offset @cdbj ;device J
 dw offset @cdbk ;device K
 dw offset @cdbl ;device L
 dw offset @cdbm ;device M
 dw offset @cdbn ;device N
 dw offset @cdbo ;device O
 dw offset @cdbp ;device P

; Character device roots for console input,
; console ouput, auxiliary input, auxiliary output
; and list output.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

@bh_ciroot dw offset @cdba ;console input
@bh_coroot dw offset @cdba ;console output
@bh_airoot dw offset @cdbb ;auxiliary input
@bh_aoroot dw offset @cdbb ;auxiliary output
@bh_loroot dw offset @cdbc ;list output

@bh_bufbase dw 0 ;offset of buffer
@bh_buflen dw 0 ;length of buffer

@bh_memdesc rw 32*3 ;room for 32 memory
 ;descriptors
; O.S. messages

bh_chain dw chain_msg ;chain error message address
bh_prompt dw prompt_msg ;error CCP prompt message address
bh_user dw user_str ;error CCP command string
bh_cpmerr dw cmperr_msg ;CP/M error message address
bh_func dw func_msg ;function message address
bh_file dw file_msg ;file message address
bh_err1 dw err1_msg
bh_err2 dw err2_msg
bh_err3 dw err3_msg
bh_err4 dw err4_msg
bh_err5 dw err5_msg
bh_err6 dw err6_msg
bh_err7 dw err7_msg

The following table describes each field in the Data Header. The offset for
each data field is in parentheses next to the field name.

Table 3-1. BIOS Data Header Fields

Format: Field
 Explanation

@BH_DELAY (0F00h)
When a program makes a P_DELAY system call, this field is set to 0FFh by the
BDOS. When @BH_DELAY is equal to 0FFh, the tick interrupt service routine in
the BIOS CLOCK module sets system flag number 1 (the tick flag) on every
system tick. System flags are set through the INT_SETFLAG function described
in Section 4 of this guide. The BDOS in turn decrements the tick count for
delaying processes on each INT_SETFLAG operation made to flag number 1.

When no processes are delaying, @BH_DELAY is set to 0 by the BDOS and the
CLOCK module does not set the tick flag. @BH_DELAY is initialized to 0 in the
BIOS Kernel Data Header.

@BH_TICKSEC (0F01h)
[Number of system ticks per second]
This field is initialized by GENCPM but can be modified by the ?CLOCK_INIT
routine. A transient program can read this variable using the S_SYSVAR system
call and calculate the number of ticks needed for a P_DELAY system call. The

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

tick interrupt service routine also forces dispatches between CPU bound
processes on each system tick. Setting @BH_TICKSEC to 0 signifies ticks are
not supported by the BIOS and the BDOS does not allow P_DELAY system calls and
does not support multitasking. A typical setting for this field is 60,
specifying a system tick every 16.66 milliseconds.

@BH_GDOPEN (0F02h)
[Global door open]
This field is set to 0FFh by the drive door open interrupt service routine
when any disk drive door has been opened. The BDOS checks this field before
every disk operation to verify the media has not changed. The door open
interrupt service routine must also set the DPH_DOPEN in the Disk Parameter
Header (DPH) associated with the drive. The DPH_DOPEN specifies to the BDOS
which drives had doors opened.

@BH_GDOPEN is initialized to 0 in the BIOS Kernel Data Header.

@BH_ININT (0F03h)
[In interrupt count]
This field is incremented upon entry to and decremented prior to exiting from
an interrupt service routine. @BH_ININT counts the number of interrupt service
routines currently being executed. This count can become greater than one when
an interrupt service routine reenables interrupts, thereby allowing another
interrupt to occur. Keeping track of the number of interrupts being serviced
prevents waiting for an entire system tick before finishing an interrupt
service routine. "Interrupt Device Drivers" in Section 4 discusses the use of
@BH_ININT.

If interrupts are not reenabled within any of the interrupt service routines,
@BH_ININT does not need to be incremented or decremented. This field is
initialized to 0 in the BIOS Kernel Data Header.

@BH_NEXTFLAG (0F04h)
This is the next system flag available for allocation to an interrupt routine.
(Section 4 describes system flags.) The INIT routines for device drivers that
need a system flag for ?WAITFLAG and INT_SETFLAG operations use this field to
obtain a specific flag number to use. Flags are numbered from zero and the
first four are reserved for use by the BDOS. Thus, GENCPM initializes
@BH_NEXTFLAG to 4.

@BH_LASTFLAG (0F05h)
The value in this field indicates the last system flag available for system
use. This is the number of flags in the system minus one. GENCPM sets this
field according to the number of flags requested by BIOS data structures and
the additional number of flags you request when running GENCPM.

The BIOS must ensure @BH_NEXTFLAG is less than or equal to @BH_LASTFLAG before
allocating a flag. "Device Initialization" in Section 5 discusses the
allocation of flags at initialization time.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

@BH_INTCONIN (0F06h)
[Interrupt console input]
When set to 0FFh, this field indicates that the CONIN: device (the logical
console input device) is interrupt-driven. If this field is 0FFh, the BDOS
does not call the IO_CONST function in the BIOS Kernel when a transient makes
console output or console input system calls. If @BH_INTCONIN is set to 0FFh,
the interrupt service routine associated with the current CONIN: device must
call the BDOS INT_CHARSCAN routine so the BDOS can scan for Ctrl-S, Ctrl-Q,
Ctrl-C, and Ctrl-P.

The current CONIN: device is specified by the Character Device Block (CDB),
which is pointed to by the console input root (@BH_CIROOT, which is explained
later in this table). A field in the Character Device Block (discussed in
Section 6) indicates whether input from the device is interrupt-driven.

The Kernel BIOSINIT routine initializes @BH_INTCONIN. When the DEVICE utility
changes the @BH_CIROOT, it also updates @BH_INTCONIN.

@BH_8087 (0F07h)
This field is set to 0FFh by your INIT module if the 8087 is present and to
00h if it is not. Transient programs are marked as 8087 users by a field in
the CMD file Header Record. The BDOS successfully loads transients needing the
8087 only if @BH_8087 is set to 0FFh. Additionally, the BDOS permits only one
process to use the 8087 at a time because the 8087 registers are not saved
when two or more processes are running simultaneously. (RSXs cannot "own" the
8087.)

@DPHA-@DPHP (0F08h)
This is the table of offsets of Disk Parameter Headers (DPHs) for logical
drives A through P respectively. The DPHs are declared as externals in the
BIOS Kernel and are publics defined in the DISKIO modules. (DISKIO modules
refer to all the modules you supply containing disk drivers.) GENCPM uses
these offsets to find DPHs and to build any requested data and disk buffers,
checksum and allocation vectors, and hash tables.

The DPH is a data structure used by the file system for performing disk I/O on
a particular logical drive. The DPH contains the offsets for drive
initialization, drive login, drive read, and drive write routines as well as
the offset to the Disk Parameter Block (DPB). The DPB defines the
characteristics of a physical drive. Section 7 discusses the DPB and DPH in
detail.

LINK-86 sets each DPH field in this table to the offset of the corresponding
DPH defined in the DISKIO modules or to 0 if the DPH is not defined.

@CDBA-@CDBP (0F28h)
This is the table of offsets of Character Device Blocks (CDB) for devices A
through P respectively. The CDBs are declared as externals in the BIOS Kernel
and are publics defined in the CHARIO modules. (CHARIO modules refer to all
the modules you supply containing character device drivers.)

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

CP/M-86 Plus supports a maximum of 16 character devices, each of which is
described by a CDB. The CDBs contain an ASCII device name and offsets of
device initialization, device input, device input status, device output, and
device output status routines. The CDB also contains information on baud and
protocol the device is currently programmed to support, as well as other
protocols it can potentially support. Section 6 discusses CDBs in detail.

The DEVICE utility uses the CDB offsets in the Kernel Data Header to change
the mapping of logical character devices to physical devices, and to
dynamically change baud and protocol configurations.

LINK-86 sets each CDB field in this table to the offset of the corresponding
CDB defined in the CHARIO modules, or to 0 if the CDB is not defined.

@BH_CIROOT (0F48h)
[Console Input Root]
This is the offset of the Character Device Block (CDB) currently attached to
the logical console input device CONIN:. Console input comes from the device
associated with this CDB. Initialize this field with the CDB symbol (one of
@CDBA-@CDBP) of the initial CONIN: device. This CDB external is resolved by
LINK-86 and must result in a non-zero value in @BH_CIROOT.

@BH_COROOT (0F4Ah)
[Console Output Root]
This is the list of Character Device Blocks (CDBs) currently attached to the
logical console output device CONOUT:. @BH_COROOT contains the offset of the
first CDB on this list. Each character output to CONOUT: is sent to each of
the physical devices represented by the CDBs on this list. Initialize this
field with the CDB symbol (one of @CDBA-@CDBP) of the initial CONOUT: device.
This CDB external is resolved by LINK-86 and must result in a non-zero value
in @BH_COROOT.

@BH_AIROOT (0F4Ch)
[Auxiliary Input Root]
This is the offset of the Character Device Block (CDB) currently attached to
the logical auxiliary input device AUXIN:. Auxiliary device input comes from
the device associated with this CDB. Initialize this field with the CDB symbol
(one of @CDBA-@CDBP) of the initial AUXIN: device. This CDB external is
resolved by LINK-86 and can be 0.

@BH_AOROOT (0F4Eh)
[Auxiliary Output Root]
This is the list of Character Device Blocks (CDBs) currently attached to the
logical auxiliary output device AUXOUT:. @BH_AOROOT contains the offset of the
first CDB on this list. Each character output to AUXOUT: is sent to each of
the physical devices represented by the CDBs on this list. Initialize this
field with the CDB symbol (one of @CDBA-@CDBP) of the initial AUXOUT: device.
This CDB external is resolved by LINK-86 and can be 0.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

@BH_LOROOT (0F50h)
[List Output Root]
This is the list of Character Device Blocks (CDBs) currently attached to the
logical list device LST:. @BH_LOROOT contains the offset of the first CDB on
this list. Each character output to the LST: is sent to each physical device
represented by the CDBs on this list. Initialize this field with the CDB
symbol (one of @CDBA-@CDBP) of the initial LST: device. This CDB external is
resolved by LINK-86 and can be 0.

@BH_BUFBASE (0F52h)
This is the offset of the uninitialized buffer in the SYSDAT segment for use
by the BIOS. Define the size and use of this area of RAM. The BDOS does not
use this buffer. GENCPM sets this field and reserves the buffer in the CP/M-86
Plus system image. Section 9 discusses GENCPM.

@BH_BUFLEN (0F54h)
This is the size, in paragraphs, of the uninitialized buffer in the SYSDAT
segment optionally created by GENCPM.

@BH_MEMDESC (0F56h)
[Memory Descriptor Table]
This is the table of 32 Memory Descriptors, which are each 6 bytes long.
GENCPM initializes this table when you answer the GENCPM memory definition
questions. Appendix F shows and discusses the Memory Descriptor format.

BH_CHAIN (1016h)
This is the offset of the error message used by the BDOS P_CHAIN system call
when an error is encountered after the BDOS has released its memory. The
offset in BH_CHAIN must address a printable string terminated by a "$". The
default string defined in the BIOS Kernel is as follows:

 chain_msg db 13,10,'Cannot Load Program',13,10,'$'

This string can be changed to a foreign language message, though the CRLF
sequences (13,10) should be kept. Appendix H discusses foreign error message
customization.

BH_PROMPT (1018h)
This is the offset of the prompt used by the Error CCP when the CCP is not a
permanent part of the system and the CCP.CMD file cannot be found on disk.
(The "User's Guide" describes the Error CCP.) BH_PROMPT must address a
printable string terminated by a "$". The default string defined in the BIOS
Kernel is the following:

 prompt_msg db 13,10,'Cannot Load CCP $'

This string can be changed to a foreign language message, though the prefixed
CRLF sequence (13,10) should be kept. See Appendix H.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

BH_USER (101Ah)
The Error CCP uses the string addresses by this offset to recognize the one
internal Error CCP command that changes user numbers. BH_USER must address a
byte followed by the uppercase command. The first byte is the number of
characters in the following string. The default string defined in the BIOS
Kernel is as follows:

 user_str db 4,'USER'

This string can be changed to a foreign language as required. See Appendix H.

BH_CPMERR (101Ch)
BH_FUNC (101Eh)
BH_FILE (1020h)
The BDOS uses these three offsets to address strings for printing file-related
error messages. The corresponding default strings as defined in the BIOS
Kernel are the following:

 cmperr_msg db 13,10,'CP/M Error On $'
 func_msg db 13,10,'BDOS Function = $'
 file_msg db ' File = $'

These strings can be changed to a foreign language as required. See Appendix
H.

BH_ERR1 (1022h)
BH_ERR2 (1024h)
BH_ERR3 (1026h)
BH_ERR4 (1028h)
BH_ERR5 (102Ah)
BH_ERR6 (102Ch)
BH_ERR7 (102Eh)
The BDOS uses the strings addressed by these seven offsets to display a
particular type of BDOS error. The corresponding default definitions in the
BIOS Kernel are shown here:

 err1_msg db 'Disk Read/Write Error$'
 err2_msg db 'Read-Only Disk$'
 err3_msg db 'Read-Only File$'
 err4_msg db 'Invalid Drive$'
 err5_msg db 'Password Error$'
 err6_msg db 'File Exists$'
 err7_msg db '? in Filename$'

These strings can be changed to a foreign language as required. See Appendix
H.

BDOS/BIOS INTERFACE

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

The BDOS calls the BIOS through two entry points in the BIOS Kernel. All
communication to the BIOS is performed through these points.

BIOS Kernel Code Header

The BIOS Kernel Code Header is located at offset 0 relative the BIOS code
segment. It consists of jumps to BIOSINIT and BIOSENTRY, as well as to the
SYSDAT segment address. The BDOS performs a single CALLF (Call Far
instruction) to JMP BIOSINIT after system boot. Each time the BDOS must have
access to the hardware, it performs a CALLF to JMP BIOSENTRY. The double word
pointers the BDOS uses to find these two entries reside at 2Ch and 28H in
SYSDAT. (Appendix C shows the SYSDAT format.)

The SYSDAT segment address, which is also the BIOS data segment, is kept in
the code segment of the BIOS to be accessible from interrupt service routines.

The following code fragment from the BIOS Kernel shows the Code Header.

Listing 3-2. BIOS Kernel Code Header

;***
;
; BIOS CODE HEADER
;
;***

 CSEG
 org 0000h

 jmp biosinit ;BIOS initialization entry
 jmp biosentry ;BIOS function entry

@sysdat rw 1 ;OS Data Segment

Section 5 discusses the BIOSINIT routine and the rest of BIOS initialization.

BIOSENTRY Routine

The Kernel BIOSENTRY routine receives from the BDOS, a BIOS function number in
AL, and parameters in CX and DX or on the stack as needed. Fifteen levels of
stack are available to the BIOS when the BDOS calls BIOSENTRY. The value in AL
indexes into the BIOS function table, which is located in the BIOS Kernel.
Before calling BIOSENTRY, the BDOS sets DS to SYSDAT and ES to the currently
running process environment. DS and ES must be preserved through the Kernel
and the routines in the other BIOS modules. The first comment in Listing 3-3
summarizes the BDOS/BIOS register conventions.

The S_BIOS system call in the BDOS does not perform a range check for BIOS
functions 80h and above, to allow BIOS functions specific to your CP/M-86 Plus

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

implementation. The example BIOS supports no functions above 80h, and these
functions return errors as shown in the following BIOSENTRY routine:

Listing 3-3. Kernel BIOSENTRY Routine

 CSEG

;***
;
; BIOS ENTRY
;
;***

;=========
biosentry: ; BIOS Entry Point
;=========
; All calls to the BIOS after INIT, enter through this code
; with a CALLF and must return with a RETF.
;
; Entry: AL = function number
; CX = first parameter
; DX = second parameter
; DS = system data segment
; ES = process environment (preserved through call)
;
; Exit: AX = BX = return or BIOS error code
; DS = SYSDAT segment
; ES = process environment (preserved through call)
; SS,SP must also be preserved
; CX,DX,SI,DI,BP can be changed by the BIOS
;
 cmp al,80h ! jae range_er ;check for BIOS functions
 ; above 80h
 cld ;clear direction flag
 xor ah,ah ! shl ax,1 ;index into BIOS function
 ; table
 mov bx,ax
 call functab[bx] ;call BIOS kernel routine
 mov es,rlr ;restore ES
bdos_ret:
 mov bx,ax ;BX = AX
 retf
range_err:
 mov ax,0FFFFh ;function out of range
 jmps bdos_ret

 DSEG

functab dw io_conist ; 0 - console status
 dw io_conin ; 1 - console input
 dw io_conout ; 2 - console output
 dw io_listst ; 3 - list output status
 dw io_list ; 4 - list output
 dw io_auxin ; 5 - aux input

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

 dw io_auxout ; 6 - aux output
 dw io_notimp ; 7 - CCP/M function
 dw io_notimp ; 8 - CCP/M function
 dw io_seldsk ; 9 - select disk
 dw io_read ;10 - read sector
 dw io_write ;11 - write sector
 dw io_flush ;12 - flush buffers
 dw io_notimp ;13 - CCP/M function
 dw io_devinit ;14 - char. device init
 dw io_conost ;15 - console output status
 dw io_auxist ;16 - aux input status
 dw io_auxost ;17 - aux output status

As already mentioned, the BIOS Kernel assumes the other BIOS modules preserve
DS and ES. If you change DS or ES, save them using PUSH and POP instructions.
Alternatively, SYSDAT is always available through the Kernel @SYSDAT public
defined in the code segment, and the segment of currently running process
environment is kept in the word at location 4Eh in the SYSDAT segment.
Location 4Eh in SYSDAT is the Ready List Root as shown in Appendix C.

BIOS Kernel Functions Called by the BDOS
--

The BDOS calls the BIOS Kernel through the BIOSENTRY routine to perform any
hardware-dependent actions. The BIOS functions used by the BDOS fall into two
groups: character I/O and disk I/O. BIOS function numbers 7, 8, and 13 are
reserved for compatibility with Concurrent CP/M, and return an 0FFFFh in AX
and BX from the CP/M-86 Plus BIOS. All BIOS functions called by the BDOS begin
with the prefix "IO_". The offsets of these functions are defined at the
"FUNCTAB" symbol in Listing 3-3. The following table shows the two groupings
of BIOS functions available to the BDOS:

Table 3-2. BIOS Kernel IO_ Functions

 No. Mnemonic Meaning

 Character Device I/O Functions

 0 IO_CONIST CONSOLE INPUT STATUS
 1 IO_CONIN CONSOLE INPUT
 2 IO_CONOUT CONSOLE OUTPUT
 3 IO_LISTST LIST STATUS
 4 IO_LISTOUT LIST OUTPUT
 5 IO_AUXIN AUXILIARY INPUT
 6 IO_AUXOUT AUXILIARY OUTPUT
 14 IO_DEVINIT DEVICE INITIALIZATION
 15 IO_CONOST CONSOLE OUTPUT STATUS
 16 IO_AUXIST AUXILIARY INPUT STATUS
 17 IO_AUXOST AUXILIARY OUTPUT STATUS
 9 IO_SELDSK SELECT DISK
 10 IO_READ READ DISK
 11 IO_WRITE WRITE DISK
 12 IO_FLUSH FLUSH BUFFERS

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

BIOS KERNEL/BIOS MODULES INTERFACE

All IO_ functions are in the BIOS Kernel. Most of these functions use the
Character Device Blocks (CDBs) and the Disk Parameter Headers (DPHs) to locate
hardware-dependent routines within the other BIOS modules. The BDOS reserves
fifteen levels of stack to be used by the BIOS Kernel on each call to the
BIOSENTRY routine. This is extra stack area past any parameters passed to the
BIOS on the stack. The IO_ functions use differing amounts of stack space
before calling the hardware-dependent routines you supply in the other BIOS
modules. If your routines need more stack space, they must switch to a local
stack.

BIOS Kernel/CHARIO Interface

The BIOS Kernel Character IO_ functions serve as a layer between the BDOS and
the physical character I/O routines addressed from the CDBs. The BDOS calls
the BIOS Kernel functions IO_CONIN, IO_CONIST, IO_CONOUT, IO_CONOST, IO_AUXIN,
IO_AUXIST, IO_AUXOUT, IO_AUXOST, IO_LIST, and IO_LISTST to perform character
I/O. These character IO_ functions relate the logical CP/M-86 Plus character
devices CONIN:, CONOUT:, AUXIN:, AUXOUT:, and LST: to the physical character
devices; they perform the logical-to-physical mapping of character I/O.

The three logical output devices are mapped onto physical devices by three
linked lists of CDBs. The offsets of the first CDB in these lists are
contained in the BIOS Kernel Data Header variables @BH_COROOT, @BH_AOROOT, and
@BH_LOROOT. The two logical input devices are mapped onto physical devices by
the two variables @BH_CIROOT and @BH_AIROOT, which contain the offset of the
one CDB associated with the logical device. These offsets in the Data Header
are called the character I/O redirection roots:

Table 3-3. Character I/O Redirection Roots

 Name Logical Device

@BH_CIROOT CONIN: - Console Input
@BH_COROOT CONOUT: - Console Output
@BH_AIROOT AUXIN: - Auxiliary Input
@BH_AOROOT AUXOUT: - Auxiliary Output
@BH_LOROOT LST: - List Output

Logical device output can go to any combination of up to the sixteen maximum
physical character devices. The BIOS Kernel routines IO_CONOUT, IO_AUXOUT, and
IO_LIST call the character output routine in each CDB linked to the
corresponding device root @BH_COROOT, @BH_AOROOT, or @BH_LOROOT respectively.
However, logical device input can be received from only the one physical
device since the input device roots, @BH_CIROOT and @BH_AIROOT, are not linked
and address only one CDB.

Table 3-4 summarizes the BIOS Kernel character IO_ functions. Note the special

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

handling when a character device root is zero, indicating no physical device
is attached to the logical device. The BIOS Kernel listing in Appendix B shows
the register conventions for the IO_ functions.

Table 3-4. BIOS Kernel Character IO_ Functions

Format: Function
 Definition

IO_CONIN
Calls the CDB_INPUT routine for the CDB addressed by @BH_CIROOT. If @BH_CIROOT
is 0, then IO_CONIN returns a null (AL=0).

IO_AUXIN
Calls the CDB_INPUT routine for the CDB addressed by @BH_AIROOT. If @BH_AIROOT
is 0, then IO_AUXIN returns a null (AL=0).

IO_CONIST
Calls the CDB_INSTAT routine for the CDB addressed by the @BH_CIROOT. If
@BH_CIROOT is 0, then IO_CONIST returns a not ready status (AL=0).

IO_AUXIST
Calls the CDB_INSTAT routine for the CDB addressed by the @BH_AIROOT. If
@BH_AIROOT is 0, then IO_AUXIST returns a not ready status (AL=0).

IO_CONOUT
Calls the CDB_OUTPUT routine for every CDB on the linked list that starts with
the CDB addressed by @BH_COROOT. CL is set by the BDOS and is the character to
output. IO_CONOUT saves this value and the position in the CDB list between
calls to the CDB_OUTPUT routines. If @BH_COROOT is 0, then IO_CONOUT returns.

IO_AUXOUT
Calls the CDB_OUTPUT routine for every CDB on the linked list that starts with
the CDB addressed by @BH_AOROOT. CL is set by the BDOS and is the character to
output. IO_AUXOUT saves this value and the position in the CDB list between
calls to the CDB_OUTPUT routines. If @BH_AOROOT is 0, then IO_AUXOUT returns.

IO_LIST
Calls the CDB_OUTPUT routine for every CDB on the linked list that starts with
the CDB addressed by @BH_LOROOT. CL is set by the BDOS and is the character to
output. IO_LIST saves this value and the position in the CDB list between
calls to the CDB_OUTPUT routines. If @BH_LOROOT is 0, then IO_LIST returns.

IO_CONOST
Calls the CDB_OUTSTAT routine for every CDB on the linked list that starts
with the CDB addressed by @BH_COROOT. IO_CONOST returns a ready status
(AL=0FFh) only if all the devices are ready. If @BH_COROOT is 0, then
IO_CONOST also returns a ready status.

IO_AUXOST
Calls the CDB_OUTSTAT routine for every CDB on the linked list that starts
with the CDB addressed by @BH_AOROOT. IO_AUXOST returns a ready status
(AL=0FFh) only if all the devices are ready. If @BH_AOROOT is 0, then
IO_AUXOST also returns a ready status.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

IO_LISTST
Calls the CDB_OUTSTAT routine for every CDB on the linked list that starts
with the CDB addressed by @BH_LOROOT. IO_LISTST returns a ready status
(AL=0FFH) only if all the devices are ready. If @BH_LOROOT is 0, then
IO_LISTST also returns a ready status.

IO_DEVINIT
Calls the CDB_INIT routine using the CDB offset in BX. The IO_DEVINIT is
available to utilities such as DEVICE through the S_BIOS system call. DEVICE
specifies the CDB offset as part of the S_BIOS call and the BDOS sets BX with
this offset before calling IO_DEVINIT. IO_DEVINIT sets register DL to 1 before
calling the CDB_INIT routine, indicating this is not the first initialization
call to the device. The Kernel BIOSINIT routine (discussed in Section 5) sets
DL to 0 before making the first initialization call to all CDB_INIT routines.
Your CDB_INIT routine must return success (AX=0) and failure (AX=0FFFFh) back
to the Kernel IO_DEVINIT function, which returns to the BDOS, and finally back
to utilities such as DEVICE.

Figure 3-1 illustrates character I/O redirection. Console ouput echoes to the
printer without use of the Ctrl-P command. The @BH_COROOT field in the BIOS
Data Header points to the CRT0 CDB, and the CDB_COLINK field within the CRT0
CDB contains the offset of the LPT0 CDB. The IO_CONOUT function in the Kernel
calls the console output routine for each device with every character. The
addresses of the console ouput routines are contained in the CDB for the
respective device. Section 7 defines the CDB structure.

 (...)
+-------+--------+
| @BH_CIROOT | CDB_NAME CDB_COLINK
+-------+--------+ +------------+-----+-----+-----
| @BH_COROOT |--------> | CRT0 | o | (...)
+-------+--------+ +------------+-----+-----+-----
| @BH_AIROOT | |
+-------+--------+ +-----------------------+
| @BH_AOROOT | |
+-------+--------+ | +------------+-----+-----+-----
| @BH_LOROOT | +--> | LPT0 | 0000H | (...)
+-------+--------+ +------------+-----+-----+-----
 (...)

BIOS Kernel Data Header Character Device Blocks

 Figure 3-1. Character I/O Redirection Example

BIOS Kernel/BIOS DISKIO Interface

The sixteen DPH offsets in the BIOS Kernel Data Header correspond to the
sixteen CP/M-86 Plus logical drives, A:-P:. The DPH structures contain the
offsets of the hardware-dependent routines to perform disk I/O. Fields within
DPHs are prefixed with the letters "DPH_". The BIOS Kernel listing in Appendix
B shows the register conventions for the IO_ functions:

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

Table 3-5 defines the BIOS Kernel Disk IO_ functions:

Table 3-5. BIOS Kernel Disk IO_ Functions

Format: Function
 Description

IO_SELDSK
The Kernel IO_SELDSK routine indexes into the BIOS Data Header DPH table using
the drive requested by the BDOS in register CL. If the DPH field is 0, the
drive is not supported by the BIOS and IO_SELDSK returns an error (AX=0). If
the BDOS calls IO_SELDSK with the least significant bit (LSB) of register DL
set to 0, it is the first time this drive has been selected. On first time
selects, IO_SELDSK calls the DPH_LOGIN routine, which can check for media type
as discussed in Section 7. If DPH_LOGIN returns successfully, IO_SELDSK also
returns successfully with the DPH address in AX. When IO_SELDSK is called with
the least significant bit of DL set, the DPH offset is returned in AX and no
call to DPH_LOGIN is made.

IO_READ, IO_WRITE
The Kernel IO_READ and IO_WRITE routines pass all their parameters on the
stack. A structure called the I/O Parameter Block (IOPB), which is based on
the BP register, is used to access these parameters. The Kernel IO_READ and
IO_WRITE routines jump to a common routine that sets up BP, looks up the
appropriate DPH, then uses it to call the DPH_READ or DPH_WRITE routine in the
DISKIO modules.

IO_FLUSH
This routine is usually not needed, since the BDOS reads physical sectors and
performs blocking/deblocking to and from logical sectors. If you must perform
blocking/deblocking in the BIOS, the IO_FLUSH informs you when "dirty" buffers
must be written to disk. The BDOS calls IO_FLUSH when files are closed and
program termination occurs. The example BIOS performs no blocking/deblocking,
and the IO_FLUSH routine simply returns a successful result (AL=0) from the
BIOS Kernel.

REENTRANCY IN THE BIOS

BIOS routines do not need to be reentrant. Although several process can be
running at the same time, the BDOS allows only one process to call a
particular BIOS IO_ function at a time. This does not preclude one process
performing disk I/O, another list output, while a third is receiving
characters from the keyboard.

The DEVICE utility does not put the same CDB offset in both of the device
input roots, @BH_CIROOT and @BH_AIROOT. Similarly DEVICE does not put the same
CDB offset in more than one of the output character redirection lists rooted
at @BH_COROOT, @BH_AOROOT, and @BH_LOROOT. Thus, when two or more processes
perform I/O to the logical devices CON:, AUX: and LST:, the CDB routines in
your CHARIO module are not reentered. Furthermore, the BDOS ensures two or
more processes cannot access any one of the logical devices CON:, AUX:, and

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

LST:, simultaneously.

A BIOS routine that needs to make system calls back to the BDOS can do so by
an INT 224 instruction, as described in the "Programmer's Guide", or by a
CALLF (Call Far instruction) to the BDOS double word address in the SYSDAT
segment (see Appendix C). Different system calls require differing amounts of
stack; you may need to provide more stack for system calls made from the BIOS.
The BDOS entry using the CALLF requires less stack and is more efficient than
the INT 224 entry. The BIOS Kernel routines ?DISPATCH, ?DELAY, and ?WAITFLAG
reach the BDOS with the CALLF BDOS instruction, and the register conventions
for these routines are shown in the BIOS Kernel listing (see Appendix B). Note
that, whenever the BDOS is called through the BDOS double word pointer in
SYSDAT, the DS and ES registers must be set to the SYSDAT segment and the
segment of the currently running process environment, respectively. The rest
of the registers follow the conventions for a system call invoked via an INT
224 instruction.

When making BDOS calls from the BIOS, you must ensure the BDOS is not calling
the same BIOS routine that is making the BDOS call. For instance, do not make
the system call F_WRITE to the BDOS from within the BIOS disk I/O routines, or
call C_WRITE when in the device driver currently assigned to CONOUT:. Note
that interrupt service routines cannot make system calls to the BDOS.
"Interrupt Device Drivers" in Section 4 discusses special BDOS entry points
for interrupt service routines.

PUBLIC BIOS KERNEL ROUTINES

Table 3-6 shows the public BIOS Kernel routines that can be used by other BIOS
Modules. Appendix B shows the register conventions for these routines.

Table 3-6. Public BIOS Kernel Routines

Format: Routine
 Description

?PMSG
Prints a character string on the current CONOUT: device, using the CDB pointed
to by @BH_COROOT. A null byte (0) terminates the string.

?WAITFLAG
Waits for an INT_SETFLAG operation from a specific interrupt service routine.
A process that must wait for an interrupt to signal the occurrence of a
hardware event calls this routine. Each different interrupt-driven hardware
event uses a different system flag number. You supply the flag number
associated with a specific event as a parameter to ?WAITFLAG and INT_SETFLAG.
System flags are allocated using the @BH_NEXTFLAG and @BH_LASTFLAG fields in
the Kernel Data Header. Section 4 further discusses system flags and interrupt
service routines.

?DISPATCH
Gives up the CPU if any other process is ready to run. ?DISPATCH is called by
routines polling for hardware status that cannot be interrupt-driven.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG3.TXT[2/6/2012 4:40:25 PM]

?DELAY
Gives up the CPU for the specified number of system ticks. ?DELAY is called by
routines that need to wait a specific amount of time when no hardware ready
status is available.

EOF

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG4.TXT[2/6/2012 4:40:26 PM]

CPMPIG4.WS4 (= "CP/M-86 Plus Installation Guide", section 4)

(Edited by Emmanuel ROCHE.)

Section 4: Device Drivers

Device drivers are software routines that directly control and communicate
with hardware. Usually, there is one driver for each physical device. A device
driver is actually a collection of several routines to perform initialization
and often other I/O functions. For instance, a CP/M-86 Plus console driver
refers collectively to the routines for initialization, input, input status,
output, and output status. However, a clock driver in CP/M-86 Plus can be
simply initialization and an interrupt service routine.

Devices communicate with driver software through the CPU, typically via
interrupts or by polling. Interrupts asynchronously signal the CPU when a
hardware event occurs. The polling driver, on the other hand, continually
interrogates the hardware to determine the occurrence of a hardware event.

This section contrasts interrupt device drivers and polled device drivers in
CP/M-86 Plus. Specific information for the console, disk, and clock drivers is
in subsequent sections.

INTERRUPT VERSUS POLLED DEVICE DRIVERS

CP/M-86 Plus is designed and optimized for an interrupt-driven BIOS that
supplies the operating system a tick every 16 milliseconds (60 times a
second). However, CP/M-86 Plus supports a BIOS using polled I/O drivers with
no interrupts and no tick.

Interrupt-driven I/O is more efficient than polled I/O. For CP/M-86 Plus, an
interrupt-driven console input and a system tick allow the support of "type-
ahead", "live keyboard", and "background programs".

Type-ahead lets console input continue independent of what the currently
running application program is doing. When the application requests console
input, the stored (typed-ahead) characters are sent to the application.

Live keyboard refers to the performance of certain keyboard functions by CP/M-
86 Plus independent of what the application program is doing. These functions
are the stopping (Ctrl-S) and starting (Ctrl-Q) of console output, stopping
the running process (Ctrl-C), and the on and off toggling of printer echo
(Ctrl-P). Printer echo is the duplication of output sent to the CON: device
(usually the console) on the LST: device (usually the printer).

A polled keyboard forces console output to be less efficient than with
interrupt keyboard input. When keyboard input is polled, the BDOS must make
BIOS IO_CONST calls before each character is output to the console to check
for Ctrl-S, Ctrl-Q, Ctrl-C, and Ctrl-P.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG4.TXT[2/6/2012 4:40:26 PM]

As mentioned at the end of Section 1, CP/M-86 Plus supports simple
multitasking, allowing up to four processes to share the CPU. A system tick
forces the rescheduling (dispatching) of the processes currently ready to run.
CP/M-86 Plus does not allow the creation of more than one process if a system
tick is not supported by the BIOS.

Multitasking is part of CP/M-86 Plus primarily to support printer spooling and
plotting, communications, and the ability to monitor other hardware while
running a foreground task. Since file protection is not provided in CP/M-86
Plus, multitasking is not a general-purpose tool for the end user as it is
under Concurrent CP/M.

INTERRUPT DEVICE DRIVERS

A process that needs to wait for a specific interrupt from a hardware device
makes a call to the BIOS Kernel ?WAITFLAG routine with the system flag number
reserved for the device. The ?WAITFLAG routine either gives up the CPU and
waits for the interrupt, or returns immediately if the interrupt has already
occurred. The interrupt service routine signals the occurrence of the hardware
event by performing a CALLF (Call Far instruction) to the BDOS INT_SETFLAG
function with the same flag number.

The system flags are data structures manipulated by the ?WAITFLAG and
INT_SETFLAG functions. System flags are allocated by GENCPM, and are located
in the SYSDAT segment. Only one process at a time may wait on a particular
system flag, and only one interrupt service routine may set a particular flag.
If a process is waiting on a flag, a second ?WAITFLAG operation by another
process specifying the same flag returns an error. Similarly, if a flag is
already set by an interrupt service routine, another INT_SETFLAG operation to
the same flag returns an error. Table 4-1 shows the register conventions for
?INT_SETFLAG; Appendix B shows the BIOS Kernel conventions for ?WAITFLAG.

If the physical device causing the interrupt is the current logical CONIN:
device, the interrupt service routine performs a CALLF (Call Far instruction)
to the BDOS INT_CHARSCAN function with each character received from the
physical device. This physical device is usually the system or a remote
console, and the INT_CHARSCAN function allows the BDOS to perform the live
keyboard functions.

Interrupt service routines exit by executing a JMPF (Jump Far instruction) to
INT_DISPATCH, which is the address of the dispatcher in the BDOS, or by
performing an IRET (Interrupt Return instruction). An IRET is executed when
other interrupt service routines are "incomplete". In other words, perform an
IRET when exiting an interrupt service routine that was invoked while
executing a prior interrupt service routine. The interrupt service routines
use the BIOS Data Header variable @BH_ININT to signal an interrupt service
routine in progress. Exiting with an IRET prevents the "incomplete" interrupt
service routine from waiting an entire tick (usually 16 milliseconds) or more
before it completes.

This situation arises when interrupts occur from different devices at almost

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG4.TXT[2/6/2012 4:40:26 PM]

the same time. It is assumed interrupts do not occur from the same device
while executing the interrupt service routine for the device, and thus service
routines are not written to be reentrant.

If interrupts are not enabled inside any interrupt service routine in the
BIOS, an interrupt cannot preempt a running interrupt service routine. In this
case, the interrupt service routine can always exit by executing a CALLF to
INT_DISPATCH. When the interrupt service routine is short, keeping interrupts
off presents no problems. However, if interrupts are off for long periods of
time, it can adversely affect applications depending on real-time response,
such as communications packages. The example BIOS reenables interrupts within
interrupt service routines to keep interrupt off time to the minimum.

In general, interrupt service routines must follow the steps outlined here.
Listings 6-3, 6-4, and 8-1 show example interrupt service routines.

 1. Save the DS register by pushing it on the interrupted process's stack.

 2. Set the DS register to @SYSDAT, which is also the BIOS data segment.
 The following code fragment shows steps 1 and 2:

 CSEG
 extrn @SYSDAT:word
 push ds
 mov ds,@SYSDAT

 Since only the value of CS is known upon entry to an interrupt service
 routine, @SYSDAT is defined within the code segment of the BIOS
 Kernel. You can force a code segment override by declaring @SYSDAT an
 external within the code segment, as shown above.

 3. Switch the stack to a local stack. There is no guarantee of the amount
 of stack space a transient program provides. Provide at least twelve
 extra stack levels beyond that needed for the interrupt service
 routine itself. The extra stack is for the BDOS INT_ functions (see
 Table 4-1) and the occurrence of another interrupt.

 4. If any interrupt service routine in your BIOS reenables interrupts on
 the CPU, increment the @BH_ININT variable. The @BH_ININT must be
 decremented before the interrupt service routine exits. Interrupts can
 now be enabled.

 5. Save the register environment of the interrupted process, or at least
 the registers to be used by the interrupt service routine. Usually,
 registers are saved on the local stack established in the previous
 step.

 6. Satisfy the interrupting condition, and perform a CALLF to INT_SETFLAG
 if required. The hardware (usually a PIC, a Programmable Interrupt
 Controller) should not be reset, allowing another interrupt from the
 same device until interrupts in the 8086/8088 are disabled for the
 rest of the interrupt service routine, unless the interrupt service
 routine is reentrant.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG4.TXT[2/6/2012 4:40:26 PM]

 7. Restore the register environment of the interrupted process.

 8. Disable interrupts and switch back to the original stack.

 9. Ensure interrupts are disabled on the CPU for the rest of this
 interrupt service routine. If this or any of the other interrupt
 service routines enable interrupts in your BIOS, then decrement the
 @BH_ININT count. When @BH_ININT equals 0, no other interrupts are
 currently being serviced and a JMPF (Jump Far instruction) to the
 dispatcher can be made. Perform a JMPF to INT_DISPATCH with four
 words on the stack; the DS register of the interrupted process is
 followed by the three words pushed by the interrupt. If @BH_ININT is
 not 0, another interrupt is currently being serviced. In this latter
 case, execute a POP DS and perform an IRET.

If interrupts are not enabled in any of the interrupt service routines, you
can either perform an IRET (Interrupt Return instruction) or a JMPF to
INT_DISPATCH. If a CALLF to INT_SETFLAG was performed, it is often desirable
for the interrupt service routine to exit by jumping to the dispatcher to
awaken the process waiting for the flag set.

Three INT_ functions are the only BDOS routines or functions that can be used
from an interrupt service routine. The INT_ functions are only for interrupt
service routines, and cannot be used from any other part of the BIOS. These
functions do not go through the BIOS Kernel for efficiency, and to keep
interrupt off time to a minimum. All INT_ functions can be invoked with
interrupts enabled. The addresses of these functions are in SYSDAT, and are
double word pointers; Appendix C shows the SYSDAT format. Table 4-1 summarizes
the three INT_ functions and their register conventions.

Table 4-1. BDOS Interrupt Functions

Format: Function
 Explanation
 Entry Registers
 Exit Registers

INT_SETFLAG

Call Far to this routine to signal the occurrence of a hardware event.

Entry Registers: DL = flag number to set
 DS = SYSDAT (BIOS data segment)

Exit Registers: AX = 0 successful operation
 AX = 0FFFFh then error and
 CX = 4 flag number out of range
 CX = 5 flag already set (flag overrun)
 (In either case: AX, BX, CX, DX are altered;
 all other registers preserved.)

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG4.TXT[2/6/2012 4:40:26 PM]

INT_CHARSCAN

Call Far to this routine to have the BDOS check for the live control keys.

Entry Registers: AL = character received from device
 DS = SYSDAT (BIOS data segment)

Exit Registers: AL = character for BDOS to scan
 BL = 0 then discard the character
 BL = 1 then place AL in the input buffer for this device
 All other registers preserved.

INT_DISPATCH

Jump Far to this routine to exit the interrupt service routines, and to force
rescheduling of the currently ready to run processes. The BDOS assumes the DS
register of the interrupted process is the first word on the stack, followed
by the three words pushed by the interrupt.

Entry Registers: DS = SYSDAT (BIOS data segment)
 All registers, except DS, as on entry to the interrupt
 service routine.
 The original value of DS is the first word on the stack.

Exit Registers: This function does not return.

POLLED DEVICE DRIVERS

A polled I/O driver can execute software CPU loops when waiting for a hardware
event. This is inefficient and precludes keyboard type-ahead, live keyboard,
and background programs (processes). Another type of polling calls the
?DISPATCH routine in the BIOS Kernel when waiting for a hardware event. This
latter method allows background programs to run. Either kind of polling does
not allow live keyboard, or keyboard type-ahead (or more generally buffered
character I/O). Interrupt-driven character I/O allows these features to be
implemented, and is more efficient than polling. For these reasons, you are
encouraged to use interrupt-driven device drivers instead of polling device
drivers in the CP/M-86 Plus BIOS. Polling device drivers can be helpful,
however, during BIOS development and debugging.

Do not call the INT_DISPATCH function in the BDOS to give up the CPU when
polling; instead, use the Kernel ?DISPATCH routine.

Some hardware events provide no status information from an interrupt or
through a port that can be polled. Usually, a specific amount of time must be
delayed, then the hardware is assumed to be ready. An example is a diskette
motor, which once turned on, must reach operational speed before being used.
For this type of event, the BIOS Kernel ?DELAY function can be used to give up
the CPU for a specified number of ticks. The ?DELAY function invokes the
P_DELAY system call in the BDOS.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG4.TXT[2/6/2012 4:40:26 PM]

Since the CLOCK Module must support a system tick before P_DELAY works,
drivers should be initially written with software CPU loops for these time-
outs, then replaced with calls to ?DELAY as one of the last steps in the BIOS
implementation.

EOF

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG5.TXT[2/6/2012 4:40:26 PM]

CPMPIG5.WS4 (= "CP/M-86 Plus Installation Guide", section 5)

(Edited by Emmanuel ROCHE.)

Section 5: System and BIOS Initialization

This section describes system initialization, the BIOS INIT Module, and device
initialization.

SYSTEM INITIALIZATION

The CPM-86 Plus loader, CPMLDR, loads CPMP.SYS into memory and initializes DS
to SYSDAT, then executes a JMPF (Jump Far instruction) to offset 0 in the BDOS
code segment. This is the beginning of the BDOS initialization routine, which
after performing internal system initialization, makes a CALLF (Call Far
instruction) to offset 0 in the BIOS code segment. At offset 0 in the BIOS
Kernel Code Header, a JMP BIOSINIT instruction starts the BIOSINIT routine.
Section 11 discusses CPMLDR more fully.

The BIOSINIT routine in the Kernel first calls ?INIT in the INIT module to
perform any general hardware initialization needed. Then, the BIOSINIT routine
calls the initialization routine specified in each DPH and CDB in the system.
On entry to the Kernel BIOSINIT routine, the BDOS reserves 20 words on the
stack for BIOS initialization. Switch to a local stack if more space is needed
by your initialization routines.

When the CDB and DPH initialization routines have been performed, BIOSINIT
locates the character device that is the initial logical CONIN: device. This
device is represented by the CDB whose offset is in the Kernel Data Header
@BH_CIROOT variable. If a device is interrupt-driven, its associated CDB
CDB_IINPUT field is equal to 0FFh; otherwise, it is equal to 0. The BIOSINIT
routine copies the CDB_IINPUT field from the CONIN: CDB to the BIOS Data
Header @BH_INTCONIN variable. The value of @BH_INTCONIN signals the BDOS
whether the current CONIN: device is interrupt-driven.

BIOSINIT then calls ?CLOCK_INIT in the CLOCK module, and lastly prints the
sign-on message using the Kernel public ?PMSG routine. The BIOSINIT routine
next executes a RETF (Return Far instruction) back to the BDOS.

Some hardware initialization is often necessary in the disk boot loader and
CPMLDR. You may not have to duplicate this initialization in the BIOS.

BIOS INIT MODULE

The INIT Module contains the public ?INIT routine, and defines the @SIGNON
message. As already described, the Kernel BIOSINIT routine calls ?INIT during
system initialization to perform any general hardware initialization that is

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG5.TXT[2/6/2012 4:40:26 PM]

not accomplished by the subsequent CDB and DPH initialization routines or the
clock initialization routine. A RET (Near Return instruction) must terminate
the ?INIT routine.

The interrupt vectors in the first Kbyte of memory are initialized by the
following sequence. The BDOS sets interrupt vector 224 to point to the normal
BDOS entry before calling BIOSINIT. After BIOSINIT returns, the BDOS
reinitializes interrupt 224 and copies interrupt vectors 0, 1, 3, 4, 224, and
225 to a local save area.

The BDOS copies the saved interrupt vectors 0, 1, 3, 4, 224, and 225 into the
interrupt vectors in low memory during each P_CHAIN or P_TERM system call.
Thus, whenever a program chains or terminates, these six interrupt vectors are
reinitialized.

The BDOS keeps copies of interrupt vectors 0, 1, 3, 4, 224, and 225 for each
process, and reinitializes the interrupt vectors in low memory before a
process is given the CPU.

The ?INIT routine usually initializes all interrupt vectors to point to an
interrupt trap routine that prevents spurious interrupts from vectoring to
unknown locations. The interrupt trap routine usually prints out an error
message, enables interrupts, and performs a HLT (Halt instruction). The CPU is
halted since the integrity of the operating system image is not guaranteed
after an uninitialized interrupt.

The device CDB_INIT and DPH_INIT routines for each CDB and DPH device as well
as the ?CLOCK_INIT routine set the specific interrupt vectors they need. All
interrupt vectors should be initialized when BIOSINIT returns to the BDOS.
However, during debugging you usually leave several interrupt vectors
unchanged to allow CP/M-86 1.X and DDT-86 to monitor your CP/M-86 Plus BIOS.
Section 10 examines debugging.

The ?INIT routine can set the 8087 variable in the BIOS Kernel Data Header. If
the 8087 exists, set the @BH_8087 byte to 0FFh.

DEVICE INITIALIZATION

The Kernel BIOSINIT routine performs character and disk device initialization
by calling the INIT routines indicated in all the DPHs and CDBs. BIOSINIT
makes no initialization call for DPHs and CDBs whose fields in the BIOS Kernel
Data Header are zero; these devices are considered unsupported by the BIOS.

If several DPHs or CDBs share the same physical device, the routines
associated with the DPHs or CDBs cooperate so as not to reinitialize the same
device or allocate extra flags for interrupt operations. For instance, a
floppy disk controller that can perform I/O operations to several drives can
be shared by several DPHs. Only one of the DPH_INIT routines (see Section 7)
should initialize the disk controller in this case.

If a driver is interrupt-driven and therefore requires one or more system
flags, the specific device init routine allocates a system flag for itself.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG5.TXT[2/6/2012 4:40:26 PM]

This is done by accessing the @BH_NEXTFLAG and @BH_LASTFLAG fields in the BIOS
Data Header. During BIOS initialization, the next unused flag number is
present in the @BH_NEXTFLAG field. The driver must save this flag number and
use it when performing ?WAITFLAG and INT_SETFLAG operations. The driver
initialization routine must also increment the @BH_NEXTFLAG field to reserve
the flag, and thus indicate the next available flag number. @BH_LASTFLAG
contains a value that indicates the last available system flag number. If
@BH_LASTFLAG is less than @BH_NEXTFLAG, no more flags are available. The
initialization routine for an interrupt-driven device must ensure the required
number of system flags are indeed available, and halt initialization if they
are not. GENCPM sets @BH_NEXTFLAG and @BH_LASTFLAG at system generation time.

EOF

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

CPMPIG6.WS4 (= "CP/M-86 Plus Installation Guide", section 6)

(Edited by Emmanuel ROCHE.)

Section 6: Character I/O

This section describes the CP/M-86 Plus BIOS Character I/O routines you supply
for a specific machine. The first subsection describes the Character Device
Block, a data structure you use to define character devices in the BIOS. The
next subsection describes the hardware specific routines associated with a
device and its Character Device Block. A third subsection presents character
I/O buffering, including type-ahead and live keyboard. The final subsection
covers character I/O error messages.

All character I/O drivers supporting different kinds of devices, such as
serial and parallel printers, and serial and memory-mapped CRTs, can be
contained in one module, or broken up as convenient into several modules. The
example BIOS supports all character I/O devices in the module CHARIO.A86. The
CHARIO.A86 file on the distribution disks is a useful reference while reading
this section.

The BDOS passes eight-bit data to and from the character IO_ functions in the
Kernel. If necessary, the character device driver must mask the most
significant (parity) bit.

CHARACTER DEVICE BLOCK (CDB)

Each character I/O device has an associated Character Device Block (CDB) that
contains information about the character device. Throughout this manual and
the example BIOS, fields in the CDB are prefixed with "CDB_". The following
listing shows the CDB format, and is also included in the file CDB.LIB on your
distribution disks.

Listing 6-1. Character Device Block Format

;***
;
; Console Device Block Equates
;
;***
;
; +------+------+------+------+------+------+------+------+
; 00h: | NAME | SUPCHAR |
; +------+------+------+------+------+------+------+------+
; 08h: | CURCHAR |SUPOEM|CUROEM| TXB | RXB | TYPE |IINPUT|
; +------+------+------+------+------+------+------+------+
; 10h: |NFLAGS|RESVD | COLINK | AOLINK | LOLINK |
; +------+------+-------------+-------------+-------------+

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

; 18h: | INIT | INPUT | INSTAT | OUTPUT |
; +------+------+------+------+------+------+------+------+
; 20h: | OUTSTAT |
; +------+------+

CDB_NAME equ byte ptr 0
CDB_SUPCHAR equ word ptr 6
CDB_CURCHAR equ word ptr 8
CDB_SUPOEM equ byte ptr 10
CDB_CUROEM equ byte ptr 11
CDB_TXB equ byte ptr 12
CDB_RXB equ byte ptr 13
CDB_TYPE equ byte ptr 14
CDB_IINPUT equ byte ptr 15
CDB_NFLAGS equ byte ptr 16
CDB_RESVD equ byte ptr 17
CDB_COLINK equ word ptr 18
CDB_AOLINK equ word ptr 20
CDB_LOLINK equ word ptr 22
CDB_INIT equ word ptr 24
CDB_INPUT equ word ptr 26
CDB_INSTAT equ word ptr 28
CDB_OUTPUT equ word ptr 30
CDB_OUTSTAT equ word ptr 32

Listing 6-2 shows an example CDB definition from the CHARIO.A86 file. (The
CRT0_CS, CRT0_CC, and CRT0_CT values are equates defined in CHARIO.A86. The
symbols CRT0_INIT, CRT0_INPUT, CRT0_INSTAT, CRT0_OUTPUT, and CRT0_OUTSTAT are
routines in CHARIO.A86. The BAUD_9600 symbol is defined in the CDB.LIB file.)

Listing 6-2. Example CDB Definition

@cdba db 'CRT0 ' ;name
 dw CRT0_CS ;supported characteristics
 dw CRT0_CC ;current characteristics
 db 0,0 ;no OEM characteristics
 db BAUD_9600 ;transmit baud
 db BAUD_9600 ;receive baud
 db CRT0_CT ;type of device
 db 0FFh ;will support type ahead
 db 2 ;2 flags used
 db 0 ;reserved
 dw 0 ;console output link
 dw 0 ;aux output link
 dw 0 ;list output link
 dw crt0_init ;device A init
 dw crt0_input ;device A input
 dw crt0_instat ;device A input status
 dw crt0_output ;device A output
 dw crt0_outstat ;device A output status

Table 6-1 describes each CDB field:

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

Table 6-1. Character Device Block Data Fields

Format: Data Field
 Explanation

CDB_NAME [Six-character name of this physical device]
The device name must be in capital alphanumeric ASCII characters, left-
justified in the field, and padded on the right with ASCII spaces.

CDB_SUPCHAR [Supported characteristics]
This field indicates the device characteristics supported by the driver
associated with the CDB. The possible set of device characteristics are stop
bits, parity, line polarity, protocols, and data bits. Supported
characteristics are indicated by setting the appropriate bits in the
CDB_SUPCHAR field. These bits are assigned as follows:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 MSB Bit |F|E|D|C|B|A|9|8|7|6|5|4|3|2|1|0| LSB Bit
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | | | | | | | | | | | | | | 1 XON/XOFF supported
 | | | | | | | | | | | | | | 1 ETX/ACK supported
 | | | | | | | | | | | | | 1 RTS supported
 | | | | | | | | | | | | 1 DTR supported
 | | | | | | | | | | | 1 DTR/RTS polarity supported
 | | | | | | | | | | |
 | | | | | | | | | | 1 ODD parity supported
 | | | | | | | | | 1 EVEN parity supported
 | | | | | | | | 1 MARK parity supported
 | | | | | | | 1 SPACE parity supported
 | | | | | | |
 | | | | | | 1 5 data bits supported
 | | | | | 1 6 data bits supported
 | | | | 1 7 data bits supported
 | | | 1 8 data bits supported
 | | |
 | | 1 1 stop bit supported
 | 1 1.5 stop bits supported
 1 2 stop bits supported

Note the DTR/RTS polarity field signifies that polarity is supported, but not
whether it is positive or negative. Equates for these bits in the CDB_SUPCHAR
field are found in the CDB.LIB file.

CDB_CURCHAR [Current characteristics]
This field specifies the characteristics the device driver is currently using.
Note this field does not correspond one-to-one with the bits in CDB_SUPCHAR.
The parity, data bits, and stop bits are condensed into binary values in
CDB_CURCHAR. The CDB_INIT routine can thus mask, shift, and jump based on
these CDB_CURCHAR bits. Equates for these operations on the CDB_CURCHAR field
are in the CDB.LIB file.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 MSB Bit |F|E|D|C|B|A|9|8|7|6|5|4|3|2|1|0| LSB Bit
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | | | | | | | | | | | | | | 1 XON/XOFF enabled
 | | | | | | | | | | | | | | 1 ETX/ACK enabled
 | | | | | | | | | | | | | 1 RTS enabled
 | | | | | | | | | | | | 1 DTR enabled
 | | | | | | | | | | | 1 positive DTR/RTS polarity
 | | | | | | | | | | |
 | | | | | | | | | | 1 parity enabled
 | | | | | | | | | |
 | | | | | | | | 0 0 ODD parity
 | | | | | | | | 0 1 EVEN parity
 | | | | | | | | 1 0 MARK parity
 | | | | | | | | 1 1 SPACE parity
 | | | | | | | |
 | | | | | | 0 0 5 data bits enabled
 | | | | | | 0 1 6 data bits enabled
 | | | | | | 1 0 7 data bits enabled
 | | | | | | 1 1 8 data bits enabled
 | | | | | |
 | | | | 0 0 1 stop bit enabled
 | | | | 0 1 1.5 stop bits enabled
 | | | | 1 0 2 stop bits enabled
 | | | | 1 1 (reserved)
 | | | |
 X X X X (reserved)

Note the DTR/RTS polarity (bit 4) has meaning only when the corresponding bit
is set in the CDB_SUPCHAR field. When bit 4 of the CDB_SUPCHAR field is set,
the DTR/RTS polarity is negative if bit 4 of the CDB_CURCHAR field is 0, and
positive if bit 4 of the CDB_CURCHAR field is 1.

The DEVICE utility alters this field to change the current device
characteristics, and then calls the CDB_INIT routine.

CDB_SUPOEM [Supported OEM characteristics]
This field is defined by the OEM for any device characteristics and protocols
that can not be represented with the CDB_SUPCHAR field. Set CDB_SUPOEM and
CDB_CUROEM to 0 if there are no OEM-defined characteristics. The DEVICE
utility displays this field, but is otherwise unused by CP/M-86 Plus.

CDB_CUROEM [Current OEM characteristics]
This field contains the OEM-defined characteristics the device driver
associated with the CDB is currently using. This field is defined by the OEM
when CDB_SUPOEM is defined. The DEVICE utility alters this field to change the
current OEM device characteristics, then calls the CDB_INIT routine. DEVICE
assumes the definitions of bits in CDB_SUPOEM are one to one with the bits in
CDB_CUROEM.

CDB_TXB [Transmit baud]

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

This is the value representing the current transmit baud of the device
associated with the CDB.

CDB_RXB [Receive baud]
This is the value representing the current receive baud of the device
associated with the CDB.

If the CDB_TYPE field (described later in this table) has the CI_SOFTBAUD bit
set, the DEVICE utility can change the baud by first setting the CDB_TXB and
CDB_RXB fields, then calling the CDB_INIT routine. See the discussion on the
CDB_INIT routine in "Character Device Block (CDB) Routines" later in this
section, regarding unsupported baud settings.

The following are the values that CDB_TXB and CDB_RXB can assume (also in the
CDB.LIB file as equates):

 SYMBOL VALUE EXPLANATION
 ------ ----- -----------

 BAUD_NONE 00h No baud rate for this device
 BAUD_50 01h 50 baud
 BAUD_625 02h 62.5 baud
 BAUD_75 03h 75 baud
 BAUD_110 04h 110 baud
 BAUD_1345 05h 134.5 baud
 BAUD_150 06h 150 baud
 BAUD_200 07h 200 baud
 BAUD_300 08h 300 baud
 BAUD_600 09h 600 baud
 BAUD_1200 0Ah 1200 baud
 BAUD_1800 0Bh 1800 baud
 BAUD_2000 0Ch 2000 baud
 BAUD_2400 0Dh 2400 baud
 BAUD_3600 0Eh 3600 baud
 BAUD_4800 0Fh 4800 baud
 BAUD_7200 10h 7200 baud
 BAUD_9600 11h 9600 baud
 BAUD_192 12h 19200 baud
 BAUD_384 13h 38400 baud
 BAUD_56 14h 56000 baud
 BAUD_768 15h 76800 baud
 BAUD_OEM1 16h OEM-defined
 BAUD_OEM2 17h OEM-defined
 BAUD_OEM3 18h OEM-defined

CDB_TYPE [Device type]
The CDB_TYPE byte specifies whether the device is an input or output device,
whether it has a selectable baud rate, and whether it is a serial device. The
following bits are defined for this field, and are also included in the
CDB.LIB file.

 SYMBOL VALUE EXPLANATION

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

 ------ ----- -----------
 CT_INPUT 01H Device performs input
 CT_OUTPUT 02H Device performs output
 CT_SOFTBAUD 04H Software-selectable baud rate
 CT_SERIAL 08H Serial device

CDB_IINPUT [Interrupt input]
Set this field to 0FFH if the device associated with the CDB is interrupt-
driven on input; otherwise, set the field to 0. The BIOSINIT routine and the
DEVICE utility use this field to set the @BH_INTCONIN in the BIOS Kernel Data
Header. The @BH_INTCONIN field is set to the CDB_IINPUT value of the CDB on
the console input root, indicating to the BDOS whether console input is
interrupt-driven.

CDB_NFLAGS
This field is initialized to the maximum number of flags this device needs for
?WAITFLAG and INT_SETFLAG operations. Usually, there is a flag per interrupt
service routine used by a driver. For example, if your console input is
interrupt-driven, but console input status, output, and output status are not,
then you need one flag for the console I/O driver. GENCPM uses this field in
calculating the minimum number of flags needed in the system.

CDB_RESVD
This field is unused by the BDOS or the BIOS Kernel.

CDB_COLINK
This is the offset of the next CDB representing the next device attached to
the logical device CONOUT: via the list beginning at @BH_COROOT. The
CDB_COLINK field of the last CDB in the list is set to 0.

CDB_AOLINK
This is the offset of the next CDB representing the next device attached to
the logical device AUXOUT: via the list beginning at @BH_AOROOT. The
CDB_AOLINK field of the last CDB in the list is set to 0.

CDB_LOLINK
This is the offset of the next CDB representing the next device attached to
logical device LST: via the list beginning at @BH_LOROOT. The CDB_LOLINK field
of the last CDB in the list is set to 0.

CDB_INIT
This is the offset of the initialization routine for this device. The
initialization routine is responsible for setting the protocol and baud rate,
if applicable, for this device, and performing any other necessary
initialization required. The first time CDB_INIT is called, register DL is set
to 0 by the BIOS Kernel. The CDB_INIT routine must set the device to
correspond to the specifications in CDB_CURCHAR, CDB_RXB, CDB_TXB, and

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

CDB_CUROEM fields. CDB_INIT returns AX = 0 if there is no error in setting the
device to these specifications, or it returns AX = 0FFFFh if there is an
error. On entry, DS:BX specifies the address of the CDB for this device.
"Character Device Block (CDB) Routines" in this section supplies more complete
information on this and the following CDB routines.

CDB_INPUT
This is the offset of the character input routine for this device. On entry,
DS:BX specifies the address of the CDB for this device.

CDB_INSTAT
This is the offset address of the character input status routine for this
device. On entry, DS:BX specifies the address of the CDB for this device.

CDB_OUTPUT
This is the offset address of the character output routine for this device. On
entry, DS:BX specifies the address of the CDB for this device.

CDB_OUTSTAT
This is the offset address of the character output status routine for this
device. On entry, DS:BX specifies the address of the CDB for this device.

CHARACTER DEVICE BLOCK (CDB) ROUTINES

The Character Device Block fields CDB_INIT, CDB_INPUT, CDB_INSTAT, CDB_OUTPUT,
and CDB_OUTSTAT are defined by the system implementor to be the offsets of the
routines that perform the functions indicated by the field names. Section 3
explains how the BIOS Kernel calls these CDB routines. These five CDB
routines, along with the CDB itself, constitute a character I/O driver for one
device. Generally, the CDB routines are not shared among different drivers
since they are usually specific to the physical device. Each of these fields
must be initialized with the offset of a valid routine, even if the routine
only performs a RET (Near Return instruction).

The CDB routines must follow certain conventions when a devices is input only,
or output only. For example, there is usually no input associated with a list
device. In this case, when a device is output only, the device's CDB_INPUT
routine is defined to return a null (0), and the CDB_INSTAT routine is defined
to return a false status (AL=0). When a device is input only, the CDB_OUTPUT
routine simply returns, and the CDB_OUTSTAT routine is defined to return a
true status (AL=0FFh).

Table 6-2. CDB_ Character I/O Routines

Format: Routine
 Explanation

CDB_INIT

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

The CDB_INIT routine initializes the I/O hardware for the device. The BIOS
Kernel BIOSINIT routine calls the CDB_INIT routine for each CDB in the BIOS
Kernel Data Header. The DEVICE utility calls the Kernel IO_DEVINIT function,
which also calls CDB_INIT for a specific CDB. The DEVICE utility makes a
IO_DEVINIT call after changing the protocol or baud of the device; in other
words, DEVICE makes the call when it changes any of the CDB fields
CDB_CURCHAR, CDB_CUROEM, CDB_TXB, or CDB_RXB.

If CDB_INIT is called and the device hardware cannot be set in accordance with
the latter CDB fields, CDB_INIT should return an error (AX=0FFFFh). An error
can occur if the baud selected is unsupported, or if there is a hardware
problem. When the CDB_TXB or CDB_RXB fields are set to values representing
unsupported bauds, CDB_INIT should leave the hardware baud setting unaltered,
and return an error. The DEVICE utility recognizes the error return, and
restores the original values of CDB_TXB and CDB_RXB.

The Kernel BIOSINIT routine sets register DL to 0 before calling CDB_INIT, and
the Kernel IO_DEVINIT function sets DL to 1 before calling CDB_INIT. This
allows the CDB_INIT routine to distinguish the first initialization call from
subsequent ones. Any one-time initialization code, such as allocating flags
(using @BH_NEXTFLAG and @BH_LASTFLAG), should be skipped on all CDB_INIT
calls, except the first.

The register conventions between the BIOS Kernel and the CDB_INIT routines are
as follows:

Entry Registers: DL = 0 if first time initialization
 DL = 1 if not first time initialization
 BX = offset of CDB
 DS = SYSDAT (BIOS data segment)
 ES = process environment

Exit Registers: AX = 0 if no error
 AX = 0FFFFh if error
 DS, ES preserved

CDB_INPUT
The CDB_INPUT routine for each character device reads a character from the
device or the input buffer at the request of the BIOS Kernel. Type-ahead
requires the use of an input buffer. (See "Character Input Interrupt" later in
this section.)

CDB_INPUT should return a null (0) when the device is output only. The most
significant (parity) bit of the character is preserved by the Kernel and the
BDOS, and if parity from this device is not desired, the CDB_INPUT routine
must mask it off.

The register conventions between the BIOS Kernel and the CDB_INPUT routines
are as follows:

Entry Registers: BX = offset of CDB
 DS = SYSDAT (BIOS data segment)
 ES = process environment

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

Exit Registers: AL = character
 DS, ES preserved

CDB_INSTAT
The CDB_INSTAT routine for each character device returns the device input
status at the request of the BIOS Kernel. The CDB_INSTAT returns a true
(AL=0FFh) value if a character is ready from the device, or if any characters
are available from the device's input buffer.

CDB_INSTAT should return a false status (AL=0) when the device is output only.

The register conventions between the BIOS Kernel and the CDB_INSTAT routines
are the following:

Entry Registers: BX = offset of CDB
 DS = SYSDAT (BIOS data segment)
 ES = process environment

Exit Registers: AL = 0FFh if character ready
 AL = 0 if character not ready
 DS, ES preserved

CDB_OUTPUT
The CDB_OUTPUT routine for each character device sends a character to the
associated device at the request of the BIOS Kernel. CDB_OUTPUT should simply
return when the device is input only. The most significant (parity) bit of the
character is preserved by the BIOS Kernel and the BDOS; if parity cannot be
sent to this device, the CDB_OUTPUT routine must mask it off.

The register conventions between the BIOS Kernel and the CDB_OUTPUT routines
are the following:

Entry Registers: CL = character to send to device
 BX = offset of CDB
 DS = SYSDAT (BIOS data segment)
 ES = process environment

Exit Registers: DS, ES preserved

CDB_OUTSTAT
The CDB_OUTSTAT routine for each character device returns the output status of
the associated device at the request of the BIOS Kernel. When output is
interrupt-driven, the output status is true (AL=0FFh) if there is space in the
output buffer. When the device is not ready, or in the interrupt-driven case
when there is no room in the output buffer, CDB_OUTSTAT returns a false status
(AL=0). The next subsection covers interrupt-driven character devices in more
detail.

CDB_OUTSTAT returns a true status (AL=0FFh) when the device is input only.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

The register conventions between the BIOS Kernel and the CDB_OUTSTAT routines
are as follows:

Entry Registers: BX = offset of CDB
 DS = SYSDAT (BIOS data segment)
 ES = process environment

Exit Registers: AL = 0FFh if device is ready
 AL = 0 if not ready
 DS, ES preserved

INTERRUPT-DRIVEN CHARACTER I/O

Either character input or character output can be interrupt-driven, or both
can be. As discussed in Section 4, interrupt drivers are more efficient, and
allow several features to be present in CP/M-86 Plus that are not possible
with polling. Read Section 4 before reading this material.

Each interrupt-driven character I/O device typically makes use of two
character buffers, one for input, and one for output. The device input
interrupt service routine fills the input buffer, and processes calling the
CDB_INPUT routine to empty it. Processes calling the CDB_OUTPUT routine fill
the output buffer, and the device output interrupt service routine empties the
output buffer.

The process and the interrupt stop and start each other when a character or
buffer space is not available using ?WAITFLAG and INT_SETFLAG operations.

Each character interrupt service routine usually keeps a local variable
indicating if a flag set operation is necessary. This provides even more
efficient I/O, and is discussed later in this section.

Character Input Interrupt (type-ahead)

A console input interrupt service routine, in conjuction with the CDB_INSTAT
and CDB_INPUT routines for a particular device, can implement type-ahead and
live keyboard. Listing 6-3 at the end of this subsection provides an example
implementation of a CDB_INSTAT routine, a CDB_INPUT routine, and a character
input interrupt service routine. These routines support type-ahead and live
keyboard, and are part of the CHARIO.A86 file on the distribution disks.

A device using interrupt-driven input must have the CDB_IINPUT field set to
0FFh in its CDB. When this CDB is attached to the CONIN: logical device by
putting the offset of the CDB in @BH_CIROOT, the CDB_IINPUT value is copied to
the @BH_INTCONIN field in the BIOS Kernel Data Header. The value in
@BH_INTCONIN informs the BDOS that console input is interrupt-driven. When
@BH_INTCONIN is 0FFh, the BDOS does not make BIOS IO_CONST calls to check for
Ctrl-C, Ctrl-S, Ctrl-Q, and Ctrl-P.

When the device is attached to CONIN:, the device input interrupt service

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

routine must perform a CALLF (Call Far instruction) to the INT_CHARSCAN
functions in the BDOS with every character received from the input device. An
interrupt service routine can determine if the CDB that represents the
interrupting device is attached to CONIN: by comparing the offset of the CDB
with @BH_CIROOT. Section 4 shows the register conventions for the INT_CHARSCAN
function.

In Listing 6-3, the input interrupt handler CRT0_INPUT_INT checks for a Ctrl-C
when the INT_CHARSCAN function returns register BL equal to 0, signifying the
character should be discarded. When this occurs, the Ctrl-C function was not
disabled by the C_MODE or C_RAWIO system calls (see the "Programmer's Guide"),
and the BDOS terminated the running program. In such instances, it is usually
desirable to discard the type-ahead buffer as shown in CRT0_INPUT_INT.

At system initialization, the BIOSINIT routine ensures that @BH_INTCONIN is
set in accordance with the CDB addressed by @BH_CIROOT. Generally, the DEVICE
utility is the only way the logical assignments can be subsequently changed.
When DEVICE removes or replaces CDBs from @BH_CIROOT, it updates the
@BH_INTCONIN field in the BIOS Kernel Data Header.

The input buffer shared by the CDB_INPUT routine and the interrupt service
routine must be protected from simultaneous access. In Listing 6-3, interrupts
are disabled in the CRT0_INPUT routine when a process tests for and removes
characters in the buffer. (CRT0_INPUT is in the CDB_INPUT routine for CDBA.)
Interrupts are enabled in the interrupt service routine, since the @BH_ININT
(in interrupt count) guarantees a process cannot execute until the interrupt
service routine is complete. If you do not reenable interrupts in any of the
interrupt service routines within the BIOS, the @BH_ININT byte does not need
to be used.

The CDB_INPUT and the interrupt service routines should keep a local variable
to indicate whether the interrupt routine needs to perform a CALLF (Call Far
instruction) to INT_SETFLAG in the BDOS. When the CDB_INPUT routine finds no
input characters in the buffer, it sets the local variable, then performs a
CALL (Call Near instruction) to ?WAITFLAG in the BIOS Kernel. The interrupt
service routine checks this variable, and performs a CALLF to INT_SETFLAG if a
?WAITFLAG is being or has been executed. Thus, a CALLF INT_SETFLAG is executed
only when necessary. (Section 4 shows the register conventions for the BDOS
INT_SETFLAG function.)

In Listing 6-3, this "flag waiting" variable is kept in the character buffer
structure, along with the character count and pointers into buffer. The
CDB_INPUT routine must check for characters in the buffer, and set the "flag
waiting" variable with interrupts off.

In Listing 6-3, when the interrupt routine finds there is no more room in the
input buffer (the type-ahead buffer is full), characters are not saved, and
are lost. If desired, the user can be notified of this via a light on the
keyboard, a message on a screen status line, or by a bell tone.

Listing 6-3 assumes the @CDBA definition from Listing 6-2. An input buffer
structure is also defined in this example. Equates for this structure begin
with the letters "BUF_". The BUF_FLAGNO field is the system flag used for
?WAITFLAG and INT_SETFLAG operations, and is assumed to have been previously

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

allocated and set by the first call to the CDBA_INIT routine for this device.
The SYSDAT.LIB file contains equates for the INT_SETFLAG and INT_CHARSCAN
functions. The hardware equates for the CompuPro port addresses and
programmable interrupt controller (PIC) can be found in the PIC.LIB and the
CHARIO.A86 files.

Listing 6-3. Buffered Interrupt-driven Character Input

; The following equates define a buffer descriptor used to manage
; circular input and output buffers. The buffer size must be a power of 2,
; since the next buffer position is calculated with an AND instruction.

BUF_LEN equ 256 ;use immediate value
 ; for efficiency

BUF_FLAGN equ byte ptr 0 ;system flag number to use
BUF_FWAIT equ byte ptr 1 ;0FFh if process is flag waiting
BUF_COUNT equ word ptr 2 ;chars in buffer
BUF_CHAROUT equ word ptr 4 ;number of next char to take out
BUF_BUFFER equ byte ptr 6 ;first byte of buffer

 CSEG

 extrn ?waitflag:near ;routine in Kernel
 extrn @sysdat:word ;in Kernel code segment

crt0_instat: ;Input status routine for the CRT0 device
;===========
; Entry: BX = CDB address
; Exit: AL = 0FFh if character ready
; = 0 if no character ready
; BX = input buffer offset

 mov bx,offset in_buf_desc ;set BX to input buffer for
 xor ax,ax ; this device
 cmp ax,BUF_COUNT[bx] ;is buffer empty?
 je cis_empty
 dec ax
cis_empty:
 ret

crt0_input: ;character input routine for the CRT0 device
;==========
; Entry: BX = CDB address
; Exit: AL = character
; BX = input buffer offset

 cli ;disable CPU interrupts
 call crt0_instat ;is there a char in the buffer?
 test al,al ! jnz ci_ready ;if not then wait on flag
 mov BUF_FWAIT[bx],0FFh ;request CALLF INT_SETFLAG
 sti ;from interrupt
 mov dl,BUF_FLAGN[BX] ;flag number for this input device
 call ?waitflag

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

 jmps crt0_input ;test status again to be sure
ci_ready: ;get char out of buffer
 mov si,BUF_CHAROUT[bx] ;offset in buffer of next out char
 mov al,BUF_BUFFER[bx+si] ;get the next character
 inc si ! and si,BUF_LEN-1 ;back to 0 if past end of buffer
 mov BUF_CHAROUT[bx],si ;update next number of next char out
 dec BUF_COUNT[bx] ;one less char in buffer
 sti ;enable CPU interrupts
 ret

crt0_input_int: ;Input interrupt service routine for the CRT0 device
;==============
; Entry: IP,CS,CPU FLAGS on stack, interrupts off
; Exit: all registers preserved

 push ds ! mov ds,@sysdat ;save DS on process stack
 inc @bh_inint ;stop dispatches
 mov crt0_in_ss,ss ;switch stacks
 mov crt0_in_sp,sp
 mov ss,@sysdat ;DS and SS = BIOS data segment
 mov sp,offset crt0_in_tos
 sti ;enable interrupts
 push ax ! push bx ;save registers that will be altered
 in al,SS_STATUS ;check status again to ensure
 test al,SS_RECV_READY ;character ready
 jz cii_done
 in al,SS_DATA ;get the character
 cmp @bh_ciroot,offset @cdba
 jne cii_save_char ;is this the CONIN: device?
 callf INT_CHARSCAN ;yes - let the BDOS check the char
 test bl,bl ;if BL=0 don't save the char
 jnz cii_save_char
 cmp al,CTRL_C ;if char is a control-C
 jne cii_done ;discard type ahead buffer
 mov in_buf_desc+BUF_COUNT,0
 jmps cii_done
cii_save_char:
 mov bx,offset in_buf_desc ;put char in buffer if not full
 push cx ! mov cx,BUF_COUNT[bx]
 cmp cx,BUF_LEN ! jae cii_full ;if buffers full ignore char
 push si
 mov si,BUF_CHAROUT[bx] ;find next free byte
 add si,cx ;in the buffer
 and si,BUF_LEN-1 ;back to 0 if past end of buffer
 mov BUF_BUFFER[si+bx],al ;store char
 inc cx ;bump char counter
 mov BUF_COUNT[bx],cx
 pop si
cii_full:
 cmp BUF_FWAIT[bx],0FFh ;is a process waiting on flag ?
 jne cii_done1
 mov BUF_FWAIT[bx],0 ;yes - set the flag
 push dx ;?SETFLAG alters AX,BX,CX,DX
 mov dl,BUF_FLAGN[bx] ;DL=flag for this input device

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

 callf int_setflag
 pop dx
cii_done1:
 pop cx

cii_done:
 pop bx
 cli ;reset the PIC's
 mov al,NS_EOI
 out MASTER_PIC_PORT,al ;PIC ports for Compupro
 out SLAVE_PIC_PORT,al
 pop ax
 mov ss,crt0_in_ss
 mov sp,crt0_in_sp
 dec @bh_inint ;if in interrupt count
 jnz cii_exit ;is 0 then dispatch
 jmpf int_dispatch
cii_exit:
 pop ds ;otherwise return to the
 iret ;previous interrupt service routine

 DSEG

 extrn @bh_inint:byte ;in interrupt count in BIOS
 ;Kernel Data Header

; console input interrupt stack area

crt0_in_sp rw 1
crt0_in_ss rw 1
 rw 32
crt0_in_tos rw 0

in_buf_desc rb 1 ;flag number - set by CDB_INIT
 db 0 ;"flag waiting" variable
 dw 0 ;number of chars in buffer
 dw 0 ;next char to take out of buffer
 rb BUF_LEN ;buffer

Character Output Interrupt

Interrupt character output consists of a CDB_OUTPUT routine putting characters
into a buffer, and an interrupt service routine taking them out and sending
them to the device. Listing 6-4 at the end of this subsection shows an example
implementation of buffered interrupt-driven character output. It is also found
in the CHARIO.A86 file on the distribution disks.

In Listing 6-4, when the CRT0_OUTPUT routine is first executed, a character is
sent directly to the device. (CRT0_OUTPUT is the CDB_OUTPUT routine for CDBA.)
During the time the device is sending the character, processes calling
CRT0_OUTPUT fill the output buffer for the device. The device generates an
interrupt when it is ready to send another character. The interrupt service

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

routine takes a character out of the output buffer, and sends it to the
device. The last interrupt generated from the device finds nothing in the
buffer, and output stops. The next character sent to CRT0_OUTPUT goes directly
to the device, starting the sequence over again.

The CDB_OUTPUT routine must call ?WAITFLAG when there is no room in the
buffer. The interrupt service routine executes a CALLF INT_SETFLAG to the BDOS
when a process is "flag waiting" and there is at least one space for a
character in the buffer. Characters cannot be lost on output; thus, the
program generating output characters must wait until buffer space is
available.

Using a local variable to record whether a process is waiting on a flag (or on
the way to waiting) makes console output more efficient. Note that interrupts
on the CPU are disabled in the CRT0_OUTPUT routine when testing the state of
the buffer and the device ready status, before deciding if the character goes
to the device or into the buffer. Interrupts are enabled in the interrupt
service routine CRT0_OUTPUT_INT, shown in Listing 6-4, since the @BH_ININT (in
interrupt count) guarantees a process cannot execute until the interrupt
service routine is complete. If you do not reenable interrupts in any of
interrupt service routines within the BIOS, the @BH_ININT byte does not need
to be used.

The interrupt service routine can further be "tuned" for performance by
changing the buffer size, and by not making the CALLF to INT_SETFLAG until
more of the output buffer is empty. The CRT0_OUTPUT_INT interrupt service
routine waits for half of the buffer to empty before performing the CALLF to
INT_SETFLAG.

The CDB defined in Listing 6-2 is assumed in Listing 6-4. An output buffer
structure is also defined in this example. Equates for this structure begin
with the letters "BUF_". The BUF_FLAGNO field is the system flag used for
?WAITFLAG and INT_SETFLAG operations, and is assumed to have been previously
allocated and set by the first call to the CDBA_INIT routine for this device.
The SYSDAT.LIB file contains equates for the INT_SETFLAG and INT_CHARSCAN
functions. The hardware equates for the CompuPro port addresses and
programmable interrupt controller (PIC) can be found in the PIC.LIB and the
CHARIO.A86 files.

Listing 6-4. Buffered Interrupt-driven Character Output

; The following equates define a buffer descriptor used to manage
; circular input and output buffers. The buffer size must be a power of 2,
; since the next buffer position is calculated with an AND instruction.

BUF_LEN equ 256 ;use immediate value
 ; for efficiency

BUF_FLAGN equ byte ptr 0 ;system flag number to use
BUF_FWAIT equ byte ptr 1 ;0FFh if process is flag waiting
BUF_COUNT equ word ptr 2 ;chars in buffer
BUF_CHAROUT equ word ptr 4 ;number of next char to take out
BUF_BUFFER equ byte ptr 6 ;first byte of buffer

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

 CSEG

 extrn ?waitflag:near ;routine in Kernel
 extrn @sysdat:word ;in Kernel code segment

crt0_outstat: ;character output routine for CRT0 device
;============
; Entry: BX = CDB address
; Exit: AL = 0FFh if character ready
; = 00h if character not ready
; BX = offset of output buffer

 mov bx,offset out_buf_desc ;get offset of output buffer
 xor ax,ax
 cmp BUF_COUNT[bx],BUF_LEN ;compare char count with size of buffer
 jae cos_full ;is buffer full?
 dec ax ;no - return ready
cos_full:
 ret

crt0_output: ;character output routine for CRT0 device
;===========
; Entry: CL = character
; BX = CDB address
; Exit: None

 push cx ;save char to output
co_stat:
 cli
 call crt0_outstat ;call output status
 test al,al ! jnz co_ready ;check space in buffer
 mov BUF_FWAIT[bx],0FFh ;request CALLF INT_SETFLAG
 sti
 mov dl,BUF_FLAGN[bx] ;from interrupt
 call ?waitflag
 jmps co_stat ;check status again to be sure
co_ready:
 cmp BUF_COUNT[bx],0 ;is buffer empty and
 jne co_putchar
 in al,SS_STATUS ;device ready?
 test al,SS_TRANS_READY
 jz co_putchar
 pop ax ;AL = char to output
 out SS_DATA,al ;yes - send directly to device
 jmps co_ret
co_putchar:
 pop ax ;AL = char to output
 mov si,BUF_CHAROUT[bx] ;put char in buffer
 add si,BUF_COUNT[bx] ;next free buffer space
 and si,BUF_LEN-1 ;back to 0 if past end of buffer
 mov BUF_BUFFER[si+bx],al ;store char
 inc BUF_COUNT[bx] ;bump char counter
co_ret:
 sti ;enable CPU interrupts

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

 ret

crt0_output_int: ;Output interrupt service routine for CRT0 device
;===============
; Entry: IP,CS,CPU flags on stack, interrupts off
; Exit: all registers preserved

 push ds ! mov ds,@sysdat ;save DS on process stack
 inc @bh_inint
 mov crt0_out_ss,ss ;switch stacks
 mov crt0_out_sp,sp
 mov ss,@sysdat ;DS and SS = BIOS data segment
 mov sp,offset crt0_out_tos
 sti ;enable interrupts
 push ax ! push bx ;save on local stack
 mov bx,offset out_buf_desc
 in al,SS_STATUS ;ensure hardware is ready
 test al,SS_TRANS_READY
 jz coi_done
 cmp BUF_COUNT[bx],0 ;any chars in the buffer?
 je coi_done
 push si
 mov si,BUF_CHAROUT[bx] ;get character out of buffer
 mov al,BUF_BUFFER[bx+si]
 out SS_DATA,al ;Compupro data port
 inc si ;if past end of buffer go back to 0
 and si,BUF_LEN-1
 mov BUF_CHAROUT[bx],si ;update next char out
 dec BUF_COUNT[bx] ;one less char in buffer
 pop si
 cmp BUF_FWAIT[bx],0FFh ;if process is flag waiting
 jne coi_done ;and buffer is half empty
 cmp BUF_COUNT[bx],BUF_LEN/2
 ja coi_done
 mov BUF_FWAIT[bx],0
 push cx ! push dx ;?SETFLAG alters AX,BX,CX,DX
 mov dl,BUF_FLAGN[bx] ;then set the flag
 callf int_setflag ;all AX,BX already saved
 pop dx ! pop cx
coi_done:
 pop bx
 cli ;reset the PIC's
 mov al,NS_EOI ;signal non-specific end of interrupt
 out MASTER_PIC_PORT,al ;PIC ports on Compupro
 out SLAVE_PIC_PORT,al
 pop ax
 mov ss,crt0_out_ss ;restore stack
 mov sp,crt0_out_sp
 dec @bh_inint ;reset interrupt count
 pop ds
 iret

 DSEG

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG6.TXT[2/6/2012 4:40:27 PM]

 extrn @bh_inint:byte ;in interrupt count in BIOS
 ;Kernel Data Header

; console output interrupt stack area

crt0_out_sp rw 1
crt0_out_ss rw 1
 rw 32
crt0_out_tos rw 0

out_buf_desc rb 1 ;flag number - set by CDB_INIT
 db 0 ;"flag waiting" variable
 dw 0 ;number of chars in buffer
 dw 0 ;next char to take out of buffer
 rb BUF_LEN ;buffer

CHARACTER I/O ERROR MESSAGES

The BIOS Kernel and the BDOS define an error return only from the CDB_INIT
routines. The BIOS must handle all other character I/O errors it encounters.
You can display error messages, and also ask the user what action should be
taken. Usually, the choices given to the user are Retrying the operation
again, Ignoring the error, or Aborting the program causing the error. The
P_TERM system call can be made to terminate the program upon encountering an
error. However, an error detected by an interrupt service routine cannot abort
the running program. A status line, if available, is a preferable location to
display errors, causing fewer conflicts with screen-oriented applications.

If you display error messages on the main part of the console, you should
check the File System Error Mode for the process encountering the character
I/O error. If the Return Error Mode is set, it can be assumed that the
application does not want the screen altered, and you should display messages
only for catastrophic errors. The "Programmer's Guide" describes the File
System Error Mode, which is set by the F_ERRMODE system call. The File System
Error Mode is a byte located at byte 46h relative to the process environment
segment. The process environment segment is in register ES on entry to all of
the CHARIO CDB routines. The currently running process environment segment is
also found in the word location at offset 04Eh relative to the SYSDAT segment.
(See Appendix C.) If the process's File System Error Mode byte is equal to
0FFh, the process is in Return Error Mode, and most error messages should not
be displayed.

EOF

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

CPMPIG7.WS4 (= "CP/M-86 Plus Installation Guide", section 7)

(Edited by Emmanuel ROCHE.)

Section 7: BIOS Disk I/O

This section covers customization of the disk I/O routines in the CP/M-86 Plus
BIOS. The material in this section is separated into four subsections in the
order needed for implementation.

The first subsection presents the information to implement the basic disk I/O
routines. The second subsection describes enhancements to these routines for
multiple logical disks sharing the same physical disk, for automatic density
and side selection, for detection of media changes, for skewed-format disks,
and for memory disk implementations. The third subsection covers the data
structures the BDOS uses for disk I/O buffering. Last is a short discussion of
BIOS disk I/O error messages.

Because GENCPM automatically generates the disk I/O buffering data structures,
they are a supplementary topic. However, understanding these data structures
is helpful when tuning disk I/O performance by using differing numbers of data
and directory buffers.

BASIC DISK I/O

A CP/M-86 Plus disk driver is a combination of code routines and data
structures you write and define. Each drive has four code routines to perform
disk initialization, type of media determination, disk reads, and disk writes.
The parameters to the disk read and write routines are passed to the BIOS on
the stack, and are accessed using the IO Parameter Block. The Disk Parameter
Block (DPB) data structure describes the physical characteristics of a drive,
and the Disk Parameter Header (DPH) data structure represents each of the
logical drives A-P, implemented in the system.

The CP/M-86 Plus disk organization is discussed first, since it is affected by
the DPB definition.

Disk Organization

A CP/M-86 disk is divided into at least two, and often three, areas. The first
N tracks can be reserved for the disk boot loader and CPMLDR, which read the
CPMP.SYS file into memory. These tracks are called the boot tracks. This area
is optional, and is needed only if the disk boots the system. For example, a
hard disk not used for boot operations has no boot tracks.

The second area is the directory, and starts immediately after the boot
tracks. The directory area keeps the names, the disk data areas, time and date

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

stamps, and attributes of files. It also keeps the directory label for the
disk. You define the size of the directory area, which becomes static after
system boot. The directory size limits the number of files that can be created
on a specific drive. However, the larger the directory, the smaller the data
region that can be allocated to files.

The third area is the data region. This area contains the data allocated to
files and all unallocated disk space.

Figure 7-1 illustrates the organization of a CP/M-86 Plus disk:

 Track M --> +---------------------------+
 | |
 | Data Region |
 | |
 Data Tracks +---------------------------+
 | |
 | Directory Region |
 | |
 Track N --> +---------------------------+
 | |
 Optional | CPMLDR |
 Boot Tracks | |
 | Boot Loader |
 | |
 Track 0 --> +---------------------------+

 Figure 7-1. CP/M-86 Plus Disk Organization

In Figure 7-1, the first N tracks are the boot tracks; CP/M-86 Plus uses the
remaining tracks, the data tracks, for file directory and file data storage.

Note that eight-inch, single-density, IBM 3740-formatted disks should have two
boot tracks and a sector skewing of six to be compatible with other machines
running CP/M with eight-inch, single-density drives. All CP/M-86 Plus disk
accesses after system boot are directed to the data tracks of the disk.

Disk Parameter Block (DPB)

The physical characteristics of a drive are available to the BDOS via the Disk
Parameter Block. Each different type of drive has a separate DPB, while
physical drives with the same characteristics can share DPBs. For instance,
systems with physically identical floppy drives can share the same DPB. Drives
supporting different media types usually require one DPB per media type
supported. The BDOS never changes any of the fields in the DPB, using it only
as an information structure.

Listing 7-1, contained in the file DISK.LIB on the distribution disks, defines
the DPB format.

Listing 7-1. Disk Parameter Block Format

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

;***
;
; Disk Parameter Block Equates
;
;***
;
; +-----+-----+-----+-----+-----+-----+-----+-----+
; 00h | SPT | BSH | BLM | EXM | DSM | DRM..
; +-----+-----+-----+-----+-----+-----+-----+-----+
; 08h ..DRM | AL0 | AL1 | CKS | OFF | PSH |
; +-----+-----+-----+-----+-----+-----+-----+-----+
; 10h | PHM |
; +-----+

DPB_SPT equ word ptr 0
DPB_BSH equ byte ptr 2
DPB_BLM equ byte ptr 3
DPB_EXM equ byte ptr 4
DPB_DSM equ word ptr 5
DPB_DRM equ word ptr 7
DPB_AL0 equ byte ptr 9
DPB_AL1 equ byte ptr 10
DPB_CKS equ word ptr 11
DPB_OFF equ word ptr 13
DPB_PSH equ byte ptr 15
DPB_PHM equ byte ptr 16

Listing 7-2 is an example DPB definition from the DISKIO.A86 for a single-
sided, single-density, eight-inch disk. (The S1DSM symbol in the listing is
defined in the DISKIO.A86 file as the number of allocation blocks on a single-
sided, single-density disk.)

Listing 7-2. Disk Parameter Block Definition

; 1944: 128 Byte Record Capacity
; 243: Kilobyte Drive Capacity
; 64: 32 Byte Directory Entries
; 64: Checked Directory Entries
; 128: 128 Byte Records / Directory Entry
; 8: 128 Byte Records / Block
; 8: 128 Byte Records / Track
; 2: Reserved Tracks

dpbs1: ;single-density, single-sided
 dw 26 ;sectors per track
 db 3 ;block shift
 db 7 ;block mask
 db 0 ;extent mask
 dw S1DSM-1 ;disk size - 1
 dw 64-1 ;directory size - 1
 db 1100$0000b ;alloc0 - 2 directory blocks
 db 0000$0000b ;alloc1
 dw 8010h ;checksum size - 64/4
 dw 2 ;offset by 2 tracks

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

 db 0 ;physical sector shift
 db 0 ;physical sector mask

Table 7-1 describes each field of the Disk Parameter Block. Appendix D
includes a worksheet to help you calculate the DPB values.

Table 7-1. Disk Parameter Block Data Fields

Format: Data Field
 Explanation

DPB_SPT [Sectors per track]
The number of sectors per track equals the total number of physical sectors
per track. Physical sector size is defined by DPB_PSH and DPB_PHM, which are
described later in this table.

DBP_BSH [Allocation block shift factor]
This value is used by the BDOS to calculate a block number, given a logical
record number, by shifting the record number DPB_BSH bits to the right.
(Logical records are 128 bytes long as defined by the file-related system
calls.) DPB_BSH is determined by the allocation block size chosen for the disk
drive.

DPB_BLM [Allocation block mask]
This value is used by the BDOS to calculate a logical record offset within a
given block by masking the logical record number with DPB_BLM. The DPB_BLM is
determined by the allocation block size.

The allocation block size is the minimum allocation unit for file I/O under
CP/M-86 Plus. Larger block sizes waste more space at the end of a sequential
file and throughout a random file. But larger block sizes require less
directory space to represent large files, and allow for quicker access to the
file's data records. The available allocation block sizes are shown below,
along with the corresponding DPB_BSH and DPB_BLM values

 Block Size DPB_BSH DPB_BLM
 ---------- ------- -------
 1,024 3 7
 2,048 4 15
 4,096 5 31
 8,192 6 63
 16,384 7 127

DPB_EXM [Extent mask]
The extent mask determines the maximum number of 16 Kbyte logical extents that
is contained in a single directory entry. It is determined by the allocation
block size and the number of allocation blocks the drive contains, as shown in
the following information. Note that you cannot have a block size of 1 Kbyte
on a disk containing 256 or more blocks, since one directory entry would only
represent 8 Kbytes, and not an entire extent. In this latter case, you must

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

use a larger block size.

 Block If Number of If Number of
 Size Blocks < 256, Blocks >= 256,
 then DPB_EXM = then DPB_EXM =

 1,024 0 Invalid
 2,048 1 0
 4,096 3 1
 8,192 7 3
 16,384 15 7

DPB_DSM [Disk storage maximum]
The disk storage maximum defines the total formatted storage capacity of the
disk drive, expressed in allocation blocks. This equals the total number of
allocation blocks for the drive, minus 1. DPB_DSM must be less than or equal
to 7FFFh.

DPB_DRM [Directory maximum]
The directory maximum defines the total number of directory entries on this
drive. Allocation blocks are reserved for the directory by the DPB_AL0 and
DPB_AL1 fields discussed below. DPB_DRM is the total number of directory
entries that can be kept in the allocation blocks reserved for the directory,
minus 1. Each directory entry is 32 bytes long. The following table shows the
number of directory entries for one allocation block and for 16 blocks using
the available block sizes.

 Directory Directory
 Block Entries Entries
 Size Per Block Per 16 Blocks

 1,024 32 512
 2,048 64 1024
 4,096 128 2048
 8,192 256 4096
 16,384 512 8192

Choose directory size carefully. Once CP/M-86 Plus writes on disks, the
directory size cannot be changed, though the disk can be copied to another
disk with a larger directory.

DPB_AL0, DPB_AL1 [Directory allocation vector]
DPB_AL0 and DPB_AL1 reserve from 1 to 16 allocation blocks for the directory.
The directory is contiguous starting with block 0. The directory allocation
vector is a bit map with each bit representing an allocation block being used
for the directory. Table D-4 in Appendix D shows the legal values of DPB_AL0
and DPB_AL1, based on the number of allocation blocks desired for the
directory.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

DPB_CKS [Checksum vector size]
A checksum vector is required for removable media, in order to ensure the data
integrity of the disk system. The lower order 15 bits of DPB_CKS determine the
length of the directory checksum vector addressed by the Disk Parameter Header
(see the next subsection). These 15 bits also determine the number of
directory entries the BDOS will checksum when a drive is "logged in". (The
process of logging in a drive is discussed in "Detecting Media Changes" latter
in this section, and under "Drive Status" in Section 3 of the "Programmer's
Guide"). Each byte of the checksum vector is the checksum of 4 directory
entries.

The high-order bit, when set in the DPB_CKS field, indicates a drive
containing permanent or nonremovable media. Ensuring data integrity on
permanent media drives requires fewer directory accesses, and allows the
buffering of more data in memory, requiring fewer disk writes. The result is
that permanent media drives can get up to 30% better performance than
removable media drives. Typically, hard disk systems have the DPB_CKS value of
8000h, indicating no checksumming and permanent media.

In systems that can detect the door open for removable media drives,
checksumming is only done when the DPH_DOPEN byte in the DPH is set to 0FFh,
indicating that the drive door has been opened. The drive is thus treated as a
permanent media drive until the drive door is opened. The high-order bit in
DPB_CKS is set in this case, and the low-order 15 bits reflect the required
checksum vector size. "Detecting Media Changes" later in this section covers
this topic in more detail.

DPB_OFF [Track offset]
The track offset is the number of boot tracks at the beginning of the disk.
DPB_OFF is equal to the track number on which the directory starts. Using this
field, more than one logical disk drive can be mapped onto a single physical
drive. See "Multiple Logical Drives" later in this section for more
information.

DPB_PSH [Physical record shift factor]
The physical record shift factor is used by the BDOS to calculate the physical
sector from the logical record number. The logical record number is shifted
the number of DPB_PSH bits to the right to calculate the physical record.
(Logical records are 128 bytes long as defined by the file-related system
calls.)

DPB_PHM [Physical record mask]
The physical record mask is used by the BDOS to calculate the logical record
offset within a physical sector by masking the logical record number with the
DPB_PHM value. The following table shows the DPB.

 Physical
 Sector Size DPB_PSH DPB_PHM

 128 0 0
 256 1 1

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

 512 2 3
 1024 3 7
 2048 4 15
 4096 5 31

Disk Parameter Header (DPH)

The drive table in the BIOS Kernel Data Header (@BH_DRIVETABLE) contains 16
words, which correspond with the logical drive letters A-P. These words
contain offsets of Disk Parameter Headers, or a 0 value if the drive is not
supported. The BDOS uses the DPHs to access all the other data structures
related to a particular drive. Each DPH must be unique; two logical drives
cannot share the same DPH.

Listing 7-3 shows the format of the DPH, and is part of the file DISK.LIB on
the distribution disks.

Listing 7-3. Disk Parameter Header Format

;***
;
; Disk Parameter Header Equates
;
;***
;
; +-----+-----+-----+-----+-----+------+------+-----+
; 00h | XLT | SCRATCH |DOPEN | SCRATCH |
; +-----+-----+-----+-----+-----+------+------+-----+
; 08h | DPB | CSV | ALV | DIRBCB |
; +-----+-----+-----+-----+-----+------+------+-----+
; 10h | DATBCB | HSHTBL | INIT | LOGIN |
; +-----+-----+-----+-----+-----+------+------+-----+
; 18h | READ | WRITE |UNIT |CHNNL |NFLAGS|
; +-----+-----+-----+-----+-----+------+------+

DPH_XLT equ word ptr 0
DPH_DOPEN equ byte ptr 5
DPH_DPB equ word ptr 8
DPH_CSV equ word ptr 10
DPH_ALV equ word ptr 12
DPH_DIRBCB equ word ptr 14
DPH_DATBCB equ word ptr 16
DPH_HSHTBL equ word ptr 18
DPH_INIT equ word ptr 20
DPH_LOGIN equ word ptr 22
DPH_READ equ word ptr 24
DPH_WRITE equ word ptr 26
DPH_UNIT equ byte ptr 28
DPH_CHNNL equ byte ptr 29
DPH_NFLAGS equ byte ptr 30

Listing 7-4 shows an example DPH definition from the DISKIO.A86 file on the

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

distribution disks. The symbols XLTD3 and DPBD6 define the offsets of the
translation table and the DPB. The symbols beginning with FD_ are the offsets
of the disk I/O routines for the logical drive represented by this DPH.

Listing 7-4. Disk Parameter Header Definition

; floppy disk 0

@dpha dw xltd3 ;translate table
 db 0, 0, 0 ;scratch area
 db 0 ;door open flag
 db 0, 0 ;scratch area
 dw dpbd6 ;disk parameter table
 dw 0FFFFh ;checksum
 dw 0FFFFh ;allocation vector
 dw 0FFFFh ;directory bcb
 dw 0FFFFh ;data bcb
 dw 0FFFFh ;hash table
 dw fd_init ;init routine
 dw fd_login ;login routine
 dw fd_read ;read routine
 dw fd_write ;write routine
 db 0 ;unit
 db 0 ;channel 0
 db 1 ;one flag used

Table 7-2 describes the fields in the DPH:

Table 7-2. Disk Parameter Header Data Fields

Format: Data Field
 Explanation

DPH_XLT [Translation table address]
The translation table address defines a vector for logical-to-physical sector
translation. If there is no sector translation (the physical and logical
sector numbers are the same), set DPH_XLT to 0. Disk drives with identical
sector skew factors can share the same translation tables. This address is not
referenced by the BDOS, and is only intended for use by the disk driver
routines. Usually, the translation table contains one byte per physical
sector. If the disk has more than 256 sectors per track, the sector
translation must consist of two bytes per physical sector. It is advisable,
therefore, to keep the number of physical sectors per logical track to a
reasonably small value, to keep the translation table from becoming too large.

SCRATCH [Scratch area]
The 5 bytes of zeroes are a scratch area which the BDOS uses to maintain
various parameters associated with the drive. They must be initialized to 0 by
the INIT routine or the load image.

DPH_DOPEN [Door open flag]

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

If the BIOS can detect that the drive door has been opened, it can set this
flag to 0FFh when it detects that the operator has opened the door. It must
also set the global door open flag, @BH_GDOPEN in the BIOS Header, to 0FFh at
the same time. If @BH_GDOPEN is set to 0FFh, the BDOS then checks for a media
change before performing the next file operation on that drive. The BDOS
resets the @BH_GDOPEN flag when checked, as well as any of the DPH_DOPEN
fields checked. Note that the BDOS checks this flag only when a file-related
system call is initiated within the BDOS. DPH_DOPEN is not checked again until
the next file-related system call is made. Usually, this flag is only useful
in systems that support door-open interrupts. If the BDOS determines that the
drive contains a new disk, the BDOS relogs-in the drive, and resets the
DPH_DOPEN field to 0.

Note: If a door open interrupt is available, using this flag improves disk
performance by as much as 30%, making the BDOS treat a removable-media drive
similar to a permanent drive. See the description of the DPB_CKS field in
Table 7-1.

DPH_DPB [Disk parameter block address]
The DPH_DPB field contains the address of a Disk Parameter Block that
describes the characteristics of the disk drive.

DPH_CSV
This field contains the offset of the checksum vector, a scratchpad area that
the system uses for checksumming the directory to detect a media change. This
address must be different for each Disk Parameter Header. One byte must be in
the checksum vector (CSV) for every four directory entries (or 128 bytes of
directory). In short, Length(CSV) = (DPB_DRM/4)+1 (see the DPB Worksheet in
Appendix D). If DPB_CKS in the DPB is 0 or 8000h, no checksum area is used,
and DPH_CSV can be 0. Values for DPB_DRM and DPB_CKS are also calculated as
part of the DPB Worksheet. If this field is initialized to 0FFFFh, GENCPM
automatically creates the appropriate checksum vector structure within SYSDAT,
and initializes the DPH_CSV field.

DPH_ALV
This field contains the offset of the Allocation Vector (ALV). The BDOS uses
the ALV to track disk-storage allocation information. The allocation vector
must be different for each DPH. The allocation vector is actually two separate
vectors. One vector reflects the allocated blocks as recorded in the drive's
directory; the second vector records the currently allocated blocks not yet
recorded in drive's directory. Each vector contains one bit per each
allocation block on the disk, rounded up to the nearest byte. The length of
the ALV is double the length of one of these allocation vectors, or the
Length(ALV) = (DPB_DSM/4)+2. Calculate the value of DPB_DSM as part of the DPB
Worksheet provided in Appendix D. If this field is initialized to 0FFFFh,
GENCPM automatically creates the appropriate data structures in the SYSDAT.

DPH_DIRBCB
This field contains the offset of the Directory Buffer Control Block (DIRBCB)
Header. The DIRBCB Header contains the offset of the first of the linked

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

Directory Buffer Control Blocks for this drive. (See "Disk I/O Buffering"
later in this section.) The BDOS uses directory buffers for all accesses of
the disk directory. Several DPHs can refer to the same DIRBCB Header, or each
DPH can reference a different DIRBCB Header. If this field is 0FFFFh, GENCPM
initializes the DPH_DIRBCB field, and automatically creates the DIRBCB Header,
the DIRBCBs, and the Directory Buffers for the drive, within SYSDAT.

DPH_DATBCB
This field contains the offset of the Data Buffer Control Block Header
(DATBCB) Address. The DATBCB Header contains the offset of the linked data
buffers for this drive. (See "Disk I/O Buffering" later in this section.) If
the physical sector size of the media associated with a DPH is 128 bytes, the
DATBCB field of the DPH can be set to 0000h and no data buffers are allocated.
If this field is 0FFFFh, GENCPM initializes the DPH_DATBCB field,
automatically creates the DATBCB Header and DATBCBs within SYSDAT, and
allocates space for the Data Buffers.

DPH_HSHTBL
This field contains the paragraph address of the optional directory hash table
(HSHTBL) associated with a logical drive. The BDOS assumes that the hash table
offset address to be 0. If you decide not to use directory hashing to save
memory space, set DPH_HSHTBL to 0. However, including a hash table
dramatically improves disk performance. Each DPH using hashing must reference
a unique hash table. If a hash table is desired, length(hash_table) =
4*(DPB_DRM+1) bytes, where DPB_DRM = length of the directory - 1. Each entry
in the hash table must contain four bytes for each directory entry of the
disk. If this field is 0FFFFh, GENCPM initializes DPH_HSHTBL, and
automatically creates the appropriate hash table.

DPH_INIT
This is the offset of the first-time initialization code for the drive. The
BIOSINIT routine in the BIOSKRNL module calls each DPH's DPH_INIT routine
during system initialization. DPH_INIT can perform any necessary hardware
initialization, such as setting up the controller and interrupt vectors, if
any. Upon entry, register BX contains the offset of the DPH for this drive.

DPH_LOGIN
This is the offset of the login routine for the drive. The DPH_LOGIN routine
is called before the BDOS reads the directory for the first time to log in the
drive. The BDOS logs in a drive by reading the directory and computing the
drive free space and other values. If the information is available through the
hardware, DPH_LOGIN allows the automatic determination of the media type.

DPH_READ
This is the offset of the sector read routine for the drive. When the DPH_READ
routine is called, the base address of the IOPB (see "IOPB Data Structure"
after this table) is contained in register BP. The parameters necessary for
the read operation are all contained in the IOPB.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

DPH_WRITE
This is the offset of the sector write routine for the drive. When the
DPH_WRITE routine is called, the address of the IOBP is contained in register
BP. The parameters necessary for the write operation are all contained in the
IOPB (see "IOPB Data Structure" after this table).

DPH_UNIT
The DPH_UNIT byte contains the drive code, relative to the disk controller,
for the disk drive referenced by this DPH. For instance, if a disk controller
supports logical drives C: and E:, the DPH_UNIT fields in DPHC and DPHE are
set to 2 and 4 respectively. Only the BIOS uses this field.

DPH_CHNNL
The DPH_CHNNL byte contains the ID of the controller that supports this
device. For instance, if a one disk controller handles logical drives A: and
B: while a second controller manages logical drives C: and D:, the DPH_CHNNL
field is set to 0 in DPHA and DPHB. Since drives C: and D: use the second
controller, the DPH_CHNNL fields in DPHC and DPHD are set to 1. Only the BIOS
uses this field.

DPH_NFLAGS
The DPH_NFLAGS byte contains the number of system flags used by this drive. If
more than one drive shares a controller, then the first DPH for that
controller should indicate the number of flags used; all other DPHs for drives
that share the controller should have a 0 in their DPH_NFLAGS fields. The
first DPH of several that share a controller can be identified by a DPH_CHNNL
value of 0. GENCPM uses DPH_NFLAGS in calculating the minimum number of system
flags to allocate.

IOPB Data Structure

The disk Input/Output Parameter Block (IOPB) contains the parameters required
for the IO_READ and IO_WRITE function calls in the BIOS Kernel, and the
DPH_READ and DPH_WRITE functions in the DISKIO modules you supply. The IOPB is
located on the stack when the BDOS calls the BIOSENTRY routine in the BIOS
Kernel. The IOPB structure uses the BP register, since indirect addressing
using the BP register of the 8086/8088 processors is relative to the SS (stack
segment) register. The IOPB is defined relative to the value BP as set by the
READ_WRITE routine in the Kernel. BP obviously cannot be modified by the disk
I/O routines if the IOPB is going to be used.

DPH_READ and DPH_WRITE can index or modify IOPB parameters directly on the
stack, since they are removed by the BDOS after the BIOS IO_READ or IO_WRITE
functions return.

Listing 7-5 shows the format of the IOPB. This information is also found in
the file DISK.LIB on the distribution disks. Table 7-7 discusses each field in
the IOPB.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

Listing 7-5. Input/Output Parameter Block (IOPB)

;***
;
; Input/Output Parameter Block Definition
;
;***
;
; Read and Write disk parameter equates
;
; At the disk read and write entries,
; all disk I/O parameters are on the stack
; and the stack at these entry points is as
; follows:
;
; +-------+-------+
; +14 | DRIVE | MCNT | Drive and Multisector Count
; +-------+-------+
; +12 | TRACK | Track number
; +-------+-------+
; +10 | SECTOR | Physical sector number
; +-------+-------+
; +8 | DMA_SEG | DMA segment
; +-------+-------+
; +6 | DMA_OFF | DMA offset
; +-------+-------+
; +4 | RET_SEG | BDOS return segment
; +-------+-------+
; +2 | RET_OFF | BDOS return offset
; +-------+-------+
; BP+0 | RET_ADR | Local ENTRY return address
; +-------+-------+ (assumes one level of call
; from ENTRY routine)
;
; These parameters (except for the return addresses)
; may be indexed and modified directly on the stack;
; they are removed on return to the BDOS.

iopb_mcnt equ byte ptr 15[bp]
iopb_drive equ byte ptr 14[bp]
iopb_track equ word ptr 12[bp]
iopb_sector equ word ptr 10[bp]
iopb_dmaseg equ word ptr 8[bp]
iopb_dmaoff equ word ptr 6[bp]

Table 7-3. IOPB Data Fields

Format: Data Field
 Explanation

IOPB_DRIVE [Logical drive number]
The logical drive number specifies the logical disk drive on which to perform

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

the DPH_READ or DPH_WRITE operation. The drive number can range from 0 to 15,
corresponding to drives A through P respectively.

IOPB_MSCNT
To transfer logically consecutive physical disk sectors to or from contiguous
memory locations, the BDOS issues an IO_READ or IO_WRITE function call with
IOPB_MSCNT set greater than 1. This allows the BIOS to transfer multiple
sectors in a single disk operation. The maximum value of the Multisector Count
depends on the physical sector size, ranging from 128 with 128-byte sectors to
4 with 4096-byte sectors. Thus, the BIOS can transfer up to 16 Kbytes directly
to or from the DMA address in a single operation. Note that the IOPB_MSCNT is
distinct from the Multisector Count set by the F_MULTISEC system call. The
F_MULTISEC system call sets a logical (128-byte sector) Multisector Count for
file I/O transfers between the transient and the BDOS.

For a more complete explanation of multisector operations, along with example
code and suggestions for implementation within the BIOS, see "Skewed
Multisector Disk I/O" later in this section.

IOPB_TRACK
The IOPB_TRACK defines the track for the specified drive to seek. The BDOS
defines IOPB_TRACK relative to 0. For disk hardware which defines track
numbers beginning with a physical track of 1, your DPH_READ and DPH_WRITE
routines must increment the track number before passing it to the disk
controller.

The BDOS uses the values you define in the DPB to calculate IOPB_TRACK.
Usually the DPB is defined to directly correspond to the physical disk, and
the IOPB_TRACK value is the physical track number. However, tracks can be
defined to include both sides of a double-sided drive, or a cylinder of a
multiplatter drive. When a track is defined by the DPB to be more than one
physical track, the BIOS calculates the head from the IOPB_SECTOR number.

IOPB_SECTOR
The IOPB_SECTOR defines the sector for a read or write operation on the
specified drive. The BDOS defines the IOPB_SECTOR relative to 0, so for disk
hardware which defines sector numbers beginning with a physical sector of 1,
the DPH_READ and DPH_WRITE routines increment the sector number before passing
it to the disk controller.

The sector size is determined by the parameters DPB_PSH and DPB_PHM defined in
the Disk Parameter Block. Usually, the DPB is defined so the sector size is
equal to the physical sector size of the disk.

If the specified drive uses a skewed-sector format, the DPH_READ and DPH_WRITE
routines must translate the sector number according to the translation table
specified in the Disk Parameter Header.

IOPB_DMAOFF, IOPB_DMASEG
The DMA offset and segment define the address of the disk data transfer buffer

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

for the read or write operation. This DMA address can reside anywhere in the
one-megabyte address space of the 8086/8088 microprocessor. If the disk
controller for the specified drive can only transfer data to and from a
limited range of addresses, DPH_READ or DPH_WRITE must copy the data between
the DMA address and a local buffer accessible to the controller. (DMA is an
acronym for Direct Memory Address, a term used in the context of the BIOS for
disk I/O operations which transfer physical sectors directly to memory, and
vice versa.)

IOPB_RETSEG, IOPB_RETOFF
These two words are used to return to the BDOS from the BIOSENTRY routine, and
must be preserved through DPH_READ or DPH_WRITE.

IOPB_LOCALRET
The local return address returns to the BIOSENTRY routine in the BIOS Kernel
when the DPH_READ or DPH_WRITE routines finish.

DPH_DISK I/O Routines

This section discusses the CP/M-86 Plus BIOS hardware-dependent disk functions
that you supply. The BIOS Kernel accesses these functions through their
offsets contained in the DPH fields DPH_INIT, DPH_LOGIN, DPH_READ, and
DPH_WRITE. There must be a valid routine for each of the four functions in
every DPH in the BIOS; the DPH_INIT, DPH_LOGIN, DPH_READ, and DPH_WRITE fields
cannot be 0.

Table 7-4. DPH_Disk I/O Routines

Format: Routine
 Explanation

DPH_INIT
The DPH_INIT routine initializes the hardware associated with a particular
drive. BIOSINIT calls the DPH_INIT routine for each DPH defined in the BIOS. A
DPH_INIT routine can simply return if the initialization is performed by
another DPH_INIT routine. This occurs when several DPHs share the same disk
controller.

Entry Registers: BX = address of DPH
 DS = SYSDAT (BIOS data segment)
 ES = process environment

Exit Registers: DS, ES preserved

DPH_LOGIN
The DPH_LOGIN routine can optionally determine the current media type in a
removable media drive. The BIOS Kernel calls DPH_LOGIN when the BDOS calls the
Kernel IO_SELECT routine and indicates a "first time" select. First time
selects occur only when the drive is first accessed and after the DPH_READ or

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

DPH_WRITE routines signal a media change to the BDOS. The register conventions
for the call to DPH_LOGIN from the BIOS Kernel are the following:

Entry Registers: BX = offset of DPH
 DS = SYSDAT (BIOS data segment)
 ES = process environment

Exit Registers: BX = offset of DPH if no error
 BX = 0 if error
 DS, ES preserved

The DPH_LOGIN function call allows the BIOS to determine density, the number
of sides, and any other disk parameters that can change during operation. Once
the new parameters are determined, the hardware might need to be
reinitialized. If the type of drive changes, the DPH_DPB field is changed to
point the DPB defining the new drive. "Automatic Density and Side Selection,"
which appears later in this section, discusses the DPH_LOGIN routine in more
detail.

DPH_READ, DPH_WRITE
The CP/M-86 Plus BDOS performs disk I/O with a single BIOS call to the BIOS
Kernel IO_READ or IO_WRITE functions, using the parameters contained in the
IOPB. The BIOS Kernel, in turn, calls the OEM-written disk routines DPH_READ
and DPH_WRITE, which perform the disk operations.

If a physical error occurs during a DPH_READ or DPH_WRITE operation, the
function should perform several retries (ten is recommended) to attempt to
recover from the error before returning an error condition.

The following are the register conventions for DPH_READ and DPH_WRITE:

Entry Registers: BX = offset of DPH
 BP = offset of IOPB on stack
 DS = SYSDAT (BIOS data segment)
 ES = process environment

Exit Registers: AL = 0 if no error
 AL = 1 if physical error
 AL = 2 if read-only disk
 AL = 0FFh if media density has changed
 DS, ES preserved

If the IOPB_MSCNT field is equal to one, DPH_READ and DPH_WRITE routines
transfer the single physical sector specified in the IOPB. If a physical error
occurs, DPH_READ and DPH_WRITE return 1 in AL after attempting retries.
DPH_WRITE can additionally return AL equal to 2 if a drive is physically read-
only.

For drives supporting several types of media, DPH_READ and DPH_WRITE should
return an 0FFh in AL if the BIOS detects a change in media density. After
returning an 0FFh, the BDOS calls the IO_SELECT routine in the Kernel, which
in turn calls the DPH_LOGIN routine for the same drive. See "Automatic Density
and Side Selection" later in this Section.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

If the IOPB_MSCNT is greater than 1, the DPH_READ or DPH_WRITE routines
transfer the specified number of physical sectors before returning to the BIOS
Kernel. The DPH_READ and DPH_WRITE routines transfers as many physical sectors
as the specified drive's disk controller can handle in one operation.

Additional calls to the disk controller are required when the disk controller
cannot transfer the requested number of sectors in a single operation. If a
physical error occurs during a multisector transfer or write, a 1 is returned
in AL.

If the disk controller hardware for the specified drive does not have a
feature for making multisector transfers, DPH_READ and DPH_WRITE can make the
number of single physical-sector transfers defined by the IOPB_MSCNT. Making
multiple single physical-sector transfers is recommended when first bringing
up the disk I/O routines, unless you already have multisector I/O routines
working from another implementation. DPH_READ and DPH_WRITE must increment the
sector number, and add the number of bytes in each physical sector to the
IOPB_DMAOFF address for each successive single physical-sector transfer.

The BDOS initializes the IOPB_DMAOFF and IOPB_DMASEG such that a multisector
transfer will not cause the value of IOPB_DMAOFF to overflow. If, during a
multisector transfer, the sector number exceeds the number of the last
physical sector of the current track, DPH_READ and DPH_WRITE routines
increment IOPB_TRACK, and reset IOPB_SECTOR to 0.

Listing 7-6 after this table shows a simple implementation of a multisector
read/write routine that performs single sector operations until all the
sectors are transferred. The DISKIO.A86 module on the distribution disks
contains a read/write routine that performs multisector transfers at the
controller level. The RW64.A86 file provides another example showing a
multisector read/write routine that cannot transfer across a 64-Kbyte page
boundary, because of hardware restrictions.

In Listing 7-6, if IOPB_MSCNT is 0, the routine returns with an error.
Otherwise, it calls the read/write routine (IOHOST:) for the present sector
specified by the current values of IOPB_TRACK and IOPB_SECTOR. If there is no
error, the IOPB_MSCNT value is decremented. When IOPB_MSCNT equals 0, the read
or write is finished, and the routine returns. If not, the sector number to
read or write is incremented. If, however, the sector number now exceeds the
number of sectors on a track (MAXSEC), the IOPB_TRACK number is incremented,
and the IOPB_SECTOR number is set to 0. Then, the routine performs the number
of reads or writes remaining to equal IOPB_MSCNT, each time adding the size of
a physical sector to IOPB_DMAOFF. Listing 7-6 illustrates multisector
operations assuming a disk controller only supporting single sector I/O.

Listing 7-6. Multisector I/O

 include disk.lib

maxsec equ 8 ;sectors per track (example)
secsiz equ 512 ;sector size (example)

hd_io: ;common code for disk read and writes

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

;-----
; Entry: BP = IOPB on stack
; RFLAG = true if reading, else writing
; Exit: AL = 0 if success
; AL = 1 if error
;
; Use IOPB to form a series of single sector read or write
; operations.

 push es ;save process environment
 mov al,1 ;error return
 cmp iopb_mcnt,0 ;if Multisector Count = 0
 je return_rw ;return error

hdio1:
 call iohost ;read/write physical sector
 or al,al ;test for error
 jnz return_rw ;return error
 dec iopb_mcnt ;decrement Multisector Count
 jz return_rw ;if multisector = 0 return
 mov ax,iopb_sector
 inc ax ;next sector
 cmp ax,maxsec
 jb same_track ;is sector < sectors per track
 inc iopb_track ;no - next track
 xor ax,ax ;initialize sector to 0
same_track:
 mov iopb_sector,ax ;save sector #
 add iopb_dmaoff,secsiz ;increment DMA offset by
 ;sector size
 jmps hdio1 ;read/write next sector
return_rw:
 pop es ;restore process environment
 ret ;return with error code in AL

iohost: ;single physical sector read/write
;------
; entry: BP = IOPB on stack
; RFLAG = true if reading, else writing
; exit: AL = 0 if success
; AL = 1 if error
; DS preserved
;
; Transfer one physical sector as indicated by the IOPB
; parameters IOPB_SECTOR, IOPB_TRACK, IOPB_DRIVE to or from
; IOPB_DMASEG:IOPB:DMAOFF.
;
; Your hardware-dependent single sector transfer
; routine goes here.

 ret

DSEG
 rflag rb 1

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

DISK I/O ENHANCEMENTS

You can modify the CP/M-86 Plus disk I/O system in several ways. A large hard
disk can be divided into several logical drives to provide a more convenient
file organization. Door open interrupts on removable media drives can be
detected to improve disk I/O performance and improve data integrity. The
automatic detection of media types prevents the user from having to invoke a
utility that informs the BIOS of the current media type. This is helpful when
a removable media drive supports single- and double-density media. Other
modifications include the support of skewed disk formats for compatibility
with media written from other machines or operating systems, and the
implementation of a "memory disk".

Multiple Logical Drives

A large nonremovable-media storage device, such as a hard disk, can be divided
into several logical drives for user convenience. This is done using the
DPB_OFF (track offset) field in the DPB.

The DPB_OFF field can define the beginning of a logical drive as shown:

 +---------------------------+
 | Data Region | Logical Drive
 | Directory Region |
 Track M+2M +---------------------------+
 | Data Region | Logical Drive
 | Directory Region |
 Track N+M +---------------------------+
 | Data Region | Logical Drive
 | Directory Region |
 Track N --> +---------------------------+
 | Optional System Tracks |
 Track 0 --> +---------------------------+

 Figure 7-2. Multiple Logical Drives

Figure 7-2 shows three logical drives mapped onto one physical drive. Three
separate DPBs and DPHs are required for each drive. Even if the logical drives
are identical in size, three different DPBs are necessary, since the DPB_OFF
is different for each drive, and is set to N, N+M, and N+2M.

Detecting Media Changes

Disk drives under CP/M-86 Plus are classified whether the media they contain
is permanent or removable. "Removable media drives" support media changes;
"permanent media drives" do not. The discussion in this subsection considers
media changes when the media type is preserved. The next subsection treats the

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

detection of different media types, such as single- or double-density
formatted disks.

If a drive's media is permanent, the BDOS always accepts the contents of the
physical sector buffers as valid. In addition, it also accepts the results of
hash table searches on the drive.

On removable media drives, the validity of the physical sector buffers is
conditional, in order to protect against writing to a drive whose media has
changed. The BDOS logs in removable media drives by computing and storing
checksums and hash codes for the drive's directory. The checksums for a
particular drive are stored in the checksum vector whose offset resides in the
DPH_CSV field. The hash codes are stored in the hash table whose offset
resides in the DPH_HSHTBL field. (These fields and data areas are usually set
and allocated automatically by GENCPM.)

Before the BDOS performs certain directory-related functions, it verifies that
the disk has not changed. The BDOS does this by computing checksums for the
parts the disk directory being used, and comparing them with the corresponding
checksums previously computed. If the checksums differ, the operation is
denied.

A similar situation occurs with directory hashing on removable media drives.
When an unsuccessful hash table search occurs, the BDOS attempts to locate the
directory entry by reading the directory. During this pass through the
directory, the checksums are computed and compared with the ones stored in the
checksum vector.

When the checksum values do not match, the BDOS assumes the media has changed.
The BDOS logs out the drive by invalidating its directory and data buffers,
then again attempts to log in the disk which forces the entire directory to be
read.

The net result of these actions is that there is a significant performance
penalty associated with removable media drives, as compared to permanent media
drives. In addition, the protection provided by classifying a drive's media as
removable is not complete. Media changes are only detected during directory
operations. If the media is changed while writing file data when no directory
accesses are required, the data on the new disk will be overwritten.

Another option for supporting drives with removable media is available if an
interrupt can be generated when the drive door is opened. This option allows
the BDOS to treat the drive as if it contained permanent media until the
occurrence of a door open interrupt. If your hardware provides this support,
you can increase disk I/O performance up to 30%, and improve the integrity of
removable media, by the following procedure:

 - Compute the normal DPB_CKS value for a removable media drive. This is
 the size of the checksum vector, and is equal to the total number of
 directory entries, divided by four. Then, set the most significant bit
 in the DPB_CKS by adding the value of 8000h to the DPB_CKS field. For
 example, set the CKS field for a disk with 96 (60h) directory entries
 to 8018h. This bit signals the BDOS to treat the drive specially.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

 - Implement an interrupt service routine that sets the @BH_GDOPEN byte
 to 0FFh in the BIOS Kernel Data Header and the DPH_DOPEN byte to 0FFh
 for the drive that signaled the door open condition.

The BDOS checks @BH_GDOPEN on certain disk-related function calls. If
@BH_GDOPEN is equal to 0, it implies that no drive doors have been opened in
the system. If @BH_GDOPEN is set to 0FFh, the BDOS checks the DPH_DOPEN byte
of each currently logged-in drive. If the DPH_DOPEN byte is 0FFh, the BDOS
reads the entire directory on that drive, then computes and compares
checksums. Any directory buffers for this drive are temporarily ignored,
forcing the verifying directory reads to the disk. If the checksums match, it
is assumed that the door was opened, but the media was not changed. If the
checksums differ, the drive is logged out, then logged in again as required.

Automatic Density and Side Selection

Some physical drives can support several different kinds of media. For
example, floppy disk drives and controllers can often accept several densities
formatted on one or two sides of the disk. If the BIOS can detect the media
type, automatic (auto) density and side selection can be implemented.
Automatic selection of the media type in the BIOS replaces the need for a
special transient program written by you. This transient must be invoked by
the end-user each time the media type is changed.

To support auto density and side selection, the DPH_READ and DPH_WRITE
routines must be able to determine when the media has changed. Additionally,
the BIOS must be able to determine the media type.

To implement auto density support, a DPB is included in the BIOS for each
media type expected, or routines to alter DPB values to reflect the media type
currently being used. When the DPH_READ or DPH_WRITE routines detect a media
change, they must return AL equal to 0FFh back to the BDOS. The BDOS then
makes a "first time" select call to the BIOS Kernel IO_SELDSK function. In
turn, the IO_SELDSK function calls the DPH_LOGIN routine for the drive. The
DPH_LOGIN function which you supply determines the media type, and sets the
DPH_DPB field to the offset of the DPB that describes the media.

If unable to determine the format, the DPH_LOGIN function can return a 0,
indicating that the select operation was not successful. The IO_SELDSK
function returns the error, and the BDOS prints a message or returns an error
to the application, depending on the BDOS error mode. (See F_ERRMODE system
call in the "Programmer's Guide"). Table 7-4 shows the DPH_LOGIN register
conventions.

Once the DRV_LOGIN routine has determined the format of the disk, the BDOS
assumes that this format is correct, and uses the DPB currently associated
with the drive for subsequent read and write operations.

Skewed Multisector Disk I/O

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

CP/M-86 Plus supports multiple physical sector read and write operations at
the BIOS level, to minimize rotational latency on block disk transfers.
Multisector I/O is implemented in the BIOS by using the Multisector Count
passed in the IOPB.

When the disk format uses a skew table to minimize rotational latency for
single-sector transfers, it is more difficult to optimize transfer time for
multisector operations. One method of doing this is to have the BIOS
read/write routine translate each logical sector number into a physical sector
number. Then, it creates a table (Figure 7-3) of DMA addresses with each
sector's DMA address indexed into the table by the physical sector number.

 PHYSICAL
 SECTOR DMA ADDRESS
 NUMBER FOR TRANSFER
 +--------------------+
 00 | DMA_ADDR |
 +--------------------+
 01 | DMA_ADDR |
 +--------------------+
 02 | DMA_ADDR |
 +--------------------+

 +--------------------+
 N | DMA_ADDR |
 +--------------------+

 Figure 7-3. DMA Address Table for Skewed Multisector I/O

As a result, the requested sectors are sorted into the order in which they
physically appear on the track. Often, the required sectors on the track can
be transferred in one disk rotation. As a sector is read or written, it is
transferred to or from its proper DMA address.

During a multisector data transfer, if the sector number exceeds the number of
the last physical sector of the current track, the BIOS increments IOPB_TRACK,
and resets the IOPB_SECTOR to zero. It can then complete the operation for the
balance of sectors specified in the DPH_READ or DPH_WRITE function call.

Listing 7-7 illustrates multisector I/O for a skewed disk. The disk parameters
are taken from the DPH and DPB to be stored in local variables. Once the
physical sector size is computed from the DPB values, the DMA address table
can be initialized. The INITDMATBL routine fills the DMA address table with
0FFFFh word values. The size of the DMA table equals one word greater than the
number of sectors per track, in case the physical sectors are numbered
relative to one for that particular drive.

The DMA table (DMATBL) is filled with the DMA addresses for the requested
sectors on the current track. The RW_SECTS routine transfers the sectors to
the proper DMA addresses, and returns to READ_WRITE if more sectors are to be
read on the next track. The READ_WRITE routine continues to calculate the DMA
addresses on succeeding tracks, and transfer the sectors by calling RW_SECTS
until all requested sectors are transferred.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

In this example, local values that begin with "I" (such as ISECTOR and ITRACK)
are initialized by RW_SECTS, and are parameters used by the read or write
routine whose offset is in register SI.

The following code fragment illustrates multisector unskewing. It is assumed
that this fragment is called from the DPH_READ and DPH_WRITE routines you
supply with the registers set as indicated.

Listing 7-7. Skewed Multisector Disk I/O

 include disk.lib

 CSEG

rw_skew: ;unskews for reads/writes of multiple sectors
;-------
; entry: SI = offset of read or write routine
; BX = DPH
; BP = IOPB
; DS = SYSDAT
; ES = process environment
; exit: AL = return code
; DS and ES preserved

ret_error:
 mov al,1 ;return error if not
 ret
dsk_ok:
 mov ax,DPH_XLT[bx]
 mov xltbl,ax ;save translation table address
 mov bx,DPH_DPB[bx]
 mov ax,DPB_SPT[bx]
 mov maxsec,ax ;save maximum sector per track
 mov cl,DPB_PSH[bx]
 mov ax,128
 shl ax,cl ;compute physical sector size
 mov secsiz,ax ;and save it
 call initdmatbl ;initialize DMA offset table
 cmp iopb_mcnt,0
 je ret_error
rw_1:
 mov ax,iopb_sector ;is sector < sectors per track
 cmp ax,maxsec
 jb same_trk
 call rw_sects ;no - read/write sectors on track
 call initdmatbl ;reinitialize DMA offset table
 inc iopb_track ;next track
 xor ax,ax
 mov iopb_sector,ax ;initialize sector to 0
same_trk:
 mov bx,xltbl ;get translation table address
 or bx,bx! jz no_trans ;if xlt <> 0
 xlat al ;translate sector number

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

no_trans:
 xor bh,bh
 mov bl,al ;sector # is used as the index
 shl bx,1 ;into the DMA offset table
 mov ax,iopb_dmaoff
 mov dmatbl[bx],ax ;save DMA offset in table
 add ax,secsiz ;increment DMA offset by the
 mov iopb_dmaoff,ax ;physical sector size
 inc iopb_sector ;next sector
 dec iopb_mcnt ;decrement Multisector Count
 jnz rw_1 ;if IOPB_MCNT<>0 store next
 ; sector DMA
rw_sects: ;read/write sectors in DMA table
 mov al,1 ;preset error code
 xor bx,bx ;initialize sector index
rw_s1:
 mov di,bx
 shl di,1 ;compute index into DMA table
 cmp word ptr dmatbl[di],0ffffh
 je no_rw ;nop if invalid entry
 push bx! push si ;save index and routine address
 mov ax,iopb_track ;get track # from IOPB
 mov itrack,ax
 mov isector,bx ;sector # is index value
 mov ax,dmatbl[di] ;get DMA offset from table
 mov idmaoff,ax
 mov ax,iopb_dmaseg ;get DMA segment from IOPB
 mov idmaseg,ax
 call si ;call read/write routine
 pop si! pop bx ;restore routine address & index
 or al,al! jnz err_ret ;if error occurred return
no_rw:
 inc bx ;next sector index
 cmp bx,maxsec ;if not end of table
 jbe rw_s1 ;go read/write next sector
err_ret:
 ret ;return with error code in AL

initdmatbl: ;initialize DMA offset table
;----------
 mov di,offset dmatbl
 mov cx,maxsec ;length = maxsec + 1 sectors
 inc cx ;may index relative to 0 or 1
 mov ax,0ffffh
 push es ;save process environment
 push ds! pop es
 rep stosw ;initialize table to 0ffffh
 pop es ;restore process environment
 ret

;***
;*
;* DISK I/O DATA AREA
;*

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

;***

 DSEG

isector rw 1 ;parameters for single sector
itrack rw 1 ;read/write operation
idmaoff rw 1
idmaseg rw 1

xltbl dw 0 ;translation table address
maxsec dw 0 ;max sectors per track
secsiz dw 0 ;sector size
dmatbl rw 50 ;DMA address table

Memory Disk Implementation

In CP/M-86 Plus, a disk drive is any I/O device that has a directory, and is
capable of reading and writing data in sectors up to 4 Kbytes in size. The
BIOS can therefore treat a wide variety of peripherals as disk drives, if
desired. A memory disk is an example of this flexibility.

A memory disk (RAMdisk) uses an area of RAM to simulate a disk drive, making a
very fast temporary disk. GENCPM can specify the M: disk as the temporary
drive. This section discusses the M: disk implementation as shown in Listing
7-8.

In Listing 7-8, the M: disk memory space begins at the 0C000h paragraph
boundary, and extends for 128 Kbytes through the 0DFFFh paragraph. The
BIOSINIT routine calls the DPH_INIT routine in DPHM, which initializes the
directory area of the M: disk, the first 16 Kbytes to 0E5h. 0E5h's signify
unused directory entries to the BDOS.

Both the M: disk DPHM_READ and DPHM_WRITE routines first call the MDISK_CALC:
routine. This code calculates the paragraph address of the current sector in
memory, and the number of words of data to read or write. The number of
sectors per track for the M: disk is set to 8, simplifying the calculation of
the sector address to a simple shift-and-add operation. The M: disk sector
size is defined by the DPB to be 128 bytes, making the calculation of a
paragraph address simply a shift operation. The IOPB_MSCNT (Multisector Count)
is multiplied by the length of a sector to give the number of words to
transfer.

The READ_M_DISK: routine gets the current DMA address from the IOPB on the
stack, and using the parameters returned by the MDISK_CALC: routine, block-
moves the requested data to the DMA buffer. The WRITE_M_DISK: routine is
similar, except for the direction of data transfer.

A Disk Parameter Block (DPB) for the M: disk, shown at the end of the example,
is provided for reference. A hash table can be provided for the M: disk Disk
Parameter Header, in order to further increase performance. (GENCPM is usually
used to automatically create the hash table.)

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

Listing 7-8 illustrates an M: disk implementation:

Listing 7-8. Example M: Disk Implementation

 include disk.lib

mdiskbase equ 0C000h ;base paragraph
 ;address of M: disk
 CSEG

dphm_init: ;initialize M: disk RAM directory area
;---------
 mov cx,mdiskbase
 push es ! mov es,cx
 xor di,di
 mov ax,0E5E5h ;check if already initialized
 cmp es:[di],ax ! je mdisk_end
 mov cx,2000h ;initialize 16 Kbytes
 rep stos ax ;of M: disk directory to 0E5h's
mdisk_end:
 pop es
 ret

dphm_login: ;no media change possible for M: disk
;----------
; entry: BX = DPH
; exit: BX = DPH

 ret

dphm_read: ;read from M: disk
;---------
; entry: BX = DPH
; IOPB on stack
; exit: AL = 0 (always successful)

; Reads the sectors specified by the IOPB
; to the DMA address also specified in the IOPB.

 call mdisk_calc ;calculate byte address
 push es ;save process environment
 les di,dword ptr iopb_dmaoff
 ;load destination DMA address
 xor si,si ;setup source DMA address
 push ds ;save current DS
 mov ds,bx ;load pointer to sector in memory
 rep movsw ;execute move of 128 bytes....
 pop ds ;then restore user DS register
 pop es ;restore process environment
 xor ax,ax ;return with good return code
 ret

dphm_write: ;write to M: disk
;----------

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

; entry: BX = DPH
; IOPB on stack
; exit: AL = 0 (always successful)
; Write the sectors specified in the IOPB
; to the DMA address also specified in the IOPB

 call mdisk_calc ;calculate byte address
 push es ;save process environment
 mov es,bx ;setup destination DMA address
 xor di,di
 push ds ;save user segment register
 lds si,dword ptr iopb_dmaoff
 ;load source DMA address
 rep movsw ;move from user to disk in memory
 pop ds ;restore user segment pointer
 pop es ;restore process environment
 xor ax,ax ;return no error
 ret

mdisk_calc:
;----------
; entry: IOPB on the stack
; exit: BX = sector paragraph address
; CX = length in words to transfer

 mov bx,iopb_track ;pickup track number
 mov cl,3 ;times eight for sector relative
 shl bx,cl ;to beginning of M: disk
 mov cx,iopb_sector ;plus IOPB_SECTOR number
 add bx,cx ;gives relative sector number to
 ;transfer
 mov cl,3 ;times eight for paragraph
 ;relative number
 shl bx,cl ;of starting sector to transfer
 add bx,mdiskbase ;plus base address of M: disk
 mov cx,64 ;length in words for 1 sector move
 mov al,iopb_mcnt
 xor ah,ah
 mul cx ;length * Multisector Count
 mov cx,ax
 cld
 ret

 DSEG

dpbm rb 0 ;Disk Parameter Block
 dw 8 ;Sectors Per Track
 db 3 ;Block Shift
 db 7 ;Block Mask
 db 0 ;Extnt Mask
 dw 126 ;Disk Size - 1
 dw 31 ;Directory Max
 db 128 ;Alloc0
 db 0 ;Alloc1

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

 dw 0 ;Check Size
 dw 0 ;Offset
 db 0 ;Phys Sec Shift
 db 0 ;Phys Sec Mask

DISK I/O BUFFERING

Directory and file data is buffered in physical sectors within the system. (A
physical sector is the sector size as defined by the DPB for the drive.) Since
GENCPM generates the data structures, and initializes the fields in the DPH
for disk buffering, this material is optional.

The BDOS uses Buffer Control Blocks (BCBs) to locate and manage physical
sector buffers. A BCB describes each physical sector buffer. Directory BCBs
(DIRBCBs) describe directory buffers, and Data BCBs (DATBCBs) describe file
data buffers. The BCBs are linked together to describe multiple buffers with
directory and data BCBs kept on separate lists.

Each logical drive has directory and data buffers associated with it via the
Disk Parameter Header (DPH) representing the drive. The DPH fields DPH_DIRBCB
and DPH_DATBCD contain the offsets of BCB Headers. The BCB Header is a three-
byte structure that contains the offset of the first of the linked BCBs.
Several logical drives as represented by different DPHs can specify the same
list of BCBs.

Each BCB has a BCB_LINK field containing the address of the next BCB in the
list, or 0 if it is the last BCB. All BCB Headers and BCBs must reside within
the SYSDAT segment.

Listing 7-9 is an example BCB Header definition:

Listing 7-9. BCB Header Definition

bcb_head dw dirbcb0 ;offset of first DIRBCB
 db 0ffh ;used by BDOS

The first word of the BCB Header, as previously mentioned, contains the offset
of the first BCB in a list of BCBs. The third byte in the BCB Header is used
by the BDOS, and must be initialized to 0FFh.

Directory Buffer Control Block (DIRBCB)

The Directory Buffer Control Block (DIRBCB) is used by the BDOS to manage disk
directory buffers in the BIOS. The buffer associated with the BCB must be
large enough to accommodate the largest physical sector associated with any
drive using the BCBs.

Listing 7-10 shows the DIRBCB format:

Listing 7-10. Directory Buffer Control Block (DIRBCB) Format

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

;*******************************
;*
;* DIRBCB Format
;*
;*******************************

; +------+------+------+------+------+------+------+------+
; 00h: | DRV | RECORD | WFLG | 00h | TRACK |
; +------+------+------+------+------+------+------+------+
; 08h: | SECTOR | BUFOFF | LINK | RESERVED |
; +------+------+------+------+------+------+------+------+

BCB_DRV equ byte ptr 0
BCB_RECORD equ byte ptr 1
BCB_WFLG equ byte ptr 4
BCB_TRACK equ word ptr 6
BCB_SECTOR equ word ptr 8
BCB_BUFOFF equ word ptr 10
BCB_LINK equ word ptr 12

Listing 7-11 illustrates a DIRBCB definition:

Listing 7-11. DIRBCB Definition

;*******************************
;*
;* DIRBCB Definition
;*
;*******************************

dirbcb0 db 0ffh ;Drive
 rb 3 ;Record
 rb 2 ;Write Pending
 rw 2 ;Track, Sector
 dw dirbuf0 ;Buffer Offset
 dw dirbcb1 ;BCB Link
 dw 0 ;Reserved

Table 7-5 defines the DIRBCB fields:

Table 7-5. DIRBCB Data Fields

Format: Data Field
 Explanation

BCB_DRV
This field is the logical drive number that identifies the disk drive
associated with the physical sector contained in the buffer. The initial value
of the BCB_DRV must be 0FFh. If BCB_DRV = 0FFh, then the BDOS considers the
buffer available for use. The BDOS initializes all other BCB fields when a BCB
and its buffer are used.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

BCB_RECORD
The BCB_RECORD number identifies the first logical record contained in the BCB
buffer. Since the size of the BCB buffer is a physical sector, it can contain
several 128-byte logical records. The logical record number is relative to the
beginning of the logical drives, where the first record of the directory is
logical record number 0.

BCB_WFLG [Write pending flag]
The BDOS sets the BCB_WFLG to 0FFh to indicate that the buffer contains
unwritten data. When the data is written to disk, the BDOS sets the BCB_WFLG
to 0.

00h
Reserved for system use.

BCB_TRACK
The BCB_TRACK is the track number associated with the BCB's buffer. The
BCB_TRACK number is calculated by the BDOS from drive's DPB values.

BCB_SECTOR
BCB_SECTOR is the sector number associated with the BCB's buffer. The
BCB_SECTOR number is calculated by the BDOS from the drive's DPB. Thus,
BCB_SECTOR is usually defined to be the same as the physical sector number.

BCB_BUFOFF
For DIRBCBs, this field equals the offset address of the buffer within SYSDAT.

BCB_LINK
The BCB_LINK field contains the offset address of the next BCB in the linked
list, or 0 if this is the last BCB.

BCB_RESERVED
Reserved for system use.

The BCB_DRV field is the logical drive the buffer is associated with, or is
set to 0FFh indicating that the buffer is unallocated. The initial value of
the BCB_DRV field must be 0FFh.

When the BCB_WFLG field equals 0FFh, the buffer contains data that the BDOS
has to write to the disk before the buffer is available for other data.

For file system integrity, the data and directory BCBs must be separate. Since
directory buffers are never "write pending", having separate directory buffers
ensures that a buffer is available when the BDOS reads the directory to detect
media changes. If data and directory buffers were mixed, all of the buffers

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

could contain "write pending" data, and the directory could not be read prior
to a write.

Data Buffer Control Block (DATBCB)

Listing 7-12 shows the format of the Data Buffer Control Block (DATBCB):

Listing 7-12. Data Buffer Control Block (DATBCB)

;*******************************
;*
;* DATBCB Format
;*
;*******************************
;
; +------+------+------+------+------+------+------+------+
; 00h: | DRV | RECORD | WFLG | 00h | TRACK |
; +------+------+------+------+------+------+------+------+
; 08h: | SECTOR | BUFSEG | LINK | RESERVED |
; +------+------+------+------+------+------+------+------+

BCB_DRV equ byte ptr 0
BCB_RECORD equ byte ptr 1
BCB_WFLG equ byte ptr 4
BCB_TRACK equ word ptr 6
BCB_SECTOR equ word ptr 8
BCB_BUFSEG equ word ptr 10
BCB_LINK equ word ptr 12

The DATBCB is identical to the DIRBCB, except for the BCB_BUFSEG field.

BCB_BUFSEG equals the segment address of the Data Buffer. The offset of the
buffer is assumed to be zero. The data buffer can not share memory with the
Transient Program Area (TPA), and must be on a paragraph boundary.

DPH_HSHTBL and BCB_BUFSEG Initialization
--

The hash table address for a particular logical drive is a paragraph address
kept in the DPH_HSHTBL field. The address of the data buffer associated with a
DATBCB is also a paragraph address. If you define the hash tables or the data
buffers in the BIOS, you must "fix-up" these addresses to be paragraph address
values at BIOS initialization time. The following code fragment accomplishes
this, and can be made part of your INIT module. Note that GENCPM automatically
sets the paragraph address of the hash tables and data buffers it creates in
the appropriate DPH_HSHTBL and BCB_BUFSEG fields.

Listing 7-13. DPH_HSHTBL and BCB_BUFSEG Initialization

; Initialize DPH_HSHTBL and BCB_BUFSEG fields. The hash
; table and data buffers must be paragraph aligned. This

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

; code fragment fixes up the offset addresses in DPH_HSHTBL and
; BCB_BUFSEG to be paragraph addresses. This code must be
; executed during BIOS initialization if GENCPM is not used
; to generate the hash tables or the data buffers. This code
; assumes NONE of the hash tables or data buffers are created
; by GENCPM. If you use GENCPM to generate some of the hash
; tables and data buffers, then this code must be modified to
; only fix up the appropriate structures and not those
; already set to paragraph addresses by GENCPM. This code
; also assumes all of the data buffers in the BIOS are shared
; with drive A:'s and thus only A:'s are fixed up.

 include disk.lib

 CSEG
 extrn @bh_dphtable:word ;in BIOS Kernel
 extrn @dpha:word ;in DISKIO module

BCB_BUFSEG equ word ptr 10 ;DATBCB fields
BCB_LINK equ word ptr 12

 mov cx,16 ;16 maximum drives
 xor si,si ;SI = 0
hash_init:
 push cx ;save drive count
 mov bx,@bh_dphtable[si] ;BX = next DPH address
 test bx,bx
 jz next_dph ;if not 0, BX = DPH
 mov ax,DPH_HSHTBL[bx] ;AX = hash table offset
 or ax,ax ! jz next_dph ;if 0, no hash table
 mov cl,4 ;compute paragraphs from
 shr ax,cl ;start of SYSDAT
 mov dx,ds ;add SYSDAT segment
 add ax,dx ;AX = hash table segment
 mov DPH_HSHTBL[bx],ax ;make the fixup

next_dph:
 pop cx ;restore the drive count
 add si,2 ;index for next DPH offset
 loop hash_init

; Initialize data BCB segment addresses
; all drives share the same set of data buffers

 mov bx,offset @dpha ;DPHA from DISKIO module
 mov bx,DPH_DATBCB[bx] ;BX=DATBCB header
 mov bx,[bx] ;BX=DATBCB
next_datbcb:
 mov ax,BCB_BUFSEG[bx] ;AX=data buffer offset
 mov cl,4 ;calculate paragraphs from
 shr ax,cl ;SYSDAT
 mov dx,ds ;add in SYSDAT to get
 add ax,dx ;paragraph address
 mov BCB_BUFSEG[bx],ax ;make fixup

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

 mov bx,BCB_LINK[bx] ;BX=next BCB
 or bx,bx ;0 if end of linked list
 jnz next_datbcb

; ... the rest of your initialization code ...

DISK I/O ERROR MESSAGES

The BIOS Kernel and the BDOS define error returns from the DPH_READ,
DPH_WRITE, and DPH_LOGIN routines. The DPH_INIT routine has no error return
defined. When an error is returned from the DISKIO module, the BDOS displays
error messages on the console, unless the program encountering the error is in
Return Error Mode. (See the F_ERRMODE system call in the "Programmer's
Guide"). If a physical error (AL=1) is returned from DPH_READ and DPH_WRITE,
the BDOS displays the following message:

 CP/M ERROR on d: Disk Read/Write Error
 BDOS Function = xx File = filespec

Note that d: is one of the logical drives A-P, xx is the last BDOS function
the program encountering the error made with an INT 224 operation, and
filespec is the filename and filetype.

The DPH_WRITE routine can also return a "Read/Only Disk" error (AL=2) that
results in the following BDOS message:

 CP/M ERROR on d: Read-Only Disk
 BDOS Function = xx File = filespec

The "Read-Only Disk" error can also be returned if an attempt is made to write
to a drive set to Read-Only through the DRV_SETRO system call. If the
DPH_LOGIN routine returns an error (BX=0), the following BDOS message is
displayed:

 CP/M ERROR on d: Invalid Drive
 BDOS Function = xx File = filespec

Appendix H discusses changing or translating the BDOS messages.

If you plan to display more information about a specific hardware error, the
discussion in "Character I/O Error Messages" in Section 6 applies here also.
As stated in Section 6, if you display error messages on the main part of the
console, you should check the File System Error Mode for the process
encountering the character I/O error. If the Return Error Mode is set, it can
be assumed that the application does not want the screen altered, and you
should display messages only for catastrophic errors. The File System Error
Mode is a byte located at byte 46h relative to the process environment
segment. The process environment segment is in register ES on entry to all of
the DISKIO DPH_ routines. The currently running process environment segment is
also found in the word location at offset 04Eh relative to the SYSDAT segment.
(See Appendix C.) If the process's File System Error Mode byte is equal to
0FFh, the process is in Return Error Mode, and most error messages should not

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG7.TXT[2/6/2012 4:40:28 PM]

be displayed.

EOF

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG8.TXT[2/6/2012 4:40:29 PM]

CPMPIG8.WS4 (= "CP/M-86 Plus Installation Guide", section 8)

(Edited by Emmanuel ROCHE.)

Section 8: Clock Support

This section discusses the functions provided by the CP/M-86 Plus CLOCK
module. The CLOCK module must perform clock hardware initialization, and
provide a periodic "system tick" interrupt for dispatching and maintaining the
time and date variables within the SYSDAT segment.

TICK INTERRUPT ROUTINE

The tick interrupt is used primarily to generate dispatches that force
compute-bound processes to relinquish the CPU, so that other processes can
run. The system tick rate, which you define, determines the dispatch frequency
for compute-bound processes. The recommended tick unit is 16.67 milliseconds,
corresponding to a tick 60 times a second or 60 Hertz. When operating on 50-
Hertz power, use a unit of 20 milliseconds if it is more convenient. The
@BH_TICKSEC field in the BIOS Data Header must be set to the number of ticks
per second, to permit accurate use of the P_DELAY system call.

For CP/M-86 Plus to run more than one program at a time, the tick interrupt
service routine must execute a JMPF (Jump Far instruction) to INT_DISPATCH.
The DS register on entry to the interrupt service routine must be on the stack
when a JMPF to INT_DISPATCH is made. INT_DISPATCH is the double word address
of the process dispatcher within the BDOS. The dispatcher saves the
environment of the running process, and restores the environment of the next
process ready to run. If there is no other process to run, the dispatcher
performs a POP DS instruction and an IRET (Interrupt Return instruction) back
to the interrupted process. The changing of process environments by BDOS
dispatcher is also referred to as "context switching".

Once every system tick, the system tick flag (system flag #1) must be set by
the tick interrupt if the @BH_DELAY field in the BIOS Kernel Data Header is
set to 0FFh. The BDOS sets @BH_DELAY to 0FFh when a process makes a P_DELAY
system call. @BH_DELAY is set to 0 by the BDOS when no processes are delaying.

The tick interrupt routine must also update the system time of day structure
once per second. The time of day structure is kept in the SYSDAT segment, and
is shown in Appendix C. The BDOS accesses this structure for file time and
date stamping, as well as for the system calls that set and return the time
and date.

For systems with a time of day and calendar chip, the clock interrupt service
routine must ensure that the SYSDAT time-of-day variables correspond to the
chip's time of day. If a date and calendar chip is part of the hardware, you
may need to supply a utility that would replace the DATE utility for setting
the time of day and date on the chip.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG8.TXT[2/6/2012 4:40:29 PM]

EXAMPLE TICK INTERRUPT

The following tick interrupt listing is similar to the one contained in the
example CLOCK.A86 file on the distribution disks. The equates for the
Programmable Interrupt Controller and the SYSDAT variables are from the files
PIC.LIB and SYSDAT.LIB also on the distribution disks. The tick interrupt in
the example BIOS is generated by a counter timer chip approximately 60 times a
second. The tick interrupts are counted by the interrupt service routine to
determine time periods of a second, a minute, and an hour. The time of day
variables in the SYSDAT segment are updated accordingly. In this example, the
tick intervals are not exactly 1/60 of a second, so the number of ticks
counted in a second is switched between 60 and 61 for more accuracy over long
periods of time.

Section 4 discusses the general structure of an interrupt service routine
under CP/M-86 Plus. Note that the TICK_INT routine in Listing 8-1 uses the
@BH_ININT (in interrupt count), since other interrupt service routines in the
example BIOS reenable interrupts.

Listing 8-1. Tick Interrupt Service Routine

 ;equates for 8259A
NS_EOI equ 20h ;nonspecific end of interrupt
MASTER_PIC_PORT equ 50h
SLAVE_PIC_PORT equ 52h

;include sysdat.lib ;contains the following equates

int_dispatch equ dword ptr .34h ;exit from interrupt handler
int_setflag equ dword ptr .38h ;interrupt SETFLAG function

tod_day equ word ptr .5Fh ;number of days since 1/1/78
tod_hr equ byte ptr .61h ;current hour in packed BCD
tod_min equ byte ptr .62h ;current minute in packed BCD
tod_sec equ byte ptr .63h ;current second in packed BCD

 CSEG
 extrn ?waitflag:near ;BIOS Kernel routines
 extrn ?dispatch:near
 extrn @sysdat:word ;system and BIOS data segment

;***
;
; Tick Interrupt Service Routine
;
;***

tick_int:
;========
 push ds ! mov ds,cs:@sysdat ;get BIOS data segment
 inc @bh_inint ;signal executing interrupt handler

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG8.TXT[2/6/2012 4:40:29 PM]

 mov saveax,ax
 dec tick_cnt ;tick count
 jnz cont_tick ;if second not yet up, branch to exit
 mov al,last_cnt ;get previous tick count
 xor al,1 ;toggle low order bit
 mov last_cnt,al
 mov tick_cnt,al ;TICK_CNT = either 60 or 61

 mov al,tod_sec ;TOC_SEC is packed BCD
 inc al ! daa ;keep it packed BCD
 mov tod_sec,al
 cmp al,60h ! jb cont_tick ;compare with 60h BCD
 mov tod_sec,0
 mov al,tod_min ;TOD_MIN is packed BCD
 inc al ! daa ;keep it packed BCD
 mov tod_min,al
 cmp al,60h ! jb cont_tick ;compare with 60h BCD
 mov tod_min,0
 mov al,tod_hr ;TOD_HR is packed BCD
 inc al ! daa ;keep it packed BCD
 mov tod_hr,al
 cmp al,24h ! jb cont_tick ;compare with 24h BCD
 mov tod_hr,0
 inc tod_day ;TOD_DAY is a binary value
cont_tick:
 cmp @bh_delay,0FFh ;are any processes delaying
 jne not_delaying ;via the P_DELAY system call?
 mov tick_ssreg,ss ;switch to local stack
 mov tick_spreg,sp ;for CALLF to INT_SETFLAG
 mov ss,@sysdat ;BIOS data segment
 mov sp,offset tick_tos ;set to tick interrupt stack

 push bx ! push cx ;registers used by INT_SETFLAG
 push dx ;AX already saved in SAVEAX
 mov dl,1 ;system flag #1 is the tick flag
 callf int_setflag ;set it
 pop dx ! pop cx ! pop bx

 mov ss,tick_ssreg ;restore stack
 mov sp,tick_spreg
not_delaying:
 mov al,NS_EOI ;signal PIC's interrupting
 out MASTER_PIC_PORT,al ;condition has been
 out SLAVE_PIC_PORT,al ;satisfied

 mov ax,saveax ;restore AX
 dec @bh_inint ! jz tick_exit
 pop ds ;go back to incompleted
 iret ;interrupt service routine
tick_exit:
 jmpf int_dispatch ;if more than one process
 ;is ready to run, give the
 ;CPU to another ready process
;***

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG8.TXT[2/6/2012 4:40:29 PM]

;
; Clock Data Segment
;
;***

 DSEG
 extrn @bh_inint:byte ;variables in BIOS Kernel
 extrn @bh_delay:byte ;Data Header

 rw 15
tick_tos rw 0 ;tick interrupt stack
tick_ssreg rw 1 ;save registers
tick_spreg rw 1 ;during tick interrupt
saveax rw 1 ;here

last_cnt db 61 ;adjust for counter
tick_cnt db 61 ;timer chip's tick frequency

EOF

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

CPMPIG9.WS4 (= "CP/M-86 Plus Installation Guide", section 9)

(Edited by Emmanuel ROCHE.)

Section 9: System Generation

This section describes the procedures necessary to generate the CP/M-86 Plus
system contained in the CPMP.SYS file. The CompuPro BIOS modules on the
distribution disks are used for specific examples. Note that the number of,
and names for, the BIOS modules for your machine are likely to differ from the
examples.

Generation of the CPMP.SYS file is a four-stage process. First, you must
assemble all BIOS modules into OBJ-format files using RASM-86. (OBJ refers to
Intel Object Module Format.) Next, use the MODEDIT utility to examine all BIOS
module OBJ files to resolve any mulitple CDB or DPH symbol definitions. Third,
use LINK-86 to link all of the OBJ-format BIOS modules together to create the
BIOS3.SYS file. Finally, use GENCPM to create the system image file CPMP.SYS
from the BIOS3.SYS, BDOS3.SYS, and optionally, the CCP.CMD files.

ASSEMBLING THE BIOS MODULES

The following RASM-86 commands assemble the example BIOS modules on the
distribution disks. The "Programmer's Utilities Guide" documents RASM-86.

 A>RASM86 BIOSKRNL
 A>RASM86 INIT
 A>RASM86 CHARIO
 A>RASM86 DISKIO
 A>RASM86 CLOCK

The assembly of these modules results in the OBJ format files BIOSKRNL.OBJ,
INIT.OBJ, CHARIO.OBJ, DISKIO.OBJ, and CLOCK.OBJ. Similarly, you must also
assemble each of your BIOS modules. If you are debugging a particular module,
use the RASM-86 $LO option to cause local symbols to be included in the symbol
file generated by LINK-86. The RASM-86 $NC (no case) option, which prevents
RASM-86 from automatically translating symbol names to uppercase, should not
be used to generate the BIOS modules. This is because the MODEDIT utility
searches for specific symbol names in uppercase.

MODEDIT UTILITY

MODEDIT is an OBJ file editor that resolves conflicts between CDB and DPH
public and external declarations. It takes the following command line form.
The arguments in brackets are optional.

 MODEDIT Kernel Mod1 [Mod2 Mod3 Mod4 ...]

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

MODEDIT allows new device drivers to be added to an existing BIOS when the
names of the CDBs and DPHs in the existing BIOS are not known by the writer of
the device driver. Both the BIOS and the new device drivers must be in OBJ
format. MODEDIT modifies the files specified on the command line, and creates
no new output files.

The CDB and DPH labels in the BIOSKRNL and the other BIOS modules you supply
must take the form @CDBX and @DPHX, where X is an ASCII character A through P.

MODEDIT scans the first file specified on the command line for the external
symbols with the names @CDBA through @CDBP and @DPHA through @DPHP. This first
file must be the BIOS Kernel, or at least contain the BIOS Kernel Data Header.
The rest of the files specified are other BIOS modules containing public
declarations for CDBs and DPHs. There can be as many as 16 public CDB
declarations, and as many as 16 public DPH declarations. BIOS modules that do
not contain public declarations of CDBs or DPHs need not be modified by
MODEDIT.

MODEDIT relabels CDB and DPH public symbols in the OBJ files on the command
line in the order in which the OBJ files are specified in the line from left
to right. If more than one @CDBX or @DPHX public symbol occurs within an OBJ
file, the names are assigned in the order of appearance within the file.

For example, consider the following command:

 A>MODEDIT BIOSKRNL, CHAR1, CHAR2, DISK1, DISK2

Assume the public declarations for the symbols @CDBE, @CDBD, and @CDBA appear
in the file CHAR1.OBJ in the same order as they appear in this sentence.
MODEDIT changes these symbol names to @CDBA, @CDBB, and @CDBC respectively. If
CHAR2.OBJ contains the public symbols in the order @CDBA then @CDBB, MODEDIT
renames the symbols to @CDBD and @CDBE respectively. This occurs because
@CDBA, @CDBB, and @CDBC were used for the first three Character Device Blocks
in the CHAR1.OBJ file. Also, notice that the symbol names in the different
modules, or within the same module, do not have to be unique. In this example,
the symbol name @CDBA occurs in both files, MODEDIT changes the two @CDBA
symbols to the unique names @CDBC and @CDBD respectively. MODEDIT handles DPH
symbols similarly.

LINKING THE BIOS MODULES

After you use MODEDIT to rename the CDBs and DPHs, link the separate BIOS OBJ
modules to form the BIOS3.SYS file. The following command links the example
BIOS modules. The "Programmer's Utilities Guide" describes LINK-86 in greater
detail.

 A>LINK86 BIOS3.SYS = BIOSKRNL,INIT,CHARIO,DISKIO,CLOCK,ZERO.L86
 [DATA[ORIGIN[0F00]], SEARCH]

All of your BIOS modules OBJ files must be present in similar commands that
create the BIOS3.SYS file. Since the BIOS data starts at 0F00h, the ORIGIN

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

option must be present in the LINK-86 command when creating the BIOS3.SYS
file. This usage of the ORIGIN option assumes there are no ORG statements in
your BIOS modules. (The BIOS Kernel starts the code and data segments with an
ORG 0000h statement.) The BIOSKRNL must be the first OBJ file in the LINK-86
command line, since the BIOS Kernel Data Header and the BIOS Kernel Code
Header must start the data and code groups (CMD format) in the BIOS3.SYS file.
The order of the other BIOS modules does not usually matter, except that the
ZERO.L86 module must be last. ZERO.L86 is supplied on the distribution disks,
and is a library file containing public definitions for the symbols @CDBA
through @CDBP and @DPHA through @DPHP. If these symbols are not defined in one
of the BIOS modules you supply, LINK-86 and ZERO.L86 force their definitions
to a zero value.

Generally the LINK-86 command takes the following form:

 A>LINK86 BIOS3.SYS = BIOSKRNL,MOD1,MOD2,...MODN,ZERO.L86
 [DATA[ORIGIN[0F00]], SEARCH]

The OBJ files labeled MOD1,MOD2,...MODN are replaced by the names of the BIOS
modules you supply. If, for example, another module called HDISKIO for hard
disk support is to be added to the example BIOS, the LINK-86 command would
take the following form:

 A>LINK86 BIOS3.SYS = BIOSKRNL,INIT,CHARIO,DISKIO,HDISKIO,
 CLOCK,ZERO.L86 [DATA[ORIGIN[0F00]], SEARCH]

The LINK-86 INPUT option is helpful when you are repeatedly generating a
BIOS3.SYS file during development. The INPUT option allows the command tail to
be read from a file. For instance, if you place the command tail in the file
BIOS.INP, the LINK-86 command becomes the following:

 A>LINK86 BIOS[I]

GENCPM UTILITY

You can use the GENCPM utility to create the operating system memory image
contained in the file CPMP.SYS. This file becomes the memory resident part of
the CP/M-86 Plus operating system. You must read CPMP.SYS into memory at a
specific location, then transfer control to it. GENCPM runs under either CP/M-
86 1.X, CP/M-86 Plus, Concurrent CP/M, or MP/M-86.

GENCPM builds the CPMP.SYS file from the files BDOS3.SYS, BIOS3.SYS, and
optionally, CCP.CMD. You can use GENCPM to allocate and create several data
structures needed by the BIOS. These structures are the disk buffers, buffer
control blocks, disk allocation vectors, disk checksum vectors, and disk hash
tables. GENCPM can also reserve extra memory for use by the BIOS.

The following paragraphs explain how to invoke and respond to the questions of
GENCPM. The items in parentheses that are a part of GENCPM questions are
default values. A default-value numeric is hexadecimal unless it is preceded
by a pound sign (#), which indicates that the numeric is decimal. You can
answer any question either in hexadecimal or decimal. Four-digit (16-bit)

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

values, such as 0108, are displayed and accepted as input by GENCPM in
paragraph units (16 bytes). These paragraph values are memory addresses or
memory lengths.

Invoke GENCPM by using one of these command lines:

 A>GENCPM
 A>GENCPM [AUTO]

The first command runs GENCPM interactively, causing a series of questions you
must answer to be displayed. The [AUTO] option (abbreviated to [A]) allows
GENCPM to run without console input, and is useful as part of a submit file to
generate the CPMP.SYS file. When you use the [AUTO] option, answers to the
questions normally displayed by GENCPM are read from the file GENCPM.DAT. You
can also use the GENCPM.DAT file to supply the default answers to the GENCPM
questions when GENCPM is run interactively. GENCPM.DAT is an ASCII file that
you can create by using an editor, or by using a GENCPM option.

GENCPM displays one Main Menu and several different screens of questions. Each
of these screens relates to a single topic such as disk buffer allocations. In
this section, each screen appears as a figure, followed by an explanation for
each question displayed in the screen. Note that the default values shown in
the GENCPM screens used in this section were chosen for tutorial purposes and
are not meant to be used to generate a working CPMP.SYS file from the example
BIOS on the distribution disks.

In the following discussion, a question that can be answered in the GENCPM.DAT
file is referred to as a question variable. GENCPM searches the GENCPM.DAT
file for the question variable keywords and the associated answer. A line in
the GENCPM.DAT file takes the following general form, in which value equals
the answer for that question:

 Question Variable = value <CR>

The easiest way to create a GENCPM.DAT file is to have GENCPM do it for you by
responding with a Y to the "Use GENCPM.DAT file for defaults" question in
Figure 9-1. If modifications are needed, edit the file directly, or run GENCPM
again to generate another GENCPM.DAT. The end of this section shows an example
GENCPM.DAT file.

GENCPM Initial Questions

Figure 9-1 shows the initial questions displayed by GENCPM. The answers to
these questions configure GENCPM each time it is run, and do not directly
alter the CPMP.SYS file.

 CP/M-86 Plus System Generation
 Copyright (C) 1983, Digital Research, Inc.
 ==

 Use GENCPM.DAT file for defaults (Y)?

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

 Clear screen sequence (1B,45)?
 Home cursor sequence (1B,48)?

 Accept new GENCPM parameters (Y)?

 Figure 9-1. GENCPM Initial Questions Screen

The following are the questions asked by the initial screen:

 Use GENCPM.DAT file for defaults (Y)?

Enter Y - GENCPM gets its default values from the file GENCPM.DAT. Default
values are displayed in parentheses to the left of the ?. If you simply press
<CR> after a GENCPM question, the default value is the answer to the question.

Enter N - GENCPM uses the built-in default values. The GENCPM utility has its
own set of defaults "built-in" to the GENCPM.CMD file that are used in this
case.

Note that this question does not appear if no GENCPM.DAT file currently exists
on the default drive and user.

No question variable is associated with this question.

 Clear screen sequence (1B,45)?

Enter the clear screen character sequence for this terminal. The values shown
here are the hex ASCII codes for ESC and E. Values must be separated by
commas. You may want to answer this question with a null (0) when using the
Ctrl-P function to echo GENCPM's console output to a printer.

Question Variable: CLRSCR

 Home cursor sequence (1B,48)?

Enter the character sequence for moving the cursor to the home position on the
terminal. Values must be separated by commas. The values shown here are the
ASCII codes for ESC and H. You may want to answer this question with a null
(0) when using the Ctrl-P function to echo GENCPM's console output to a
printer.

Question Variable: HOMSCR

 Accept new GENCPM Parameters (Y)?

Enter Y - GENCPM proceeds to the main menu. GENCPM is configured for this
session, and you are ready to start generating the CPMP.SYS file. These
initial questions cannot be repeated after you enter a Y.

Enter N - GENCPM repeats the previous questions, and displays your previous

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

input in the parentheses, so you can correct any mistakes.

No question variable is associated with this question.

GENCPM System Generation Main Menu

GENCPM displays the Main Menu screen after you exit the initial menu. The Main
Menu gives options for GENCPM help, four sub-menus, and two different ways of
terminating the GENCPM session. The questions asked by GENCPM are divided into
several categories, each of which is represented by a sub-menu. Figure 9-2
shows the Main Menu:

 CP/M-86 Plus System Generation
 Copyright (C) 1983, Digital Research, Inc.
 ==

 CP/M-86 Plus GENCPM System Generation Main Menu

 1. GENCPM Help.
 2. Display/Change GENCPM Parameters.
 3. Display/Change System Parameters.
 4. Display/Change Memory Allocation Parameters.
 5. Display/Change Disk Buffer Allocation.
 6. Generate a system and exit.
 7. Exit without generating a system.

 Enter Number:

 Figure 9-2. GENCPM System Generation Main Menu

The following explains the GENCPM System Generation Main Menu:

 Enter Number:

The Main Menu requests one of the option numbers be entered. No question
variable is associated with this question. When you finish with the help
option or one of the sub-menus, you return to the Main Menu. When you change a
value in the sub-menus, the new value appears in parentheses, and becomes the
default value for this session of GENCPM. Thus, if you select a sub-menu
again, your previous answers appear in parentheses.

 Option 1: GENCPM Help

Selecting option 1 from the Main Menu displays the following screen:

 GENCPM HELP

GENCPM lets you edit and generate a system image

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

from operating system modules on the default disk
drive. A detailed explanation of each GENCPM
parameter may be found in Section 9 of the
CP/M-86 Plus Installation Guide.

GENCPM assumes the default values shown within
parentheses. All numbers are in hexadecimal
unless preceded with "#", indicating a decimal
value. All four digit values are in paragraph
units. To change a parameter, enter the new
value and type <CR>.

Press RETURN to return to the main menu.

 Figure 9-3. GENCPM Help Screen

The help display asks no questions, and has no associated question variables.

 Option 2: Display/Change GENCPM Parameters

Selecting option 2 of the Main Menu causes the GENCPM Parameter Screen to
appear. The answers you supply in response to this screen inform GENCPM about
files it needs to find, create, or delete.

CP/M-86 Plus GENCPM Parameter Setup

Create a new GENCPM.DAT file (N)?
Destination drive (A:)?
Delete (instead of rename) old CPMP.SYS file (N)?
Permanently attach the CCP to the operating system (N)?

Accept new GENCPM parameters (Y)?

 Figure 9-4. GENCPM Parameter Screen

The following explains each GENCPM Parameter Screen question:

 Create a new GENCPM.DAT file (N)?

Enter N - GENCPM does not create a new GENCPM.DAT file.

Enter Y - If option 6 (Generate a system and exit) of the Main Menu is
selected to exit GENCPM, a new GENCPM.DAT file is created.

Question Variable: CRTDATF

 Destination drive (A:)

Enter the drive letter on which the CPMP.SYS file is to be created. If you

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

want to use the default drive, and you are using the GENCPM.DAT file for
defaults, remove the DESTDRV line in GENCPM.DAT. The CPMP.SYS file is placed
in the current default user area of the destination drive.

Question Variable: DESTDRV

 Delete (instead of rename to CPMP.OLD) CPMP.SYS file (N)?

Enter N - GENCPM renames the existing CPMP.SYS file to CPMP.OLD.

Enter Y - GENCPM deletes the existing CPMP.SYS file, and creates a new
CPMP.SYS file.

Question Variable: DELSYS

 Permanently attach the CCP to the Operating System (N)?

Enter Y - GENCPM includes the CCP.CMD file found on the current default drive
and default user in the operating system image. When the resulting CP/M-86
Plus system is booted up, it does not require a CCP.CMD file on disk. However,
the memory area occupied by the operating system is larger, since it includes
the CCP.

Enter N - GENCPM does not attach the CCP to the operating system. A CCP.CMD
file must exist on the initial default drive when the system is run.

Question Variable: CCPYES

 Accept new GENCPM Parameters (Y)?

Enter Y - GENCPM returns to the Main Menu.

Enter N - GENCPM repeats the previous questions, and displays your replies as
the defaults. You can modify your earlier answers if a mistake was made.

No question variable is associated with this question.

 Option 3: Display/Change System Parameters

Selecting option 3 of the Main Menu results in the following screen. The
answers to this screen affect internal variables within CP/M-86 Plus, change
the memory location of CP/M-86 Plus, reserve space for extra system flags, and
allocate extra buffer space for the BIOS.

CP/M-86 Plus GENCPM System Parameter Setup
--

Backspace echoes erased character (N)?
Rubout echoes erased character (N)?

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

Number of console columns (#80)?
Number of lines in console page (#24)?
Initial default drive (A:)?
Ticks per second (#60)?
Number of additional flags (#0)?
Base of CP/M-86 Plus (0040)?
Data Base of CP/M-86 Plus (0000)?
Amount of space reserved in OS data segment (0000)?

Accept new system definition (Y)?

 Figure 9-5. GENCPM System Parameters Screen

The following explains the questions in the System Parameters Screen:

 Backspace echoes erased character (N)?

This question only affects the behavior of the C_READBUF system call. The
backspace character (Ctrl-H, 08h) deletes a character from the buffer when
using the C_READBUF system call.

Enter N - A backspace moves the cursor back one column, and erases the
character at the new cursor position.

Enter Y - A backspace prints the deleted character, then moves the cursor
forward one column.

Question Variable: BACKSPC

 Rubout echoes erased character (N)?

This question only affects the behavior of the C_READBUF system call. The
rubout character (DEL, 7Fh) deletes a character from the buffer when using the
C_READBUF system call.

Enter N - A rubout moves the cursor back one column, and erases the character
at the new cursor position.

Enter Y - A rubout prints the deleted character, then moves the cursor forward
one column.

Question Variable: RUBOUT

 Number of console columns (#80)?

Enter the number of columns (characters-per-line) for your console. The answer
to this question is accessible to transient programs through the S_SYSVAR
system call.

The C_READBUF system call uses the answer to this question for line editing. A
character in the last column should not force a new line for console editing

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

in CP/M-86 Plus. If your terminal does force a new line automatically, enter
the number of columns minus one.

Question Variable: PAGWID

 Number of lines in console page (#24)?

Enter the number of lines per screen for your console. The answer to this
question is used by transients to prompt before scrolling information off the
screen. It is accessible through the S_SYSVAR system call.

Question Variable: PAGELEN

 Initial default drive (A:)?

Enter the drive letter the prompt is to display after booting up the system.
This drive is not "logged in", when the system first boots up, unless the CCP
must be read off it.

Question Variable: BOOTDRV

 Ticks per second (#60)?

Enter the number of ticks per second the system clock generates. GENCPM sets
the @BH_TICKSEC field in the BIOS Kernel Data Header using the answer to this
question. The BIOS ?CLOCKINIT routine can also change this field. It is
accessible to transient programs through the S_SYSVAR system call.

Question Variable: TICKS

 Number of additional flags (#0)?

Enter the number of additional system flags to be used. GENCPM allocates the
number of flags requested in all the CDBs and DPHs found in the BIOS3.SYS
file, plus the four flags reserved by CP/M-86 Plus for internal use.
Additional flags requested here can be used by the BIOS for other devices,
such as field installable device drivers.

Question Variable: ADDFLGS

 Base of CP/M-86 Plus (0040)?

Enter the starting paragraph address of the operating system. This value is
also the code segment of the BDOS.

Question Variable: OSBASE

 Data base of CP/M-86 Plus (0000)?

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

Enter the paragraph address of the operating system data segment. Change the
default value only if the operating system image is to be placed in ROM. See
Appendix G for more information on placing CP/M-86 Plus in ROM.

Question Variable: OSDBASE

 Amount of space reserved in OS data segment (0000)?

Enter the size in paragraphs of an uninitialized data buffer that is within
the SYSDAT segment. Use the default value to allocate no memory. GENCPM sets
@BH_BUFLEN in the BIOS Kernel Data Header to the number of paragraphs
reserved, and places the offset of the reserved area in the @BH_BUFBASE field.

Question Variable: ADDMEM

 Accept new system definition (Y)?

Enter Y - GENCPM returns to the Main Menu.

Enter N - GENCPM redisplays this menu with your previous answers as the new
default values.

No question variable is associated with this question.

 Option 4: Display/Change Memory Allocation Parameter.

Selecting option 4 from the Main Menu causes the following screen to display:

CP/M-86 Plus GENCPM Available Physical Memory Table Setup

 Partition Base Length

 0 (0040, 1FC0)?
 1 (2001, 0FFF)?
 2 (0000, 0000)?
 3 (0000, 0000)?
 4 (0000, 0000)?
 5 (0000, 0000)?
 6 (0000, 0000)?
 7 (0000, 0000)?

Accept new memory definitions (Y)?

 Figure 9-6. GENCPM Memory Allocation Parameters Screen

This screen requests the base and length of all available RAM, excluding the
interrupt vector area in the lowest 1 Kbyte of memory. The memory specified
must include memory where the operating system is to be placed as determined

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

by the "Base of CP/M-86 Plus" question in the System Parameter Screen (see
Figure 9-5).

GENCPM reduces the memory specified by this menu, to define the memory
available for loading transient programs. This remaining memory is called the
Transient Program Area (TPA). GENCPM initializes the Memory Descriptor table
in the BIOS Kernel Data Header (@BH_MEMDESC) to define the TPA memory. The
BIOS INIT module can adjust the Memory Descriptor table according to the
memory present on a particular machine. See Appendix F, "Memory Descriptor
Format" and the example BIOS INIT module in the INIT.A86 file on the
distribution disks.

The first partition shown in Figure 9-6 specifies memory from 40:0 thru
1FFF:0, the second partition skips one paragraph and specifies memory from
2001:0 thru 2FFF:0, inclusive. Because these two memory areas are
noncontiguous, the BDOS cannot coalesce them into one area. Physically
contiguous memory is thus made logically noncontiguous, thereby preventing one
transient program from allocating all memory with one memory allocation
request. However, bear in mind that each separate memory area defined requires
a Memory Descriptor, and that the total number of Memory Descriptors available
to describe memory fragmentation during system operation is limited to 32. See
"Memory Management" in Section 5 of the "Programmer's Guide".

Question Variable: MEMPART# (where "#" is in the range 0 to 7)

 Option 5: Display/Change Disk Buffer Allocation

Selecting option 5 of the Main Menu causes the following screen to display.
Use this screen to allocate directory and data buffers, and hash tables for
the drives defined in the BIOS3.SYS file.

CP/M-86 Plus GENCPM Disk Buffer Setup

Drive Secsize Memory Allocated Dirbufs Databufs Hashing
----- ------- ---------------- ------- -------- -------
 A: 0040H 030CH (08 , 04 , Yes)?
 B: 0040H 0000H (A: , A: , Yes)?
 C: 0040H 0000H (A: , A: , Yes)?
 D: 0040H 0145H (03 , 02 , Yes)?
 E: 0040H 0104H (04 , D: , Yes)?

 Accept new buffer definitions (Y)?

 Figure 9-7. GENCPM Disk Buffer Allocation Screen

GENCPM finds each defined DPH in the BIOS3.SYS file, and displays its drive
letter in this menu. GENCPM can only set the DPH_HSHTBL, DPH_ALV, DPH_CSV,
DPH_DATBCB, and DPH_DIRBCB fields if they are initialized in the BIOS to
0FFFFh. If they are not, GENCPM assumes each field is the offset of the
appropriate data structure already defined within the BIOS. "Disk Parameter
Header (DPH)" in Section 7 explains how to manually calculate the memory

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

needed for these DPH_ data structures.

If DPH_ALV or DPH_CSV, or both, are set to 0FFFFh, GENCPM automatically
calculates and reserves the amount of memory the drive requires for allocation
and checksum vectors. DPH_ALV and DPH_CSV are set to the offset of the
appropriate vector. GENCPM displays no questions or messages when it
automatically creates allocation and checksum vectors.

DPH_HSHTBL is handled similarly to DPH_ALV by GENCPM, except that directory
hashing is optional. When hashing is selected for a drive, GENCPM reserves a
separate hash table, and places the paragraph address of the hash table in the
corresponding DPH_HSHTBL field. Directory hashing provides a substantial
performance improvement, and is encouraged.

When DPH_DATBCB and DPH_DIRBCB are set to 0FFFFh, GENCPM creates the number of
buffers specified under the Dirbufs and Databufs headings. More directory
buffers than data buffers are usually specified, since directory buffers
provide more performance benefit. GENCPM also creates the linked list of BCBs,
and a BCB Header associated with the buffers.

GENCPM also allocates uninitialized buffer space to the BIOS if you answer the
"Amount of space reserved in OS data segment" question in Figure 9-5 with a
non-zero value.

Initialized data structures and buffers created by GENCPM become part of the
CPMP.SYS file. Uninitialized areas are reserved for the operating system, but
are not made part of the CPMP.SYS file. This keeps the CPMP.SYS file size to a
minimum, and improves system boot time. Appendix E contrasts the CPMP.SYS file
and the memory image of CP/M-86 Plus.

GENCPM assumes that the disk drivers are able to transfer data to and from
memory wherever GENCPM places the directory and the data buffers.

If you want drives to share a linked list of buffers, define the number of
buffers for one of the drives, and use its drive letter for all other drives
to share the buffers. Buffers are usually shared among drives to keep memory
consumption down. Separate buffers can be useful though, when the physical
sector sizes on different drives are highly disparate. In Figure 9-7 drives B:
and C: share directory and data buffers with drive A:; drive E: shares only
data buffers with drive D:. The buffer size of a shared list of buffers must
be the largest sector size used by any of the drives. The "Memory Allocated"
column in this screen reflects only the sector buffers and the BCBs allocated,
not any other space allocated for the drive's hash table, checksum vector, or
allocation vector. (A 16 byte BCB is required for each sector buffer.)

Each drive must have at least one directory buffer available to it. Several
drives can share a directory buffer, but if directory buffers are not shared,
each drive must have at least one directory buffer of its own. Similarly, if
the sector size is larger than 128 bytes, each drive must have at least one
data buffer available to it.

Question Variable: PARMDRVd where d = drives A - P.

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

 Option 6: Generate a System and Exit

Selecting option 6 of the Main Menu creates a new CPMP.SYS file and,
optionally, a new GENCPM.DAT file to be generated. Option 6 displays the
following screen:

 CP/M-86 Plus ROMing Information

 Base Length
 ---- ------
 System Code 0040H 052CH
 Initialized System Data 056CH 018AH
 Total System Data 056CH 0879H

 Operating System Memory Table:
 Partition Base Length

 0 0DE5H 121BH
 1 2001H 0FFFH

 CPMP.SYS file created on drive B:

 *** CP/M-86 Plus SYSTEM GENERATION DONE ***

 Figure 9-8. GENCPM Generate a System and Exit Screen.

This information is important if you are placing CP/M-86 Plus in ROM (see
Appendix G). The System Code is the segment address and length in paragraphs
of the CP/M-86 Plus code segment. The Initialized System Data is the segment
address and length in paragraphs of data that must be copied from ROM to the
RAM data area specified by the answer to "Data Base of CP/M-86 Plus" question
shown in Option 3. The length in paragraphs in the Total System Data is the
amount of contiguous RAM needed for the initialized and uninitialized data
areas for the operating system. The memory table shows the memory partitions
defined in Option 4 after they have been trimmed to eliminate overlap with the
operating system.

 Option 7: Exit without Generating a System

Selecting option 7 of the Main Menu returns you to the CP/M-86 Plus prompt.
GENCPM does not modify any existing CPMP.SYS or GENCPM.DAT files.

Example GENCPM.DAT File

The following shows the contents of a GENCPM.DAT file that can be used to
generate a CPMP.SYS file from the example BIOS on the distribution disks. A
GENCPM.DAT file is also included on the distribution disks.

 Listing 9-1. Example GENCPM.DAT File

CRTDATF = N

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIG9.TXT[2/6/2012 4:40:30 PM]

CLRSCR = 1B, 45
HOMCSR = 1B, 48
DESTDRV = B:
DELSYS = N
CCPYES = Y
BACKSPC = N
RUBOUT = Y
PAGWID = 50
PAGELEN = 18
BOOTDRV = A:
TICKS = 3C
ADDFLGS = 00
OSBASE = 0040
OSDBASE = 0000
ADDMEM = 0000
MEMPART0 = 0040, 1FC0
MEMPART1 = 0000, 0000
MEMPART2 = 0000, 0000
MEMPART3 = 0000, 0000
MEMPART4 = 0000, 0000
MEMPART5 = 0000, 0000
MEMPART6 = 0000, 0000
MEMPART7 = 0000, 0000
PARMDRVA = 04, 02, Y
PARMDRVB = 04, 02, Y
PARMDRVC = 04, 02, Y
PARMDRVD = 04, 02, Y
PARMDRVE = 04, 02, Y
PARMDRVF = 04, 02, Y
PARMDRVG = 04, 02, Y
PARMDRVH = 04, 02, Y
PARMDRVI = 04, 02, Y
PARMDRVJ = 04, 02, Y
PARMDRVK = 04, 02, Y
PARMDRVL = 04, 02, Y
PARMDRVM = 04, 02, Y
PARMDRVN = 04, 02, Y
PARMDRVO = 04, 02, Y
PARMDRVP = 04, 02, Y

There is a PARMDRV Question Variable for each possible drive, A-P. If a
drive's DPH offset in the BIOS Kernel Data Header @BH_DPHTABLE is 0, GENCPM
ignores the corresponding PARMDRV Question Variable. The three value parts of
a PARMDRV Question Variable are also ignored if a 0FFFFh value is not found in
the corresponding DPH_DIRBUF, DPH_DATBUF, and DPH_HSHTBL fields of the DPH.

EOF

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGA.TXT[2/6/2012 4:40:31 PM]

CPMPIGA.WS4 (= "CP/M-86 Plus Installation Guide", appendix A)

(Edited by Emmanuel ROCHE.)

Appendix A: BIOS Development Method

This appendix presents an approach for implementing a CP/M-86 Plus BIOS in
which the BIOS is increasingly refined in a series of steps. The purpose of
this approach is to reduce the complexity of implementation and debugging
during each step of the customization process. Each step consists of coding a
section of the BIOS, creating the CPMP.SYS file with GENCPM, then debugging
the new part of the BIOS under CP/M-86 1.X. Once this new part of the BIOS
works, embark upon implementing the next step.

As you implement these steps, you might need to read or skim topics explained
in the main body of this guide. For instance, as you work on the first step,
you might need to read or review BIOS Kernel Data Header fields in Section 3,
and Character Device Block fields in Section 6.

Use this BIOS development approach as simply a guideline, because experience
varies, as well as the availability of hardware drivers already implemented
for CP/M-86 1.X, Concurrent CP/M, or other operating systems. For example, if
you already have Multisector disk I/O routines working, you can choose to skip
the implementation of single sector I/O. Or, if you already have interrupt-
driven console I/O routines, you can skip implementing polling character I/O
drivers.

Table A-1. BIOS Development Method Steps

Step Explanation
---- -----------

 1 Implement simple input, input status, and output routines for the
 system console.

 a. Put the minimal amount of initialization code in the INIT module to
 allow console I/O to occur.

 b. Write code for console input, input status, and output in the CHARIO
 module. Define Character Device Block A (@CDBA) in the CHARIO module
 with the offsets of these drivers. Section 6 describes the CDB.

 c. Set the ?CLOCK_INIT routine to simply return. Do not enable a counter
 timer interrupt or a real-time clock interrupt.

 d. Assemble and link the BIOSKRNL, INIT, CHARIO, and CLOCK modules, as
 outlined in Section 9. The DISKIO module is excluded at this point,
 forcing all of the DPH symbols in the Kernel Data Header to a zero
 value. The MODEDIT utility is not needed for this development
 procedure. Use GENCPM to create the CPMP.SYS file. Answer the GENCPM
 question "Ticks per second ?" with a zero.

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGA.TXT[2/6/2012 4:40:31 PM]

 e. As described in Section 10, debug the character I/O routines. If you
 have not made the CCP resident, CP/M-86 Plus attempts to log in the
 initial default drive to read the CCP.CMD file. As none of the DPHs
 are defined, the Kernel IO_SELDSK (select disk) function returns an
 error, then the BDOS prints error messages to the console, and the
 Error CCP prompts with the following:

 A>Cannot Load CCP

 The Error CCP is built into the operating system, and is discussed in
 the "User's Guide". The Error CCP allows you only to change user
 numbers at this point. When you add the disk drivers, the default
 drive can be changed, and transients loaded through the Error CCP.

 If you make the CCP a part of the memory image, the CCP attempts to
 read the STARTUP.SUB file, and the BDOS prints appropriate error
 messages. Then, the CCP displays the usual prompt. The BDOS also
 prints error messages on the logical CONOUT: device each time you
 attempt to load a transient when running the CCP or the Error CCP.

 Use the command line editing functions to further test your console
 I/O routines (see C_READBUF in the "Programmer's Guide").

 2 Add simple disk read routine.

 To the DISKIO module, add a driver that reads physical sectors one at
 a time from drive A:. Specify A: to GENCPM as the initial default
 drive. Use the information in Section 8, and the Disk Parameter Block
 worksheet in Appendix D, to help you define a DPH named "@DPHA" and a
 DPB in the DISKIO module. Ensure @DPHA is declared a public symbol in
 your DISKIO module. LINK-86 places the offset of @DPHA that you define
 in the DISKIO module into the Kernel Data Header DPH table.

 Provide the initialization code for the general hardware support of
 the disk in the INIT module. For instance, a DMA controller may need
 to be initialized. Set the DPH fields DPH_INIT, DPH_LOGIN, DPH_READ,
 and DPH_WRITE in the DISKIO module to the drive init, drive login,
 drive read, and drive write routines, which are also in your DISKIO
 module. For this step, set the drive login routine to simply return,
 and the drive write routine to return an error.

 Translate multisector requests into single sector requests. Use simple
 CPU software loops for polling the disk controller, and use no
 interrupts. If necessary, reinitialize the PIC (Programmable Interrupt
 Controller) or similar hardware to disable interrupts from the disk
 controller.

 After debugging, you should be able to perform DIR (directory)
 commands and load transients, but not write to the disk.

 3 Add the disk write routine.

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGA.TXT[2/6/2012 4:40:31 PM]

 Use the same procedure as you used for disk read in step 2. Begin
 using scratch diskettes, if you are not already doing so, during
 debugging and testing.

 4 Make console I/O routines interrupt-driven with type-ahead on input.

 Section 4 describes interrupt devices in CP/M-86 Plus; Section 6
 discusses interrupt character I/O in detail. Section 6 also supplies
 example routines, and the example BIOS for the CompuPro shows these
 routines in a working CHARIO module.

 5 Make the disk I/O routines interrupt-driven. (Section 7)

 6 Add other disk drivers and character drivers.

 Consider implementing each device polled, then making it interrupt-
 driven, depending on how complex you expect the debugging task to be.

 It is much easier to implement and test all the drivers required for
 your system before complicating matters with the tick interrupt in the
 CLOCK module.

 7 Implement automatic density select and door open interrupt on the
 drives that support it. (Section 7)

 8 Implement the tick interrupt, and test the system with background
 tasks. (Section 8)

EOF

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

CPMPIGB.WS4 (= "CP/M-86 Plus Installation Guide", appendix B)

(Edited by Emmanuel ROCHE.)

Appendix B: BIOS Kernel Listing

The BIOS Kernel is reproduced here for reference while reading the System
Guide. The Kernel is also on the distribution disks in the file BIOSKRNL.A86.
This BIOS Kernel listing includes the files SYSDAT.LIB, CDB.LIB, and DISK.LIB.
A cross reference is included at the end of the listing.

Listing B-1. CP/M-86 Plus BIOS Kernel

 1
 2 title 'CP/M-86 Plus BIOS Kernel'
 3 ;***
 4 ; Last Modification: 10/11/83
 5 ;
 6 ; B I O S - 8 6
 7 ; ===============
 8 ;
 9 ; CP/M-86 PLUS Basic I/O System Kernel
 10 ;
 11 ;***
 12 ;
 13 ; Generation of BIOS3.SYS file
 14 ;
 15 ; RASM86 bioskrnl
 16 ; RASM86 init
 17 ; RASM86 chario
 18 ; RASM86 fdiskio
 19 ; RASM86 clock
 20 ;
 21 ; LINK86 bios3.sys = bioskrnl,init,chario,fdiskio,clock,zero.l86
 22 ; [search, data[origin[0F00]]]
 23 ;
 24 ;***
 25 ;
 26 ; Register usage for BIOS interface routines:
 27 ;
 28 ; Entry: AL = function number (in entry)
 29 ; CX = first parameter
 30 ; DX = second parameter
 31 ; DS = system data segment (in entry and init)
 32 ; ES = process environment (preserved through call)
 33 ; Exit: AX = return or BIOS error code
 34 ; BX = AX (in exit)
 35 ; DS = SYSDAT segment
 36 ; ES = process environment (preserved through call)
 37 ; SS,SP must also be preserved
 38 ; CX,DX,SI,DI,BP can be changed by the BIOS

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 39 ;
 40 ;***
 41 ;
 42 ; BIOS Kernel Coding Conventions
 43 ;
 44 ;***
 45 ;
 46 ; @ as the first character of a symbol denotes
 47 ; a public variable
 48 ;
 49 ; ? as the first character of a symbol denotes
 50 ; a public label
 51 ;
 52 ; All labels, and code are in lowercase
 53 ; for easier reading.
 54 ;
 55 ;
 56 ; All immediate values (literals) are in uppercase.
 57 ;
 58 ; Fields within data structures have leading
 59 ; letters followed by an underbar and the field
 60 ; name. The data structures defined are the following:
 61 ;
 62 ; BH_ - BIOS Header
 63 ; CDB_ - Character Device Block
 64 ; DPB_ - Disk Parameter Block
 65 ; DPH_ - Disk Parameter Header
 66 ; IOPB_ - I/O Parameter Block
 67 ;
 68 ; Underscores are used for readiablity; otherwise,
 69 ; symbols, code mnemonics, registers are in all uppercase
 70 ; within comments to distinguish them from the code.
 71 ;
 72 ; Each BIOS module has its publics and externals declared
 73 ; all together within the code or data.
 74 ;
 75 ;***
 76
 77 = include sysdat.lib
 78 = ;***
 79 = ;
 80 = ; System Data Definitions
 81 = ;
 82 = ;***
 83 =
 84 = 0030 bdos equ dword ptr .30h ;entry into operating system
 85 = 0034 int_dispatch equ dword ptr .34h ;exit from interrupt handler
 86 = 0038 int_setflag equ dword ptr .38h ;interrupt SETFLAG function
 87 = 003C int_charscan equ dword ptr .3Ch ;interrupt live key scanner
 88 =
 89 = 0046 osbaseseg equ word ptr .46h ;base of the OS in para's
 90 = 0048 osendseg equ word ptr .48h ;first para after OS
 91 =
 92 = 004E rlr equ word ptr .4Eh ;ready list root

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 93 =
 94 = 005F tod_day equ word ptr .5Fh ;number of days since 1/1/78
 95 = 0061 tod_hr equ byte ptr .61h ;current hour in bcd
 96 = 0062 tod_min equ byte ptr .62h ;current minute in bcd
 97 = 0063 tod_sec equ byte ptr .63h ;current second in bcd
 98 =
 99 = 0066 con_width equ byte ptr .66h ;console width
 100 = 0067 con_len equ byte ptr .67h ;console length
 101 =
 102 = 0046 err_mode equ es:byte ptr.46h ;process error mode in
 103 = ;in process descriptor
 104
 105
 106 = include cdb.lib
 107
 108 = ;***
 109 = ;
 110 = ; Console Device Block Equates
 111 = ;
 112 = ;***
 113 = ;
 114 = ; +------+------+------+------+------+------+------+------+
 115 = ; 00h: | NAME | SUPCHAR |
 116 = ; +------+------+------+------+------+------+------+------+
 117 = ; 08h: | CURCHAR |SUPOEM|CUROEM| TXB | RXB | TYPE |IINPUT|
 118 = ; +------+------+------+------+------+------+------+------+
 119 = ; 10h: |NFLAGS| RESRV| COLINK | AOLINK | LOLINK |
 120 = ; +------+------+-------------+-------------+-------------+
 121 = ; 18h: | INIT | INPUT | INSTAT | OUTPUT |
 122 = ; +------+------+------+------+------+------+------+------+
 123 = ; 20h: | OUTSTAT |
 124 = ; +------+------+
 125 =
 126 = 0000 CDB_NAME equ byte ptr 0
 127 = 0006 CDB_SUPCHAR equ word ptr 6
 128 = 0008 CDB_CURCHAR equ word ptr 8
 129 = 000A CDB_SUPOEM equ byte ptr 10
 130 = 000B CDB_CUROEM equ byte ptr 11
 131 = 000C CDB_TXB equ byte ptr 12
 132 = 000D CDB_RXB equ byte ptr 13
 133 = 000E CDB_TYPE equ byte ptr 14
 134 = 000F CDB_IINPUT equ byte ptr 15
 135 = 0010 CDB_NFLAGS equ byte ptr 16
 136 = 0011 CDB_RESRV equ byte ptr 17
 137 = 0012 CDB_COLINK equ word ptr 18
 138 = 0014 CDB_AOLINK equ word ptr 20
 139 = 0016 CDB_LOLINK equ word ptr 22
 140 = 0018 CDB_INIT equ word ptr 24
 141 = 001A CDB_INPUT equ word ptr 26
 142 = 001C CDB_INSTAT equ word ptr 28
 143 = 001E CDB_OUTPUT equ word ptr 30
 144 = 0020 CDB_OUTSTAT equ word ptr 32
 145 =
 146 = ; Equates for CDB_SUPCHAR fields

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 147 =
 148 = 0001 CS_XON equ 0001h
 149 = 0002 CS_ETX equ 0002h
 150 = 0004 CS_RTS equ 0004h
 151 = 0008 CS_DTR equ 0008h
 152 = 0010 CS_POL equ 0010h
 153 = 0020 CS_ODD equ 0020h
 154 = 0040 CS_EVEN equ 0040h
 155 = 0080 CS_MARK equ 0080h
 156 = 0100 CS_SPACE equ 0100h
 157 = 0200 CS_5_DBITS equ 0200h
 158 = 0400 CS_6_DBITS equ 0400h
 159 = 0800 CS_7_DBITS equ 0800h
 160 =
 161 = 1000 CS_8_DBITS equ 1000h
 162 = 2000 CS_1_SBITS equ 2000h
 163 = 4000 CS_15_SBITS equ 4000h
 164 = 8000 CS_2_SBITS equ 8000h
 165 =
 166 = ; Equates for CDB_CURCHAR fields
 167 =
 168 = 0001 CC_XON equ 0001h
 169 = 0002 CC_ETX equ 0002h
 170 = 0004 CC_RTS equ 0004h
 171 = 0008 CC_DTR equ 0008h
 172 = 0010 CC_POL equ 0010h
 173 = 0020 CC_ENABLE equ 0020h ;enable parity
 174 = 0000 CC_ODD equ 0000h ; odd parity
 175 = 0040 CC_EVEN equ 0040h ; even parity
 176 = 0080 CC_MARK equ 0080h ; mark parity
 177 = 00C0 CC_SPACE equ 00C0h ; space parity
 178 = 0000 CC_5_DBITS equ 0000h ;5 data bits
 179 = 0100 CC_6_DBITS equ 0100h ;6 data bits
 180 = 0200 CC_7_DBITS equ 0200h ;7 data bits
 181 = 0300 CC_8_DBITS equ 0300h ;8 data bits
 182 = 0000 CC_1_SBITS equ 0000h ; 1 stop bit
 183 = 0400 CC_15_SBITS equ 0400h ;1.5 stop bit
 184 = 0800 CC_2_SBITS equ 0800h ; 2 stop bit
 185 =
 186 = ; Bit patterns to mask, and shift CDB_CURCHAR
 187 =
 188 = 00E0 CC_PARITY_MSK equ 00E0h ;parity enable and type mask
 189 = 0005 CC_PARITY_SHF equ 5 ;shift right for parity index
 190 = 0300 CC_DBITS_MSK equ 0300h ;data bits mask
 191 = 0008 CC_DBITS_SHF equ 8 ;shift right for data bit index
 192 = 0C00 CC_SBITS_MSK equ 0C00h ;stop bits mask
 193 = 000A CC_SBITS_SHF equ 10 ;shift right for stop bit index
 194 =
 195 = ; Equates for CDB_TYPE field
 196 =
 197 = 0001 CT_INPUT equ 01h ;input device
 198 = 0002 CT_OUTPUT equ 02h ;output device
 199 = 0004 CT_SOFTBAUD equ 04h ;software selectable baud
 200 = 0008 CT_SERIAL equ 08h ;serial device

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 201 =
 202 = ; Equates for CDB_BAUD field
 203 =
 204 = 0000 BAUD_NONE equ 00h ; No baud
 205 = 0001 BAUD_50 equ 01h ; 50 baud
 206 = 0002 BAUD_625 equ 02h ; 62.5 baud
 207 = 0003 BAUD_75 equ 03h ; 75 baud
 208 = 0004 BAUD_110 equ 04h ; 110 baud
 209 = 0005 BAUD_1345 equ 05h ;134.5 baud
 210 = 0006 BAUD_150 equ 06h ; 150 baud
 211 = 0007 BAUD_200 equ 07h ; 200 baud
 212 = 0008 BAUD_300 equ 08h ; 300 baud
 213 =
 214 = 0009 BAUD_600 equ 09h ; 600 baud
 215 = 000A BAUD_1200 equ 0Ah ; 1200 baud
 216 = 000B BAUD_1800 equ 0Bh ; 1800 baud
 217 = 000C BAUD_2000 equ 0Ch ; 2000 baud
 218 = 000D BAUD_2400 equ 0Dh ; 2400 baud
 219 = 000E BAUD_3600 equ 0Eh ; 3600 baud
 220 = 000F BAUD_4800 equ 0Fh ; 4800 baud
 221 = 0010 BAUD_7200 equ 10h ; 7200 baud
 222 = 0011 BAUD_9600 equ 11h ; 9600 baud
 223 = 0012 BAUD_192 equ 12h ;19200 baud
 224 = 0013 BAUD_384 equ 13h ;38400 baud
 225 = 0014 BAUD_56 equ 14h ;56000 baud
 226 = 0015 BAUD_768 equ 15h ;76800 baud
 227 = 0016 BAUD_OEM1 equ 16h
 228 = 0017 BAUD_OEM2 equ 17h
 229 = 0018 BAUD_OEM3 equ 18h
 230
 231
 232 = include disk.lib
 233 = ;***
 234 = ;
 235 = ; Disk Parameter Header Equates
 236 = ;
 237 = ;***
 238 = ;
 239 = ; +------+------+------+------+------+------+------+------+
 240 = ; 00h | XLT | | DOPEN| |
 241 = ; +------+------+------+------+------+------+------+------+
 242 = ; 08h | DPB | CSV | ALV | DIRBCB |
 243 = ; +------+------+------+------+------+------+------+------+
 244 = ; 10h | DATBCB | HSHTBL | INIT | LOGIN |
 245 = ; +------+------+------+------+------+------+------+------+
 246 = ; 18h | READ | WRITE | UNIT | CHNNL|NFLAGS|
 247 = ; +------+------+------+------+------+------+------+
 248 =
 249 = 0000 DPH_XLT equ word ptr 0
 250 = 0005 DPH_DOPEN equ byte ptr 5
 251 = 0008 DPH_DPB equ word ptr 8
 252 = 000A DPH_CSV equ word ptr 10
 253 = 000C DPH_ALV equ word ptr 12
 254 = 000E DPH_DIRBCB equ word ptr 14

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 255 = 0010 DPH_DATBCB equ word ptr 16
 256 = 0012 DPH_HSHTBL equ word ptr 18
 257 = 0014 DPH_INIT equ word ptr 20
 258 = 0016 DPH_LOGIN equ word ptr 22
 259 = 0018 DPH_READ equ word ptr 24
 260 = 001A DPH_WRITE equ word ptr 26
 261 = 001C DPH_UNIT equ byte ptr 28
 262 = 001D DPH_CHNNL equ byte ptr 29
 263 = 001E DPH_NFLAGS equ byte ptr 30
 264 =
 265 = ;***
 266 = ;
 267 = ;
 268 = ; Disk Parameter Block Equates
 269 = ;
 270 = ;***
 271 = ;
 272 = ; +-----+-----+-----+-----+-----+-----+-----+-----+
 273 = ; 00h | SPT | BSH | BLM | EXM | DSM | DRM..
 274 = ; +-----+-----+-----+-----+-----+-----+-----+-----+
 275 = ; 08h ..DRM | AL0 | AL1 | CKS | OFF | PSH |
 276 = ; +-----+-----+-----+-----+-----+-----+-----+-----+
 277 = ; 10h | PHM |
 278 = ; +-----+
 279 =
 280 = 0000 DPB_SPT equ word ptr 0
 281 = 0002 DPB_BSH equ byte ptr 2
 282 = 0003 DPB_BLM equ byte ptr 3
 283 = 0004 DPB_EXM equ byte ptr 4
 284 = 0005 DPB_DSM equ word ptr 5
 285 = 0007 DPB_DRM equ word ptr 7
 286 = 0009 DPB_AL0 equ byte ptr 9
 287 = 000A DPB_AL1 equ byte ptr 10
 288 = 000B DPB_CKS equ word ptr 11
 289 = 000D DPB_OFF equ word ptr 13
 290 = 000F DPB_PSH equ byte ptr 15
 291 = 0010 DPB_PHM equ byte ptr 16
 292 =
 293 = ;***
 294 = ;
 295 = ; Input/Output Parameter Block Definition
 296 = ;
 297 = ;***
 298 = ;
 299 = ; Read and Write disk parameter equates
 300 = ;
 301 = ; At the disk read and write entries,
 302 = ; all disk I/O parameters are on the stack
 303 = ; and the stack at these entries appears as
 304 = ; follows:
 305 = ;
 306 = ; +-------+-------+
 307 = ; +14 | DRV | MCNT | Drive and Multisector count
 308 = ; +-------+-------+

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 309 = ; +12 | TRACK | Track number
 310 = ; +-------+-------+
 311 = ; +10 | SECTOR | Physical sector number
 312 = ; +-------+-------+
 313 = ; +8 | DMA_SEG | DMA segment
 314 = ; +-------+-------+
 315 = ; +6 | DMA_OFF | DMA offset
 316 = ; +-------+-------+
 317 = ; +4 | RET_SEG | BDOS return segment
 318 = ; +-------+-------+
 319 = ;
 320 = ; +2 | RET_OFF | BDOS return offset
 321 = ; +-------+-------+
 322 = ; BP+0 | RET_ADR | Local ENTRY return address
 323 = ; +-------+-------+ (assumes one level of call
 324 = ; from ENTRY routine)
 325 = ;
 326 = ; These parameters may be indexed and modified
 327 = ; directly on the stack and will be removed
 328 = ; by the BDOS after the function is complete.
 329 =
 330 = 000F iopb_mcnt equ byte ptr 15[bp]
 331 = 000E iopb_drive equ byte ptr 14[bp]
 332 = 000C iopb_track equ word ptr 12[bp]
 333 = 000A iopb_sector equ word ptr 10[bp]
 334 = 0008 iopb_dmaseg equ word ptr 8[bp]
 335 = 0006 iopb_dmaoff equ word ptr 6[bp]
 336
 337
 338 ;***
 339 ;
 340 ; BIOS Kernel Code Publics and Externals
 341 ;
 342 ;***
 343 CSEG
 344
 345 public @sysdat ;force CS override
 346 public ?waitflag, ?delay, ?dispatch, ?pmsg
 347
 348 extrn ?init:near, ?clock_init:near
 349
 350 ;***
 351 ;
 352 ; BIOS Code Header
 353 ;
 354 ;***
 355 org 0000h
 356
 357 0000 E90500 0008 jmp biosinit ;BIOS initialization entry
 358 0003 E94000 0046 jmp biosentry ;BIOS function entry
 359
 360 0006 @sysdat rw 1 ;OS Data Segment
 361
 362 ;***

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 363 ;
 364 ; BIOS Kernel Data Publics and Externals
 365 ;
 366 ;***
 367 DSEG
 368
 369 public @bh_delay, @bh_ticksec, @bh_gdopen, @bh_inint
 370 public @bh_nextflag, @bh_lastflag, @bh_intconin, @bh_8087
 371 public @bh_dphtable, @bh_cdbtable
 372
 373 public @bh_ciroot, @bh_coroot, @bh_airoot, @bh_aoroot, @bh_loroot
 374 public @bh_bufbase, @bh_buflen, @bh_memdesc
 375
 376 extrn @dpha:word, @dphb:word, @dphc:word, @dphd:word
 377 extrn @dphe:word, @dphf:word, @dphg:word, @dphh:word
 378 extrn @dphi:word, @dphj:word, @dphk:word, @dphl:word
 379 extrn @dphm:word, @dphn:word, @dpho:word, @dphp:word
 380
 381 extrn @cdba:word, @cdbb:word, @cdbc:word, @cdbd:word
 382 extrn @cdbe:word, @cdbf:word, @cdbg:word, @cdbh:word
 383 extrn @cdbi:word, @cdbj:word, @cdbk:word, @cdbl:word
 384 extrn @cdbm:word, @cdbn:word, @cdbo:word, @cdbp:word
 385
 386 extrn @signon:byte
 387
 388 ;***
 389 ;
 390 ; BIOS Data Header
 391 ;
 392 ;***
 393 org 0000h
 394 ;use the LINK-86 [data[origin[0F00]]] option
 395 ;to set the origin of the data segment at 0F00h
 396
 397 0000 00 @bh_delay db 0 ;0FFh if process delaying
 398 0001 3C @bh_ticksec db 60 ;ticks per second
 399 0002 00 @bh_gdopen db 0 ;0FFh if drive door opened
 400 0003 00 @bh_inint db 0 ;in interrupt count
 401 0004 04 @bh_nextflag db 4 ;next available flag
 402 0005 00 @bh_lastflag db 0 ;last available flag
 403 0006 00 @bh_intconin db 0 ;0FFh if interrupt driven CONIN:
 404 0007 00 @bh_8087 db 0 ;0FFh if 8087 exists
 405
 406 ; disk parameter header offset table
 407
 408 0008 0000 E @bh_dphtable dw offset @dpha ;drive A:
 409 000A 0000 E dw offset @dphb ;drive B:
 410 000C 0000 E dw offset @dphc ;drive C:
 411 000E 0000 E dw offset @dphd ;drive D:
 412 0010 0000 E dw offset @dphe ;drive E:
 413 0012 0000 E dw offset @dphf ;drive F:
 414 0014 0000 E dw offset @dphg ;drive G:
 415 0016 0000 E dw offset @dphh ;drive H:
 416 0018 0000 E dw offset @dphi ;drive I:

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 417 001A 0000 E dw offset @dphj ;drive J:
 418 001C 0000 E dw offset @dphk ;drive K:
 419 001E 0000 E dw offset @dphl ;drive L:
 420 0020 0000 E dw offset @dphm ;drive M:
 421 0022 0000 E dw offset @dphn ;drive N:
 422 0024 0000 E dw offset @dpho ;drive O:
 423 0026 0000 E dw offset @dphp ;drive P:
 424
 425
 426 ; character device block offset table
 427
 428 0028 0000 E @bh_cdbtable dw offset @cdba ;device A
 429 002A 0000 E dw offset @cdbb ;device B
 430 002C 0000 E dw offset @cdbc ;device C
 431 002E 0000 E dw offset @cdbd ;device D
 432 0030 0000 E dw offset @cdbe ;device E
 433 0032 0000 E dw offset @cdbf ;device F
 434 0034 0000 E dw offset @cdbg ;device G
 435 0036 0000 E dw offset @cdbh ;device H
 436 0038 0000 E dw offset @cdbi ;device I
 437 003A 0000 E dw offset @cdbj ;device J
 438 003C 0000 E dw offset @cdbk ;device K
 439 003E 0000 E dw offset @cdbl ;device L
 440 0040 0000 E dw offset @cdbm ;device M
 441 0042 0000 E dw offset @cdbn ;device N
 442 0044 0000 E dw offset @cdbo ;device O
 443 0046 0000 E dw offset @cdbp ;device P
 444
 445 ; Character device roots for console input,
 446 ; console ouput, auxiliary input, auxiliary output
 447 ; and list output.
 448
 449 0048 0000 E @bh_ciroot dw offset @cdba ;console input
 450 004A 0000 E @bh_coroot dw offset @cdba ;console output
 451 004C 0000 E @bh_airoot dw offset @cdbb ;aux input
 452 004E 0000 E @bh_aoroot dw offset @cdbb ;aux output
 453 0050 0000 E @bh_loroot dw offset @cdbc ;list output
 454
 455 0052 0000 @bh_bufbase dw 0 ;offset of buffer
 456 0054 0000 @bh_buflen dw 0 ;length of buffer
 457
 458 0056 @bh_memdesc rw 32*3 ;room for 32 memory descriptors
 459
 460 ; O.S. error messages
 461
 462 0116 5401 R bh_chain dw chain_msg ;chain error message address
 463 0118 6C01 R bh_prompt dw prompt_msg ;error CCP prompt message address
 464 011A 7F01 R bh_user dw user_str ;error CCP command string
 465 011C 8401 R bh_cpmerr dw cmperr_msg ;CP/M error message address
 466 011E 9501 R bh_func dw func_msg ;function message address
 467 0120 A801 R bh_file dw file_msg ;file message address
 468 0122 B101 R bh_err1 dw err1_msg
 469 0124 C701 R bh_err2 dw err2_msg
 470 0126 D601 R bh_err3 dw err3_msg

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 471 0128 E501 R bh_err4 dw err4_msg
 472 012A F301 R bh_err5 dw err5_msg
 473 012C 0202 R bh_err6 dw err6_msg
 474 012E 0E02 R bh_err7 dw err7_msg
 475
 476 ;***
 477 ;
 478 ;
 479 ; BIOS Code Segment
 480 ;
 481 ;***
 482 CSEG
 483
 484 ;========
 485 biosinit:
 486 ;========
 487 ; Entry: DS = system data segment
 488 ; ES = process environment (preserved through call)
 489 ; Exit: DS = SYSDAT segment
 490 ; ES = process environment (preserved through call)
 491
 492 0008 E80000 E call ?init ;perform any general initialization
 493
 494 000B 33F6 xor si,si ;index into tables
 495 000D B91000 mov cx,16 ;16 total drives and devices
 496 next_device:
 497 0010 51 push cx
 498 0011 8B9C2800 R mov bx,@bh_cdbtable[si] ;offset of CDB in table
 499 0015 0BDB or bx,bx ;is offset zero
 500 0017 7407 0020 jz init_drv ;yes no character device
 501 0019 32D2 xor dl,dl ;DL = 0, first call to CDB init
 502 001B 56 push si
 503 001C FF5718 call CDB_INIT[bx]
 504 001F 5E pop si
 505 init_drv:
 506 0020 8B9C0800 R mov bx,@bh_dphtable[si] ;offset of DPH in table
 507 0024 0BDB or bx,bx ;is it zero
 508 0026 7405 002D jz zero_entry ;yes get next device
 509 0028 56 push si
 510 0029 FF5714 call DPH_INIT[bx]
 511 002C 5E pop si
 512 zero_entry:
 513 002D 4646 inc si ! inc si
 514 002F 59 pop cx
 515 0030 E2DE 0010 loop next_device
 516
 517 0032 8B1E4800 R mov bx,@bh_ciroot
 518 0036 8A470F mov al,CDB_IINPUT[bx]
 519 0039 A20600 R mov @bh_intconin,al ;setup console input interrupt flag
 520
 521 003C E80000 E call ?clock_init ;initialize the system clock
 522
 523 003F BE0000 E mov si,offset @signon ;sign-on message defined in INIT module
 524 0042 E8FE00 0143 call ?pmsg ;print the BIOS sign-on message

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 525 0045 CB retf
 526
 527 ;***
 528 ;
 529 ; BIOS Entry Function Dispatch
 530 ;
 531 ;
 532 ;***
 533
 534 ;=========
 535 biosentry: ; BIOS Entry Point
 536 ;=========
 537 ; All calls to the BIOS after INIT, enter through this code
 538 ; with a CALLF and must return with a RETF.
 539 ; Entry: AL = function number
 540 ; CX = first parameter
 541 ; DX = second parameter
 542 ; DS = system data segment
 543 ; ES = process environment (preserved through call)
 544 ; Exit: AX = BX = return or BIOS error code
 545 ; DS = SYSDAT segment
 546 ; ES = process environment (preserved through call)
 547 ; SS,SP must also be preserved
 548 ; CX,DX,SI,DI,BP can be changed by the BIOS
 549
 550 0046 3C807312 005C cmp al,80h ! jae range_err ;check for BIOS functions above 80h
 551 004A FC cld ;clear direction flag
 552 004B 32E4D1E0 xor ah,ah ! shl ax,1 ;index into BIOS function table
 553 004F 8BD8 mov bx,ax
 554 0051 FF973001 R call functab[bx] ;call BIOS kernel routine
 555 0055 8E064E00 mov es,rlr ;restore ES
 556 bdos_ret:
 557 0059 8BD8 mov bx,ax ;BX = AX
 558 005B CB retf
 559 range_err:
 560 005C B8FFFF mov ax,0FFFFh ;function out of range
 561 005F EBF8 0059 jmps bdos_ret
 562
 563 ;***
 564 ;
 565 ; BIOS Device Initialization Routines
 566 ;
 567 ;***
 568
 569 io_devinit: ;BIOS function 14
 570 ;==========
 571 ; Entry: CX = Offset of CDB
 572 ; Exit: AX = 0 if successful
 573 ; = 0FFFFh if error
 574
 575 0061 8BD9 mov bx,cx
 576 0063 B201 mov dl,1 ;DL = 1, not first call to CDB init
 577 0065 FF6718 jmp CDB_INIT[bx]
 578

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 579 ;***
 580 ;
 581 ; BIOS Character Input Status Routines
 582 ;
 583 ;***
 584
 585
 586 io_conist: ;BIOS function 0
 587 ;=========
 588 ; Entry: None
 589 ; Exit: AL = 0FFH if ready
 590 ; AL = 000H if not ready
 591
 592 0068 8B1E4800 R mov bx,@bh_ciroot ;console input root
 593 ; jmps ist_scan ;fall through to IST_SCAN
 594
 595 ist_scan:
 596 ;--------
 597 006C 0BDB7403 0073 or bx,bx ! jz no_stat_dev
 598 0070 FF671C jmp CDB_INSTAT[bx]
 599 no_stat_dev:
 600 0073 33C0 xor ax,ax
 601 0075 C3 ret
 602
 603 io_auxist: ;BIOS function 16
 604 ;=========
 605 ; Entry: None
 606 ; Exit: AL = 0FFH if ready
 607 ; AL = 000H if not ready
 608
 609 0076 8B1E4C00 R mov bx,@bh_airoot ;aux input root
 610 007A EBF0 006C jmps ist_scan
 611
 612 ;***
 613 ;
 614 ; BIOS Character Output Status Routines
 615 ;
 616 ;***
 617
 618 io_listst: ;BIOS function 3
 619 ;=========
 620 ; Entry: None
 621 ; Exit: AL = 0FFH if ready
 622 ; AL = 000H if not ready
 623
 624 007C 8B1E5000 R mov bx,@bh_loroot ;list root
 625 0080 BF1600 mov di,CDB_LOLINK
 626 0083 EB07 008C jmps ost_scan
 627
 628 io_conost: ;BIOS function 15
 629 ;=========
 630 ; Entry: None
 631 ; Exit: AL = 0FFH if ready
 632 ; AL = 000H if not ready

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 633
 634 0085 8B1E4A00 R mov bx,@bh_coroot ;console output root
 635 0089 BF1200 mov di,CDB_COLINK
 636 ; jmps ost_scan ;fall through to OST_SCAN
 637
 638
 639 ost_scan: ;output status scanner
 640 ;--------
 641 ; Entry: BX = offset of CDB
 642 ; DI = offset within CDB to next link
 643 ; Exit: AL = 0FFH if ready
 644 ; AL = 000H if not ready
 645
 646 008C 0BDB740F 009F or bx,bx ! jz ost_rdy ;if zero status's defined ready
 647 0090 5357 push bx ! push di
 648 0092 FF5720 call CDB_OUTSTAT[bx] ;perform output status check
 649 0095 5F5B pop di ! pop bx
 650 0097 0AC07406 00A1 or al,al ! jz ost_notrdy ;if one device not ready,none are.
 651
 652 009B 8B19 mov bx,[di+bx]
 653 009D EBED 008C jmps ost_scan
 654 ost_rdy:
 655 009F B0FF mov al,0FFh
 656 ost_notrdy:
 657 00A1 C3 ret
 658
 659 io_auxost: ;BIOS function 17
 660 ;=========
 661 ; Entry: None
 662 ; Exit: AL = 0FFH if ready
 663 ; AL = 000H if not ready
 664
 665 00A2 8B1E4E00 R mov bx,@bh_aoroot ;aux output root
 666 00A6 BF1400 mov di,CDB_AOLINK
 667 00A9 EBE1 008C jmps ost_scan
 668
 669 ;***
 670 ;
 671 ; BIOS Character Input Routines
 672 ;
 673 ;***
 674
 675 io_conin: ;BIOS function 1
 676 ;========
 677 ; Entry: None
 678 ; Exit: AL = character
 679
 680 00AB 8B1E4800 R mov bx,@bh_ciroot ;console input root
 681 ; jmps in_scan ;fall through to IN_SCAN
 682
 683 in_scan: ;character output
 684 ;-------
 685 ; Entry: BX = offset of CDB
 686 ; Exit: AL = character

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 687
 688 00AF 0BDB7403 00B6 or bx,bx ! jz no_input_dev
 689 00B3 FF671A jmp CDB_INPUT[bx] ;get character
 690
 691 no_input_dev:
 692 00B6 33C0 xor ax,ax
 693 00B8 C3 ret
 694
 695 io_auxin: ;BIOS function 5
 696 ;========
 697 ; Entry: None
 698 ; Exit: AL = character
 699
 700 00B9 8B1E4C00 R mov bx,@bh_airoot ;aux input root
 701 00BD EBF0 00AF jmps in_scan ;get character
 702
 703 ;***
 704 ;
 705 ; BIOS Character Output Routines
 706 ;
 707 ;***
 708
 709 io_conout: ;BIOS function 2
 710 ;=========
 711 ; Entry: CL = character
 712 ; Exit: None
 713
 714 00BF 8B1E4A00 R mov bx,@bh_coroot ;console output root
 715 00C3 BF1200 mov di,CDB_COLINK
 716 ; jmps out_scan ;fall through to OUT_SCAN
 717
 718 out_scan: ;character output
 719 ;--------
 720 ; Entry: CL = character
 721 ; BX = offset of CDB
 722 ; DI = offset within CDB to next link
 723 ; Exit: None
 724
 725 00C6 0BDB740D 00D7 or bx,bx ! jz out_exit ;zero = done
 726 00CA 535157 push bx ! push cx ! push di ;save the character
 727 00CD FF571E call CDB_OUTPUT[bx] ;output the character
 728 00D0 5F595B pop di ! pop cx ! pop bx
 729 00D3 8B19 mov bx,[di+bx] ;get next cdb offset
 730 00D5 EBEF 00C6 jmps out_scan
 731 out_exit:
 732 00D7 C3 ret
 733
 734 io_list: ;BIOS function 4
 735 ;=======
 736 ; Entry: CL = character
 737 ; Exit: None
 738
 739 00D8 8B1E5000 R mov bx,@bh_loroot ;list output root
 740 00DC BF1600 mov di,CDB_LOLINK

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 741 00DF EBE5 00C6 jmps out_scan
 742
 743
 744 io_auxout: ;BIOS function 6
 745 ;=========
 746 ; Entry: CL = character
 747 ; Exit: None
 748
 749 00E1 8B1E4E00 R mov bx,@bh_aoroot ;aux output root
 750 00E5 BF1400 mov di,CDB_AOLINK
 751 00E8 EBDC 00C6 jmps out_scan
 752
 753 ;***
 754 ;
 755 ; BIOS Disk I/O Routines
 756 ;
 757 ;***
 758
 759 io_seldsk: ;BIOS function 9
 760 ;=========
 761 ; Entry: CL = disk to be selected
 762 ; DL = (Bit 0): 0 if first select
 763 ; Exit: AX = 0 if illegal select
 764 ; = offset of DPH relative to OS data segment
 765
 766 00EA 33DB xor bx,bx
 767 00EC 80F90F7714 0105 cmp cl,15 ! ja sel_ret ;if not valid drive exit
 768 00F1 8AD9D1E3 mov bl,cl ! shl bx,1 ;double drive number
 769 00F5 8B9F0800 R mov bx,@bh_dphtable[bx] ;index into drive table
 770 00F9 0BDB7408 0105 or bx,bx ! jz sel_ret ;zero = bad select
 771 00FD F6C2017503 0105 test dl,1 ! jnz sel_ret ;first time select?
 772 0102 FF5716 call DPH_LOGIN[bx] ; yes
 773 sel_ret:
 774 0105 8BC3 mov ax,bx
 775 0107 C3 ret
 776
 777 io_read: ;BIOS function 10
 778 ;=======
 779 ; Entry: IOPB filled in (on stack)
 780 ; Exit: AL = 0 if no error
 781 ; = 1 if physical error
 782 ; = 0FFH if media density has changed
 783
 784 0108 BF1800 mov di,DPH_READ ;DPH read routine offset
 785 010B EB05 0112 jmps read_write ;jump to common i/o routine
 786
 787 io_write: ;BIOS function 11
 788 ;========
 789 ; Entry: IOPB filled in (onstack)
 790 ; Exit: AL = 0 if no error
 791 ; = 1 if physical error
 792 ; = 2 if Read/Only disk
 793 ; = 0FFH if media density has changed
 794

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 795 010D BF1A00 mov di,DPH_WRITE ;DPH write routine offset
 796
 797 0110 EB00 0112 jmps read_write ;jump to common i/o routine
 798
 799 ;***
 800 ;
 801 ; BIOS Disk I/O Common Read/Write Routines
 802 ;
 803 ;***
 804
 805 read_write: ;checks for valid disk and calls read or write
 806 ;---------- ; routine for that drive
 807 ;
 808 ; Entry: DI = offset of read or write routine in DPH
 809 ; Exit: AX = return code
 810
 811 0112 8BEC mov bp,sp ;SS:BP points to IOPB
 812 0114 8A5E0E mov bl,iopb_drive
 813 0117 32FFD1E3 xor bh,bh ! shl bx,1
 814 011B 8B9F0800 R mov bx,@bh_dphtable[bx] ;get DPH address
 815 011F 0BDB7402 0125 or bx,bx! jz ret_error ;check if valid
 816 0123 FF21 jmp word ptr [bx+di] ;jump to DPH read or write routine
 817 ret_error:
 818 0125 B001 mov al,1 ;return error if not valid
 819 0127 C3 ret
 820
 821 io_flush: ;BIOS function 12
 822 ;========
 823 ; Entry: None
 824 ; Exit: AL = 0 if no error
 825 ; = 1 if physical error
 826 ; = 2 if Read/Only disk
 827
 828 0128 33C0 xor ax,ax ;flush not necessary
 829 012A C3 ret ;when BDOS deblocking
 830
 831 ;***
 832 ;
 833 ; Concurrent-86 Functions Not Implemented
 834 ;
 835 ;***
 836
 837 io_notimp: ;BIOS function 7,8,13
 838 ;=========
 839 012B 33C0 xor ax,ax ;return success
 840 012D C3 ret
 841
 842 ;***
 843 ;
 844 ; Public Routine Code Segment
 845 ;
 846 ;***
 847
 848 ?waitflag: ;FLAG WAIT - Wait for pseudo interrupt

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 849
 850 ;=========
 851 ; Entry: DL = number of flag to wait on.
 852 ; Exit: AL = 0
 853
 854 012E B184 mov cl,132 ;flagwait function number
 855 0130 FF1E3000 callf bdos ;call the OS
 856 0134 C3 ret ;return to BIOS caller
 857
 858 ?delay: ;DELAY - Delay specified no. of system ticks
 859 ;======
 860 ; Entry: DX = number of system ticks to delay
 861 ; Exit: None
 862
 863 0135 B18D mov cl,141 ;delay function number
 864 0137 FF1E3000 callf bdos ;call the OS
 865 013B C3 ret ;return to BIOS caller
 866
 867 ?dispatch: ;DISPATCH - force a dispatch
 868 ;=========
 869 ; Entry: None
 870 ; Exit: None
 871
 872 013C B18E mov cl,142 ;dispatch function number
 873 013E FF1E3000 callf bdos ;call the OS
 874 0142 C3 ret ;return to BIOS caller
 875
 876 ?pmsg: ;Print String
 877 ;=====
 878 ; Entry: DS:SI = offset of string terminated by 0.
 879 ; ES = process environment segment
 880 ; Exit: None
 881
 882 0143 26803E4600FF cmp err_mode,0FFh ;if return error mode is set
 883 0149 740E 0159 je pmsg_exit ; dont print message
 884 next_char:
 885 014B 8A0C mov cl,[si] ;get character from buffer
 886 014D 0AC97408 0159 or cl,cl ! jz pmsg_exit ;check for 0 terminater
 887 0151 56 push si
 888 0152 E86AFF 00BF call io_conout ;output character in CL
 889 0155 5E pop si
 890 0156 46 inc si
 891 0157 EBF2 014B jmps next_char ;get next character
 892 pmsg_exit:
 893 0159 C3 ret
 894
 895 ;***
 896 ;
 897 ; BIOS Data Segment
 898 ;
 899 ;***
 900 DSEG
 901
 902

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 903 ; BIOS Function Table
 904
 905 0130 6800 R functab dw io_conist ; 0 - console status
 906 0132 AB00 R dw io_conin ; 1 - console input
 907 0134 BF00 R dw io_conout ; 2 - console output
 908 0136 7C00 R dw io_listst ; 3 - list output status
 909 0138 D800 R dw io_list ; 4 - list output
 910 013A B900 R dw io_auxin ; 5 - aux input
 911 013C E100 R dw io_auxout ; 6 - aux output
 912 013E 2B01 R dw io_notimp ; 7 - CCP/M function
 913 0140 2B01 R dw io_notimp ; 8 - CCP/M function
 914 0142 EA00 R dw io_seldsk ; 9 - select disk
 915 0144 0801 R dw io_read ;10 - read sector
 916 0146 0D01 R dw io_write ;11 - write sector
 917 0148 2801 R dw io_flush ;12 - flush buffers
 918 014A 2B01 R dw io_notimp ;13 - CCP/M function
 919 014C 6100 R dw io_devinit ;14 - char. device init
 920 014E 8500 R dw io_conost ;15 - console output status
 921 0150 7600 R dw io_auxist ;16 - aux input status
 922 0152 A200 R dw io_auxost ;17 - aux output status
 923
 924 0154 0D0A43616E6E chain_msg db 13,10,'Cannot Load Program',13,10,'$'
 925 6F74204C6F61
 926 642050726F67
 927 72616D0D0A24
 928 016C 0D0A43616E6E prompt_msg db 13,10,'Cannot Load CCP $'
 929 6F74204C6F61
 930 642043435020
 931 24
 932 017F 0455534552 user_str db 4,'USER'
 933 0184 0D0A43502F4D cmperr_msg db 13,10,'CP/M Error On $'
 934 204572726F72
 935 204F6E2024
 936 0195 0D0A42444F53 func_msg db 13,10,'BDOS Function = $'
 937 2046756E6374
 938 696F6E203D20
 939 24
 940 01A8 2046696C6520 file_msg db ' File = $'
 941 3D2024
 942 01B1 4469736B2052 err1_msg db 'Disk Read/Write Error$'
 943 6561642F5772
 944 697465204572
 945 726F7224
 946 01C7 526561642D4F err2_msg db 'Read-Only Disk$'
 947 6E6C79204469
 948 736B24
 949 01D6 526561642D4F err3_msg db 'Read-Only File$'
 950 6E6C79204669
 951 6C6524
 952 01E5 496E76616C69 err4_msg db 'Invalid Drive$'
 953 642044726976
 954 6524
 955
 956 01F3 50617373776F err5_msg db 'Password Error$'

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

 957 726420457272
 958 6F7224
 959 0202 46696C652045 err6_msg db 'File Exists$'
 960 786973747324
 961 020E 3F20696E2046 err7_msg db '? in Filename$'
 962 696C656E616D
 963 6524
 964
 965 END
 966
 967
 968 END OF ASSEMBLY. NUMBER OF ERRORS: 0. USE FACTOR: 10%

?CLOCK_INIT 0000 L 348 521
?DELAY 0135 L 346 858#
?DISPATCH 013C L 346 867#
?INIT 0000 L 348 492
?PMSG 0143 L 346 524 876#
?WAITFLAG 012E L 346 848#
@BH_8087 0007 V 370 404#
@BH_AIROOT 004C V 373 451# 609 700
@BH_AOROOT 004E V 373 452# 665 749
@BH_BUFBASE 0052 V 374 455#
@BH_BUFLEN 0054 V 374 456#
@BH_CDBTABLE 0028 V 371 428# 498
@BH_CIROOT 0048 V 373 449# 517 592 680
@BH_COROOT 004A V 373 450# 634 714
@BH_DELAY 0000 V 369 397#
@BH_DPHTABLE 0008 V 371 408# 506 769 814
@BH_GDOPEN 0002 V 369 399#
@BH_ININT 0003 V 369 400#
@BH_INTCONIN 0006 V 370 403# 519
@BH_LASTFLAG 0005 V 370 402#
@BH_LOROOT 0050 V 373 453# 624 739
@BH_MEMDESC 0056 V 374 458#
@BH_NEXTFLAG 0004 V 370 401#
@BH_TICKSEC 0001 V 369 398#
@CDBA 0000 V 381 428 449 450
@CDBB 0000 V 381 429 451 452
@CDBC 0000 V 381 430 453
@CDBD 0000 V 381 431
@CDBE 0000 V 382 432
@CDBF 0000 V 382 433
@CDBG 0000 V 382 434
@CDBH 0000 V 382 435
@CDBI 0000 V 383 436
@CDBJ 0000 V 383 437
@CDBK 0000 V 383 438
@CDBL 0000 V 383 439
@CDBM 0000 V 384 440
@CDBN 0000 V 384 441
@CDBO 0000 V 384 442
@CDBP 0000 V 384 443
@DPHA 0000 V 376 408

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

@DPHB 0000 V 376 409
@DPHC 0000 V 376 410
@DPHD 0000 V 376 411
@DPHE 0000 V 377 412
@DPHF 0000 V 377 413
@DPHG 0000 V 377 414
@DPHH 0000 V 377 415
@DPHI 0000 V 378 416
@DPHJ 0000 V 378 417
@DPHK 0000 V 378 418
@DPHL 0000 V 378 419
@DPHM 0000 V 379 420
@DPHN 0000 V 379 421
@DPHO 0000 V 379 422
@DPHP 0000 V 379 423
@SIGNON 0000 V 386 523
@SYSDAT 0006 V 345 360#
BAUD_110 0004 N 208#
BAUD_1200 000A N 215#
BAUD_1345 0005 N 209#
BAUD_150 0006 N 210#
BAUD_1800 000B N 216#
BAUD_192 0012 N 223#
BAUD_200 0007 N 211#
BAUD_2000 000C N 217#
BAUD_2400 000D N 218#
BAUD_300 0008 N 212#
BAUD_3600 000E N 219#
BAUD_384 0013 N 224#
BAUD_4800 000F N 220#
BAUD_50 0001 N 205#
BAUD_56 0014 N 225#
BAUD_600 0009 N 214#
BAUD_625 0002 N 206#
BAUD_7200 0010 N 221#
BAUD_75 0003 N 207#
BAUD_768 0015 N 226#
BAUD_9600 0011 N 222#
BAUD_NONE 0000 N 204#
BAUD_OEM1 0016 N 227#
BAUD_OEM2 0017 N 228#
BAUD_OEM3 0018 N 229#
BDOS 0030 V 84# 855 864 873
BDOS_RET 0059 L 556# 561
BH_CHAIN 0116 V 462#
BH_CPMERR 011C V 465#
BH_ERR1 0122 V 468#
BH_ERR2 0124 V 469#
BH_ERR3 0126 V 470#
BH_ERR4 0128 V 471#
BH_ERR5 012A V 472#
BH_ERR6 012C V 473#
BH_ERR7 012E V 474#
BH_FILE 0120 V 467#

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

BH_FUNC 011E V 466#
BH_PROMPT 0118 V 463#
BH_USER 011A V 464#
BIOSENTRY 0046 L 358 535#
BIOSINIT 0008 L 357 485#
CC_15_SBITS 0400 N 183#
CC_1_SBITS 0000 N 182#
CC_2_SBITS 0800 N 184#
CC_5_DBITS 0000 N 178#
CC_6_DBITS 0100 N 179#
CC_7_DBITS 0200 N 180#
CC_8_DBITS 0300 N 181#
CC_DBITS_MSK 0300 N 190#
CC_DBITS_SHF 0008 N 191#
CC_DTR 0008 N 171#
CC_ENABLE 0020 N 173#
CC_ETX 0002 N 169#
CC_EVEN 0040 N 175#
CC_MARK 0080 N 176#
CC_ODD 0000 N 174#
CC_PARITY_MSK 00E0 N 188#
CC_PARITY_SHF 0005 N 189#
CC_POL 0010 N 172#
CC_RTS 0004 N 170#
CC_SBITS_MSK 0C00 N 192#
CC_SBITS_SHF 000A N 193#
CC_SPACE 00C0 N 177#
CC_XON 0001 N 168#
CDB_AOLINK 0014 N 138# 666 750
CDB_COLINK 0012 N 137# 635 715
CDB_CURCHAR 0008 N 128#
CDB_CUROEM 000B N 130#
CDB_IINPUT 000F N 134# 518
CDB_INIT 0018 N 140# 503 577
CDB_INPUT 001A N 141# 689
CDB_INSTAT 001C N 142# 598
CDB_LOLINK 0016 N 139# 625 740
CDB_NAME 0000 N 126#
CDB_NFLAGS 0010 N 135#
CDB_OUTPUT 001E N 143# 727
CDB_OUTSTAT 0020 N 144# 648
CDB_RESRV 0011 N 136#
CDB_RXB 000D N 132#
CDB_SUPCHAR 0006 N 127#
CDB_SUPOEM 000A N 129#
CDB_TXB 000C N 131#
CDB_TYPE 000E N 133#
CHAIN_MSG 0154 V 462 924#
CMPERR_MSG 0184 V 465 933#
CON_LEN 0067 V 100#
CON_WIDTH 0066 V 99#
CS SREG V
CS_15_SBITS 4000 N 163#
CS_1_SBITS 2000 N 162#

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

CS_2_SBITS 8000 N 164#
CS_5_DBITS 0200 N 157#
CS_6_DBITS 0400 N 158#
CS_7_DBITS 0800 N 159#
CS_8_DBITS 1000 N 161#
CS_DTR 0008 N 151#
CS_ETX 0002 N 149#
CS_EVEN 0040 N 154#
CS_MARK 0080 N 155#
CS_ODD 0020 N 153#
CS_POL 0010 N 152#
CS_RTS 0004 N 150#
CS_SPACE 0100 N 156#
CS_XON 0001 N 148#
CT_INPUT 0001 N 197#
CT_OUTPUT 0002 N 198#
CT_SERIAL 0008 N 200#
CT_SOFTBAUD 0004 N 199#
DPB_AL0 0009 N 286#
DPB_AL1 000A N 287#
DPB_BLM 0003 N 282#
DPB_BSH 0002 N 281#
DPB_CKS 000B N 288#
DPB_DRM 0007 N 285#
DPB_DSM 0005 N 284#
DPB_EXM 0004 N 283#
DPB_OFF 000D N 289#
DPB_PHM 0010 N 291#
DPB_PSH 000F N 290#
DPB_SPT 0000 N 280#
DPH_ALV 000C N 253#
DPH_CHNNL 001D N 262#
DPH_CSV 000A N 252#
DPH_DATBCB 0010 N 255#
DPH_DIRBCB 000E N 254#
DPH_DOPEN 0005 N 250#
DPH_DPB 0008 N 251#
DPH_HSHTBL 0012 N 256#
DPH_INIT 0014 N 257# 510
DPH_LOGIN 0016 N 258# 772
DPH_NFLAGS 001E N 263#
DPH_READ 0018 N 259# 784
DPH_UNIT 001C N 261#
DPH_WRITE 001A N 260# 795
DPH_XLT 0000 N 249#
DS SREG V
ERR1_MSG 01B1 V 468 942#
ERR2_MSG 01C7 V 469 946#
ERR3_MSG 01D6 V 470 949#
ERR4_MSG 01E5 V 471 952#
ERR5_MSG 01F3 V 472 956#
ERR6_MSG 0202 V 473 959#
ERR7_MSG 020E V 474 961#
ERR_MODE 0046 V 102# 882

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

ES SREG V 102 555
FILE_MSG 01A8 V 467 940#
FUNCTAB 0130 V 554 905#
FUNC_MSG 0195 V 466 936#
INIT_DRV 0020 L 500 505#
INT_CHARSCAN 003C V 87#
INT_DISPATCH 0034 V 85#
INT_SETFLAG 0038 V 86#
IN_SCAN 00AF L 683# 701
IOPB_DMAOFF 0006 V 335#
IOPB_DMASEG 0008 V 334#
IOPB_DRIVE 000E V 331# 812
IOPB_MCNT 000F V 330#
IOPB_SECTOR 000A V 333#
IOPB_TRACK 000C V 332#
IO_AUXIN 00B9 L 695# 910
IO_AUXIST 0076 L 603# 921
IO_AUXOST 00A2 L 659# 922
IO_AUXOUT 00E1 L 744# 911
IO_CONIN 00AB L 675# 906
IO_CONIST 0068 L 586# 905
IO_CONOST 0085 L 628# 920
IO_CONOUT 00BF L 709# 888 907
IO_DEVINIT 0061 L 569# 919
IO_FLUSH 0128 L 821# 917
IO_LIST 00D8 L 734# 909
IO_LISTST 007C L 618# 908
IO_NOTIMP 012B L 837# 912 913 918
IO_READ 0108 L 777# 915
IO_SELDSK 00EA L 759# 914
IO_WRITE 010D L 787# 916
IST_SCAN 006C L 595# 610
NEXT_CHAR 014B L 884# 891
NEXT_DEVICE 0010 L 496# 515
NO_INPUT_DEV 00B6 L 688 691#
NO_STAT_DEV 0073 L 597 599#
OSBASESEG 0046 V 89#
OSENDSEG 0048 V 90#
OST_NOTRDY 00A1 L 650 656#
OST_RDY 009F L 646 654#
OST_SCAN 008C L 626 639# 653 667
OUT_EXIT 00D7 L 725 731#
OUT_SCAN 00C6 L 718# 730 741 751
PMSG_EXIT 0159 L 883 886 892#
PROMPT_MSG 016C V 463 928#
RANGE_ERR 005C L 550 559#
READ_WRITE 0112 L 785 797 805#
RET_ERROR 0125 L 815 817#
RLR 004E V 92# 555
SEL_RET 0105 L 767 770 771 773#
SS SREG V
TOD_DAY 005F V 94#
TOD_HR 0061 V 95#
TOD_MIN 0062 V 96#

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGB.TXT[2/6/2012 4:40:31 PM]

TOD_SEC 0063 V 97#
USER_STR 017F V 464 932#
ZERO_ENTRY 002D L 508 512#

EOF

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGC.TXT[2/6/2012 4:40:32 PM]

CPMPIGC.WS4 (= "CP/M-86 Plus Installation Guide", appendix C)

(Edited by Emmanuel ROCHE.)

Appendix C: SYSDAT Format

This appendix discusses SYSDAT segment fields that are pertinent to the system
implementor. The SYSDAT segment is the same as the BIOS data segment. The BIOS
data starts at offset 0F00h, and the SYSDAT fields are at the beginning of the
segment with the offsets shown in Figure C-1. Table C-1 describes each field.

 +-----+-----+-----+-----+-----+-----+-----+-----+
 28h:| BIOS_ENTRY | BIOS_INIT |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 30h:| BDOS | INT_DISPATCH |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 38h:| INT_SETFLAG | INT_CHARSCAN |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 40h:| RESERVED | RESERVED | OSBASESEG |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 48h:| OSENDSEG | RESERVED | RLR |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 50h:| RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 58h:| RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 60h:| TOD_DAY | TOD | TOD | TOD | RESE|CON_ |CON_ |
 | | _HR | _MIN| _SEC| RVED|WIDTH|LEN |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 Figure C-1. SYSDAT Fields

Listing C-1. SYSDAT.LIB

;***
;
; System Data Definitions
;
;***

bdos equ dword ptr .30h ;entry into operating system
int_dispatch equ dword ptr .34h ;exit from interrupt handler
int_setflag equ dword ptr .38h ;interrupt SETFLAG function
int_charscan equ dword ptr .3Ch ;interrupt live key scanner

osbaseseg equ word ptr .46h ;base of the OS in para's
osendseg equ word ptr .48h ;first para after OS

rlr equ word ptr .4Eh ;ready list root

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGC.TXT[2/6/2012 4:40:32 PM]

tod_day equ word ptr .5Fh ;number of days since 1/1/78
tod_hr equ byte ptr .61h ;current hour in bcd
tod_min equ byte ptr .62h ;current minute in bcd
tod_sec equ byte ptr .63h ;current second in bcd

con_width equ byte ptr .66h ;console width
con_len equ byte ptr .67h ;console length

err_mode equ es:byte ptr.46h ;process error mode in
 ;in process descriptor

Table C-1. SYSDAT Fields

Format: Data Field
 Explanation

BIOS_ENTRY
[Double word address of the JMP BIOSENTRY instruction in the BIOS Kernel Code
Header] All BDOS calls to the BIOS go through this entry point.

BIOS_INIT
[Double word address of the JMP BIOSINIT instruction in the BIOS Kernel Code
Header] Hardware initialization not performed by the disk boot loader or
CPMLDR is performed by the BIOSINIT routine.

BDOS
[Double word address of the BDOS entry point for system calls made when
already in the operating system] All BIOS calls back to the BDOS, except from
interrupt service routines, use this double word address. See the public BIOS
Kernel ?DISPATCH and ?DELAY routines for examples. The register conventions
for this entry require DS to contain the SYSDAT segment (the BIOS data
segment), and ES to contain the running process's environment segment. The
other registers follow the conventions shown in the "Programmer's Guide" for a
system call using INT 224 instruction, except that the BDOS puts the return
code only in BX, and not in both AX and BX. The amount of stack required by
the BDOS depends on the system call and the resulting BIOS functions that are
required. However, performing an INT 224 instruction from the BIOS to invoke a
system call requires more stack space. When the BIOS performs an INT 224, it
is reentering the BDOS through the same path the application previously used.
The BDOS only switches stacks on the first entry via an INT 224; otherwise,
the same stack is used. Section 3 discusses the stack guaranteed by the BDOS
on a first level call to the BIOS from the BDOS.

INT_DISPATCH
[Double word address of the BDOS dispatcher entry point]
INT_DISPATCH can only be used to exit an interrupt service routine. Executing
a JMPF instruction to this address is equivalent to executing a POP DS and an
IRET (Interrupt Return instruction). The dispatcher saves the context of the
running process, and restores the context of a second process that has been
waiting for the CPU. The dispatcher then gives the CPU to this second process.
See "Interrupt Device Drivers" in Section 4.

INT_SETFLAG

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGC.TXT[2/6/2012 4:40:32 PM]

[Double word address of the BDOS interrupt setflag function]
INT_SETFLAG can only be called from an interrupt service routine. See
"Interrupt Device Drivers" in Section 4.

INT_CHARSCAN
[Double word address of the BDOS interrupt character scanner]
INT_CHARSCAN can only be called from an interrupt service routine. The
character scanner is provided for live keyboard support of the physical device
currently attached to the logical input device CONIN:. See "Interrupt Device
Drivers" in Section 4, and "Interrupt-driven Character I/O" in Section 6.

OSBASESEG
[Starting paragraph of the operating system code]
OSBASESEG is set by GENCPM, and is the code segment of the BDOS. See Figure E-
2.

OSENDSEG
[First paragraph past the end of the operating system data]
OSENDSEG includes all buffers allocated to the operating system by GENCPM, but
not made part of the CPMP.SYS file. See "GENCPM Utility" in Section 9, and
also Figure E-2.

RLR
[Ready list root]
RLR is the segment address of currently running process environment. The BDOS
calls the BIOS with this value in the ES register, and the BIOS preserves or
restores this value in ES before returning to the BDOS.

TOD_DAY
Number of days since January 1, 1978.

TOD_HR
Hour of the day in packed binary coded digits (BCD).

TOD_MIN
Minute of the hour in packed binary coded digits (BCD).

TOD_SEC
Second of the minute in packed binary coded digits (BCD).

CON_WIDTH
Number of columns of screen.

CON_LEN
Number of rows of screen.

EOF

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGD.TXT[2/6/2012 4:40:33 PM]

CPMPIGD.WS4 (= "CP/M-86 Plus Installation Guide", appendix D)

(Edited by Emmanuel ROCHE.)

Appendix D: Disk Parameter Block Worksheet
--

This worksheet is intended to help in creating a Disk Parameter Block (DPB)
containing the specifications for the particular disk hardware you are
implementing. You can photocopy the DPB worksheet and use it to record your
DPB calculations for each drive you define in the BIOS. Several of the steps
in the worksheet represent intermediate calculations that are not part of the
DPB. Steps that result in values to be placed in the DPB are labeled "field in
Disk Parameter Block".

<A> Allocation Block Size

CP/M-86 Plus allocates disk space in a unit known as an allocation block. This
is the minimum disk allocation unit for files on this drive. This value can be
1024, 2048, 4096, 8192, or 16,384 decimal bytes, or 400h, 800h, 1000h, 2000h,
or 4000h bytes, respectively. Choosing a large allocation block size allows
more efficient usage of directory space for large files and allows a larger
number of directory entries. On the other hand, choosing a smaller block size
increases the size of the allocation vectors since there are more blocks on an
equivalent drive. A large allocation block size increases the average wasted
space per disk file. This is the allocated disk space beyond the logical end
of a file.

There are several restrictions on the block size. If the block size is 1024
bytes, there cannot be more than 255 blocks present on a logical drive. In
other words, if the disk is larger than 256 Kbytes, it is necessary to use an
allocation block size of at least 2048 bytes.

 DPB_BSH (Block Shift) field in Disk Parameter Block

<C> DPB_BLM (Block Mask) field in Disk Parameter Block

Determine the values of DPB_BSH and DPB_BLM from the following table given the
allocation block size from step <A>.

Table D-1. DPB_BSH and DPB_BLM Values

 <A> DPB_BSH DPB_BLM
 ------ ------- ------
 1,024 3 7
 2,048 4 15
 4,096 5 31
 8,192 6 63
 16,384 7 127

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGD.TXT[2/6/2012 4:40:33 PM]

<D> Total Allocation Blocks

Determine the total number of allocation blocks on the disk drive. First,
calculate the total available space on the drive in bytes. Do this by
multiplying the total number of tracks on the disk (minus reserved boot
tracks) by the number of sectors per track and the physical sector size.
Divide this figure by the allocation block size determined in <A> earlier.
This quotient, rounded down to the next lowest integer value, is the total
allocation blocks for the drive. (The boot tracks are determined by the
DPB_OFF field.)

<E> DPB_DSM (Disk Size Max) field in Disk Parameter Block

The value of DPB_DSM equals the total number of allocation blocks that this
particular drive supports, minus 1.

<F> DPB_EXM (Extent Mask) field in Disk Parameter Block

Obtain the value of DPB_EXM from the following table, using the values from
steps <A> and <E>.

Table D-2. DPB_EXM Values

 If <E> is If <E> is greater
 less than 256 than or equal to
 <A> then DPB_EXM = 256 then DPB_EXM =
 ------ -------------- ------------------
 1,024 0 INVALID
 2,048 1 0
 4,096 3 1
 8,192 7 3
 16,384 15 7

<G> Directory Blocks

Determine the number of allocation blocks reserved for the directory. This
value must be between 1 and 16.

<H> Directory Entries per Block

Use the following table to determine the number of directory entries per
directory block based upon the allocation block size from step <A>.

Table D-3. Directory Entries Per Block Size

 <A> Number of entries
 ------ -----------------
 1,024 32

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGD.TXT[2/6/2012 4:40:33 PM]

 2,048 64
 4,096 128
 8,192 256
 16,384 512

<I> Total directory entries

Determine the total number of directory entries by multiplying the values
found in steps <G> and <H>.

<J> DPB_DRM (Directory Max) field in Disk Parameter Block

Determine DPB_DRM by subtracting 1 from the value found in step <I>.

<K> DPB_AL0, DPB_AL1 (Directory Allocation vectors 0 and 1)

Determine DPB_AL0 and DPB_AL1 from the following table, given the number of
directory blocks from in step <G>.

Table D-4. DPB_AL0, DPB_AL1 Values

 <G> DPB_AL0 DPB_AL1 <G> DPB_AL0 DPB_AL1
 --- ------- ------- --- ------- -------
 1 80h 00h 9 0FFh 80h
 2 0C0h 00h 10 0FFh 0C0h
 3 0E0h 00h 11 0FFh 0E0h
 4 0F0h 00h 12 0FFh 0F0h
 5 0F8h 00h 13 0FFh 0F8h
 6 0FCh 00h 14 0FFh 0FCh
 7 0FEh 00h 15 0FFh 0FEh
 8 0FFh 00h 16 0FFh 0FFh

<L> DPB_CKS (Checksum field) in Disk Parameter Block

Determine the size of the checksum vector. If the disk drive media is
permanent, then set DPB_CKS to 8000h. If the disk drive media is removable,
the value should be (<J>/4)+1. If the disk drive media is removable and if
@BH_GDOPEN is set by a door open interrupt, DPB_CKS equals ((<J>/4)+1)+ 8000h.
For removable media drives, the checksum vector is CKS-bytes long and is
addressed in the DPH. When the Disk Parameter Header field DPH_CSV is set to
0FFFFh, GENCPM uses the DPB_CKS value to construct the checksum vector
automatically.

<M> DPB_OFF (Offset) field in Disk Parameter Block

The DPB_OFF field determines the number of tracks that are skipped at the
beginning of the physical disk. The BDOS automatically adds this to the value
of IOPB_TRACK parameter and can be used as a mechanism for skipping tracks
reserved for boot operations, or for partitioning a large disk into smaller

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGD.TXT[2/6/2012 4:40:33 PM]

logical drives.

<N> Size of Allocation Vector

In the DPH, the allocation vector is addressed by the DPH_ALV field. The size
of this vector is determined by the number of allocation blocks. The
allocation vector is actually two separate concatenated bit vectors. The
length of each vector is one bit per allocation block rounded up to the
nearest byte. Thus, the size of allocation vector is equal to (<E>/4)+2.
GENCPM uses the DPB_DSM value (step <E>) to automatically construct the
checksum vector if the DPH_ALV field is set to 0FFFFh.

<O> Physical Sector Size

Specify the physical sector size of the disk drive. Note that the physical
sector size must be 128, 256, 512, 1024, 2048, or 4096 bytes. The physical
sector size must also be less than or equal to the allocation block size. If
your sector size is not one of these values, you must perform
blocking/deblocking to and from the sector size chosen in this step.

<P> DPB_PSH (Physical Record Shift) field in Disk Parameter Block

<Q> DPB_PHM (Physical Record Mask) in Disk Parameter Block

Determine the values of DPB_PSH and DPB_PHM from the following table, given
the physical sector size from step <O>.

Table D-5. DPB_PSH and DPB_PHM Values

 <O> DPB_PSH DPB_PHM

 128 0 0
 256 1 1
 512 2 3
 1024 3 7
 2048 4 15
 4096 5 31

 DPB Worksheet Parameter List

<A> Allocation Block Size __________

 DPB_BSH field in Disk Parameter Block __________

<C> DPB_BLM field in Disk Parameter Block __________

<D> Total Allocation Blocks __________

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGD.TXT[2/6/2012 4:40:33 PM]

<E> DPB_DSM field in Disk Parameter Block __________

<F> DPB_EXM field in Disk Parameter Block __________

<G> Directory Blocks __________

<H> Directory Entries per Block __________

<I> Total directory entries __________

<J> DPB_DRM field in Disk Parameter Block __________

<K> DPB_AL0, DPB_AL1 fields in Disk Parameter Block __________

<L> DPB_CKS field in Disk Parameter Block __________

<M> DPB_OFF field in Disk Parameter Block __________

<N> Size of Allocation Vector __________

<O> Physical Sector Size __________

<P> DPB_PSH field in Disk Parameter Block __________

<Q> DPB_PHM field in Disk Parameter Block __________

EOF

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGE.TXT[2/6/2012 4:40:33 PM]

CPMPIGE.WS4 (= "CP/M-86 Plus Installation Guide", appendix E)

(Edited by Emmanuel ROCHE.)

Appendix E: Memory Image and CPMP.SYS File
--

The CPMP.SYS file, generated by GENCPM and read by the CPMLDR, is prefixed by
a 128-byte CMD file Header Record. (Appendix D in the "Programmer's Guide"
presents more detail on the CMD file Header Record.) The CMD file Header
Record contains the following two group descriptors:

 G-Form G-Length A-Base G-Min G-Max
 +------+------------+------------+------------+------------+
 (Code) | 01h | xxxx | (varies) | xxxx | xxxx |
 +------+------------+------------+------------+------------+
 (Data) | 02h | xxxx | (varies) | xxxx | xxxx |
 +------+------------+------------+------------+------------+

 Figure E-1. Group Descriptors in CPMP.SYS Header Record

The first group descriptor represents the code group of the CPMP.SYS file, and
the second represents the data. The code and data A-BASE values are set by
GENCPM, depending on the your answer to the "Base of CP/M-86 Plus" (Code) and
the "Data Base of CP/M-86 Plus" (Data) questions (see Section 9). The entire
CPMP.SYS file appears on disk as shown in Figure E-2.

CPMP.SYS Image CP/M-86 Plus Image In Memory
 (high memory)
 +---------------------------+
 | TPA |
 : ... :
 | (Transient Program Area) |
 +---------------------------+ <--- OSENDSEG
 | Buffer Areas Allocated | (variable
 (file end) | by GENCPM for the BIOS | in SYSDAT)
+----------+ ---> +---------------------------+
| CPMP.SYS | | SYSDAT |
|DATA GROUP| | (BDOS/BIOS Data Seg) |
+----------+ +---------------------------+ <--- data group
| | | CCP Code & Data | A-BASE
| | | (Optional) |
| CPMP.SYS | +---------------------------+
|CODE GROUP| | BIOS Code Segment |
| | +---------------------------+
| | | BDOS Code Segment |
+----------+ ---> |---------------------------+ <--- code group
| CPMP.SYS | | TPA | A-BASE and
| HEADER | : : OSBASESEG
+----------+ : ... : (variable
 (CPMP.SYS) : : in SYSDAT)

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGE.TXT[2/6/2012 4:40:33 PM]

 | (Transient Program Area) |
 +---------------------------+ <--- 0040:0000
 | Interrupt Vectors |
 +---------------------------+ <--- 0000:0000

 Figure E-2. CPMP.SYS File Image and CP/M-86 Plus Memory Image

CPMLDR reads into memory the CPMP.SYS file, beginning at the segment address
given by code group A-BASE (OSBASESEG), which is found in the CMD Header, as
shown in Figure E-1. CPMLDR sets the DS register to the value in the data
group A-BASE field. Control is passed to the BDOS initialization code when
CPMLDR executes a JMPF (Jump Far instruction) to OSBASESEG:0000h. Thus, the
BDOS initialization routine starts with the CS register set to the code group
A-BASE value, the IP register equal to zero, and the DS register equal to data
group A-BASE value.

EOF

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGF.TXT[2/6/2012 4:40:34 PM]

CPMPIGF.WS4 (= "CP/M-86 Plus Installation Guide", appendix F)

(Edited by Emmanuel ROCHE.)

Appendix F: Memory Descriptor Format

Memory Descriptors are three word structures kept in the BIOS Kernel Data
Header. The Kernel Header reserves space for 32 Memory Descriptors, a total
area of 192 bytes. GENCPM sets the first 8 Memory Descriptors to reflect the
memory partitions you define. GENCPM initializes the rest of the Memory
Descriptors for use by CP/M-86 Plus during memory allocation and de-allocation
operations.

Figure F-1 shows the structure of each Memory Descriptor:

 +-----+-----+-----+-----+-----+-----+
 | BASE | LENGTH | PID |RESRV|
 +-----------+-----------+-----+-----+

 Figure F-1. Memory Descriptor Format

Table F-1 describes the Memory Descriptor format fields.

Table F-1. Memory Descriptor Format Fields

Format: Field
 Explanation

BASE
Paragraph base (segment address) of this memory partition.

LENGTH
Length, in paragraphs, of this memory partition.

PID
If PID = 0FFh, the Memory Descriptor is unused.

If PID = 0FEh, the Memory Descriptor describes a currently available memory
partition.

If PID is set to any other value, the memory described by the Memory
Descriptor is allocated. GENCPM initializes the PID fields in all of the
Memory Descriptors to 0FFh or 0FEh.

RESRV
Reserved for system use.

The free memory described by the Memory Descriptors is the size of the TPA at
any given time. The memory manager submodule of the BDOS coalesces Memory
Descriptors representing adjacent memory areas when memory is de-allocated. If

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGF.TXT[2/6/2012 4:40:34 PM]

you do not want memory partitions to be coalesced, use GENCPM to define them
as separated by one or more paragraphs. See Figure 9-6.

The BIOS INIT module can dynamically size memory at system boot time, and
modify the Memory Descriptors. If the system's memory configuration can vary,
the Memory Descriptors must be initialized by the BIOS INIT routine at boot
time. If you need to locate the operating system image at BIOS initialization
time, the start of the CP/M-86 code can be found in the SYSDAT variable
OSBASESEG, and the paragraph after the CP/M-86 Plus data is found in the
OSENDSEG variable. The beginning of CP/M-86 Plus data is the SYSDAT segment.

If there is no hardware support to determine the machine's memory
configuration, memory can be sized by writing a pattern to the entire address
space of the processor (excluding the operating system area), and reading it
back to confirm the existence of RAM in each location. The example BIOS INIT
module in the file BIOS.A86 on the distribution disks sizes memory in this
way.

EOF

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGG.TXT[2/6/2012 4:40:34 PM]

CPMPIGG.WS4 (= "CP/M-86 Plus Installation Guide", appendix G)

(Edited by Emmanuel ROCHE.)

Appendix G: Placing CP/M-86 Plus in ROM

The CP/M-86 Plus operating system was developed with separate code and data,
to allow you to place CP/M-86 Plus in ROM. The contents of the CPMP.SYS file,
code, and initialized data are placed in ROM, and at power-on, or hardware
reset, the data is copied to RAM. This appendix assumes familiarity with the
material covered in Sections 9 and 10 on using GENCPM and BIOS debugging.

You supply a "data mover" routine that receives control when the 8086 or 8088
is reset and copies the initialized data from the ROM to RAM. Figure G-1 shows
one possible CP/M-86 Plus ROM image. In this example, at location 0FFFF:0000h
is a JMPF (Jump Far instruction) to the START_MOVER: label at a lower memory
location in the ROM. The data mover must exit by setting DS to the SYSDAT
segment and performing a JMPF (Jump Far instruction) to the beginning of the
BDOS code.

CPMP.SYS File CP/M-86 Plus in ROM
 Image (high memory)
 +---------------------------+
 | JMPF START_MOVER | <--- 0FFFF:0000h
 : :
+----------+ ---> +---------------------------+
| CPMP.SYS | | SYSDAT |
|Data Group| | (BDOS/BIOS Data Seg) |
+----------+ ---> +---------------------------+
| | | CCP Data Group (Optional) |
| | +---------------------------+ <--- ROMing data
| CPMP.SYS | | CCP Code Group (Optional) | base
| Code | +---------------------------+
| Group | | BIOS Code Segment |
| | +---------------------------+
| | | BDOS Code Segment |
+----------+ ---> +---------------------------+ <--- OSBASESEG
| CPMP.SYS | | Data Mover |
|CMD Header| +---------------------------+ <--- START_MOVER
+----------+
 (CPMP.SYS)

Figure G-1. An Example CP/M-86 Plus ROM Image

Figure G-2 shows the execution image after the initialized data has been moved
to RAM.

 . +---------------------------+
 . | JMPF START_MOVER | <--- 0FFFF:0000h
 . : :
 . +---------------------------+

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGG.TXT[2/6/2012 4:40:34 PM]

 . | SYSDAT |
 R | (BDOS/BIOS Data Seg) |
 +---------------------------+
 O | CCP Data Group (Optional) |
 +---------------------------+
 M | CCP Code Group (Optional) |
 . +---------------------------+
 . | BIOS Code Segment |
 . +---------------------------+
 . | BDOS Code Segment |
 . +---------------------------+ <--- OSBASESEG
 . | Data Mover |
 . +---------------------------+ <--- START_MOVER
 . | TPA |
 . : :
 . | (Transient Program Area) |
 . +---------------------------+ <--- OSENDSEG
 R | Uninitialized Data |
 | Buffers |
 A +---------------------------+ <--+
 | SYSDAT | |
 M | (BDOS/BIOS Data Seg) | | Area copied
 . +---------------------------+ | from ROM
 . | CCP Data Group (Optional) | |
 . +---------------------------+ <--+
 . | TPA |
 . : :
 . | (Transient Program Area) |
 . +---------------------------+

Figure G-2. CP/M-86 Plus Code in ROM and DATA in RAM

In Figure G-2, OSBASESEG is the starting paragraph of the operating system
code, and OSENDSEG is the next paragraph after the operating system RAM area.

The size of the ROM required depends on the size of the BIOS, and also if you
make the CCP a permanent part of the Operating System. The BDOS alone is about
21 Kbytes. The CCP is an additional 5 Kbytes.

The answer to the GENCPM "Code Base of CP/M-86 Plus" question (see Section 9)
sets the segment address where CP/M-86 Plus system code must be located in RAM
or ROM. The answer to the GENCPM "Data Base of CP/M-86 Plus" question (see
Section 9) determines the RAM segment address where the uninitialized and
initialized data areas must reside. The area in RAM reserved by GENCPM for the
data must be large enough to contain both the initialized data and the
uninitialized data required by the operating system. Note that the CPMP.SYS
file created by GENCPM contains only the initialized data. See Figure E-2.

GENCPM displays the length in paragraphs of the operating system code, the
initialized system data, and the total system data at the end of a GENCPM
session (see Figure 9-8). The total system data is the sum of the initialized
and uninitialized data. GENCPM resolves all references to the system data.
GENCPM also adjusts the Memory Descriptors in the BIOS Kernel Data Header to
exclude the data area reserved for the operating system. The following is an

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGG.TXT[2/6/2012 4:40:34 PM]

example of the GENCPM display when the system code is set at segment 0F800h,
and the system data at 40h:

 CP/M-86 Plus ROMing Information
 Base Length
 ---- ------
 System Code F800H 04F0H
 Initialized System Data 0040H 0179H
 Total System Data 0040H 0514H

 Operating System Memory Table:
 Partition Base Length

 0 0554H 1AECH

 CPMP.SYS file created on drive D:

 *** CP/M-86 Plus SYSTEM GENERATION DONE ***

Listing G-1 shows an example data mover using this GENCPM information. At
power-on or after a hardware reset, the hardware must transfer control to the
START_MOVER: label.

Note: The SYSDAT value is found in the word at offset 6 within the BDOS code
segment. When the CCP is made part of the system, the RAM data area begins
with the CCP data, and not with the SYSDAT data segment.

Listing G-1. Example ROM Data Mover

; Construct a ROM image file using this program (DMOVER.A86),
; the CPMP.SYS file, and the following instructions:
;
; A>rasm86 dmover ;assemble this program
; A>link86 dmover.sys=dmover
; A>sid86
; #rdmover.sys
; START END
; ZZZZ:0000 ZZZZ:01FF ;create a file containing
; #wdmover,80,ff ;the 1st 128 bytes of code
; #^C ;from this program
; A>sid86
; #rcpmp.sys
; START END
; ZZZZ:0000 ZZZZ:XXXX ;strip the CMD file Header Record
; #wcpmp,80,XXXX ;from the CPMP.SYS file
; #^C
; A>pip rom.sys=dmover[o],cpm3[o]
;
; The file ROM.SYS has the format:
;
; (file start) (file end)
; +------------+-------------+-------------------------+
; | Mover Code | System Code | Initialized System Data |
; +------------+-------------+-------------------------+

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGG.TXT[2/6/2012 4:40:34 PM]

false equ 0
true equ not false

sysdat equ word ptr .6

debug equ true

 if debug
SYSTEM_CODE equ 2000h
 endif
 if not debug
SYSTEM_CODE equ 0F800h
 endif

CODE_LENGTH equ 4BAh ;as displayed by GENCPM

INIT_DATA_LENGTH equ 179h ;as displayed by GENCPM

INIT_DATA_IN_ROM equ SYSTEM_CODE + CODE_LENGTH
INIT_DATA_IN_RAM equ 3000h

 CSEG

start_mover: ;JMPF instruction at 0FFFF:0000h goes here
;-----------
; Entry: none required
; (after reset to 8086 or 8088
; DS,ES,SS = 0, flags are reset, and
; all other registers are unknown)
; Exit: DS = SYSDAT
; JMPF's to start of BDOS

 mov ax,INIT_DATA_IN_ROM
 mov ds,ax ;start of data to move
 mov cx,INIT_DATA_LENGTH*8 ;words of initialized data
 mov ax,INIT_DATA_IN_RAM
 mov es,ax ;ES=RAM destination for
 xor si,si ;DS=ROM source of initialized data
 mov di,si ;DI=SI=0
 rep movsw ;copy from ROM to RAM
 mov ax,SYSTEM_CODE
 mov ds,ax
 mov ds,sysdat ;get SYSDAT segment address
 ;out of BDOS code
 jmpf cs: dword ptr bdos_init ;transfer control to BDOS

bdos_init dw 0
 dw SYSTEM_CODE

The example data mover is made into a 128-byte file by the SID-86 command
shown in the comment that begins the mover listing. The 128-byte length is
used for simplicity and ease of manipulation. Your data mover can certainly be
smaller if need be. After the initialized data is moved, the data mover must

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGG.TXT[2/6/2012 4:40:34 PM]

set the DS register to the SYSDAT segment, then perform a JMPF to the
beginning of the BDOS code. The SYSDAT data segment address is found at offset
6 within the BDOS code segment.

To debug a data mover similar to the example in Listing G-1 under CP/M-86 1.X
or CP/M-86 Plus, create the ROM.SYS file where SID-86 or DDT-86 can read and
execute it in RAM. Set the "Code Base of CP/M-86 Plus" to this location in
RAM, allowing 8 paragraphs for the data mover. Set the "Data Base of CP/M-86
Plus" to a RAM area large enough for the uninitialized and initialized data.
Additionally, the data mover must be assembled reflecting the segment address
of where the data is to be copied. Listing G-1 includes a debug toggle for
testing in RAM. The layout of memory for debugging the ROM.SYS file is similar
to the layout for debugging the CPMP.SYS file, except the CMD file Header
Record of the CPMP.SYS file is replaced with the data mover. Section 10
discusses the debugging of the CPMP.SYS file.

When your data mover works in RAM, run GENCPM, specifying the segment in ROM
where the system code is to reside. Answer the "Data Base of CP/M-86 Plus"
question with desired segment address in RAM for the initialized and
uninitialized system data. If you have a debug toggle in your data mover
routine, set it to false and reassemble it. Place the CPMP.SYS file and the
data mover in ROM, such that the data mover receives control on power-on or
hardware reset.

EOF

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGH.TXT[2/6/2012 4:40:34 PM]

CPMPIGH.WS4 (= "CP/M-86 Plus Installation Guide", appendix H)

(Edited by Emmanuel ROCHE.)

Appendix H: Foreign Language Messages

All English messages CP/M-86 Plus displays can be modified or translated to
foreign languages. This appendix describes the procedures for changing these
messages or replacing them with the translations you supply. Error messages
and utility options, as well as the headers for tabular displays, can all be
altered.

The text strings CP/M-86 Plus displays come from two sources. The first is
from the BDOS and the BIOS modules contained in the system image. The second
source is from the Digital Research utilities. The translation of any BIOS
messages is the responsibility of the system implementor.

CUSTOMIZING BDOS MESSAGES

The text strings the BDOS displays are all defined in the BIOS Kernel. To
change messages, you edit the Kernel, reassemble it, and generate a new system
as outlined in Section 9. The BDOS prints file-related error messages, a chain
error message, and the Error CCP prompt. The BDOS does not print file-related
error messages if the program that encountered the error is running in Return
Error Mode. See Section 3 and F_ERRMODE system call in the "Programmer's
Guide". The BDOS displays the chain error message when a program calls the
P_CHAIN system call and the BDOS has released the calling program's memory
when the error is encountered. (The CCP displays a similar error when control
can be returned to the calling process on a P_CHAIN call.) The Error CCP,
described in the "User's Guide", displays a prompt message, and uses a string
to recognize its one internal function.

The offsets of the strings used by the BDOS are contained in the BIOS Kernel
Data Header. Listing H-1 shows this part of the Data Header. "BIOS Kernel Data
Header" in Section 3 describes each field. These messages are defined at the
end of the BIOS Kernel shown in Appendix B.

Listing H-1. BIOS Kernel Data Header Text Offsets

bh_chain dw chain_msg ;chain error message
 ;address
bh_prompt dw prompt_msg ;error CCP prompt message
 ;address
bh_user dw user_str ;error CCP command string
bh_cpmerr dw cmperr_msg ;CP/M error message address
bh_func dw func_msg ;function message address
bh_file dw file_msg ;file message address
bh_err1 dw err1_msg ;file related errors
bh_err2 dw err2_msg ;1-7

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGH.TXT[2/6/2012 4:40:34 PM]

bh_err3 dw err3_msg
bh_err4 dw err4_msg
bh_err5 dw err5_msg
bh_err6 dw err6_msg
bh_err7 dw err7_msg

The carriage returns (decimal 13) and the linefeeds (decimal 10) that are part
of the string definitions in the Kernel should be preserved in any
modifications you make. The termination character $ must also be preserved.

File-related error messages are printed in the following form:

 CP/M ERROR on d: file_error_message
 BDOS Function = xx File = filespec

This list shows how the BDOS prints these error messages:

 1. The string associated with BH_CPMERR field is displayed. The default
 definition is 13,10,'CP/M Error On $'.

 2. The drive spec "d:" is printed, which is one of the logical drives A:-
 P:.

 3. Next, the "file_error_message" is printed. This is one of the seven
 messages addressed by BH_ERR1, BH_ERR2, ... BH_ERR7.

 4. The BDOS prints the string whose offset is contained in the BH_FUNC
 field. The default definition is 13,10,'BDOS Function = $'.

 5. The system call number "xx" is printed. This is the last system call
 the program made by performing an INT 224 (Interrupt instruction).

 6. The string addressed by BH_FILE is printed. The default definition is
 ' File = $'.

 7. Finally, the file name and file type that make up the filespec are
 printed by the BDOS.

CUSTOMIZING UTILITY MESSAGES

The following subsection describes the process of customizing the text strings
that are displayed by CP/M-86 Plus utilities (CMD files). The distribution
disks contain the object module files for all CP/M-86 Plus utilities, plus two
libraries containing the messages the utilities display. To create a CMD file
for a specific utility, the utility's OBJ file or files are linked with the
libraries of messages. The customization of utility messages consists of the
generation of new libraries of messages, then "relinking" the utilities.

Each utility has a set of external symbols that must be resolved at link time
to reference the correct message. Some utilities share messages. This occurs
whenever the same externally defined symbol appears in more than one utility.
LINK-86 allows public symbols to be defined only once; thus, the message

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGH.TXT[2/6/2012 4:40:34 PM]

libraries can contain just one definition for any one external message symbol.

There are approximately 500 different message symbols and their strings that
must be defined by the libraries. Each public message symbol and its message
must be assembled in a separate file. The OBJ files for each message must then
be placed in one of the message libraries. A procedure for modifying the
utility messages using several special programs and submit files is discussed
later in this section. The messages must be in separate modules in the library
files, to allow LINK-86 to include only the messages required in the utility
CMD file. Two separate libraries are necessary, since LIB-86 allows a maximum
of 256 modules.

The following steps form the procedure for altering the utility messages:

 1. Edit the message files to contain the new text strings.

 2. Create the libraries by running the STRIP.CMD program and the
 RASMLIB.SUB submit sequence.

 3. Link the utilities to the new messages using the UTILITY.SUB submit.

The MESSG1.TXT and MESSG2.TXT files contain all the symbols used to generate
the two libraries, MESSG1.L86 and MESSG2.L86. Use a standard text editor to
modify or translate the strings in these two ASCII TXT files. The format of
each symbol name and its string definition must be in the following form. Note
that the text string must be defined by single quotations.

 message_name DB 'text string'<CRLF>
 ;;<CRLF>

The message_name cannot be modified, since this is the external symbol name.
Since each line becomes part of a file assembled by RASM-86, the 'text string'
follows the rules for the RASM-86 DB directive.

Each symbol and its string definition must be separated from the next symbol
and its string definition by a carriage return, line feed, two semicolons, and
another carriage return and line feed. The STRIP utility uses the
<CRLF>;;<CRLF> sequence to recognize each symbol definition. (The last message
of the file need not end in the <CRLF>;;<CRLF> sequence.) The following symbol
definitions are from the MESSG1.TXT file.

 msg0090 db 'Directory full - $'
 ;;
 msg0175 db 'File not found: $'
 ;;

A valid modification to these messages could be the following German
translation:

 msg0090 db 'Speicher voll - $'
 ;;
 msg0175 db 'Dokument besteht nicht: $'
 ;;

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGH.TXT[2/6/2012 4:40:34 PM]

The $ sign is the delimiter for these two messages, and must be preserved.
Many messages such as these two examples precede file or drive specifications
that are printed by the utility, thus the " - " and the ": " strings are also
preserved in the example translation.

Generally, knowing the context in which a specific error message is produced
helps you to decide the appropriate size of the new message. If a message ends
with a specific delimiter, usually a 0 or a $, you must preserve it.

The first message file, MESSG1.TXT, contains the error messages in the order
in which Appendix D of the "User's Guide" discusses them. Since not only the
utility error messages can be modified, but also the informational messages
and the headers for tabular displays produced by the utilities, the
CMDMESSG.TXT file is included on the distribution disks. The CMDMESSG.TXT file
lists all the utilities and the strings produced by them. Print this file and
use it as a reference along with Appendix D in the "User's Guide" when
modifying the utility strings. It is also helpful to print for reference the
two symbol definition files, MESSG1.TXT and MESSG2.TXT, as they are unmodified
on the distribution disks.

The MESSG1.TXT and MESSG2.TXT files, and the corresponding libraries
MESSG1.L86 and MESSG2.L86, are organized as follows:

 - MESSG1.L86
 This file contains all the error messages (MSG0000 - MSG0380) for all
 the utilities. It also contains the strings for BACK, CCP, DATE, DIR,
 ERASE, GET, INITDIR, PIP, PUT, SHOW, SUBMIT, and TYPE, plus
 miscellaneous messages and strings.

 - MESSG2.L86
 This file contains the strings for DEVICE, GENRSX, HELP, SET, and
 SETDEF, as well as additional strings for the DIR utility.

The STRIP program starts a cycle of creating an A86 file, then invoking a
submit job to assemble and place the new message definition in one of the two
library files. STRIP copies one symbol definition from the MESG.TXT, and
inserts it, along with the public declaration syntax and any other information
required by RASM-86, into a source file named using the first 8 characters of
the symbol name. STRIP uses the file named MESG.TXT for the symbol and string
definitions. You can copy the MESSG1.TXT or MESSG2.TXT files to MESG.TXT, or
create a MESG.TXT file with only the symbol definitions you are currently
working on. STRIP saves its location in the MESG.TXT file in the temporary
file SAVE.$$$. STRIP then makes a P_CHAIN system call to SUBMIT, specifying
the RASMLIB.SUB submit file and a single parameter, which is the first 8
characters of the symbol name. RASMLIB.SUB contains commands to assemble and
place the new message OBJ module in one of the message library files. The
first 8 characters in the symbol name inform LIB-86 which module to replace in
the library. A command in the submit file erases the files named using the
first 8 characters of the symbol which were created by STRIP and RASM-86. The
last line in the RASMLIB.SUB file reinvokes the STRIP program. STRIP reads the
SAVE.$$$ file to find the next symbol definition to copy from the MESG.TXT
file. The SAVE.$$$ file consists of one word value at offset 0 in the file.

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGH.TXT[2/6/2012 4:40:34 PM]

This value is the number of the next symbol definition for STRIP to process.

If you create a MESG.TXT file containing only the two example symbol
definitions shown earlier, STRIP would first create the file MSG0090.A86
containing the following:

 DSEG
 PUBLIC msg0090

 msg0090 db 'Speicher voll - $'
 ;;

STRIP constructs the name MSG0090.A86 from the first 8 characters of the
symbol name. STRIP then saves the number of messages processed in the file
SAVE.$$$, which at this point would be 1. Next, it chains to SUBMIT and
specifies RASMLIB as the submit file, and the first 8 letters of the symbol
name as the only parameter to the submit. The chain command buffer is the
following:

 SUBMIT RASMLIB MSG0090

The RASMLIB.SUB file must contain the following commands when you are
modifying the MESSG1.L86 library:

 RASM86 $1
 LIB86 MESSG1 = MESSG1.L86 [REPLACE[$1]]
 ERASE $1.*
 STRIP

The example chain command used by STRIP results in the following commands
being executed by SUBMIT:

 RASM86 MSG0090
 LIB86 MESSG1 = MESSG1.L86 [REPLACE[MSG0090]]
 ERASE MSG0090.*
 STRIP

When you are modifying messages in the MESSG2.L86 library, the RASMLIB.SUB
file should contain the following commands:

 RASM86 $1
 LIB86 MESSG2 = MESSG2.L86 [REPLACE[$1]]
 ERASE $1.*
 STRIP

You can edit the RASMLIB.SUB file, or create it using PIP and one of two files
on the distribution disks, RASMLIB1.SUB or RASMLIB2.SUB. The STRIP program is
in source form on the distribution disks in the file STRIP.A86, if you must
modify it. For a complete description of RASM-86 and LIB-86, please consult
the "Programmer's Utilities Guide". Usually, you should run STRIP and record
what it does by using the PUT command to echo console output to a file, or by
using the Ctrl-P function to echo console output to the printer. If STRIP,
RASM-86, or LIB-86 encounter an error while processing the MESG.TXT file, you
can stop STRIP with a Ctrl-C, correct the problem, and restart STRIP. To do

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGH.TXT[2/6/2012 4:40:34 PM]

this, read the SAVE.$$$ using the R (Read) command under one of the debuggers
(SID-86 or DDT-86), decrement the first word in the file with the SW0 (Set
Word) command, then use the W (Write) command to update the SAVE.$$$ file on
disk. When you now invoke STRIP, it continues from the prior symbol definition
in the MESG.TXT file. You can also set the SAVE.$$$ file to start STRIP with
any symbol definition in the MESG.TXT file. The lowest value in the SAVE.$$$
word can be 0, corresponding to the first symbol definition.

Alternatively, you can redefine a symbol and its message by manually
performing the assembly and library commands. This procedure is useful when
you have a few errors and do not want to process a large symbol definition
file again. For example, if MSG0090 did not have a closing quote mark, fix the
main file, and create MSG0090.A86. Proceed to execute the individual steps of
the RASMLIB.SUB file for the MSG0090 files.

It is a good idea to keep master symbol definition files for each of the two
libraries. If you need to generate an entire library, you can copy the master
file for the library to the MESG.TXT file. Then, copy to the RASMLIB.SUB file
either the RASMLIB1.SUB or RASMLIB2.SUB files, depending on the library being
created. Finally, invoke STRIP. Whenever you intend to define all of the
symbols contained in the current MESG.TXT file, ensure the SAVE.$$$ file is
erased before starting STRIP.

Some trial and error is necessary when testing new messages. The closer the
new messages are to the original format, then the easier the translation or
modification process. Testing can be accomplished quickly by making
incremental changes to the libraries. Once you have working symbol
definitions, be sure to update your master symbol definition file for the
appropriate library.

In summary, perform the following steps to update a message symbol library
after editing the symbol definition file:

 1. Erase SAVE.$$$.

 2. Ensure that MESG.TXT contains the correct messages.

 3. Run PUT to maintain a log of the output of STRIP, or activate printer
 echo with Ctrl-P.

 4. Run STRIP.

 5. Verify that each message was correctly processed.

 6. Update your master symbol definition file for the appropriate library.

The following items outline some conventions and restrictions in modifying the
utility messages.

 - If the message is a column heading, the column width governs the
 maximum length of substrings in the heading. For example, the output
 of SHOW [LABEL] uses the strings associated with the symbols SHO_LINE1
 through SHO_LINE4. (See the symbol definition file MESSG1.TXT.) The

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGH.TXT[2/6/2012 4:40:34 PM]

 command SHOW [LABEL] on a drive with a directory label results in the
 display of the following header:

Directory Passwds Stamp Stamp
Label Reqd Create Update Label Created Label Updated
------------ ------- ------ ------ -------------- --------------

 The substring 'Stamp', which is part of the SHO_LINE1 definition,
 labels a column six characters wide. Thus, if 'Stamp' is changed, the
 new string must not exceed six characters in length.

 - The command line options to all the utilities are included in the
 libraries. One string contains all the options separated by
 delimiters, and another string of bytes is an array of offsets into
 the option string. The options can be renamed and their length changed
 as desired, but the start of each option in the string must be updated
 in the respective offset array. For example, the ERASE utility uses
 the options list symbol ERA_OPT and its definition
 'XFCB0CONFIRM',0FFh. ERASE uses the symbol ERA_OFF and its array of
 offsets 0,5,12 to locate the start of XFCB, CONFIRM, and 0FFh. If the
 options are changed to 'PASSWORD0CONFIRM',0FFh, then the ERA_OFF
 symbol must be defined as 0,9,16. The semantics of the options are
 dependent on their position in the option string. Note that 0FFh marks
 the end of the option lists for different utilities, that _OPT is
 appended to option list symbols, and _OFF appended to symbols
 associated with the option list offsets. The symbols ERA_OPT and
 ERA_OFF are defined in the MESSG1.TXT file.

 - Most options are separated by the number 0, as just shown for ERASE.
 PUT, GET, and DEVICE are exceptions using the tilde (~) to separate
 their options. These utilities use the symbol PUT_EOSMARK,
 GET_EOSMARK, and DEV_EOSMARK to define the tilde option separator. It
 is easiest to maintain the same separators, but if you must change
 them, you must also change the corresponding symbol suffixed with
 _EOSMARK for the corresponding utility.

 - The delimiters each utility uses are defined by the symbols suffixed
 with _DLM, for instance, ERA_DLM and PUT_DLM. These characters are
 likely to change with different keyboards and international character
 codes. As with the option lists, the position in the delimiter string
 defines the semantics of the delimiters. If left and right brackets,
 [], are replaced with some other option delimiters, then the original
 order in the delimiter string must be preserved. For instance, in the
 string associated with ERA_DLM, the default delimiters are
 0,'[]=, ',0,0FFh. These can become 0,'{}=, ',0,0FFh, but the positions
 of left and right brackets are maintained.

 The user interface should be consistent. Thus, if you change the
 option delimiters [] in one utility, they should be replaced with the
 same option delimiters for the rest of the utilities. Note that the
 CCP option symbol is named CCP_OPTSYM.

 - Four symbols and their default strings that are of major importance
 for obvious reasons are MSG_LYES, defined as 'yes'; MSG_UYES, defined

file:///C|/...ervation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGH.TXT[2/6/2012 4:40:34 PM]

 as 'YES'; MSG_LNO, defined as 'no'; and MSG_UNO defined as 'NO'.

 - The ASCII character set is the basis for all string processing in
 CP/M-86 Plus. Translation from lowercase to uppercase by subtracting
 20h, is made if the character is in the range of a-z. This restriction
 is important when translating to alphabets with more than 26 letters.

 Furthermore, CP/M internals and standards are still expected. For
 example, drives are still labeled from A-P, the colon (":") is used as
 a drive separator, the semicolon (";") in the file specification
 serves as a password delimiter, and so forth. See the "Programmer's
 Guide" and the "User's Guide" for more information on file
 specifications.

 - Do not use the RASM-86 $NC (No Case) option. This option causes
 symbols to be created in the OBJ file in whatever case they appear in
 the source file. Without this option, the symbols are translated to
 uppercase in the OBJ file. The external symbol declarations in the
 utility OBJ files are in uppercase.

 - The messages produced by the ED.CMD utility cannot be customized.

 - The BACK utility options, defined by the symbol BAK_OPTS, must be
 unique to BACK, and cannot be shared by any other utility. BACK
 removes any options in the command tail that match those in the
 BAK_OPTS definition. Then BACK passes the command tail to the program
 to which it chains.

 - The messages for GENCPM are found in the GENMSG.TXT and the
 corresponding library file GENMSG.L86. To change the GENCPM messages,
 you modify the GENMSG.TXT file, copy it to MESG.TXT, copy the
 RASMLIBG.SUB file to RASMLIB.SUB, and then invoke STRIP.

 - The HELP.HLP file can modified as show in the "User's Guide" to change
 the text displayed by HELP.CMD. The messages displayed by the HELP
 utility itself, however, are modified as outlined in this section.

The UTILITY.SUB file on the distribution disks contains the commands to link
the utility object modules and the message libraries to create the utility CMD
files. For example, the SET.CMD file is created with the command from the
UTILITY.SUB file:

 LINK86 SET = SCD2,SET,MESSG1.L86[S],
 MESSG2.L86[S,DATA[ORIGIN[0],MAX[0]]]

The filetype (L86) signals LINK-86 that the MESSG files are libraries. The S
(SEARCH) option specifies to LINK-86 to only include the modules necessary to
resolve external references, and not the entire library. The file SCD2.OBJ is
an interface module between the utilities and CP/M-86 Plus.

EOF

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGI.TXT[2/6/2012 4:40:35 PM]

CPMPIGI.WS4 (= "CP/M-86 Plus Installation Guide", appendix I)

(Edited by Emmanuel ROCHE.)

Appendix I: Files on Distribution Disks

This appendix describes the several sets of files contained in the OEM version
of CP/M-86 Plus:

 - BDOS3.SYS and LBDOS.SYS are binary image files, containing the
 operating system kernel and the loader kernel.

 - The source files used to construct the example BIOS for the CompuPro
 8/16 are the following:

 BIOSKRNL.A86, CHARIO.A86, DISKIO.A86, CLOCK.A86, INIT.A86, SYSDAT.LIB,
 DISK.LIB, CDB.LIB, PIC.LIB

 - RW64.A86 is an example source file not used in the CompuPro BIOS.
 RW64.A86 illustrates Multisector I/O for machines that cannot perform
 disk reads or writes over 64 Kbyte segment boundaries.

 - The following files are also used in BIOS construction (see Section
 9):

 MODEDIT.CMD, GENCPM.CMD, ZERO.L86

 - The following source files are used to construct the example disk boot
 header and loader for the CompuPro 8/16 (see Section 11):

 DSKBOOT.A86, LPROG.A86, LBIOS.A86, TCOPY.A86

 - GENLDR.CMD is used to construct the CPMLDR.SYS file.

 - The following programmer's utilities are provided for system
 implementation:

 RASM86.CMD, LINK86.CMD, LIB86.CMD, XREF86.CMD, SID86.CMD, DDT86.CMD

 - The following files are used to modify the utility messages (see
 Appendix H):

 MESSG1.TXT, MESSG1.L86, MESSG2.TXT, MESSG2.L86, GENMSG.TXT,
 GENMSG.L86, RASMLIB1.SUB, RASMLIB2.SUB, RASMLIBG.SUB, STRIP.A86,
 STRIP.CMD, CMDMESSG.TXT, UTILITY.SUB

 - Several utilities are distributed to the OEM in source form.
 COPYDISK.A86 is written for the CompuPro 8/16, and is intended as an
 example for similar utilities on your hardware. ANYRSX.A86 is an RSX
 that is made part of the example COPYDISK utility (see Section 12).
 DEVICE.PLM is included in source form, since it manipulates the BIOS

file:///C|/...servation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Installation%20Guide/CPMPIGI.TXT[2/6/2012 4:40:35 PM]

 Character Device Blocks in the BIOS. If you define special
 characteristics in the CDB, you can modify DEVICE to display and set
 them. DEVICE is written in PLM, and the OEM must provide a PLM
 development environment, or translate DEVICE to another language.
 DUMP-86 is an example assembly level language program that can be
 distributed to end-users. The CCP.A86 (Console Command Processor) is
 the user interface, or shell. You can rewrite the CCP and replace it,
 if needed. The distributed CCP expects certain files to be on disk and
 accessible through the drive search chain. These files are DIR.CMD,
 ERASE.CMD, RENAME.CMD, TYPE.CMD, GETRSX.RSX, and PUTRSX.RSX.

 - The following utilities are distributed to the OEM in CMD form. The
 OBJ and other files used to create these utilities are also listed.
 Use these files to re-link the utilities after the utility message
 libraries are altered.

 BACK.CMD, BACK.OBJ, BACK49.OBJ, GETF.OBJ, GETRSX.RSX, PUTF.OBJ,
 PUTRSX.RSX
 CCP.CMD, CCP.OBJ
 DATE.CMD, DATE.OBJ
 DEVICE.CMD, DEVICE.OBJ
 DIR.CMD, MAIN.OBJ, DISP.OBJ, SCAN.OBJ, DPB86.OBJ, SEARCH.OBJ,
 SORT.OBJ, TIMEST.OBJ, UTIL.OBJ
 DDT86.CMD (messages cannot be customized)
 DUMP86.CMD
 ED.CMD (messages cannot be customized)
 ERASE.CMD, ERASE.OBJ
 GENCPM.CMD, GENCPM.OBJ, SETBOF.OBJ, GETDEF.OBJ, CRDEF.OBJ, GENDATA.OBJ
 GENRSX.CMD, GENRSX.OBJ
 GET.CMD, GET.OBJ, GETF.OBJ, GETRSX.RSX
 HELP.CMD, HELP.OBJ
 INITDIR.CMD, INITDIR.OBJ, ANYRSX.OBJ, INITDIRA.OBJ, DIOMOD.OBJ,
 PRTMSG.OBJ
 PATCH86.CMD, PATCH86.OBJ
 PIP.CMD, PIP.OBJ, INPOUT.OBJ
 PUT.CMD, PUT.OBJ, PUTF.OBJ, PUTRSX.RSX
 RENAME.CMD, RENAME.OBJ
 SET.CMD, SET.OBJ
 SETDEF.CMD, SETDEF.OBJ
 SHOW.CMD, SHOW.OBJ, SHOWF.OBJ
 STOP.CMD, STOP.OBJ, STOPF.OBJ
 SUBMIT.CMD, SUBMIT.OBJ, GETF.OBJ, SUBRSX.RSX
 TYPE.CMD, TYPE.OBJ

 - The SCD2.OBJ file is an interface module between the utilities and
 CP/M-86 Plus. The HELP.HLP file contains the text for the HELP
 utility. You can modify the file as documented in the "User's Guide".

EOF

	CPMPIG0
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG0.TXT

	CPMPIG1
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG1.TXT

	CPMPIG10
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG10.TXT

	CPMPIG11
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG11.TXT

	CPMPIG12
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG12.TXT

	CPMPIG2
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG2.TXT

	CPMPIG3
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG3.TXT

	CPMPIG4
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG4.TXT

	CPMPIG5
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG5.TXT

	CPMPIG6
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG6.TXT

	CPMPIG7
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG7.TXT

	CPMPIG8
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG8.TXT

	CPMPIG9
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIG9.TXT

	CPMPIGA
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGA.TXT

	CPMPIGB
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGB.TXT

	CPMPIGC
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGC.TXT

	CPMPIGD
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGD.TXT

	CPMPIGE
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGE.TXT

	CPMPIGF
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGF.TXT

	CPMPIGG
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGG.TXT

	CPMPIGH
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGH.TXT

	CPMPIGI
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Installation Guide\CPMPIGI.TXT

