
file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

XLT86.WS4 (Courtesy of Emmanuel ROCHE.)

 XLT86 T.M.

 8080 to 8086 Assembly Language Translator

 USER'S GUIDE

 Copyright (c) 1981

 Digital Research, Inc.
 P.O. Box 579
 801 Lighthouse Avenue
 Pacific Grove, CA 93950
 (408) 649-3896
 TWX 910 360 5001

 All Rights Reserved

COPYRIGHT

Copyright (c) 1981 by Digital Research. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or
by any means, electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Digital Research, Post
Office Box 579, Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted
permission to include the example programs, either in whole or in part, in his
own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication and to make changes
from time to time in the content hereof without obligation of Digital Research
to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. CP/M-86, CP/NET, LINK-80,
MP/M, MP/M-86, RMAC, XLT86 and PL/I-80 are trademarks of Digital Research. Z80

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

is a registered trademark of Zilog, Inc.

The XLT86 User's Guide was prepared using the Digital Research TEX-80 Text
Formatter and was printed in the United States of America by Commercial
Press/Monterey.

First Printing: September 1981

FOREWORD

XLT86 T.M. is a Digital Research software product that aids in the translation
of 8080 assembly language programs to equivalent 8086 programs. XLT86 takes
the CP/M and MP/M T.M. environment into account, so that translated programs
operate properly under both CP/M-86 and MP/M-86. XLT86 T.M. can also be used
as a teaching tool by examining the output when XLT86 is applied to existing
8080 programs. Unlike other 8086 translators, XLT86 uses global data flow
analysis techniques to determine 8080 register usage and reduce the number of
generated 8086 instructions.

The XLT86 translator is available for operation under CP/M and MP/M for the
8080, 8085, and Z800 microprocessors with a minimum 40K Transient Program Area
(TPA). XLT86 requires a 64K CP/M system to effectively translate any
significant 8080 programs. Using a 4Mhz Z80 microprocessor, XLT86 translates
programs at approximately 120 to 150 lines per minute, depending upon backup
storage access speed. XLT86 is written in PL/I-80 T.M. and thus can be adapted
for use on computer systems that support PL/I Subset G. Specifically, XLT86 is
available for cross-development on the Digital Equipment Corporation VAX
11/750 or 11/780 minicomputer, operating with the standard DEC VMS software.
However, programs are supplied in machine code form, so it is not necessary to
own PL/I-80 or any of its subsystems to operate XLT86.

The XLT86 system components, including the files XLT86.COM, XLT00.OVL, and
XLT01.OVL, are distributed in IBM-compatible single density disk form. Before
operating XLT86, copy these system components to a working disk and save the
distribution disk for archive purposes. If the working disk medium can be
dismounted, it must be marked with the notice shown below to properly comply
with the Software License Agreement:

 Copyright (c) 1981
 Digital Research, Inc.

This User's Guide presents the overall translation process, along with
operator interface and command syntax. This manual also describes the format
of the translated program, including the details of the 8080 to 8086 operation
code translation.

TABLE OF CONTENTS

1 The Translation Process

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

1.1 Input and Output Files
1.2 Translation Phases

2 Translation Parameters

2.1 Parameter Syntax
2.2 The B (Block Trace) Parameter
2.3 The C (Compact) Parameter
2.4 The J (Jump) Parameter
2.5 The L (List) Parameter
2.6 The N (Number) Parameter
2.7 The R (Return) Parameter
2.8 The S (Segment) Parameter
2.9 The 80 Parameter
2.10 The NO Parameter

3 Translated Program Format and Content

3.1 Translated Program Format
3.2 Translated Program Content

4 XLT86 Error Messages

4.1 Pseudo-assembly Process Error Messages
4.2 Translate-86 Error Messages

APPENDIX

A Sample Program Translations

SECTION I

THE TRANSLATION PROCESS

1.1 Input and Output Files

XLT86 reads an 8080 program from a file with type ASM and produces a file of
type A86 containing the equivalent translated 8086 assembly language program.
The filename for the 8080 source program, as well as filenames for all output
files from XLT86, is taken from the command line typed by the operator. For
example, the console command:

 XLT86 DUMP

executes the XLT86 program using the file "DUMP.ASM" as input. The translation
produces the output file "DUMP.A86".

The 8080 source program must be in a form acceptable to the standard Digital
Research assembly language translators ASM, MAC, or RMAC. XLT86 processes

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

conditional assembly statements, and produces an output program that results
from evaluation of the particular conditions included in the 8080 program.
However, macro definitions, macro invocations, and repeat loops are not
altered in the translation. To properly translate programs that include macros
or repeat loops, first assemble the programs under MAC or RMAC to produce a
printer listing file of type PRN. Rename this PRN file to type ASM and edit
the file to remove the beginning column positions, resulting in a file
acceptable as input to XLT86. The A86 output file is now in a form acceptable
to the Digital Research ASM86 assembler, requiring little or no modification
for execution under CP/M-86 and MP/M-86.

XLT86 produces two additional files: a PRN file and a $$$ file. A file of type
PRN contains error lines and messages along with optional listing and trace
information. The PRN file is in a form suitable for listing on the system
printer and contains embedded form-feed and tab characters. A temporary file
of type $$$ is also created during translation. This temporary file is
automatically deleted upon normal completion of XLT86.

The XLT86 program consists of a "root module" called XLT86.COM, which is
loaded and executed when you enter the XLT86 command line shown above. There
are two additional "overlays" called XLT00.OVL and XLT01.OVL that must be
present on your default disk drive. These two overlays are automatically
loaded and executed at the appropriate time during the translation.

1.2 Translation Phases

The translation itself takes place in five phases. Each phase has a specific
name that appears at the console during translation so that the operator can
monitor the progress of XLT86. Table 1-1 lists the phase names.

Table 1-1. XLT86 Translation Phases

Phase Meaning
----- -------
Symbol Setup determines the location of each symbol in the 8080 source
 program.

Setup Blocks determine the "Basic Blocks" necessary for the data flow
 analysis.

Join Blocks construct a "Directed Graph" connecting each basic block,
 corresponding to program flow of control.

List Blocks produce an optional list of Basic Blocks following flow
 analysis showing register and flag usage for each 8080
 instruction.

Translate-86 translates the 8080 instructions to 8086 form, using the
 information gathered by the flow analysis.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

The command line:

 XLT86 DUMP

activates the XLT86 translator using the DUMP.ASM program as input. The
default action of XLT86 prints the name of each phase at the console as the
translation proceeds, as shown below.

 Symbol Setup
 Setup Blocks
 Join Blocks
 List Blocks
 Translate-86

The files processed by the "XLT86 DUMP" command are shown in Figure 1-1,
below.

 Source Output
 DUMP.ASM DUMP.A86
 | ----- | ----- |
 Temp XLT 86 Print
 DUMP.$$$ DUMP.PRN

 Figure 1-1. Processed Files

All files are placed on the drive specified by the operator as the prefix on
the source filename. In the above example, all files are placed on the current
default drive, which must also contain the XLT86 program along with its
overlays. An alternative form:

 XLT86 B:DUMP

overrides the default drive and obtains the source file from drive B. XLT86
creates the output, temporary, and print files on drive B as well. When
several drives are available, it may be advantageous to place the various
files on separate disks. In this case, you must use XLT86 "parameters,"
described in the following section, to override the default values.

SECTION 2

TRANSLATION PARAMETERS

2.1 Parameter Syntax

Several XLT86 parameters can be included in the command line by the operator
or embedded within the 8080 source program to control the translation process.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

Parameters are grouped together into a parameter list enclosed within square
brackets:

 [pl p2 ... pn]

where p1 through pn denote one or more parameters optionally separated by
blanks. When included on the command line, the XLT86 invocation appears as
follows:

 XLT86 filename [p1 p2 ... pn]

When included within the source program, the opening bracket of the parameter
list must begin in the first column position. The parameters denoted by pl
through pn are one or two character sequences in upper- or lower-case, with
optional intervening blanks, as listed in Table 2-1, below.

Table 2-1. Translation Parameters

Parameter Meaning
--------- -------
 Ax Place the A86 file on drive x where x = A, B, ..., P.
 B Produce a list of Basic Blocks in the PRN file.
 C Assume the 8086 "compact model" for execution.
 J Translate conditional jumps to short conditionals.
 L Send the PRN file directly to the system printer.
 N Show the line and statement number being processed.
 Px Place the PRN file on drive x where x = A, B, ..., P.
 R Assume all flags active at subroutine returns.
 S Assume non-overlapping 8086 code and data segments.
 Tx Place the $$$ file on drive x where x = A, B, ..., P.
 80 Create an 8080 assembly listing in the PRN file.
 86 Create an 8086 line and statement listing.

2.2 The B (Block Trace) Parameter

The A (A86), P (PRN), and T (TMP) parameters allow you to select alternate
disk drives for use during the translation process when only limited disk
space is available on each drive. otherwise, disk drives are selected as
described above.

The B (Block Trace) parameter provides a trace in the PRN file showing
register usage information collected by the data flow analyzer. This parameter
is not normally selected since the trace information is of no particular value
unless you are interested in detailed register usage. The B parameter trace
consists of a sequence of register usage tables for each Basic Block in the
form shown below.

Block At 011E (subr), A86 = 083F
 Entry Active: B-D-HL-AOZSPI Exit Active: BCDEHL -------

Istmt#l opcode uses I op I vl I v2 I opcode kills I live regs I

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

I 23I ------ AOZSPIPUSHI PSWI I ------------ I JB-D-HL-A I
I 24I ------ A -- IMOV I El Al --- E -------I JB-DEHL - I
I 25I ----------- IMVI I Cl 05I -C ----------I JBCDEHL - I
I 26I ----------- ICALLI0005I I -------------I JBCDEHL - I

The Basic Block address in the original 8080 program is listed and the type of
block is identified. The block type is "subr" for subroutines, "code" for
main-line code, and "data" for data blocks. The A86 address is an
approximation of the corresponding 8086 address used to determine short and
long branch jump ranges. The remaining information shows register and flag use
at block entry and at each instruction within the block. The registers and
flags are displayed as a vector of letters and hyphens, where each letter
represents the presence of a register or flag in the display, and each hyphen
signifies that the corresponding register or flag is absent in the vector.
Given that all registers and flags are present, the display appears as
follows:

 BCDEHLMAZOSPI

Table 2-2 lists the letter denotations of the above display.

Table 2-2. Letter Denotations for Registers and Flags

Letter Meaning
------ -------
 B Register B, or high(BC)
 C Register C, or low (BC)
 D Register D, or high(DE)
 E Register E, or low (DE)
 H Register H, or high(HL)
 L Register L, or low (HL)
 M Register M, memory operand
 A Register A, 8-bit Accumulator
 O overflow Flag, carry or borrow
 Z Zero Flag
 S Sign Flag
 P Even Parity Flag
 I Interdigit Carry Flag

The registers active upon entry are listed first. In the example shown above,
the data flow analysis has determined that the B, D, and HL registers, along
with all flag registers, are in use upon entry to the block. The active
registers following this block are then listed, consisting of the BC, DE, and
HL register pairs. Then each instruction in the Basic Block is given, with a
preceding statement number that can be cross-referenced with the 8080 source
program. The instruction itself is listed with the hexadecimal values of its
two optional parameters.

The "opcode uses" field shows the register set used by the operation code,
while the "opcode kills" field lists the registers destroyed by the operation.
The "live registers" field provides the information used by the Translate-86

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

phase to minimize the generated code. This field lists the registers and flags
that are referenced following the instruction and is derived by examining the
Directed Graph corresponding to the 8080 source program. Again, the
information collected by the flow analyzer is optionally displayed using the B
parameter. This display is not required for normal operation of the
translator.

2.3 The C (Compact) Parameter

The C (Compact) parameter causes XLT86 to generate 8086 machine code using the
"Compact Memory Model" described in the CP/M-86 System Guide. Under normal
circumstances, XLT86 assumes the "8080 Memory Model" where code and data
segments overlap. To accomplish this overlap of segments, the program is
analyzed to determine Basic Blocks that contain code and data. The program is
assumed to begin with a code segment and, if a data segment is encountered as
defined by a sequence of DS, DB, or DW statements, XLT86 produces the
following statements that provide the proper transition:

 L@n EQU $
 DSEG
 ORG Offset L@n

Similarly, the transition from a data segment back to a code sequence is
marked by the generated statements:

 L@n EQU $
 CSEG
 ORG Offset L@n

where L@n is a sequentially generated label. The labels are generated as
required by XLT86, taking the form:

 L@l L@2 L@3 L@4 L@32767

Enabling the "C" parameter prevents the code and data segments from
overlapping. In this case, the transition from code to data and data to code
is marked by either

 DSEG
or

 CSEG

respectively. See also the description of the S (Segments) parameter. When
enabled, the S parameter completely overrides the C parameter.

2.4 The J (Jump) Parameter

The J (Jump) parameter enables the short jump analysis option of XLT86. When
enabled, XLT86 translates 8080 conditional jumps to either short conditional

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

jumps or negated short conditional jumps followed by short unconditional
jumps, depending upon the byte count to the target of the jump. That is, a
"JZ x" instruction becomes either

 JZ x
 X:

or

 JNZ L@n
 JMPS x
 L@n:

The first case results if the label "x" is within the range of a short jump,
while the second form results from a target label beyond the range of a short
jump. The J parameter is enabled by default, and should be disabled using the
NOJ form described below only if you want to manually edit your conditional
jumps following program translation.

2.5 The L (List) Parameter

The L (List) parameter sends the listing file directly to the system printer,
thus avoiding the intermediate PRN file. The system printer, or printer
driver, must handle form-feeds (Ctrl-L) and tabs (Ctrl-I) to every eighth
column position. If your printer does not properly support these characters,
you can leave the L parameter disabled and use the CP/M PIP utility command
form:

 PIP LST:=filename.PRN[T8F]

where the PIP parameter "T" expands tabs to blanks at every eighth column, and
the "F" parameter deletes the form-feed character on transmission.

2.6 The N (Number) Parameter

The N (Number) parameter displays the current line and statement number on
CRT-type console devices as the translation proceeds. Each line and statement
number is displayed with an intervening carriage-return, without a line-feed,
so that each successive display overwrites the previous value. In this way,
you can easily monitor the progress of XLT86 as it proceeds through the source
program during the translation.

2.7 The R (Return) Parameter

The R (Return) parameter overrides the default assumptions about register
usage at the end of a subroutine. XLT86, by default, assumes that all
registers are in use at the end of a subroutine in the absence of additional
information. This is a safe, but possibly restrictive, assumption that might

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

cause more 8086 code to be generated near the return statements of each
subroutine. If you know that the entire 8080 program being translated contains
subroutines that do not return flag registers, then you should include the R
parameter in the command line to reduce the amount of generated code.

Alternatively, you can precede the return statements of various subroutines
with "[R]" parameters when they do not return flag registers, as long as
balancing "[NOR]" parameters, described below, are included to return to the
default assumptions, where necessary.

2.8 The S (Segment) Parameter

The S (Segment) parameter informs XLT86 that the original source program
contains embedded CSEG and DSEG directives that delimit the code and data
segments. In this case, XLT86 makes no attempt to derive the code and data
segment information and, instead, assumes that the CSEG and DSEG directives
passed through to the 8086 program correctly define the appropriate segments.
The S parameter is automatically set when the source program contains ASEG,
CSEG, or DSEG directives, and completely overrides the effect of the C
(Compact) parameter.

2.9 The 80 Parameter

The 80 parameter causes XLT86 to produce a pseudo-assembly listing of the
original 8080 source program, giving the source line and statement number
along with the assembled machine code location. If the B parameter is
simultaneously enabled, additional Basic Block information precedes each
straight-line code segment. When both 80 and B are enabled, the trace appears
as shown below:

--------- Basic Block (2) 011E
Predecessors: 0119 0111 0105 0100
Successors : 0125
Reg's Killed: -C-E --------
Reg's Used ------- AOZSPI
22 22 011E pr:
23 23 011E push psw
24 24 011F mov e,a
25 25 0120 mvi c,lst
26 26 0122 call bdos

Each Basic Block of the listing is preceded by the Basic Block Header
consisting of the location (011E in the example above), a set of predecessor
blocks where the program flow of control comes from 0119, 0111, 0105, and
0100), and a set of successor blocks where program flow could continue (0125,
above). The set of registers killed are listed, along with the set of
registers used by the operation codes within the block. No global data flow
information is displayed in this trace (see the B parameter described

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

earlier).

2.10 The NO Parameter

The two character sequence "NO" preceding the B, C, J, L, N, R, S, 80, and 86
parameters negates the effect of the parameter once it has been set. Further,
the A, P, and T parameters are ignored when they occur within the source file
and are effective only on the command line. The parameters B, C, J, L, N, R,
S, 80, and 86 parameters, along with their negated forms, can occur in the
command line or within the source program. When they occur within the program,
they apply to the segment of code following their occurrence. Assuming that
the default drive is d, where d is a valid drive code A, B, ..., P, the
default values assumed for each parameter are identical to the complete, but
redundant, command line shown below:

 XLT86 d:filename [Ad NOB NOC J NOL NON Pd NOS NOR Td N080 N086]

SECTION 3

TRANSLATED PROGRAM FORMAT AND CONTENT

3.1 Translated Program Format

XLT86 constructs the 8086 program from the original 8080 program by first
analyzing the program register usage. Then, using the collected information,
XLT86 translates each label, operation code, and operand expression into an
equivalent 8086 program segment. In performing the translation, XLT86 uses as
many program fragments from the original 8080 source program as possible.
These program fragments include labels, expressions, and comment fields. Due
to differences in assembly language formats, however, labels and expressions
might be altered somewhat to maintain their original meaning.

The translation occurs line-by-line, where each 8080 source line may contain
several statements delimited by exclamation symbols. XLT86, however, always
generates a single statement per output line. The output line includes an
optional label in column one, followed by a single tab character. The
translated operation code field is placed immediately following the tab
character. if the operation code has one or two operand fields, another tab
character is included and the operand fields are inserted. The operand fields
themselves are constructed by either translating 8080 registers to their 8086
equivalents, or through the construction of an expression that is the
translation of the original form. If a comment field is present in the source
program, it is copied to the 8086 program intact with sufficient leading tabs
to position the comment to column forty, if that position has not already been
reached. Comments beginning in column one are reproduced without leading tab
characters. Further, comments that begin in column one with the character "*"
are started, instead, by the two character sequence ";*" to maintain
compatibility with ASM-86.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

For pseudo-assembly purposes, the assumed origin of the 8080 program is 0100H,
corresponding to the base of the TPA under CP/M. This assumed origin resolves
label addresses during pseudo-assembly and does not normally affect the
translation process. However, if an ORG statement is encountered at the
beginning of the program before any code or data is encountered, the program
origin is set to the value given in the operand field of the ORG statement.

Program-relative operand references, along with absolute addresses, are
allowed in the source program. In this case, XLT86 generates a label of the
form "L@n" at the target location. For example below, the 8080 instruction
sequence shown to the left results in the 8086 program shown to the right:

 NOP L@l: NOP
 NOP NOP
 JMP $-2 JMPS L@1

Similarly, the absolute 8080 assembly language shown to the left below results
in the program shown to the right:

 ORG 300H ORG 300H
 NOP L@l: NOP
 NOP NOP
 JMP 300H JMP L@1

In this case, the ORG statement is necessary to override the default
assumption.

From this last example, it appears that XLT86 is capable of translating 8080
programs produced through disassembly. Unfortunately, disassemblers cannot
generally distinguish between code and data areas. If the code and data
sections can be separated into distinct areas, where the code is disassembled
with absolute address operands and the data areas consist of DS, DB, and DW
operations, then XLT86 performs the translation.

Operand fields are translated according to their context and, for notational
purposes, we make the following definitions.

Table 3-1. Operand Field Abbreviations

Abbreviation Definition
------------ ----------
 ib immediate byte operand (MVI A,ib)
 iw immediate word operand (LXI H,iw)
 mb byte in memory (STA x)
 mw word in memory (LHLD x)
 mn near memory (CALL x)
 rb byte in register (ADD B)
 rw word in register (DAD B)

The translation of an expression is denoted by a prime following the
expression type. Thus, ib is translated to ib' , iw to iw', and so forth.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

Register translation takes place according to the following table.

Table 3-2. Register Translation

8080 Register (rb) 8086 Register (rb')
------------------ -------------------
 A AL
 B CH
 C CL
 D DH
 E DL
 H BH
 L BL

The M (Memory) register has no direct equivalent in the 8086 environment, so
XLT86 produces an "equate" statement in the following form at the beginning of
each program.

 M EQU Byte Ptr 0[BX]

Thus, the M register remains unchanged in the translation with the assumption
that the BX register contains the offset to the proper memory location.

The 16-bit register pair translation occurs as shown in Table 3-3, below.

Table 3-3. 16-Bit Register Translation

8080 Register (rw) 8086 Register (rw')
------------------ -------------------
 PSW AX
 B CX
 D DX
 H BX
 SP SP

The 8080 PSW and 8086 AX register have a loose correspondence depending upon
register usage at the time of translation. The exact correspondence is defined
below under the PUSH and POP operators.

3.2 Translated Program Content

Expressions are normally composed of literal constants, data variable
references, program label references, and register references. XLT86 computes
the type of each expression as the translation proceeds, resulting in one of
the followng expressions.

Table 3-4. Expressions

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

Expression Meaning
---------- -------
constant consists only of literal constants

variable consists of zero or more constants and one or more variable
 references

label consists of zero or more constants or variables, and one or
 more labels

register consists of zero or more constants, variables, or labels and
 one or more register references

The translation of ib, iw, mb, mw, and mn is described in Table 3-5, below.
This translation takes place after XLT86 scans the expression to determine its
type, as described above.

Table 3-5. Operand Field Translation

Operand Field Translation
------------- -----------
ib and iw ib' and iw' are constructed from the original ib and iw by
 first determining the expression type. If the type is
 "constant," the expression ib or iw remains unchanged in
 the translation. otherwise, for each variable, label, dollar
 sign ($) , or register reference in the expression, XLT86
 changes the reference, denoted by x, to "(offset x)" so that
 the resulting expression ibl or iwl represents a CS or DS
 relative offset computation.

mb The resulting expression mb' is constructed from the original
 expression mb according to the type of mb. If mb is
 "constant" then mb' becomes "Byte Ptr .mb" denoting a single
 byte operand located at a literal constant address relative to
 DS or CS. Otherwise, the expression mb' becomes "Byte Ptr mb"
 denoting a byte variable or label address.

mw Similar to mb, mw' becomes "Byte Ptr mw" if mw is "constant"
 and "Byte Ptr mw" otherwise.

mn The expression mn' is the same as the original mn unless there
 is no literal label at the target address. In this latter
 case, a label of the form "L@n" is created at the
 target address, which becomes the value of mn.

Due to differences in 8080 and 8086 program formulation requirements, not all
valid 8080 expressions can be successfully converted to valid 8086
expressions. Thus, you must be aware that additional editing is required if
your translated program produces errors during assembly with ASM-86. In
particular, expressions that use arbitrary operations upon constants,
variables, labels, and registers are unlikely to assemble correctly under ASM-
86, or any other assembler that uses the Intel conventions.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

In the translation table given below, the 8080 operation code is shown to the
left, with the translated 8086 code sequence shown to the right. In many
cases, the registers that are live at the point where the 8080 operation code
occurs determine the exact sequence of code that is generated. In these cases,
the alternative forms are given separately. Conditional assembly notation
specifies the alternative forms, with the introduction of the following two
pseudo-functions:

 live(rl,r2, ..., rn)

and

 short(mn')

The "live" function takes a variable number of register arguments and results
in a TRUE value if one or more of these registers is live at the point of
translation. Otherwise, the "live" function results in a FALSE value. In the
Section 2 example for the B parameter, statement 24 (MOV E,A) has the live
register set given by the vector:

 B-DEHL -------

so that

 live(B,C,D) = TRUE and live(A,O) = FALSE

The "short" function is used in the translation of conditional jump
instructions where the value of short(mn') is TRUE if the target of the
translated jump address mn' is within the range of a conditional jump, or if
the "J" parameter is enabled. otherwise, short(mn') results in a FALSE value.
XLT86 also uses the notation in Section 2 for label generation. The form "L@n"
represents labels produced sequentially, starting at n = 1, used in the
translation of conditional calls, returns, and conditional jumps outside the
range of an 8086 conditional transfer. The CC (Call if Carry) operator, for
example, translates to a jump conditional to a generated label followed by a
direct call. The generated label is then inserted, as shown in the expansion
of the 8080 instruction CC SUBR:

 JNB L@1
 CALL SUBR
 L@l:

Table 3-6 gives the translation of each operation code. Note in particular
that the following BDOS entry operations:

 CALL 0 CALL 5 JMP 0 JMP 5

are treated as special cases that are translated to Interrupt 224, reserved by
Intel Corporation for entry to CP/M-86 and MP/M-86.

Table 3-6. Translation Table

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

Operation Code Translation
-------------- -----------
ACI ib ADC AL,ib'
ADC rb ADC AL,rb'
ADD rb ADD AL,rb'
ADI ib ADD AL,ib'
ANA rb AND AL,rb'
ANI rb AND AL,rb'
CALL 0 MOV CL,0
 MOV DL,0
 INT 224
CALL 5 INT 224
CALL mn CALL mn'
CC mn JNB L@n
 CALL mn'
 L@n:
CM mn JNS L@n
 CALL mn'
 L@n:
CMA NOT AL
CMC CMC
CMP rb CMP AL,rb'
CNC mn JNAE L@n
 CALL mn'
 L@n:
CNZ mn JZ L@n
 CALL mn'
 L@n:
CP mn JS L@n
 CALL mn'
 L@n:
CPE mn JNP L@n
 CALL mn'
 L@n:
CPI ib CMP AL,ib'
CPO mn JP L@n
 CALL mn'
 L@n:
CZ mn JNZ L@n
 CALL mn'
 L@n:
DAA DAA
DAD rw IF rw = H
 SHL BX,1
 ELSE
 IF live(O) AND NOT
 live(Z,S,P,I)
 ADD BX,rw'
 ELSE
 IF NOT live(O) AND
 live(Z,S,P,I)
 LAHF
 ADD BX,rw'

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

 SAHF
 ELSE
 LAHF
 ADD BX,rw'
 RCR SI,1
 SAHF
 RCL SI,1
 ENDIF
 ENDIF
 ENDIF
DEC rb DEC rb'
DCX rw DEC rw'
DI CLI
EI STI
HLT HLT
IN ib IN AL,ib'
INR rb INC rb'
INX rw IF NOT live(Z,S,P,I)
 INC rw'
 ELSE
 LAHF
 INC rw'
 SAHF
 ENDIF
JC mn IF short(mn')
 JB mn'
 ELSE
 JNB L@n
 JMPS mn'
 L@n:
 ENDIF
JM mn IF short(mn')
 JS mn'
 ELSE
 JNS L@n
 JMPS mn'
 L@n:
 ENDIF
JMP 0 MOV CL,0
 MOV DL,0
 INT 224
 RET
JMP 5 INT 224
 RET
JMP mn JMPS mn'
JNC mn IF short(mn')
 JNB mn'
 ELSE
 JNAE L@n
 JMPS mn'
 L@n:
 ENDIF
JNZ mn IF short(mn')
 JNZ mn'

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

 ELSE
 JZ L@n
 JMPS mn'
 L@n:
 ENDIF
JP mn IF short(mn')
 JNS mn'
 ELSE
 JS L@n
 JMPS mn'
 L@n:
 ENDIF
JPE mn IF short(mn')
 JPE mn'
 ELSE
 JNP L@n
 JMPS mn'
 L@n:
 ENDIF
JPO mn IF short(mn')
 JPO mn'
 ELSE
 JP L@n
 JMPS mn'
 L@n:
 ENDIF
JZ mn IF short(mn')
 JZ mn'
 ELSE
 JNZ L@n
 JMPS mn'
 L@n:
 ENDIF
LDA mb MOV AL,mb'
LDAX rw MOV SI,rw'
 MOV AL,[SI]
LHLD mw MOV BX,mw'
LXI rw,iw MOV rw',iw'
MOV rb1,rb2 MOV rb1',rb2'
MVI rb,ib MOV rb',ib'
NOP NOP
ORA rb OR AL,rb'
ORI ib OR AL,ib'
OUT ib OUT ib',AL
PCHL JMP BX
POP rw POP rw'
 IF rw = PSW AND live(O'Z'S'P'I)
 XCHG AL,AH
 SAHF
 ELSE
 IF rw = PSW AND live(A)
 XCHG AL,AH
 ENDIF
 ENDIF

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

PUSH rw IF rw = PSW AND live(A)
 LAHF
 XCHG AL,AH
 PUSH AX
 XCHG AL,AH
 ELSE
 IF rw = PSW
 LAHF
 XCHG AL,AH
 PUSH AX
 ELSE
 PUSH rw'
 ENDIF
 ENDIF
RAL RCL AL,1
RAR RCR AL,1
RC JNB L@n
 RET
 L@n:
RET RET
RLC ROL AL,1
RM JNS L@n
 RET
 L@n:
RNC JNAE L@n
 RET
 L@n:
RNZ JZ L@n
 RET
 L@n:
RP JS L@n
 RET
 L@n:
RPE JNP L@n
 RET
 L@n:
RPO JP L@n
 RET
 L@n:
RRC ROR AL,1
RST ib INT ib'
RZ JNZ L@n
 RET
 L@n:
SBB rb SBB AL,rb'
SBI ib SBB AL,ib'
SHLD mw MOV mw',BX
SPHL MOV SP,BX
STA mb MOV mb',AL
STAX rw MOV DI,rw'
 MOV [DI],AL
STC STC
SUB rb SUB AL,rb'
SUI ib SUB AL,ib'

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

XCHG XCHG BX,DX
XRA rb XOR AL,rb'
XRI ib XOR AL,ib'
XTHL MOV BP,SP
 XCHG BX,[BP]

SECTION 4

XLT86 ERROR MESSAGES

4.1 Pseudo-assembly Process Error Messages
--

XLT86 issues error messages that fall into two categories: those produced by
the pseudo-assembly process, and those produced during translation. Errors in
the first category are not considered fatal, but are simply annotated in the
source listing file following the line in which the error occurs. If errors
are present, the message:

 Number of Errors: n

is displayed at the console following the pseudo-assembly. Examine the PRN
file to determine if the errors are significant. Error messages take the form:

 ** Error: e **, Near t

where e is one of the error codes, and t is a program element near the
position where the error occurred. Table 4-1 lists the error codes.

Table 4-1. XLT86 Error Codes

Error Code Meaning
---------- -------
Bad Flag invalid parameter list [p1 pn]

Balance Unmatched right parenthesis or missing trailing string quote.

Boundary Invalid program boundary, usually results from a branch to the
 middle of an instruction.

Convert Cannot convert an operand to internal form.

End-Line The end of a program line contains extraneous characters.

Exp Ovfl Expression stack overflow; the expression is nested too
 deeply.

Gtr 7 An expression produced a value greater than 7, where a value
 from 0-7 is required.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

Gtr 255 An expression produced a value greater than 255, where a value
 from 0-255 is required.

Mov M,M? The source line contains the invalid instruction MOV M,M.

No Comma Missing comma where comma is required.

No Value A label or variable was encountered that does not have an
 assigned value.

Not Impl The instruction or directive is not implemented in XLT86.

Phase A label or variable has a different value on two passes
 through the source program.

Str Len A string was encountered that exceeds the capacity of XLT86,
 check for missing right quote mark.

Value The value produced by an expression is not compatible with the
 context in which it occurs.

4.2 Translate-86 Error Messages

The Translate-86 phase also produces a limited number of error messages. All
errors produced by this phase are fatal, and cause immediate termination of
XLT86. Table 4-2 lists these error messages.

Table 4-2. Translate-86 Error Messages

Error Message Meaning
------------- -------
Bad Oper Invalid 8080 operation code was encountered during
 translation; probably due to bad disk I/O operation. Check for
 hardware controller faults.

Not BDOS A CALL or JMP occurred below the base origin of the program
 where the target is not 0000H (warm boot) or 0005H (BDOS
 entry).

Phase (B) The Directed Graph does not correspond to the source program
 at the Basic Block level; usually due to a hardware
 malfunction.

Phase (S) The Directed Graph does not correspond to the source program
 at the statement level; usually due to a hardware malfunction

An error produced by Translate-86 is accompanied by the console error message:

 Fatal Error (See PRN file)

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

to indicate that such an error occurred.

4.3 Memory overflow

The XLT86 program occupies approximately 30K bytes of main memory. The
remainder of memory, up to the base of CP/M, stores the program graph that
represents the 8086 program being translated.

The error message:

 ERROR (7) "Free Space Exhausted"

is issued if the program graph exceeds available memory. A 64K CP/M system
allows translation of 8080 programs of up to approximately 6K.

The above error causes XLT86 to terminate. To continue, you must divide your
source program into smaller modules and retry the translation.

APPENDIX A

SAMPLE PROGRAM TRANSLATIONS

The DUMP.ASM program presented here and normally included as a sample assembly
language program with CP/M illustrates the translation process. The XLT86
command line:

 XLT86 DUMP [8086]

produces the first example shown below. The "80" parameter selects the 8080
program listing option, while the "86" parameter selects the 8086 listing
option. XLT86 places full lines of dashes (" ---- ") between the Basic Blocks
in the 8080 listing. This translation of the DUMP program, however, requires
modification to run under CP/M-86. In particular, the DUMP.ASM program
contains initialization code that saves the entry SP (statements 34 to 37) and
resets the SP to a local stack (statement 39). The return statement following
the FINIS label (statement 95) returns control to the CCP.

To perform an exactly equivalent sequence of operations, you must also save
the stack segment register (SS) upon entry to the DUMP program, and restore
this value before executing the return. Further, the simple RET operation must
be replaced by a Far Return (RETF) to balance the original Far Call from the
CCP. A simpler solution is to eliminate the initialization code (statements 33
through 39) and use the CCP's built-in 96 byte stack. Control returns to the
CCP by executing a RETF at statement 95. If you want to use a local stack, set
the SS register to the value of DS upon entry, and set SP to the Offset of
STKTOP. Control returns to the CCP through execution of function call #0 in
place of the RET in statement 95, as follows:

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

 MOV CL,0
 MOV DL,0
 INT 224

The second listing shows the Basic Block information collected by the flow
analyzer, and produced by the command line:

 XLT86 DUMP [B]

where the "B" parameter selects the Basic Block trace. Under normal
circumstances, either of the commands shown below are sufficient and reduce
the amount of trace information:

 XLT86 DUMP [N]
or
 XLT86 DUMP

The first command is used only with a CRT-type device where the carriage-
return character does not cause an automatic line-feed (see the description of
the "N" parameter).

INDEX

A

A (A86) parameter, 6
A86 output file, 1
ASM input file, 1
ASM-86, 13

B

B (Block Trace) parameter, 6, 10
Basic Block, 6, 11
Basic Block address, 7
Basic Block Header, 11

C

C (Compact) parameter, 8, 10
code areas, 14
code segments, 8
command line, 5
comment field, 13
CSEG directives, 10

D

data areas, 14
data flow analysis, 6, 3
data segments, 8

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

differences in assembly language formats, 13
disassemblers, 14
DSEG directives, 10

E

equate statement, 15
error codes, 25, 26
error messages, 25
expression translation, 14, 15
expressions, 15, 16

F

flags, 7

I

input file, 1

J

j (jump) parameter, 9
join Blocks phase, 2

L

L (List) parameter, 9
label generation, 8, 14, 17
letter denotations for registers and flags, 7
List Blocks phase, 2
live function, 17

M

M (Memory) register, 15
macros, 1
memory overflow, 27
monitoring the translation, 2, 9

N

N (Number) parameter, 9
NO parameter, 11

O

operand field abbreviations, 14
operand field translation, 14, 16
operand fields, 13
operation code, 13
ORG statement, 13
output files, 1
output line, 13

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

overlays, 1, 3

P

P (PRN) parameter, 6
parameter list, 5
parameter syntax, 5
parameters, 3, 5
PIP, 9
PRN file, 1, 25
processed files, 3
program fragments, 13
program graph, 27
program segment, 13
Pseudo-assembly Process error messages, 25

R

R (Return) parameter, 10
register translation, 15
register usage, 13
registers, 7
repeat loops, 1
root module, 1

S

S (Segment) parameter, 8, 10
Setup Blocks phase, 2
short function, 17
short jump analysis, 9
Symbol Setup phase, 2
syntax, 5

T

T (TMP) parameter, 6
temporary ($$$) file, 1
Translate-86 error messages, 25, 26
Translate-86 phase, 2
translated program format, 13
translation parameters, 5
translation phases, 2
translation table, 17

16-bit register translation, 15

80 parameter, 10

8080 operation code, 17
8080 program fragments, 13
8080 program origin, 13
8080 register usage, 13
8080 source program, 1

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/XLT86%20User's%20Guide/XLT86%20User's%20Guide.txt[2/6/2012 11:12:53 AM]

8086 program segment, 13

EOF

	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\XLT86 User's Guide\XLT86 User's Guide.txt

