
file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLOGO.TXT[2/6/2012 4:37:16 PM]

DRLOGO.WS4
----------

- "Digital Research's Dr. Logo"
   Gary Kildall & David Thornburg
  "BYTE", June 1983, p.208

(Retyped by Emmanuel ROCHE.)

Logo  for personal computers has been heralded by some as the beginning  of  a 
revolution  in computer languages that promises to be as far reaching  as  the 
introduction of the personal computer itself. Yet, many people think that Logo 
is  not  much  more  than a graphics language for  children.  Adding  to  this 
confusion  is the fact that some commercial implementations of Logo  are  weak 
(somewhat akin to a version of English that contained no adjectives).  Because 
of  the confusion surrounding Logo itself, the appearance of  a  sophisticated 
version  of  this  language on a professional microcomputer such  as  the  IBM 
Personal Computer might be expected to raise some eyebrows. The development of 
a powerful Logo for 16-bit computers such as the IBM PC can change our way  of 
thinking about programming.

In  this article, we will show what makes Logo truly powerful, what it can  be 
used  for,  and how Digital Research's Dr. Logo, with its  powerful  language, 
large  workspace,  and complete program-development environment,  sets  a  new 
benchmark by which to measure the properties of useful computer languages.

To  help  you understand the power of Logo, we will give you  some  background 
about  the  earlier language LISP. LISP, developed more than 20 years  ago  by 
John McCarthy, is overwhelmingly the language of choice for researchers in the 
field of artificial intelligence. Unlike many other languages, LISP lets users 
perform operations on several data types, including numbers, words, and lists. 
A  list  can consist of a collection of words, numbers, or  lists  themselves. 
Because  the  names of LISP primitives or procedures are also words,  one  can 
write LISP programs that automatically generate other LISP programs. It is the 
ability  to  manipulate  this  type of data that gives  LISP  its  name  (LISt 
Processing).

LISP  has  been  used to explore topics as diverse as  image  processing,  the 
analysis  of  natural  language, the computer solution  of  certain  types  of 
"intelligence" tests, and theorem proving. More mundane programs in LISP (such 
as  word  processors) have also been created. Viewed from any angle, it  is  a 
powerhouse of a language.

Dr.  Logo incorporates the list-processing capabilities of LISP with a  syntax 
that  can  be  learned  by children. More than the  utility  (and  beauty  and 
simplicity) of turtle graphics, it is this list-processing capacity that gives 
it so much power.

Other  important characteristics are shared by Logo and LISP. Among  these  is 
the ability to extend the language through the creation of procedures that are 
treated  just as if they were part of the language itself. As with some  FORTH 
devotees, many Logo enthusiasts see themselves as not writing programs, but as 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLOGO.TXT[2/6/2012 4:37:16 PM]

creating  new  "words" in Logo tailored to the solution  of  their  particular 
programming  task. While this may appear to be a subtle distinction, it has  a 
tremendous  effect  on programming style. This style affected  the  design  of 
Digital  Research's Dr. Logo in several ways, especially in the debugging  and 
procedure-management tools.

The power of Dr. Logo
---------------------

Before  showing  what  Logo procedures look like, we will list a  few  of  the 
characteristics of Dr. Logo. To provide maximum power to the user, we designed 
the first implementation of Dr. Logo for the 16-bit IBM Personal Computer. The 
use of a 16-bit processor greatly increased the amount of workspace  available 
to  the user, and also yielded a modest speed improvement over 8-bit  versions 
of the language. A Dr. Logo user with 192K bytes of RAM has about 10,000 nodes 
available  for  use. For comparison, an Apple II user running Apple  Logo  has 
only  about  2800  free  nodes  to work with.  It  goes  without  saying  that 
sophisticated applications require comparably more workspace than simple ones, 
and  it  was  important  to its designers that Dr.  Logo  be  able  to  handle 
sophisticated applications.

In  addition to list processing and turtle graphics primitives, Dr.  Logo  can 
work  with integers (30-bits long, plus a sign) and both single-precision  and 
double-precision   floating-point  numbers.  A  full  set  of   transcendental 
functions  (log,  square  root,  etc.) allows this language  to  be  used  for 
scientific programs as well.

Dr. Logo is a superset of Apple Logo and more than just a language. A complete 
programming environment, it includes its own operating system, program editor, 
debugger,  and  a  set of workspace-management tools  designed  to  speed  the 
successful implementation of even the most convoluted  artificial-intelligence 
program.

The  graphics system is designed to use either the color monitor alone, or  to 
use the color monitor for turtle graphics or mixed text/graphics  applications 
and  the  monochrome monitor for procedure editing, debugging, and  pure  text 
programs. The color display uses the 320- by 200-pixel medium-resolution mode, 
and supports 16 background colors (8 colors that are either bright or dim). It 
also supports 2 foreground color sets of 4 colors each.

A brief glimpse at Logo procedures
----------------------------------

Before  describing the editor and workspace-management tools, we will  examine 
what a Logo procedure looks like by illustrating the creation and manipulation 
of a list. A list in Logo is a collection of words, numbers, or lists that are 
enclosed in square brackets ("[" and "]"). Each item in the list is  separated 
by  a space. For example, [cow horse sheep snake] is a list; so is [1 1 2 3  5 
8].  The  first list consists of the words cow, horse, sheep, and  snake;  the 
second  list consists of the first 6 numbers of the Fibonacci series.  A  more 
complex list would be [car [dump truck] airplane [railroad engine]], in  which 
2  of the elements are words (car and airplane) and 2 elements are lists of  2 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLOGO.TXT[2/6/2012 4:37:16 PM]

words  each  ([dump truck] and [railroad engine]). Also, a list can  have  one 
word in it ([yellow]) or even be empty ([]).

In common with other computer languages, Logo allows values to be assigned  to 
names.  For  example, you can assign a list to a name with the  MAKE  command, 
e.g.:

        make "friends [Pam Roy Pat George]

The  quotation mark (") is used by Logo to indicate that FRIENDS is a word  (a 
variable name in this case) and not a command. If we tell Logo to

        print :friends

we will see

        Pam Roy Pat George

on  the screen. The colon (:) in front of FRIENDS lets Logo know that we  want 
to see what is bound to the variable, rather than the variable name itself. If 
we had entered

        print "friends

we would have seen

        friends

on the screen instead.

You can take lists apart in Logo with commands such as FIRST, BUTFIRST,  LAST, 
and BUTLAST. For example, if we enter

        print first :friends

the screen will show

        Pam

The command

        print butfirst :friends

prints

        Roy Pat George

Now that we know a little about lists, let us explore Logo's extensibility  by 
creating  a  new command in the language. Suppose you did a lot of  work  with 
lists  and you found that you would like to rotate a list by moving its  first 
element to the rear end and pushing everything else up front. We can create  a 
word  (e.g., rotate) to do this for us. If we had such a procedure,  we  could 
make a rotated version of friends by entering



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLOGO.TXT[2/6/2012 4:37:16 PM]

        make "neworder rotate :friends

Because  Logo  does  not  have a primitive called  ROTATE,  we  can  create  a 
procedure with this name that looks like the following:

        to rotate :list
        output sentence butfirst :list first :list
        end

This  procedure accepts a list (denoted by the local variable name :LIST)  and 
makes a new list starting with all but the first word, and then appending  the 
first  word  to  the  end  of the list.  The  SENTENCE  primitive  (or  native 
instruction)  is  used to assemble a list from two parts. The  OUTPUT  command 
passes  the  new  list back out of the procedure to any  procedure  that  used 
ROTATE, or to the command level.

Once  defined,  Logo procedures are treated just as if they were part  of  the 
language's native vocabulary. For example, if you were to enter

        print rotate :friends

the list

        Roy Pat George Pam

would appear on the screen.

Logo's  ability  to  manipulate lists by taking them apart,  adding  to  them, 
examining  their contents, and altering their order is central to the  use  of 
Logo   in  the  creation  of  knowledge-based  programs.  For   an   excellent 
introduction  to the use of lists in the creation of a knowledge  "tree"  that 
"sprouts"  new  nodes as the program gets "smarter," you  should  read  Harold 
Abelson's discussion of the program Animals in his book "Apple Logo".

In addition to the ability to perform list processing and arithmetic, Dr. Logo 
also  supports an excellent turtle graphics environment. While much  has  been 
written  about  turtle graphics, especially on its use with  children,  it  is 
important to understand that turtle graphics is of tremendous value to  expert 
programmers as well. The power of this graphics environment comes through  its 
description  of the shape of an object as a series of incremental  steps  that 
create it. Once a procedure describing an object has been written, the  object 
can be displayed at any screen location, orientation, and size without  having 
to tamper with the basic description. For example, the procedure

        to square :size
        repeat 4 [forward :size right 90]
        end

can be used to create a square at any screen position, angular orientation, or 
size.  To  draw a square at a given place, you first instruct  the  turtle  (a 
cursor  that  has  both position and orientation) to move to  a  specific  x-y 
coordinate  and  heading (angle). Next, you type SQUARE 50, for  instance,  to 
create  a  square with sides 50 units long. This property of  turtle  graphics 
procedures,  coupled  with  Logo's capacity to  run  recursive  programs,  has 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLOGO.TXT[2/6/2012 4:37:16 PM]

allowed the easy exploration of geometrical shapes and their properties.

Logo, turtles, and kids
-----------------------

Anyone  who has watched the personal computer industry for the past few  years 
has  probably  seen  the  evolution  of  certains  myths  regarding   computer 
languages.  Many devotees of BASIC, for example, claim that it is the  optimal 
choice  for  the  home user because of its nearly universal  adoption  as  the 
default  language  for personal computers. The fact that BASIC  was  the  only 
high-level  language  that was readily available in compact form in  the  late 
1970s is not considered to be relevant by many users. Fortunately, the  recent 
availability  of other languages on personal computers (Logo,  Pascal,  Forth, 
and Pilot, to name but a few) has afforded programmers other choices. But some 
of these languages have myths of their own.

In the case of Logo, the common myth is that it is a turtle graphics  language 
designed  to be used exclusively by children. As evidence in support  of  this 
myth,  one is pointed to Seymour Papert's book "Mindstorms." It is  true  that 
Papert  devotes  the  bulk  of his book to the use of  turtle  graphics  as  a 
powerful programming and discovery tool for children, and that he stresses the 
accessibility of Logo to the young and inexperienced.

The  problem with the Logo myth is that it suggests that Logo  is  exclusively 
for children's use. As with many myths, the reality of the situation is  quite 
different.  First,  it  is true that Logo supports turtle  graphics.  In  this 
regard, it is similar to some versions of Pascal, Pilot, and Forth. Note  also 
that,   while  turtle  graphics  is  accessible  to  children,  it  also   has 
applications of value to advanced programmers as well. Anyone who doubts  this 
would  benefit  from  reading "Turtle Geometry" by  Abelson  and  diSessa,  or 
"Discovering Apple Logo" by Thornburg.

The  point  is that Logo is no more a "kid's" language than is  English.  Yes, 
English  is  the  language of "Mary Had a Little Lamb," but  it  is  also  the 
language of "Moby Dick" and Shakespeare's sonnets.

At its base, Logo is a symbol-manipulation language in the finest sense of the 
word.  Rooted  in the artificial-intelligence language LISP, Logo  allows  the 
user  to  extend its vocabulary, to use recursion, and to  manipulate  various 
types of data in ways that are nearly impossible with languages like BASIC.

It  would  be  a  shame if the myth of  Logo  kept  serious  programmers  from 
exploring  a language whose foundation goes to the heart of  computer  science 
itself.

Programming tools
-----------------

Dr.  Logo  provides many tools to assist the programmer.  While  smaller  Logo 
systems  can  adequately survive with a rudimentary procedure  editor,  larger 
Logo  environments  benefit  from some of the extra tools  that  make  program 
analysis  and debugging less tedious. Dr. Logo's procedure editor  allows  the 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLOGO.TXT[2/6/2012 4:37:16 PM]

use  of  both  uppercase  and lowercase letters for  programs  and  data.  Two 
primitives,  UPPERCASE and LOWERCASE, allow the conversion of a word from  one 
case  to the other. Also, procedure listings can be indented to make  decision 
branches  and  nesting easier to see. While not essential to the  creation  of 
good programs, such formatted listings are easier to read.

While Logo's syntax generally makes procedures easy to read, it is valuable to 
have  comments appended to certain program lines. This ability is provided  in 
Dr. Logo, along with the ability to strip these comments from procedures  with 
the NOFORMAT primitive if more workspace is needed. If the name or syntax of a 
Logo primitive or editing command is forgotten, online help is available.

Once  procedures are created, Dr. Logo has several primitives that  help  show 
how  procedures  interact with each other. This is  especially  important  for 
those  Logo  enthusiasts who experiment with several  coexisting  versions  of 
procedures  before settling on the final choices. Most versions of  Logo  will 
print  the names of resident procedures on receiving the POTS commands  (Print 
Out  TitleS). If, in Dr. Logo, you enter POTL, the workspace will be  examined 
for all top-level procedures (those not called by other procedures) and  their 
names  will  be displayed on the screen. If you enter POCALL followed  by  the 
name of a procedure, Dr. Logo will examine the calling structure of the  named 
procedure, and print the names of the procedures used by the one mentioned, as 
well as the names of the procedures used by these secondary procedures, and so 
on  until  the  calling  sequence is complete. This  gives  a  great  deal  of 
information  on  the internal organization of the Logo workspace. If,  on  the 
other  hand, you enter POREF followed by a procedure name, all the  procedures 
that reference this name will be found and displayed.

Many  Logo  programmers create procedures in a haphazard sequence.  Because  a 
listing  of  multiple  procedures  follows the sequence  in  which  they  were 
entered,  large  listings  can be hard to assimilate. By using  the  Dr.  Logo 
FOLLOW  command,  procedures can be resequenced in any  order,  thus  allowing 
large listings to be more easily scanned.

Once  you are ready to try a Logo program, Dr. Logo provides additional  tools 
to assist in debugging. One of these tools allows the text screen to be  split 
into  windows  corresponding to the command level, a user I/O  port,  and  the 
debugger.  The  TRACE  command  traces the procedure,  and  displays  what  is 
happening  and at what level the procedure is, relative to the  top  (command) 
level. Because a single recursive procedure (that calls a copy of itself)  may 
oscillate  through many levels, knowing the level at which an error occurs  is 
helpful when fixing the fault. The command WATCH allows single-step  execution 
of  a procedure, with the ability to change values and see the effect of  each 
statement.

The use of multiple text windows in debugging is only one application for this 
powerful tool. The development of good window-management tools can, by itself, 
increase   the  simplicity,  flexibility,  and  power  of   this   programming 
environment.

Applying Dr. Logo in Education
------------------------------



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLOGO.TXT[2/6/2012 4:37:16 PM]

Perhaps  because  of its historic use as a discovery tool  for  children  (and 
because  of  the typically small workspace found with  most  implementations), 
Logo is not generally perceived as an application language. It is  anticipated 
that Dr. Logo will prove to be an exception in this regard.

The  educational  applications for Logo have typically focused on the  use  of 
turtle graphics. The beauty of turtle graphics is that children simultaneously 
acquire  skills  in  programming, geometry, and art.  Many  children  who  are 
"turned off" by math have discovered it to be an exciting field through  their 
exploration with turtle graphics. Furthermore, it has been found that, once  a 
child  uses Logo to discover new ways of thinking about mathematics, this  new 
way  of thinking continues to produce beneficial results -- even if the  child 
is no longer exposed to Logo.

In the physical sciences, Logo can be used to construct "microworlds" in which 
bodies  obey different natural laws, such as gravitation. By  exploring  these 
artificial  microworlds,  children  can develop better  intuitions  about  the 
properties of their own corner of the universe. (See "Designing Computer-Based 
Microworlds"  by  R.W. Lawler on page 138 of the August 1982 issue  of  "BYTE" 
magazine devoted to Logo.)

Given Logo's powerful list-processing capability, one would expect it to be of 
value  in  the language arts as well. To pick one simple  example,  suppose  a 
child  created several lists called nouns, verbs, adjectives, articles,  etc., 
and  assigned appropriate words to each list. The word order in each list  can 
be  randomized  with  the  SHUFFLE  command, and  a  random  sentence  can  be 
constructed by assembling words from each list in a syntactically valid order. 
Legitimate  nonsense sentences can be automatically generated in this  fashion 
(e.g., No yellow toad smells tall people.) while bringing the child to look at 
and solve the structure of English.

The educational value of this program can be seen on several levels. First, if 
the  child  creates  the lists of words, a misplaced word will show  up  as  a 
misplaced part of speech. Having a verb appear when a noun is expected results 
in  an obviously invalid sentence structure. The result is a  self-reinforcing 
mechanism  for learning the parts of speech. Second, the student can learn  to 
identify  valid sentence forms without sample words (sort of the  reversal  of 
the  traditional  parsing process). This helps to  cement  sentence  structure 
concepts as well. Finally, the student learns some of the challenges  awaiting 
those  who  want  to create natural-language  interfaces  between  people  and 
computers.

Dr. Logo in Business
--------------------

While Logo is not usually thought of as a language for business  applications, 
Dr.  Logo  has several characteristics that may change  this  perception.  The 
creation  of  an  interactive  illustration  generator  using  an  inexpensive 
graphics tablet is quite easy in Dr. Logo.

In  addition to business graphics, the list processing capability of Dr.  Logo 
makes  it  suitable  for  database management. In  fact,  one  might  envision 
incorporating   some   of  the  results  of   research   in   natural-language 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLOGO.TXT[2/6/2012 4:37:16 PM]

understanding  to generate a query system that responds to questions such  as: 
"If we increase our salaries by 10 percent this year and increase our sales by 
20 percent next month, what will our profit be in the fourth quarter?"

There  is  no question that many business applications will be found  for  Dr. 
Logo, but it is premature to set limits on the scope of these applications.

Dr. Logo in Artificial Intelligence
-----------------------------------

There has been much talk lately about knowledge-based or "expert" systems. The 
noble   efforts  of  personal  computer  software   experts   notwithstanding, 
sophisticated microcomputer programs that can adapt to various queries are few 
and far between. The major reason for this is the inadequacy of most  computer 
languages  for  dealing  with  the types of data  and  operations  natural  to 
adaptive systems. Because of Dr. Logo's close connection with LISP, we  expect 
to  see  artificial-intelligence  techniques appearing  in  personal  computer 
software,  rather  than  being  limited to  university  and  large  industrial 
research centers as they have been in the past.

This  movement  is  valuable  for several reasons.  First,  it  will  help  to 
demystify  artificial-intelligence  research. Second, it will  result  in  the 
application  of  advances  in artificial intelligence to  the  development  of 
practical  programs. To pick one example, suppose you had a  computer  program 
(called car repair) that allowed the following dialogue:

User:     I hear noises when I steer the car.
Computer: Do you think the problem is in your steering mechanism?
User:     Yes, I think so.
Computer: Do you have power steering?
User:     Yes.
Computer: Is the noise loudest when you turn the steering wheel?
User:     Yes, but I hear it when the car is idling, too.
Computer: You should check the level of your steering fluid before proceeding.
          Do you know how to do that?
User:     Yes.
Computer: Fine. Check the fluid level. If it is low, fill the reservoir and
          see if the problem is fixed; otherwise, we will continue to explore
          other causes.

Programs that allows this type of interaction can be used for many  diagnostic 
applications,  and might be far more valuable applications for home  computers 
than checkbook balancers or recipe files.

Domestic applications for artificial intelligence represent a sleeping  giant. 
The list-processing capability and large workspace of Dr. Logo will allow this 
giant  to  be awakened, and will enable the creation of a whole new  class  of 
applications software.

Dr.  Logo is the first of a new family of languages that promises not only  to 
change  our programming style, but to alter the way we think  about  computing 
itself.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLOGO.TXT[2/6/2012 4:37:16 PM]

References
----------

Logo:

    1. "Apple Logo"
        Abelson, Harold
        BYTE/McGraw-Hill, 1982

    2. "Turtle Geometry: The Computer as a Medium for Exploring Mathematics"
        Abelson, Harold and Andrea diSessa
        MIT Press, 1981

    3.  Special Logo Issue, BYTE, August 1982

    4. "Mindstorms: Children, Computers, and Powerful Ideas"
        Papert, Seymour
        Basic Books, 1980

    5.  "Discovering  Apple  Logo: An Invitation to the  Art  and  Pattern  of 
Nature"
        Thornburg, David
        Addison-Wesley, 1983

Artificial Intelligence:

    1. "Artificial Intelligence: An Introductory Course"
        Bundy, A., ed.
        North Holland, 1978

    2. "Artificial Intelligence"
        Winston, Patrick
        Addison-Wesley, 1977

LISP:

    1.  Special LISP Issue, BYTE, August 1979

    2. "LISP 1.5 Programmer's Manual"
        McCarthy, John et al.
        MIT Press, 1965

    3. "LISP"
        Winston, Patrick and Berthold Horn
        Addison-Wesley, 1981

Listing
-------

to graphics



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLOGO.TXT[2/6/2012 4:37:16 PM]

;
; A sample business graphics program for bar graphs.
;
make "screen.height 190
make "screen.width 310
make "yfactor .25
make "zfactor .575
make "zdeg 22.5
make "xmin -139
make "xmax 139
make "ymin -79
make "ymax 119
make "return char 13
get.request
end

to get.request
(local "reply "h.or.v "s.or.o "2.or.3)
cleartext
make "reply prompt [Horizontal or vertical bars (h or v)] "char
if :reply = "h
   [make "h.or.v "h]
   [make "h.or.v "v]
if :reply = :return
   [stop]
make "reply prompt [Solid or open bars (s or o)] "char
if :reply = "s
   [make "s.or.o "s]
   [make "s.or.o "o]
if :reply = :return
   [stop]
make "reply prompt [2 or 3 dimensional (2 or 3)] "char
if :reply = 2
   [make "2.or.3 2]
   [make "2.or.3 3]
if :reply = :return
   [stop]
make :reply prompt [Values to be graphed] "list
if "reply = []
   [stop]
bar.graph :h.or.v :s.or.o :2.or.3 :reply
get.request
end

to prompt :text :type
local "reply
(type :text ": char 32)
if :type = "char
   [make "reply readchar print :reply output :reply]
   [output readlist]
end

to bar.graph :h.or.v :s.or.o :2.or.3 :values
cleartext



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLOGO.TXT[2/6/2012 4:37:16 PM]

(local "max.value "min.value "origin "width "depth "axis "reply "graph.width
 "graph.height "proc "spacing)
if emptyp :values
   [stop]
make "max.value 0
make "min.value 999999999
if :h.or.v = "h
   [make "origin list :xmin :ymax
    make "graph.height :screen.width
    make "graph.width :screen.height
    make "axis 90]
if :h.or.v = "v
   [make "origin list :xmin :ymin
    make "graph.height :screen.height
    make "graph.width :screen.width
    make "axis 0]
if :2.or.3 = 2
   [make "spacing (:graph.width / count :values) * :yfactor]
   [make "spacing (:graph.width / count :values) * :zfactor]
if :2.or.3 = 2
   [make "width (:graph.width / count :values) * (1 - :yfactor)]
   [make "width (:graph.width / count :values) * (1 - :zfactor)]
make "depth :width * :zfactor
minmax :values
make "values scale :values :graph.height * .8 / :max.value
cleanup
penup setpos :origin pendown
if :h.or.v = "h
   [line [] list :screen.width ycor]
   [line [] list xcor :screen.height]
penup setpos :origin pendown
draw.bars :axis :width :spacing :2.or.3 :values
splitscreen
setcursor [0 23]
type [Press ENTER to Continue...]
make "reply readchar
end

to minmax :list
if emptyp :list
   [stop]
if first :list > :max.value
   [make "max.value first :list]
if first :list < :min.value
   [make "min.value first :list]
minmax butfirst :list
end

to scale :list :factor
if emptyp :list
   [output []]
output sentence (:factor * first :list)
scale butfirst :list :factor
end



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLOGO.TXT[2/6/2012 4:37:16 PM]

to cleanup
hideturtle
setbg 0
penup
home
clean
pendown
end

to draw.bars :axis :width :spacing :2.or.3 :values
if emptyp :values
   [stop]
setheading :axis
draw.1.bar :s.or.o :2.or.3 first :values :width :depth :zdeg
setheading :axis + 90
forward :spacing + :width
draw.bars :axis :width :spacing :2.or.3 butfirst :values
end

to draw.1.bar :s.or.o :2.or.3 :height :width :depth :zdeg
(local "origin "direction)
make "origin pos
make "direction heading
if :s.or.o = "o
   [make "proc "open.bar]
   [make "proc "solid.bar]
run (list :proc :height :width)
if :2.or.3 = 2
   [stop]
forward :height
right 90 - :zdeg
forward :depth
right :zdeg
forward :width
right 180 - :zdeg
forward :depth
back :depth
left 90 - :zdeg
forward :height
right 90 - :zdeg
forward :depth
penup setpos :origin pendown
setheading :direction
end

to open.bar :height :width
repeat 2
  [forward :height right 90 forward :width right 90]
end

to line :pos1 :pos2
if not emptyp :pos1
   [penup setpos :pos1 pendown]



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLOGO.TXT[2/6/2012 4:37:16 PM]

make "pos1 pos
setheading towards :pos2
forward sqrt sum
  sq ((first :pos1) - (first :pos2))
  sq ((last  :pos1) - (last  :pos2))
end

to sq :num
output :num * :num
end

to solid.bar :height :width
(local "course "origin)
make "course heading
make "origin pos
repeat :width / 2
  [forward :height right 90 forward 1 right 90
   forward :height left 90 penup forward 1 pendown left 90]
if remainder :width / 2 = 1
   [forward :height]
penup setpos :origin pendown
setheading :course
end

EOF



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM0.TXT[2/6/2012 4:37:17 PM]

DRLRM0.WS4      (= "Dr. Logo Reference Manual", Foreword)
----------

Dr. Logo
Language
Reference Manual
for the IBM Personal Computer

First Edition: August 1983

(Retyped by Emmanuel ROCHE.)

Foreword
--------

Welcome  to  the  world  of Logo programming. Logo can  help  you  grow  as  a 
programmer,  whether or not you have ever programmed before, even if  you  are 
experienced with several programming languages. Digital Research has  designed 
this version of Logo especially for your IBM Personal Computer.

What is Logo?
-------------

Logo  is  a powerful programming language that is rapidly  gaining  popularity 
because it is easy to learn and use. You use procedures as building blocks  to 
create  Logo  programs.  Logo itself is a  collection  of  procedures,  called 
"primitives", that you use to build your own programs.

During  the 1970s, a team of computer scientists and educators at  MIT,  under 
the direction of Seymour Papert, developed Logo with turtle graphics to  allow 
very  young children to program and use a computer. They developed the  turtle 
so that young learners could have, as Papert says, "an object to think  with", 
a tool to help them learn in new ways.

The  original  Logo evolved in part from the LISP programming  language.  LISP 
dominates artificial intelligence programming because of its powerful symbolic 
and list processing capabilities. Logo too is a symbolic language, as  opposed 
to  an  algebraic  language  like BASIC, COBOL, or  FORTRAN.  Because  of  its 
symbolic  powers,  Logo  has strong potential to  be  used  for  sophisticated 
application and artificial intelligence programming.

Logo  has evolved into a philosophy of education and a family  of  programming 
languages  that  supports  the  Logo philosophy on  many  different  kinds  of 
computers.  However,  implementations  of Logo for  the  first  generation  of 
personal   computers  were  limited  by  the  amount  of  memory  that   8-bit 
microprocessors can address. These implementations focused on the  educational 
aspects of Logo, mainly turtle graphics, and were not suitable for  commercial 
or   academic  programming.  Dr.  Logo  greatly  expands  Logo's   application 
potential.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM0.TXT[2/6/2012 4:37:17 PM]

What is special about Dr. Logo?
-------------------------------

Dr.  Logo  is  the  first  implementation of  Logo  designed  for  the  second 
generation  of  personal computers, such as your IBM  Personal  Computer.  The 
second  generation, 16-bit microprocessors can address more than  one  hundred 
times  more  memory  than their 8-bit predecessors. Dr. Logo  helps  you  take 
advantage  of  the additional memory by providing greater workspace  for  your 
procedures,   and  additional  workspace  management,   cross-reference,   and 
debugging commands.

What do I need to run Dr. Logo?
-------------------------------

You must have at least an IBM Personal Computer with 192K of memory, one  disk 
drive,  a color/graphics monitor adapter, and a color monitor. Of course,  Dr. 
Logo's  performance in enhanced if you have 256K or more of memory,  a  second 
disk drive, and a second monitor. The two-display system requires a monochrome 
adapter  card and a monochrome monitor. When you have two displays  available, 
Dr.  Logo  displays text on the monochrome monitor and graphics on  the  color 
monitor. Your IBM Personal Computer "Guide to Operations" tells how to install 
and  set  switches for the additional adapter card and monitor. Dr.  Logo  can 
print your graphic displays on any Epson printer that has the graphics option.

How should I use this book?
---------------------------

This  book  is  a  reference manual for Dr.  Logo.  Its  organization  follows 
traditions established by the manuals for many computer languages. If Dr. Logo 
is  your  first  computer language, the organization might  not  be  what  you 
expect!

You  might  expect,  if  you  asked  someone  for  directions  to  the   local 
supermarket,  an  answer like: "Go three blocks to the  next  stoplight,  turn 
right,  go another two blocks, and it is on the left side of the street."  You 
would  be  very surprised if all you received was a map of the  town  and  the 
store's address!

This  book is like the map in that it contains more information than you  will 
probably  ever use, including information that you can find nowhere  else.  It 
can  help  you  explore all of Dr. Logo, but it is not a guided  tour  of  the 
highlights!  If  you  want  a guided tour, read a book  that  is  designed  to 
introduce  you to Logo. This book is designed to define Dr. Logo's  primitives 
and programming environment in detail.

It  is  possible, of course, to explore Dr. Logo with this book as  your  only 
guide.  To  do  this,  begin by turning to the END of  the  book  and  reading 
Appendix  E, "Getting Started". In just a few pages, it tells you how to  turn 
on  your computer, insert your Dr. Logo system disk, start Dr. Logo, create  a 
procedure,  save  it, erase it, restore it, and turn off your  computer.  Like 
many programming language manuals, this book begins by describing the smallest 
element  of Dr. Logo, a character, and develops in following sections  how  to 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM0.TXT[2/6/2012 4:37:17 PM]

build words, expressions, and procedures from these elements.

Information in this book is arranged both functionally and alphabetically.  If 
you know what you want to do (for example, use the printer or draw a picture), 
you  can find a list of all the related primitives in Appendix C,  "Functional 
Command List", and background information on how they work in one of the first 
five  sections.  Section  6,  "References to  Primitives",  gives  a  detailed 
description of each primitive in alphabetical order.

If  you  are new to computers, you might find some of the  details  confusing. 
Hang in there! As you spend time programming with Dr. Logo, you will find  not 
only  that  the details make sense, but that many of them help  simplify  your 
programming tasks.

Table of Contents
-----------------

(To be done by WS4...)

Appendixes
----------

(Idem)

Tables and Figures
------------------

Tables
------

(Idem)

Figures
-------

(Idem)

EOF



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM1.TXT[2/6/2012 4:37:17 PM]

DRLRM1.WS4      (= "Dr. Logo Reference Manual", Section 1)
----------

(Retyped by Emmanuel ROCHE.)

Section 1: Components of Dr. Logo
---------------------------------

A  procedure is an action that Dr. Logo can do. A Logo program is made  up  of 
procedures. You will probably start by writing one-procedure programs, but you 
will  build your first procedures out of procedures that come with  Dr.  Logo, 
called "Dr. Logo primitives". Later, you will use the procedures that you have 
written, as well as Dr. Logo primitives, to build complex programs. Procedures 
are the basic building blocks for programming with Dr. Logo.

A  procedure  is  made  up of expressions. An  expression  has  two  parts:  a 
procedure  name  and inputs to the procedure. That is why you  need  Dr.  Logo 
primitives to build your first procedure. To Dr. Logo, everything you type  is 
either a procedure name or an input to a procedure.

Although  you can build a procedure out of many expressions, you can also  ask 
Dr.  Logo to evaluate expressions one at a time by entering them  individually 
to  the ? prompt, which is sometimes called the interpreter or  toplevel.  For 
example,

        ?print "Salutations!
        Salutations!

In  this  example, print "Salutations! is an expression.  The  procedure  name 
"print" identifies a Logo primitive that displays its input, Salutations!,  on 
the screen. As in all examples in this book, the line following "?" shows what 
the  user types at the keyboard. After you type a line at toplevel,  you  must 
press  the Enter key, <--+, to tell Dr. Logo that you want the expressions  on 
the line evaluated.

A  procedure  can  require a certain number and kind of  inputs.  Input  to  a 
procedure  can be words, numbers, or lists. This section formally defines  how 
to put characters together to form procedure names, words, numbers, and lists, 
so that you can combine them into expressions. Then, it tells you how Dr. Logo 
evaluates a line when you put more than one expression on it.

1.1 Dr. Logo character set
--------------------------

To  build a procedure name or word, you can use almost any character  on  your 
keyboard,  including upper- and lowercase letters, numerals, and symbols.  For 
example

        box1
        box2
        RobinNest



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM1.TXT[2/6/2012 4:37:17 PM]

        draw&go

However, Logo gives special meaning to certain characters. For example,  blank 
spaces delimit words or numbers; a blank space before and a blank space  after 
a  word  set  the word off from the rest of the line.  The  following  special 
characters are also Logo delimiters:

Table 1-1. Dr. Logo special characters

Character     Type      Action/use
---------  ----------   ----------
    [                   Begins a list
    ]                   Ends a list
    (                   Begins a grouped expression
    )                   Ends a grouped expression
    ;                   Begins comments
    =       logical     Equal infix operation, outputs TRUE or FALSE
    <       logical     Less-than infix operation, outputs TRUE or FALSE
    >       logical     Greater-than infix operation, outputs TRUE or FALSE
    +      arithmetic   Addition prefix operation,
                          outputs sum of inputs.
    -      arithmetic   Subtraction infix operation,
                          outputs difference of two inputs.
    *      arithmetic   Multiplication infix operation,
                          outputs product of inputs.
    /      arithmetic   Division infix operation,
                          outputs quotient of inputs.
    ^      arithmetic   Exponent infix operation,
                          outputs first input number raised to
                          the second input power.

When you use a delimiter in an expression, you do not need to precede it  with 
a  blank  to  set  it off from the rest of the line.  Whenever  one  of  these 
characters  appears,  Dr.  Logo assumes that it starts a new  word  or  number 
separate from anything else on the line. This simplifies typing expressions in 
many cases, such as

        256+1026

but complicates using these characters in situations other than those that Dr. 
Logo expects. For example, if you try to use a dash as a hyphen (instead of  a 
minus sign), you might see Dr. Logo add unwanted spaces:

        ?print [high-resolution turtle graphics]
        high - resolution turtle graphics

To  tell  Logo  that you want it to treat a delimiter as a  part  of  a  word, 
precede  the  special  character with a backslash ("\")  called  "the  quoting 
character" by Dr. Logo, which generates it when you type Ctrl-Q.

        ?print [high\-resolution turtle graphics]
        high-resolution turtle graphics

Dr.  Logo recognizes other special characters called "control  characters"  as 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM1.TXT[2/6/2012 4:37:17 PM]

commands.  Control characters can edit a procedure, interrupt and terminate  a 
procedure,  and  change between full text, full  graphics,  and  splitscreens. 
Section  3,  "Editing Commands", and Section 4, "Text  and  Graphic  Screens", 
describe Dr. Logo control characters.

1.2 Logo objects
----------------

A  Logo procedure can require a specific number and kind of inputs to  perform 
its task. The required input can be one or more words, lists, or numbers. When 
a  procedure  requires  any one of these, we say that it can  accept  a  "Logo 
object",  meaning  that it needs a word, a list, or a number to  complete  its 
operation.  To make your procedures more flexible, you can  represent  objects 
with  names called "variables". This section describes words, lists,  numbers, 
and variables.

1.2.1 Words
-----------

A  Logo word is a group of one or more consecutive characters  separated  from 
other  characters  on the line by delimiters. A blank space separates  a  word 
from  the  rest  of the characters that follow it on the  line.  You  can  use 
periods (".") or underbars ("_") as connectors to make Dr. Logo treat  several 
words as one word, as in the following example:

        ?print "choc.chip
        choc.chip
        ?print "oatmeal_raisin
        oatmeal_raisin

In  English,  a sentence is composed of words called "verbs" and  "nouns".  In 
Logo,  an  expression  is  composed of  words  called  "procedure  names"  and 
"inputs",  which  can be other names. Dr. Logo needs a way to  distinguish  an 
input  name  (noun)  from a procedure name (verb). So, when you  type  a  Logo 
expression,  you  must precede an input name with quotes ("). If you  do  not, 
Logo complains. For example,

        ?print "hi_there
        hi_there
        ?print hi_there
        I don't know how to hi_there

Although quotes have this special meaning at the beginning of a word, they are 
not  a delimiter, and can be use as a normal character within a word.  Do  not 
use quotes at the beginning of a word, except for this reason. Dr. Logo has  a 
special primitive, quote, that has the same effect as quotes.

        ?print quote hi_there
        hi_there

Other  Dr. Logo primitives can examine a word character by character,  take  a 
word apart, and put a word together. When manipulating a word in one of  these 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM1.TXT[2/6/2012 4:37:17 PM]

ways, Logo treats a character in a word as a one-letter word. For example,

        ?first "zebra
        z
        ?first first "zebra
        z
        ?first "z
        z
        ?butfirst "atypical
        typical
        ?last "rough
        h
        ?butlast "dates
        date
        ?word "R2 "D2
        R2D2

As  mentioned in Section 1.1, "Dr. Logo character set", you can tell Dr.  Logo 
that  you  want  to  use a delimiter character in  a  word  by  preceding  the 
delimiter  with  a backslash ("\"). However, if a delimiter character  is  the 
first  character in the word, and the word is preceded by quotes ("), in  most 
cases you do not have to put a backslash between the quotes and the  delimiter 
character.

        ?"+more
        +more
        ?ascii "*
        43

However,  blank  spaces  and  square brackets ("[" and  "]")  are  treated  as 
delimiters,  even  when preceded by quotes ("). Use a  backslash  ("\")  after 
quotes  (")  to  tell Logo to treat a space or square  brackets  as  a  normal 
character.

        ?ascii "[
        ascii doesn't like an empty word as input
        ?ascii "\[
        93

The Dr. Logo primitive "readquote" (or "rq") creates a word that contains  all 
the  characters  in  a  line  typed at the  keyboard.  If  the  line  contains 
delimiters,  readquote inserts backslant characters in front of each  one,  to 
make  the line one word. You can use readquote to create a command line for  a 
function  key  to  recall; fkey requires a word as input.  See  the  following 
example.

        ?fkey 2 rq
        setd "b: resetd
        ?setd "b: resetd <Ctrl-G> <Enter>

1.2.2 Lists
-----------



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM1.TXT[2/6/2012 4:37:17 PM]

A  literal list is a series of Logo objects enclosed in square  brackets  ("[" 
and "]"). You can create a list without square brackets by using the "list" or 
"sentence"  primitive.  Each  element of a list can be a word,  a  number,  or 
another  list.  Within  the list, objects are delimited from  one  another  by 
spaces. Dr. Logo treats every object in a literal list as a literal object, so 
you  do  not need to put quotes in front of a word included within  a  literal 
list. The following are valid literal lists:

        [Salutations!]
        [L M N]
        [[bread butter] [soup sandwich] [cheese crackers]]
        [10 20 [22 25] 30]

The following examples show how to create a list using "sentence" and "list":

        ?list "L "M "N
        [L M N]
        ?sentence [I like] "hamburgers
        [I like hamburgers]

The same Logo primitives that manipulate elements of words manipulate elements 
of lists.

        ?butfirst [not really]
        [really]
        ?butlast [not really]
        [not]
        ?fput 5 [10 20 [22 25] 30]
        [5 10 20 [22 25] 30]

After  the fput expression is executed, the list above has five elements,  the 
fourth  of which is a list. The following example shows how to count  elements 
of lists within lists:

        ?count [5 10 20 [22 25] 30]
        5
        ?count item 4 [5 10 20 [22 25] 30]
        2

The following table compares the four primitives that can take two objects  as 
input and output a word or list.

Table 1-2. Comparison of list primitives

Primitive       Input 1         Input 2         Output
---------       -------         -------         ------
list            "yellow         "green          [yellow green]
sentence        "yellow         "green          [yellow green]
fput            "yellow         "green          "yellowgreen
lput            "yellow         "green          "greenyellow

list            "sky            [is blue]       [sky [is blue]]
sentence        "sky            [is blue]       [sky is blue]
fput            "sky            [is blue]       [sky is blue]



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM1.TXT[2/6/2012 4:37:17 PM]

lput            "sky            [is blue]       [is blue sky]

list            [say hello]     [to me]         [[say hello] [to me]]
sentence        [say hello]     [to me]         [say hello to me]
fput            [say hello]     [to me]         [[say hello] to me]
lput            [say hello]     [to me]         [to me [say hello]]

list            [hello]         []              [[hello] []]
sentence        [hello]         []              [hello]
fput            [hello]         []              [[hello]]
lput            [hello]         []              [[hello]]

1.2.3 Numbers
-------------

A  number is one or more numerals separated from other characters on the  line 
by spaces or other delimiters. A number is a kind of word, but you do not have 
to  put  quotes  (")  in front of a number, unless you want to  use  it  as  a 
variable  name.  Dr.  Logo does not try to treat a word  that  starts  with  a 
numeral  as  a  procedure name. In fact, Dr. Logo will not let  you  define  a 
procedure name that starts with a numeral.

A  number  can contain a + or - to indicate sign. But, because  these  special 
characters are delimiters and arithmetic operators as well as signs, you might 
accidentally  combine  two numbers into one expression. To prevent  this,  Dr. 
Logo  interprets  spaces  and numbers combined with  arithmetic  operators  as 
follows:

        5-2     is interpreted as 3.

        5 - 2   is also interpreted as 3. However,

        5 -2    is interpreted as two numbers: 5 and -2.

Dr.  Logo  uses two kinds of numbers: integers and decimal  numbers.  You  can 
input  negative or positive decimal numbers with up to 15 significant  digits, 
and any integer between 2147483647 and -2147483648.

Most arithmetic operations can accept either an integer or a decimal number as 
input. Some take integers as input, but output a decimal number.

        ?13 / 7
        1.85714285714286

Dr. Logo supports primitives that convert decimal numbers to integers,  create 
exponential  and  random numbers, and perform  trigonometric  and  logarithmic 
functions.  Internally,  Dr.  Logo  uses  both  single-  and  double-precision 
integers and floating-point numbers. Dr. Logo always uses double-precision for 
calculations, but converts numbers to single-precision for display or  storage 
when accuracy to 15 places is not compromised. Internally, numbers are  stored 
in  IEEE standard 64-bit format, in the dynamic range 10 to the power of  -308 
to 10 to the power of +308.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM1.TXT[2/6/2012 4:37:17 PM]

In  the world of mathematics, there are numbers that cannot be represented  by 
numerals.  Dr. Logo outputs special words that represent these  numbers:  +INF 
represents the positive infinite number, -INF represents the negative infinite 
number,  and NAN represents "not a number" for any mysterious entity  that  is 
not a number at all.

        ?1/0
        +INF
        ?-1/0
        -INF
        ?0/0
        NAN

1.2.4 Variables
---------------

A  variable  is a "container" that holds a Logo object. A  container  in  your 
kitchen labeled "Cookie Jar" might contain chocolate chip, peanut butter, some 
other kind of cookies, or no cookies at all. In Dr. Logo, a variable can  have 
any name you give it, and contain any object -- word, number, or list. Here is 
the simplest way to create a variable:

        ?make "favorites [choc.chip peanut.but !
        oatmeal.raisin cream.fill brownie pinwh!
        eel shortbread snickerdoodle]

After  the  make expression is executed, the long list of cookie types  has  a 
name: "favorites.

Referring to an object by a variable name lets you write an expression that is 
independent of the object it manipulates. For example, the person  responsible 
for keeping the cookie jar filled could enter:

        ?if emptyp :cookie.jar [make "cookie.ja!
        r first shuffle :favorites]

which means, if the cookie jar is empty, put the first kind of cookie from the 
shuffled list of favorites into the cookie jar.

Because  Logo programmers use variables frequently, they use several terms  to 
describe  the  relationship between a variable's name and  its  contents.  For 
example,  if  the  make expression puts snickerdoodle in  cookie.jar,  a  Logo 
programmer might describe the relationship in any or all of these ways:

        - cookie.jar is a variable, snickerdoodle is its value
        - cookie.jar is the name of snickerdoodle
        - cookie.jar contains snickerdoodle
        - cookie.jar is bound to snickerdoodle

        - snickerdoodle is the "thing" of cookie.jar
        - snickerdoodle is the contents of cookie.jar
        - snickerdoodle is the value of cookie.jar



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM1.TXT[2/6/2012 4:37:17 PM]

There are two ways to reference the contents of a variable:

        ?thing "cookie.jar
        snickerdoodle
        ?:cookie.jar
        snickerdoodle

A colon (":") before a variable name makes Dr. Logo reference the contents  of 
the variable, instead of treating the variable name as a word.

No matter how you think of variables, remember that you can use a variable  in 
an  expression  without  being concerned about the  variable's  actual  value. 
Variables  help  you write expressions that are independent of the  data  they 
manipulate.  Section 2, "Working with Procedures", tells how to use  variables 
within procedures.

1.3 Lines and expressions
-------------------------

You can put as many expressions on a line as you wish, but a line at  toplevel 
cannot contain more than 132 characters.

In  general, Dr. Logo evaluates expressions on a line from left to  right.  It 
treats  everything, including other expressions, to the right of  a  primitive 
name  or  identifier as input to that primitive if the primitive  requires  an 
input.

        ?random 10 > 5
        random doesn't like TRUE as input
        ?5 > random 10
        FALSE

However, Dr. Logo does not evaluate arithmetic expressions in strict  left-to-
right order. It evaluates / and * expressions first, from left to right,  then 
goes back and evaluates + or - expressions.

        ?2 * 3 + 7 / 5
        7.4

To  make  Dr. Logo evaluate expressions in a different order,  you  can  group 
expressions in parentheses ["(" and ")"]. Dr. Logo evaluates the expression in 
the  innermost parentheses first. The order in which Dr. Logo  evaluates  your 
expression can make a big difference in the output!

        ?(random 10) > 5
        FALSE
        ?2*(3+7)/5
        4

EOF



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM2.TXT[2/6/2012 4:37:18 PM]

DRLRM2.WS4      (= "Dr. Logo Reference Manual", Section 2)
----------

(Retyped by Emmanuel ROCHE.)

Section 2: Working with procedures
----------------------------------

This section discusses several aspects of working with Dr. Logo procedures. It 
tells  how  to  construct a procedure and give it  multiple  inputs.  It  also 
describes how Dr. Logo keeps track of executing procedures.

2.1 Constructing procedures
---------------------------

The following sections describe how to put a procedure together: how to define 
it,  how  to make it readable, and how to use a variable to  pass  information 
between procedures and make a procedure require an input.

2.1.1 Naming and defining procedures
------------------------------------

To define a procedure is to teach Dr. Logo a new verb, that is to say, to tell 
Dr.  Logo how to do a new thing. You teach Dr. Logo a new verb  by  describing 
the new activity with primitives and other words Dr. Logo already know or will 
know before you execute the procedure. For example, Dr. Logo knows  primitives 
that  make  the  turtle  go  forward, repeat,  and  turn  right.  Using  these 
primitives, you can describe how to draw a square, and use that description to 
define a new procedure.

The simplest way to define a new procedure is to begin a line with the special 
word  "to",  which  makes Dr. Logo remember the next word you type  as  a  new 
procedure name. Your procedure name should tell what your procedure does,  and 
can start with any character, except a numeral. Dr. Logo will complain if  you 
try  to use the name of a primitive as a procedure name, unless you  have  set 
the system variable REDEFP to TRUE. When you start a line with "to", Dr.  Logo 
gives  you  a  new prompt character, >, to tell you it  will  not  immediately 
execute the instructions that you enter to define the new procedure.

        ?to square
        >repeat 4 [forward 60 right 90]
        >end
        square defined
        ?

The  special  word "end" tells Dr. Logo that you have finished  defining  your 
procedure, and returns you to the ? prompt. You must enter "end" by itself  as 
the last line of a procedure. Now that "square" is defined, you can use square 
as  a procedure name, as follows. Also see Colorplate 23 at the  beginning  of 
Section 6, "References to Primitives".



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM2.TXT[2/6/2012 4:37:18 PM]

        ?square

Logo programmers use terms similar to those they use for variables to describe 
the  relationship of a procedure and its definition. Here is how  these  terms 
apply to the procedure just defined:

        - "to square" is the title line of square
        - square is the name of [repeat 4 [forward 60 right 90]]
        - [repeat 4 [forward 60 right 90]] is the definition of square
        - [repeat 4 [forward 60 right 90]] is the body of square

The body of a procedure is a special kind of list: a list of expressions. This 
list can contain as many expressions as you want, or it can be an empty  list. 
Because Dr. Logo treats the definition of a procedure as a list, you can write 
a procedure that first combines expressions into a list, and then defines this 
list as the body of a new procedure. The description of the "define" primitive 
in  Section 6, "References to Primitives", tells how one procedure can  define 
another.

You can use the Dr. Logo screen editor to modify your procedures' definitions. 
When  you  use the editor, you can change the body of a procedure, add  a  new 
procedure,  or change the title line of an existing procedure. When  you  exit 
the editor, the new or changed procedures are defined, replacing any  previous 
definitions  for  those  names. The descriptions of the ed,  edall,  and  edps 
primitives in Section 6 tells how to load procedures into the Dr. Logo editor. 
Section 3, "Editing Commands", tells how to use the editor.

2.1.2 Writing readable procedures
---------------------------------

All  programmers  want  to make their procedures as readable  as  possible.  A 
readable  procedure  is a distinct advantage when you try to share  your  work 
with friends, or try to use a procedure several months after writing it.

Two  traditional tools that make a program readable are short  procedures  and 
long names for procedures and variables. In general, short procedures are more 
readable than long ones. Short procedures are easier to understand, test,  and 
combine  with  other procedures. Long procedure and variable  names  can  help 
describe  the  purpose  and  function  of procedures,  or  the  kind  of  data 
represented  by variables. However, long names take up valuable memory  space, 
so  you  might have to shorten your names if you write a  large  program  that 
needs all your workspace.

Dr.  Logo gives you special help in writing readable procedures. For  example, 
Dr. Logo lets you break long expressions into two or more lines. Generally,  a 
line  in a procedure is a single expression: a procedure name and its  inputs. 
However, some procedures need complex inputs, such as lists of instructions or 
predicate  expressions.  This kind of line can grow so long  that  it  becomes 
difficult  to  read.  For  example, an "if"  command  with  a  long  predicate 
expression  and  two instructions lists can easily exceed the  width  of  your 
display.  When  this happens, Dr. Logo prints an exclamation point  ("!")  and 
displays the remainder of the command on the next line.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM2.TXT[2/6/2012 4:37:18 PM]

        ?to check.for.favorites
        >if memberp :cookie.jar :favorites (pr !
        [edible cookies available] (pr [forget !
        it!])
        >end
        check.for.favorites defined

You  can clean up your procedure's appearance by breaking the long  expression 
into several lines. If you press the Enter key and begin the next line with  a 
space  or  a  tab,  Dr. Logo treats the new line  as  a  continuation  of  the 
expression on the previous line.

        ?to check.for.favorites
        >if memberp :cookie.jar :favorites
           [pr [edible cookies available]]
           [pr [forget it!]]
        >end
        check.for.favorites defined

Dr. Logo also lets you put comments in your procedures. A comment is text that 
Dr. Logo ignores and does not try to evaluate or execute. You can use comments 
to  describe  the function or purpose of a procedure or  expression.  You  can 
start a comment at the beginning of a line or after the last expression on the 
line, but a comment must be the last object on the line. Start a comment  with 
a semicolon (";"), as shown in the following example. Also see Colorplate 3.

        ?to triangle  ; Draw an equilateral tri!
        angle
        >repeat 3 [forward 20 right 120]
        >end
        triangle defined
        ?to flag
        >fd 40
        >triangle
        >back 40  ; Return to original position
        >end
        flag defined

Comments  take  up  space, but if space becomes a problem,  you  can  use  the 
"noformat" primitive to remove comments from your workspace.

2.1.3 Using variables in procedures
-----------------------------------

Variables have special capabilities within a procedure. You can use  variables 
to define inputs to a procedure, and to pass information between procedures.

In  general,  it is not good programming practice to bury  constants  in  your 
procedures. In the following procedure, 40 is a constant:

        ?to flag
        >forward 40



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM2.TXT[2/6/2012 4:37:18 PM]

        >triangle
        >back 40
        >end
        flag defined

Constants  do  not mean much to someone who reads your  procedure  later.  And 
because  they might appear on more than one line, constants are  difficult  to 
change  systematically. Using variables instead of constants  simplifies  your 
procedures. A variable name can tell a person reading your procedure something 
about  the data object. And to change the data, you need change only the  make 
expression.

        ?to flag
        >make "pole 40
        >forward :pole
        >triangle
        >back :pole
        >end
        flag defined

To  simplify  your  procedure  even  further, you can  use  a  variable  on  a 
procedure's title line to define an input.

        ?to flag :pole
        >forward :pole
        >triangle
        >back :pole
        >end
        flag defined

A variable on the title line makes your procedure require an input. When  your 
procedure  is called, Dr. Logo defines a variable that has the name  given  on 
the  title  line. The variable's value is the input object. If  no  object  is 
input, Dr. Logo complains.

        ?flag
        Not enough inputs to flag
        ?flag 80
        ?flag 40

When  you  give your procedure a variable name as input, Dr.  Logo  gives  the 
contents of the variable to your procedure.

        ?make "big 80
        ?make "small 40
        ?flag :big
        ?flag :small

The next few paragraphs tell how Dr. Logo keeps track of variable definitions. 
At toplevel, Dr. Logo assigns values to variable names in your workspace.  You 
define variables with make and name expressions directly to the  interpreter's 
? prompt. These are called "global variables".

Dr.  Logo  keeps  track  of  variables defined by  each  procedure  as  it  is 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM2.TXT[2/6/2012 4:37:18 PM]

executing.  These are the variables your procedure defines in the  title  line 
and  with make expressions. Different procedures can have variables that  have 
the  same  name. Logo programmers sometimes say that variables  defined  by  a 
procedure  are  "bound" to their values by that procedure. See  the  following 
example.

        ?make "cookie.jar "snickerdoodle
        ?to look.in :cookie.jar
        >print :cookie.jar
        >end
        look.in defined
        ?:cookie.jar
        snickerdoodle
        ?look.in "brownie
        brownie
        ?:cookie.jar
        snickerdoodle

You  can  use  a  variable  in your procedure that  is  not  defined  by  your 
procedure.  At  execution time, if the procedure has been  called  by  another 
procedure,  Dr.  Logo  looks  to see if  the  calling  procedure  defined  the 
variable.  If it finds a definition, it does not look any further. If it  does 
not  find  a definition, it searches up the levels of  calling  procedures  to 
toplevel before it complains that the variable is undefined.

Because Dr. Logo searches variable bindings this way, you can use variables to 
pass  information between procedures. Usually, the exchange happens this  way: 
the called procedure accesses a variable defined by the calling procedure.  It 
changes  the definition of the variable, then returns control to  the  calling 
procedure.  The  calling  procedure can then use the  information  the  called 
procedure stored in the changed variable.

The  "local" primitive can hide a variable from Dr. Logo's search. If  calling 
and called procedures are using variables of the same name, as is  unavoidably 
the  case  when  a procedure calls itself, a local expression  in  the  called 
procedure  prevents  it  from altering the calling procedure's  value  of  the 
variable. An input to a procedure is always local to the procedure.

        ?to peek.in :cookie.jar
        >(print "cookie.jar "contains :cookie.j!
        ar
        >look.again
        >end
        peek.in defined
        ?to look.again
        >; cookie.jar not defined here,
        >; just used!
        >(print [cookie.jar still contains] :co!
        okie.jar
        >end
        look.again defined
        ?peek.in "sugar
        cookie.jar contains sugar
        cookie.jar still contains sugar



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM2.TXT[2/6/2012 4:37:18 PM]

        ?to peer.in
        >local "cookie.jar
        >make "cookie.jar "choc.chip
        >(print [cookie.jar contains] :cookie.j!
        ar
        >look.again
        >end
        peer.in defined
        ?ern "cookie.jar
        ?:cookie.jar
        cookie.jar has no value
        ?peer.in
        cookie.jar contains choc.chip
        cookie.jar still contains choc.chip
        ?look.again
        cookie.jar still contains              !
        cookie.jar has no value in look.again: !
        (print [cookie.jar still contains] :co !
        okie.jar

2.2 Giving inputs to procedures
-------------------------------

You  can use one or more variables in the title line of a procedure to  define 
inputs to the procedure. Because of this, procedures you define always have  a 
fixed number of inputs.

Most  primitives also require a fixed number of input objects.  However,  some 
primitives  can  accept  a variable number of inputs when  the  expression  is 
enclosed  in parentheses ["(" and ")"]. Without parentheses, these  primitives 
normally  require  two  inputs. With parentheses, they accept  more  or  fewer 
inputs than are normally required, as shown in the following example.

        ?(word "sum "mer "sun "shine)
        summersunshine
        ?list : favorites
        Not enough inputs to list
        ?(list :favorites)
        [[choc.chip peanut.but oatmeal.raisin !
        cream.fill brownie pinwheel shortbread!
        snickerdoodle]]

Most procedures expect a certain kind of input. When you input something to  a 
procedure,  it  is simply an object, and the variable name is  its  container. 
What  the  procedure does with the object determines what kind  of  object  is 
required.  In  fact,  a  procedure  executes  normally  until  it  reaches  an 
expression  that  requires a different kind of input than  was  supplied.  For 
example,  if a procedure requires a number as input, it will not know what  to 
do  with  a  word,  and Dr. Logo complains.  See  the  following  example  and 
Colorplate 36.

        ?to pentagon :size
        >pr [The five angles of a pentagon]



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM2.TXT[2/6/2012 4:37:18 PM]

        >pr [equal 360 / 5 or 72 degrees.]
        >repeat 5 [fd :size rt 72]
        >end
        pentagon defined
        ?pentagon 40
        The five angles of a pentagon
        equal 360 / 5 or 72 degrees.
        ?pentagon "forty
        The five angles of a pentagon
        equal 360 / 5 or 72 degrees.
        fd doesn't like forty as input in pent!
        agon: repeat 5 [fd :size rt 72]

As  you write procedures that take words and numbers apart and then  put  them 
back together, you might create a quoted number such as "123. In general,  Dr. 
Logo accepts a quoted number anywhere an unquoted number is expected. It  also 
accepts  an  unquoted number where a quoted word is expected. For  example,  a 
primitive that expects numbers as input accepts quoted numbers.

        ?sum "53 "42
        95

A primitive that expects a word or list as input accepts unquoted numbers.

        ?first 9876
        9

One  exception  is the "ascii" primitive. It requires a  quoted  character  as 
input. "ascii" does not distinguish among numerals, letters, and symbols.

        ?ascii "2
        50
        ?ascii 2
        ascii doesn't like 2 as input

2.3 Classifying procedures
--------------------------

All  procedures  operate the same way. You use them by following  a  procedure 
name with inputs in an expression. However, Logo programmers sometimes find it 
convenient  to classify procedures, that is to say, to group  procedures  that 
have something in common together and give the group a name. For example,  the 
procedures  that  come  with  Dr.  Logo  and  make  up  Dr.  Logo  are  called 
"primitives".

Most  procedures  can  be classified as either a command or  an  operation.  A 
command  initiates  an  action. For example, commands move  the  turtle,  draw 
pictures,  and display text. A command procedure generally ends with "end"  or 
"stop". An operation returns an object: TRUE, FALSE, a word, number, or  list. 
The  last  expression to be evaluated in an operation procedure is  always  an 
output  expression.  Of course, you can write a procedure  that  initiates  an 
action  before  it  outputs an object. However,  most  primitives  are  simple 
commands  or simple operations. The descriptions in Section 6, "References  to 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM2.TXT[2/6/2012 4:37:18 PM]

Primitives", refer to primitives as operations or commands.

Note  that  the po primitives, which display things on the  text  screen,  are 
commands, not operations. Commands such as pocall and popkg format lists  with 
spaces and tabs for display on the screen, making the lists inappropriate  for 
input to another procedure.

Logo   programmers  also  use  classification  names  to  describe  kinds   of 
operations.  Logical operations such as "and", "not", and "or"  return  either 
TRUE or FALSE. An expression that contains a logical operator and,  therefore, 
evaluates to either TRUE or FALSE is called a "predicate expression".  Because 
of this, other logical operation names end with p. For example,

        ?numberp "two
        FALSE
        ?numberp 2
        TRUE

Other logical operators you can use to form predicate expressions are  equalp, 
emptyp,  memberp,  listp, and wordp. When you write a procedure  that  outputs 
TRUE or FALSE, give the procedure a name that ends with p to indicate that  it 
is a logical operation.

Arithmetic  operations output numbers. Most arithmetic expressions are  formed 
normally, with the procedure name followed by its inputs.

        ?product 2 3
        6

However, some arithmetic operations are defined by symbols: + - * / ^, instead 
of  names.  Some logical operations, called "relational operators",  also  use 
symbols:  <  >  =, instead of procedure names.  Procedures  that  use  symbols 
instead of procedure names can be infix operators, which means you can put the 
symbol between the inputs in the expression. These symbols also work as prefix 
operators, where the primitive symbol precedes its inputs.

        ?2 * 3
        6
        ?= 2 2
        TRUE

2.4 Evaluating procedures
-------------------------

The  Dr.  Logo interpreter evaluates one line at a time as you type  lines  at 
your  keyboard.  Dr. Logo also evaluates your procedures one line at  a  time. 
When  an  expression within a procedure begins with the name  of  a  different 
procedure, Dr. Logo must execute the called procedure before it can return  to 
evaluate  the next line of the calling procedure. It must also keep  track  of 
where it stopped executing the calling procedure, in case the called procedure 
calls yet another procedure.

To do this, Dr. Logo uses a stack. At toplevel, there is nothing on the stack. 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM2.TXT[2/6/2012 4:37:18 PM]

During the execution of a procedure, there is one procedure on the stack until 
it calls another; then, there are two. If the second procedure calls a  third, 
there are three on the stack, and so on. The number of procedures on the stack 
is  sometimes  called the level number. The debugging facilities  "trace"  and 
"watch"  display  the level number as procedures execute.  Toplevel  is  level 
number 0.

Dr. Logo assigns part of memory to the stack. Dr. Logo also uses this part  of 
memory to store the values of local variables. If a procedure calls itself and 
the level number becomes very large, or if the procedure defines a great  many 
local  variables,  the stack space might fill up. When this occurs,  Dr.  Logo 
displays a message and stops executing the procedure.

When  a  procedure is never called by any other procedure, but  does  call  on 
other procedures itself, Logo programmers classify it as a superprocedure  and 
the  procedures it calls as subprocedures. Dr. Logo's potl primitive  displays 
the  names  of  the superprocedures in your  workspace.  A  pocall  expression 
displays  the  subprocedures  called by the  input-named  procedure.  A  poref 
expression displays the procedures that call the input-named procedure.

EOF



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM3.TXT[2/6/2012 4:37:18 PM]

DRLRM3.WS4      (= "Dr. Logo Reference Manual", Section 3)
----------

(Retyped by Emmanuel ROCHE.)

Section 3: Editing commands
---------------------------

To  edit  with Dr. Logo means to enter new text, or to change  text  you  have 
already  entered. Editing can be as simple as fixing a typing error in a  line 
you  have  typed  to the interpreter's ? prompt, or  as  complex  as  defining 
several long procedures at once in Dr. Logo's screen editor.

Dr.  Logo gives you three ways to edit: line editing, procedure  editing,  and 
screen  editing.  You use line editing commands in both procedure  and  screen 
editing.  Procedure editing is a simple extension of line editing, and  screen 
editing builds on procedure editing. This section tells when, why, and how  to 
use Dr. Logo's line editing, procedure editing, and screen editing commands.

You  give  the  commands described in this section to Dr.  Logo  with  control 
characters, not with expressions. To enter a control character, hold down  the 
control key (marked Ctrl on your keyboard) and press the required letter  key. 
Not all of Dr. Logo's control character commands edit text; some interrupt and 
terminate  procedure execution. The last part of this section  introduces  Dr. 
Logo miscellaneous control character commands.

3.1 Line editing
----------------

You can use line editing commands to correct any text you are entering to  Dr. 
Logo.  When  you write a program that asks the user to type something  at  the 
keyboard, the user can also use line editing commands to change his input. The 
following table summarizes Dr. Logo's line editing control characters.

Table 3-1. Line editing control characters

Format: Character
        Effect

Ctrl-A
Moves the cursor to the beginning of the line.

Ctrl-B
Moves the cursor [B]ack one character; that is to say, it moves the cursor one 
position to the left.

Ctrl-D
[D]eletes the character indicated by the cursor.

Ctrl-E
Moves the cursor to the [E]nd of the line.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM3.TXT[2/6/2012 4:37:18 PM]

Ctrl-F
Moves the cursor [F]orward one character; that is to say, it moves the  cursor 
one position to the right.

Ctrl-H
Deletes the character to the left of the cursor.

Ctrl-I
[I]nserts a tab (three spaces).

Ctrl-K
[K]ills the remaining line; that is to say, it deletes all characters right of 
the cursor to the end of the line. Deleted characters are stored in buffer.

Ctrl-Y
[Y]anks  text from the buffer; that is to say, redisplays line  most  recently 
stored in the buffer by an Enter or Ctrl-K keystroke.

The following examples show how you can use these control characters when  you 
are  entering expressions to the Dr. Logo interpreter. In these examples,  the 
underbar ("_") represents the cursor.

Once you have typed a line, you can use control characters to move the  cursor 
left and right over the text. You can make corrections anywhere in the command 
line.

        ?repaet 36 [fd 8 lf 10]_        (repeat and lt mistyped)
        ?r_epaet 36 [fd 8 lf 10]         (Ctrl-A to beginning of line)
        ?repaet_ 36 [fd 8 lf 10]         (Ctrl-F to move cursor right)
        ?rept_ 36 [fd 8 lf 10]           (Ctrl-H deletes chars to the left)
        ?repeat_ 36 [fd 8 lf 10]         (ea corrects repeat)
        ?repeat 36 [fd 8 lf 10]_        (Ctrl-E to end of line)
        ?repeat 36 [fd 8 lf_ 10]         (Ctrl-B moves cursor left)
        ?repeat 36 [fd 8 l_ 10]          (Ctrl-D deletes cursor position)
        ?repeat 36 [fd 8 lt_ 10]         (t corrects lt)

You  can press the Enter key to send your command to Dr. Logo no matter  which 
character  the cursor is indicating in the command line. When you press  Enter 
to  send a line to the interpreter, Dr. Logo stores the line in a buffer.  You 
can  recall the stored line with Ctrl-Y. This is handy if you want to  execute 
the command again, execute it again with a minor modification, or if you  made 
a typing error and pressed Enter before you corrected it.

        ?save figures
        I don't know how to figures
        ?save figures_          (Ctrl-Y recalls line)
        ?save "f_igures          (Ctrl-B moves cursor left;
                                (" corrects line.)
        ?save "figures_         (Save file on default drive; Enter
                                 then Ctrl-Y recalls line.)
        ?save "f_igures          (Ctrl-B moves cursor left)
        ?save "b:f_igures        (b: to make copy on disk b: Enter)



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM3.TXT[2/6/2012 4:37:18 PM]

You can delete all or part of a line with a Ctrl-K command. If you have second 
thoughts, you can recall the deleted characters with Ctrl-Y.

        ?erns "figure.pack_     (erase names? maybe not...)
        ?e_rns "figure.pack      (Ctrl-A to beginning of line)
        ?_                      (Ctrl-K erases line)
        ?erns "figure.pack_     (Yes, erase names; Ctrl-Y recalls line)

You can also use Ctrl-K and Ctrl-Y to repeat a portion of a command line.

        ?(pr "I char 3 "N "Y
        I o N Y
        ?(pr "I char 3 "N "Y    (Ctrl-Y recalls line)
        ?(pr "_I char 3 "N "Y    (Ctrl-B moves cursor left)
        ?(pr _                  (Ctrl-K erases part of line)
        ?(pr "I char 3 "N "Y_   (Ctrl-Y recalls partial line)
        ?(pr "I char 3 "N "Y "  "I char 3 "N "Y "  "I char 3 "N "Y "
                                (Quoted blank spaces and Ctrl-Y
                                 keystrokes extend command.)
        I o N Y  I o N Y  I o N Y

3.2 Procedure editing
---------------------

When  you  are interacting with the Dr. Logo interpreter, during a  pause,  or 
while watching a procedure's executon, you can use the special words "to"  and 
"end"  to  enter and exit Dr. Logo's procedure editor. For example,  when  you 
type  a  line that begins with "to" to the interpreter's ?  prompt,  Dr.  Logo 
enters the procedure editor.

        ?to circle :size
        >repeat 36 [fd :size rt 10]
        >end
        circle defined
        ?

The  procedure  editor's  prompt,  >,  tells  you  that  Dr.  Logo  will   not 
immediatelly  evaluate the expressions you enter to define the new  procedure. 
Within  the  procedure  editor, you can use any of the  line  editing  control 
characters commands to move the cursor, correct errors, delete characters  and 
lines, and recall lines.

To exit the procedure editor, you must enter the special word "end" by  itself 
as  the  last  line of the procedure. After it reads an  end  line,  Dr.  Logo 
defines the procedure and returns you to the situation from which you  entered 
the procedure editor.

3.3 Screen editing
------------------

To  make  changes  to  a defined procedure  without  reentering  the  complete 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM3.TXT[2/6/2012 4:37:18 PM]

procedure  definition to the procedure editor, you must use Dr. Logo's  screen 
editor. Using the screen editor, you can move from line to line in a procedure 
and make changes in each line. You can also load any number of procedures into 
the  screen editor and make changes to each one. In addition, you can use  the 
screen editor to change the contents of variables.

The screen editor is smart; that is to say, it makes certain assumptions about 
your objectives for an editing session. For example, if you define a procedure 
in the screen editor and forget to enter "end", the screen editor adds an  end 
line to your procedure. When the execution of one of your procedures  produces 
an  error message and you call the screen editor, it assumes that you want  to 
edit  that  procedure,  automatically loads that procedure  into  itself,  and 
positions the cursor at the line in which the error occurred.

As  with  the  procedure  editor,  you  can  enter  the  screen  editor  while 
interacting  with the interpreter, during a pause, or while you  are  WATCHing 
the  execution  of  a procedure. You cannot write a procedure  that  uses  the 
screen editor.

Before  you  can use the screen editor to make changes to your  procedures  or 
variables, you must load the ones you want to change into the screen  editor's 
buffer.  The screen editor's buffer is its own private workspace.  Within  the 
buffer, you can make changes, add text, and delete text. However, the  changes 
you  make  do  not become a part of Dr. Logo's workspace until  you  exit  the 
screen  editor. The changes must become a part of Dr. Logo's workspace  before 
you can save them on disk.

There  are four primitives that load procedures and variables into the  screen 
editor's  buffer and enter the screen editor. All four start with  "ed".  Each 
one enters the screen editor; the only difference between these primitives  is 
what  they  load into the screen editor's buffer. The  descriptions  of  these 
primitives  in  Section 6, "References to Primitives", tell what  input  names 
these primitives require to load selective groups of procedures and  variables 
into  the  screen editor's buffer. The following table  describes  these  four 
primitives.

Table 3-2. Load primitives

Format: Primitive
        Purpose

edit (ed)
Use edit, or its abbreviation ed, to load a procedure or a list of  procedures 
into  the  screen editor's buffer. If the execution of a procedure  has  ended 
with  an  error  message  and you immediately  enter  edit  without  an  input 
procedure name, the screen editor automatically loads the erroneous  procedure 
into the buffer, and positions the cursor at the offending line.

edall
Use  edall  to  load both variables and procedures into  the  screen  editor's 
buffer.  "edall" without an input name loads all procedures and  variables  in 
Dr. Logo's workspace into the screen editor's buffer.

edns



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM3.TXT[2/6/2012 4:37:18 PM]

Use edns to load a group of variables, names into the screen editor's  buffer. 
"edns" without an input name loads all variables in Dr. Logo's workspace  into 
the screen editor's buffer.

edps
Use edps to load a group of procedures into the screen editor's buffer. "edps" 
without  an input name loads all procedures in Dr. Logo's workspace  into  the 
screen editor's buffer.

When  you use one of these primitives and enter the screen editor,  it  clears 
all normal text from the screen, and displays only the contents of its buffer. 
The  screen  editor  does  not display a  prompt  character,  but  the  cursor 
indicates  the  location that an insertion or control character  command  will 
affect.

While  in  the  screen  editor,  you can use  all  the  line  editing  control 
characters  described  in  Section 3.1, "Line Editing",  to  make  corrections 
within lines. The table below summarizes the screen editing control characters 
you can use to move the cursor from line to line, to page through the  buffer, 
and exit the screen editor.

Table 3-3. Screen editing control characters

Format: Character
        Effect

Ctrl-C
Exits  screen  editor; updates Dr. Logo's workspace with  definitions  of  all 
procedures and variables from screen editor's buffer.

Ctrl-G
Exits screen editor but does not update Dr. Logo's workspace. Any changes made 
during the screen editing session are discarded.

Ctrl-L
Readjusts display so that line currently indicated by the cursor is positioned 
at  the  center of the screen. If the cursor is less than 12  lines  from  the 
beginning  of  the  buffer,  the screen editor simply  beeps  when  Ctrl-L  is 
pressed.

Ctrl-N
Moves  the cursor to the [N]ext line; the cursor moves down one  line  towards 
the end of the buffer.

Ctrl-O
[O]pens  a  new  line.  A Ctrl-O keystroke is  equivalent  to  pressing  Enter 
followed by Ctrl-B.

Ctrl-P
Moves cursor to the [P]revious line; the cursor moves up one line towards  the 
beginning of the buffer.

Ctrl-V



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM3.TXT[2/6/2012 4:37:18 PM]

Displays the next screen full of text in the screen editor's buffer, the  next 
24 lines towards the bottom of the buffer.

ESC-V
Displays  the previous screen full of text in the screen editor's buffer,  the 
previous 24 lines towards the beginning of the buffer.

ESC-<
Positions the cursor at the beginning of the screen editor's buffer.

ESC->
Positions the cursor at the end of the screen editor's buffer.

The  following examples show how you can combine these screen editing  control 
characters with line editing control characters for editing shortcuts. Several 
combinations   of  control  character  commands  are  convenient   and   worth 
remembering.  Ctrl-E Ctrl-D deletes the Carriage Return between two lines  and 
makes  them into one line. Ctrl-A Ctrl-K deletes the line currently  indicated 
by the cursor. You can combine Ctrl-O with Ctrl-Y and Ctrl-K to quickly move a 
line  within  the  screen editor. The line moved  below  makes  the  countdown 
procedure  print  a 0 before it stops. The edit is performed with  only  eight 
control character commands.

        ?countdown 4
        4
        3
        2
        1
        ?ed "countdown
                                (editor clear screen)
        to countdown :number_
        if :number = 0 [stop]
        pr :number
        countdown :number - 1
        end
                                (Ctrl-N Ctrl-A positions cursor
                                 at line to be moved)
        to countdown :number
        i_f :number = 0 [stop]
        pr :number
        countdown :number - 1
        end
                                (Ctrl-K deletes line)
        to countdown :number
        _
        pr :number
        countdown :number - 1
        end
                                (Ctrl-N positions cursor at new location)
        to countdown :number

        pr :number
        c_ountdown :number - 1



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM3.TXT[2/6/2012 4:37:18 PM]

        end
                                (INS Ctrl-Y inserts line)
        to countdown :number

        pr :number
        i_f :number = 0 [stop]
        countdown :number - 1
        end
                                (Ctrl-C defines procedure.)
        countdown defined
        ?countdown 4
        4
        3
        2
        1
        0
        ?

The paging control character commands become useful when you have more than 24 
lines  of  text  in the screen editor's buffer. You can enter  edall  to  load 
everything  from  Dr. Logo's workspace into the screen editor's  buffer,  then 
experiment with Ctrl-L, Ctrl-V, ESC-V, ESC-<, and ESC->.

To  exit  the  screen editor normally, press Ctrl-C. In this  case,  Dr.  Logo 
updates the definitions of procedures and variables in its workspace with  the 
definitions  from the screen editor's buffer. If you have modified  the  title 
line of a procedure, Dr. Logo defines a new procedure and does not change  the 
original  definition  of  the procedure currently in  the  workspace.  If  you 
omitted an end line at the end of a procedure, Dr. Logo adds one as it updates 
its workspace.

To  discard  the  changes you have made during an editing  session,  exit  the 
screen  editor  with  Ctrl-G. This leaves Dr. Logo's  workspace  in  the  same 
condition you found it when you entered the screen editor.

When  you exit the screen editor, Dr. Logo returns you to the  same  situation 
from which you entered. For example, if you entered the screen editor during a 
pause  in  a procedure, Dr. Logo returns to the appropriate pause  prompt  and 
waits for your next command.

In a certain situation, you can use a few screen editing commands outside  the 
screen  editor. This situation occurs when you are entering a long  expression 
outside  the  screen editor and Dr. Logo prints a "!" before starting  on  the 
next  line.  In this case, you can use Ctrl-P and Ctrl-N to move up  and  down 
between lines. You can also use Ctrl-O to open a new line, but all  characters 
right  of the Ctrl-O keystroke are ignored; Dr. Logo treats the Ctrl-O as  the 
end  of the expression. However, the characters are not lost. You  can  recall 
them with Ctrl-Y.

3.4 Other control character commands
------------------------------------

Dr. Logo recognizes several control character commands for actions other  than 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM3.TXT[2/6/2012 4:37:18 PM]

line  editing. In fact, the only control characters that have no  meaning  for 
Dr.  Logo  are  Ctrl-U,  Ctrl-J, Ctrl-R, and  Ctrl-X.  The  remaining  control 
characters  terminate and interrupt procedure execution and  scrolling  screen 
displays, and switch between a full graphics screen, a full text screen, and a 
split screen. Section 4, "Text and Graphic Screens", describes screen  control 
character commands in detail. The following table summarizes the miscellaneous 
control character commands.

Table 3-4. Additional control character commands

Format: Character
        Effect

Ctrl-G
Immediately terminates the currently executing procedure.

Ctrl-L
Displays a full graphics screen; devotes the monitor to turtle graphics.

Ctrl-M
Carriage Return; same as pressing the Enter key.

Ctrl-Q
Generates the [Q]uoting character ("\") that makes Dr. Logo treat a  delimiter 
character as a literal character.

Ctrl-S
Displays a [S]plitscreen; divides the monitor between a partial graphic screen 
and a text window.

Ctrl-T
Displays a full [T]ext screen; devotes the monitor to text.

Ctrl-W
Interrupt the scrolling of a text display; [W]aits until the next keystroke to 
continue the display.

Ctrl-Z
Interrupts  the currently executing procedure, displays pause prompt to  allow 
interactive  debugging.  Enter  "co"  to  continue  execution  of  interrupted 
procedure.

EOF



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM4.TXT[2/6/2012 4:37:19 PM]

DRLRM4.WS4      (= "Dr. Logo Reference Manual", Section 4) 
---------- 

(Retyped by Emmanuel ROCHE.) 

Section 4: Text and graphic screens 
----------------------------------- 

One  of  Dr.  Logo's  most exciting  capabilities  on  your  IBM 
Personal Computer is to create graphic designs and display  text 
in  many beautiful colors. Dr. Logo shows you a graphics  cursor 
called "the turtle", which dutifully draws designs according  to 
your  instructions. However, this section does not tell you  how 
to control the turtle; it tells you how to control the  physical 
properties  of your display. It tells what combinations of  text 
and  graphics  are  possible, how to  switch  between  text  and 
graphic  screens, and how to control the colors of drawings  and 
text. 

4.1 Monitors, screens, and windows 
---------------------------------- 

In  memory, Dr. Logo maintains two screens: a text screen and  a 
graphic screen. A text screen contains only text, with up to  80 
characters in one line. The text screen never contains more than 
25  lines. A graphic screen can contain drawings and  text,  but 
can  have  only 40 characters in one line.  The  graphic  screen 
potentially  extends  beyond  the range  of  your  monitor. The 
portion of the graphic screen your monitor can display is called 
"the visual field". 

Dr. Logo maintains these complete screens in memory, so that  it 
can  display combinations of parts of them on your  monitor  and 
restore  the  full display of either screen.  You  control  what 
combination  of text and graphics appears on your  monitor  with 
Dr.  Logo primitives and control character commands. Your  color 
monitor can display both text and graphic screens. A  monochrome 
monitor can display only the text screen. 

To let you see the text of your procedures, or your  interaction 
with  the interpreter, without devoting your entire  monitor  to 
screen, Dr. Logo can direct part of the text screen into a  text 
window. When a window of text appears on the graphic screen, the 
combination of text and graphics is called "a splitscreen". When 
you  enter "debug", Dr. Logo divides the monitor into  two  text 
windows, then directs text displayed by a procedure to the lower 
PROGRAM  window, and text displayed by debugging  facilities  to 
the upper DEBUG window. 

4.2 Displaying text and graphic screens 
--------------------------------------- 

Dr. Logo supports both primitives and control character commands 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM4.TXT[2/6/2012 4:37:19 PM]

that  make your monitor display the text screen and the  graphic 
screen  in various combinations, as described in  the  following 
table. 

Table 4-1. Displaying screens 

Format: Control character 
        Primitive 
        Display 

Ctrl-L 
fullscreen 
Displays a full graphic screen; devotes the monitor to graphics. 

Ctrl-S 
splitscreen 
Displays  a splitscreen; divides the monitor between  a  partial 
graphic screen and a text window. 

Ctrl-T 
textscreen 
Displays a full text screen; devotes the monitor to text. 

(no control character) 
debug 
Displays two text windows on the monitor. 

(no control character) 
nodebug 
Closes  text  windows, returns monitor to a  cleared  full  text 
screen. 

The  control character commands are the quickest way  to  switch 
displays while you are interacting with the interpreter. Use the 
fullscreen, splitscreen, and textscreen primitives when you want 
to switch displays within a procedure. You must always use debug 
and  nodebug to control the two debugging text windows.  "debug" 
disables   Ctrl-S   and  splitscreen;  you  cannot   display   a 
splitscreen  while  you are using the  debugging  text  windows. 
"nodebug" restores Ctrl-S and splitscreen. 

When  you  are using one color monitor, Dr.  Logo  automatically 
displays  a splitscreen when you enter a command that moves  the 
turtle.  However,  Dr.  Logo  can support both  a  color  and  a 
monochrome  monitor.  When  you  have  two  monitors,  Dr.  Logo 
automatically  displays  the  text  screen  on  the   monochrome 
monitor, and the graphic screen on the color monitor. 

Having two monitors changes the way some of the display  control 
primitives  work. When you have two monitors, Dr. Logo does  not 
automatically  display a splitscreen when you enter  a  graphics 
command  because  full  graphic  and  text  screens  are  always 
displayed. However, you can use Ctrl-S and splitscreen to open a 
text  window  on the graphic screen. To remove  the  splitscreen 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM4.TXT[2/6/2012 4:37:19 PM]

text  window and display the full text screen on the  monochrome 
monitor,  you can use fullscreen, Ctrl-L, or Ctrl-T. If you  use 
textscreen  at  any  time  on a two  monitor  system,  Dr.  Logo 
displays the text screen on the color monitor. 

4.3 Text screen 
--------------- 

The text screen has positions for 2000 text characters: 25 lines 
of text with 80 characterrs in each line. The coordinate  system 
shown below references these characters. A text coordinate  list 
contains two numbers: the first is the row or character  number, 
and the second is the line number. 

          [0 0]                           [79 0] 
                +-----------------------+ 
                |                       | 
                |                       | 
                |                       | 
                |                       | 
                |                       | 
                +-----------------------+ 
         [0 24]                           [79 24] 

You use this coordinate system with "setcursor" to position  the 
cursor within the text screen. 

Dr. Logo lets you control the foreground and background color of 
each  character cell. "textbg" sets the background of  the  text 
screen  to the color represented by the input number. There  are 
eight  possible  colors, so normally you input a number  in  the 
range  0 to 7. However, textbg also controls whether or not  the 
foreground  characters  blink. To display  blinking  characters, 
input  a  number  between 8 and 15 to textbg, as  shown  in  the 
following table. 

Table 4-2. Background colors 

Normal  Blinking        Background color 
------  --------        ---------------- 
  0         8           Black 
  1         9           Blue 
  2        10           Green 
  3        11           Cyan 
  4        12           Red 
  5        13           Magenta 
  6        14           Brown 
  7        15           Grey 

"textfg"  sets  the foreground of the text screen to  the  color 
represented  by  the  input number. The  IBM  Personal  Computer 
supports  16 foreground colors, but if your color  monitor  does 
not support two levels of intensity, you can see only the  first 
eight colors listed in the following table. 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM4.TXT[2/6/2012 4:37:19 PM]

Table 4-3. Foreground colors 

Input   Foreground      Input   Foreground 
number    colors        number    colors 
------  ----------      ------  ---------- 
  0       Black            8      Black 
  1       Blue             9      Bright blue 
  2       Green           10      Bright green 
  3       Cyan            11      Bright cyan 
  4       Red             12      Bright red 
  5       Magenta         13      Bright magenta 
  6       Brown           14      Yellow 
  7       Grey            15      White 

4.4 Graphic screen 
------------------ 

Dr.  Logo  gives you complete control of the  60,000  individual 
dots that make up the visual field of your graphic screen; there 
are 300 dots horizontally and 200 dots vertically.  Technically, 
these  dots are called "pixels". A turtle step is equivalent  to 
one  dot.  For example, when you enter "forward 1",  the  turtle 
moves  forward one pixel. The dots make any diagonal  lines  the 
turtle  draws seem jagged. Although Dr. Logo  calculates  angles 
and  headings  with great precision, the turtle  rounds  to  the 
nearest degree before drawing. 

4.4.1 Graphic coordinates and the visual field 
---------------------------------------------- 

You can reference each dot on the graphic screen individually by 
its  coordinates.  Using coordinates, you can quickly  move  the 
turtle  to  any location on the screen (setpos), or  change  any 
single dot to the turtle's current pencolor (dot). 

A  graphic  screen coordinate list contains two  numbers:  an  x 
coordinate indicates the horizontal position, and a y coordinate 
indicates the vertical position. For example, the coordinates of 
the turtle's home position are [0 0], the center of the  screen. 
To reference a dot in the visual graphic field, the x coordinate 
can be in the range -160 to +159, and the y coordinate can be in 
the range -99 to +100. 

     [-160 100]                           [159 100] 
                +-----------------------+ 
                |                       | 
                |                       | 
                |         [0 0]         | 
                |                       | 
                |                       | 
                +-----------------------+ 
     [-160 -99]                           [159 -99] 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM4.TXT[2/6/2012 4:37:19 PM]

When you first start Dr. Logo, the visual field is just a window 
on  a  greater graphics plane. You can use numbers  outside  the 
visual  coordinate  ranges to reference  positions  outside  the 
visual  field;  the turtle can draw a part of a design  off  the 
monitor and return. You can limit the turtle to the visual field 
with  two  primitives: fence and wrap. "fence" sets  a  boundary 
around the edge of the visual field. When the turtle  encounters 
the  boundary,  Dr. Logo complains "Turtle out  of  bounds"  and 
stops any executing procedure. "wrap" makes the turtle  reappear 
on  the  opposite  side  of the  monitor  when  it  exceeds  the 
boundary. Use "window" to remove the boundary. 

4.4.2 Graphic text coordinates 
------------------------------ 

On  the  graphic  screen,  there  are  positions  of  1000  text 
characters:  25 lines of text with 40 characters per  line.  The 
coordinate system shown below references these character  cells. 
In  a  text  coordinate list, the first number  is  the  row  or 
character number, and the second number is the line number. 

          [0 0]                           [39 0] 
                +-----------------------+ 
                |                       | 
                |                       | 
                |                       | 
                |                       | 
                |                       | 
                +-----------------------+ 
         [0 24]                           [39 24] 

You can use this coordinate system to position the cursor within 
the splitscreen text window (setcursor), or to take input from a 
lightpen (lpen). 

When you use "turtletext" to display text on the graphic screen, 
the  first  character of the input object appears in  the  first 
character  cell  to the right of the turtle's center  line.  The 
character  might  not appear directly under the  turtle  if  the 
turtle is not on a character cell boundary. 

4.4.3 Graphic colors 
-------------------- 

Although  your color monitor can display many different  colors, 
the graphic screen can contain only four colors at any one time. 
In Dr. Logo, the number you input to setbg specifies with set of 
four colors you want your monitor to display. 

First,  you have to select a background color. The IBM  Personal 
Computer  supports  eight  background colors in  two  levels  of 
intensity,  although  your  color  monitor  might  not   display 
different   intensities.  The  numbers  setbg   accepts   select 
background colors as described in the following table. 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM4.TXT[2/6/2012 4:37:19 PM]

Table 4-4. Background color intensity 

Low intensity           High intensity 
-----------------       ------------------ 
0 16 32 48  Black        8 24 40 56  Black 
1 17 33 49  Blue         9 25 41 57  Blue 
2 18 34 50  Green       10 26 42 58  Green 
3 19 35 51  Cyan        11 27 42 59  Cyan 
4 20 36 52  Red         12 28 43 60  Red 
5 21 37 53  Magenta     13 29 45 61  Magenta 
6 22 38 54  Yellow      14 30 46 62  Yellow 
7 23 40 55  White       15 31 47 63  White 

Each  of  the four numbers for a background  color  specifies  a 
different  pen for the turtle to use. The turtle has four  pens. 
Each  pen  has four unique colors of ink, one of  which  is  the 
background color that the turtle uses for erasing. Use setpc  to 
select the pen's ink color. 

When the background color is in the range 0 to 15, 

        - setpc 1 selects dark green ink 
        - setpc 2 selects dark red ink 
        - setpc 3 selects dark yellow ink 

When the background color is in the range 16 to 31, 

        - setpc 1 selects bright green ink 
        - setpc 2 selects bright red ink 
        - setpc 3 selects bright yellow ink 

When the background color is in the range 32 to 47, 

        - setpc 1 selects dark cyan ink 
        - setpc 2 selects dark magenta ink 
        - setpc 3 selects dark grey ink 

When the background color is in the range 48 to 63, 

        - setpc 1 selects bright cyan ink 
        - setpc 2 selects bright magenta ink 
        - setpc 3 selects bright white ink 

For  all  background color numbers, setpc 0  selects  background 
color  (erasing)  ink.  When  Dr.  Logo  first  starts  up,  the 
background color is 1, and the pencolor number is 2. 

4.4.4 Graphic text color 
------------------------ 

"textbg"  controls  the  background color of  the  text  on  the 
graphic screen, both the splitscreen text window and  characters 
typed by turtletext. The background color of graphic text can be 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM4.TXT[2/6/2012 4:37:19 PM]

any  one  of the four colors of the turtle's  current  pen.  For 
example, the following table shows how a textbg command  affects 
the  graphic text when the background of the graphic  screen  is 
set to 1 (blue) and the four pencolors are blue, green, red, and 
yellow. 

Table 4-5. Background color of graphic text 

textbg number   Graphic text background 
-------------   ----------------------- 
0, 4, 8, 12     Blue 
1, 5, 9, 13     Green 
2, 6, 10, 14    Red 
3, 7, 11, 15    Yellow 

Unlike  the  text screen, when you input a number  greater  than 
seven  to  textbg,  graphic  screen  text  characters  are   not 
affected. Characters on the graphic screen cannot blink. 

"textfg"  controls  the foreground color of  graphic  text.  The 
characters  in  the splitscreen text window and  the  turtletext 
characters can be one of the four colors of the turtle's current 
pen. For example, the following table shows how a textfg command 
colors the graphic screen characters when the background of  the 
graphic  screen  is set to 1 (blue) and the four  pencolors  are 
blue, green, red, and yellow. 

Table 4-6. Foreground color of graphic text 

textfg number   Graphic text color 
-------------   ------------------ 
0, 4, 8, 12     Blue 
1, 5, 9, 13     Green 
2, 6, 10, 14    Red 
3, 7, 11, 15    Yellow 

EOF 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM5.TXT[2/6/2012 4:37:19 PM]

DRLRM5.WS4      (= "Dr. Logo Reference Manual", Section 5)
----------

(Retyped by Emmanuel ROCHE.)

Section 5: Property lists, workspace, and disks
-----------------------------------------------

Storage is one of Dr. Logo's most important resources. There are two kinds  of 
storage: temporary storage and permanent storage. When you enter procedure and 
variable  definitions at your keyboard, they are temporarily stored in a  part 
of  your computer's memory called "the workspace". To record  your  procedures 
permanently, you must save them on disk.

To  help  organize  your workspace and disk files, Dr. Logo  lets  you  bundle 
procedures  and variables into packages. Dr. Logo does this by  adding  system 
properties  to  an  object's  property list. This section  tells  how  to  use 
property  lists  and  packages,  how  to  organize  your  workspace  for  best 
performance, and how to create, copy, rename, and erase disk files.

5.1 Property lists
------------------

Any  object in the workspace can have a property list. In fact, Dr. Logo  uses 
property lists to create variables, procedures, and packages.

A property list is made up of property pairs. The first element of a  property 
pair  is  the property name; the second element is its value. You  can  assign 
your  own properties to an object. Property lists make it simple to store  and 
retrieve information, as shown in the following example.

        ?pprop "Kathy "ext 42
        ?pprop "Meryle "ext 58
        ?pprop "Ellen "ext 66
        ?pps
        Kathy's ext is 42
        Meryle's ext is 58
        Ellen's ext is 66

You  can create whatever property pairs are appropriate to  your  application. 
Dr. Logo adds or removes property pairs when you use primitives identified  in 
the following table. Do not use system property names for purposes other  than 
those listed in the table.

Table 5-1. Property pairs

Property name   Primitive       Property value
-------------   -----------     --------------
    .APV        make, name,     The value of a global variable
                ern, erall,
                erns



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM5.TXT[2/6/2012 4:37:19 PM]

    .BUR        bury, unbury    When TRUE, the package is buried

    .CAT        catch, throw    Catch descriptor

    .DEF        to, define,     The definition of a procedure
                er, erall,
                erps

    .ENL        to, ed          End of a procedure line that is broken by a
                                Carriage Return and spaces or tabs.

    .FMT        to, ed          Beginning of a procedure line that is broken
                                by a Carriage Return and spaces or tabs.

    .FUN                        Identifies an active function, a function in
                                the process of being evaluated.

    .PAK        package         The name of the package to which this object
                                belongs.

    .PAR                        The parameters of an active function

    .PAU                        Pause

    .PKG        package         When TRUE, object is a package name

    .PRM                        Memory location of the primitive

    .REM                        Remark or comment that follows a semicolon

    .SPC                        Number of spaces that follow a Carriage
                                Return in a broken procedure line.

When you use plist to display property lists, you will always see an .APV pair 
in a variable name's property list, and a .DEF pair in a procedure's  property 
lists. For example,

        ?make "flavor "chocolate
        ?plist "flavor
        [.APV chocolate]
        ?to eat.cookie
        >pr [yum yum!]
        >end
        eat.cookie defined
        ?plist "eat.cookie
        [.DEF [[] [pr [yum yum!]]]]

However,  you  might never see some of the pairs listed above  in  a  property 
list.  This is because Dr. Logo puts properties such as .PAU, .FUN,  and  .PAR 
into a procedure's property list only during the procedure's execution.

5.2 Managing your workspace



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM5.TXT[2/6/2012 4:37:19 PM]

---------------------------

Your  workspace is the part of your computer's memory that Dr. Logo  allocates 
for the temporary storage of your procedures and variables. This section tells 
how Dr. Logo measures your workspace, and how you can use packages to organize 
your workspace.

5.2.1 Measuring your workspace
------------------------------

Dr. Logo measures your workspace in nodes. A node is equivalent to five bytes, 
and  can  hold five characters. In general, the more workspace you  have,  the 
better your procedures will perform.

You can check how many free nodes there are in your workspace at any time with 
the "nodes" primitive. Try nodes immediately after you start Dr. Logo, to  see 
the  maximum  size of your workspace. If you have enough memory  in  your  IBM 
Personal  Computer,  you can have over 10,000 nodes at start-up.  If  you  use 
"noprim"  to  remove  the  poprim information  from  the  workspace,  you  add 
approximately 600 nodes to the maximum size of your workspace.

You tie up nodes in your workspace by entering procedures and other objects at 
the keyboard, or reading them in from disk with "load". Dr. Logo also adds  to 
the  contents  of  the  workspace by making  copies  of  local  variables  and 
recursive procedures during a procedure's execution.

5.2.2 Garbage collection
------------------------

Dr. Logo does not automatically throw out these copies of local variables  and 
recursively-called  procedures after a procedure finishes execution.  However, 
when there are fewer than 200 free nodes in your workspace, a part of Dr. Logo 
called  "the  garbage collector" sorts through the workspace  and  erases  any 
copies  of  variables  or  procedures that are no  longer  needed.  You  might 
occasionally  see an executing procedure hesitate for a few moments while  the 
garbage collector does its work.

You  can call the garbage collector with the "recycle" primitive. If  you  use 
recycle to clean up the workspace before initiating a time-critical procedure, 
you  minimize  the  chance  that the  garbage  collector  will  interrupt  the 
execution  of the procedure. Try using "nodes" before and after  "recycle"  to 
learn  how  many nodes are taken up by the temporary copies of  variables  and 
procedures.

The  garbage collector uses the stack as it sorts objects in  your  workspace. 
Although  Dr.  Logo allocates stack space dynamically, if  garbage  collection 
occurs during the execution of a recursive procedure or other situation  where 
the  stack is heavily used, the garbage collector can run out of stack  space. 
When  this  occurs,  Dr.  Logo displays a  message  and  stops  executing  the 
procedure.

When  workspace becomes critical because there are fewer than 400 free  nodes, 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM5.TXT[2/6/2012 4:37:19 PM]

Dr. Logo displays an exclamation point prompt ("!"). In this situation,  enter 
"recycle"  immediately.  If, after "recycle", you still have  fewer  than  600 
nodes,  it is time to reorganize your procedures, save some of them  on  disk, 
and  remove them from the workspace, to give the remaining procedures room  to 
execute. You can use "load" within a procedure to restore saved procedures  to 
the workspace when they are needed.

5.2.3 Packages
--------------

Packages help you organize your workspace. When you put related procedures and 
variables  in  a  package,  you  can display,  edit,  save,  and  erase  those 
procedures  and  variables  as  a group separate  from  other  procedures  and 
variables in the workspace.

Use  "package"  to  create  a package or add items  to  a  package.  "package" 
requires  two  inputs.  The first is the name of the  package.  You  can  give 
"package"  either  a  name or a list of names of items to  be  placed  in  the 
package  as the second input. The list can contain a mixture of  variable  and 
procedure names. For example,

        ?package "cookies "flavor
        ?package "cookies [eat.cookies flavor]

"popkg"  displays  the  name  and contents of  each  package  defined  in  the 
workspace, as shown in the following example.

        ?popkg
        cookies
          "flavor
          eat.cookies

When  you  input a package name to one of the following primitives,  it  takes 
action only on the procedures and variables contained in the package.

        edall   erall   glist   pops    save
        edns    erns    poall   pots
        edps    erps    pons    pps

If  you  do not specify a package name to these primitives, they  act  on  all 
procedures  and  variables  in  the workspace,  except  for  those  in  buried 
packages. A buried package is hidden from the primitives listed above. To bury 
a package, use "bury", as shown in the following example.

        ?bury "cookies
        ?popkg
        cookies is buried
          "flavor
          eat.cookies

Dr.  Logo creates and buries packages by adding system properties to  property 
lists. It adds the .PAK property with the name of the package to the  packaged 
procedure's  or variable's property list. It adds the .PAK property  with  the 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM5.TXT[2/6/2012 4:37:19 PM]

value  TRUE to the package name's property list. When you bury a package,  Dr. 
Logo adds the .BUR property with the value TRUE to the package name's property 
list. The primitives listed above that can take a package name as input  check 
the  property  list of the package name for the .BUR  property  before  taking 
action.

5.3 Drives, disks, and files
----------------------------

When  you  turn off your computer, all the procedures and  variables  in  your 
workspace are lost. So, before you turn your computer off, you must save  them 
on  a  more permanent medium, a disk. Dr. Logo stores information on  disk  in 
files,  and  gives each file the name you specify. The part of  your  computer 
that  reads and writes file on a disk is called a "drive". This section  gives 
some background information on drives, disks, and files.

Many  of the primitives that copy and erase disks and files display a  message 
that asks you to confirm that you do, indeed, want to copy or erase before the 
primitive proceeds. This is because it is sometimes too easy to erase or  copy 
over  important files by mistake. However, such messages make it  inconvenient 
to  use  these primitives from within a procedure. The system  variable  NOACK 
controls whether or not these primitives display a message. Make NOACK TRUE to 
suppress the messages.

5.3.1 Drives
------------

Your  IBM  Personal  Computer has one or two drives. A  drive  can  be  either 
single- or double-sided, which means the drive can write on one or both  sides 
of the disk. If your drive can write on both sides of the disk, you can  store 
twice as much information on a disk.

When you first start Dr. Logo, it makes drive A: the default drive. This means 
that, until you tell Dr. Logo to do otherwise, it looks for information on the 
disk  in drive A:. If you have a single-drive system, drive A: will always  be 
your default drive. If you have more than one drive, you can tell Dr. Logo  to 
change the default drive with a "setd" command. "defaultd" outputs the name of 
the default drive in uppercase.

        ?defaultd
        A:
        ?setd "b:
        ?defaultd
        B:

Before  you  can  save anything on disk, you must put a formatted  disk  in  a 
drive.  You  cannot save information on your Dr. Logo system disk, so  if  you 
have  a  one-drive system, you must remove the Dr. Logo system disk  from  the 
drive  and insert a data disk. To tell Dr. Logo that you have inserted  a  new 
disk, enter "resetd". If you try to save information on a newly-inserted  disk 
without entering "resetd", Dr. Logo will complain.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM5.TXT[2/6/2012 4:37:19 PM]

5.3.2 Disks
-----------

Dr.  Logo  cannot save information on a disk that is fresh from the  box.  The 
disk  must be initialized or formatted to single- or double-sided. During  the 
initialization  process, Dr. Logo tests and prepares one or both  surfaces  of 
the  disk for future load and save operations. Appendix E, "Getting  Started", 
and the description of "initd" in Section 6, "References to Primitives",  both 
tell how to initialize a disk.

Dr. Logo measures the space on your disk in bytes, not nodes. "spaced" outputs 
the  number of free bytes on the disk in the specified drive.  A  single-sided 
disk can hold 150,000 bytes. A double-sided disk can hold 300,000 bytes.

5.3.3 Files
-----------

A  file  is  a  set of related information stored on disk.  A  Dr.  Logo  file 
contains  objects such as procedures and variables with their property  lists. 
You  can create a Dr. Logo file with "save". Dr. Logo saves either  everything 
in the workspace, or just the objects you specify with packages.

Dr. Logo gives the file the name you specify by writing the name in the disk's 
directory. The name you specify cannot contain more than eight characters.  If 
you specify a name longer than eight characters, Dr. Logo uses the first eight 
characters as the name.

You  can  change a file's name with "changef", copy a file with  "copyf",  and 
erase a file with "erf". "getfs" outputs a list of the Dr. Logo file names  on 
the disk in the default or specified drive. Like drive names, Dr. Logo outputs 
file names in uppercase.

"erf"  and  "getfs" can accept an ambiguous file name as input.  An  ambiguous 
file  name can reference more than one file,  because it contains  a  wildcard 
character and gives Dr. Logo a pattern to match. The wildcard character is the 
question mark ("?"), which must be the last character in the file name.

        ?getfs
        [SHAPES PIGLATIN PLAID]
        ?getfs "p?
        [PIGLATIN PLAID]

EOF



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

DRLRM6.WS4      (= "Dr. Logo Reference Manual", Section 6)
----------

(Retyped by Emmanuel ROCHE.)

ROCHE>  Since  only the CP/M-86 version of "Dr. Logo for the ACT  Apricot  F1" 
computer  has  been  found,  I have retyped  only  the  documentation  of  the 
primitives  contained  in  this  version, not  the  explanations  of  all  the 
primitives  of the original copy-protected Dr. Logo, which can  format  floppy 
disks,  copy full disks, etc (like computers with BASIC in ROM, which have  no 
separate Operating Systems).

Section 6: References to primitives
-----------------------------------

This  section  defines  the  Dr. Logo  primitives.  The  description  of  each 
primitive is presented in the following form:

Action
======

Quickly tells what the primitive does.

Syntax
======

Shows  the correct way to enter an expression using the primitive. If you  can 
use  an abbreviation for the primitive name, the abbreviation appears  on  the 
second line.

Do  not enter a command that is identical to the syntax line! The syntax  line 
usually  contains  symbols that Dr. Logo does not recognize.  By  using  these 
symbols,  the syntax line can represent the wide variety of  expressions  that 
you can enter using the primitive.

The  syntax  line  uses  two kinds of symbols to show  you  how  to  enter  an 
expression.  Typographical  symbols tell you how many times you can  enter  an 
input.  Input  symbols tell what kind of object the primitive  can  accept  as 
input. The typographical symbols are

ellipsis: (...)
---------------

Means  that the primitive can accept a variable number of inputs; that  is  to 
say, you can use parentheses to make the primitive accept more or fewer inputs 
than are ordinarily required.

If  the primitive name is preceded by a left parenthesis ["("], the  primitive 
processes  as  many inputs as it finds before the  closing  right  parenthesis 
[")"] without complaint. If no expression follows the parenthesized expression 
on the line, you do not need to type the closing parenthesis.

angle brackets: < >
-------------------

Enclose optional inputs. (Inputs shown in angle brackets are not required.)

"or" bar: |
-----------

Separates alternative inputs. Enter one of the two inputs separated by |.  For 
example,  name  |  name_list means you can enter either a name or  a  list  of 
names.

The following symbols represent the objects you can input to a primitive:

object
------

Means the primitive can accept any object as input: a word, a name, a  number, 
a list, or an expression that outputs a word, a name, a number, or a list. You 
can also use a variable to represent any object input to a procedure.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

name
----

Represents a special word that identifies either a procedure, a variable, or a 
"package"  of  procedures and variables. When a primitive can  accept  only  a 
certain kind of name as input, one of the following symbols appears:

   - varname  a variable name
   - procname a procedure name
   - pkgname  a package name
   - d:       a drive name
   - fname    a file  name  that  can begin with an  optional  drive  name  to 
                specify a drive other than the default
   - prop     a property  name;  the  first member of a  property  pair  in  a 
                property list

list
----

Means  a list is required as input. A literal list is a series of Logo  words, 
numbers, or lists enclosed in square brackets ("[" and "]"). You can construct 
a  "not literal" list that contains the value of a variable by using the  LIST 
or SENTENCE primitive. Some of the special kinds of lists are:

 - instr_list  contains instructions to be executed
 - coord_list  contains a pair of numbers that define a location on the screen
 - name_list   contains names of variables, procedures, and/or packages

numbers: n, _n
--------------

Represent input numbers. N represents any number. You can enter an  expression 
that outputs a number anywhere N appears. _N is appended to a descriptive term 
when  a  special number is required. For example, DEGREES_N  means  the  input 
number is interpreted as a number of degrees.

infix primitive inputs: a, b
----------------------------

Represent  inputs to an infix primitive, where the primitive identifier  is  a 
symbol  embedded  between the inputs. A and B can represent both  numbers  and 
objects. In arithmetic expressions, A and B represent numbers, as in 1 + 2 and 
12  / 6. In logical expressions, A and B can represent any object, as in [a  b 
c] = [a b c], 3 > 1, or :son = "greg.

pred_exp
--------

Represents a predicate expression, an expression that, when evaluated, outputs 
either TRUE or FALSE.

Explanation
===========

Describes the action or result of an expression in detail. Discusses  optional 
inputs,  punctuation,  and how the primitive works with other  primitives,  if 
appropriate.

In  these discussions, "you" means you, the Dr. Logo programmer.  "Your  user" 
refers to a person who runs your Dr. Logo procedure, and might type  something 
at the keyboard to interact with your procedure.

Examples
========

Shows  expressions  and procedures that demonstrate the  capabilities  of  the 
primitive.  This  section  sometimes  includes  discussions  of  the   example 
expressions and procedures.

Most  of the examples show you exactly what to type to get the response  shown 
in  the text. However, some examples, such as those for erasing,  must  assume 
there  is already something in the workspace to erase. A brief description  of 
assumptions about the workspace precedes these examples. You might not be able 
to reproduce these examples exactly, but, by studying them, you will learn the 



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

capabilities of the primitives they demonstrate.

The  examples  assume that you are using a graphic screen, which  has  a  line 
length of 80 characters ("SETRES 1"). (For legacy reasons, Dr. Logo starts  in 
SETRES  0, providing 320x200 pixels. If you want a VGA screen (640x480),  read 
the explanations of the SETRES primitive.) When you have typed a  80-character 
line,  Dr.  Logo enters an exclamation point ("!") which indicates  that  your 
text  continues  on  the  next line. You do not  type  the  exclamation  point 
yourself.

 *         (see product)
 +         (see sum)
 .contents (see contents)
 .deposit  (see deposit)
 .examine  (see examine)
 .in       (see in)
 .out      (see out)
 .replace  (see replace)
 .reptail  (see reptail)
 .setseg   (see setseg)
 \  "Quoting character" = Ctrl-Q

There  is  a  handful  of  commands which are  not  primitives.  They  can  be 
classified in 3 groups:

        1) Non-standard I/O devices: PADDLE, BUTTONP, LPEN, LPENP
        2) Enter/leave the editor/interpreter: TO, END, BYE
        3) System variables: ERRACT, REDEFP

abs
---

Action:
Outputs the absolute value of the input number.

Syntax:
abs n

Explanation:
ABS  outputs the absolute value of the input number. You can use ABS  to  show 
the distance from the turtle's position to home excluding any + or - sign that 
indicates  its location in the coordinate scale. For example, if you move  the 
turtle back 50 steps from home, its position if [0 -50]. However, its distance 
from  home  is  the absolute value of -50 (sometimes shown as  |-50|),  or  50 
turtle steps.

Examples:
?cs
?back 50
?pos
[0 -50]
?abs last pos
50

allopen
-------

Action:
Outputs a list of all data files currently open.

Syntax:
allopen

Explanation:
Outputs a list of all data files currently open.

(ROCHE> There is a system message, saying that "Only 4 files can be open".)

Examples:
?allopen

and
---

Action:
Outputs TRUE if all input predicate expressions output TRUE.

Syntax:



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

and pred_exp pred_exp (...)

Explanation:
AND  outputs TRUE if all input predicate expressions output  TRUE.  Otherwise, 
AND outputs FALSE.

Without  punctuation,  AND  requires and accepts two input  objects.  AND  can 
accept more or fewer inputs when you enclose the AND expression in parentheses 
["(" and ")"]. If no other expressions follow the AND expression on the  line, 
you do not need to type the closing right parenthesis [")"].

You can use an AND expression to test different conditions, or build your  own 
predicate procedure.

Examples:
?and "TRUE "TRUE
TRUE

?and "TRUE "FALSE
FALSE

?and "FALSE "FALSE
FALSE

?and (3<4) (7>3)
TRUE

?and (3=4) (7>3)
FALSE

?(and (3<4) (7>3) (9=9) (6<5))
FALSE

?to tub.right? :temperature
>if and (:temperature > 88) (:temperature < 102)
>   [print [Just Right!]]
>   [print [Not Right.]]
>end
tub.right? defined
?tub.right? 90
Just Right!

?to decimalp :object
>output and (numberp :object) (pointp :object)
>end
decimalp defined
?to pointp :object
>if emptyp :object
>   [output "FALSE]
>if (first :object) = ".
>   [output "TRUE]
>output pointp butfirst :object
>end
pointp defined
?decimalp 1995
FALSE
?decimalp 19.95
TRUE
?decimalp [nineteen.ninety-five]
FALSE

arctan
------

Action:
Outputs the arc tangent of the input number.

Syntax:
arctan n

Explanation:
ARCTAN outputs in degrees the angle whose tangent is the input number.

Examples:
?arctan 0
0

?arctan 1
45



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?arctan 10
84.2894068625003

?arctan 100
89.4270613023165

?to plot.arctan
>make "val -pi
>make "inc pi / 37.5
>make "x -150
>setx 150
>setx :x
>plot.a :val
>end
plot.arctan defined
?to plot.a :val
>if :x > 150
>   [stop]
>forward arctan :val
>sety 0
>setx :x + 4
>make "x :x + 4
>make "val :val + :inc
>plot.a :val
>end
plot.a defined
?plot.arctan

ascii
-----

Action:
Outputs the ASCII value of the first character in the input word.

Syntax:
ascii word

Explanation:
ASCII  outputs  an  integer between 0 and 255 that is  the  American  Standard 
representation for the first character in the input word. The input word  must 
contain  at least one character. The first character can be a letter,  number, 
or special character.

The  American Standard Code for Information Interchange (ASCII) is a  standard 
code for representing numbers, letters, and symbols. The IBM Personal Computer 
has many unique characters that are also represented by ASCII codes. The  "Dr. 
Logo Command Summary" contains a list of characters and their ASCII values.

Examples:
?ascii "g
103

?ascii "good
103

?ascii "2
50

?to encode :word
>if emptyp :word
>   [output "]
>output word secret first :word encode butfirst :word
>end
encode defined
?to secret :character
>make "secret.code 5 + ascii :character
>if :secret.code > ascii "z
>   [make "secret.code :secret.code - 26]
>output char :secret.code
>end
secret defined
?to decode :word
>if emptyp :word
>   [output "]
>output word crack first :word decode butfirst :word
>end
decode defined
?to crack :character
>make "cracked.code (ascii :character= -5
>if :cracked.code < ascii "a



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

>   [make "cracked.code :cracked.code + 26]
>output char :cracked.code
>end
crack defined
?make "password encode "plastics
?:password
uqfxynhx
?decode :password
plastics

back bk
-------

Action:
Moves  the turtle the input number of steps in the opposite direction  of  its 
heading.

Syntax:
back distance_n
bk distance_n

Explanation:
BACK moves the turtle the specified number of steps in the opposite  direction 
of  its  current heading. The turtle's heading and pen do not change.  If  the 
turtle's  pen  is  down, the turtle leaves a trace of its  path.  On  the  IBM 
Personal Computer, a turtle step is equivalent to one dot (pixel).

BACK  can  help  you  write a procedure that leaves the  turtle  in  the  same 
position when the procedure ends as it was when the procedure started. Leaving 
the  turtle  in  the same position makes it easy to call  the  procedure  from 
another procedure.

Examples:
?cs
?back 50

?cs
?to flag
>forward 50
>repeat 3
>  [right 120 forward 25]
>back 50
>end
flag defined
?to wheel
>repeat 12
>  [flag left 30]
>end
wheel defined
?flag
?wheel

bury
----

Action:
Hides the specified package from subsequent workspace management commands.

Syntax:
bury pkgname | pkgname_list

Explanation:
BURY  hides  the  specified  package or  packages  from  workspace  management 
commands.  BURY  works by setting the bury property (.BUR)  in  the  package's 
property  list to TRUE. The following primitives check property  lists  before 
taking action, and ignore any buried procedures or variables:

        edall   erall   glist   pops    save
        edns    erns    poall   pots
        edps    erps    pons    pps

All  of  these  primitives optionally accept a package name as  input.  If  no 
package  name is specified, these commands address the entire contents of  the 
workspace,  except  for buried packages. All other  procedures  access  buried 
procedures  and variables normally. For example, a procedure that  receives  a 
buried variable name as input accesses the buried variable normally. POTL  and 
POPKG  display the names of buried procedures. PROCLIST includes  all  defined 
procedure names, buried or unburied, in the list it outputs.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Examples:
These  examples  assume you have the following items in  your  workspace:  two 
packages named FIGURES and TITLES, two variables named BIG and SMALL, and four 
procedures named PRAUTHOR, PRDATE, SQUARE, and TRIANGLE.

?popkg
figures
  "big (VAL)
  "small (VAL)
  to square
  to triangle
titles
  to prauthor
  to prdate
?bury "titles
?popkg
figures
  "big (VAL)
  "small (VAL)
  to square
  to triangle
titles is buried
  to prauthor
  to prdate
?pots
to square
to triangle

butfirst bf
-----------

Action:
Outputs all but the first element in the input object.

Syntax:
butfirst object
bf object

Explanation:
BUTFIRST  outputs all but the first element of the input object. If the  input 
object  is  a list, BUTFIRST outputs a list containing every  element  of  the 
input list, except the first element. If the input object is a word,  BUTFIRST 
outputs  a word containing all but the first character of the input  word.  If 
the input object is an empty word or empty list, BUTFIRST returns an error.

Examples:
?butfirst "abalone
balone

?butfirst [semi sweet chocolate]
[sweet chocolate]

?butfirst [[chocolate chip] [walnut date] [oatmeal raisin]]
[[walnut date] [oatmeal raisin]]

?butfirst "y

?butfirst [brownie]
[]

?to vanish :object
>if emptyp :object
>   [stop]
>print :object
>vanish butfirst :object
>end
vanish defined
?vanish "abracadabra
abracadabra
bracadabra
racadabra
acadabra
cadabra
adabra
dabra
abra
bra
ra
a



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

butlast bl
----------

Action:
Outputs all but the last element in the input object.

Syntax:
butlast object
bl object

Explanation:
BUTLAST  outputs  all but the last element of the input object. If  the  input 
object is a list, BUTLAST outputs a list containing every element of the input 
list, except the last element. If the input object is a word, BUTLAST  outputs 
a  word containing all but the last character of the input word. If the  input 
object is an empty word or empty list, BUTLAST returns an error.

Examples:
?butlast "drawn
draw

?butlast [fudge walnut]
[fudge]

?butlast "y

?butlast [snickerdoodle]
[]

?to vanish :object
>if emptyp :object
>   [stop]
>print :object
>vanish butlast :object
>end
vanish defined
?vanish "turkey
turkey
turke
turk
tur
tu
t

buttonp         (= BUTTON Predicate)    (Not a primitive)
-------

Action:
Outputs TRUE if the button on the specified paddle (joystick) is down.

Syntax:
buttonp paddle_n

Explanation:
BUTTONP  outputs  TRUE if the button on the specified paddle  or  joystick  is 
down.  Dr.  Logo can accept input from two paddle. Each paddle  can  have  two 
buttons.  You use BUTTONP to determine whether or not a button in pressed.  If 
you do not have a paddle or joystick, BUTTONP always output FALSE.

BUTTONP  requires an input number to identify one of the four paddle  buttons. 
Numbers in the range 0 to 3 identify the paddle buttons as follows:

        0 identifies button 1, paddle 1
        1 identifies button 2, paddle 1

        2 identifies button 1, paddle 2
        3 identifies button 2, paddle 2

Examples:
DRAW  allows the user to guide the turtle with the joystick. The  two  BUTTONP 
commands  allow the user to stop drawing or erase the drawing by pressing  the 
paddle buttons. DRAW is more fully described under PADDLE.

?to draw
>repeat 10000
>  [make "xin paddle 0
>   make "yin paddle 1
>   make "xin int ((:xin * (300 / 190)) - 150)
>   make "yin int ((:yin * (-200 / 144)) + 90)



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

>   setheading towards list :xin :yin
>   forward [amount * 0.1]
>   if buttonp 0 [stop]
>   if buttonp 1 [clean]
>end
draw defined
?to amount
>output int sqrt
>  ((abs :xin) * (abs :xin) +
>  ((abs :yin) * (abs :yin)))
>end
amount defined
?draw

bye     (Not a primitive)
---

Action:
Exits Dr. Logo and returns to the operating system.

Syntax:
bye

Explanation:
Exits current session of Dr. Logo and returns to the operating system. You can 
enter  BYE to Dr. Logo's ? or ! prompt; BYE is not valid when you are  in  the 
editor  or  while  you  are executing a procedure. When  you  enter  BYE,  any 
procedures or variables you have not saved on disk are lost.

Examples:
?bye

catch
-----

Action:
Traps  errors  and special conditions that occur during the execution  of  the 
input instruction list.

Syntax:
catch name instr_list

Explanation:
CATCH  works  with the THROW primitive to let your  procedure  handle  special 
conditions. For example, by using CATCH and THROW, your procedure can  display 
a  special message if your user types something incorrectly. CATCH  and  THROW 
can  also  intercept  an error that would normally make  Dr.  Logo  display  a 
message on the screen.

CATCH and THROW each require a name as input. To pair a CATCH expression  with 
a  THROW  expression, you must give the CATCH and THROW expressions  the  same 
input name.

When  a  CATCH  command  is  executed, Dr.  Logo  simply  executes  the  input 
instruction  list.  Execution  proceeds normally  until  a  THROW  expression, 
usually in a called procedure, identifies a special condition. Then, Dr.  Logo 
returns  to  the procedure that contains the CATCH command identified  by  the 
THROWn name. Dr. Logo then executes the line that follows the CATCH command.

There  are  two  special names you can input to catch: TRUE  and  ERROR.  TRUE 
matches  any  THROW  name,  so  CATCH  "TRUE  catches  any  THROW.  Dr.   Logo 
automatically executes a THROW "ERROR command when an error occurs. Therefore, 
a CATCH "ERROR expression catches any error that occurs. Without CATCH "ERROR, 
an  error  makes  Dr.  Logo print a message  on  the  screen,  terminate  your 
procedure's execution, and return to toplevel (the ? prompt). The  description 
of the ERROR primitive tells how to find out what the error was.

Examples:
The  COIL procedure asks the user to enter increasingly larger numbers as  the 
turtle  draws  a coil on the screen. If the user types a number  that  is  not 
bigger  than  the  last one entered, COIL reminds the user what  to  type  and 
continues working.

?to coil
>print [Enter a small number.]
>make "previous 0
>forward grow.number
>right 30
>trap



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

>end
coil defined
?to grow.number
>make "growth first readlist
>if :growth < :previous
>   [throw "not.bigger]
>make "previous :growth
>output :growth
>end
grow.number defined
?to trap
>catch "not.bigger [draw.coil]
>(print [Enter a number bigger than] :previous)
>trap
>end
trap defined
?to draw.coil
>print [Enter a bigger number.]
>forward grow.number
>right 30
>draw.coil
>end
draw.coil defined
?coil

The  THROW "NOTBIGGER instruction in the GROW.NUMBER procedure always  returns 
Dr. Logo to the TRAP procedure. If a STOP instruction had been used instead of 
THROW,  Dr. Logo would return to the procedure that called GROW.NUMBER,  which 
might be either COIL or DRAWCOIL.

The following procedures allow the user to type commands just as if typing  to 
the  Dr. Logo interpreter. However, if the user enters a command  incorrectly, 
the MY.MESSAGE procedure traps the normal Dr. Logo error message, and prints a 
custom message.

?to my.message
>catch "error [interpret]
>(print "Oops! first butfirst error [!!!])
>print [What do you want to do about that?]
>run readlist
>my.message
>end
my.message defined
?to interpret
>print [What next, boss?]
>run readlist
>interpret
>end
interpret defined
?interpret
Hello!

changef         (= CHANGE Filename)
-------

Action:
Changes the name of a file in the disk directory.

Syntax:
changef < d: > new_fname old_fname

Explanation:
CHANGEF  changes  the name of a file in a disk directory. Enter the  name  you 
want to give the file, followed by the file's current name. You can put a disk 
specifier  in  front of the old name if the file is not on  the  default  disk 
drive.

Examples:
The following examples assume you have three Dr. Logo files on the disk in the 
default drive: PIGLATIN, FLY, and SHAPES.

?dir
[PIGLATIN.LOG FLY.LOG SHAPES.LOG]
?changef "pigl "piglatin
?dir
[PIGL.LOG FLY.LOG SHAPES.LOG]

(ROCHE> I found the following procedure useful...)

to ren :new fname :old fname



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

changef :new_fname :old_fname
end

char
----

Action:
Outputs the character whose ASCII value is the input number.

Syntax:
char n

Explanation:
CHAR  outputs  the  character  whose ASCII value is  the  input  number.  CHAR 
requires an integer between 0 and 255 as input.

The  American Standard Code for Information Interchange (ASCII) is a  standard 
code for representing numbers, letters, and symbols. The IBM Personal Computer 
has many unique characters that are also represented by ASCII codes. The  "Dr. 
Logo Command Summary" contains a list of characters and their ASCII codes.

Examples:
?char 103
g

?char 50
2

?repeat 20 [(type random 10 char 9)]
3   0   6   1   3   5   1   8   0   1  8   6   7   1   1   9   3   8   4   5

?to encode :word
>if emptyp :word
>   [output "]
>output word secret first :word encode butfirst :word
>end
encode defined
?to secret :character
>make "secret.code (ascii :character) + 5
>if :secret.code > (ascii "z)
>   [make "secret.code :secret.code - 26]
>output char :secret.code
>end
secret defined
?to decode :word
>if emptyp :word
>   [output "]
>output word crack first :word decode butfirst :word
>end
decode defined
?to crack :character
>make "cracked.code (ascii :character) - 5
>if :cracked.code < (ascii "a)
>   [make "cracked.code :cracked.code + 26]
>output char :cracked.code
>end
crack defined
?make "password encode "elephant
?:password
jqjumfsy
?decode :password
elephant

clean
-----

Action:
Erases the graphic screen without affecting the turtle.

Syntax:
clean

Explanation:
CLEAN erases everything the turtle has drawn on the graphic screen, but leaves 
the turtle in its current heading and location.

Examples:
?to tri.spi :side



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

>if :side > 80
>   [stop]
>forward :side right 120
>tri.spi (:side + 3)
>end
tri.spi defined
?tri.spi 5
?clean

clearscreen cs
--------------

Action:
Erases the graphics screen and puts the turtle in the home position.

Syntax:
clearscreen
cs

Explanation:
CLEARSCREEN erases everything the turtle has drawn on the graphic screen,  and 
returns the turtle "home" to location [0 0] heading 0 (North).

Examples:
?to tri.spi :side
>if :side > 80
>   [stop]
>forward :side right 120
>tri.spi (:side + 3)
>end
tri.spi defined
?tri.spi 5
?clearscreen

cleartext ct
------------

Action:
Erases  all  text  in  the window that currently  contains  the  cursor,  then 
positions the cursor in the upper left corner of the window.

Syntax:
cleartext
ct

Explanation:
CLEARTEXT  erases  all text displayed in the window currently  containing  the 
cursor, then positions the cursor at the upper left corner of the window.  For 
example, if your entire screen is devoted to text, CLEARTEXT erases the entire 
screen, and places the cursor in the upper left corner.

Examples:
This  example  assumes  you have the following items in  your  worskpace:  two 
packages named FIGURES and TITLES, two variables named BIG and SMALL, and four 
procedures named PRAUTHOR, PRDATE, SQUARE, and TRIANGLE.

?popkg
figures
  "big (VAL)
  "small (VAL)
  to square
  to triangle
titles
  to prauthor
  to prdate
?cleartext

close
-----

Action:
Closes the named data file.

Syntax:
close fname

Explanation:
Closes the named data file.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Examples:
?close "Ketchum

closeall
--------

Action:
Closes all the data files currently open.

Syntax:
closeall

Explanation:
Closes all the data files currently open.

(ROCHE> There is a system message, saying that "Only 4 files can be open".)

Examples:
?closeall

co
--

Action:
Ends a pause that is caused by a PAUSE expression or a Ctrl-Z keystroke.

Syntax:
co

Explanation:
CO  continues  the execution of a procedure interrupted by a PAUSE.  During  a 
pause, you can interact with the interpreter to debug your procedure. Enter CO 
when you have finished with the interpreter and want to continue the execution 
of the procedure.

There are three ways to cause a pause during the execution of a procedure:

     1) the execution of a PAUSE expression within the procedure
     2) a Ctrl-Z keystroke
     3) any error, if the system variable ERRACT is TRUE.

When  a  PAUSE interrupts the execution of a procedure, Dr.  Logo  displays  a 
"Pausing..."  message and shows the name of the interrupted  procedure  before 
the  interpreter's ? prompt. No matter which way you begin a pause,  you  must 
use CO to end it and continue your procedure's execution.

Examples:
?to box.spi :side
>if and (:side > 80) (:side < 90)
>   [pause]
>forward :side right 90
>box.spi (:side + 5)
>end
box.spi defined
?box.spi 5
Ctrl-Z
Pausing... in box.spi: fd
box.spi ?:side
60
box.spi ?co
Pausing... in box.spi: [if and :side > 80 :side <  90 [pause]]
box.spi ?:side
85
box.spi ?co

 .contents
 ---------

Action:
Displays the contents of the Dr. Logo symbol space.

Syntax:
 .contents

Explanation:
Displays the contents of the Dr. Logo symbol space.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Examples:
?sort .contents
[()  *  + - .APV .BUR .DEF .ENL .FIL .FMT .PAK .PKG .PRM .RDR .REM  .SPC  .WTR 
.contents .deposit .examine .in .out .replace .reptail .setseg / < <= <> =  =< 
=> > >< >= FALSE TRUE ^ abs allopen an empty word and arctan ascii back bf  bk 
bl bury butfirst butlast catch changef char clean clearscreen cleartext  close 
closeall  co  copydef copyoff copyon cos count cs ct  cursor  defaultd  define 
definedp degrees dir dirpic dot dotc ed edall edf edit edns edps eform  emptyp 
equalp  er  erall erase erasefile erasepic ern erns erps erract error  exp  fd 
fence fill first follow form forward fput fs fullscreen glist go gprop heading 
help hideturtle home ht if iff iffalse ift iftrue int item keyp label last  lc 
left  list listp load loadpic local log log10 lowercase lput lt  make  memberp 
mouse name namep nodes noformat not notrace nowatch numberp op open or  output 
package  pal  pause pd pe pendown penerase penreverse penup  pi  piece  pkgall 
plist  po poall pocall pons popkg pops poref pos potl pots pprop pps  pr  prec 
primitivep  print proclist product pu px quotient radians random  rc  readchar 
readeofp  reader  readlist readquote recycle redefp remainder  remprop  repeat 
rerandom  right rl round rq rt run save savepic screenfacts se sentence  setbg 
setcursor  setd  seth  setheading setpal setpan setpc  setpen  setpos  setprec 
setread  setres  setscrunch  setsplit  setwrite  setx  sety  setzoom  sf  show 
showturtle  shuffle  sin sort splitscreen sqrt ss st stop sum  tan  test  text 
textscreen  tf  thing  throw tones toplevel towards trace  ts  tt  turtlefacts 
turtletext  type uc unbury uppercase wait watch where window word  wordp  wrap 
writer xcor ycor]

(ROCHE>
 .APV = Associated Property Value
 .BUR = BURied
 .CAT = CATch
 .DEF = DEFinition of a procedure
 .ENL = ENd of Line
 .FIL = FILe specification
 .FMT = ForMaT (indentation)
 .PAK = PAcKaged procedure
 .PKG = PacKaGe name
 .PRM = PRiMitive
 .RDR = ReaDeR
 .REM = REMark (;)
 .SPC = SPaCe
 .WTR = WriTeR
)

copydef
-------

Action:
Makes a copy of a procedure definition, and gives it a new name.

Syntax:
copydef new_procname old_procname

Explanation:
COPYDEF  makes  a  copy of a procedure definition, and gives it  a  new  name. 
COPYDEF  creates  a  new  procedure by making an exact  copy  of  an  existing 
procedure  definition,  and  giving it a new title  line.  The  new  procedure 
becomes a part of your workspace, and can be referenced, edited, and saved  on 
disk.

You cannot associate a second name with a Dr. Logo primitive, unless you  have 
made the system variable REDEFP TRUE. If the old_procname is a primitive,  the 
new_procname  takes  all  the characteristics of a  primitive;  it  cannot  be 
printed out or edited.

Examples:
?to box :side
>repeat 4
>  [forward :side right 90]
>end
box defined
?copydef "square "box
?po "square
to square :side
repeat 4 [forward :side right 90]
end

copyoff
-------

Action:



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Stops echoing text at the printer.

Syntax:
copyoff

Explanation:
COPYOFF  stops the echoing of text at the printer. If you have a printer,  you 
can start printer echo with COPYON.

Examples:
These examples assume you have three files named PIGL, FLY, and SHAPES on  the 
disk in the default drive.

?copyon
?dir                         \
[PIGL.LOG FLY.LOG SHAPES.LOG] > This is echoed on the printer.
?copyoff                     /
?dir
[PIGL.LOG FLY.LOG SHAPES.LOG]

copyon
------

Action:
Starts echoing text at the printer.

Syntax:
copyon

Explanation:
COPYON  starts  echoing text at the printer, if you have  one.  After  COPYON, 
everything  Dr.  Logo  displays on your text screen is  also  printed  at  the 
printer. You can stop printer echo with COPYOFF.

Examples:
The following exampes assume you have three files named PIGL, FLY, and  SHAPES 
on the disk in the default drive.

?copyon
?dir                         \
[PIGL.LOG FLY.LOG SHAPES.LOG] > This is echoed on the printer.
?copyoff                     /
?dir
[PIGL.LOG FLY.LOG SHAPES.LOG]

cos
---

Action:
Outputs the cosine of the input number of degrees.

Syntax:
cos degrees_n

Explanation:
COS  outputs  the  trigonometric cosine of the input number  of  degrees.  COS 
outputs a decimal number between 0 and 1.

Examples:
?cos 0
1

?to plot.cosine
>setpc 2
>make "val 0
>make "x -150
>make "inc (300 / 60)
>setx 150 setx -150
>penup setpos list :x 90 pd
>setpc 1
>plot.c :val
>end
plot.cosine defined
?to plot.c :val
>if :x > 150
>   [stop]
>make "y (90 * (cos :val))  ; 90 makes plot visible
>setheading towards list :x :y
>setpos list :x :y



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

>make "x :x + :inc
>make "val :val + 6
>plot.c :val
>end
plot.c defined
?plot.cosine

count
-----

Action:
Outputs the number of elements in the input object.

Syntax:
count object

Explanation:
COUNT outputs the number of elements in the input object, which can be a word, 
number,  or  list.  To count the items in a list within a list,  use  an  ITEM 
expression as input to COUNT.

Examples:
?count "chocolate
9

?count [chocolate]
1

?count [vanilla strawberry [mocha unsweetened milk german]]
3

?count item 3 [vanilla strawberry [mocha unsweetened milk german]]
4

cursor
------

Action:
Outputs  a  list  that contains the column and line numbers  of  the  cursor's 
position within the text window.

Syntax:
cursor

Explanation:
CURSOR outputs a coordinate list that contains the column and line numbers  of 
the cursor's position within the text window. The first element of the list is 
the column number; the second, the line number. The line number ranges from  0 
to 24. The column number ranges from 0 to 79.

Examples:
?cleartext
?cursor
[0 1]

?(type  [The current cursor position is\ ] show cursor
The current cursor position is [32 23]

?print sentence [The current cursor position is:] cursor
The current cursor position is: 0 24

defaultd        (= DEFAULT Drive name)
--------

Action:
Outputs the name of the current default drive.

Syntax:
defaultd

Explanation:
DEFAULTD outputs the name of the current default drive. Dr. Logo looks in  the 
directory  of  the disk in the default drive when you do not specify  a  drive 
name in a disk command such as SAVE, LOAD, ERASEFILE, CHANGEF, or DIR.

Examples:
?to saved
>make "disk.name defaultd



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

>end
saved defined
?to restored
>setd :disk.name
>end
restored defined
?defaultd
A:
?saved
?setd b:
?defaultd
B:
?restored
?defaultd
A:

define
------

Action:
Makes  the  input definition list the definition of  the  specified  procedure 
name.

Syntax:
define procname defin_list

Explanation:
DEFINE  allows  you  to  write a procedure that can,  in  turn,  define  other 
procedures.  A DEFINE expression defines a procedure without using  an  editor 
(such as  EDIT or ED), TO, or END.

DEFINE  requires two inputs: a name and a definition list. Note that the  name 
you input to DEFINE cannot be the name of a Dr. Logo primitive, unless  REDEFP 
is TRUE.

A  definition list is a special kind of list with a special format. The  first 
element of the input list must be a list of names for inputs to the procedure. 
Do  not  put colons (":") before names in this list! If the  procedure  is  to 
require  no inputs, the first element in DEFINE's input list must be an  empty 
list. DEFINE uses the input name and the first element of the definition  list 
to compose the title line of the procedure.

Each  remaining element of DEFINE's input list must be a list  containing  one 
line  of the procedure definition. Do not put END in this list; END is  not  a 
part of a procedure's definition.

The TEXT primitive also uses this format when it outputs a definition list. In 
fact, you can use a TEXT expression to input a definition list to DEFINE.

Examples:
?define "say.hello [[] [print [Hello world!]]
?po "say.hello
to say.hello
print [Hello world!]
end
?to learn
>make "definition [[]]
>print [Enter expressions you would like saved in a procedure.]
>print [Enter ERASE to delete your last instruction.]
>read.lines
>print [Type Y to define procedure, any other key to abandon.]
>test lowercase readchar = "y
>iftrue [type [Name for procedure?]
>        make "title first readlist
>        define :title :definition]
>end
learn defined
?to read.lines
>make "newline readlist
>if lowercase :newline = [end]
>   [stop]
>if lowercase :newline = [erase]
>   [delete]
>   [run :newline make "definition lput :newline :definition]
>read.lines
>end
read.lines defined
?to delete
>print sentence "Deleting last :definition
>make "definition butlast :definition



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

>end
delete defined
?learn
Enter expressions you would like saved in a procedure.
Enter erase to delete your last instruction.
cs
erase
Deleting cs
setpc 1
forward 40 right 90
setpc 2
repeat 36 [forward 5 left 10]
left 90 setpc 1 back 40
print "balloon!
balloon!
end
Type Y to define procedure, any other key to abandon. y
Name for procedure?
balloon
?balloon
balloon!

definedp        (= DEFINED Predicate)
--------

Action:
Outputs TRUE if the input name identifies a defined procedure.

Syntax:
definedp object

Explanation:
DEFINEDP  outputs  TRUE  if the input name identifies  a  procedure  currently 
defined in the workspace. DEFINEDP returns FALSE if the input name  identifies 
a primitive name, a variable name, or anything but a defined procedure name.

Examples:
?to balloon
>setpc 1
>forward 40 right 90
>setpc 2
>repeat 36
>  [forward 5 left 10]
>left 90 setpc 1 back 40
>print "balloon!
>end
balloon defined
?definedp "balloon
TRUE
?definedp "definedp
FALSE

degrees
-------

Action:
Outputs the number of degrees in the input number of radians.

Syntax:
degrees radian_n

Explanation:
DEGREES  outputs the number of degrees in the input number of  radians,  where 
degrees = radians * (180 / pi).

Examples:
?degrees 1
57.2957795130823

?degrees 2
114.591559026165

?degrees 3
171.887338539247

?to degrees.cycle :vals
>if emptyp :vals
>   [stop]
>(print  [There  are]  degrees  (run first :vals)  [degrees  in]  first  :vals 



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

"radians.)
>make "vals butfirst :vals
>degrees.cycle :vals
>end
degrees.cycle defined
?make "vals [[pi] [(pi / 2)] [(pi /4)] [(pi / 8)]]
?degrees.cycle :vals
There are 180 degrees in pi radians.
There are 90 degrees in (pi / 2) radians.
There are 45 degrees in (pi / 4) radians.
There are 22.5 degrees in (pi / 8) radians.

 .deposit
 --------

Action:
Puts a number into a memory location.

Syntax:
 .deposit n n

Explanation:
Puts  the second input number into the memory location specified by the  first 
input  number. This location is relative to the absolute location  established 
by .SETSEG. THIS PRIMITIVE SHOULD BE USED WITH CAUTION!

Examples:
?.deposit 2 3

dir
---

Action:
Outputs a list of the Dr. Logo file names on the default or specified disk.

Syntax:
dir < d: >

Explanation:
DIR outputs a list of Dr. Logo file names on the default or specified disk. If 
you  do  not specify a disk drive, DIR looks in the directory of  the  default 
disk.

DIR accepts an ambiguous file name as input. An ambiguous file name can  refer 
to  more than one file because it contains a wildcard character and gives  Dr. 
Logo  a pattern to match. Dr. Logo can then display the file names that  match 
the pattern.

The  wildcard character is a question mark ("?"). When the last  character  in 
your  input  file name is a question mark, DIR displays the  file  names  that 
begin with the characters that precede the question mark. (ROCHE> There  seems 
to  be  a bug in the version available, as ? does not work. To  get  ambiguous 
file  names,  fill  the  name  (and/or typ)  field(s)  with  ?.  Example:  DIR 
F???????.T??)

The  list  DIR  outputs  contains  the names of  only  those  files  that  are 
identified  by the LOG file type in the disk's directory.  SAVE  automatically 
gives the file type LOG to the files it stores on disk.

Examples:
These  examples assume you have three files named SHAPES, PLAID, and  PIGLATIN 
on the disk in the default drive, and two files named COIL and FLY on the disk 
in drive B.

?dir
[SHAPES.LOG PLAID.LOG PIGLATIN.LOG]
?dir "b:
[COIL.LOG FLY.LOG]
?dir "p???????
[PLAID.LOG PIGLATIN.LOG]

dirpic
------

Action:
Outputs a list of the Dr. Logo picture files on the default or specified disk.

Syntax:



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

dirpic < d: >

Explanation:
DIRPIC  outputs a list of Dr. Logo picture files on the default  or  specified 
disk. If you do not specify a disk drive, DIRPIC looks in the directory of the 
default disk.

DIRPIC  accepts an ambiguous picture filename as input. An  ambiguous  picture 
filename  can  refer  to  more than one picture file  because  it  contains  a 
wildcard  character and gives Dr. Logo a pattern to match. Dr. Logo  can  then 
display the picture filenames that match the pattern.

The  wildcard character is a question mark ("?"). When the last  character  in 
your  input picture filename is a question mark, DIRPIC displays  the  picture 
filenames  that  begin  with the characters that precede  the  question  mark. 
(ROCHE> There seems to be a bug in the version available, as ? does not  work. 
To  get  ambiguous  file names, fill the name (and/or typ)  field(s)  with  ?. 
Example: DIR F???????.T??)

The  list DIRPIC outputs contains the names of only those picture  files  that 
are  identified  by  the  PC0  file type  in  the  disk's  directory.  SAVEPIC 
automatically  gives the picture filetype PC0 to the files it stores on  disk. 
(ROCHE> for SETRES 0 images. But images saved under SETRES 1 are given the PC1 
file  type... and DIRPIC is then unable to find them! This is clearly  a  bug. 
The solution is to use an ambiguous filespec, with .PC? for the file type.)

Examples:
These  examples assume you have three picture files named SHAPES,  PLAID,  and 
PIGLATIN on the disk in the default drive.

?dirpic
[SHAPES.PC0 PLAID.PC0 PIGLATIN.PC0]
?dirpic "p???????.pc?
[PLAID.PC0 PIGLATIN.PC0 PLAID.PC1 PIGLATIN.PC1]

dot
---

Action:
Plots a dot at the position specified by the input coordinate list.

Syntax:
dot coord_list

Explanation:
DOT  plots  a  dot  at the position specified  by  the  input  graphic  screen 
coordinate list. The turtle is not affected in any way.

Examples:
?dot [50 50]

?to snow
>make "x random 150 * (first shuffle [1 -1])
>make "y random 100 * (first shuffle [1 -1])
>dot list :x :y
>snow
>end
snow defined
?snow

dotc    (= DOT Color)
----

Action:
Outputs the color number of a given dot.

Syntax:
dotc coord_list

Explanation:
Outputs the color number of the dot at the coordinates specified, or -1 if the 
location is not on the graphic viewport.

Examples:
?dotc [50 10]
2

edall           (= EDit ALL)



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

-----

Action:
Loads  all  the  variables  and  procedures  in  the  workspace  or  specified 
package(s) into the screen editor's buffer, and enters the screen editor.

Syntax:
edall < pkgname | pkgname_list >

Explanation:
With or without an input, EDALL loads variables and procedures into the screen 
editor's  buffer, and enters the screen editor. EDALL without an  input  loads 
all  procedures  and  variables  from Dr. Logo's  workspace  into  the  screen 
editor's  buffer.  If  there is nothing in the workspace,  the  screen  editor 
displays  an  empty  buffer  into which you  can  type  either  procedures  or 
variables.

You can input a package name or a list of package names to specify a group  of 
procedures and variables to edit. EDALL accepts only defined package names  as 
input.

Within the screen editor, you can use line editing and screen editing  control 
character  commands  to move the cursor, make changes to text,  and  exit  the 
screen  editor.  The control character commands are described  in  Section  3, 
"Editing Commands", and summarized in Appendix B, "Dr. Logo control and escape 
character commands".

Examples:
These  examples assume you have two packages named DRAW.PACK and MOVE.PACK  in 
your workspace.

?edall

EDALL loads all the variables and procedures in Dr. Logo's workspace into  the 
screen editor's buffer.

?edall "draw.pack

EDALL loads all the variables and procedures in the package DRAW.PACK into the 
screen editor's buffer.

?edall [draw.pack move.pack]

EDALL  loads  all the variables and procedures in the packages  DRAW.PACK  and 
MOVE.PACK into the screen editor's buffer.

edf     (= EDit File)
---

Action:
Loads a disk file into the text editor.

Syntax:
edf fname

Explanation:
EDF  takes a file name as input. It can load the specified disk file  directly 
into the screen editor's buffer, or create a new disk file with the  specified 
name and enter the screen editor with an empty buffer.

When  you start the screen editor using EDF, Dr. Logo updates the disk  rather 
than  the  workspace when you press Ctrl-C to exit the screen editor.  If  you 
press Ctrl-G, Dr. Logo stops and does not update the disk.

One of the advantages of saving information directly from the screen  editor's 
buffer  to disk is that you can store individual command lines or  expressions 
in the disk file. When you end a workspace edit with Ctrl-C, Dr. Logo  updates 
only the definitions of procedures and variables in the workspace. Any  stand-
alone  expressions  within the edit buffer are lost. However,  when  Dr.  Logo 
updates the disk, it saves stand-alone expressions. When you LOAD a file  that 
contains stand-alone expressions, Dr. Logo executes them in the same  sequence 
it  reads them from disk. Use EDF to create a STARTUP file that  automatically 
executes the procedures it contains.

(ROCHE> When you type Ctrl-C, Dr. Logo saves the file on the disk. If you type 
Ctrl-G, it is erased from memory. Note that EDF is a full-screen file  editor, 
and  can  edit files up to 4KB. It does not word-warp but, if you  need  word-
wrap, then you should use a real word-processor, in which case WordStar is, of 
course, the standard under CP/M.)



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Examples:
?edf "startup

edit ed
-------

Action:
Loads  the specified procedure(s) and/or variable(s) into the screen  editor's 
buffer, and enters the screen editor.

Syntax:
edit < name | name_list >
ed   < name | name_list >

Explanation:
An EDIT command enters the screen editor. EDIT can load procedures, variables, 
or  both into the screen editor's buffer. Input a procedure or variable  name, 
or a list of procedure and variable names to specify what you want to edit.

EDIT  is  "smart"  and assumes certain things about  your  objectives  for  an 
editing session. First, it knows that you frequently use the screen editor  to 
correct errors in procedures. So, when the execution of a procedure ends  with 
an error message and you immediately enter an edit command without  specifying 
a  procedure name, EDIT automatically loads the erroneous procedure  into  the 
screen  editor,  and  positions  the cursor at the line  in  which  the  error 
occurred.

If  no  error has occurred, EDIT without an input procedure name  displays  an 
empty  screen  editor  buffer. When you start to edit  an  empty  buffer,  the 
display  is completely blank. You can type variable and procedure  definitions 
into the empty buffer.

EDIT's  second assumption is that, when you are defining a new procedure,  you 
need title and ending lines. When you input an undefined procedure name in  an 
edit  command,  EDIT  creates title and ending lines in  the  screen  editor's 
buffer.

Within the screen editor, you can use line editing and screen editing  control 
character  commands  to move the cursor, make changes to text,  and  exit  the 
screen  editor.  The control character commands are described  in  Section  3, 
"Editing Commands", and summarized in Appendix B, "Dr. Logo control and escape 
character commands".

Examples:
The following examples assume that you have the following in your workspace: a 
variable named PASSWORD and four procedures named SQUARE, VANISH, ENCODE,  and 
SECRET.

I don't know how to repaet in square: repeat 4 [forward 25 left 90]
?ed

EDIT automatically loads SQUARE into the screen editor's buffer and  positions 
the cursor at the misspelling "repaet".

?edit "vanish

EDIT loads the procedure VANISH into the screen editor's buffer, and positions 
the cursor at the end of the title line.

?ed [encode secret password

ED  loads the ENCODE and SECRET procedures and the variable PASSWORD into  the 
screen editor's buffer, and positions the cursor after ENCODE's title line.

?ed "new.idea

ED with an undefined procedure name automatically creates title and end  lines 
in the screen editor's buffer.

edns    (= EDit NameS)
----

Action:
Loads  all  the variables in the workspace or specified  package(s)  into  the 
screen editor's buffer, and enters the screen editor.

Syntax:
edns < pkgname | pkgname_list >



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Explanation:
With  or  without  an input, EDNS loads variables  into  the  screen  editor's 
buffer,  and  enters  the  screen editor. EDNS  without  an  input  loads  all 
variables from Dr. Logo's workspace into the screen editor's buffer. If  there 
is  nothing in the workspace, the screen editor displays an empty buffer  into 
which you can type variable and procedure definitions.

You can input a package name or a list of package names to specify a group  of 
variables to edit. EDNS accepts only defined package names as input.

Within the screen editor, you can use line editing and screen editing  control 
character  commands  to move the cursor, make changes to text,  and  exit  the 
screen  editor.  The control character commands are described  in  Section  3, 
"Editing Commands", and summarized in Appendix B, "Dr. Logo control and escape 
character commands".

Examples:
The  following examples assume that you have two packages named DRAW.PACK  and 
MOVE.PACK in your workspace.

?edns

EDNS loads all the variables in Dr. Logo's workspace into the screen  editor's 
buffer.

?edns "draw.pack

EDNS loads all the variables in the package DRAW.PACK into the screen editor's 
buffer.

?edns [draw.pack move.pack]

EDNS loads all the variables in the packages DRAW.PACK and MOVE.PACK into  the 
screen editor's buffer.

edps    (= EDit ProcedureS)
----

Action:
Loads  all  the procedures in the workspace or specified package(s)  into  the 
screen editor's buffer, and enters the screen editor.

Syntax:
edps < pkgname | pkgname_list >

Explanation:
With  or  without  an input, EDPS loads procedures into  the  screen  editor's 
buffer,  and  enters  the  screen editor. EDPS  without  an  input  loads  all 
procedures from Dr. Logo's workspace into the screen editor's buffer. If there 
is  nothing in the workspace, the screen editor displays an empty buffer  into 
which you can type either procedures or variables.

You can input a package name or a list of package names to specify a group  of 
procedures to edit. EDPS accepts only defined package names as input.

Within the screen editor, you can use line editing and screen editing  control 
character  commands  to move the cursor, make changes to text,  and  exit  the 
screen  editor.  The control character commands are described  in  Section  3, 
"Editing Commands", and summarized in Appendix B, "Dr. Logo control and escape 
character commands".

Examples:
The  following examples assume that you have two packages named DRAW.PACK  and 
MOVE.PACK in your workspace.

?edps

EDPS loads all the procedures in Dr. Logo's workspace into the screen editor's 
buffer.

?edps "draw.pack

EDPS  loads  all  the  procedures in the package  DRAW.PACK  into  the  screen 
editor's buffer.

?edps [draw.pack move.pack]

EDPS loads all the procedures in the packages DRAW.PACK and MOVE.PACK into the 
screen editor's buffer.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

eform   (= Exponential FORMat)
-----

Action:
Outputs a number in scientific notation.

Syntax:
eform n1 n2

Explanation:
Outputs  N1  in scientific notation, using N2 digits. N2 must be  a  positive, 
real number from 1 through 15.

Examples:
?eform 1.2 1
 1.E+00

emptyp  (= EMPTY Predicate)
------

Action:
Outputs TRUE if the input object is an empty word or an empty list.

Syntax:
emptyp object

Explanation:
An EMPTYP expression returns TRUE only if the input object is an empty word or 
empty  list.  Use  EMPTYP  as the predicate expression in  an  IF  command  to 
determine  if  all  elements of an object input to  the  procedure  have  been 
processed.

Examples:
?to nest.circles :sizes
>if emptyp :sizes
>   [stop]
>repeat 36
>  [forward first :sizes left 10]
>nest.circles butfirst :sizes
>end
nest.circles defined
?make "sizes [1 2 3 4 5 6 7 8]
?nest.circles :sizes

end     (Not a primitive)
---

Action:
Indicates the end of a procedure definition.

Syntax:
end

Explanation:
END is a special word that signals the end of a procedure definition. When you 
are  using  TO to define a procedure, you must put END by itself as  the  last 
line of the procedure.

END  signals  to the procedure editor (the > prompt) that  you  have  finished 
defining  a  procedure,  and returns you to the interpreter's  ?  prompt.  The 
screen editor automatically inserts END, if you press Ctrl-C and exit  without 
entering  END.  Dr. Logo also adds an END line to a procedure defined  with  a 
DEFINE expression.

END is not part of a procedure's definition list, and is not a primitive.  You 
can  use  END as a procedure or variable name, if you are confident  that  the 
name will not cause undue confusion.

Examples:
?to pent
>repeat 5
>  [forward 25 left 72]
>end
pent defined

END signals the procedure editor that you have finished defining a  procedure, 
and returns you to the interpreter's ? prompt.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?define "pent [[] [repeat 5 [forward 25 left 72]
?po "pent
to pent
repeat 5 [forward 25 left 72]
end

The  DEFINE  expression  automatically  adds an  END  line  to  the  procedure 
definition.

equalp  (= EQUAL Predicate)
------

Action:
Outputs  TRUE  if  the input objects are equal numbers,  identical  words,  or 
identical lists.

Syntax:
equalp object object

Explanation:
EQUALP  outputs  TRUE only if the input objects are equal  numbers,  identical 
words, or identical lists; otherwise, EQUALP outputs FALSE.

Examples:
?equalp " []
FALSE

?equalp "leaf first [leaf stem flower]
TRUE

?equalp 72 (360 / 5)
TRUE

?equalp [1 2 3] [2 3 4]
FALSE

erall   (= ERase ALL)
-----

Action:
Erases  all  the  procedures and variables from  the  workspace  or  specified 
package(s).

Syntax:
erall < pkgname | pkgname_list >

Explanation:
ERALL  erases  the definitions of procedures and variables. ERALL  without  an 
input  name  erases the definitions of all procedures and variables  from  Dr. 
Logo's workspace, except for any procedures and variables in buried  packages. 
ERALL  without  an input name also erases the package names  of  any  unburied 
packages.

You  can  give ERALL a package name or a list of package names  to  specify  a 
group  of  procedures and variables to be erased. ERALL can  accept  a  buried 
package name as input; with this request, ERALL can erase a buried package.

ERALL works by removing property pairs from the property lists associated with 
package,  variable,  and  procedure names. It removes the  .PKG  pair  from  a 
package's  property list, the .APV and .PAK pairs from a  variable's  property 
lists,  and  the .DEF and .PAK pairs from a procedure's property  list.  ERALL 
does  not remove any other property pairs from a property list. So, after  you 
input  a buried package name to ERALL, GLIST ".BUR still outputs the  name  of 
the  erased  package. To completely remove the name from your  workspace,  you 
must use a REMPROP command to eliminate all pairs from its property list.

Examples:
These  examples assume you have two packages named DRAW.PACK and MOVE.PACK  in 
your workspace.

?erall

This command erases the definitions of all unburied procedures, variables, and 
packages from Dr. Logo's workspace.

?erall "draw.pack

This  command  erases  the  definitions of procedures  and  variables  in  the 
DRAW.PACK package, as well as the definition of DRAW.PACK as a package name.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?erall [draw.pack move.pack]

This command erases the definitions of the procedures, variables, and  package 
names associated with DRAW.PACK and MOVE.PACK.

erase er
--------

Action:
Erases the specified procedure(s) from the workspace.

Syntax:
erase procname | procname_list
er procname | procname_list

Explanation:
ERASE erases the specified procedure or procedures from Dr. Logo's  workspace. 
ERASE  works by removing the .DEF pair from a procedure's property list. If  a 
procedure  has other property pairs in its list besides .DEF, you must  remove 
them with REMPROP to completely erase the procedure name from the workspace.

Examples:
Each of these examples assume you have two procedures named WHEEL and FLAG  in 
a package named MANDALA in your workspace.

?erase "wheel

This  command  erases the definition of the WHEEL procedure  from  Dr.  Logo's 
workspace.

?erase [wheel flag]

This command erases the definitions of the procedures WHEEL and FLAG from  Dr. 
Logo's workspace.

?plist "wheel
[.PAK mandala [[] [repeat 12 [flag left 30]]]]
?erase "wheel
?plist "wheel
[.PAK mandala]

ERASE removes only the definition (.DEF) pair from a procedure name's property 
list. Use REMPROP to delete .PAK.

erasefile
---------

Action:
Erases the specified Dr. Logo file.

Syntax:
erasefile fname

Explanation:
ERASEFILE erases a file name from a disk directory. You can enter a drive name 
before the file name, to erase a file not on the default drive.

ERASEFILE accepts an ambiguous file name as input. An ambiguous file name  can 
refer to more than one file because it contains a wildcard character and gives 
Dr.  Logo  a pattern to match. Dr. Logo can then erase any files  whose  names 
match the pattern.

The  wildcard character is a question mark ("?"). When the last  character  in 
your  input  file name is a question mark, ERASEFILE erases  any  files  whose 
names begin with the characters that precede the question mark. (ROCHE>  There 
seems  to  be  a  bug in the version available, as ? does  not  work.  To  get 
ambiguous file names, fill the name (and/or typ) field(s) with ?. Example: DIR 
F???????.T??)

Examples:
Each  of these examples assume you have two files named PIGLATIN and PLAID  on 
the  disk in drive B. The first command erases only PIGLATIN.LOG.  The  second 
command erases both files.

?erasefile "b:piglatin

?erasefile "b:p???????



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

(ROCHE> I found the following procedure useful...)

to era :fname
erasefile :fname
end

erasepic
--------

Action:
Erases the specified Dr. Logo image file.

Syntax:
erasepic fname

Explanation:
ERASEPIC erases a Dr. Logo image filename from a disk directory. You can enter 
a  drive  name  before the image filename to erase a image  file  not  on  the 
default drive.

ERASEPIC  accepts  an ambiguous image filename as input.  An  ambiguous  image 
filename can refer to more than one image file because it contains a  wildcard 
character  and gives Dr. Logo a pattern to match. Dr. Logo can then erase  any 
image files whose names match the pattern.

The  wildcard character is a question mark ("?"). When the last  character  in 
your input image filename is a question mark, ERASEPIC erases any image  files 
whose names begin with the characters that precede the question mark.  (ROCHE> 
There  seems to be a bug in the version available, as ? does not work. To  get 
ambiguous file names, fill the name (and/or typ) field(s) with ?. Example: DIR 
F???????.T??)

Examples:
Each  of  these examples assume you have two image files  named  PIGLATIN  and 
PLAID on the disk in drive B. The first command erases only PIGLATIN.LOG.  The 
second command erases both files.

?erasepic "b:piglatin

?erasepic "b:p???????

ern     (= ERase one Name)
---

Action:
Erases the specified variable(s) from the workspace.

Syntax:
ern varname | varname_list

Explanation:
ERN  erases a specified variable name or names from Dr. Logo's workspace.  ERN 
works  by  removing the .APV pair from the property list associated  with  the 
variable  name.  If  a  variable  has  other  property  pairs  in  its   list, 
besides .APV,  you  must  remove them with REMPROP  to  completely  erase  the 
variable name from the workspace.

Examples:
Each of these examples assume you have two variables named BIG and SMALL in  a 
package named SIZE in your workspace.

?ern "big

This command erases the variable name BIG from Dr. Logo's workspace.

?ern [big small]

This  command  erases  the  variable  names BIG  and  SMALL  from  Dr.  Logo's 
workspace.

?plist "big
[.PAK size .APV 80]
?ern "big
?plist "big
[.PAK size]

ERN  removes  only  the .APV pair from a variable name's  property  list.  Use 
REMPROP to remove .PAK.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

erns    (= ERase several NameS)
----

Action:
Erases all the variables from the workspace or specified package(s).

Syntax:
erns < pkgname | pkgname_list >

Explanation:
ERNS erases a group of variable names from Dr. Logo's workspace. ERNS  without 
an input name erases all variable names from Dr. Logo's workspace, except  for 
any  variable names in buried packages. You can give ERNS a package name or  a 
list of package names to specify a group of variables names to be erased. ERNS 
can accept a buried package name as input; with this request, ERNS can  remove 
the value from a variable in a buried package.

ERNS works by removing the .APV pair from a variable name's property list.  It 
does not remove any other pair, such as the .PAK pair that indicates the  name 
is  packaged. Therefore, after you use ERNS with a package name as  input  and 
list  the  contents of the package with GLIST ".PAK, you will still  see  your 
variable names listed under the package name, even though they have no values.

Examples:
These  examples assume you have two packages named DRAW.PACK and MOVE.PACK  in 
your workspace.

?erns "draw.pack

This command erases all variable names from the DRAW.PACK package.

?erns [draw.pack move.pack]

This  command  erases  all variable names from  the  DRAW.PACK  and  MOVE.PACK 
packages.

erps    (= ERase ProcedureS)
----

Action:
Erases all the procedures from the workspace or specified package(s).

Syntax:
erps < pkgname | pkgname_list >

Explanation:
ERPS  erases a group of procedures from Dr. Logo's workspace. ERPS without  an 
input  name  erases all procedures from Dr. Logo's workspace, except  for  any 
procedures  in buried packages. You can give ERPS a package name or a list  of 
package names to specify a group of procedures to be erased. ERPS can accept a 
buried  package  name  as  input;  with this  request,  ERNS  can  remove  the 
definition from a procedure name in a buried package.

ERPS works by removing the .DEF pair from a procedure name's property list. It 
does  not  remove  any other property. Therefore, after you use  ERPS  with  a 
package  name as input and list the contents of the package with GLIST  ".PAK, 
you  will  still see your procedure names listed as regular  names  under  the 
package name.

Examples:
These  examples assume you have two packages named DRAW.PACK and MOVE.PACK  in 
your workspace.

?erps

This command erases all procedures, and leaves variables.

?erps "draw.pack

This command erases all procedures from the DRAW.PACK package.

?erps [draw.pack move.pack]

This  command  erases  all procedure names from the  DRAW.PACK  and  MOVE.PACK 
packages.

erract  (= ERRor ACTion)        (Not a primitive)
------



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Not a procedure, but a system variable.

When  ERRACT is TRUE, any error causes a PAUSE, during which you can find  the 
origin of the error. Default = FALSE.

error
-----

Action:
Outputs a list whose elements describe the most recent error.

Syntax:
error

Explanation:
ERROR  can  output a list that describes the most recent error.  If  the  most 
recent  error has already displayed a message on the screen, or if  ERROR  has 
already output a list describing the most recent error, ERROR outputs an empty 
list.

A non-empty ERROR output list contains six elements to describe an error:

     1) A number that identifies the error. Dr. Logo error numbers are  listed 
        in Appendix A, "Dr. Logo Error Messages".

     2) A message that explains the error. This is the message that is usually 
        displayed on the screen.

     3) The  name of the procedure that contains the erroneous expression.  If 
        the error occurred at toplevel, this element is an empty list.

     4) The complete line that contains the erroneous expression.

     5) The procedure name part of the erroneous expression, if any.

     6) The input object part of the erroneous expression, if any.

Dr.  Logo can take one of two actions when an error occurs. Which  action  Dr. 
Logo  takes depends on a system variable called ERRACT. The default  state  of 
ERRACT is FALSE. You can set ERRACT to TRUE with a make statement.

While  ERRACT  is FALSE, Dr. Logo runs a THROW "ERROR command  when  an  error 
occurs. If no CATCH "ERROR command has been run, Dr. Logo terminates execution 
of  the  procedure, prints an error message, and returns to toplevel.  If  the 
error occurred within the scope of a CATCH "ERROR command, Dr. Logo returns to 
the line following the CATCH "ERROR without displaying an error message on the 
screen. This allows you to handle an error in your own way. The description of 
the CATCH command gives an example of how to display a custom error message.

While  ERRACT is TRUE, Dr. Logo does a PAUSE when an error occurs. During  the 
pause,  you can execute an ERROR command to discover the cause of  the  error, 
then change variables with MAKE or procedures with EDIT before entering CO  to 
continue execution of the procedure.

Examples:
?to safety.circle :size
>catch "error [repeat 180 [forward :size right 2]
>show error
>end
safety.circle defined
?safety.circle 2
[]
?safety.circle "two
[41  [forward doesn't like two as input] safety.circle [catch  "error  [repeat 
180 forward :size right 2]]] forward rt]

 .examine
 --------

Action:
Displays the contents of a memory location.

Syntax:
 .examine n

Explanation:
Displays  the contents (a byte value) of the memory location specified by  the 
input  number. This location is relative to the absolute location  established 



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

by .SETSEG. THIS PRIMITIVE SHOULD BE USED WITH CAUTION!

Examples:
?.examine 22
0

exp
---

Action:
Outputs the natural exponent of the input number.

Syntax:
exp n

Explanation:
EXP outputs the natural exponent of the input number.

Examples:
?exp 1
2.71828182845905

?log (exp 1)
1

fence
-----

Action:
Establishes a boundary that limits the turtle to onscreen plotting.

Syntax:
fence

Explanation:
FENCE establishes a boundary around the edge of the graphic screen. The  fence 
limits the turtle to onscreen plotting. When the turtle encounters the  fence, 
Dr. Logo displays a "Turtle out of bounds" message. The number of turtle steps 
from home to the fence are as follows:

                 +100                         +239
            ┌────────────┐               ┌────────────┐
            │  setres 0  │               │  setres 1  │
       -160 │            │ +159     -320 │            │ +319
            │   320x200  │               │   640x480  │
            └────────────┘               └────────────┘
                  -99                         -240

To remove the fence, enter WINDOW.

Examples:
?to frame0                              ?to frame1
>setres 0                               >setres 1
>fs clean home                          >setscrunch 1
>pu setpos [-160 99] pd                 >setzoom 1
>setx 159                               >fs clean home
>sety -99                               >pu setpos [-320 239] pd
>setx -160                              >setx 319
>sety 100                               >sety -240
>pu home pd                             >setx -320
>end                                    >sety 239
frame0 defined                          >pu home pd
?frame0                                 >end
Ctrl-G                                  frame1 defined
                                        ?frame1
                                        Ctrl-G

fill
----

Action:
Fills an area.

Syntax:
fill

Explanation:
Fills an area with the current pen color, by changing the dot under the turtle 



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

(and all horizontally and vertically contiguous dots of the same color) to the 
current pen color, using the current pen state. (ROCHE> To change the color of 
the pen, use SETPC.)

Examples:
?fill

first
-----

Action:
Outpus the first element of the input object.

Syntax:
first object

Explanation:
FIRST  outputs the first element of the input object. The first of a  word  or 
number is a single character. The first of a list is either a word or a  list. 
FIRST of an empty word or empty list outputs an error.

Examples:
?first []
first doesn't like [] as input

?first "
first doesn't like an empty word as input

?first "rose
r

?first [weight 165]
weight

?to begin.vowelp :wrd
>output memberp first :wrd [a e i o u]
>end
begin.vowelp defined
?to pig :wrd
>if begin.vowelp :wrd
>   [output word :wrd "ay]
>   [output pig word (butfirst :wrd) (first :wrd)]
>end
pig defined
?to pig.latin :phrase
>if emptyp :phrase
>   [output []]
>output sentence (pig first :phrase) (pig.latin butfirst :phrase)
>end
pig.latin defined
?pig.latin [a ball of string]
[aay allbay ofay ingstray]

follow
------

Action:
Reorganizes workspace, so that the first input-named procedure is followed  by 
the second.

Syntax:
follow procname procname

Explanation:
FOLLOW  reorganizes the workspace, so that the first input-named procedure  is 
followed  by the second. You can use FOLLOW to specify the order in which  Dr. 
Logo displays procedure titles and definitions (POALL, POPS, POTS,  PROCLIST), 
saves procedures on disk (SAVE), and loads procedures into the screen editor's 
buffer  (EDALL,  EDPS). FOLLOW does not change the order of  procedures  in  a 
package definition.

Examples:
These examples assume you have three procedures named ZOOM, BUZZ, and FLY in a 
package named FLY in your workspace.

?pots
zoom
fly
buzz



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?popkg
fly
  to zoom
  to fly
  to buzz
?follow "buzz "zoom
?pots "fly
fly
buzz
zoom
?popkg
fly
  to zoom
  to fly
  to buzz

form    (= real FORMat)
----

Action:
Outputs a number in real notation.

Syntax:
form n1 n2 < n3 >

Explanation:
Outputs  a number, N1, with N2 digits before the decimal point, and  N3  after 
it.  N2  must be a positive, real number from 1 through 15. If N2  is  not  an 
integer, it is rounded to the nearest integer. If N3 is omitted, it is assumed 
to be zero and the decimal point, and any digits after it, are not printed.

Examples:
?form 1.234 2
 1

forward fd
----------

Action:
Moves  the  turtle the input number of steps in the direction of  its  current 
heading.

Syntax:
forward distance_n
fd distance_n

Explanation:
FORWARD  moves  the turtle the input number of steps in the direction  of  its 
current heading. If the turtle's pen is down, the turtle leaves a trace of its 
path.  On  the IBM Personal Computer, a turtle step is equivalent to  one  dot 
(pixel).

Examples:
?forward 100
?cs

?to plaid
>wrap
>setpc 3 right 40 forward 10965
>setpc 2 right 90 forward 5000
>setpc 1 penup right 90 forward 6 pendown ht
>repeat 625
>  [forward 3 left 90 forward 1 right 90 back 3 left 90 forward 1 right 90]
>end
plaid defined
?plaid

fput    (= First PUT)
----

Action:
Outputs a new object formed by making the first input object the first element 
in the second input object.

Syntax:
fput object object

Explanation:



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

FPUT  outputs a new object formed by making the first input object  the  first 
element in the second input object. Generally, the new object is the same kind 
of  object as the second input object: a word, number, or list. However,  when 
you FPUT a word into a number, FPUT outputs a word.

Examples:
?fput "s "miles
smiles

?fput "banana [grape strawberry melon]
[banana grape strawberry melon]

?fput 20 20
2020

?fput [corn dog] [hamburger taco pizza]
[[corn dog] hamburger taco pizza]

?to exchange :from :to :in
>if emptyp :in
>   [output []]
>if (first :in) = :from
>   [output fput :to exchange :from :to butfirst :in]
>   [output sentence first :in exchange :from :to butfirst :in]
>end
exchange defined
?exchange "cat "dog [My cat has fleas.]
[My dog has fleas.]

fullscreen fs
-------------

Action:
Selects full graphic screen.

Syntax:
fullscreen
fs

Explanation:
FULLSCREEN  removes  the  SPLITSCREEN  or TEXTSCREEN  from  the  display,  and 
dedicates  the  monitor  to graphics. FULLSCREEN is  equivalent  to  a  Ctrl-L 
keystroke. Generally, it is easiest to use Ctrl-L when you are typing commands 
at the keyboard, and FULLSCREEN (FS) from within a procedure.

Examples:
?repeat 12 [repeat 4 [forward 60 right 90] right 30]
?splitscreen
?fullscreen

glist   (= Get property LIST)
-----

Action:
Outputs  a list of all objects in the workspace or specified  package(s)  that 
have the input property in their property lists.

Syntax:
glist prop < pkgname | pkgname_list >

Explanation:
With or without an input, GLIST outputs a list of objects that have the  input 
property in their property lists. Without an input, GLIST checks the  property 
lists of all objects in the workspace. If you specify a package name or a list 
of  packages  in the GLIST expression, GLIST checks only the  objects  in  the 
specified package(s).

Property  lists and Dr. Logo's system properties are described in  Section  5, 
"Property  Lists,  Workspace, and Disks". To understand  the  examples  below, 
remember  that  .DEF  is  the  system  property  Dr.  Logo  gives  to  defined 
procedures.

Examples:
These examples assume that, in your workspace, you have packages named FLY and 
PIGLATIN.

?glist ".DEF
[countdown pig.latin begin.vowelp fly buzz triangle.text zoom pig]



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?glist ".DEF "fly
[fly buzz zoom]

?glist ".DEF [fly pig.latin]
[pig.latin begin.vowelp fly buzz zoom pig]

?sort glist ".PRM
[()  * + - .contents .deposit .examine .in .out .replace .reptail .setseg /  < 
<=  <>  =  =< => > >< >= ^ abs allopen and arctan ascii back  bf  bk  bl  bury 
butfirst butlast catch changef char clean clearscreen cleartext close closeall 
co  copydef  copyoff copyon cos count cs ct cursor  defaultd  define  definedp 
degrees dir dirpic dot dotc ed edall edf edit edns edps eform emptyp equalp er 
erall  erase  erasefile erasepic ern erns erps error exp fd fence  fill  first 
follow form forward fput fs fullscreen glist go gprop heading help  hideturtle 
home ht if iff iffalse ift iftrue int item keyp label last lc left list  listp 
load  loadpic local log log10 lowercase lput lt make memberp mouse name  namep 
nodes noformat not notrace nowatch numberp op open or output package pal pause 
pd pe pendown penerase penreverse penup pi piece pkgall plist po poall  pocall 
pons  popkg  pops  poref  pos potl pots pprop pps  pr  prec  primitivep  print 
proclist  product  pu px quotient radians random rc readchar  readeofp  reader 
readlist readquote recycle remainder remprop repeat rerandom right rl round rq 
rt  run  save  savepic  screenfacts se  sentence  setbg  setcursor  setd  seth 
setheading setpal setpan setpc setpen setpos setprec setread setres setscrunch 
setsplit  setwrite  setx  sety setzoom sf show  showturtle  shuffle  sin  sort 
splitscreen sqrt ss st stop sum tan test text textscreen tf thing throw  tones 
towards trace ts tt turtlefacts turtletext type uc unbury uppercase wait watch 
where window word wordp wrap writer xcor ycor]

go
--

Action:
Executes  the  line within the current procedure identified by LABEL  and  the 
input word.

Syntax:
go word

Explanation:
GO executes the line within the current procedure identified by LABEL and  the 
input  word.  This means that, after GO, Dr. Logo will next execute  the  line 
following  the  LABEL expression. The GO and LABEL expressions must  have  the 
same input word, and be in the same procedure.

GO and LABEL let you change the sequence in which Dr. Logo executes the  lines 
in a procedure. Therefore, GO and LABEL cannot be on the same line. This means 
you  cannot use GO and LABEL within an instruction list input to REPEAT,  RUN, 
or the IFs.

Examples:
?to triangle.text :string
>label "loop
>if emptyp :string
>   [stop]
>print :string
>make "string butfirst :string
>go "loop
>end
triangle.text defined
?triangle.text [Get along little dogie.]
Get along little dogie.
along little dogie.
little dogie.
dogie.

?to countdown :n
>label "loop
>if :n < 0
>   [stop]
>type :n
>make "n (:n - 1)
>go "loop
>end
countdown defined
?countdown 9
9876543210

gprop   (= Get PROPerty)
-----



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Action:
Outputs the value of the input-named property of the input-named object.

Syntax:
gprop name prop

Explanation:
GPROP outputs the value of the input-named property of the input-named object. 
The input name identifies the object that has the property. If the object does 
not have the input-named property, GPROP outputs an empty list.

Section  5, "Property Lists, Workspace, and Disks", describes property  lists, 
and  defines  the properties Dr. Logo gives to objects in  the  workspace.  To 
understand  the  examples below, remember that a property list is made  up  of 
property pairs. The first element of the pair is the property; the second, its 
value.  Dr.  Logo  gives defined procedures the  .DEF  property,  and  defined 
variables the .APV property.

Examples:
This example assumes you have a procedure named pig in your workspace.

?gprop "pig ".DEF
[[wrd] if begin.vowelp :wrd [output word :wrd "ay]
[output ! pig word (butfirst :wrd) (first :wrd)]]

?make "height "72"
?gprop "height ".APV
72"

?gprop "height ".DEF
[]

heading
-------

Action:
Outputs a number that indicates the turtle's current heading.

Syntax:
heading

Explanation:
HEADING  outputs the turtle's current heading as a real number between  0  and 
359  inclusive.  The  turtle's  heading  corresponds  to  traditional  compass 
headings:

      Degrees         Direction       Pointing
      -------         ---------       --------
          0             North           up
         90             East            right
        180             South           down
        270             West            left

Examples:
?home show heading
0

?right 1 show heading
1

?right 1 show heading
2

?left random 360 heading
126

?to compass :n
>if memberp :n
>   [0 90 180 270] [points]
>if (:n > 360)
>   [stop]
>(type heading char 9)
>right 5 penup forward 25 pendown forward 5 penup back 30
>compass :n + 5
>end
compass defined
?to points
>pu
>forward 40



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

>if :n = 0
>   [turtletext "N]
>if :n = 90
>   [turtletext "E]
>if :n = 180
>   [turtletext "S]
>if :n = 270
>   [turtletext "W]
>setpos [0 0]
>end
points defined
?compass 0

help
----

Action:
Displays the names and abbreviations of all Dr. Logo primitives.

Syntax:
help < primitive >

Explanation:
HELP displays the names and abbreviations of all Dr. Logo primitives.

HELP displays only 25 lines on the screen at a time. It waits for you to press 
any key before displaying the next 25 lines.

Examples:
?help

HELP displays the list of all Dr. Logo primitives. Press any key to view  next 
screenful of names.

hideturtle ht
-------------

Action:
Makes the turtle invisible.

Syntax:
hideturtle
ht

Explanation:
HIDETURTLE makes the turtle invisible. When invisible, the turtle draws faster 
and  does not distract visually from the drawing. To make the  turtle  visible 
again, enter SHOWTURTLE.

Examples:
?hideturtle
?showturtle
?to star :size
>repeat 5
>  [forward :size left 217 forward :size left 71]
>end
star defined
?star 30
?ht

home
----

Action:
Returns  the  turtle  to position [0 0] (the center  of  the  graphic  screen) 
heading 0 (North).

Syntax:
home

Explanation:
HOME  positions  the  turtle  at "home", position [0 0]  (the  center  of  the 
screen),  heading  0 (North). HOME is the position in which the  turtle  first 
appears when you start Dr. Logo.

HOME does not change the turtle's pen state. For example, if the turtle's  pen 
is  down  when  HOME is executed, the turtle draws a  line  from  its  current 
loation to the center of the screen.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Examples:
?forward 80 left 120 forward 80
?home

if
--

Action:
Executes  one of two instructions lists, depending on the value of  the  input 
predicate expression.

Syntax:
if pred_exp instr_list < instr_list >

Explanation:
IF transfers execution to one of two instruction lists, depending on the  TRUE 
or FALSE value of the input predicate expression. You can use an IF expression 
to make a decision regarding the flow of control within your procedure.

The first input to IF must be a predicate expression, one that outputs TRUE or 
FALSE. If the predicate outputs TRUE, Dr. Logo executes the first  instruction 
list.  If  the predicate outputs FALSE, Dr. Logo executes  either  the  second 
instruction list (if any), or the next line in the procedure.

IF requires literal instruction lists as input; that is to say, an instruction 
list  input to IF must be enclosed in square brackets ("[" and "]"). Dr.  Logo 
allows nested IF expressions. This means you can use an IF statement within an 
instruction list you input to IF.

Examples:
?setheading random 360
?if heading < 180 [print "East] [print "West]
West

The  COIN  procedures that follow demonstrate several ways to  use  IF.  COIN1 
shows IF making a simple decision between two input instruction lists.

?to coin1
>if 1 = random 2
>   [print "heads]
>   [print "tails]
>end
coin1 defined

COIN2 shows IF providing input to another procedure.

?to coin2
>print if 1 = random 2 ["heads] ["tails]
>end
coin2 defined

COIN3  shows  how  IF  executes the next line in  a  procedure  if  no  second 
instruction list is input.

?to coin3
>if 1 = random 2
>   [output "heads]
>output "tails
>end
coin3 defined

COIN4  shows how the second instruction list makes the line following  the  IF 
expression independent of the results of the IF test.

?to coin4
>if 1 = random 2
>   [type "heads]
>   [type "tails]
>print [\ side up]
>end
coin4 defined

iffalse iff
-----------

Action:
Executes the input instruction list if the most recent test was FALSE.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Syntax:
iffalse instr_list
iff instr_list

Explanation:
IFFALSE  executes its input instruction list if the result of the most  recent 
TEST  expression  was  FALSE. If the result of test  was  TRUE,  IFFALSE  does 
nothing.

You  can  use TEST, IFFALSE, and IFTRUE as an alternate to IF to  control  the 
flow  of  execution within your procedure. These primitives  are  particularly 
useful  when  you need Dr. Logo to evaluate expressions after it  evaluates  a 
predicate expression, but before it executes the chosen instruction list.

IFFALSE  requires  a literal instruction list as input; that is  to  say,  any 
instruction list you input to IFFALSE must be enclosed in square brackets ("[" 
and "]"). Dr. Logo allows nested IF expressions. This means you can use  TEST, 
IFFALSE, and IFTRUE within the instruction list you input to IFFALSE.

Examples:
The COIN5 procedure is similar to the COIN procedures shown as examples  under 
if,  but  shows  how  to use TEST, IFFALSE,  and  IFTRUE.  COIN5  evaluates  a 
expression  after it evaluates a predicate expression, but before it  executes 
the chosen instruction list.

?to coin5
>test 1 = random 2
>if 1 = random 1000000
>   [print [Landed on edge!] stop]
>iftrue [type "heads]
>iffalse [type "tails]
>print [\ side up]
>end
coin5 defined

iftrue ift
----------

Action:
Executes the input instruction list if the most recent test was TRUE.

Syntax:
iftrue instr_list
ift instr_list

Explanation:
IFTRUE  executes its input instruction list if the result of the  most  recent 
TEST  expression  was  TRUE.  If the result of test  was  FALSE,  IFTRUE  does 
nothing.

You  can  use TEST, IFFALSE, and IFTRUE as an alternate to IF to  control  the 
flow  of  execution within your procedure. These primitives  are  particularly 
useful  when  you need Dr. Logo to evaluate expressions after it  evaluates  a 
predicate expression, but before it executes the chosen instruction list.

IFTRUE  requires  a  literal instruction list as input; that is  to  say,  any 
instruction list you input to IFTRUE must be enclosed in square brackets  ("[" 
and "]"). Dr. Logo allows nested IF expressions. This means you can use  TEST, 
IFFALSE, and IFTRUE within the instruction list you input to IFFALSE.

Examples:
The COIN5 procedure is similar to the COIN procedures shown as examples  under 
IF,  but  shows  how  to use TEST, IFFALSE,  and  IFTRUE.  COIN5  evaluates  a 
expression  after it evaluates a predicate expression, but before it  executes 
the chosen instruction list.

?to coin5
>test 1 = random 2
>if 1 = random 1000000
>   [print [Landed on edge!] stop]
>iftrue [type "heads]
>iffalse [type "tails]
>print [\ side up]
>end
coin5 defined

 .in
 ---



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Action:
Displays the contents of a I/O port.

Syntax:
 .in port_n

Explanation:
Displays  the contents (a byte value) of the specified I/O port. Port  numbers 
range from 0 to 65535.

Examples:
?.in 397
50

int
---

Action:
Outputs the integer portion of the input number.

Syntax:
int n

Explanation:
INT outputs the integer portion of the input number. INT discards any  decimal 
point and subsequent numerals from the input number. To round a decimal number 
to the nearest integer, use ROUND.

Examples:
?int 3.333333
3

?int 3
3

?int 28753 / 12
2396

?int -75.482
-75

?to integerp :n
>if numberp :n
>   [output :n = int :n]
>(print :n [is not a number.]
>end
integerp defined
?integerp 6.65
FALSE
?integerp 6
TRUE
?integerp "six
six is not a number.

item
----

Action:
Outputs the specified element of the input object.

Syntax:
item n object

Explanation:
ITEM outputs an element of the input object. The input number specifies  which 
element of the input object ITEM outputs.

Examples:
?item 4 "dwarf
r

?item 2 [brownie snickerdoodle wafer]
snickerdoodle

?make "favorites [brownie snickerdoodle [oatmeal raisin]]
?count item 3 :favorites
2

?to make.sentence :n :v



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

>print (sentence item ((random (count :n)) + 1) :n
>                item ((random (count :v)) + 1) :v
>end
make_sentence defined
?make_sentence   [elephants   crocodiles  mambasnakes]   [pirouette   tapdance 
rollerskate]
mambasnakes pirouette

keyp    (= KEY Predicate)
----

Action:
Outputs TRUE is a character has been typed at the keyboard, and is waiting  to 
be read.

Syntax:
keyp

Explanation:
KEYP  outputs  TRUE  if a character has been typed at  the  keyboard,  and  is 
waiting to be read by READCHAR, READQUOTE, or READLIST.

When you type a character at toplevel, Dr. Logo displays the character on  the 
screen.  However,  while  a  procedure  is  executing,  Dr.  Logo  stores  any 
characters  that are typed at the keyboard in a buffer, and displays  them  on 
the  screen  when the procedure ends. By using KEYP in a  procedure,  you  can 
discover whether or not your user has typed something while your procedure  is 
executing.

What  your user types into the buffer is critical if your  procedure  contains 
subsequent  READQUOTE, READCHAR, or READLIST expressions that read the  buffer 
and  input  its contents to the rest of your procedure. You can  use  KEYP  to 
determine  if  your  user  has typed something, then  check  that  the  buffer 
contains the kind of input your procedure requires before passing the input to 
the procedure.

Examples:
?to sketch
>forward 2
>wait 10
>if keyp
>   [turn readchar]
>sketch
>end
sketch defined
?to turn :way
>if ascii :way = 6 ; Right Arrow key
>   [right 10]
>if ascii :way = 2 ; Left Arrow key
>   [left 10]
>end
turn defined
?sketch

?to delay
>print [Any keystroke delays next number by a second.]
>print.out
>end
delay defined
?to print.out
>if keyp
>   [wait 60 sink readchar]
>(type random 10 char 9)
>print.out
>end
print.out defined
?to sink :object
>end
sink defined
Any keystroke delays next number by a second.
6    9   2   5   8   0   3   6   1   9  1   0   6   1   3   5   1   8   0    1  
7   Ctrl-G

?to count.stars
>make "number 1 + random 10
>draw.stars :number
>print [How many stars?]
>label "back
>if keyp
>   [make buffer readquote



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

>    (if not numberp first :buffer
>        [ern "buffer go "back]
>        [go on])]
>   [go "back]
>label "on
>if :number = :buffer
>   [print "Right!]
>   [print [Wrong! There are] :number]
>cs
>count.stars
>end
count.stars defined
?to draw.stars :number
>if :number = 0>
>   [stop]
>penup setpos list
>   (random 100 * first shuffle [1 -1])
>   (random 70 * first shuffle [1 -1])
>pendown star pu
>draw.stars :number - 1
>end
draw.stars defined
?to star2 ; Five pointed star
>repeat 5
>  [forward 30 left 127 forward 30 left 70]
>end
star2 defined
?count.stars
How many stars?
4
Right!
How many stars?
5
Right!
How many stars?
6
Wrong! There are 5
How many stars? Ctrl-G
Stopped! in count.stars: go

label
-----

Action:
Identifies the line to be executed after a GO expression.

Syntax:
label word

Explanation:
LABEL identifies the line to be executed after a GO expression. The LABEL  and 
GO expressions must be in the same procedure, and have the same input word.

GO and LABEL let you change the sequence in which Dr. Logo executes the  lines 
in a procedure. Therefore, GO and LABEL cannot both be on the same line.  This 
means  you  cannot use both GO and LABEL within an instruction list  input  to 
REPEAT, RUN, or the IFs.

Examples:
?to triangle.text :string
>label "loop
>if emptyp :string
>   [stop]
>print :string
>make "string butfirst :string
>go "loop
>end
triangle.text defined
?triangle.text [Wyoming will be your new home.]
Wyoming will be your new home.
will be your new home.
be your new home.
your new home.
new home.
home.

?to countdown :n
>label "loop
>if :n < 0
>   [stop]



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

>type :n
>make "n (:n - 1)
>go "loop
>end
countdown defined
?countdown 9
9876543210

last
----

Action:
Outputs the last element of the input object.

Syntax:
last object

Explanation:
LAST  outputs  the  last element of the input object. The last of  a  word  or 
number  is a single character. The last of a list is either a word or a  list. 
LAST of an empty word or empty list outputs an error.

Examples:
?last []
last doesn't like [] as input

?last "
last doesn't like an empty word as input

?last "skyline
e

?last [weight 165]
165

?to mirror :word
>(print reverse :word "| :word
>end
mirror defined
?to reverse :word
>if emptyp :word
>   [output "]
>output (word last :word reverse butlast :word)
>end
reverse defined
?mirror "mirror
rorrim | mirror

left lt
-------

Action:
Rotates the turtle the input number of degrees to the left.

Syntax:
left degrees_n
lt degrees_n

Explanation:
LEFT rotates the turtle the input number of degrees to the left. Usually,  you 
input  a number of degrees between 0 and 359. If the input number  is  greater 
than 359, the turtle appears to move the input number minus 360 degrees to the 
left. If you input a negative number to LEFT, the turtle turns to the right.

Examples:
?repeat 36 [left 10]

?repeat 36 [left -10]

?to around.L :s
>repeat 360
>  [forward :s left 10 make "s :s + .01]
>end
around.L defined
?around.L 2

list
----



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Action:
Outputs a list made up of the input objects.

Syntax:
list object object (...)

Explanation:
LIST  outputs a list made up of the input objects. LIST is like SENTENCE,  but 
does not remove the outermost brackets from an input object.

Without  punctuation,  LIST requires and accepts two input objects.  LIST  can 
accept  more  or  fewer  inputs  when  you  enclose  the  LIST  expression  in 
parentheses ["(" and ")"]. If no other expressions follow the LIST  expression 
on the line, you do not need to type the closing right parenthesis [")"].

There are two ways of creating lists in Dr. Logo:

        1) using square brackets ("[" and "]")
        2) using LIST or SENTENCE

Each  way  results  in a different kind of list. When you  create  a  list  by 
enclosing  elements in square brackets ("[" and "]"), you create  a  "literal" 
list. Dr. Logo treats the elements of the list literally; it does not evaluate 
expressions or look up the values of variables named in a literal list.

When  you  use LIST or SENTENCE to create a list, you can  use  variables  and 
expressions to specify the elements Dr. Logo will put in the list. You can use 
list and sentence to create a list for input to most procedures. However,  IF, 
IFFALSE, and IFTRUE require literal lists as input.

Examples:
?show list "big "feet
[big feet]

?list "potatoes [mashed baked fried]
[potatoes [mashed baked fried]]

?(list
[]

?(list 21 22 23 24
[21 22 23 24]

?to square
>repeat 4
>  [forward 60 right 90]
>end
square defined
?make "procname "square
?run (list :procname

?to zip.zap
>setpos list
>   random 150 * first shuffle
>   random 100 * first shuffle
>zip.zap
>end
zip.zap defined
?zip.zap

listp   (= LIST Predicate)
-----

Action:
Outputs TRUE if the input object is a list.

Syntax:
listp object

Explanation:
LISTP  outputs  TRUE if the input object is a list. Otherwise,  LISTP  outputs 
FALSE.

Examples:
?listp "force
FALSE

?listp [father brother sister]
TRUE



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?listp "
FALSE

?listp []
TRUE

?to reflect :object
>if listp :object
>   [print reverse.list :object]
>   [print reverse :object]
>end
reflect defined
?to reverse.list :list
>if emptyp :list
>   [output "]
>output (sentence last :list reverse.list butlast :list
>end
reverse.list defined
?to reverse :word
>if emptyp :word
>   [output "]
>output (word last :word reverse butlast :word
>end
reverse defined
?reflect "skywalker
reklawyks
?reflect [wherever you go]
go you wherever

load
----

Action:
Reads the input-named Dr. Logo file from the disk into the workspace.

Syntax:
load fname < pkgname >

Explanation:
LOAD  reads the contents of the input-named Dr. Logo file from disk  into  the 
workspace. You can precede the file name with a drive specifier if the file is 
not on the default drive.

Dr.  Logo defines each procedure and variable as it is read in from the  disk. 
If a procedure in the workspace has the same name as a procedure read in  from 
the disk, the procedure in the workspace is overwritten.

LOAD can load only those files saved with a SAVE command (files with the  file 
type  LOG in the disk directory). You can load only one file at a  time.  When 
you interrupt LOAD with Ctrl-G or Ctrl-Z, LOAD stops reading from the Dr. Logo 
file, and defines only those procedures displayed on your screen.

LOAD can accept a package name as an optional input after the file name.  LOAD 
then puts all items read from the file in the input-named package.

Examples:
These  examples assume you have a Dr. Logo file named PIGLATIN on the disk  in 
the default drive, and a file named FLY on the disk in drive B.

?load "piglatin
begin.vowelp defined
pig defined
pig.latin defined
?load "b:fly
fly defined
buzz defined
zoom defined

loadpic
-------

Action:
Reads the input-named image file from the disk into the screen.

Syntax:
loadpic fname

Explanation:



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

LOADPIC  reads the contents of the input-named image file from disk  into  the 
screen.  You can precede the file name with a drive specifier if the  file  is 
not on the default drive.

LOADPIC can load only those files saved with a SAVEPIC command (files with the 
file type PC0 in the disk directory). (ROCHE> for SETRES 0 images. But  images 
saved under SETRES 1 are given the PC1 file type... and DIRPIC is then  unable 
to  find  them!  This is clearly a bug. The solution is to  use  an  ambiguous 
filespec, with .PC? for the file type.) You can load only one file at a time. 

Examples:
?loadpic "shapes
?dirpic
[SHAPES.PC0 PLAID.PC0 PIGLATIN.PC0]
?dirpic "p???????.pc?
[PLAID.PC0 PIGLATIN.PC0 PLAID.PC1 PIGLATIN.PC1]

local
-----

Action:
Makes the input-named variable(s) accessible only to the current procedure and 
the procedures it calls.

Syntax:
local var_name (...)

Explanation:
LOCAL  makes the input-named variables "local" to the procedure in  which  the 
LOCAL  expression occurs. Local variables can be changed by the  procedure  in 
which the LOCAL expression occurs, or by any procedure it calls.

Without  punctuation,  LOCAL requires and accepts one input  name.  LOCAL  can 
accept  more inputs when you enclose the LOCAL expression in parentheses  ["(" 
and ")"]. If no other expressions follow the LOCAL expression on the line, you 
do not need to type the closing right parenthesis [")"].

Most  frequently, you will use variables of the same name within  calling  and 
called  procedures, to pass information between the two  procedures.  However, 
you will also find applications where you do not want the called procedure  to 
modify  the calling procedure's value of the variable. If calling  and  called 
procedures are using variables of the same name, which is unavoidably the case 
when  a  procedure calls itself, a LOCAL expression in  the  called  procedure 
prevents  the called procedure from altering the calling procedure's value  of 
the variable.

Examples:
DRAWING.REPORT  and DRAW.CIRCLE both use X and Y as variable names. The  LOCAL 
expression in DRAW.CIRCLE prevents DRAW.CIRCLE from modifying DRAWING.REPORT's 
values of X and Y. Without the LOCAL expression in DRAW.CIRCLE, DRAWING.REPORT 
would  print CIRCLE.FINISHED at the point where the turtle began  drawing  the 
circle.

?to drawing.report
>make "x (-150)
>make "y 80
>penup setpos list :x :y
>turtletext "drawing.circle
>draw.circle
>setpos list :x :y
>turtletext "circle.finished setheading 0 forward 10
>end
drawing.report defined
?to draw.circle
>(local "x "y)
>make "x 10
>make "y 50
>penup setpos list :x :y setheading 90
>pendown repeat 36 [forward 10 right 10] pu
>end
draw.circle defined
?drawing.report

The  LOCAL  statement in DECIMAL.OF.FRACTION forces Dr. Logo to create  a  new 
variable  named INVERSE each time DECIMAL.OF.FRACTION calls itself. (ROCHE>  I 
don't  know  why, but all the sample Dr. Logo programs from  Digital  Research 
have  opening  and  closing  parentheses  ["("  and  ")"]  surrounding   LOCAL 
statements, even if there is only one variable name, like below.)

?to decimal.of.fraction :n



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

>(local "inverse)
>make "inverse 1 / :n
>if :n = 1
>   [stop]
>decimal.of.fraction :n - 1
>(print ["1/] :n char 9 :inverse
>end
decimal.of.fraction defined
?decimal.of.fraction 10
1/ 2    0.5
1/ 3    0.333333333333333
1/ 4    0.25
1/ 5    0.2
1/ 6    0.166666666666667
1/ 7    0.142857142857143
1/ 8    0.125
1/ 9    0.111111111111111
1/ 10   0.1

log
---

Action:
Outputs the natural logarithm of the input number.

Syntax:
log n

Explanation:
LOG outputs the natural logarithm of the input number. A natural logarithm  is 
the logarithm to the base e, where e = 2.71828182845905.

Examples:
?log 1
0

?log (exp 1)
1

?log (180 / pi)
4.04822696504081

log10
-----

Action:
Outputs the base 10 logarithm of the input number.

Syntax:
log10 n

Explanation:
LOG10 outputs the base 10 logarithm of the input number.

Examples:
?log10 100
2

?log10 734
2.86569605991607

?log10 3950
3.59659709562646

lowercase lc
------------

Action:
Outputs the input word with all alphabetic characters in lowercase.

Syntax:
lowercase word
lc word

Explanation:
LOWERCASE  outputs the input word with all alphabetic characters converted  to 
lower case.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Examples:
?lowercase "SOUTH
south

?lowercase "MaryAnn
maryann

?to quiz
>print [Do you like chocolate chip cookies?]
>if "y = lowercase first readquote
>   [print [I do too!]]
>   [print [Wow, I have never met anyone who did not!]
>end
quiz defined
?quiz
Do you like chocolate chip cookies?
YES!!!
I do too!

lpen    (= LightPEN)    (Not a primitive)
----

Action:
Outputs a coordinate list that indicates the position of the lightpen.

Syntax:
lpen

Explanation:
LPEN  outputs the position where the lightpen first touched the  screen  since 
the last LPEN expression. LPEN represents the lightpen's position in the  same 
way  cursor  represents the cursor location on a 40 column text  screen.  Both 
LPEN  and  CURSOR use a coordinate system that originates at  the  upper  left 
corner of the display.

        [0 0]                       [39 0]
              ┌───────────────────┐
              │                   │
              │                   │
              │                   │
              │                   │
              │                   │
              └───────────────────┘
       [0 24]                       [39 24]

Examples:
SKETCH  shows  how to use LPENP to determine whether or not the  lightpen  has 
been used before trying to read the lightpen's position with LPEN. If there is 
no lightpen input waiting to be read when Dr. Logo executes a LPEN expression, 
LPEN outputs [0 0].

CONVERTX  and  CONVERTY show a way to convert from lightpen  coordinates  into 
turtle graphics coordinates.

?to sketch
>forward 2
>wait 10
>if lpenp
>   [turn.to lpen]
>sketch
>end
sketch defined
?to turn.to :position
>convert.x convert.y
>(print :position "= list :x :y)
>setheading towards list :x :y
>sketch
>end
turn.to defined
?to convert.x
>make "x (first :position) * 7.5 - 150
>end
convert.x defined
?to convert.y
>make "y (last :position) * (-8) + 100
>end
convert.y defined
?sketch



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

lpenp   (= LightPEN Predicate)  (Not a primitive)
-----

Action:
Outputs TRUE if lightpen input is waiting to be read.

Syntax:
lpenp

Explanation:
LPENP outputs TRUE if lightpen input is waiting to be read. Use LPENP in an IF 
statement  to  determine  whether or not the lightpen has  been  used,  before 
trying to read the lightpen's position with LPEN (see LPEN).

Examples:
?to sketch
>forward 2
>wait 10
>if lpenp
>   [turn.to lpen]
>sketch
>end
sketch defined
?to turn.to :position
>convert.x convert.y
>(print :position "= list :x :y)
>setheading towards list :x :y
>sketch
>end
turn.to defined
?to convert.x
>make "x (first :position) * 7.5 - 150
>end
convert.x defined
?to convert.y
>make "y (last :position) * (-8) + 100
>end
convert.y defined
?sketch

lput    (= Last PUT)
----

Action:
Outputs a new object formed by making the first input object the last  element 
in the second input object.

Syntax:
lput object object

Explanation:
LPUT  outputs  a new object formed by making the first input object  the  last 
element in the second input object. Generally, the new object is the same kind 
of  object as the second input object: a word, number, or list. However,  when 
you LPUT a word into a number, LPUT outputs a word.

Examples:
?lput "s "plural
plurals

?lput "s [plural]
[plural s]

?lput "cherries [apples bananas]
[apples bananas cherries]

?lput [San Jose] [[San Diego] [San Francisco]]
[[San Diego] [San Franscico] [San Jose]]

?make "extensions [[Hal 33] [John 85]]
?to add.entry :item
>make "extensions lput :item :extensions
>end
add.entry defined
?add.entry [Steve 96]
?:extensions
[[Hal 33] [John 85] [Steve 96]]

make



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

----

Action:
Makes the input object the value of the input-named variable.

Syntax:
make varname object

Explanation:
MAKE  makes  the  input  object the "contents" or  value  of  the  input-named 
variable. If the input-named variable does not exist, MAKE creates it. If  the 
input-named  variable already exists, MAKE discards its current  contents  and 
gives it the input object as a value.

MAKE  works just like NAME, except that the order of the inputs are  reversed. 
MAKE  works  by adding the system property .APV with the value  of  the  input 
object to the input-named variable's property list.

Examples:
?make "flavor "chocolate
?:flavor
chocolate

?make "chocolate "semi\-sweet
?:chocolate
semi-sweet

?thing "flavor
chocolate

?thing :flavor
semi-sweet

?to say.hello
>print [Hello! What is your name?]
>make "answer readquote
>(print [Nice to meet you,] word :answer ".
>end
say.hello defined
?say.hello
Hello! What is your name?
Oscar
Nice to meet you, Oscar.

memberp         (= MEMBER Predicate)
-------

Action:
Outputs  TRUE  if  the first input object is an element of  the  second  input 
object.

Syntax:
memberp object object

Explanation:
MEMBERP  outputs  TRUE if the first input object is an element of  the  second 
input object; otherwise, MEMBERP outputs FALSE.

Examples:
?memberp "y "only
TRUE

?memberp 7 734395
TRUE

?memberp "or "chore
TRUE

?memberp "chocolate [[vanilla] [chocolate] [strawberry]]
FALSE

?memberp [chocolate] [[vanilla] [chocolate] [strawberry]]
TRUE

?to vowelp :object
>if memberp :object [a e i o u]
>   [output "TRUE]
>   [output "FALSE]
>end
vowelp defined



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?vowelp "c
FALSE
?vowelp "i
TRUE

mouse
-----

Action:
Outputs a list giving the state of the mouse.

Syntax:
mouse

Explanation:
Outputs a list giving the state of the mouse.

Examples:
?mouse
[-160 100 FALSE FALSE FALSE]

where:

    the first  item (-160)  is the mouse X-coordinate
    the second item (100)   is the mouse Y-coordinate
    the third  item (FALSE) is the mouse left  button
    the fourth item (FALSE) is the mouse right button
    the fifth  item (FALSE) is a predicate saying if the mouse is  inside  the 
        graphic window

(The above mouse list was gotten from text screen.)

name
----

Action:
Makes the input object the value of the input-named variable.

Syntax:
name object var_name

Explanation:
NAME  makes  the  input  object the "contents" or  value  of  the  input-named 
variable. If the input-named variable does not exist, NAME creates it. If  the 
input-named  variable already exists, NAME discards its current  contents  and 
gives it the input object as a value.

NAME  works just like MAKE, except that the order of the inputs are  reversed. 
NAME  works  by adding the system property .APV with the value  of  the  input 
object to the input-named variable's property list.

Examples:
?name "flavor "chocolate
?:flavor
chocolate

?name "chocolate "semi\-sweet
?:chocolate
semi-sweet

?thing "flavor
chocolate

?thing :flavor
semi-sweet

namep   (= NAME Predicate)
-----

Action:
Outputs TRUE if the input word identifies a defined variable.

Syntax:
namep word

Explanation:
NAMEP outputs TRUE if the input word identifies a defined variable. Otherwise, 
NAMEP outputs FALSE.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Examples:
?make "flavor "chocolate
?:flavor
chocolate
?namep "flavor
TRUE

?namep "raspberry
FALSE

?to decrement :name
>if not namep :name
>   [print [Not a variable.]]
>if numberp thing :name
>   [make :name (thing :name) - 1]
>end
decrement defined
?make "age 14
?decrement "age
?:age
13

nodes
-----

Action:
Outputs the number of free nodes in the workspace.

Syntax:
nodes

Explanation:
NODES  outputs the number of free nodes in the workspace. A node is  equal  to 
one byte. (ROCHE> In general, you have 59KB of memory to play with. Four times 
the size of the workspace of the 8-bits version of Dr. Logo...)

Examples:
?nodes
55702
?recycle
?nodes
59524

noformat
--------

Action:
Removes comments from the workspace.

Syntax:
noformat

Explanation:
NOFORMAT  removes  comments from the workspace, to free more  nodes.  NOFORMAT 
works by removing any .FMT property pairs from a procedure's poperty list.

Examples:
?to bg.cycle :val ; Displays background colors
>if :val = 0 
>   [print [Cycle complete.] setbg 0 stop]
>setbg :val
>(print [This is background color number] first screenfacts)
>wait 20000 ; 2 seconds on a 500-MHz PC
>bg.cycle :val - 1
>end
bg.cycle defined
?noformat
?po "bg.cycle :val
bg.cycle :val
if :val = 0 [print [Cycle complete.] setbg 0 stop]
setbg :val
(print [This is background color number] first screenfacts)
wait 20000
bg.cycle :val - 1
end

not



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

---

Action:
Outputs  TRUE if the input predicate outputs FALSE, FALSE if  input  predicate 
outputs TRUE.

Syntax:
not pred_exp

Explanation:
NOT  reverses  the  value of a predicate expression. If  the  input  predicate 
outputs  TRUE,  NOT outputs FALSE. If the input predicate outputs  FALSE,  NOT 
outputs TRUE.

Examples:
?not 2 > 1
FALSE

?not 2 < 1
TRUE

?to inverse :n
>if not numberp :n
>   [(print :n [is not a number.]) stop]
>(print "1\ / :n "= 1 / :n
>end
inverse defined
?inverse 5
1 / 5 = 0.2
?inverse "five
five is not a number.

notrace
-------

Action:
Turns off trace monitoring of all or specified procedure(s).

Syntax:
notrace < procname | procname_list >

Explanation:
NOTRACE  turns off the monitoring of procedure execution initiated by a  TRACE 
command.

Examples:
?to average :numbers
>make "total 0
>add.up :numbers
>print :total / count :numbers
>end
average defined
?to add.up :list
>if emptyp :list
>   [stop]
>make "total :total + first :list
>add.up butfirst :list
>end
add.up defined
?trace
?average [1 2 3]
[1] Evaluating average
[1] numbers is [1 2 3]
[2] Evaluating add.up
[2] list is [1 2 3]
[3] Evaluating add.up
[3] list is [2 3]
[4] Evaluating add.up
[4] list is [3]
[5] Evaluating add.up
[5] list is []
2
?notrace
?average [1 2 3]
2

nowatch
-------



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Action:
Turns off watch monitoring of all or specified procedure(s).

Syntax:
nowatch < procname | procname_list >

Explanation:
NOWATCH  turns off the monitoring of procedure execution initiated by a  WATCH 
command.

Examples:
?to average :numbers
>make "total 0
>add.up :numbers
>print :total / count :numbers
>end
average defined
?to add.up :list
>if emptyp :list
>   [stop]
>make "total :total + first :list
>add.up butfirst :list
>end
add.up defined
?watch
?average [1 2 3]
[1] In average, make "total 0
[1] In average, add.up :numbers
[2] In add.up, if emptyp :list [stop]
[2] In add.up, make "total :total + first :list
[2] In add.up, add.up butfirst :list
[3] In add.up, if emptyp :list [stop]
[3] In add.up, make "total :total + first :list
[3] In add.up, add.up butfirst :list
[4] In add.up, if emptyp :list [stop]
[4] In add.up, make "total :total + first :list
[4] In add.up, add.up butfirst :list
[5] In add.up, if emptyp :list [stop]
[5] In average, print :total / count :numbers
2
?nowatch
?average [1 2 3]
2

numberp         (= NUMBER Predicate)
-------

Action:
Outputs TRUE if the input object is a number.

Syntax:
numberp object

Explanation:
NUMBERP  outputs  TRUE  if the input object is a  number;  otherwise,  NUMBERP 
outputs FALSE.

Examples:
?numberp 374.926
TRUE

?numberp "six
FALSE

?numberp first [2 4 6 8]
TRUE

?numberp butfirst [2 4 6 8]
FALSE

?to inverse :n
>if not numberp :n
>   [(print :n [is not a number.]) stop]
>(print "1\ / :n "= 1 / :n
>end
inverse defined
?inverse 2
1 / 2 = 0.5
?inverse "two
two is not a number.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

open
----

Action:
Open a file or device.

Syntax:
open < fname | device >

Explanation:
Open  the  file  or device to send or receive characters. OPEN  must  be  used 
before accessing data in a file.

(ROCHE>  The devices are: CON: NUL: PRN: and AUX: There is a  system  message, 
saying that "Only 4 files can be open".)

Examples:
?open "letters

or
--

Action:
Outputs FALSE if all input predicates outputs FALSE.

Syntax:
or pred_exp pred_exp (...)

Explanation:
OR outputs FALSE if all input predicates output FALSE. If any input  predicate 
outputs FALSE, OR outputs TRUE.

Without punctuation, OR requires and accepts two input objects. OR can  accept 
more  or fewer inputs when you enclose the OR expression in  parentheses  ["(" 
and ")"]. If no other expressions follow the OR expression on the line, you do 
not need to type the closing right parenthesis [")"].

Examples:
?or "TRUE "TRUE
TRUE

?or "TRUE "FALSE
TRUE

?or "FALSE "FALSE
FALSE

?(or "FALSE "FALSE "FALSE "TRUE
TRUE

?to weather
>print [What is the temperature today?]
>make "answer readquote
>if or (:answer < 50) (:answer > 80)
>   [print [Hmm, sounds uncomfortable!]]
>   [print [Sounds nice!]]
>end
weather defined
?weather
What is the temperature today?
92
Hmm, sounds uncomfortable!

?weather
What is the temperature today?
78
Sounds nice!

 .out
 ----

Action:
Sends number to I/O port.

Syntax:
 .out port_n n



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Explanation:
Assigns  the  input  number (a byte value) to the  specified  I/O  port.  Port 
numbers  range  from  0  through 65535. THIS PRIMITIVE  SHOULD  BE  USED  WITH 
CAUTION!

Examples:
?.out 10 33

output op
---------

Action:
Makes the input object the output of the procedure.

Syntax:
output object
op object

Explanation:
OUTPUT makes the input object the output of your procedure. Therefore,  OUTPUT 
is valid only within a procedure. As soon as your procedure outputs an object, 
control returns to calling procedure or toplevel.

Examples:
?to Aurora
>output [Briar Rose]
>end
Aurora defined
?print sentence [Sleeping Beauty's name is] Aurora
Sleeping Beauty's name is Briar Rose

?to vowelp :object
>output memberp :object [a e i o u]
>end
vowelp defined
?vowelp "r
FALSE
?vowelp "e
TRUE

?to coin
>output first shuffle [heads tails]
>end
coin defined
?repeat 3 [show coin]
heads
heads
tails

?to add.up :list
>if emptyp :list
>   [output 0]
>output (add.up butfirst :list) + (first :list)
>end
add.up defined
?add.up [7 6 -2]
11

package
-------

Action:
Puts the input-named objects into the input-named package.

Syntax:
package pkgname name | name list

Explanation:
PACKAGE  puts  the  input-named  procedures and  variables  into  the  package 
identified  by the input package name. If the package does not exist,  PACKAGE 
creates  it.  If  the package already exists,  PACKAGE  adds  the  input-named 
objects  to the package. You can enter either a single procedure  or  variable 
name,  or  a  list  of procedure and variable names as  the  second  input  to 
PACKAGE.

A  procedure or variable can be in only one package at a time, but it is  easy 
to move an object from one package to another. A procedure or variable resides 
in the package to which it was most recently assigned with a PACKAGE command.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

PACKAGE works by adding to or changing properties in the property lists of the 
named  objects. PACKAGE adds the .PKG property to the package name's  property 
list, and the .PAK property to the property list of each input-named object.

Examples:
These examples assume you have the following in your workspace: six procedures 
named  DRAW,  CIRCLE, SQUARE, TRIANGLE, ADDUP, and GROW;  and  five  variables 
named SIZE, BIG, SMALL, MEDIUM, and PENSTATE.

?pots
to draw
to circle :size
to square :size
to triangle :size
to add.up :list
to grow :size
?package "shapes [circle square triangle]
?pons
size is 100
big is 80
small is 20
medium is 40
penstate is [pd 1]
?package "sizes [big medium small]
?popkg
sizes
  "medium (VAL)
  "small (VAL)
  "big (VAL)
shapes
  to square :size
  to triangle :size
  to circle :size
?package "sizes "grow
?popkg
sizes
  to grow :size
  "medium (VAL)
  "small (VAL)
  "big (VAL)
shapes
  to square :size
  to triangle :size
  to circle :size

paddle          (Not a primitive)
------

Action:
Outputs a number that represents a paddle (joystick) input coordinate.

Syntax:
paddle n

Explanation:
You  can  use PADDLE to read the position of a paddle or  joystick.  Dr.  Logo 
supports  up to two paddles or joysticks. If your IBM Personal  Computer  does 
not  have  a  paddle or joystick when Dr. Logo encounters  a  PADDLE  command, 
PADDLE  returns  0. The range of values that paddle outputs  depends  on  your 
particular paddle or joystick.

The number you input to PADDLE tells Dr. Logo which coordinate you want PADDLE 
to output. The input number must be in the range 0 to 3:

        PADDLE 0 outputs the X-coordinate of paddle1
        PADDLE 1 outputs the Y-coordinate of paddle1

        PADDLE 2 outputs the X-coordinate of paddle2
        PADDLE 3 outputs the Y-coordinate of paddle2

where  PADDLE1  is  the first paddle or joystick, and PADDLE2  is  the  second 
paddle or joystick.

Examples:
DRAW  allows  the user to guide the turtle with the  joystick.  DRAW  contains 
calculations  that convert X and Y coordinates returned by PADDLE into  turtle 
coordinates.  PADDLE returns a 190-number range for the X-coordinate  of  this 
particular  joystick,  and  a 144-number range for the  Y-coordinate  of  this 
particular  joystick. AMOUNT smooths the turtle's response to  the  joystick's 
commands.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?to draw
>repeat 10000
>  [make "xin paddle 0
>   make "yin paddle 1
>   make "xin int ((:xin * (300 / 190)) - 150)
>   make "yin int ((:yin * (-200 / 144)) + 90)
>   setheading towards list :xin :yin
>   forward (amount * 0.1)
>   if buttonp 0 [stop]
>   if buttonp 1 [clean]
>end
draw defined
?to amount
>output int sqrt
>   ((abs :xin) * (abs :xin) +
>   ((abs :yin) * (abs :yin)))
>end
amount defined
?draw

pal     (= PALette of colors)
---

Action:
Output a list of RGB values for a given pen index.

Syntax:
pal pen_index

Explanation:
Outputs  a  list  of color components for the given pen_index.  The  range  of 
values for pen_index are 0 through 255. Item 1 of the list represents the  Red 
component  of the color, item 2 represents the Green component, and item 3  is 
for Blue. The range of values for the RGB values are 0 through 63.

Examples:
?pal 0
[0 0 0]    ; Black
?pal 1
[0 0 42]   ; Blue
?pal 2
[0 42 0]   ; Green
?pal 3
[0 42 42]  ; Cyan
?pal 4
[42 0 0]   ; Red
?pal 5
[42 0 42]  ; Magenta
?pal 6
[42 21 0]  ; "Yellow"
?pal 7
[42 42 42] ; "White"

(ROCHE>  To  get  the true colors, use 63. By default, Dr. Logo  uses  42  for 
normal  intensity, and 21 for half intensity. To get true Yellow, use  [63  63 
0].  And [63 63 63] for White. Normally, once you have Red, Green,  and  Blue, 
you are served. Personally, I prefer a Black background. You can use White  or 
Yellow for the turtle.)

pause
-----

Action:
Suspends the execution of the current procedure, to allow interaction with the 
interpreter or editor.

Syntax:
pause

Explanation:
PAUSE  suspends the execution of the current procedure, and lets you  interact 
with  the  interpreter or editor. Therefore, the PAUSE command is  valid  only 
within  a  procedure. When Dr. Logo encounters a PAUSE  command,  it  suspends 
execution of the procedure, displays a "Pausing..." message, and allows you to 
interact with the interpreter. To end the PAUSE, enter CO.

PAUSE is one of the three ways you can cause a pause in the execution of  your 
procedure.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

A  PAUSE expression causes a "breakpoint" in your procedure. For example,  you 
can  insert a PAUSE command just before an expression that has been  regularly 
causing  an error. When you execute the procedure, Dr. Logo will pause  before 
the  problem  expression.  During the pause, you can  experiment  by  entering 
variations  of the problem expression, and examine or change  local  variables 
whose values will be discarded when the procedure finishes executing. Enter CO 
to end the PAUSE and continue execution.

Examples:
?make "size 100
?to nautilus :size
>if (remainder :size 5) = 0
>   [pause]
>repeat 36
>  [forward :size right 10]
>right 15
>nautilus :size + 0.5
>end
nautilus defined
?clearscreen right 180
?nautilus 1
Pausing... in nautilus: [if [remainder :size 5) = 0 [pause]]
nautilus ?:size
5
nautilus ?co
Pausing... in nautilus: [if [remainder :size 5) = 0 [pause]]
nautilus ?:size
5.5
nautilus ?co
Pausing... in nautilus: [if [remainder :size 5) = 0 [pause]]
nautilus ?:size
10
nautilus ?stop
?:size
100

pendown pd
----------

Action:
Puts the turtle's pen down; the turtle resumes drawing.

Syntax:
pendown
pd

Explanation:
PENDOWN makes the turtle put its pen down and begin drawing in the current pen 
color.  The pen is down when you start Dr. Logo. Use PENDOWN to resume  normal 
drawing after a PENUP, PENERASE, or PENREVERSE.

Examples:
?to pen
>output list item 4 turtlefacts item 5 turtlefacts
>end
pen defined
?pen
[pu 2]
?pendown pen
[pd 2]

?to halo :size
>repeat 36
>  [forward :size * 0.5 penup
>   forward :size * 0.1 pendown
>   forward :size * 0.2 penup
>   forward :size * 0.1 pendown
>   forward :size * 0.1 penup
>   back :size right 10 pendown]
>ht
>end
halo defined
?halo 100

penerase pe
-----------

Action:



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Puts the turtle's eraser down; turtle erases drawn lines.

Syntax:
penerase
pe

Explanation:
PENERASE  makes  the  turtle put its eraser down. With the  eraser  down,  the 
turtle erases any drawn lines it passes over. To lift the eraser, use PENUP or 
PENDOWN.

Examples:
?to pen
>output list item 4 turtlefacts item 5 turtlefacts
>end
pen defined
?pen
[pd 2]
?penerase pen
[pe 2]

?to move.triangle
>clearscreen
>hideturtle
>repeat 36
>  [triangle40 penerase triangle40 pendown setpc 2 right 10]
>end
move.triangle defined
?to triangle40
>repeat 3
>  [forward 40 right 120]
>end
triangle40 defined
?move.triangle

penreverse px
-------------

Action:
Makes turtle erase where lines are drawn, and draw where there are no lines.

Syntax:
penreverse
px

Explanation:
PENREVERSE  makes  the turtle draw where there are no lines, and  erase  where 
there are lines. To stop using the reversing pen, enter PENUP or PENDOWN.

Examples:
?to pen
>output list item 4 turtlefacts item 5 turtlefacts
>end
pen defined
?pen
[pd 2]
?penreverse pen
[px 2]

?to moving.triangle
>clearscreen
>hideturtle
>penreverse
>repeat 26
>  [triangle40 triangle40 right 10]
>end
moving.triangle defined
?to triangle40
>repeat 3
>  [forward 40 right 120]
>end
triangle40 defined
?moving.triangle

penup pu
--------

Action:
Picks the turtle's pen up; the turtle stops drawing.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Syntax:
penup
pu

Explanation:
PENUP  makes the turtle pick its pen up and stop leaving a trace of its  path. 
Use PENDOWN to resume normal drawing after a PENUP command.

Examples:
?to pen
>output list item 4 turtlefacts item 5 turtlefacts
>end
pen defined
?pen
[pd 2]
?penup pen
[pu 2]

?to halo :size
>repeat 36
>  [forward :size * 0.5 penup
>   forward :size * 0.1 pendown
>   forward :size * 0.2 penup
>   forward :size * 0.1 pendown
>   forward :size * 0.1 penup
>   back :size right 10 pendown]
>ht
>end
halo defined
?pendown halo 100

pi
--

Action:
Outputs the value of pi.

Syntax:
pi

Explanation:
PI outputs the value of pi: 3.14159265358979.

Examples:
?(print char 227 "= pi     ; Code Page 850
π = 3.14159265358979

?to find.radius :n
>repeat 180
>  [forward :n left 2]
>make "radius (180 * :n) / (2 * pi)
>(print [Radius =] :radius
>left 90 forward radius
>end
find.radius defined
?penup sety -90 pendown right 90
?find.radius
radius = 85.9436692696235

piece
-----

Action:
Outputs an object that contains the specified elements of the input object.

Syntax:
piece n n object

Explanation:
PIECE  outputs an object made up of the elements of the input object. The  two 
input numbers specify which elements are to be included in the output  object. 
The  range you specify is inclusive; for example, when you specify PIECE 3  8, 
the third and eight elements are included in the output object.

Examples:
?piece 4 7 "Kensington
sing



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?piece 2 4 [Nana John Michael Wendy Tinkerbell]
[John Michael Wendy]

?to last.part :name
>if memberp ". :name
>   [make "readlist where]
>   [(print :name [in wrong format.]) stop]
>make "r2 count :name
>output piece (:r1 + 1) :r2 :name
>end
last.part defined
?last.part "Peter.Pan
Pan

pkgall  (= PacKaGe ALL)
------

Action:
Puts all procedures and variables not in packages into the specified package.

Syntax:
pkgall pkgname

Explanation:
PKGALL  assigns  all procedures and variables not already in packages  to  the 
input-named package. If the package does not exist, PKGALL creates it. If  the 
package does exist, PKGALL adds the unpackaged procedures and variables to the 
existing package.

Examples:
These examples assume that you have the following in your workspace: a  buried 
package named SHAPES that contains three procedures named CIRCLE, SQUARE,  and 
TRIANGLE;  a  buried package named SIZES that contains three  variables  named 
BIG,  MEDIUM,  and  SMALL;  and three unpackaged  objects:  a  variable  named 
PEN.STATE and two procedures named DRAW and GROW.

?popkg
shapes is buried
  to square :size
  to circle :size
  to triangle :size
sizes is buried
  "medium (VAL)
  "small (VAL)
  "big (VAL)
?pots
to grow :size
to draw
?pons
pen.state is [pd 2]
?pkgall "other
?popkg
other
  to grow :size
  to draw
  "pen.state (VAL)
shapes is buried
  to square :size
  to circle :size
  to triangle :size
sizes is buried
  "medium (VAL)
  "small (VAL)
  "big (VAL)

plist   (= Property LIST)
-----

Action:
Outputs the property list of the input-named object.

Syntax:
plist name

Explanation:
PLIST  outputs  the  property  list of  the  input-named  object.  Section  5, 
"Property Lists, Workspace, and Disks", describes property lists, and  defines 
the  properties Dr. Logo gives to objects in the workspace. To understand  the 
examples  below, remember that a property list is made up of  property  pairs. 



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

The first element of the pair is the property; the second, its value. Dr. Logo 
gives  defined  properties the .DEF property, and defined variables  the  .APV 
property.

Examples:
These examples assume you have, in your workspace, a procedure named  TRIANGLE 
and a variable named STAR.

?plist "triangle
[.DEF [[size] [repeat 3 [forward :size right 120]]]]

?plist "star
[.APV evening]

?to remove :name
>if emptyp plist :name
>   [stop]
>make "prop first plist :name
>run (sentence "remprop "quote :name "quote :prop)
>remove :name
>end
remove defined
?make "bird "blue
?:bird
blue
?remove "bird
?:bird
bird has no value

po      (= Print Out)
--

Action:
Displays the definition(s) of the specified procedure(s).

Syntax:
po procname | procname_list

Explanation:
PO  displays  the definition of a procedure, or the definitions of a  list  of 
procedures.  When  you do not have your procedures grouped in  an  appropriate 
package and cannot use POPS, you can input a list of procedure names to PO  to 
display the definitions of a group of procedures.

Examples:
?to triangle :size
>repeat 3
>  [forward :size right 120]
>end
triangle defined
?to square :size
>repeat 4
>  [forward :size right 90]
>end
square defined
?po "square
to square :size
repeat 4
  [forward :size right 90]
end
?po [triangle square]
to triangle :size
repeat 3
  [forward :size right 120]
end
to square :size
repeat 4
  [forward :size right 90]
end

poall   (= Print Out ALL)
-----

Action:
Displays  the definitions of all procedures and variables in the workspace  or 
input-named package(s).

Syntax:
poall < pkgname | pkgname list >



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Explanation:
Without  an  input,  POALL  displays the definitions  of  all  procedures  and 
variables  in the workspace. POALL with a package name as input  displays  the 
definitions  of all procedures and variables in the input-named  package.  You 
can input a list of package names to POALL to display the contents of  several 
packages.

Examples:
These  examples  assume you have two packages named SHAPES and SIZES  in  your 
workspace.

?poall

POALL  displays  the  definitions  of all  procedures  and  variables  in  the 
workspace.

?poall "shapes

POALL displays the definitions of all procedures and variables in the  package 
named SHAPES.

?poall [shapes sizes]

POALL displays the definitions of all procedures and variables in the packages 
named SHAPES and SIZES.

pocall  (= Print Out CALLed procedure)
------

Action:
Displays the names of the procedures called by the input-named procedure.

Syntax:
pocall procname

Explanation:
POCALL  displays  the  names  of the  procedures  called  by  the  input-named 
procedure.  The name of each called procedure is indented on the line  beneath 
the  name  of the procedure that calls it. The procedure names appear  in  the 
order in which they are called.

Examples:
?to wheel
>repeat 12
>  [flag left 30]
>end
wheel defined
?to tri
>repeat 3
>  [right 120 forward 25]
>end
tri defined
?to flag
>forward 50 tri back 50
>end
flag defined
?pocall "wheel
wheel
  flag
    tri
?to add.up :list
>if emptyp :list
>   [output 0]
>output (add.up butfirst :list) + (first :list)
>end
add.up defined
?pocall "add.up
add.up :list
  add.up :list

pons    (= Print Out NameS)
----

Action:
Displays  the names and values of all variables in the workspace or  specified 
package(s).

Syntax:



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

pons < pkgname | pkgname_list >

Explanation:
Without  an  input, PONS displays the names and values of  all  the  variables 
defined  in  the workspace. With a package name as input,  PONS  displays  the 
names and values of all the variables contained in the specified package.  You 
can input a list of package names to PONS to display variable names and values 
from several packages.

Examples:
These  examples  assume  you  have the  following  in  your  workspace:  three 
variables named BIG, MEDIUM, and SMALL in a package named sizes; two variables 
named  BIRD  and  SNAKE  in a package named  ANIMALS;  and  a  variable  named 
PENSTATE.

?to pen
>output list item 4 turtlefacts item 5 turtlefacts
>end
pen defined
make "pen.state pen
?pons
medium is 40
small is 20
big is 80
bird is blue
pen.state is [pd 2]     
snake is green
?pons "sizes
medium is 40
small is 20
big is 80
?pons [sizes animals]
medium is 40
small is 20
big is 80
bird is blue
snake is green

popkg   (= Print Out PacKaGe)
-----

Action:
Displays the name and contents of each package in the workspace.

Syntax:
popkg < pkgname | pkgname_list >

Explanation:
POPKG  displays  the name and contents of each package in the  workspace.  The 
names  of  variables  and procedures in the package  are  indented  under  the 
package name. Variable names are quoted, and are followed by (VAL).  Procedure 
names  are preceded by the word TO and are followed by their inputs,  if  any. 
Object  names  that have properties are quoted, and are  followed  by  (PROP). 
POPKG  includes the names and contents of buried packages, and indicates  that 
the package is buried.

POPKG  accepts  a package name or a list of package names as input.  When  you 
specify  a  package or list of packages, POPKG displays the  contents  of  the 
specified package only.

Examples:
These examples assume you have four packages named WHEEL, SIZES, AVERAGE,  and 
SHAPES in your workspace.

?popkg
wheel
  to wheel
  to flag
  to tri
sizes
  "big (VAL)
  "small (VAL)
  "medium (VAL)
average
  to add.up :list
  to average :list
shapes
  to circle :size
  to triangle :size
  to square :size



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?bury "average
?popkg
wheel
  to wheel
  to flag
  to tri
sizes
  "big (VAL)
  "small (VAL)
  "medium (VAL)
average is buried
  to add.up :list
  to average :list
shapes
  to circle :size
  to triangle :size
  to square :size

pops    (= Print Out ProcedureS)
----

Action:
Displays  the  names  and definitions of all procedures in  the  workspace  or 
specified package(s).

Syntax:
pops < pkgname | pkgname_list >

Explanation:
Without  an  input,  POPS  displays  the names  and  definitions  of  all  the 
procedures  defined  in  the workspace. With a package  name  as  input,  POPS 
displays  the  names and definitions of all the procedures  contained  in  the 
specified  package. You can input a list of package names to POPS  to  display 
procedure names and definitions from several packages.

Examples:
These  examples  assume  you  have the  following  in  your  workspace:  three 
procedures named WHEEL, FLAG, and TRI in a package named WHEEL; two procedures 
named  AVERAGE  and ADDUP in a package named average; and  a  procedure  named 
SQUARE.

?pops
to wheel
repeat 12
  [flag left 30]
end
to square :size
repeat 4
  [forward :size right 90]
end
to tri
repeat 3
  [right 120 forward 25]
end
to flag
forward 50 tri back 50
end
to add.up :list
if emptyp :list
   [output 0]
output (add.up butfirst :list) + (first :list)
end
to average :list
output (add.up :list) / (count :list)
end
?pops "wheel
to wheel
repeat 12
  [flag left 30]
end
to tri
repeat 3
  [right 120 forward 25]
end
to flag
forward 50 tri back 50
end
?pops [wheel average]
to wheel
repeat 12



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

  [flag left 30]
end
to tri
repeat 3
  [right 120 forward 25]
end
to flag
forward 50 tri back 50
end
to add.up :list
if emptyp :list
   [output 0]
output (add.up butfirst :list) + (first :list)
end
to average :list
output (add.up :list) / (count :list)
end

poref   (= Print Out REFerenced procedures)
-----

Action:
Displays the names of the procedures that call the input-named procedure(s).

Syntax:
poref procname | procname_list

Explanation:
POREF  displays  the  names  of  any  procedures  that  call  the  input-named 
procedure.  You can use POREF to check that other procedures will be  affected 
when you change the input-named procedure.

Examples:
?to wheel
>repeat 12
>  [flag left 30]
>end
wheel defined
?to tri
>repeat 3
>  [right 120 forward 25]
>end
tri defined
?to flag
>forward 50 tri back 50
>end
flag defined
?poref "tri
to flag
?poref "flag
to wheel
?to add.up :list
>if emptyp :list
>   [output 0]
>output (add.up butfirst :list) + (first :list)
>end
add.up defined
?to average :list
>output (add.up :list) / (count :list)
>end
average defined
?poref "add.up
to average :list
to add.up :list

pos
---

Action:
Outputs a list that contains the coordinates of the turtle's current position.

Syntax:
pos

Explanation:
POS outputs a two-element list that identifies the turtle's current  position. 
The  format  of the list is suitable for input to SETPOS. When the  turtle  is 
plotting  on screen, the first element of the list is the X-coordinate in  the 
range  -150 to +149, and the second element is the Y-coordinate in  the  range   



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

-99  to +100. When the turtle is off the screen, either the X or Y  coordinate 
or both will be greater than the visible range.

Examples:
?clearscreen pos
[0 0]

?to save.place
>make "place pos
>end
save.place defined
?to return
>setpos :place
>end
return defined
?setpos list (random 150) (random 100)
?pos
[90 22]
?save.place
?setpos list (random 150) (random 100)
?pos
[55 73]
?return

?to find.center :n
>repeat 180
>  [forward :n left 2]
>make "radius (180 * :n) (2 * pi)
>left 90 forward :radius
>show pos
>end
find.center defined
?penup back 80 right 90 back 90 pd
?find.center 2
[-89.9891 -22.6934]

potl    (= Print Out Top Level procedures)
----

Action:
Displays  the  names  of  the procedures that are  not  called  by  any  other 
procedures in the workspace.

Syntax:
potl

Explanation:
POTL displays the names of toplevel procedures, procedures that are not called 
by  any  other procedures in the workspace, and are executed  only  by  direct 
command  at the interpreter's ? prompt. Use POTL to discover which  procedures 
do  not affect other procedures, or which procedure names are good  candidates 
for subsequent POCALL command.

Examples:
?to wheel
>repeat 12
>  [flag left 30]
>end
wheel defined
?to tri
>repeat 3
>  [right 120 forward 25]
>end
tri defined
?to flag
>forward 50 tri back 50
>end
flag defined
?to add.up :list
>if emptyp :list
>   [output 0]
>output (add.up butfirst :list) + (first :list)
>end
add.up defined
?to average :list
>output (add.up :list) / (count :list)
>end
average defined
?potl
to wheel



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

to average :list

pots    (= Print Out TitleS)
----

Action:
Displays the names and inputs of all procedures in the workspace or  specified 
package(s).

Syntax:
pots < pkgname | pkgname_list >

Explanation:
Without  an  input,  POTS displays the names and inputs of  all  the  unburied 
procedures  in  the workspace. With a package name as input, POTS  prints  the 
names and inputs of all the procedures in the package, even if the package  is 
buried. You can input a list of package names to POTS to display the names and 
inputs of procedure in several packages.

Examples:
This  example  assumes  you  have  the  following  in  your  workspace:  three 
procedures named WHEEL, FLAG, and TRI in a package named WHEEL; two procedures 
named average and ADDUP in a package named AVERAGE; and three procedures named 
SQUARE, CIRCLE, and TRIANGLE.

?pots
to wheel
to tri
to square :size
to flag
to add.up :list
to average :list
to circle :size
to triangle :size
?pots "average
to add.up :list
to average :list
?pots [average wheel]
to wheel
to flag
to tri
to add.up :list
to average :list

pprop   (= Put PROperty Pair)
-----

Action:
Puts the input property pair into the input-named object's property list.

Syntax:
pprop name prop object

Explanation:
PPROP puts a property pair into the input-named object's property list.  PPROP 
requires  three inputs: the name of the object to which the property is to  be 
added, the name of the property, and the object that is to be the value of the 
property.  PPROP  makes the input property pair the first pair in  the  input-
named object's property list.

You  can  use PPROP to add standard Dr. Logo system properties to  a  property 
list.  For example, if you use PPROP to add the .APV property to  an  object's 
property list, you create a variable the same as if you had used NAME or MAKE.

You  must  use PPROP to add your own special properties to  a  property  list. 
However, the erasing commands (ERASE, ERN, ERALL, ERPS, and ERNS) remove  only 
standard  Dr. Logo system properties from property lists. This means that,  if 
you  have assigned a non-standard property to an object's property list,  that 
object will still be in the workspace after an ERALL commmand. Use REMPROP  to 
remove your special properties from a property list.

Examples:
?pprop "dungeonmaster ".APV "Scott
?:dungeonmaster
Scott

?to make.character :name
>make   "abilities  [strength  intelligence  wisdom   dexterity   constitution 
charisma]



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

>make   "other   [class  hitpoints  armorclass  alignment   level   experience 
goldpieces]
>assign :abilities
>assign :other
>(print [You have given] :name [the following characteristics:]
>print plist :name
>end
make.character defined
?to assign :list
>if emptyp :list
>   [stop]
>print word first :list "?
>make "value readlist
>pprop :name first :list :value
>assign butfirst :list
>end
assign defined
?make.character "Borg
Strength?
17
Intelligence?
8
(...)
You have given Borg the following characteristics:  goldpieces [10] experience 
[0] level [1] alignment [lawful] armorclass [3] hitpoints [6] class  [fighter] 
charisma  [6]  constitution [15] dexterity [7] wisdom  [10]  intelligence  [8] 
strength [17]

pps     (= Property PairS)
---

Action:
Displays  the  non-system property pairs of all objects in  the  workspace  or 
specified packages.

Syntax:
pps < pkgname | pkgname_list >

Explanation:
Without an input, PPS prints out the special property pairs you have  assigned 
with a PPROP command to any object in the workspace. If you have not  assigned 
any special properties, PPS prints nothing. With a package name as input,  pps 
prints  the  special property pairs from the specified package,  even  if  the 
package is buried. You can input a list of package names to PPS to display the 
names and inputs of procedures in several packages.

Examples:
?pprop "Kathy "extension 82
?pps
Kathy's extension is 82

prec
----

Action:
Outputs the number of significant digits.

Syntax:
prec

Explanation:
Outputs the number of significant digits displayed in an output number.

Examples:
?prec
6

primitivep      (= PRIMITIVE Predicate)
----------

Action:
Outputs TRUE if the input object is a primitive name.

Syntax:
primitivep object

Explanation:
PRIMITIVEP  outputs TRUE if the input object is a primitive  name;  otherwise, 



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

PRIMITIVEP outputs FALSE.

Examples:
?primitivep "phone
FALSE

?primitivep "home
TRUE

print pr
--------

Action:
Displays the input object(s) on the text screen.

Syntax:
print object (...)
pr object (...)

Explanation:
PRINT displays the input object on the screen, followed by a Carriage  Return. 
PRINT  removes  the outer square brackets ("[" and "]") from  an  input  list. 
Compare  print  with  TYPE and SHOW. You can input any number  of  objects  by 
preceding  them  with  a  left parenthesis ["("].  When  preceded  by  a  left 
parenthesis, PRINT displays all its inputs on the same line, and follows  only 
the last input with a Carriage Return.

Examples:
?print [This is a message.]
This is a message.

?make "variable "silly
?(print [This is a] :variable "message.)
This is a silly message.

proclist        (= PROCedure LIST)
--------

Action:
Outputs a list that contains the names of all defined procedures.

Syntax:
proclist

Explanation:
PROCLIST  outputs a list that contains the names of all  procedures  currently 
defined in the workspace.

Examples:
This  example  assumes you have the following procedures  in  your  workspace: 
WHEEL, FLAG, TRI, ADDUP, and AVERAGE.

?pots
to wheel
to flag
to tri
to add.up
to average
?proclist
[wheel flag tri add.up average]
?package "current proclist
?popkg
current
  to wheel
  to flag
  to tri
  to add.up :list
  to average :list

product *
---------

Action:
Outputs the product of the input numbers.

Syntax:
product n n (...)
* n n (...)



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Explanation:
PRODUCT outputs the product of the input numbers. PRODUCT is equivalent to the 
* arithmetic operator.

Without  punctuation, PRODUCT requires and accepts two input objects.  PRODUCT 
can  accept  more or fewer inputs when you enclose the PRODUCT  expression  in 
parentheses  ["("  and  ")"].  If no  other  expressions  follow  the  PRODUCT 
expression on the line, you do not need to type the closing right  parenthesis 
[")"].

Examples:
?product 7 6
42

?* 7 6
42

?(product 2 pi 5)
31.4159265358979

?(* 2 pi 5
31.4159265358979

?(product 7)
7

?(* 7)
7

?to cube :n
>output (product :n :n :n)
>end
cube defined
?cube 3
27

quotient
--------

Action:
Outputs the quotient of the two input numbers.

Syntax:
quotient n n

Explanation:
QUOTIENT  outputs  the  number that results when the  first  input  number  is 
divided  by  the  second. QUOTIENT truncates any input decimal  number  to  an 
integer.  Unlike  the / operator, if the result ends in  a  decimal  fraction, 
QUOTIENT truncates the result to an integer.

Examples:
?quotient 10 4
2

?10/4
2.5

?quotient -10 5
-2

?quotient 5 0
Can't divide by zero

?quotient 5 .9
Can't divide by zero

radians
-------

Action:
Outputs the number of radians in the input number of degrees.

Syntax:
radians degrees_n

Explanation:
RADIANS  outputs the number of radians in the input number of  degrees,  where 



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

degrees = radians * (180 / pi).

Examples:
?radians 90
1.5707963267949

?radians 180
3.14159265358979

?pi
3.14159265358979

?radians 450
7.85398163397449

random
------

Action:
Outputs a random non-negative integer less than the input number.

Syntax:
random n

Explanation:
RANDOM outputs a random non-negative integer less than the input number.  This 
means  random  might output any integer from zero to one less than  the  input 
number. For example, random 2 will output either 0 or 1.

Examples:
?random 10
4

?repeat 20 [(type random 10 char 9)]
3   0    2    3    1    4    6    4    4   7    9    4    5    1    8    2

?to draw.spinner :n
>if (:n > 330)
>   [stop]
>penup right 15 forward 25
>turtletext (word (int (:n / 36)))
>back 25 right 21 forward 25 pendown forward 5 penup back 30
>draw.spinner :n + 36
>end
draw.spinner defined
?to spin
>repeat 72 * random 6
>  [right 5]
>repeat random 45
>  [right 5]
>print int (heading / 36)
>end
spin defined
?draw.spinner 0
?spin
1

readchar rc
-----------

Action:
Outputs the first character typed at the keyboard.

Syntax:
readchar
rc

Explanation:
READCHAR  outputs  the  first character typed at the  keyboard.  READCHAR  can 
output any character you can type, including control characters, except  Ctrl-
G. Ctrl-G stops execution and returns to toplevel.

During  a procedure's execution, READCHAR does not move the cursor or  display 
the  input  character on the screen. If no character is waiting  to  be  read, 
REACHAR  waits until you type something. If something is waiting to  be  read, 
READCHAR  immediately outputs the first character in the keyboard buffer.  The 
description of KEYP tells how to check if a character is waiting to be read.

Examples:



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?readchar
z

?to quiz
>print [Do you know any Martians?]
>if lowercase readchar = "y
>   [print [Takes one to know one!]]
>   [print [Me either!]]
>end
quiz defined
?quiz
Do you know any Martians? y
Takes one to know one!

?to poly.cycle :n
>(print [Press any key to draw a] :n [sided figure.])
>sink readchar cs
>repeat :n
>  [forward 40 right (360 / :n)]
>if :n > 8
>   [stop]
>poly.cycle :n + 1
>end
poly.cycle defined
?to sink :object
>end
sink defined
?poly.cycle 3
Press any key to draw a 3 sided figure.
Press any key to draw a 4 sided figure.
Press any key to draw a 5 sided figure.
Press any key to draw a 6 sided figure.
Press any key to draw a 7 sided figure.
Press any key to draw a 8 sided figure.
Press any key to draw a 9 sided figure.

readeofp        (= READ End-Of-File Predicate)
--------

Action:
Outputs TRUE if end of data file reached.

Syntax:
readeofp

Explanation:
Outputs TRUE if the current data file is at the end; otherwise, outputs FALSE. 
You must use OPEN and SETREAD before you use READEOFP.

(ROCHE> There is a system message, saying that "Only 4 files can be open".)

Examples:
?open "telnos
?setread "telnos
?readeopf
FALSE

reader
------

Action:
Outputs current open file name.

Syntax:
reader

Explanation:
Outputs the current file name that is open for reading.

(ROCHE> There is a system message, saying that "Only 4 files can be open".)

Examples:
?reader
[A:BOOKLIST.DAT]

readlist rl
-----------



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Action:
Outputs a list that contains a line typed at the keyboard.

Syntax:
readlist
rl

Explanation:
READLIST  outputs a list that contains a line typed at the keyboard.  READLIST 
always displays the input line on the screen before outputting the list.

READLIST can read a line only after you press the Carriage Return (Enter) key. 
If no line is waiting to be read, READLIST waits for something to be typed. If 
a  line  is  waiting to be read, READLIST outputs the  line  immediately.  The 
description of KEYP tells how to check if something is waiting to be read.

Examples:
?readlist
yippee ti yi yo
[yippee ti yi yo]

?repeat 5 readlist
forward 40 right 72

?to interpret
>print [What next, boss?]
>run readlist
>interpret
>end
interpret defined
?to my.message
>catch "error [interpret]
>(print "Oops, first butfirst error [!!!])
>print [What do you want to do about that?]
>run readlist
>my.message
>end
my.message defined
?my.message
What next, boss?
fence
What next, boss?
forward 200
Oops, Turtle out of bounds !!!
What do you want to do about that?
back 100
What next, boss?
to quit
Oops, I don't know to to !!!
What do you want to do about that?
stop

readquote rq
------------

Action:
Outputs a word that contains a line typed at the keyboard.

Syntax:
readquote
rq

Explanation:
READQUOTE outputs a word that contains a line typed at the keyboard. READQUOTE 
always  displays the input line on the screen. READQUOTE can read a line  only 
if the line is ended with a Carriage Return (Enter) keystroke.

If  the line contains words separated by spaces, READQUOTE  inserts  backslant 
characters  ("\")  in front of the spaces, so that the spaces are  treated  as 
literal  characters. This makes the line one word. You can see  the  backslant 
characters if you load an object created with READQUOTE into the editor.

When no line is waiting to be read, READQUOTE waits until something is  typed. 
If  a line is waiting to be read, READQUOTE outputs the line immediately.  You 
can use keyp to see if a line is waiting to be read.

Examples:
?readquote
I don't think we are in Kansas anymore...
I don't think we are in Kansas anymore...



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

recycle
-------

Action:
Reorganizes the workspace, to free as many nodes as possible.

Syntax:
recycle

Explanation:
RECYCLE  reorganizes  and cleans up the workspace, freeing as  many  nodes  as 
possible.  After  RECYCLE,  NODES can tell you how much of  the  workspace  is 
filled with procedures, variables, and other defined objects.

RECYCLE  works by calling the garbage collector. Dr. Logo automatically  calls 
the garbage collector when it is needed. However, if the timing of one of your 
procedures is critical, you can run RECYCLE before executing the procedure, to 
ensure  that  your procedure will not be interrupted by an  automatic  garbage 
collection.  Section 5, "Property Lists, Workspace, and Disks", describes  the 
garbage collector, and how it reorganizes and cleans up the workspace.

Examples:
?nodes
55702
?recycle
?nodes
59524

?to spi :side :angle :inc
>forward :side
>right :angle
>spi :side + :inc :angle :inc
>end
spi defined
?spi 10 100 2
I'm out of space in spi: spi :side + :inc :angle :inc
!recycle
?nodes
55380

redefp  (= REDEFine Predicate)  (Not a primitive)
------

Not a primitive, but a system variable.

When REDEFP is TRUE, primitives can be redefined. But the new definition  will 
take  all  the characteristics of the primitive; it cannot be printed  out  or 
edited.

remainder
---------

Action:
Outputs the integer remainder obtained when the first input number is  divided 
by the second.

Syntax:
remainder n n

Explanation:
REMAINDER  outputs the integer that is the remainder obtained when  the  first 
input number is divided by the second input number.

Examples:
?remainder 7 2
1

?to evenp :n
>if 0 = remainder :n 2
>   [output "TRUE]
>   [output "FALSE]
>end
evenp defined
?evenp 11
FALSE
?evenp 6
TRUE



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

remprop         (= REMove PROPerty)
-------

Action:
Removes the specified property from the input-named object's property list.

Syntax:
remprop name prop

Explanation:
REMPROP  removes  the specified property and its value  from  the  input-named 
object's  property  list.  You  may  use  REMPROP  to  remove  any  non-system 
properties  you put in an object's property list with PPROP. You  must  remove 
all properties from an object's property list to completely remove the  object 
from the workspace.

Examples:
?pons
horse1 is Tinderbox
horse2 is Muffy
?plist "horse1
[color bay .APV Tinderbox]
?ern "horse1
?plist "horse1
[color bay]
?remprop "horse1 "color
?plist "horse1
[]
?plist "horse2
[color [liver chestnut] class [hunter jumper] .APV Muffy]

?to remove :name
>if emptyp plist :name
>   [stop]
>make "prop first plist :name
>run (sentence "remprop "quote :name "quote :prop)
>remove :name
>end
remove defined
?remove "horse2
?plist "horse2
[]

repeat
------

Action:
Executes the input instruction list the input number of times.

Syntax:
repeat n instr_list

Explanation:
REPEAT  executes  the input instruction list the input number  of  times.  The 
input  number must be positive. If the input number is not an integer,  REPEAT 
truncates it to an integer.

If  you want a procedure to execute continuously, such as the  DRAW  procedure 
shown  in  the  description of PADDLE, you can use REPEAT  1/0  instead  of  a 
recursive  call. This minimizes interruptions from the garbage  collector.  We 
recommend  that you use a recursive call as you write your procedure, so  that 
you can take advantage of Dr. Logo's line-by-line debugging facilities.  Then, 
when  your  procedure  is working correctly, remove  the  recursive  call  and 
enclose the entire procedure definition within a single line: REPEAT 1/0  with 
a lengthy input instruction list.

Examples:
?repeat 100 [print [I will not chew gum in class.]
I will not chew gum in class.
I will not chew gum in class.
I will not chew gum in class.
I will not chew gum in class.
I will not chew gum in class.
I will not chew gum in class.
(...)

?make :sides 3
?repeat :sides [forward 40 right (360 / :sides)]



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?to spi :side :angle :inc
>forward :side
>right :angle
>spi :side + :inc :angle :inc
>end
spi defined
?spi 10 100 2
I'm out of space in spi: spi :side + :inc :angle :inc
!recycle
?to rep.spi :side :angle :inc
>repeat 200
>  [forward :side
>   right :angle
>   make "side :side + :inc]
>end
rep.spi defined
?rep.spi 10 100 2

 .replace
 --------

Action:
Replaces the specified item of the list with the object.

Syntax:
 .replace item_n varlist object

Explanation:
Replaces the specified item of the list with the object. THIS PRIMITIVE SHOULD 
BE USED WITH CAUTION!

Examples:
?make "varlist [A B C D E F]
?.replace 4 :varlist [1 2 3]
?:varlist
[A B C [1 2 3] E F]

 .reptail
 --------

Action:
Replaces all items following the specified item in the list with the object.

Syntax:
 .reptail item_n varlist object

Explanation:
Replaces  all items following the specified item in the list with the  object. 
THIS PRIMITIVE SHOULD BE USED WITH CAUTION!

Examples:
?make "varlist [A B C D E F]
?.reptail 4 :varlist [1 2 3]
?:varlist
[A B C D [1 2 3]]

rerandom
--------

Action:
Makes a subsequent RANDOM expression reproduce the same random sequence.

Syntax:
rerandom

Explanation:
RERANDOM  makes  a  subsequent RANDOM expression  reproduce  the  same  random 
sequence.

Examples:
?repeat 10 [(type random 10 char 9)] print []
2   3   7   5   3   2   0   4   2   6
?repeat 10 [(type random 10 char 9)] print []
8   9   9   1   0   6   1   3   5   1
?rerandom
?repeat 10 [(type random 10 char 9)] print []
6   2   9   0   3   1   6   2   3   7



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?rerandom
?repeat 10 [(type random 10 char 9)] print []
6   2   9   0   3   1   6   2   3   7

right rt
--------

Action:
Rotates the turtle the input number of degrees to the right.

Syntax:
right degrees_n
rt degrees_n

Explanation:
RIGHT  rotates the turtle the input number of degrees to the  right.  Usually, 
you  input  a  number of degrees between 0 and 359. If  the  input  number  is 
greater  than  359,  the turtle appears to move the  input  number  minus  360 
degrees  to  the right. If you input a negative number to  right,  the  turtle 
turns to the left.

Examples:
?repeat 36 [right 10]

?repeat 36 [right -10]

?to around.R :s
>repeat 360
>  [forward :s right 10 make "s :s + .01]
>end
around.R defined
?around.R 2

round
-----

Action:
Outputs the input number rounded off to the nearest integer.

Syntax:
round n

Explanation:
ROUND  outputs  the input number rounded off to the nearest  integer.  If  the 
fractional  portion of the input number is 0.5 or greater, ROUND rounds up  to 
the next integer. To truncate a decimal number to an integer, use INT.

Examples:
?round 3.333333
3

?int 28753/12
2149

?round -75.482
-75

?round 0.5
1

run
---

Action:
Executes the input instruction list.

Syntax:
run instr_list

Explanation:
RUN  executes  the  input instruction list. If the  input  object  outputs  an 
object,  RUN outputs that object. You can use LIST or SENTENCE to assemble  an 
instruction list for run to execute.

Examples:
?run [print [tricolor]]
tricolor



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?run [equalp 0 9]
FALSE

?to use :what
>if memberp lowercase :what [green red yellow]
>   [make "colornumber where
>    make "state "pd]
>if "eraser = lowercase :what
>   [make "state "pe]
>run (sentence "setpen "list "quote :state "quote :colornumber)
>end
use defined
?use "green forward 60 right 120
?use "red forward 60 right 120
?use "yellow forward 60 right 120

?to while :condition :instr_list
>if "TRUE = run :condition
>   [run :instr_list]
>   [stop]
>while :condition :instr_list
>end
while defined
?make "side 5
?while [:side < 50] [forward :side right 60 make "side :side + 2]

save
----

Action:
Writes  the  contents of the workspace or specified package(s) to  the  input-
named disk file.

Syntax:
save fname < pkgname | pkgname_list >

Explanation:
SAVE  writes  the  contents of the workspace or specified  package(s)  to  the 
input-named  disk file. If there is already a file with the specified name  on 
the disk, SAVE displays the message "File already exists." Choose another name 
for  the  new  file, delete the old file with ERASEFILE,  or  rename  it  with 
CHANGEF. If there is no file with the specified name on the disk, SAVE creates 
one  with  the  file type LOG. File names in the disk's  directory  cannot  be 
longer  than eight characters. So, if you specify a file name with  more  than 
eight characters, SAVE truncates the file name to eight characters.

If  you do not specify a package name as input, SAVE saves all procedures  and 
variables, except those in buried packages. If you specify a package or a list 
of  packages, only the procedures and variables in the input-named  package(s) 
are  saved.  SAVE can save buried procedures and variables if  you  specify  a 
buried package name.

Examples:
These examples assume you have three packages named FLY, SHAPES, and SIZES  in 
your workspace.

?popkg
fly is buried
  to buzz
  to fly
  to zoom
shapes
  to circle :size
  to triangle :size
  to square :size
sizes
  "big (VAL)
  "medium (VAL)
  "small (VAL)
?save "Sheila
?save "fly "fly
?save "shapes [shapes sizes]
?dir
[SHAPES.LOG FLY.LOG SHEILA.LOG]

(ROCHE> I found the following procedure useful... For multiple saves.)

to sav :fname
erasefile :fname
save :fname



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

end

savepic
-------

Action:
Writes the picture (on the screen) to the input-named disk file.

Syntax:
savepic fname fname

Explanation:
SAVEPIC  writes  the contents of the screen to the input-named disk  file.  If 
there is already a file with the specified name on the disk, SAVEPIC  displays 
the  message  "File  already exists." Choose another name for  the  new  file, 
delete the old file with ERASEFILE, or rename it with CHANGEF. If there is  no 
file  with the specified name on the disk, SAVEPIC creates one with  the  file 
type  PC0.  (ROCHE> for SETRES 0 images. But images saved under SETRES  1  are 
given  the  PC1 file type... and DIRPIC is then unable to find them!  This  is 
clearly a bug. The solution is to use an ambiguous filespec, with .PC? for the 
file  type.)  File names in the disk's directory cannot be longer  than  eight 
characters.  So, if you specify a file name with more than  eight  characters, 
SAVEPIC truncates the file name to eight characters.

Examples:
?savepic "shapes
?dirpic
[SHAPES.PC0 PLAID.PC0 PIGLATIN.PC0]
?dirpic "p???????.pc?
[PLAID.PC0 PIGLATIN.PC0 PLAID.PC1 PIGLATIN.PC1]

screenfacts sf
--------------

Action:
Outputs a list that contains information about the screen.

Syntax:
screenfacts
sf

Explanation:
Outputs a list that contains: Background color number of the viewport;  Screen 
state; Split size; Window state; Scrunch ratio; Zoom factor; X-coordinate  and 
Y-coordinate of viewport center; Current resolution setting.

Examples:
?screenfacts
[0 ts 5 window 1 1 0 0 0]

?to screen.facts
>print []
>type [Background Color Number:\ ] print item 1 screenfacts
>type [Screen state:\ ] print item 2 screenfacts
>type [Split Size:\ ] print item 3 screenfacts
>type [Window State:\ ] print item 4 screenfacts
>type [Scrunch Ratio:\ ] print item 5 screenfacts
>type [Zoom Factor:\ ] print item 6 screenfacts
>(type [(X,Y) of Viewport Center:] (word "\( item 7 sf ", item 8 sf "\))
>print []
>type [Current Resolution Setting:\ ] print item 9 screenfacts
>print []
>end
screen.facts defined
?setres 0
?screen.facts

Background Color Number: 0
Screen state: ts
Split Size: 5
Window State: window
Scrunch Ratio: 1
Zoom Factor: 1
(X,Y) of Viewport Center: (0,0)
Current Resolution Setting: 0

?setres 1
?screen.facts



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Background Color Number: 0
Screen state: ts
Split Size: 10
Window State: window
Scrunch Ratio: 0.5
Zoom Factor: 2
(X,Y) of Viewport Center: (0,0)
Current Resolution Setting: 1

?

sentence se
-----------

Action:
Outputs a list made up of the input objects.

Syntax:
sentence object object (...)
se object object (...)

Explanation:
SENTENCE  outputs a list made up of the input objects. SENTENCE is  like  LIST 
but removes the outermost brackets from the input objects.

Without punctuation, SENTENCE requires and accepts two input objects. SENTENCE 
can  accept more or fewer inputs when you enclose the SENTENCE  expression  in 
parentheses  ["("  and  ")"].  If no other  expressions  follow  the  SENTENCE 
expression on the line, you do not need to type the closing right  parenthesis 
[")"].

There are two ways of creating lists in Dr. Logo:

        1) using square brackets ("[" and "]")
        2) using LIST or SENTENCE

Each  way  results  in a different kind of list. When you  create  a  list  by 
enclosing  elements in square brackets, you create a "literal" list. Dr.  Logo 
treats the elements of the list literally; it does not evaluate expressions or 
look up the values of variables named in a literal list.

When  you  use LIST or SENTENCE to create a list, you can  use  variables  and 
expressions to specify the elements Dr. Logo will put in the list. You can use 
LIST and SENTENCE to create a list for input to most procedures. However,  IF, 
IFFALSE, and IFTRUE require literal lists as input.

Examples:
?sentence "tortoise "hare
[tortoise hare]

?sentence "turtle []
[turtle]

?make "turtle (sentence readlist readlist readlist)
pecans
caramel
chocolate
?:turtle
[pecans caramel chocolate]

?sentence "hare [rabbit bunny]
[hare rabbit bunny]

?sentence [Slow and steady] [wins the race.]
[Slow and steady wins the race.]

?to use :what
>if memberp lowercase :what [green red yellow]
>   [make "colornumber where
>   make "state "pd]
>if "eraser = lowercase :what
>   [make "state "pe]
>run (sentence "setpen "list "quote :state "quote :colornumber)
>end
use defined
?use "green forward 60 right 120
?use "red forward 60 right 120
?use "yellow forward 60 right 120



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

setbg           (= SET BackGround)
-----

Action:
Sets  the  graphic  screen background to the color represented  by  the  input 
number.

Syntax:
setbg n

Explanation:
SETBG sets the graphic screen background to the color represented by the input 
number.  The input number must be in the range from 0 to 63. The IBM  Personal 
Computer supports eight background colors in two levels of intensity, although 
your  color  monitor  might or might not display  different  intensities.  The 
numbers SETBG accepts represent colors as follows:

Low intensity
---------------------
 0  16  32  48  Black
 1  17  33  49  Blue
 2  18  34  50  Green
 3  19  35  51  Cyan
 4  20  36  52  Red
 5  21  37  53  Magenta
 6  22  38  54  Yellow
 7  23  40  55  White

High intensity
---------------------
 8  24  40  56  Black
 9  25  41  57  Blue
10  26  42  58  Green
11  27  42  59  Cyan
12  28  43  60  Red
13  29  45  61  Magenta
14  30  46  62  Yellow
15  31  47  63  White

Each of the four numbers for a background color specifies a different pen  for 
the turtle to use (see SETPC).

Examples:
When  you  first  start Dr. Logo, FIRST SCREENFACTS  returns  0,  representing 
Black,  the  default  background color, with the turtle,  pen,  and  text  all 
written  in  White. (Use SETBG 1 for a Blue background, with a  Yellow  turtle 
leaving  a  White  trail  with  its  pen.)  The  BG.CYCLE  procedure  displays 
background colors.

?to bg.cycle :val ; Displays background colors
>if :val = 0 
>   [print [Cycle complete.] setbg 0 stop]
>setbg :val
>(print [This is background color number] first screenfacts)
>wait 20000 ; 2 seconds on a 500-MHz PC
>bg.cycle :val - 1
>end
bg.cycle defined
?bg.cycle 7
This is background color 7
This is background color 6
This is background color 5
This is background color 4
This is background color 3
This is background color 2
This is background color 1
Cycle complete.

setcursor
---------

Action:
Positions  the  cursor  at the location specified by  the  input  text  screen 
coordinate list.

Syntax:
setcursor coord_list

Explanation:
SETCURSOR  positions  the cursor at the location specified in the  input  text 



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

screen  coordinate list. A text screen coordinate list has two  elements:  the 
first  element  is the column number; the second, the line  number.  The  line 
number must be in the range 0 to 24. The column number must be in the range  0 
to 79.

If  either of the two input numbers exceed the allowed range,  SETCURSOR  uses 
the  highest allowable value: 24 for line number, or 79 for column number.  If 
you  are  using a splitscreen or other 40 column text screen,  and  specify  a 
column number greater than 40, SETCURSOR wraps the cursor to the next line, in 
effect  adding 1 to the input line number, and subtracting 40 from  the  input 
column number.

Examples:
?to diagonal.type
>type readchar
>setcursor list (3 + first cursor) (1 + last cursor)
>diagonal.type
>end
diagonal.type defined
?cleartext
?setcursor [0 0]
?diagonal.type
H
 e
  l
   l
    o
     ,

       w
        o
         r
          l
           d
            !

setd            (= SET Drive name)
----

Action:
Makes the specified drive the default drive.

Syntax:
setd d:

Explanation:
SETD  makes  the  specified drive the default drive. Dr.  Logo  looks  in  the 
directory  of  the disk in the default drive when you do not specify  a  drive 
name in a disk command such as SAVE, LOAD, ERASEFILE, CHANGEF, or DIR. (ROCHE> 
You need to type the colon (":") after the drive name. Normally, colon is used 
to separate the drive from the file name. You say: "drive A", not "drive A:".)

Examples:
?setd "b:
?defaultd
B:
?setd "a:
?defaultd
A:

setheading seth
---------------

Action:
Turns  the  turtle to the absolute heading specified by the  input  number  of 
degrees.

Syntax:
setheading degrees_n
seth degrees_n

Explanation:
SETHEADING  turns  the turtle to the absolute heading specified by  the  input 
number  of  degrees.  If the input number is positive,  SETHEADING  turns  the 
turtle clockwise (right) from North to the input number of degrees, regardless 
of  the turtle's current heading. If the input number is negative,  SETHEADING 
turns the turtle counter-clockwise.

Examples:



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?setheading 90

?setheading 180

?setheading -90

?to draw.compass :n
>if :n > 330
>   [setheading 0 stop]
>penup setheading :n forward 50
>turtletext (word :n)
>back 50 right 23 forward 45 pendown forward 5 penup back 50
>drawcompass :n + 45
>end
draw.compass defined
?draw.compass 0

setpal          (= SET PALette of RGB colors)
------

Action:
Assigns RGB colors to a pen_index.

Syntax:
setpal [pal_n RGB_list]

Explanation:
The  colors are stored in a table called a palette. The palette has  room  for 
256 colors. SETPAL assigns the color represented by RGB_LIST to the pen  index 
designated by PAL_N. The range of values for PAL_N are 0 through 256. RGB_LIST 
must  be made of 3 elements. Each element control one of the basic  components 
of the color.

The first element controls the Red component, the second element controls  the 
Green  component,  and  the last element controls  the  Blue  component.  Each 
component  of  the RGB_LIST can be from 0 to 63. A 0 turns off  the  component 
color,  and  a 63 turns it at its maximum. The standard setting  is  42.  Half 
intensity is 21.

Examples:
setpal [0  0  0  0]  ; Black
setpal [0  0  0 42]  ; Blue
setpal [0  0 42  0]  ; Green
setpal [0  0 42 42]  ; Cyan
setpal [0 42  0  0]  ; Red
setpal [0 42  0 42]  ; Magenta
setpal [0 42 21  0]  ; "Yellow"
setpal [0 42 42 42]  ; "White"

(ROCHE> To get real Yellow, use [0 63 63 0]. For White, use [0 63 63 63].)

setpan
------

Action:
Establishes the center point of the viewport.

Syntax:
setpan coord_list

Explanation:
Establishes the center point of the viewport.

Examples:
?setpan [50 50]

setpc           (= SET Pen Color)
-----

Action:
Sets the turtle's pen to the color specified by the input number.

Syntax:
setpc n

Explanation:
SETPC  sets the turtle's pen to the color specified by the input  number.  The 
turtle has four pens. Each pen has four unique colors of ink, one of which  is 



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

the  background color that the turtle uses for erasing. Which pen and  set  of 
inks  the turtle uses depends on the number you input to SETBG to specify  the 
background color.

Low intensity
---------------------
 0  16  32  48  Black
 1  17  33  49  Blue
 2  18  34  50  Green
 3  19  35  51  Cyan
 4  20  36  52  Red
 5  21  37  53  Magenta
 6  22  38  54  Yellow
 7  23  40  55  White

High intensity
---------------------
 8  24  40  56  Black
 9  25  41  57  Blue
10  26  42  58  Green
11  27  42  59  Cyan
12  28  43  60  Red
13  29  45  61  Magenta
14  30  46  62  Yellow
15  31  47  63  White

When the background color is in the range 0 to 15:

        - pencolor 1 represents dark green ink
        - pencolor 2 represents dark red ink
        - pencolor 3 represents dark yellow ink

When the background color is in the range 16 to 31:

        - pencolor 1 represents bright green ink
        - pencolor 2 represents bright red ink
        - pencolor 3 represents bright yellow ink

When the background color is in the range 32 to 47:

        - pencolor 1 represents dark cyan ink
        - pencolor 2 represents dark magenta ink
        - pencolor 3 represents dark grey ink

When the background color is in the range 48 to 63:

        - pencolor 1 represents bright cyan ink
        - pencolor 2 represents bright magenta ink
        - pencolor 3 represents bright white ink

For  all  background  color numbers, pencolor 0  represents  background  color 
(erasing) ink. The turtle itself is drawn with pencolor 3.

Examples:
?to pc.cycle :penc :bkgr
>if :penc > 3 
>   [change.bg]
>if :bkgr > 50 
>   [stop]
>setpc :penc
>(print [This is pencolor] item 5 tf)
>repeat 36 
>  [forward 4 right 10] back 20
>wait 20000 ; 2 seconds on a 500-MHz PC
>pencolor.cycle (:penc + 1) :bkgr
>end
pc.cycle defined
?to change.bg
>make "bkgr 16 + :bkgr
>if :bkgr > 50 
>   [stop]
>setbg :bkgr
>(print [Background color] output first sf)
>make "penc 1
>end
change.bg defined
?clearscreen home left 90 forward 120 clean splitscreen setbg 1
?pc.cycle 1 1
This is pencolor number 1
This is pencolor number 2
This is pencolor number 3



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Background color 17
This is pencolor number 1
This is pencolor number 2
This is pencolor number 3
Background color 33
This is pencolor number 1
This is pencolor number 2
This is pencolor number 3
Background color 49
This is pencolor number 1
This is pencolor number 2
This is pencolor number 3

setpen
------

Action:
Sets the turtle's pen to the state and color specified in the input list.

Syntax:
setpen list

Explanation:
SETPEN  sets  the turtle's pen to the state and color specified in  the  input 
list.  You  can use SETPEN to change the pen's state and color with  a  single 
command; for example, SETPEN [PD 2] is equivalent to PENDOWN SETPC 2.

The  first element of the input list must be one of PENDOWN, PENERASE,  PENUP, 
or PENREVERSE. The second element must be a number that represents a  pencolor 
(see SETPC).

Examples:
?to pen
>output list item 4 turtlefacts item 5 turtlefacts
>end
pen defined
?pen
[pd 1]
?setpen [pe 0]
?pen
[pe 0]
?setpen [pd 1]

?to dandelion
>setheading first shuffle list (random 45) (-1 * (random 45))
>make "penstate pen
>forward 20 + random 80
>setpc 1 + random 3
>repeat 36
>  [forward 10 back 10 right 10]
>penup setpos :root
>setpen :penstate
>dandelion
>end
dandelion defined
?make "root [0 -50]
?setpos :root clean
?dandelion

setpos          (= SET turtle POSition)
------

Action:
Moves the turtle to the position specified in the input coordinate list.

Syntax:
setpos coord_list

Explanation:
SETPOS  moves  the turtle to the position specified in  the  input  coordinate 
list. The input list has the same two-element form as the list output by  pos. 
The  first element is the X-coordinate, in the range -150 to +149. The  second 
element is the Y-coordinate, in the range -99 to +100.

If  the  graphic  screen is FENCEd, values outside  these  ranges  generate  a 
"Turtle out of bounds" message. When WINDOW is set, you can input  coordinates 
outside  the  ranges, to make the turtle plot off screen. When  WRAP  is  set, 
SETPOS  converts any input coordinates that are outside the visible range,  so 
that the turtle WRAPs and remain visible.



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Examples:
?clearscreen
?setpos [80 50]

?setpos [0 30]

?setpos [80 -50]

?setpos [0 0]

?to dandelion
>setheading first shuffle list (random 45) (-1 * (random 45))
>make "penstate pen
>forward 20 + random 80
>setpc 1 + random 3
>repeat 36
>  [forward 10 back 10 right 10]
>penup setpos :root
>setpen :penstate
>dandelion
>end
dandelion defined
?make "root [0 -50]
?setpos :root clean
?dandelion

setprec         (= SET PRECision of numbers)
-------

Action:
Sets the number of significant digits displayed in an output number.

Syntax:
setprec n

Explanation:
Sets the number of significant digits displayed in an output number.

Examples:
?setprec 10

setread         (= SET file to READ)
-------

Action:
Sets the data file from which to receive input.

Syntax:
setread fname

Explanation:
Sets  the data file from which to receive input. After this command,  you  use 
READLIST, READCHAR, and READQUOTE to read the data from the file or device.

(ROCHE> There is a system message, saying that "Only 4 files can be open".)

Examples:
?open "telnos
?setread "telnos
?readlist
[TERRY CLOTH]

setres          (= SET the RESolution of the screen)
------

Action:
Sets the resolution of the viewport.

Syntax:
setres n

Explanation:
Sets  the resolution of the viewport. Available resolutions are  0  (320x200), 
and  1  (640x480).  Changes the default and maximum values  for  many  of  the 
parameters that affect the appearance of the text and graphic displays.

                 +100                         +239



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

            ┌────────────┐               ┌────────────┐
            │  setres 0  │               │  setres 1  │
       -160 │            │ +159     -320 │            │ +319
            │   320x200  │               │   640x480  │
            └────────────┘               └────────────┘
                  -99                         -240

Examples:
?screenfacts
[0 ts 5 window 1 1 0 0 0]

?to screen.facts
>print []
>type [Background Color Number:\ ] print item 1 screenfacts
>type [Screen state:\ ] print item 2 screenfacts
>type [Split Size:\ ] print item 3 screenfacts
>type [Window State:\ ] print item 4 screenfacts
>type [Scrunch Ratio:\ ] print item 5 screenfacts
>type [Zoom Factor:\ ] print item 6 screenfacts
>(type [(X,Y) of Viewport Center:] (word "\( item 7 sf ", item 8 sf "\))
>print []
>type [Current Resolution Setting:\ ] print item 9 screenfacts
>print []
>end
screen.facts defined
?setres 0
?screen.facts

Background Color Number: 0
Screen state: ts
Split Size: 5
Window State: window
Scrunch Ratio: 1
Zoom Factor: 1
(X,Y) of Viewport Center: (0,0)
Current Resolution Setting: 0

?setres 1
?screen.facts

Background Color Number: 0
Screen state: ts
Split Size: 10
Window State: window
Scrunch Ratio: 0.5
Zoom Factor: 2
(X,Y) of Viewport Center: (0,0)
Current Resolution Setting: 1

?

(ROCHE>  You  will  note the following differences between  Resolution  0  and 
Resolution 1:

                  Res0  Res1
                  ----  ----
1) Split Size:      5    10
2) Scrunch Ratio:   1     0.5
3) Zoom Factor:     1     2

I don't know if it is a bug, but SETRES 1 "scrunch" the picture vertically  by 
half.  If you use SETSCRUNCH 1, you recognize your Resolution 0 image. If  you 
then  use  SETZOOM 1, the image fills the screen, just like the  Resolution  0 
image, but with finer pixels. However, it would be silly to use less than half 
the resolution of VGA. So, the only logical thing to do is:

1) SETRES 1
2) SETSCRUNCH 1
3) SETZOOM 1
4) SETSPLIT 5  (optional)

to get a real VGA graphics screen (640x480), then rewrite all your old 300x200 
pixels  (EGA)  programs  to fill this VGA screen. And don't  forget  that  the 
workspace  is four times bigger than the 8-bits version of Dr. Logo... If  you 
want  to  see the increase in pixels between SETRES 0 and SETRES  1,  run  the 
following procedure, after FRAME1 (see FENCE).)

to frame
pu setpos [-160 99] pd
setx 159
sety -100



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

setx -160
sety 100
pu home st
end

 .setseg
 -------

Action:
Sets segment value.

Syntax:
 .setseg segment_n

Explanation:
Sets segment value to be used by subsequent .DEPOSIT and .EXAMINE expressions. 
Does not change the segment register.

Examples:
?.setseg 23

setscrunch      (= SET SCRUNCH ratio)
----------

Action:
Sets the viewport vertical aspect ratio.

Syntax:
setscrunch n

Explanation:
Sets the viewport vertical aspect ratio to the input number that can be from 1 
through 5.

Examples:
?setscrunch 5

setsplit
--------

Action:
Sets the number of lines in the splitscreen's text window.

Syntax:
setsplit n

Explanation:
SETSPLIT sets the number of lines in the splitscreen screen window. The  input 
number must be in the range 0 to 25.

Examples:
?repeat 12 [repeat 5 [forward 50 right 72] right 30]
?setpc 1
?splitscreen
?setsplit 15

?setsplit 1

?setsplit 5

setwrite        (= SET file to WRITE)
--------

Action:
Sets the destination of outputs.

Syntax:
setwrite fname | device

Explanation:
Sets the destination of outputs from PRINT, TYPE, and SHOW to the data file or 
system device. The file or device must already be OPEN. SETWRITE sets the file 
position at the top of the file.

(ROCHE>  The devices are: CON: NUL: PRN: and AUX: There is a  system  message, 
saying that "Only 4 files can be open".)



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Examples:
?open "phones
?setwrite "phones

setx    (= SET X-coordinate)
----

Action:
Moves  the  turtle  horizontally to the X-coordinate specified  by  the  input 
number.

Syntax:
setx n

Explanation:
SETX moves the turtle horizontally to the X-coordinate specified by the  input 
number. The Y-coordinate is not changed.

Examples:
?to frame
>penup setpos [-150 100] pd
>setx 149
>sety -99
>setx -150
>sety 100
>end
frame defined
?frame

sety    (= SET Y-coordinate)
----

Action:
Moves the turtle vertically to the Y-coordinate specified by the input number.

Syntax:
sety n

Explanation:
SETY  moves the turtle vertically to the Y-coordinate specified by  the  input 
number. The X-coordinate is not changed.

Examples:
?to frame
>penup setpos [-150 100] pd
>setx 149
>sety -99
>setx -150
>sety 100
>end
frame defined
?frame

setzoom         (= SET ZOOM ratio)
-------

Action:
Sets the screen to show more or less of the picture.

Syntax:
setzoom n

Explanation:
Causes the viewport to show a greater or lesser portion of the graphic  plane, 
thereby expanding or contracting subsequent turtle motion. Does not clear  the 
viewport, nor alter anything previously drawn.

Examples:
?setzoom 2

show
----

Action:
Displays the input object on the text screen.

Syntax:



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

show object

Explanation:
SHOW  displays  the input object on the text screen, followed  by  a  Carriage 
Return.  SHOW does not remove the outer brackets from an input  list.  Compare 
show with PRINT and TYPE.

You can input any number of objects by preceding SHOW with a left  parenthesis 
["("].  When  preceded by a parenthesis, SHOW displays all its inputs  on  the 
same line, and follows only the last input with a Carriage Return.

Dr. Logo's interpreter has an implicit SHOW command. This means that, when you 
enter an expression that outputs an object to the ? prompt, Dr. Logo shows the 
output  object, instead of complaining that it does not know what to  do  with 
it.

Examples:
?show "K
K

?show [crab scallops clams]
[crab scallops clams]

?3 * 10
30

?to demo :list
>make "success "FALSE
>catch "error [do.it]
>if :success = "TRUE
>   [stop]
>make "error1 error
>if 52 = first :error1
>   [do.it]
>   [print first butfirst :error1]
>end
demo defined
?to do.it
>type "? print :list
>run :list
>make "success "TRUE
>end
do.it defined
?to do.it1
>show run :list
>make "success "TRUE
>end
?do.it1 defined
?to logo.demo
>print []
>print [Here's how Dr. Logo responds to some commands:]
>print []
>demo [make "side 80]
>demo [repeat 4 [forward :side right 90]]
>demo [fence]
>demo [:side]
>demo [repeat 2 [back :side]]
>print []
>print [That's all, folks!]
>print []
>end
logo.demo defined
?logo.demo

Here's how Dr. Logo responds to some commands:

?make "side 80
?repeat 4 [forward :side right 90]
?fence
?:side
80
?repeat 2 [back :side]
Turtle out of bounds

That's all, folks!

?

showturtle st
-------------



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

Action:
Makes the turtle visible if hidden.

Syntax:
showturtle
st

Explanation:
SHOWTURTLE makes the turtle visible. When invisible, the turtle draws  faster, 
and does not distract visually from the drawing. To make the turtle invisible, 
enter HIDETURTLE (HT).

Examples:
?hideturtle
?showturtle
?to face
>hideturtle forward 90
>make "chin pos
>setpc 3 repeat 36 [forward 6 left 10]
>setpc 1 left 90 penup forward 30 left 90 forward 20 setheading 0 eye
>setheading 90 forward 30 setheading 0 eye
>setpc 2 setheading 150 forward 10 setheading 180 mouth
>setpos :chin setheading 0
>forward 23 left 5
>end
face defined
?to eye
>pendown repeat 18 [forward 1 right 10]
>right 100
>repeat 8
>  [forward 1.5 left 6]
>pu
>end
eye defined
?to mouth
>pd
>repeat 18
>  [forward 2 right 10]
>right 100
>repeat 8
>  [forward 3 left 6]
>pu
>end
mouth defined
?face
?showturtle

shuffle
-------

Action:
Outputs a list that contains the elements of the input list in random order.

Syntax:
shuffle list

Explanation:
SHUFFLE outputs a list that contains the elements of the input list in  random 
order.

Examples:
?shuffle [a b c d]
[c b d a]

?to pick.a.card
>output word
>   first shuffle [A K Q J 10 9 8 7 6 5 4 3 2]
>   char first shuffle [3 4 5 6]
>end
pick.a.card defined
?repeat 4 [(type pick.a.card char 9)]
7Hearts  7Clubs  KDiamond  JSpade

(ROCHE>  On the IBM PC, the values 3, 4, 5, and 6 (of Code Page 850)  generate 
the  symbols  of  the  playing  cards  (Hearts,  Diamond,  Clubs,  and  Spade, 
respectively).  Since WordStar uses control codes for its inner working,  they 
are replaced, in the above example, by their names. When run on an IBM PC, the 
above program would dislay 7* 7* K* J*, where * would be the symbol.)



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

sin
---

Action:
Outputs the sine of the input number of degrees.

Syntax:
sin degrees_n

Explanation:
SIN outputs the trigonometric sine of the input number of degrees. SIN outputs 
a decimal number between 0 and 1.

Examples:
?sin 90
1

?to plot.sine
>make "val 0
>make "x -150
>make "inc (300 / 60)
>setx 150 setx :x
>plot.s :val
>end
plot.sine defined
?to plot.s :val
>if :x > 150
>   [stop]
>make "y (90 * (sin :val))  ; 90 makes plot visible
>setheading towards list :x :y
>setpos list :x :y
>make "x :x + :inc
>make "val :val + 6
>plot.s :val
>end
plot.s defined
?plot.sine

sort
----

Action:
Outputs a list of input words sorted into ascending order.

Syntax:
sort list

Explanation:
SORT takes a list as input, then outputs, in ascending order, the elements  of 
the input list.

Examples:
?sort .contents

?sort glist ".PRM

splitscreen ss
--------------

Action:
Displays a window of text on the graphic screen.

Syntax:
splitscreen
ss

Explanation:
SPLITSCREEN  displays  a window of text on the graphic screen.  A  SPLITSCREEN 
command  is  equivalent  to a Ctrl-S keystroke. Use SETSPLIT  to  specify  the 
number of lines of text in the text window.

Examples:
?clearscreen repeat 12 [repeat 4 [forward 60 right 90] right 30
?splitscreen

?repeat 12 [repeat 4 [forward 60 right 90] right 30]
?splitscreen



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

sqrt            (= SQuare RooT)
----

Action:
Outputs the square root of the input number.

Syntax:
sqrt n

Explanation:
SQRT outputs the square root of the input number.

Examples:
?sqrt 2
1.4142135623731

?to measure :xypair1 :xypair2
>make "x1 first :xypair1
>make "x2 first :xypair2
>make "xdif :x2 - :x1
>make "y1 last :xypair1
>make "y2 last :xypair2
>make "ydif :y2 - :y1
>make "xdif2 :xdif * :xdif
>make "ydif2 :ydif * :ydif
>output sqrt (:xdif2 + :ydif2)
>end
measure defined
?make "p1 [-75 -49]
?setpos :p1 clean
?make "p2 [75 30]
?setpos :p2
?measure :p1 :p2
169.53170794869
?make "p3 [50 -90]
?setpos :p3
?measure :p2 :p3
122.576506721313
?setpos :p1
?measure :p3 :p1
131.552270980018

STARTUP         (Not a primitive)
-------

A STARTUP file is a file that Dr. Logo automatically loads into the  workspace 
when you start your Dr. Logo system. Dr. Logo interprets each line loaded from 
the  file as if you typed it at the keyboard to the ? prompt. This  makes  any 
procedures stored in the STARTUP.LOG file available immediately when you start 
your  Dr. Logo system. If you use EDF to create the STARTUP.LOG file, you  can 
include  stand-alone expressions that automatically execute the procedures  in 
the file.

Your STARTUP.LOG file must always be on your system disk, so that Dr. Logo can 
find  it  when  you  are starting your system. To  see  the  contents  of  the 
STARTUP.LOG file, enter:

?edf "startup

You can change the STARTUP.LOG file to contain your own procedures and execute 
your  own commands. Sometimes, it is useful to PACKAGE and BURY procedures  in 
the  STARTUP.LOG  file,  so  that they will  not  be  displayed  by  workspace 
management commands, or included in other files saved during the session. Note 
that Dr. Logo does not automatically make a backup copy of your original  file 
on disk, so use EDF carefully.

stop
----

Action:
Stops  the execution of the current procedure, and returns to toplevel or  the 
calling procedure.

Syntax:
stop

Explanation:
STOP stops the execution of the current procedure, and returns to the  caller. 



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

The caller is either the calling procedure or, if the procedure name was typed 
at  the  ? prompt, toplevel. STOP has an effect only within  a  procedure.  At 
toplevel, STOP has no effect; it simply returns to toplevel. Compare STOP with 
CATCH, THROW, OUTPUT, and END.

Examples:
?to vanish :object
>if emptyp :object
>   [stop]
>print :object
>vanish butfirst :object
>end
vanish defined
?vanish "emperor
emperor
mperor
peror
eror
ror
or
r

sum +
-----

Action:
Outputs the sum of the input numbers.

Syntax:
sum n n (...)
+ n n (...)

Explanation:
SUM  outputs  the  sum  of  the input numbers. SUM  is  equivalent  to  the  + 
arithmetic  operator. Without punctuation, SUM requires and accepts two  input 
objects.  SUM  can  accept  more or fewer inputs  when  you  enclose  the  SUM 
expression  in parentheses ["(" and ")"]. If no other expressions  follow  the 
SUM  expression  on  the  line, you do not need  to  type  the  closing  right 
parenthesis [")"].

Examples:
?sum 5 9
14

?+ 5 9
14

?sum 2.565 7.9
10.465

?+ 2.565 7.9
10.465

?(sum 6 4 -7 9 3 -2 8
21

?(+ 6 4 -7 9 3 -2 9
21

tan
---

Action:
Outputs the tangent of the input angle.

Syntax:
tan degrees_n

Explanation:
TAN  outputs  the  tangent of the angle represented by  the  input  number  of 
degrees.

Examples:
?tan 0
0

?arctan 45
1



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?to plot.tan
>make "val -pi
>make "inc pi / 37.5
>make "x -150
>setx 150
>setx :x
>plot.t :val
>end
plot.tan defined
?to plot.t :val
>if :x > 150
>   [stop]
>forward 1000 * tan :val
>sety 0
>setx :x + 4
>make "x :x + 4
>make "val :val + :inc
>plot.t :val
>end
plot.t defined
?plot.tan

test
----

Action:
Remembers whether the input predicate is TRUE or FALSE for subsequent  IFFALSE 
and IFTRUE expressions.

Syntax:
test pred_exp

Explanation:
TEST  remembers  whether the input predicate is TRUE or FALSE  for  subsequent 
IFFALSE and IFTRUE expressions. You can use TEST, IFFALSE, and IFTRUE  instead 
of IF to control the flow of execution within your procedure when you need Dr. 
Logo  to evaluate expressions after it evaluates a predicate  expression,  but 
before it executes the chosen instruction list.

Examples:
The COIN5 procedure is similar to the COIN procedures shown as examples  under 
IF,  but  shows  how  to use TEST, IFFALSE, and  IFTRUE.  COIN5  evaluates  an 
expression  after it evaluates a predicate expression, but before it  executes 
the chosen instruction list.

?to coin5
>test 1 = random 2
>if 1 = random 1000000
>   [print [Landed on edge!] stop]
>iftrue [type "heads]
>iffalse [type "tails]
>print [\ side up]
>end
coin5 defined

text
----

Action:
Outputs the definition list of the specified procedure.

Syntax:
text procname

Explanation:
TEXT outputs the definition list of the specified procedure. The format of the 
definition list is suitable for input to DEFINE. TEXT works by outputting  the 
value of the system property .DEF from the procedure's property list.

Examples:
?to star2  ; Five pointed star
>repeat 5
>  [forward 30 left 217 forward 30 left 70]
>end
star2 defined
?star
?package "figures "star
?popkg
figures



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

  to star2  ; Five pointed star
?plist "star2
[.PAK figures PKG TRUE.DEF [[] [repeat 5 [forward 30 left 217 forward 30  left 
70]]] .FMT [[0]]
?text "star2
[[] [repeat 5 [forward 30 left 217 forward 30 left 70]]]

textscreen ts
-------------

Action:
Selects a full text screen.

Syntax:
textscreen
ts

Explanation:
TEXTSCREEN  devotes the entire monitor to text. It can return to a  full  text 
screen from a full graphic screen or splitscreen. If you have a single monitor 
system,  TEXTSCREEN  is equivalent to a Ctrl-T keystroke. If you have  a  two-
monitor  system (both a monochrome and color monitor), TEXTSCREEN is the  only 
way to display the text screen on the color monitor; Ctrl-T displays the  text 
screen on the monochrome monitor.

Examples:
?repeat 12 [repeat 4 [forward 60 right 90] right 30]
?splitscreen
?textscreen

thing
-----

Action:
Outputs the value of the input-named variable.

Syntax:
thing varname

Explanation:
THING  displays  the contents or value of the input-named variable.  THING  is 
equivalent to a colon (":") before a variable name; for example, THING  "KAREN 
is  equivalent  to :KAREN. THING works by outputting the value of  the  system 
property .APV from the input-named variable's property list.

Examples:
?name "chocolate "flavor
?thing "flavor
chocolate

?:flavor
chocolate

?make "chocolate "semi\-sweet
?thing "chocolate
semi-sweet

?thing "flavor
chocolate

?thing :flavor
semi-sweet

throw
-----

Action:
Executes the line identified by the input name in a previous CATCH expression.

Syntax:
throw name

Explanation:
THROW  works  with the CATCH primitive to let your  procedure  handle  special 
conditions.  A  THROW  expression is valid only within the scope  of  a  CATCH 
command. The description of CATCH explains how to use CATCH and THROW.

CATCH and THROW each require a name as input. To pair a CATCH expression  with 



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

a  THROW  expression, you must give the CATCH and THROW expressions  the  same 
input  name.  When  a  THROW command is executed,  Dr.  Logo  returns  to  the 
procedure  that contains the CATCH command identified by the throw  name.  Dr. 
Logo  then executes the line that follows the CATCH command. THROW can  accept 
the special word "toplevel to return to the ? prompt (compare with STOP).

Examples:
The  COIL procedure asks the user to enter increasingly larger numbers as  the 
turtle  draws  a coil on the screen. If the user types a number  that  is  not 
bigger  than  the last one entered, COIL reminds the user what  to  type,  and 
continues working.

?to coil
>print [Enter a small number.]
>make "previous 0
>forward grow.number
>right 30
>trap
>end
coil defined
?to grow.number
>make "growth first readlist
>if :growth < :previous
>   [throw "not.bigger]
>make "previous :growth
>output :growth
>end
grow.number defined
?to trap
>catch "not.bigger [draw.coil]
>(print [Enter a number bigger than] :previous)
>trap
>end
trap defined
?to draw.coil
>print [Enter a bigger number.]
>forward grow.number
>right 30
>draw.coil
>end
draw.coil defined

The THROW "NOT.BIGGER instruction in the GROW.NUMBER procedure always  returns 
Dr. Logo to the TRAP procedure. If a STOP instruction had been used instead of 
THROW,  Dr. Logo would return to the procedure that called GROW.NUMBER,  which 
might be either COIL or DRAW.COIL.

The  following procedures allow the user to type commands just as he  normally 
would  to  the  Dr. Logo interpreter. However, if the user  enters  a  command 
incorrectly, the MY.MESSAGE procedure traps the normal Dr. Logo error  message 
and prints a custom message.

?to my.message
>catch "error [interpret]
>print "Oops! first butfirst error [!!!]
>print [What do you want to do about that?]
>run readlist
>my.message
>end
my.message defined
?to interpret
>print [What next, boss?]
>run readlist
>interpret
>end
interpret defined
?my.message

to      (Not a primitive)
--

Action:
Indicates the beginning of a procedure definition.

Syntax:
to procname < inputs >

Explanation:
TO  is a special word that indicates the beginning of a procedure  definition. 
At toplevel, TO signals Dr. Logo that you are starting to define a  procedure, 



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

and puts you in the procedure editor (the > prompt).

TO  is not part of a procedure's definition list, and is not a primitive.  You 
can  use "to" as a procedure or variable name, if you are confident  that  the 
name will not cause undue confusion.

Examples:
?to pent
>repeat 5
>  [forward 25 left 72]
>end
pent defined

tones
-----

Action:
Outputs a tone of the frequency and duration specified in the input list.

Syntax:
tones note_list

Explanation:
TONES  outputs  a note of the frequency and duration specified  in  the  input 
note_list. The input list must contain two numbers. TONES interprets the first 
number as the frequency of the desired note. For example, 440 is the frequency 
of concert A. TONES interprets the second number as the number of milliseconds 
the tone is to last.

Examples:
?tones [440 250]

?to scale :freq
>repeat 14
>  [type list " int 0.5 + :freq
>  tones list 0.5 + :note 300
>  make "note :note * :c]
>end
scale defined
?make "c (2 ^ (1 / 12))
?scale 440
 440 466 494 523 554 587 622 659 698 740 784 831 880

?to play :song :speed
>make "note first :song
>if memberp :note :notes
>   [make interval where]
>(type " :note)
>if :note = "R
>   [tones list 0 :speed]
>   [tones list 440 * (:c ^ :interval) :speed]
>play butfirst :song :speed
>end
play defined
?make  "notes [A A# B C C# D D# E F F# G G# A' A#' B' C' C#' D' D#' E' F'  F#' 
G' G#']
?make "hb [G A' G C' B' R G A' G D' C' R' G G#' E' C' B' A' F' E' C' D' C']
?play :hb 60

?to play1 :song :speed
>make "note first :song
>if memberp :note :notes
>   [make interval where]
>(type " :note)
>if :note = "R
>   [tones list 0 :speed]
>   [tones list 440 * (:c ^ :interval) :speed]
>if emptyp first butfirst :song
>   [stop]
>make "note2 first butfirst :song
>if memberp :note2 :notes
>   [make interval where]
>(type " :note2)
>if :note2 = "R
>   [tones list 0 :speed * 4]
>   [tones list 440 * (:c ^ :interval) :speed * 4]
>play butfirst butfirst :song :speed
>end
play1 defined
?make  "turtle.song [D G A' A#' A' A#' R R A' A#' R R R D' R C' A#' A' G A'  G 



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

A' R R G F G A' R R C' A#' A' G F G F G R R F D# F G R R G G A' R G F# R D'
?play :turtle.song 14
 D G A' A#' A' A#' R R A' A#' R R R D' R C' A#' A' G A' G A' R R G F G A' R  R 
C' A#' A' G F G F G R R F D# F G R R G G A' R G F# R D'

towards
-------

Action:
Outputs  a heading that would make the turtle face the position  specified  in 
the input coordinate list.

Syntax:
towards coord_list

Explanation:
TOWARDS  outputs  a  heading  that would make the  turtle  face  the  position 
specified  in the input coordinate list. To make the turtle turn  towards  the 
position, use the output of TOWARDS as the input to SETHEADING.

Examples:
?cs
?towards [75 50]
56.3099324740202

?towards [-75 -50]
236.30993247402

?to plot.sine
>make "val 0
>make "x -150
>make "inc (300 / 60)
>setx 150 setx :x
>plot.s :val
>end
plot.sine defined
?to plot.s :val
>if :x > 150
>   [stop]
>make "y (90 * (sin :val)) ; 90 makes plot visible
>setheading towards list :x :y
>setpos list :x :y
>make "x :x + :inc
>make "val :val + 6
>plot.s :val
>end
plot.s defined
?plot.sine

trace
-----

Action:
Turns on trace monitoring of all or specified procedure(s).

Syntax:
trace < procname | procname_list >

Explanation:
TRACE  turns on trace monitoring of procedure execution. Tracing displays  the 
name  of  each  procedure  as it is called, and the name  and  value  of  each 
variable  as it is defined. It also displays the level number, the  number  of 
procedures that have been called since a procedure was initiated at toplevel.

Tracing  lets  you  observe  details of  your  procedure's  execution  without 
interrupting  with  PAUSEs. Use WATCH or Ctrl-Z if you want  to  PAUSE  during 
procedure execution.

Examples:
?to average :numbers
>make "total 0
>add.up :numbers
>print :total / count :numbers
>end
average defined
?to add.up :list
>if emptyp :list
>   [stop]
>make "total :total + first :list



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

>add.up butfirst :list
>end
add.up defined
?trace
?average [1 2 3]
[1] Evaluating average
[1] numbers is [1 2 3]
[2] Evaluating add.up
[2] list is [1 2 3]
[3] Evaluating add.up
[3] list is [2 3]
[4] Evaluating add.up
[4] list is [3]
[5] Evaluating add.up
[5] list is []
2
?notrace
?average [1 2 3]
2

turtlefacts tf
--------------

Action:
Outputs a list of information about the turtle.

Syntax:
turtlefacts
tf

Explanation:
Outputs  a list that contains: Turtle's X-coordinate;  Turtle's  Y-coordinate; 
Turtle's  heading;  Pen  state;  Pen's color number; TRUE  if  the  turtle  is 
visible, FALSE if not.

Examples:
?turtlefacts
[15 30 60 PE 3 FALSE]

?to turtle.facts
>print []
>type [Turtle's X\-coordinate:\ ] print item 1 tf
>type [Turtle's Y\-coordinate:\ ] print item 2 tf
>type [Turtle's Heading:\ ] print item 3 tf
>type [Pen State:\ ] print item 4 tf
>type [Pen Color:\ ] print item 5 tf
>type [Turtle Visible:\ ] print item 6 tf
>print []
>end
turtle.facts defined
?turtle.facts

Turtle's X-coordinate: 0
Turtle's Y-coordinate: 0
Turtle's Heading: 0
Pen State: pd
Pen Color: 15
Turtle Visible: TRUE

(ROCHE>  SETRES  does  not modify the values of  TURTLEFACTS.  Note  that,  by 
default,  pen  color is 15 (White) and background color is  0  (Black).  Using 
SETBG  1 will display a Blue background, with a Yellow turtle leaving a  White 
trail with its pen.)

turtletext tt
-------------

Action:
Displays  the  input object at the turtle's current location  on  the  graphic 
screen.

Syntax:
turtletext object
tt object

Explanation:
TURTLETEXT  displays  the  input  object on  the  graphic  screen.  The  first 
character  of  the input object appears to the right of  the  turtle's  center 
line,  plus  zero  to four turtle steps (pixels) to  align  with  the  closest 



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

character cell.

Like  PRINT,  TURTLETEXT removes the outer brackets from any input  list,  and 
follows  the  last  input item with a Carriage  Return.  Without  punctuation, 
TURTLETEXT  requires and accepts one input object. TURTLETEXT can accept  more 
inputs  when  you enclose the TURTLETEXT expression is  parentheses  ["("  and 
")"].  If no other expressions follow the TURTLETEXT expression on  the  line, 
you do not need to type the closing right parenthesis [")"].

Examples:
?cs
?turtletext "home forward 10
?turtletext readquote forward 10
I want to go

type
----

Action:
Displays the input objects on the screen.

Syntax:
type object (...)

Explanation:
TYPE  displays  the input object on the screen, but does not follow  the  last 
input  object with a Carriage Return. TYPE removes the outer  square  brackets 
("["  and  "]")  from an input list. You can input any number  of  objects  by 
preceding TYPE with a left parenthesis ["("]. When preceded by a  parenthesis, 
TYPE  displays  all its inputs on the same line. Compare TYPE with  PRINT  and 
SHOW.

Examples:
?type [This is the turtle's position:] pos
This is the turtle's position: [-19 -21]

?to new.prompt :prompt
>(type :prompt " )
>run readlist
>new.prompt :prompt
>end
new.prompt defined
?new.prompt [Dr.\ Logo\>]
Dr. Logo> repeat 5 [forward 40 left 72]
Dr. Logo>

unbury
------

Action:
Restores the specified package(s) to workspace management commands.

Syntax:
unbury pkgname | pkgname_list

Explanation:
UNBURY  restores  the specified package or packages  to  workspace  management 
commands. UNBURY works by removing the bury property (.BUR) from the package's 
property list. The description of BURY command tells how workspace  management 
commands treat buried packages.

Examples:
These  examples  assume you have the following in your  workspace:  a  package 
named  FIGURES  that  contains  two variables named  BIG  and  SMALL  and  two 
procedures named SQUARE and TRIANGLE, and a package named TITLES that contains 
two procedures named PRAUTHOR and PRDATE.

?popkg
figures
  "big (VAL)
  "small (VAL)
  to square
  to triangle
titles
  to prauthor
  to prdate
?bury "titles
?popkg
figures



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

  "big (VAL)
  "small (VAL)
  to square
  to triangle
titles is buried
  to prauthor
  to prdate
?pots
to square
to triangle
?unbury "titles
?popkg
figures
  "big (VAL)
  "small (VAL)
  to square
  to triangle
titles
  to prauthor
  to prdate
?pots
to square
to triangle
to prauthor
to prdate

uppercase uc
------------

Action:
Outputs the input word with all alphabetic characters in uppercase.

Syntax:
uppercase word
uc word

Explanation:
UPPERCASE  outputs the input word with all alphabetic characters converted  to 
uppercase.

Examples:
?uppercase "jones
JONES

?uppercase "BeckyAnn
BECKYANN

?to quiz
>print [Can you play the ocarina?]
>if "N = uppercase first rq
>   [print [Me neither!]]
>   [print [Wow, I have never met anyone who did!]
>end
quiz defined
?quiz
Can you play the ocarina?
Not really
Me neither!

wait
----

Action:
Stops execution for the amount of time specified by the input number.

Syntax:
wait n

Explanation:
WAIT  stops  execution for the amount of time specified by the  input  number. 
WAIT interprets the input number as the number of 1/60ths of a second it is to 
wait. For example, to stop for one second, use WAIT 60.

(ROCHE> This was the case for the IBM PC in the USA running at 4-MHz in  1981, 
where  the electrical current's frequency is 60-Hz. (In Europe, it is  50-Hz.) 
However, on my 500-MHz European PC, WAIT 10000 waits 1 seconds.)

Examples:
?wait 60



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?repeat 10 [type "tick wait 30 print "tock wait 30]
ticktock
ticktock
ticktock
ticktock
ticktock
ticktock
ticktock
ticktock
ticktock
ticktock

?to bg.cycle :val ; Displays background colors
>if :val = 0 
>   [print [Cycle complete.] setbg 0 stop]
>setbg :val
>(print [This is background color number] first screenfacts)
>wait 20000 ; 2 seconds on a 500-MHz PC
>bg.cycle :val - 1
>end
bg.cycle defined
?bg.cycle 7
This is background color 7
This is background color 6
This is background color 5
This is background color 4
This is background color 3
This is background color 2
This is background color 1
Cycle complete.

watch
-----

Action:
Turns on watch monitoring of all or specified procedure(s).

Syntax:
watch < procname | procname_list >

Explanation:
WATCH  turns  on expression-by-expression monitoring of  procedure  execution. 
WATCH  displays each expression before execution, and PAUSEs until  you  press 
the  (Enter)  key.  During  the PAUSE, you can examine  the  values  of  local 
variables,  and  experiment  with  variations of  the  expression  before  the 
expression  is  actually executed. If you want the values of variables  to  be 
displayed automatically, enable TRACE as well as WATCH.

WATCH  also  displays  a number in square brackets ("[" and  "]")  before  the 
expression. This level number tells you how many procedures your procedure has 
called since it began execution.

If you give WATCH a procedure name or a list of procedure names as input, only 
the specified procedures are monitored. Otherwise, any procedure you  initiate 
at toplevel or call from within another procedure is monitored.

Normally,  anything  an expression displays on the text  appears  interspersed 
with the information that WATCH displays on the screen.

To stop the WATCH step-by-step monitoring, enter NOWATCH.

Examples:
?to average :numbers
>make "total 0
>add.up :numbers
>print :total / count :numbers
>end
average defined
?to add.up :list
>if emptyp :list
>   [stop]
>make "total :total + first :list
>add.up butfirst :list
>end
add.up defined
?watch
?average [1 2 3]
[1] In average, make "total 0
[1] In average, add.up :numbers



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

[2] In add.up, if emptyp :list [stop]
[2] In add.up, make "total :total + first :list
[2] In add.up, add.up butfirst :list
[3] In add.up, if emptyp :list [stop]
[3] In add.up, make "total :total + first :list
[3] In add.up, add.up butfirst :list
[4] In add.up, if emptyp :list [stop]
[4] In add.up, make "total :total + first :list
[4] In add.up, add.up butfirst :list
[5] In add.up, if emptyp :list [stop]
[1] In average, print :total / count :numbers
2
?nowatch
?average [1 2 3]
2

where
-----

Action:
Outputs the item number of the most recent successful MEMBERP expression.

Syntax:
where

Explanation:
WHERE  outputs  a number that identifies the location of an element  within  a 
word or list if a MEMBERP expression containing that element and word or  list 
outputs  TRUE.  WHERE outputs the item number of the  most  recent  successful 
MEMBERP expression.

Examples:
?memberp "v" river
TRUE
?show where
3

?to use :what
>if memberp lowercase :what [green red yellow]
>   [make "colornumber where
>    make "state "pd]
>if "eraser = lowercase :what
>   [make "state "pe]
>run (sentence "setpen "list "quote :state "quote :colornumber)
>end
use defined
?use "green forward 80 right 120
?use "red forward 80 right 120
?use "yellow forward 80 right 120

window
------

Action:
Allows the turtle to plot outside the visible graphic screen.

Syntax:
window

Explanation:
WINDOW allows the turtle to plot outside the visible graphic screen. When  you 
first start Dr. Logo, the turtle can go beyond the visible screen and  return. 
You  can  enter WRAP or FENCE to limit the turtle to  on-screen  plotting.  To 
resume offscreen plotting after a WRAP or FENCE command, enter WINDOW.

Examples:
?fence
?to squiral :side
>repeat 4
>  [forward :side right 90]
>right 20
>squiral :side + 5
>end
squiral defined
?squiral 20
Turtle out of bounds in squiral: repeat 4 [forward :side right 90]
?window
?squiral 20
Ctrl-G



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

word
----

Action:
Outputs a word made up of the input words.

Syntax:
word word word (...)

Explanation:
WORD  outputs  a word made up of the input words.  Without  punctuation,  WORD 
requires  and accepts two input objects. WORD can accept more or fewer  inputs 
when you enclose the WORD expression in parentheses ["(" and ")"]. If no other 
expressions  follow the WORD expression on the line, you do not need  to  type 
the closing right parenthesis [")"].

Examples:
?word "Hocus "Pocus
HocusPocus

?word 23 "skiddoo
23skiddoo

?(word "ab "ra "ca "da "bra
abracadabra

?to make.string :list
>if emptyp :list
>   [output "]
>output (word first :list char 32 make.string butfirst :list)
>end
make.string defined
?repeat 2 make.string [forward 40 right 160]
?forward 40 right 160
?forward 40 right 160

wordp   (= WORD Predicate)
-----

Action:
Outputs TRUE if the input object is a word or a number.

Syntax:
wordp object

Explanation:
WORDP outputs TRUE if the input object is a word or a number. Otherwise, WORDP 
outputs FALSE.

Examples:
?wordp "Naima
TRUE

?wordp 50
TRUE

?wordp [word]
FALSE

?wordp butfirst [green red yellow]
FALSE

?to list.memberp :word :list
>if emptyp :list
>   [output "FALSE]
>if wordp first :list
>   [if :word = first :list
>       [output "TRUE]
>       [output list.memberp :word butfirst :list]]
>if list.memberp :word first :list
>   [output "TRUE]
>output list.memberp :word butfirst :list
>end
list.memberp defined
?make  "address.book  [[name  [Mr.  President]]  [street  [1600   Pennsylvania 
Avenue]] [city/state [Washington D.C.]]]
?list.memberp "Washington :address.book
TRUE



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

?list.memberp "Oregon :address.book
FALSE

wrap
----

Action:
Makes the turtle re-appear on the opposite side of the screen when it  exceeds 
the boundary.

Syntax:
wrap

Explanation:
WRAP  makes  the turtle re-appear on the opposite side of the  graphic  screen 
when  it moves beyond an edge. While WRAP is set, the turtle never leaves  the 
visual field. To allow the turtle to plot offscreen, enter WINDOW.

Examples:
?wrap
?forward 180
?cs

?to plaid
>wrap
>setpc 3 right 40 forward 10965
>setpc 2 right 90 forward 5000
>setpc 1 penup right 90 forward 6 pendown ht
>repeat 625
>  [forward 3 left 90 forward 1 right 90 back 3 left 90 forward 1 right 90]
>end
plaid defined
?plaid

writer
------

Action:
Outputs the current data file.

Syntax:
writer

Explanation:
Outputs the current data file that is open for writing.

(ROCHE> There is a system message, saying that "Only 4 files can be open".)

Examples:
?writer
[A:ADDRESS.DAT]

xcor
----

Action:
Outputs the X-coordinate of the turtle's current position.

Syntax:
xcor

Explanation:
XCOR  outputs  the  X-coordinate of the turtle's  current  position.  XCOR  is 
equivalent to a FIRST POS expression.

Examples:
?clearscreen xcor
0
?to jump
>setpos list
>   random 150 * first shuffle [1 -1]
>   random 100 * first shuffle [1 -1]
>end
jump defined
?jump xcor
145
?jump xcor
-64



DRLRM6.HTM

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRM6.HTM[2/6/2012 4:37:20 PM]

ycor
----

Action:
Outputs the Y-coordinate of the turtle's current position.

Syntax:
ycor

Explanation:
YCOR  outputs  the  Y-coordinate of the turtle's  current  position.  YCOR  is 
equivalent to a LAST POS expression.

Examples:
?clearscreen ycor
0
?to jump
>setpos list
>   random 150 * first shuffle [1 -1]
>   random 100 * first shuffle [1 -1]
>end
jump defined
?jump ycor
36
?jump ycor
49

EOF



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMA.TXT[2/6/2012 4:37:25 PM]

DRLRMA.WS4      (= "Dr. Logo Reference Manual", Appendix A)
----------

(Retyped by Emmanuel ROCHE.)

Appendix A: Dr. Logo error messages
-----------------------------------

Table A-1. Dr. Logo error messages

Number  Message
------  -------
   2    Number too big
   6    (symbol) is a primitive
   7    Can't find lable (symbol)
   8    Can't (symbol) from the editor
   9    (symbol) is undefined
  11    I'm having trouble with the disk
  12    Disk full
  13    Can't divide by zero
  15    File already exists
  17    File not found
  21    Can't find catch for (symbol)
  23    Out of space
  25    (symbol) is not true or false
  29    Not enough inputs to (procedure)
  30    Too many inputs to (procedure)
  32    Too few items in (list)
  34    Turtle out of bonds
  35    I don't know how to (symbol)
  36    (symbol) has no value
  37    ) without (
  38    I don't know what to do with (symbol)
  40    Disk is write protected
  41    (procedure) doesn't like (symbol) as input
  42    (procedure) didn't output
  43    I don't know how to do that yet
  44    !! Dr. Logo system bug !!
        (Should not occur. Please write to Digital Research if it does.)
  45    The word is too long
  46    I don't have enough buffer space
  47    If wants [ ]'s around instruction list
  48    (varies according to disk error)
  49    (symbol) isn't a parameter
  50    I can't (symbol) while loading
  51    The file is write protected
  52    I can't find the disk drive

EOF



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMB.TXT[2/6/2012 4:37:25 PM]

DRLRMB.WS4      (= "Dr. Logo Reference Manual", Appendix B)
----------

(Retyped by Emmanuel ROCHE.)

Appendix B: Dr. Logo control and escape character commands
----------------------------------------------------------

Table B-1. Dr. Logo control and escape character commands

Format: Character
        Effect

(* indicates the character is valid within screen editor only.)

Ctrl-A
Moves the cursor to the beginning of the line.

Ctrl-B
Moves the cursor [B]ack one character; that is to say, it moves the cursor one 
position to the left.

Ctrl-C *
Exits the screen editor; updates Dr. Logo's workspace with definitions of  all 
procedures and variables from the screen editor's buffer.

Ctrl-D
[D]eletes the character indicated by the cursor.

Ctrl-E
Moves the cursor to the [E]nd of the line.

Ctrl-F
Moves the cursor [F]orward one character; that is to say, it moves the  cursor 
one position to the right.

Ctrl-G
Outside  the screen editor, it immediately terminates the currently  executing 
procedure.  Inside  the  screen editor, it exits  the  screen  editor  without 
updating  Dr. Logo's workspace, discarding any changes made during the  screen 
editing session.

Ctrl-H
Deletes the character to the left of the cursor.

Ctrl-I
[I]nserts a tab (three spaces).

Ctrl-J
(No effect.)

Ctrl-K



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMB.TXT[2/6/2012 4:37:25 PM]

[K]ills the remaining line; that is to say, it deletes all characters right of 
the cursor to the end of the line. Deleted characters are stored in buffer.

Ctrl-L
Outside screen editor, displays a full graphic screen, devoting the monitor to 
graphics.  Inside  screen editor, it readjusts the display so  that  the  line 
currently  indicated by the cursor is positioned at the center of the  screen. 
If  the  cursor is less than 12 lines from the beginning of  the  buffer,  the 
screen editor simply beeps when Ctrl-L is pressed.

Ctrl-M
Generates a Carriage Return.

Ctrl-N
Moves  the cursor to the [N]ext line; in the screen editor, the  cursor  moves 
down one line towards the end of the buffer.

Ctrl-O
[O]pens  a new line. In the screen editor, it is equivalent to pressing  Enter 
followed by Ctrl-B.

Ctrl-P
Moves the cursor to the [P]revious line; the cursor moves up one line  towards 
the beginning of the buffer.

Ctrl-Q
Generates the [Q]uoting character ("\") that makes Dr. Logo treat a  delimiter 
character as a literal character. Delimiter characters are [ ] ( ) " : ; = < > 
+ / ^

Ctrl-R
(No effect.)

Ctrl-S
Displays a [S]plitscreen; opens a text window on the graphic screen.

Ctrl-T
Displays a full [T]ext screen, devoting the monitor to text.

Ctrl-U
(No effect.)

Ctrl-V *
Displays the next screen full of text in the screen editor's buffer, the  next 
24 lines towards the bottom of the buffer.

Ctrl-W
Interrupts  the scrolling of a text display; [W]aits until the next  keystroke 
to continue scrolling the display.

Ctrl-X
(No effect.)

Ctrl-Y



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMB.TXT[2/6/2012 4:37:25 PM]

[Y]anks  text  from the buffer; that is to say, it redisplays  the  line  most 
recently stored in the buffer by an Enter or a Ctrl-K keystroke.

Ctrl-Z
Interrupts the currently executing procedure; displays a pause prompt to allow 
interactive debugging. Enter "co" to continue the execution of the interrupted 
procedure.

ESC-V *
Displays  the previous screen full of text in the screen editor's buffer,  the 
previous 24 lines towards the beginning of the buffer.

ESC-< *
Positions the cursor at the beginning of the screen editor's buffer.

ESC-> *
Positions the cursor at the end of the screen editor's buffer.

EOF



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMC.TXT[2/6/2012 4:37:25 PM]

DRLRMC.WS4      (= "Dr. Logo Reference Manual", Appendix C)
----------

(Retyped by Emmanuel ROCHE.)

Appendix C: Functional command list
-----------------------------------

Word and list processing
------------------------

ascii word
butfirst, bf object
butlast, bl object
char n
count object
emptyp object
equalp object object
first object
fput object object
item n object
last object
list object object (...)
listp object
lowercase, lc word
lput object object
memberp object object
numberp object
piece n object
proclist
quote object
sentence, se object object (...)
shuffle list
uppercase, uc word
where
word word word (...)
wordp object

Arithmetic operations
---------------------

abs n
arctan n
cos degrees_n
degrees radians_n
exp n
int n
log n
log10 n
pi
product n n (...)



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMC.TXT[2/6/2012 4:37:25 PM]

quotient n n
radians degrees_n
random n
remainder n n
rerandom
round n
sin degrees_n
sqrt n
sum n n (...)
tan degrees_n
+ a b
- a b
* a b
/ a b
^ a b

Logical operations
------------------

and pred_exp pred_exp (...)
not pred_exp
or pred_exp pred_exp (...)
= a b
< a b
> a b

Variables
---------

local varname (...)
make varname object
name object varname
namep word
thing varname

Defining procedures
-------------------

copydef new_procname old_procname
defined procname defin_list
definedp object
end
primitivep object
text procname
to procname <inputs>

Editing
-------

edall <pkgname | pkgname_list>



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMC.TXT[2/6/2012 4:37:25 PM]

edit, ed <name | name_list>
edns <pkgname | pkgname_list>
edps <pkgname | pkgname_list>

Text screen
-----------

cleartext, ct
cursor
print, pr object (...)
setcursor coord_list
show object
textbg n
textfg n
textscreen
twoscreen
type object (...)

Graphic screen
--------------

background, bg
clean
clearscreen, cs
dot coord_list
fence
fullscreen
pen
pencolor, pc
pendown, pd
penerase, pe
penreverse, px
penup, pu
setbg n
setpc n
setpen list
setsplit n
splitscreen
turtletext, tt object (...)
window
wrap

Graphic movement
----------------

back, bk distance_n
forward, fd distance_n
heading
hideturtle, ht
home
left, lt degrees_n



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMC.TXT[2/6/2012 4:37:25 PM]

pos
right, rt degrees_n
setheading, seth degrees_n
setpos coord_list
setx n
sety n
shownp
showturtle, st
towards coord_list
xcor
ycor

Workspace management
--------------------

bury pkgname | pkgname_list
erall <pkgname | pkgname_list>
erase procname | procname_list
ern varname | varname_list
erns <pkgname | pkgname_list>
erps <pkgname | pkgname_list>
follow procname procname
nodes
noformat
noprim
package pkgname name | name_list
pkgall pkgname
po procname | procname_list
poall <pkgname | pkgname_list>
pons <pkgname | pkgname_list>
popkg
poprim
pops <pkgname | pkgname_list>
potl
pots <pkgname | pkgname_list>
recycle
unbury pkgname

Property lists
--------------

glist prop <pkgname | pkgname_list>
gprop name prop
plist name
pprop name prop object
pps <pkgname | pkgname_list>
remprop name prop

Disks
-----



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMC.TXT[2/6/2012 4:37:25 PM]

copyd dest_d: source_d:
defaultd
initd d: n
resetd <d:>
setd d:
spaced <d:>

Files
-----

changef new_fname old_fname
copyf dest_fname source_fname
erf fname
getfs <d:>
load fname
save fname <pkgname | pkgname_list>

Keyboard
--------

fkey n instr_word
keyp
readchar, rc
readlist, rl
readquote, rq

Printer
-------

copyoff
copyon
printscreen

Sound, lightpen and joystick
----------------------------

tones note_list
lpen
lpenp
buttonp paddle_n
paddle n

Conditionals and flow of control
--------------------------------

bye
co <object>
go word
if pred_exp instr_list <instr_list>



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMC.TXT[2/6/2012 4:37:25 PM]

iffalse, iff instr_list
iftrue, ift instr_list
label word
output, op object
repeat n instr_list
run instr_list
stop
test pred_exp
wait n

Error handling and debugging
----------------------------

catch name instr_list
debug
error
nodebug
notrace <procname | procname_list>
nowatch <procname | procname_list>
pause
throw name
trace <procname | procname_list>
watch <procname | procname_list>

EOF



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMD.TXT[2/6/2012 4:37:26 PM]

DRLRMD.WS4      (= "Dr. Logo Reference Manual", Appendix D)
----------

(Retyped by Emmanuel ROCHE.)

Appendix D: Glossary
--------------------

address
Location in memory.

ambiguous file name
File name containing a wildcard character. In Dr. Logo, the wildcard character 
is a question mark ("?"). An ambiguous file name is used to access one or more 
files.  For  example, getfs "z? displays all file names that  begin  with  the 
letter  z.  You can put the ? after any number of characters or  as  the  only 
character,  but the ? must be the last character in a file name. A  file  name 
cannot contain more than eight characters. See wildcard character.

artificial intelligence
Imitation of human-like information processing performed by a computer.

ASCII
Acronym  for  American Standard Code for Information Interchange. ASCII  is  a 
standard  code  for the computer representation of the numbers,  letters,  and 
symbols that appear on most keyboards.

assembly language
Human readable form of machine language. See machine language.

backup or back-up
Duplicate copy of data to be used in case the original is lost, destroyed,  or 
accidentally altered. The process of duplicating a disk or file.

BASIC
Programming  language  that is widely used in microcomputers  because  of  its 
English-like  structure  and ease of use. BASIC is an acronym  for  Beginner's 
All-purpose Symbolic Instruction Code.

bit
Fundamental unit of information that a computer understands. Abbreviated  from 
Binary  digIT.  A bit can have one of two values, 0 or 1, meaning off  or  on, 
respectively. See byte.

boot
Act of starting up a computer system.

buffer
Area  of  memory that temporarily stores information during  the  transfer  of 
information.

bug



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMD.TXT[2/6/2012 4:37:26 PM]

Error in a procedure that prevents the procedure from executing as expected.

byte
Unit  of  memory or disk storage that usually contains eight  bits.  In  ASCII 
code, each character is represented by one byte.

cathode ray tube, CRT
Picture tube that shows information being entered or output from the computer; 
functionally   similar  to  those  used  in  standard  televisions.   Commonly 
abbreviated CRT; also referred to as the monitor.

cell
See character cell.

central processing unit, CPU
Brain  of the computer, commonly abbreviated CPU. Your IBM  Personal  Computer 
contains   an  Intel  8088  CPU,  an  integrated  circuit  that  contains   an 
arithmetic/logic  unit that controls and manipulates the flow  of  information 
and its storage in memory.

character
Single  letter,  number, symbol, space, or punctuation mark.  A  character  is 
usually stored in one byte of the computer's memory, or on disk.

character cell
Unit of space on the monitor that can hold one character. A cell is located at 
the  intersection of each horizontal row and each vertical column.  There  are 
1,000  character  cells on a graphic display, and 2,000 character cells  on  a 
text  display. Dr. Logo lets you control the background color  and  foreground 
color of each character cell on the graphic and text display.

code
Sequence  of expressions written in a programming language that instructs  the 
computer to perform a task.

color monitor
Output  device  that allows you to see the visual field of  both  the  graphic 
screen and the text screen.

command
Instruction that makes Dr. Logo initiate an action.

comments
Remarks or explanatory notes set off from the rest of a procedure's definition 
by a semicolon (";").

compiler
Language  translator that interprets the text of a high-level  language,  like 
BASIC, into machine language code (1s and 0s) understandable to the computer.

concatenation
Joining  of  two  or  more objects together, end  to  end.  For  example,  the 
primitive  word outputs a single word made up of multiple inputs, as  in  word 
"sun "shine outputs "sunshine".



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMD.TXT[2/6/2012 4:37:26 PM]

constant
Object,  word,  number,  or  list with a value that does  not  change  when  a 
procedure runs.

control character
Non-printing character combination that sends a simple command to Dr. Logo. To 
enter  a  control character, hold down the control (Ctrl) key, and  press  the 
specified character key.

CP/M
Operating  system  controlling  the operation of Dr.  Logo.  CP/M  stands  for 
Control Program for Microcomputers.

CPU
See Central Processing Unit.

crash
Severe hardware or software malfunction. A head crash, for example,  generally 
causes an irretrievable loss of the data on a disk.

CRT
See Cathode Ray Tube.

cursor
Blinking  underline  symbol  on the text display. The  cursor  designates  the 
position where the next keystroke at the keybaord has an effect. As you  type, 
the  cursor  automatically  advances. You can also move the  position  of  the 
cursor  with the cursor control keys located on the numeric key pad,  the  tab 
key  ("-->|"),  and  the backspace key ("<--"). On the  graphic  display,  the 
turtle designates the point of action.

data
Information that is created, changed, or stored by the computer.

debug
Process of locating and correcting errors in a procedure.

default
Value supplied in the absence of user input. For example, when you start  your 
computer  system, drive A: is the default drive. Dr. Logo looks for  files  on 
the disk in the default drive, unless you specify another drive.

delimiter
Blank space or any of these special characters used to set another  character, 
word, or number off from the next: [ ] ( ) ; < > + - * / ^.

directory
List of the contents of the disk. Use the getfs primitive to display a list of 
all the Dr. Logo file names on a data disk.

disk
Magnetic media used to store information. Sometimes called diskette.  Programs 
and  information  are stored and retrieved like music on a  record.  The  term 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMD.TXT[2/6/2012 4:37:26 PM]

diskette  usually  refers to floppy disks 5 1/4 or 8 inches in  diameter.  The 
term disk can refer to a diskette, a removable cartridge disk, or a fixed hard 
disk.

disk drive
Peripheral device that stores and retrieves information on disks.

display
Visual  field  of  a  screen, or to show the contents of  the  screen  on  the 
monitor.

double sided
Disk format that stores information on both sides; a disk drive that can  read 
and write on both sides of a double-sided disk.

Dr. Logo
Digital  Research's  version of Logo, a programming language  with  extensions 
that make it suitable for commercial and academic applications.

edit
Process  of adding, modifying, or deleting text in the definition of  a  user-
defined procedure.

editor
Utility  program that allows you to add, modify, or delete information from  a 
text screen. See also line editor, procedure editor, and screen editor.

element
Single piece of an object. For example, a numeral is an element of a number, a 
character is an element of a word, and a word is an element of a list.

end
Special  word that indicates the conclusion of a procedure's  definition.  The 
word "end" must stand alone on the last line of a procedure.

enter
Act  of  transmitting  information  to the computer.  The  computer  does  not 
recognize  or  process any information typed at the keyboard  since  the  last 
prompt,  until  you  press the Enter key ("<--+"). The Enter  key  on  an  IBM 
Personal  Computer  is  the equivalent to a Carriage Return  ("RETURN")  on  a 
standard typewriter keyboard.

evaluate
Process Dr. Logo goes through to execute an expression.

executing a procedure
See running a procedure.

expression
In Dr. Logo, an expresion is a procedure name followed by its inputs.

file
Collection of information on a disk.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMD.TXT[2/6/2012 4:37:26 PM]

file name
Name you assign to a file. The file name can consist of up to eight alphabetic 
or numeric characters. The first character in a file name must be alphabetic.

floating point
Method  Dr. Logo uses internally to express numbers that have a decimal  point 
that can shift to the left or right.

floppy disk
Flexible  magnetic  disk used to store information. A floppy disk  is  a  thin 
piece  of  mylar, coated with magnetic particles. The disk  drive  causes  the 
floppy disk to rotate inside its paper jacket. Floppy disks come in two sizes: 
5 1/4 and 8 inches in diameter.

flowchart
Graphic  diagram that uses special symbols to indicate the input,  processing, 
output, and flow of a procedure.

function
Operation  or  specific  task that is called into action  by  referencing  the 
procedure  by  name. The result of a function is always a  single  value.  See 
operation.

function keys
Ten multiple-purpose keys located along the left side of the keyboard, labeled 
F1  through  F10,  that you can program to recall command lines of  up  to  16 
characters. Press the Enter key to execute the recalled command line.

graphic displays
Visual  representations  that illustrate, map, or  plot  mathematical  curves, 
diagrams, graphs, or charts. Dr. Logo allows you to draw graphic designs  with 
the turtle.

graphic screen
Construct  in memory where graphic data is stored that can extend  beyond  the 
range of your monitor. You can display the visual field of the graphic  screen 
on a color monitor. Dr. Logo allows you to draw graphic designs on the graphic 
screen with the turtle.

graphic window
Visual  display of the graphic screen on a color monitor; that portion of  the 
monitor  dedicated  to the graphic screen. Dr.  Logo's  splitscreen  primitive 
allows you to have both text and graphic windows on the same color monitor.

hardware
Physical components of a computer, such as the central processing unit, random 
access  memory,  disk storage devices, monitor, keyboard,  printer,  lightpen, 
paddle, or joystick.

high-level language
Computer language written in procedural form that is easily comprehensible  by 
humans.  Many machine language instructions are generated for each  high-level 
expression. Dr. Logo is a high-level language.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMD.TXT[2/6/2012 4:37:26 PM]

infix operation
Operations  where the primitive name or identifier is positioned  between  its 
inputs, as in a + b.

initialize
Act of preparing or formatting a disk, in order to read and write  information 
on it.

input
Object  that  a procedure requires to complete its task;  information  entered 
into  the  computer by an operator typing at the terminal or  by  a  procedure 
reading from the disk, or to enter such information.

input device
Mechanism  that accepts information from the outside world and  converts  that 
information  into  a form that the computer can use. A keyboard  is  an  input 
device.

input/output devices
Combination of input and output devices. Commonly abbreviated I/O devices.

integer
Positive or negative whole number with no decimal point.

interface
Object that allows two independent systems to communicate with each other,  as 
an interface between hardware and software in a microcomputer.

interpreter
Computer program that evaluates each line as it is typed at the keyboard,  and 
each  line  of a procedure every time it is run. Dr. Logo  is  an  interpreted 
computer programming language.

interpreter prompt
Question mark ("?") signaing that Dr. Logo is expecting you to type  something 
at your keyboard; the interpreter is waiting for input.

I/O
Abbreviation  for input/output. This term commonly refers to  combinations  of 
input and output devices.

jacket
Stiff paper container that holds a floppy disk.

joystick
See paddle.

kilobyte
1024 bytes, commonly denoted as 1K.

language
System  of  words and symbols used to write programs that communicate  with  a 
computer.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMD.TXT[2/6/2012 4:37:26 PM]

level number
Number  enclosed  in  square brackets ("[" and "]") that  precedes  each  line 
displayed by the trace and watch primitives. The number indicates the position 
of the procedure on the stack. See stack.

lightpen
Input  device  that  allows  you to interact with  the  computer  without  the 
keyboard. The lightpen sends a screen location to the computer when you  touch 
the screen's surface with the tip of the lightpen.

line editor
Dr.  Logo interpreter's utility that allows you to modify the current line  of 
text without erasing and retyping the entire line. Dr. Logo allows you to  use 
certain control characters or function keys to move the cursor left and  right 
over the current line of text to make modifications before you press the Enter 
key.

LISP
Programming  language derived from the words LISt Processing.  LISP  dominates 
artificial intelligence programming because of its powerful symbolic and  list 
processing capabilities. Logo evolved from LISP.

list
Type  of  object used as input to a Dr. Logo procedure. A  series  of  objects 
(words, numbers, or lists) separated by spaces and enclosed in square brackets 
("[" and "]").

load
To move procedures or information from permanent storage on the disk into  the 
computer's memory buffer or workspace.

logical operator
Mathematical  symbols representing equals ("="), less-than ("<"), or  greater-
then  (">") as well as the primitives "and", "not", and "or" that are used  in 
predicate expressions; expressions that evaluate to either TRUE of FALSE.

Logo
Name of a programming language derived drom the Greek word logos, which  means 
word.  Logo is a computer language that evolved from LISP and is  designed  to 
teach the fundamentals of computer programming.

machine language
Sequence  of instructions to the machine, written in terms of 1s and  0s,  and 
generally not understandable by humans. See bit.

megabyte
One million bytes, or 1024K bytes. See kilobyte.

memory
That  part  of  a computer system that temporarily  stores  information.  Also 
called  random access memory (RAM) or working storage. Dr. Logo  automatically 
loads  into memory when you start up your system. Once Dr. Logo is loaded,  it 
allocates part of memory for your workspace.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMD.TXT[2/6/2012 4:37:26 PM]

microprocessor
Miniaturized integrated circuit usually on a silicon chip that is the brain of 
the microcomputer.

monitor
Output device that displays the visual field of your graphic or text screen. A 
color  monitor  displays both graphic and text screens; a  monochrome  monitor 
displays only text.

monochrome monitor
Output device that displays the text screen.

name
Type  of  object used as input to a Dr. Logo procedure. A  special  word  that 
identifies a procedure, a variable, a package, a file, or a disk.

number
Type of object used as input to a Dr. Logo procedure. In Dr. Logo, a number is 
a  kind  of  word and can be used as a variable name if it is  preceded  by  a 
quotation  mark,  as  in  "8. A number cannot be used as  the  first  or  only 
character  in  a  procedure  name. In arithmetic  operations,  you  can  input 
negative or positive decimals numbers with up to 15 significant digits.

numeric constant
Real or integer quantity that does not change as the procedure is run.

numeric pad
Separate  set of keys, arranged like a 10-key adding machine, located  on  the 
right of the IBM Personal COmputer keyboard. Provided because they are  useful 
for  entering  large amounts of numeric information. Press the NUM  LOCK  key, 
located  above  the numeric pad, to make the keys function as  cursor  control 
keys.

object
Type of input to a Dr. Logo procedure. A Logo object can be a word, a  number, 
a  list,  or anything that is not a procedure name.  Variables  can  represent 
objects.

operation
Procedure that outputs an object, or a mathematical process such as  addition, 
multiplication,  subtraction,  or  division.  In Dr.  Logo,  an  operation  is 
equivalent to a function.

operating system
Master  program that supervises the execution of other programs,  and  manages 
the  computer  system's  resources. An operating system  provides  an  orderly 
input/output environment between the computer and its peripheral devices.  Dr. 
Logo  runs  under  the CP/M operating system, which is  compatible  with  many 
different computer systems.

optional input
Inputs that are not required. In the primitive expression syntax descriptions, 
optional inputs are enclosed in angle brackets ("<" and ">").



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMD.TXT[2/6/2012 4:37:26 PM]

output
Object returned to the caller by a procedure; data that the processor sends to 
the  console,  printer,  or  disk  after  processing  is  complete.  To   send 
information  to  the  console,  printer, or disk.  The  computer  outputs  the 
requested object or data.

output device
Mechanism by which a computer transfers its information to the outside  world. 
The printer is an output device.

package
Group  of  related procedures or variables. Packaging helps  you  manage  your 
workspace. When you organize your procedures and variables into packages,  you 
can  display,  edit,  save, or erase a whole  group  without  affecting  other 
procedures or variables in the workspace.

paddle
Input  device  that  allows  you to interact with  the  computer  without  the 
keyboard. Common on electronic computer games and also called a joystick.  The 
coordinate scale that the paddle or joystick sends to the computer depends  on 
the  kind  of  device you purchase. Dr. Logo supports up  to  two  paddles  or 
joysticks, each with two buttons.

peripheral device
Mechanisms  that  are external to the CPU. Terminals  printers,  disk  drives, 
paddle (joystick), and lightpen are peripheral devices.

permanent storage
Location outside of the computer's memory where data can be stored, usually on 
disk.  When you save a file, you copy the information from the workspace  onto 
the disk.

pixel
Smallest element of a monitor's display; a point within a character cell. Also 
referred  to  as  a  dot.  A turtle step, as in  the  command  forward  1,  is 
equivalent to one pixel.

precedence
Order in which Dr. Logo processes arithmetic operations.

predicate expression
Expression that contains a logical operator and outputs either TRUE or  FALSE. 
A predicate expression can be a type of input to a Dr. Logo procedure.

prefix operation
Operations where the primitive name or identifier precedes the inputs, as in - 
a b, or print [Hi there!].

primitives
Procedures,  operations,  or  commands that make up  Dr.  Logo;  the  built-in 
procedures.

printer
Peripheral device used to put computer information on paper.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMD.TXT[2/6/2012 4:37:26 PM]

printout
Printed material or listing produced by the printer.

procedure
A series of expressions that tell Dr. Logo how to perform a task.

procedure editor
Dr.  Logo interpreter's utility that allows you to teach Dr. Logo a new  task, 
that is to say, to define a new procedure. The procedure editor is  identified 
by the greater-than sign (">"), a prompt that appears when you enter the  word 
"to"  at the interpreter's question mark prompt ("?"). All the  line  editor's 
control character commands function within the procedure editor.

procedure editor prompt
Greater-than  sign (">") that tells you Dr. Logo is expecting you to  enter  a 
procedure  definition  line.  Dr.  Logo  does  not  immediately  evaluate  the 
expressions typed at the > prompt.

program
Complete  set  of  instructions designed to tell the  computer  to  perform  a 
specific task. To define a Dr. Logo procedure.

prompt
Cue  displayed  on  the monitor telling the user that Dr.  Logo  is  expecting 
input.  A  prompt can be a symbol, such as ?, >, or !. Or a prompt  can  be  a 
message, such as "Is this what you want (y/n)?". All prompts expect a response 
from  the user. For example, when you see the ! prompt, you are extremely  low 
on  free  nodes  in  your workspace. Your response  should  be  to  enter  the 
primitive "recycle" to call the garbage collector. See interpreter prompt  and 
procedure editor prompt.

property
Quality or attribute of an object, procedure, or package.

property list
List  of property pairs that represent the qualities or  attributes  connected 
with an object, procedure, or package. Use the pprop primitive to assign  both 
the  Dr.  Logo system properties and your own non-system properties.  Use  the 
plist primitive to display a property list.

property name
First  member  of  a  property pair; the label  representing  the  quality  or 
attribute of an object, procedure, or package. For example, the .BUR  property 
name in a package name's property list signifies that the package is buried.

property pair
Two parts of a property. The first element of a property pair is the  property 
name; the second element is its value. For example, in a procedure's  property 
list  is  a property pair consisting of the property name .DEF and  the  value 
of .DEF, the actual definition of the procedure.

property value
Second  member  of a property pair; the qualities of or  attributes  connected 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMD.TXT[2/6/2012 4:37:26 PM]

with an object, procedure, or package. For example, the information  following 
a .PAK property name in a property list is the property value, the name of the 
package to which this object belongs.

RAM
See random access memory.

random access
Process of reading or writing informaion in memory or on a disk in any order.

random access memory
Temporary  memory  location inside a computer. Also  called  working  storage. 
Commonly abbreviated as RAM. Size of RAM is measured in kilobytes.

random number
Number selected by chance from a set of numbers. The random primitive  returns 
a random number in Dr. Logo.

read
Process of transferring prestored information from a storage device, such as a 
floppy disk, into the computer's memory.

Read-Only
Attribute  of a disk or a disk drive that allows you to read but not write  to 
the disk or disk drive.

Read-Only disk
Attribute  assigned to a disk that allows you to read from that disk, but  not 
change  it.  To assign the Read-Only attribute to a 5 1/4  inch  floppy  disk, 
disable  the Read-Write notch on the upper left side of the disk by placing  a 
sticker over it.

Read-Only disk drive
Attribute  assigned  to a disk drive that allows you to read any file  on  the 
disk but prevents you from adding a new file, erasing a file, changing a file, 
or  renaming  a file. A drive has the Read-Only attribute when a new  disk  is 
inserted. Use the primitive resetd to give the drive a Read-Write capability.

Read-Write
Attribute of a disk or a disk drive that allows you to read from and write  to 
the disk or the disk drive. A 5 1/4 inch floppy disk can be set to  Read-Write 
by  cutting out the Read-Write notch on the upper left corner of the  disk.  A 
drive can be set to Read-Write by entering the resetd command after  inserting 
a new disk.

real number
Numeric  value  specified  with a decimal  point,  internally  represented  in 
floating point notation.

reserved word
Keyword that has specific meaning to a given language or operating system.  In 
Logo, the keywords are called "primitives". A reserved word cannot be used  as 
a  procedure or variable name, unless you have set the system variable  REDEFP 
to TRUE.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMD.TXT[2/6/2012 4:37:26 PM]

running a procedure
Process of Dr. Logo evaluating and performing the expressions in a procedure.

save
To  transfer information from random access memory into permanent  storage  on 
the disk.

screen
Construct  in memory where text or graphic data is stored. Dr.  Logo  supports 
two kinds of screens: a text screen and a graphic screen. A color monitor  can 
display  both kinds of screens, and a monochrome monitor can display only  the 
text screen.

screen editor
Dr.  Logo utility that allows you to define a procedure or modify a  procedure 
without  retyping the complete definition. In the screen editor, you  can  use 
special screen editing control characters that enable you to move from line to 
line  in  a procedure, as well as all of the line editor's  control  character 
commands.  You can start the screen editor by typing the commands  ed,  edall, 
edps, or edns at Dr. Logo's ? prompt.

single-sided
Disk  format that stores information on only one side; a disk drive  that  can 
read or write on only one side of a single-sided disk.

sixteen-bit computer
Computer  system that is capable of processing information sixteen bits  at  a 
time,  potentially twice as fast as an eight-bit system.  Sixteen-bit  systems 
can   usually  accomodate  more  RAM  than  eight-bit  systems,  making   some 
applications more efficient.

software
Set of instructions that tells the hardware how to complete a particular task. 
Unlike  hardware, software is not an electronic product, and does not  perform 
any  physical  work.  Software  is a communication tool  that  allows  you  to 
interact with the hardware.

splitscreen
Display  where  a  text  window is opened on the graphic  screen  of  a  color 
monitor.

stack
Area  in  memory used by the interpreter to keep track of which  procedure  is 
currently running.

store
To save information. See save.

superprocedure
Procedure   that  is  never  called  by  any  other  procedure.  You  call   a 
superprocedure  into  action by entering the procedure name at  Dr.  Logo's  ? 
prompt. Use the potl primitive to display the names of superprocedures.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMD.TXT[2/6/2012 4:37:26 PM]

syntax
Format for entering an expression.

syntax error
Error  that results from entering an expression that does not conform  to  the 
syntax rules.

temporary storage
See random access memory.

terminal
Input/output device consisting of a monitor and a keyboard.

text screen
Area in memory where text data is stored. You can display the visual field  of 
the text screen on either a monochrome or color monitor.

text window
Visual  display of the text screen on either a color monitor or  a  monochrome 
monitor; that portion of the display dedicated to the text screen. Dr.  Logo's 
splitscreen primitive allows you to have both text and graphic windows on  the 
same color monitor.

toplevel
Interpreter's prompt. When Dr. Logo displays a question mark ("?"), there  are 
no procedures on the stack, and the level number is 0.

trace
Option  used for debugging a procedure while it is running. The  trace  option 
displays the name of each procedure as it is called, and the name and value of 
each variable as it is defined. Trace allows you to observe the details of the 
procedure's execution without interruption.

turtle
Graphic  symbol that functions as a cursor appearing on the Dr.  Logo  graphic 
screen.

turtle graphics
Dr.  Logo's graphics environment. The Logo language allows you to draw on  the 
graphic  screen  by directing the turtle's movement. As the turtle  moves,  it 
leaves a trace of its path on the screen.

turtle step
One pixel or dot on the IBM Personal Computer.

user
Person who operates a computer.

user-friendly
Quality  of  a piece of software that makes it simple  for  the  inexperienced 
person to use.

utility program
Software  tool  that  enables  the user to  perform  certain  operations.  For 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRMD.TXT[2/6/2012 4:37:26 PM]

example, the editor is a utility program that enables you to add, change,  and 
delete text in a Dr. Logo procedure.

value
Quantity  expressed  by an integer or real number; the object  assigned  to  a 
variable or property name.

variable
Name  to  which Dr. Logo can assign an object as a value. A  variable  can  be 
thought of as a container that can hold a value.

visual field
Portion of the screen displayed on the monitor.

watch
Option  used for debugging a procedure while it is running. The  watch  option 
displays  the  procedure's name and the expression that the  interpreter  will 
evaluate  next,  one line at a time. It waits for you to press the  Enter  key 
before  it  executes that line. This feature allows you to interact  with  the 
interpreter or edito during the execution of a procedure.

wildcard character
Question  mark  ("?") character that gives Dr. Logo a pattern  to  match  when 
searching  in  a  disk directory for a file name. A ? placed in  a  file  name 
creates an ambiguous file name. See ambiguous file name.

window
Visual portion of the screen. See graphic window and text window.

word
Type  of object used as input to a Dr. Logo procedure. A group of one or  more 
consecutive  characters  separated  from other characters on  the  line  by  a 
delimiter.

working storage
See random access memory.

workspace
Dr.  Logo's temporary storage area for information, such as  your  procedures, 
variables, and property lists.

EOF



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRME.TXT[2/6/2012 4:37:26 PM]

DRLRME.WS4      (= "Dr. Logo Reference Manual", Appendix E)
----------

(Retyped by Emmanuel ROCHE.)

Appendix E: Getting Started
---------------------------

This  section quickly leads you through a complete session with Dr.  Logo.  It 
shows how to start up and shut off Dr. Logo, how to initialize a disk,  define 
a Dr. Logo procedure, save and load files, specify the default drive, and back 
up your data disk and files.

The  beginning  of this book explain why you must enter  quotation  marks  and 
other  punctuation; to keep this introduction brief, the explanations are  not 
repeated  here.  To complete this session, simply type each  of  the  examples 
exactly  as it is shown, and then press the Enter key ("<--+"). If you make  a 
typing error, use the backspace key ("<--") to correct it, or retype the line. 
Do  not  worry about mistakes; you can't hurt Dr. Logo or your  computer  with 
typing errors.

If,  while reading this section, you find a computer-related term you  do  not 
understand, you can find its definition in Appendix D, the glossary.

E.1 Starting up Dr. Logo
------------------------

Your  computer automatically loads Dr. Logo into memory when you turn on  your 
computer.  You can start up Dr. Logo in one of two ways, depending on  whether 
your computer is powered OFF or ON.

If the power is OFF
-------------------

     1. Open the door of drive A: by lifting the load latch outwards.

     2. Insert  the Dr. Logo system disk with the label face up and  the  disk 
        jacket seams underneath. Hold the label in your hand as you slide  the 
        disk into the slot. See Figure E-1.

        Figure E-1. Inserting a disk  (not shown)

     3. Close the disk drive door by pulling the load latch down.

     4. Turn ON the printer, if you have one, the color monitor and monochrome 
        monitor if you have one, and finally the computer system unit. (If you 
        have  just powered off, but want to use your computer again, you  must 
        count slowly to five before you power ON.)



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRME.TXT[2/6/2012 4:37:26 PM]

If the power is ON
------------------

     1. Insert the Dr. Logo system disk into drive A: and close the door.

     2. Hold down the Ctrl and Alt keys, and press the Del key. Then,  release 
        all three keys. This sequence is called system reset. See Figure E-2.

        Figure E-2. System keyboard  (not shown)

In  either  start  sequence, wait a moment while the system  does  some  self-
testing.  Watch  for the red light on drive A: to flash, and  listen  for  the 
drive to read Dr. Logo from the system disk into your computer's memory. While 
Dr. Logo is being loaded, it displays the following message on your monitor:

        +---------------------------------------+
        |   Welcome to Dr. Logo, Version V.V    |
        | Copyright (C) 1983, Digital Research  |
        |       Pacific Grove, California       |
        |                                       |
        |               Please Wait             |
        |                                       |
        |                                       |
        |                                       |
        |                                       |
        +---------------------------------------+

        Figure E-3. Dr. Logo banner

The  version number, represented above by V.V, tells you the major  and  minor 
revision  level  of  the Dr. Logo version that you own.  After  this  greeting 
disappears,  a  question mark ("?") prompt and the  flashing  underline  ("_") 
display  on  your text screen. The question mark tells you that  Dr.  Logo  is 
waiting  for you to type something at your keyboard. The underline  tells  you 
where the next character you type will appear.

Once  in memory, Dr. Logo allocates a part of memory for your workspace.  When 
you  start  Dr.  Logo, the workspace is empty, ready for you to  type  in  new 
procedures or load previously saved procedures from a disk.

E.2 Defining Dr. Logo procedures
--------------------------------

A  procedure is a list of instructions that tells Dr. Logo how to do  a  task. 
Dr.  Logo performs the task when you enter the procedure's name. The  list  of 
instructions  is  the  definition of the procedure.  You  use  primitives  and 
previously-defined procedures to define a new procedure. For example, here  is 
how  to  enter a procedure that makes Dr. Logo draw a square  on  the  graphic 
screen with the turtle. Type the following:

        ?to square
        >repeat 4 [forward 60 right 90]
        >end



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRME.TXT[2/6/2012 4:37:26 PM]

        square defined
        ?

When you type the statement "to square", Dr. Logo responded with a > prompt on 
the next line. The special word "to" signals to Dr. Logo that you are starting 
to define a new procedure. The greater-than sign (">") indicates that Dr. Logo 
is remembering your instructions as a procedure definition.

After you define the procedure, you can make Dr. Logo perform the new task  by 
typing  the procedure name at Dr. Logo's ? prompt and pressing the Enter  key. 
For example, type

        ?square
        ?

cs  stands  for clearscreen, and erases the square from the  screen.  You  can 
teach Dr. Logo to draw a triangle as follows:

        ?cs
        ?to triangle
        >right 45 forward 35
        >right 90 forward 35
        >left 225 forward 50
        >end
        triangle defined
        ?triangle
        ?

Now,  you can use the triangle and the square procedures in the definition  of 
another procedure. For example,

        ?cs
        ?to draw.house
        >square
        >forward 50
        >triangle
        >end
        draw.house defined
        ?draw.house
        ?

You  can  look at the names of the procedures you have defined by  asking  Dr. 
Logo to print out titles, pots in short:

        ?pots
        to square
        to triangle
        to draw.house
        ?

When  you turn off your computer, everything in your workspace disappears.  If 
you were to turn off your computer now, these procedures would be lost. To  be 
able to use them later, you must save them on a disk.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRME.TXT[2/6/2012 4:37:26 PM]

But,  before  you  try to save your procedures, remember that  your  Dr.  Logo 
system disk is write-protected. That means you can only read Dr. Logo from it, 
and  cannot save procedures on it. You can take your Dr. Logo system disk  out 
of  the  A: drive as soon as Dr. Logo is loaded. Store your system disk  in  a 
safe place, away from heat and magnetic devices such as telephones and  vacuum 
cleaners.

Before  you can save procedures, you must create a data disk, a disk that  can 
store procedures in files, and insert it in a drive. A disk fresh from the box 
is  not ready to store files; you must initialize (format) a new  disk  before 
you can read or write any data on it.

E.3 Initializing a disk
-----------------------

You  must always initialize a disk that is fresh from the box. If you have  an 
old disk that you want to reuse, you can initialize the disk to remove all the 
old data on the disk and reformat it, as if it were new.

Before you begin
----------------

     1. Make sure that the read/write notch is cut out of the upper left  edge 
        of the disk jacket.

     2. Check  to see if you have single- or double-sided disk drives. If  you 
        have  single-sided  disk  drives, you must initialize  your  disks  to 
        single-sided format. A double-sided drive can handle either single- or 
        double-sided disks.

You  will need to initialize two new disks, one to be your data disk  and  the 
other to be your back-up disk.

If you have a one-drive system
------------------------------

     1. If you have not already done so, remove your Dr. Logo system disk, and 
        store it in a safe place, away from heat and magnetic devices, such as 
        telephones  and  vacuum cleaners. Insert the disk to be  formatted  in 
        drive A: and close the door.

     2. If  you  have a single-sided drive, you must initialize  the  disk  to 
        single-sided. Type

                ?initd "a: 1

        Dr. Logo displays the following prompt:

                I will erase the diskette in drive A
                and will make it single-sided.
                Is this what you want (y/n)?



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRME.TXT[2/6/2012 4:37:26 PM]

        If  you  have  a double-sided drive, you can initialize  the  disk  to 
        double-sided. Type

                ?initd "a: 2

        Dr. Logo displays the following prompt:

                I will erase the diskette in drive A
                and will make it double-sided.
                Is this what you want (y/n)?

     3. Type  y (yes) to format the disk. Type n (no) if you have not  removed 
        the Dr. Logo system disk or, for some other reason, wish to return  to 
        Dr. Logo's ? prompt. After you type y, watch for the drive's red light 
        to flash, and listen as Dr. Logo formats the disk. When the formatting 
        is complete, Dr. Logo's ? reappears.

     4. Format a second disk, repeating steps 1 through 3, for a back-up disk.

If you have a two-drive system
------------------------------

     1. You  can leave your Dr. Logo system disk in drive A:. Insert the  disk 
        to be formatted in drive B: and close the door.

     2. If  you  have  single-sided drives, you must initialize  the  disk  to 
        single-sided. Type

                ?initd "b: 1

        Dr. Logo displays the following prompt:

                I will erase the diskette in drive B
                and will make it single-sided.
                Is this what you want (y/n)?

        If  you  have  double-sided drives, you can  initialize  the  disk  to 
        double-sided. Type

                ?initd "b: 2

        Dr. Logo displays the following prompt:

                I will erase the diskette in drive B
                and will make it double-sided.
                Is this what you want (y/n)?

     3. Type y (yes) to format the disk. Type n (no) if you wish to return  to 
        Dr.  Logo's ? prompt. After you type y, watch for the B:  drive's  red 
        light  to  flash, and listen as Dr. Logo formats the  disk.  When  the 
        formatting is complete, Dr. Logo's ? reappears.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRME.TXT[2/6/2012 4:37:26 PM]

     4. Format a second disk, repeating steps 1 through 3, for a back-up disk.

E.4 Saving Dr. Logo files
-------------------------

Saving  a  file  means copying the contents of  your  workspace  to  permanent 
storage on the disk.

     1. If  you have a single drive system with a data disk in drive A:,  type 
        the following command to save the contents of the workspace in a  disk 
        file.

                ?save "home

        If you have a two-drive system with a data disk in drive B:, type

                ?save "b:home

        You  have now made a copy of your three procedures  square,  triangle, 
        and  draw.house in a file named "home" on the disk in either drive  A: 
        or drive B:. Your procedures are still in Dr. Logo's workspace, as you 
        can see with a pots command.

                ?pots
                to square
                to triangle
                to draw.house
                ?

     2. To verify that Dr. Logo has saved your procedures, ask it to show  you 
        the names of Dr. Logo files on the disk.

                ?getfs
                [HOME]

        Or, if you saved the file on drive B:, type

                ?getfs "b:
                [HOME]

     3. Now that you have saved your procedures, you can erase them from  your 
        workspace with confidence they can be restored. Type

                ?erall

        Now,  to  verify that the workspace has been erased, ask Dr.  Logo  to 
        print out the titles of procedures in the workspace by typing

                ?pots
                ?

        Dr.  Logo  displays  only  the ? prompt, because  nothing  is  in  the 
        workspace.



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRME.TXT[2/6/2012 4:37:26 PM]

E.5 Loading Dr. Logo files
--------------------------

To  load  a  file  means to move the  procedures  or  other  information  from 
permanent storage on the disk into the Dr. Logo workspace. To load a file, you 
must  have  saved  it on the disk, and be able to see its name  with  a  getfs 
command.

     1. To load the file you just saved, type

                ?load "home

        Or, if you saved the file on drive B:, type

                ?load "b:home

        Listen ad Dr. Logo moves the procedures in the file from the disk into 
        the workspace, and displays the following list on your screen:

                square defined
                triangle defined
                draw.house defined

     2. Verify that the procedures are in your workspace by executing them, or 
        by using pots to print out their titles.

                ?draw.house
                ?pots
                to square
                to triangle
                to draw.house
                ?

E.6 Specifying the default drive
--------------------------------

When  you do not specify a drive in a disk command like save, load, or  getfs, 
Dr.  Logo automatically looks for files, or writes files, on the disk  in  the 
default drive. When you start Dr. Logo, A: is the default drive. If you have a 
one-drive  system, you only have drive A:, and do not need to specify a  drive 
name  in  any of your commands. If you have two drives and leave  your  system 
disk in drive A:, enter the following commands to change yor default drive  to 
B:.

     1. Determine which drive is the default drive by typing

                ?defaultd
                A:

     2. Change the default drive to drive B: by typing



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRME.TXT[2/6/2012 4:37:26 PM]

                ?setd "b:
                ?defaultd
                B:

     3. To verify that Dr. Logo now looks on drive B: for files, type

                ?getfs
                [HOME]

E.7 Backing up a disk
---------------------

To back up a disk means to make a duplicate copy of its contents. Professional 
programmers  avoid  losing  programs by making copies of  valuable  disks  and 
files. If your working copy is accidentally damaged or erased, you can restore 
it from the back-up copy.

The  frequency of making copies varies with each programmer, but as a  general 
rule  make  a copy when it would take 10 to 20 times longer  to  re-enter  the 
information than to make the copy.

To make a back-up disk, you need an initialized or formatted disk on which  to 
write.  Make  sure your data disk and your back-up disk are the  same  format: 
double-sided or single-sided.

If you have a one-drive system
------------------------------

     1. Start  with the data disk that you plan to copy in the drive. This  is 
        your source disk.

     2. To start the copying process, type

                ?copyd "a: "a:

        Figure E-4. System unit with one drive  (not shown)

If you have a two-drive system
------------------------------

     1. Insert the back-up disk into drive B: and the data disk into drive A:.

     2. To make an exact, track-to-track copy of the disk in drive A: onto the 
        disk in drive B:, type

                ?copyd "b: "a:

        Dr. Logo displays the following message before it begins to copy:

                I will copy from the diskette in drive A
                to the diskette in drive B, erasing any



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRME.TXT[2/6/2012 4:37:26 PM]

                existing data on the diskette in drive B.
                Is this what you want (y/n)?

     3. Type y (yes) to copy the data disk onto the back-up disk. Type n  (no) 
        to return to Dr. Logo's ? prompt without making the copy. If you  type 
        y,  watch for the red lights to flash back and forth from drive A:  to 
        drive  B:, and listen as the data is transferred from one disk to  the 
        other.

        Figure E-5. System with two drives  (not shown)

E.8 Copying a file
------------------

Another  way  to back up a file is to make a copy of just that  file,  without 
making a copy of the entire disk.

If you have a one-drive system
------------------------------

     1. Start  with the data disk containing the original file in  the  drive. 
        This is called your source disk.

     2. To copy the file, type

                ?copyf "home "home

     3. After  Dr. Logo displays a message, remove the source data  disk,  and 
        insert your back-up data disk into the drive.

If you have a two-drive system
------------------------------

     1. To  copy a file from the data disk in drive A: to the back-up disk  in 
        drive B:, type

                ?copyf "b:home "a:home

     2. Verify that the file has been copied with a getfs command.

                ?getfs "b:
                [HOME]

E.9 Shutting off Dr. Logo
-------------------------

Before you turn off the power to your computer, be sure to check that you have 
performed the following steps:

     1. Save  the contents of your workspace on disk, so that you can load  it 



file:///C|/...0Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Dr%20Logo%20Reference%20Manual/DRLRME.TXT[2/6/2012 4:37:26 PM]

        later.

     2. Make back-up copies of your files on a back-up disk.

     3. Take your disks out of the drives. NEVER turn off your system with the 
        disk engaged in the drive; this can permanently damage your disk.

     4. Turn  the power switches on your monitor, printer, and system unit  to 
        OFF.

EOF


	DRLOGO
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Dr Logo Reference Manual\DRLOGO.TXT


	DRLRM0
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Dr Logo Reference Manual\DRLRM0.TXT


	DRLRM1
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Dr Logo Reference Manual\DRLRM1.TXT


	DRLRM2
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Dr Logo Reference Manual\DRLRM2.TXT


	DRLRM3
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Dr Logo Reference Manual\DRLRM3.TXT


	DRLRM4
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Dr Logo Reference Manual\DRLRM4.TXT


	DRLRM5
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Dr Logo Reference Manual\DRLRM5.TXT


	DRLRM6
	Local Disk
	DRLRM6.HTM


	DRLRMA
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Dr Logo Reference Manual\DRLRMA.TXT


	DRLRMB
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Dr Logo Reference Manual\DRLRMB.TXT


	DRLRMC
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Dr Logo Reference Manual\DRLRMC.TXT


	DRLRMD
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Dr Logo Reference Manual\DRLRMD.TXT


	DRLRME
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Dr Logo Reference Manual\DRLRME.TXT



