
file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG0.TXT[2/7/2012 11:42:44 AM]

DNSG0.WS4 (= "DR Net System Guide", foreword)

DR Net
System Guide

First Edition: March 1984

(Retyped by Emmanuel ROCHE.)

Foreword

DR Net is a network operating system for Concurrent CP/M and CP/M-86 based
computers that allows local disk drives, list devices, and queues to be mapped
to remote computers. Network transactions are conducted on a system call
basis. DR Net traps standard system calls that reference a mapped resource,
oversees execution of the function on the remote node, and returns the
response to the calling process. This entire sequence of events is controlled
entirely by DR Net. No modifications to an application program or the resident
operating system are necessary to integrate DR Net into computers based on the
Concurrent CP/M and CP/M-86 operating systems.

Like all Digital Research operating systems, DR Net is composed of a
proprietary module and an implementation-dependent module. The proprietary
module contains the interface to transient prgframs, to the host operating
system, and to the implementation-dependent Network Input/Output System
(NIOS). The NIOS contains the interface to the network communication hardware.

How to use this manual

This manual provides you with the information necessary to develop a DR Net
module for your computer system and network controller. This is a technical
presentation that requires you to have a thorough understanding of the CP/M-86
and Concurrent CP/M system calls and their calling conventions. In addition,
it is assumed that you have an understanding of the basic principles of data
communications.

Section 1, "DR Net overview", introduces the DR Net network operating system.
This section contains general information regarding the types of network nodes
and operating system supported by DR Net. It also includes a synopsis of the
DR Net utilities, and a description of DR Net's computer hardware
requirements.

Section 2, "DR Net architecture", describes the modules and processes that
provide the network interface. It focuses on the relationship between DR Net's
proprietary portion and the implementation-dependent NIOS. Refer to this
section for descriptions of significant DR Net internal data structures.

Section 3, "The NIOS", describes the structure and the functions of the

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG0.TXT[2/7/2012 11:42:44 AM]

implementation-dependent portion of DR Net.

Section 4, "DR Net system generation", describes how to generate the DR Net
system image, and how to integrate it with a Concurrent CP/M or CP/M-86 host.

Appendix A describes the DR Net message contents for all system calls that can
be executed remotely. Appendix B describes the fundamental considerations
required to design a server facility in an operating system other than
Concurrent CP/M.

Other DR Net manuals

This is one of four manuals in the DR Net documentation set. The other three
are as follows:

 - "DR Net User's Guide"
 Describes DR Net and the DR Net utilities for the end user.

 - "DR Net Programmer's Guide"
 Describes the DR Net system calls and system call compatibility among
 the different operating systems supported by DR Net.

 - "DR Net System Manager's Guide"
 Describes DR Net installation and maintenance for the technician in
 charge of a DR Net computer network.

DR Net is upwardly compatible with CP/NET Version 1.2, the network operating
system for Digital Research's 8-bit, CP/M and MP/M II operating systems. For
information on CP/NET Version 1.2, refer to the "CP/NET Reference Manual".

Conventions used in this manual

The following conventions and terminology are used in this manual to identify
functions, programs, and special charactersitics:

 - "NET" and "LD" are used as prefixes for the two classes of NIOS
 functions, as in "NET_WBOOT" and "LD_DRVR". The "NET" prefix indicates
 a NIOS global network function. The "LD" prefix indicate a line driver
 dependent function. In all cases, the names of all functions are in
 uppercase letters.

 - DR Net utilities are always in uppercase only. After their first
 appearance, the CMD filetype is assumed.

 - Frequent mention is made to logn and short pointers. A long pointer is
 always a double-word value, where the first word is the offset and the
 second is the segment address. Short pointers specify only an offset.

 - "Network controller" refers to any hardware component used to control
 data I/O on and off the network lines.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG0.TXT[2/7/2012 11:42:44 AM]

 - "Host operating system" refers to the resident operating system in the
 computer in which DR Net has been integrated.

 - "Process families" refers to a group of processes linked through the
 parent pointer field in the process descriptor. Process families are
 significant in the network context, because they automatically share a
 network environment.

 - "Attach" is used to indicate that a process is given a network
 environment that allows it to log on servers and use remote disk
 drives, list devices, and queues. Until a resource attaches the
 network, it only has access to local resources.

 - "Detach" is the inverse of attach. It means that the process's network
 environment is removed. Until the process attaches again, it has
 access only to local resources.

Table of Contents

1 DR Net overview
1.1 DR Net functional roles
1.1.1 Operating systems supported
1.1.2 Hardware requirements
1.2 Network limits
1.3 Network utilities
1.3.1 User utilities
1.3.2 System generation utilities

2 DR Net architecture
2.1 Concurrent CP/M nodes
2.1.1 Initialization
2.1.2 The NDOS requester module
2.1.3 Output message routing process
2.1.4 The input message routing process
2.1.5 The server process
2.1.6 Watchdog timer
2.2 CP/M-86 requester nodes
2.2.1 Initialization
2.2.2 CP/M-86 request routine
2.3 Internal data structures
2.3.1 Parameter Table
2.3.2 The Requester Configuration Table
2.3.3 The Requester Control Block
2.3.4 The Line Driver Control Block

3 The NIOS
3.1 The NIOS structure
3.1.1 NIOS data segment
3.1.2 NIOS code segment
3.2 The NIOS global NET functions
 NET_OUT

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG0.TXT[2/7/2012 11:42:44 AM]

 NET_IN
 NET_STATUS
 NET_WBOOT
 NET_INIT
3.3 NIOS driver dependent LD functions
 LD_INIT
 LD_DRVR
 LD_ERR

4 DR Net system generation
4.1 Creating the NIOS
4.2 DR Net system generation
4.2.1 GENNET and GENRQR prompt descriptions
4.2.2 System manager information
4.2.3 Error mesages
4.2.4 Generating a Concurrent CP/M based node
4.2.5 Generating a CP/M-86 based node

Appendixes

A Network message contents
A.1 DR Net logical message format
A.2 Special characters, symbols, and terms in Table A-3

B Building a server for another operating system
B.1 The DR Net message components
B.2 Functions to support
B.3 Multisector transfers

Tables and Figures

Tables

1-1. DR Net transaction dialogue
1-2. Functional type support by operating system
1-3. DR Net module sizes
1-4. Static buffer memory requirements
1-5. DR Net user utilities
1-6. DR Net system generation utilities

2-1. DR Net system calls
2-2. NIOS call sequence in a CP/M-86 requester
2-3. Parameter table field descriptions
2-4. Requester Control Block field descriptions
2-5. Line Driver Control Block field descriptions

3-1. NIOS data segment structure
3-2. NIOS global functions
3-3. Global function input parameters and returned values

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG0.TXT[2/7/2012 11:42:44 AM]

3-4. DR Net Header Control Block
3-5. Line driver dependent function summary

4-1. Command sequence to assemble your NIOS
4-2. DR Net system generation files and utilities
4-3. GENNET and GENRQR prompts and descriptions
4-4. Implementation bound parameter table values
4-5. GENNET and GENRQR prompt-phase error messages
4-6. GENNET and GENRQR file system error messages
4-7. ADDNET error messages

A-1. DR Net logical message field descriptions
A-2. DR Net logical message formats
A-3. DR Net logical message contents

B-1. DR Net server module
B-2. Networked system functions by resource
B-3. Functions affected by multisector count

Figures

1-1. Network requester and server functional roles
1-2. Operating system interactions supported by DR Net

2-1. Concurrent DR Net processes
2-2. DR Net logical message contents
2-3. CP/M-86 requester memory configurations
2-4. Parameter table
2-5. Requester Configuration Table
2-6. Requester Control Block
2-7. Line Driver Control Block

3-1. Significant Requester Control Block fields
3-2. Network Status Byte
3-3. Sample NIOS architectures
3-4. Dynamic buffer allocation for network messages

4-1. GENNET dialogue
4-2. GENRQR dialogue
4-3. Dynamic buffer allocation

A-1. DR Net logical message format

EOF

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG1.TXT[2/7/2012 11:42:44 AM]

DNSG1.WS4 (= "DR Net System Guide", section 1)

DR Net
System Guide

First Edition: March 1984

(Retyped by Emmanuel ROCHE.)

Section 1: DR Net overview

DR Net is a network operating system that allows a CP/M based computer to
access another CP/M based computer's disk drives, list devices, and queues.
Like all Digital Research operating systems, DR Net consists of two basic
components: an invariant module and an implementation dependent module.

DR Net's invariant module serves two purposes. The first purpose it to
intercept disk drive, list device, and queue related system calls, to
determine if the resource referenced is local or remote. A call to a remote
resource is assembled into a standard-format message, and sent to another node
for execution.

The second purpose of invariant module is to execute the system calls from
remote computers. For this task, application processes are dynamically created
by DR Net on network nodes that function as servers. The purpose of these
transient processes is to present the remote system call to the host operating
system, and prepare the response message.

DR Net's implementation dependent module, the Network Input/Output System
(NIOS), is the interface between the invariant module and the network
hardware. The NIOS interface consists of a set of functions that are called
from the invariant module to use the physical components.

These two modules are merged by a system generation program. This program
also displays a series of prompts that set network global parameters and a
node's map of networked resources. This creates a DR Net system image that is
then integrated by another utility with the computer's host operating system
to incorporate the networking capability. No modifications to the host
operating system, nor application programs, are required to implement DR Net
and have remote resources accesses as though they were local.

This section of the "DR Net System Guide" describes the external
characteristics of a DR Net network. This overview includes the definitions of
the network functional roles and the host operating system that suppor them,
DR Net's hardware requirements, and the network parameters. DR Net's invariant
module and implementation dependent NIOS are described in subsequent sections.

1.1 DR Net functional node types

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG1.TXT[2/7/2012 11:42:44 AM]

DR Net defines two fundamental, network functional node types: requesters and
servers.

Requesters initiate all network transactions. A transaction results when an
application makes a system call to a disk drive, list device, or queue that is
mapped to a server. Resource mapping, the process of defining a local
reference for a remote resource, is performed at DR Net system generation.
Subsequently, when the network is attached, DR Net references this map of
local to remote resources for every system call. Calls to local resources are
passed to the requester's host operating system. Calls to mapped disk drives,
list devices, and queues are trapped, a DR Net message is constructed, and the
message is sent to the designated server.

Servers wait and respond only when called upon. By definition, servers never
send requesters unsolicited messages. Conceptually, the DR Net server can be
thought of as a process manager that oversees concurrent application
processes. When a requester logs on, the DR Net server creates an application
process and assigns it to the calling requester. This "shadow" process is the
requester's proxy that presents its system calls to the server's host
operating system. The shadow remains assigned to a requester until it is no
longer needed. At that point, the shadow is terminated, and the system
resources that sustained it are freed for allocation to another shadow
process.

Note: "Shadow process" is used throughout this manual to reference a server-
based process whose function is to make system calls on behalf of a requester
process. In all cases, a shadow process represents a single requester process.
Multiple processes running on a single requester each have their own shadow
process on a server. A shadow process does not exist until a requester logs
on. In turn, when the requester process logs off, the shadow process is
terminated.

Figure 1-1 illustrates DR Net's two network roles, and shows how the requester
and server functions interface with their host operating systems. Table 1-1
summarizes a DR Net requester to server dialogue.

 DR Net Requester DR Net Server
 +-----------+ +-----------+
 | Host | | Host |
 | Operating | | Operating |
 | System | Shadow process | System |
 +-++--------+ presents requester's +-----------+
 || /\ call to its host /\
 || || operating system ---------->||
 || || \/
 || +-++-----+ +--------+
 || | DR Net | +------+ +------+ | DR Net | | |
 || | screens|/--\| NIOS |---> <---| NIOS |/--\| shadow |
 || | system |\--/+------+<--- --->+------+\--/| process|
 || | calls. | | | +--------+
 || +-++-----+ | |
 || || /\ +---+--> Physical Networks
 ||---||--||----> Returned Values (Down Arrows)

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG1.TXT[2/7/2012 11:42:44 AM]

 \/ \/ ||----> System calls from application
 +----------++-+
 | Application |
 | Programs |
 +-------------+

 Figure 1-1. Network requester and server functional roles

Table 1-1. DR Net transaction dialogue

Requester Server
--------- ------
Intercept an application's Idle in expectation of a
system calls before they message.
reach the host operating
system.

Screen each call, to
determine if it references
a mapped disk drive, list
device, or queue.

Send all calls that
reference a local resource
to the host; for all calls
that reference a mapped
resource, make the DR Net
logical message.

Pass the message to the NIOS.

NIOS sends message. NIOS receives message.

Idle in expectation of the Signal shadow process to
response message. pick up message from NIOS
 and decode it.

 Present system call to the
 host operating system.

 Encode the response
 DR Net logical message
 from the returned value
 and all related data.

 Pass the message to the NIOS.

NIOS receives message. NIOS sends message.

Pick up the message from Idle in expectation of
the NIOS. another request.

Decode the return value,
set the registers, and

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG1.TXT[2/7/2012 11:42:44 AM]

store the response data
according to local
convention.

Return control to the
calling program.

1.1.1 Operating systems supported

The features available from Digital Research operating systems support
specific types of network nodes. Table 1-2 lists the operating systems, and
indicates the node types supported by each. Figure 1-2 below illustrates the
possible communication links.

Table 1-2. Functional type support by operating system

Operating System Network Functional Role
---------------- -----------------------
CP/M-86 Requester only
Concurrent CP/M Simultaneous requester and/or server
MP/M II Server only
CP/M 2.2 Requester only
CP/NOS Diskless requester only
Other Requester or server engineered
 to DR Net message format

As Table 1-2 shows, a CP/M-86 based system can be used only as a requester.
However, Concurrent CP/M based nodes can function as a network server, a
network requester, or as a combination network requester and server. Figure 1-
2 below illustrates the options listed in this table, and the possible
relationships between 8086 and 8088 based nodes and CP/NET Version 1.2 based
nodes.

In addition to supporting the Digital Research family of operating systems,
other operating systems can be engineered to support and interpret DR Net
messages. For this purpose, all DR Net message formats and contents are
published in Appendix A. In addition, Appendix B offers some observations and
recommendations for creating a server for a different environment.

 +---+
 | 8086- and 8088-based systems |
 | |
 | +-----------+ +-----------------+ |
 | | CP/M-86 | | Concurrent CP/M | | |
 | +-+--| Requester | +--| Requester |--+ |
 | | | +-----------+ | +-----------------+ | |
 | | | | | |
 | | | +-----------------+<-+ +-----------------+ | |
 | | +->| Concurrent CP/M |<----| Concurrent CP/M |<-+ |
 | | | Server |<-+ | Server/Requester|<-+ |
 | | +-----------------+ | +-----------------+ | |
 +--+-------------------------+-----------------------+--+

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG1.TXT[2/7/2012 11:42:44 AM]

 | | |
 +--+-------------------------+-----------------------+--+
 | | | | | | |
 | | +---------+ | +-------------+ | |
 | +--->| MP/M II | +--| CP/M 2.2 or | | |
 | | Server |<------------| CP/NIOS | | |
 | +---------+ | Requester |--->--+ |
 | +-------------+ |
 | |
 | 8080-, 8085-, and Z-80-based systems |
 +---+

 (Arrows indicate who can send a request to whom.)

 Figure 1-2. Operating system interactions supported by DR Net

Figure 1-2 illustrates the extent to which DR Net and CP/NET Version 1.2 based
nodes can communicate with each other. The delimiting factors for dialogues
between CP/M-86 based requesters and MP/M II based servers is that the former
is limited to DR Net functions 64 through 71 and BDOS functions 0 through 43,
45, and 106. (The DR Net functions are introduced in Section 2 in the
description of the NDOS.) Communication between CP/M 2.2 and CP/NOS based
requesters and Concurrent CP/M based servers are not restricted, because
Concurrent CP/M supports all CP/M BDOS and CP/NET Version 1.2 functions.

1.1.2 Hardware requirements

The minimal DR Net computer requires an 8086/8088 processor, one floppy disk
drive, and the CP/M-86 or Concurrent CP/M operating system. The amount of
memory required depends upon the computer's functional role, the number of
input and output network lines, and the number of concurrent, network
processes to be accommodated. To determine your total memory requirements,
first determine how much memory is required for your computer's operating
system. DR Net's requirements are then added to this base value.

DR Net' memory needs are derived by adding the size of the DR Net module used,
the DR Net Static Buffer, the DR Net Dynamic Buffer, and the NIOS.

DR Net module

DR Net's system generation program selects one of following three modules when
it creates the DR Net system image: a requester only, a server only, or a
simultaenous requester/server. Table 1-3 lists the size of each module. This
value does not include your NIOS or buffer space required by DR Net for
messages and process environments. A good rule of thumb is to add 2 KB to
these amounts for your assembled NIOS. Descriptions of the buffer space
requirements follow.

Table 1-3. DR Net modules sizes

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG1.TXT[2/7/2012 11:42:44 AM]

 DR Net Memory
 Module Description Requirement
--------- -------------- -----------
 RNET.CMD requester only 22K bytes
 SNET.CMD server only 15K bytes
RSNET.CMD simultaneous requester/server 26K bytes

Static Buffer

The DR Net Static Buffer is used to hold process and network related data
during operation. DR Net determines the size of the Static Buffer by adding
the values shown in Table 1-4, and reserves the space internally. However, DR
Net cannot have the Static Buffer longer than 64 KB (65,536 bytes). This can
become an important consideration when selecting the number of server and
requester processes that can be supported on a network node.

Table 1-4. Static Buffer memory requirements

 Size Component
------ ---------
 297h per requester process
 297h per shadow process
 284h per input Line Driver Control Block
 29Ah per output Line Driver Control Block
 1A8h per copy of the Requester Configuration Table
 1h per Dynamic Allocation Unit
+ 282h

= Total Static Buffer length

The size values shown in Table 1-4 indicate the amount of memory required on a
per component basis. For example, each requester process attached to the
network requires 2D7h bytes; each shadow process requires 317h bytes; and each
input Line Driver Control Block requires 304h bytes. Consequently, a
requester/server node that supports four requester processes and eight shadow
processes would require 65Ch bytes plus 18B8h bytes for just the processes
alone.

Note: The Requester Configuration Table and Line Driver Control Blocks are
described in Sections 2.3.2 and 2.3.4, respectively. Dynamic Buffer Allocation
Units are described in Section 4.2.1 in the description of the GENNET system
generation utility.

Dynamic Buffer

DR Net's Dynamic Buffer is used for the temporary storage of all messages. You
specify the length of the Dynamic Buffer, and hence the number of messages
that can be stored simultaneously, during DR Net system generation. How much
memory to allocate for the Dynamic Buffer is implementation dependent, and can
differ from one node to the newt within the same local area network. For the

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG1.TXT[2/7/2012 11:42:44 AM]

description of the Dynamic Buffer, Dynamic Buffer Allocation Units, and how to
determine an appropriate Dynamic Buffer length for a given node, see Section
4.2.1.

1.2 Network and node limits

A DR Net network can have up to 255 individual nodes. Each node is uniquely
identified by a hexadecimal number in the range 00h through 0FEh. There are no
restrictions that affect the number of server versus requester nodes on a
particular DR Net network. For example, one configuration can consist of 254
requesters and one server, while another can consist of 255 simultaneous
requester/server.

Up to 90 simultaenous requester processes can be supported on a DR Net
requester-only node when all other Static Buffer components have been
minimized. Each requester process can be logged on to a maximum of 16 servers
at a time. Note that DR Net logs on processes, rather than nodes, to servers.
Consequently, a Concurrent CP/M user can log on 16 servers from one virtual
console, change virtual console, and log on another 16 servers.

Every requester node has a default server. The default server is defined as
the node accessed when the user does not enter a specific server node number
or name. This is pertinent only in the use of the DR Net NET.CMD, LOGON.CMD,
and LOGOFF.CMD utilities. The default server is also the location of the data
file used by DR Net's name service. When name service is implemented, users
can access nodes by name or number. This is currently pertinent only to DR Net
utilities, but could also be used by independent DR Net application packages.

Each requester node can have as many as 16 local drives, list devices, and
queues mapped to servers. A resource map, referred to as the Master Requester
Configuration Table, is created at system generation time to define a default
environment. When a user attaches his node to the network with the NETON.CMD
utility, a copy is made of the Master Requester Configuration Table for use by
the newly attached process. Subsequently, all system calls to a local resource
that is mapped are trapped and sent to the designated server.

Changes are made to the Requester Configuration Table with the DR Net NET.CMD
and LOCAL.CMD utilities. However, changes modify only the attached process's
copy of the Requester Configuration Table, not the Master. The default
configuration in the master reasserts itself when the user runs the NETOFF.CMD
utility and subsequently runs NETON, or when the user restarts the computer.
See Section 2.3.2 for more information on the Requester Configuration Table.

Up to 83 simultaneous shadow processes can be supported on a DR Net server-
only node when all other Static Buffer components have been minimized. Do not
confuse this value for the number of requesters that can share a server; a
server can be shared by 254 separate requesters. However, only 83 requester
processes can be logged on simultaneously.

Up to 16 drives on each server can be isolated from network access. The drive
names are specified in a response to a prompt in the DR Net system generation
program. Attempts to access this drive result in a BDOS select error.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG1.TXT[2/7/2012 11:42:44 AM]

1.3 DR Net utilities

DR Net's user interface consists of a set of utilities that attach and detach
process families to the network in requester nodes, log on requester process
families to a specific server node, log off requester process families from a
specific server node, change the amp entries of local to remote resources, and
display network status and node names.

Several system generation utilities are provided with the system. These
programs generate a DR Net CMD file from the NIOS.CMD and a DR Net module, and
create the name server data that allows operators to use DR Net's name service
facility.

1.3.1 User utilities

Table 1-5 lists the DR Net utilities an operator would require for the day to
day use of the network. For a complete description of these programs, see the
"DR Net User's Guide".

Table 1-5. DR Net user utilities

Format: Name
 Description

LOGON.CMD
Log on a process family to a specific server.

LOGOFF.CMD
Log off a process family from a specific server.

NETLDR.CMD
CP/M-86 requester only; Load DR Net and attach to network.

NETON.CMD
Concurrent CP/M only; Attach process family to network.

NETOFF.CMD
Concurrent CP/M only; Detach a process family from network.

LOCAL.CMD
Remove a local resource mapping.

NET.CMD
Map a local resource to a server.

NETSTAT.CMD
Display node's resource map of local to remote resources, and current list of
logged on servers.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG1.TXT[2/7/2012 11:42:44 AM]

NAMES.CMD
Display contents of the node's NAMSVR.DAT file (the names of all requester and
server nodes).

1.3.2 System generation utilities

Table 1-6 lists the DR Net system generation utilities. These programs do not
replace your Concurrent CP/M or CP/M-86 system generation procedures. They are
used exclusively to generate the DR Net system image. All system generation
utilities, except NAMESMOD.CMD, are described in Section 4. NAMESMOD is
described in the "DR Net System Manager's Guide".

Table 1-6. DR Net system generation utilities

Format: Name
 Description

GENRQR.CMD
The program used to generate a DRNET.CMD file for use as CP/M-86 based
requester.

GENNET.CMD
The program used to generate a DRNET.CMD file suitable for use on a Concurrent
CP/M based computer as a requester, server, or simultaneous requester/server.

ADDNET.CMD
The program used to merge the DRNET.CMD file with your CCPM.SYS file and
produce a new CCPM.SYS file with network capability.

NAMESMOD.CMD
The program used to generate the NAMSVR.DAT data file that provides name
service for LOGON, LOGOFF, NET, NETSTAT, and NAMES programs.

EOF

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

DNSG2.WS4 (= "DR Net System Guide", section 2)

DR Net
System Guide

First Edition: March 1984

(Retyped by Emmanuel ROCHE.)

Section 2: DR Net architecture

DR Net network transactions are conducted on a system call basis. In a
Concurrent CP/M based computer, DR Net's invariant module creates a set of
interdependent, indefinitely repeating processes that first turn a calling
application's system calls into DR Net logical messages. Next, these processes
conduct the messages through the network hardware to a remote operating
system. There, the message is decoded, and the system call implemented.
Finally, the processes build a DR Net logical message from the return values,
and present the response to the calling application. Figure 2-1 illustrates
the relationships of the NDOS and the repeating processes in a Concurrent CP/M
requester/server node.

 /\
 / \
 / \
 +-------------+ +---<---< Watchdog >--->---+
 | Application |--+ | \ / |
 | Process | | V \ / V
 +-------------+ V /\ \/ / \
 / \ /Shadow
 < NDOS > < Process >
 \ / \ ^ \ * /
 ^ \/ \ / \ /
 +-------------+ | ^ \ / |
 | Application |--+ | \ / V
 | Process | /\ \/ /\
 +-------------+ / \ / \ / \
 / Input \ / \ / Output \
 / Message \ / V / Message \
 \ Routing / \ Routing /
 \ Process/ \ Process/
 \ * / \ * /
 \/ \/
 ^ /\ |
 | / \ V
 +----<---< NIOS >----<----+
 \ /
 \/

 * = There can be more than one of each of these processes

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

 in a single DR Net node.

 Figure 2-1. Concurrent DR Net processes

The medium of exchange between all processes, except the watchodg, is the DR
Net logical message. Figure 2-2 illustrates its components; see Appendix A for
the description of each field. The DR Net logical message is constructed by
the NDOS and shadow processes. The input and output message routing processes
pad the logical message with optional, un-initialized header and trailer bytes
before passing it to the NIOS. However, the logical message is not affected
when these empty fields are added. The length of the header and trailer are
user-defined, and set at system generation time.

 Field Length:
 1 1 or 2 1 or 2 1 1 or 2 1-65,536
 +---------+-------------+--------+--------+-----------+-------------+
 | Message | Destination | Source | System | Length of | Data Field: |
 | Format | Node & | Node & | Call | Data Field| All informa-|
 | Code | Process ID | Process| Number | |tion required|
 | | Number | Number | | | to execute |
 | | | | | | system call |
 | | | | | | remotely. |
 +---------+-------------+--------+--------+-----------+-------------+

 Number indicates length of field.
 Where two lengths are shown, the first is for format 00 and 01
 messages, and the second is for format 06 and 07 messages.

 Figure 2-2. DR Net logical message contents

In CP/M-86 based computers, the DR Net module performs system call screening
and message routing only between the application and the network hardware. The
DR Net model in Figure 2-1 is applicable to the CP/M-86 based requester with
two exceptions. First, separate processes do not perform the network tasks;
all functions are performed by the NDOS. Second, there are no shadow processes
in the CP/M-86 requester. (Shadow processes are found only in server nodes.)

Section 2.1 describes the functions associated with the NDOS module and the
shadow, input message routing, and output message routing processes found in
nodes running Concurrent CP/M. Section 2.2 follows with the description of the
CP/M-86 requester. Each of these presentations includes an explanation of the
DR Net initialization process. Section 2.3 completes the description of DR
Net's architecture with an explanation of DR Net's internal data structures.

2.1 Concurrent CP/M nodes

The NDOS and indefinitely repeating processes shown in Figure 2-1 each depend
on another process to contribute a specific task. The components shown in this
figure are the full complement found in a simultaneous requester/server node.
Requester-only nodes do not have the shadow process, and server-only nodes do

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

not have the NDOS. The processes are created during system initialization by a
routine called from the Concurrent CP/M initialization process.

2.1.1 Initialization

DR Net's GENNET system generation program creates a DRNET.CMD file that is
integrated with your Concurrent CP/M CCPM.SYS file by the ADDNET utility. This
results in a single CCPM.SYS file with DR Net installed. There is no need to
keep the DRNET.CMD file on the boot disk to load DR Net.

DR Net initialization occurs when the Concurrent CP/M system is cold booted.
As soon as this completes, the DR Net server function is available to all
requesters. However, the user must attach the network with the NETON utility
before the DR Net requester function is enabled. An "attach" creates the
network environment, which provides among other things the resource map in the
Requester Configuration Table, and allows requester processes to access the
network.

The DR Net initialization routine called by Concurrent CP/M's coldstart
procedure examines DR Net internal Parameter Table (see Section 2.3.1) and
performs the following:

 - The NIOS resident NET_INIT routine is called.

 - A pool of Requester Control Block is created. The number of Requester
 Control Blocks in the pool is derived by adding 1 to the sum of server
 and requester processes specified in the Parameter Table.

 - A watchdog process is created that maintains DR Net's server and
 requester time-out functions.

 - An input message routing process is created for each input Line Driver
 Control Block.

 - An output message routing process is created for each output Line
 Driver Control Block.

 - Each input and output message routing process calls its NIOS resident
 LD_INIT routine to mobilize the physical network input or output port.

These processes remain active as long as the computer is running.

2.1.2 NDOS requester module

The NDOS, or Network Disk Operating System, is an operating system module
loaded along with the other Concurrent CP/M modules at system coldstart. It
performs DR Net's screening function, and provides the support for the DR Net
system calls. Table 2-1 lists the DR Net functions. See the "DR Net
Programmer's Guide" for the description of their use.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

Table 2-1. DR Net system calls

Dec Hex Mnemonic Description
--- --- -------- -----------
 64 40 N_LOGON Log on a process to a server.
 65 41 N_LOGOFF Log off a process from a server.
 66 42 ?
 67 43 ?
 68 44 N_STAT Display the network status word.
 69 45 N_RCT Return the Requester Configuration Table,
 or set an entry in it.
 70 46 N_ATTRIB Set program compatibility attributes.
 71 47 N_SCT Return the Server Configuration Table.
 72 48 N_ERRMODE Set network error mode.
 73 49 N_ATTACH Attach process to the network.
 74 4A N_DETACH Detach process from the current network environment.
 75 4B ?
 76 4C ?
 77 4D N_PARATAB Return node's Parameter Table.

The DR Net functions, except N_ATTACH, are not available to a process, and the
NDOS call screening is not implemented for a process until that process is
attached to the network. The operator can attach the current process, all
parent processes, and all child processes with the NETON utility. A process
can attach itself or another process with the N_ATTACH function.

When a process attaches, DR Net allocates a Requester Control Block from the
pool and a Network Data Area from the Static Buffer, and makes a copy of the
Master Requester Configuration Table. (The Network Data Area (NDA) is a
temporary construct, similar to the User Data Area, necessary to sustain a
process's network activity. The NDA is maintained as long as the requester
process is attached to the network.) This provides the attached process with
its network environment and resource map.

After the network environment is in place, all disk drive, list device, and
queue related system calls made by an attached process initiate the same
sequence of tasks. The following six steps summarize the decisions made and
actions taken in this sequence.

 1. Concurrent CP/M's SUP (supervisor) module routes all of its disk
 drive, list device, and queue related calls to the NDOS. Otherwise,
 these calls are sent to the local module for implementation.

 2. The NDOS references the calling process's Requester Configuration
 Table to determine if the disk drive, list device, or queue is local
 or mapped to a server. If the resource is local, the call is sent back
 to the SUP for routing to the appropriate local module.

 3. If the local resource is mapped to a server and if that server is
 logged on, the NDOS builds a DR Net message in the Dynamic Buffer. To
 determine which output line is used to access the server specified,
 the NDOS calls the NIOS resident NET_OUT routine, and passes to it a
 pointer to the Requester Control Block.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

 4. NET_OUT fills in the Requester Control Block's LDCB # field with the
 appropriate output Line Driver Control Block number, and returns to
 the NDOS. The NDOS then signals the output message routing process
 associated with that Line Driver Control Block, and passes it to the
 same Requester Control Block pointer.

 5. The NDOS waits for the output message routing process to return with
 success of failure. When the output message routing process returns
 success, the watchdog process's trasaction time-out is sent, and the
 NDOS waits for the input message routing process to signal that the
 response message has been received. One of two results can occur while
 the NDOS is waiting:

 - The input message routing process signals that the message has
 been received.

 - The watchdog process expires and signals that the transaction
 has not returned within the time limit.

 If the output message routing process returns failure (indicating that
 the original request never arrived) or the watchdog process expires
 before the response is received, the NDOS returns a network error
 message to the calling process.

 6. When the NDOS is signalled by the input message routing process that
 the response message has been received, it does the following:

 - The message is read from the Dynamic Buffer and decoded.

 - The response is returned to the calling application according
 to Concurrent CP/M return conventions.

 - The response message space in the Dynamic Buffer is
 deallocated.

2.1.3 Output message routing process

There is one output message routing process for each output Line Driver
Control Block in the NIOS. The NDOS and shadow processes use the output
message routing process associated with a particular line driver number to
send a message. Which line driver to use is returned by the NIOS-resident
NET_OUT routine. When the output message routing process is not in use, it is
suspended.

Whenver a shadow process or the NDOS signals the output message routing
process, they provide a pointer to as specific Requester Control Block. The
output message routing process transfers the values for the current message
pointer and message buffer size from the Requester Control Block into the Line
Driver Control Block. To send the message, the Line Driver Control Block's
LD_DRVR function is called.

LD_DRVR returns with either a success or failure code. Success means that the

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

message was sent to the server node with no errors. The output message routing
process reportsthis result to the NDOS or shadow process, deallocates the
message space in the Dynamic Buffer, and waits for another signal. Failure
indicates that LD_DRVR could not send the message.

Before returning after a failure, the output message routing process calls the
current Line Driver Control Block's NIOS resident LD_ERR error recovery
routine. Only when this routine returns does the output message routing
process deallocates the message space in the Dynamic Buffer, and return the
network failure code.

2.1.4 Input message routing process

The input message routing process first allocates a message space in the
Dynamic Buffer. The size of this space is determined by adding the Parameter
Table values for the message header and message trailer to the largest current
message size. The input message routing process then writes the message's
buffer pointer and size value into its Line Driver Control Block, and calls
the NIOS-resident LD_DRVR routine. It has no further responsibilities until
this routine receives a message, and returns.

When LD_DRVR returns success, the input message routing process must decide to
whom the message belongs. It scans the pool of Requester Control Blocks in
search of one that matches the process in the message's source ID (SID) or
destination ID (DID) field, depending on whether the incoming message is a
request or a response. This search has one of the following four results:

 - A match is found. The input transport process copies the message size
 value and buffer pointer to that Requester Control Block, writes the
 "good" code to its Receive Status field, and signals the NDOS or
 shadow process.

 - No match is found but the message's function field contains a function
 64, N_LOGON, and the password is correct. The input message routing
 process scans the pool of Requester Control Blocks in search of one
 that is not allocated. When a blank Requester Control Block is found,
 it is allocated and a shadow process is created.

 - No match is found and the message is not an N_LOGON. This enables the
 input message routing process's error handling mechanism, which uses
 the standard message output protocol, to send an error message to the
 offending requester.

 - There is no match, the message contains function 64, but a Requester
 Control Block is not available, or the password is wrong. Again, the
 input message routing process's error handling mechanism is enabled to
 send an error message to the requester.

LD_DRVR can also return a NIOS failure condition to the input message routing
process. When this occurs, the input message routing process calls the current
Line Driver Control Block's NIOS resident LD_ERR function. After this routine
returns, the current buffer is deallocated, a new message space in the Dynamic

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

Buffer is allocated, and LD_DRVR is called. No message is sent to any waiting
process. It is expected that the waiting process's time-out routine will
return the failure code.

2.1.5 Shadow process

The input message routing process creates shadow processes as it receives
N_LOGON messages with the proper password. Each requester process that sends
an N_LOGON is granted a shadow process until the maximum number of shadow
processes specified in the Parameter Table is reached. A shadow process is
also not created should the N_LOGON message contain an erroneous password.

The shadow process remains assigned to a requester process until one of the
following occurs:

 - A log-off message is received from its requester process.

 - A failure code is returned by the output message routing process when
 the shadow process attempts to send a message.

 - A keep-alive (see following Note) message is not received within 45
 seconds.

 - The process does not open a file, access a list device, or call
 F_SFIRST or F_SNEXT within 15 seconds (see following Note).

Note: The last two items in this list are time-out functions monitored by the
watchdog process. See the description of the watchdog process below for
exaplanations of these two, server-only, timers.

After the shadow has been created, it immediately begins servicing requests.
This sequence of events, which is the same for all types of response messages,
consists of the following steps:

 1. The shadow process makes whatever system calls are necessary to
 perform the function specified by the request.

 2. Using its current message space in the Dynamic Buffer, the shadow
 builds the response message.

 3. The shadow calls the NIOS resident NET_OUT function to get the Line
 Driver Control Block number for the destination requester.

 4. The shadow signals the associated output message routing process to
 output the message, and waits for it to signal back with a success or
 failure code.

 5. If the output message routing process returns success, the shadow
 waits for another message. If the output message routing process
 returns failure, the shadow terminates itself, and its Requester
 Control Block and Static Buffer space are available for allocation.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

Under certain circumstances, shadow processes can wait indefinitely for a
message to arrive from their requesters. This is predicated on the continuous
receipt of the special keep-alive messages. However, there are circumstances
in which a shadow process does terminate itself from lack of use. Bot the
keep-alive and in-use functions are controlled by the watchdog process.

2.1.6 Watchdog process

In a requester node, the watchdog process decrements the value in the ticks-
to-time-out field in each allocated Requester Control Block. The NDOS sets
this field with the transaction time-out value when the output message routing
process returns success. If the time expires before the response message has
been received, the watchdog writes an error code in the Requester Control
Block's send status field, and signals the NDOS. Note that the transaction
time-out is a value entered at DR Net system generation time.

In a server node, the watchdog proces monitors two timer functions, the keep-
alive and the in-use time-outs. These are both predefined values that cannot
be changed.

Keep-alive time-out

Every 17 seconds in every requester node, the watchdog process sends a special
keep-alive message to all servers that are currently logged on by any attached
processes. In the servers, this message is interpreted to mean that the
requester is still active on the network. Should a keep-alive message not be
received in 45 seconds, the wathcdog assumes that the network link has failed,
or the requester node has crashed.

The purpose of the keep-alive time-out is to release server resources that are
allocated to requesters that, for any reason, are no longer active on the
network. The implications of a keep-alive failure at that all open files
belonging to the shadow process are closed, possibly preventing inclusion of
the most recent updates, and all entries in the file lock list are purged.
Note, too, that the requester process is not informed that it is no longer
logged on.

In-use time-out

The watchdog process also forces each shadow process to determine if it is in
use. Unless a shadow has received a message within the past 15 seconds, the
watchdog signals the shadow to evaluate itself according to the following
criterai:

 - Is it servicing a CP/M Release 2.2 or CP/NOS requester?

 - Does it have any open files?

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

 - Does it have any list jobs active?

 - Does it have any consoles in use?

 - Was the last system call serviced a function 17, F_SFIRST, or 18,
 F_SNEXT?

If the answer to all these questions is NO, the shadow process terminates
itself. Such a termination is transparent to its requester. No message is sent
by the server to indicate that its shadow process has been terminated.

The purpose of the in-use time-out is to purge shadow processes that are only
taking up space in the server. For example, a requester's TMP retains its
shadow process after the user has invoked an application. In this case, the
TMP's shadow process is taking up Static Buffer space and a Requester Control
Block that could be put to better use by another process. Because of the in-
use time-out, server congestion is minimized, and more requesters have more
frequent access to the server.

The implications of the in-use time-out are that a requester process that is
logged on to a server might not have a shadow process. When this occurs, DR
Net automatically sends an N_LOGON message when the requester process attempts
to access a resource mapped to that server. If there is no shadow process
available, DR Net polls the server until one can be created.

2.2. CP/M-86 requester nodes

Note: The DR Net NDOS adds several Concurrent CP/M functions to nodes running
CP/M-86. This allows applications designed to run under Concurrent CP/M to run
under CP/M-86 based nodes when they are attached to the network. The
additional system calls supported are described in the "DR Net Programmer's
Guide".

The DR Net system module is not integrated with the CP/M-86 system file.
Instead, the DRNET.CMD file created by the GENRQR system generation utility is
recorded separately, and loaded with the NETLDR utility. Figure 2-3
illustrates the relationship between DR Net and its CP/M-86 host after NETLDR
has been run.

 +--+-----------+
 DR Net | | NIOS |
 -+ +-----------+
 Module | | NDOS |<-----+
 +--+-----------+ |
 | | |
 | TPA | |
 | | |
 +--+-----------+ |
 | | BIOS | |
 | +-----------+ |
 CP/M-86 -+ | BDOS |<-X-X-+ (disabled)
 | +-----------+ |

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

 | | CCP | |
 +--+-----------+ |
 | Interrupt | 224--+
 | Vectors |
 +-----------+
 System Memory

 Figure 2-3. CP/M-86 requester memory organization

2.2.1 Initialization

The NETLDR utility performs the following tasks:

 - loads the file DRNET.CMD into the uppermost portion of the computer's
 memory

 - removes the memory required by DR Net from the BIOS's Memory Region
 Table (MRT)

 - saves the BDOS entry point at 0380h, and replaces it with a long
 pointer to the NDOS entry point

 - transfers control to the DR Net initialization routine which calls the
 NIOS-resident LD_INIT and NET_INIT routines before returning

Conceptually, these changes insert the NDOS between an application program and
CP/M-86. From this position, the NDOS screens all system calls to determine if
a disk drive, list device, or queue that is mapped to a server is referenced.

2.2.2 CP/M-86 request routine

The operation of the CP/M-86 requester is analogous to that of the Concurrent
CP/M requester, with the following broad exceptions:

 - Because CP/M-86 is a single threaded system, the input and output
 message routing processes are simple routines incorporated into the
 NDOS.

 - There is no watchdog process. If you want a time-out mechanism, it
 will have to be implemented in the NIOS.

 - Because there is not an input message routing process to monitor the
 network input line driver, the NDOS calls the NIOS resident NET_IN
 function to find out where to expect the incoming response message.

The CP/M-86 NDOS operates in a similar fashion to the Concurrent CP/M NDOS,
except that all (rather than just the disk drive, list device, and queue
related) system calls are trapped. However, only the disk drive, list device,
and queue related calls engage the NDOS's call screening process. As in a
Concurrent CP/M requester, the NDOS checks the resource's entry in the

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

Requester Configuration Table, to determine if it is mapped to a server.

DR Net's network transaction routine in a CP/M-86 requester follows the same
sequence of NIOS calls used by the Concurrent CP/M's NDOS, output message
routing process, and input message routing process.

Table 2-2 lists the routines in the sequence they are called, and reviews
their significance.

Table 2-2. NIOS call sequence in a CP/M-86 requester

Format: Function
 Significance

NET_OUT
Returns Line Driver Control Block for output line to server designated in
message.

LD_DRVR
Outputs message.

LD_ERR
Recovers from network error. (This function is called only when LD_DRVR
returns an error code.)

NET_IN
Returns Line Driver Control Block for input line of response message.

LD_DRVR
Inputs message.

LD_ERR
Recovers from network erro. (As above, this is called only when LD_DRVR
returns an error code.)

When the NDOS receives the response message, it returns the information to the
calling application according to CP/M-86 return conventions.

2.3 Internal data structures

DR Net has four internal data structures relevant to system implementation:

 1) The Parameter Table contains two types of variables: node dependent
 and implementation dependent. The node dependent variables contain
 values that uniquely identify the node, and that have a bearing upon
 the node's network functional role. The implementation dependent
 variables contain values that evolve from the network interface, and
 are the same in each node.

 2) The Requester Configuration Table is a node's resource map. The NDOS
 refers to this table to determine whether the disk drive, list device,

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

 or queue referenced in the system call is remote or local.

 3) The Requester Control Block contains network related data used by
 processes to conduct message between the DR Net processes and modules.

 4) The Line Driver Control Block contains pointers to the line driver
 dependent, message send or receive, initialization, and error recovery
 routines, as well as message buffer pointers and status information.
 Each network node has at least two Line Driver Control Blocks: one to
 send a message, and one to receive a message.

The Parameter and requester Configuration Tables are created, and their values
set by your responses to prompts displayed by the DR Net GENNET and GENRQR
system generation utilities. These programs are described in Section 4.

Requester Control Blocks are created by DR Net during DR Net initialization.
The values in each field are set as the block is allocated to a requester or
shadow process. In requesters, this happens when a process attaches. In
servers, this happens when an N_LOGON message is received. The Requester
Control Block remains allocated until the process detaches in a requester,
when a requester logs off in a server, or when the network connection fails.

The Line Driver Control Block is a data structure resident to the NIOS. Most
fields are initialized in the NIOS. However, two fields are used for the
temporary storage of data pertinent to the current transaction.

2.3.1 Parameter table

Each network node has its own Parameter Table. All values are set during DR
Net system generation with the GENNET and GENRQR utility. Where these fields
contain a number, the value is always expressed in hexadecimal.

Note: Any and all Parameter Table values can be set from the NIOS-resident
NET_INIT routine. When this routine is implemented, the corresponding entries
made with GENNET or GENRQR are overwritten.

Figure 2-4 illustrates the organization of the Parameter Table. Table 2-3
contains the field descriptions.

 Numbers indicate hex offset from first byte in table.

 00 01 02 03 04 05
 +------+----------+-------------+---------+--------+--------+
 | Node | # Shadow | # Requester | # LDCBs | Maximum Message |
 | ID | Processes| Processes | | Size |
 +------+----------+-------------+---------+--------+--------+
 06 07 08 09 0A 0B 0C
 +--------+-------+--------+-------+-------+--------+-------+
 | Message Buffer | Message Buffer | First | Dynamic Buffer |
 | Header Size | Trailer Size | Flag | Size |
 +--------+-------+--------+-------+-------+--------+-------+
 0D 0E 0F 10 11 12 13 14 15 16 17 18

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

 +--------+---------+------+-------+-----------------------+
 | Ticks to Timeout | Reserved | Password Field |
 | (in seconds) | | |
 +--------+---------+------+-------+-----------------------+
 19 1A 1B 1C 1D 1E
 +---------+--------+-----------+
 | Default | # RCTs | Reserved |
 | Server | | |
 +---------+--------+-----------+

 Figure 2-4. Parameter Table

Table 2-3. Parameter table field descriptions

Format: Field name
 Description

Node ID
The network ID number that uniquely identifies the node. Any value from 00h
through 0FEh is valid.

Shadow Processes
The total number of simultaneous, shadow processes that are supported on this
server node.

Requester Processes
The total number of simultaneous, attached requester processes that can be
supported on this requester node.

LDCBs
The total number of input and output Line Driver Control Blocks in the NIOS.

Maximum Message Size
The maximum length in bytes of a DR Net logical message. (See Appendix A for a
description of the DR Net logical message size requirements.)

Message Header Size
The number of bytes in the optional message header. Each DR Net logical
message is offset from the message buffer pointer in the Line Driver Control
Block by the value of this field. This allows you to insert information
necessary to sending the message from node to node.

Message Trailer Size
The number of un-initialized bytes in the optional message trailer. This area
is reserved by the NDOS and shadow processes in the Dynamic Buffer at the end
of each DR Net message.

First Flag
The first system flag allocated for DR Net's use. This is not the only flag
required by DR Net. (Every Requester Control Block is allocated a system
flag.) All flags used by DR Net must be initialized under Concurrent CP/M, and
reserved for DR Net's exclusive use.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

Dynamic Buffer Size
The total length of the DR Net buffer reserved for the temporary storage of DR
Net messages as they are input from, and output to, the network.

Transaction Time-out
The number of seconds allowed for a network transaction to complete before the
requester aborts the call. See Section 2.1.6, "Watchdog process", for a
description of the use of this parameter.

Password
In requester nodes, this is the default password used by the LOGON.CMD utility
when the operator does not enter a password in the command line. If the
operator enters a password, the contents of this field are ignored. In a
server node, this is the password that must be matched before a requester can
log on.

Default Server
The hexadecimal server node ID number referenced when no node is specified in
the LOGON, LOGOFF, or NET command lines. DR Net utilities also assume that any
name service file exists on the default server. For operator convenience, this
should usually be the requester node's principal server.

RCTs
The maximum number of Requester Configuration Tables that can exist at any one
time in a requester. This field, therefore, specifies the number of distinct
network mappings that a given node can support.

2.3.2 The Requester Configuration Table

Each requester node has a master Requester Configuration Table that defines
its default map of disk drives, list devices, and queues. The master table is
created by the GENNET or GENRQR program, and is immutable.

Note: Any and all Master requester Configuration Table values can be set from
the NIOS-resident NET_INIT routine. When this routine is implented, the
corresponding entries made with GENNET or GENRQR are overwritten.

Each requester process attached to the network uses a direct copy, or a
derivative copy, of the Master requester Configuration Table as its resource
map. A process acquires a direct copy when it attaches to the network and
neither the process nor its parent are already attached. This single copy is
then shared between that process and all child process it creates after the
attach. Note that all child processes of an attached process are automatically
attached to the network.

Derivative copies of the Requester Configuration Table are made when an
attached process attaches again. When this is done, DR Net makes a copy of the
current Requester Configuration Table for exclusive use by the attaching
process and all of the child processes it creates. More copies of the
Requester Configuration Table are made, until the maximum specified in the
Parameter Table is reached.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

In most cases, a single Requester Configuration Table for an entire process
family is sufficient. However, it is possible to create multiple, and possibly
conflicting, environments using the N_ATTACH function. For a description of
how a process's network environment is affected by multiple N_ATTACH calls,
see Section 1.3.3, "Network environments and process families", in the "DR Net
Programmer's Guide".

The user makes changes to individual map assignments with the NET and LOCAL
utilities. In addition, the N_RCT system call can be used to make changes from
an application. All changes made affect only the process's copy of the Table,
and never result in changes to the Master Requester Configuration Table.

Figure 2-5 illustrates the format of the Requester Configuration Table. Field
descriptions follow the illustration.

 (Numbers indicate hexadecimal offset from first byte in table.)

 Byte 1 Byte 2
 ------ ------ Typical of all
 00 01 Bits: 7 6-4 3-0 disk and list
 +---+---+ +-+---+---+---------+ device entries:
 | | | Reserved for |a| * | b |Server ID| a = network bit
 +---+---+ system use. | | | | | number | b = remote device
 +-+-|-+---+---------+ number
 \ +--> Reserved /
 \ /
Disk Drive Map: \ /
 + +
 02 03 04 05 06 07 08 09| 0A 0B| 0C 0D 0E 0F 10 11
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | 00(A) | 01(B) | 02(C) | 03(D) | 04(E) | 05(F) | 06(G) | 07(H) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | 08(I) | 09(J) | 0A(K) | 0B(L) | 0C(M) | 0D(N) | 0E(O) | 0F(P) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Reserved |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Reserved |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

List Device Map:

 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 |

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | 08 | 09 | 0A | 0B | 0C | 0D | OE | 0F |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Queue Map: (First 16 separate entries)

 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | * | Local Queue Name | Remote Queue Name :
 +-|-+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 +--> Type Flag

 72 73 74 75
 +---+---+---+---+
 : | | Remote|
 : * | * | Queue |
 : | | | | ID |
 +-|-+-|-+---+---+
 | +--> Server ID
 +------> (Last character of Remote Queue Name.)

 Figure 2-5. Requester Configuration Table

Disk Drive and List Device Maps

Table bytes 02h through 21h contain the mapping for local drives 00 (A)
through 0F (P), respectively. Similarly, bytes 42h through 61h contain the
mapping for list devices 0 through 15. Each map entry consists of two bytes.
The first byte contains the network bit and remote device number nibble, as
shown in Figure 2-5, to indicate the following:

 - The network bit value indicates whether system calls should access the
local device or the remote device, as follows

 bit 7 = 0: send calls to local device
 bit 7 = 1: send calls to remote device

 - The remote device number nibble contains the hexadecimal number of the
replacement device on the server.

The second byte of each field contains the hexadecimal ID number of the
destination server node.

Queue Map

Table bytes 62h through 1A1h contain the mapping for as many as 16 local
queues. The fields are used as follows:

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

 - The Type Flag byte replaces the network bit, to indicate whether this
 entry contains a mapping (non-zero) or is unused (0).

 - The Local Queue Name contains the 8 character ASCII name of the local
 queue to be mapped.

 - The Remote Queue Name contains the 8 character ASCII name of the
 server-based, replacement queue.

 - Server ID contains the hex ID number of the server node with the
 mapped queue.

 - Remote Queue ID contains the short pointer to the Queue Descriptor
 from the server's System Data Page.

2.3.3 The Requester Control Block

A pool of Requester Control Blocks is created during DR Net initialization in
each network server and requester node. DR Net determines the number of blocks
to be created by adding the values for "# Shadow Processes" and "# Requester
Porcess" in the Parameter Table. Unlike Requester Configuration Tables,
Requester Control Blocks are never shared.

In requester nodes, a Requester Control Block is allocated from the pool when
a process attaches to the network. It remains assigned until the process
detaches from the network.

In server nodes, a Requester Control Block is allocated from the pool to a
shadow process when a log on message is received. It remains allocated until a
log off message is received, or until an exceptional event occurs. The
exceptional events that cause a shadow process to terminate are described in
Section 2.1.5, "The shadow process".

Figure 2-6 illustrates the format of the Requester Control Block. Table 2-4
contains the field descriptions.

 Numbers indicate hex offset from first byte in block.

 00 01 02 03 04 05 06 07
 +---+---+---+---+---+---+---+---+
 | Reserved | * * | * | * |
 +---+---+---+---+-|-+-|-+-|-+-|-+
 | | | |
 | | | +--> Send Status
 | | +------> Receive Status
 | | Requester ID:
 | +----------> Network Process ID
 +--------------> Node ID Number

 08 09 0A 0B 0C 0D 0E 0F 10 11
 +---+---+---+---+---+---+---+---+---+---+

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

 | * | * |Number of Ticks|Long Pointer to|
 | | | | | until Time-out| Message Buffer|
 +-|-+-|-+---+---+---+---+---+---+---+---+
 | |
 | +--> Flag
 +------> Type

 12 13 14
 +---+---+---+
 | * | * |
 +---+---+-|-+
 | |
 | +--> LDCB #
 +--------> Current Message Buffer Size

 Figure 2-6. Requester Control Block

Table 2-4. Requester Control Block field descriptions

Format: Field
 Description

Requester ID
This two-byte field contains the hexadecimal requester node ID number and a
network process ID number. The process number is arbitrarily assigned by DR
Net in the requester node when the process attaches the network. This value is
created only for Concurrent CP/M requesters. The network process ID number for
CP/M-86 based requesters is always zero.

Receive Status
This byte indicates the current use status of the RCB, or the failure or
success of the last attempt to receive a message. This field can have the
following hexadecimal values:

 0 Empty, this RCB is not allocated.
 1 Receiving, the LD_DRVR function has been called, but has not returned
 success or failure yet.
 2 ?
 3 Receive good, the LD_DRVR function has completed, and a valid message
 is in the message buffer.
 4 ?
 5 Receive bad, the LD_DRVR function has completed, but the message
 buffer contents are not valid.
 6 ?
 7 The watchdog process timed out.
 8 A valid message is in the message buffer, but it is not a standard DR
 Net logical message.
 9 A keep-alive time-out occurred.

Send Status
This byte indicates the current use status of the RCB, or the failure or
success of the last attempt to send a message. This field can have the
following values:

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

 2 Sending, the LD_DRVR function has been called and has not returned
 success or failure yet.
 4 Send good, the LD_DRVR function has completed, and an acknowledge has
 been received from the destination.
 6 Send bad, the LD_DRVR function has completed, but there is no
 assurance that it was received properly.
 8 The send routine was called to send a non-standard message.

Type
This field indicates whether the Requester Control Block (RCB) is bound to a
requester or a shadow process. The values foind in this field have the
following definitions:

 0 RCB is not bound to any process.
 1 RCB is bound to a shadow process.
 2 ?
 3 RCB is bound to a requester process.
 4 Rerserved for system use.
 8 RCB will be bound to a shadow process, but the shadow is being
 created.

Flag
The system flag number assigned to this RCB.

Number of Ticks until Time-out
In Requester Control Blocks bound to requester processes, this field contains
the transaction time-out's current value. The value is reset when the output
message routing process returns success. In Requester Control Blocks bound to
shadow processes, this field contains the current value of the kee-alive time-
out.

Long Pointer to Message Buffer
The current location of the DR Net logical message in the Dynamic Buffer. The
value is copied from the Line Driver Control Block (LDCB) by the input message
routing process when a message is received, and copied to the LDCB by the
output message routing process when a message is sent. Unlike the message
pointer in the Line Driver Control Block, this pointer points directly to the
DR Net logical message. There is no intervening message header offset.

Current Message Buffer Size
This parameter represents the sum of the current message length, which is not
necessarily the maximum message length, the message header, and the message
trailer.

LDCB #
This byte contains the number of the Line Driver Control Block (LDCB) through
which the last message was received or sent. The NIOS NET_OUT and NET_IN
routines are responsible for setting this field.

2.3.4 The Line Driver Control Block

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

The NIOS contains a Line Driver Control Block (LDCB) for each network input
and output line. All fields, except the buffer size and the long pointer to
the message buffer, are set in the NIOS. These fields are transient. They are
set by the input and output message routing processes in Concurrent CP/M based
nodes, or by the NDOS in CP/M-86 based nodes, according to current values.

Figure 2-7 illsutrates the format of the Line Driver Control Block. Table 2-5
lists the field descriptions.

 Number indicates hex offset from the first byte in table.

 00 01 02 03 04 05 06 07 08
 +---+---+---+---+---+---+---+---+---+
 | * | * | * | * | * |
 +-|-+-|-+-|-+---|---+---+---|---+---+
 | | | | |
 | | | | +--> Long Pointer to the Message Buffer
 | | | +--------------> Current Message Buffer Size
 | | +--------------------> Type
 | +------------------------> Reserved
 +----------------------------> LDCB Number

 09 0A 0B 0C 0D 0E 0F 10
 +---+---+---+---+---+---+---+---+
 | * | * |
 +---+---|---+---+---+---|---+---+
 | |
 | +--> Long Pointer to the
 | Send or Receive Routine
 +------------------> Long Pointer to the
 Driver Initialization Routine

 11 12 13 14
 +---+---+---+---+
 | * |
 +---+---|---+---+
 |
 +--> Long Pointer to the
 Error Recovery Routine

 Figure 2-7. Line Driver Control Block

Table 2-5. Line Driver Control Block field descriptions

Format: Field
 Description

LDCB Number
A unique, hexadecimal ID number of the Line Driver Control Block in the NIOS.
The first Line Driver Control Block must be numbered 0, and multiple Line
Driver Control Blocks must be numbered sequentially. This is the number
written in the Requester Control Block by your NIOS NET_IN and NET_OUT
routines.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG2.TXT[2/7/2012 11:42:45 AM]

Type
This byte has one of the following two hexadecimal values:

 00 for an input Line Driver Control Block
 01 for an output Line Driver Control Block

Current Message Buffer Size
This two-byte, hexadecimal value defines the size of the message buffer that
has been passed to the driver for sending or receiving a message. This size is
always equal to the current largest logical message plus extra space for the
header and trailer. (The header and trailer values are taken from the
Parameter Table.) In all cases, the message sent or received can be less than
or equal to the size specified in this field. However, a message can never be
greater in length.

Long Pointer to Message Buffer
This field contains the offset and segment of the message buffer in which a
message to be sent currently resides, or to which a message that has been
received is to be transferred. The DR Net logical message is offset from the
pointer by the length of the header specified in the Parameter Table.

Long Pointer to the Driver Initialization Routine
This double word field contains the offset and segment of the line driver's
LD_INIT initialization routine.

Long Pointer to the Send or Receive Routine
This double word field contains the offset and segment of the line driver's
LD_DRVR driver routine. Depending upon the LDCB type, this is the routine that
either sends or receives a DR Net message.

Long Pointer to the Error Recovery Routine
This double word field contains the offset and segment of the line driver's
LD_ERR error recovery routine.

EOF

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG3.TXT[2/7/2012 11:42:46 AM]

DNSG3.WS4 (= "DR Net System Guide", section 3)

DR Net
System Guide

First Edition: March 1984

(Retyped by Emmanuel ROCHE.)

Section 3: The NIOS

The Network I/O System (NIOS) is the implementation dependent interface
between the network hardware and the DR Net proprietary module. The interface
consists of a set of functions for which you develop the supporting routines.
DR Net calls these functions in one of two ways. A jump table at the beginning
of the NIOS provides pointers to NIOS's global functions, and the Line Driver
Control Blocks provide pointers to the line driver dependent functions.

The extent to which you support these functions depends upon the features you
want to implement and your network hardware. For example, a no-frills
Concurrent CP/M requester/server only requires supporting routines for the
NET_OUT and the two LD_DRVR functions. In addition, an LD_DRVR routine for an
intelligent network controller requires much less support than would a network
controller that relied on program control for its lowest level protocols.

The NIOS description in this section is divided into three topics.

 - Section 3.1, "The NIOS structure", describes the NIOS organization.

 - Section 3.2, "The NIOS global functions", describes the five functions
 accessed from the NIOS's jump table.

 - Section 3.3, "The NIOS Line Driver functions", describes the three
 line driver dependent functions assessed through the pointers in the
 Line Driver Control Block.

3.1 The NIOS structure

The DR Net GENNET and GENRQR system generation utilities expect a NIOS.CMD
module that adheres to a specific format. There are three rules governing the
format of the NIOS.

 1) The NIOS must be contained in two CMD groups: a data segment and a
 code segment. Neither of these can exceed 65,536 bytes of memory.

 2) The NIOS data segment must be ORGed at 0100h, and have a specific
 structure.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG3.TXT[2/7/2012 11:42:46 AM]

 3) Any values in the CMD file header record for group descriptors A-BASE,
 G-MIN, and G-MAX fields are ignored by the DR Net system generation
 program.

3.1.1 NIOS data segment

The NIOS data segment must be organized as shown in Table 3-1.

Table 3-1. NIOS data segment structure

Address Definition
------- ----------
0000-00FF Unused Base Page (The base page can be used for local NIOS
 data, if so desired.)
0100-0103 Long Pointer to NET_OUT Routine
0104-0107 Long Pointer to NET_IN Routine
0108-010B Reserved
010C-010F Long Pointer to NET_STATUS Routine
0110-0113 Long Pointer to NET_WBOOT Routine
0114-0117 Long Pointer to NET_INIT Routine
0118-011F Reserved
0120-0133 Line Driver Control Block Number 00
0134-0147 Line Driver Control Block Number 01
0148-xxxx Additional Line Driver Control Blocks
xxxx+ Any Additional NIOS Data

The jump table at the beginning of the NIOS provides access to the five global
NET routines. The three line driver dependent routines are accessed through
the Line Driver Control Blocks. Each of these contains three long pointers:
one to the network port's input or output driver, another to its
initialization routine, and the last to an error recovery routine.

The Line Driver Control Blocks have a specific format, and some information
must be coded into them by the NIOS writer. The fields that must be defined
follow:

 - Line Driver Control Block number
 - line driver type (input or output)
 - LD_INIT initialization routine pointer
 - LD_DRVR message send or receive routine pointer
 - LD_ERR error recovery routine pointer

The NIOS is not limited to a specific number of Line Driver Control Blocks. In
addition, you can have different numbers of input and output Line Driver
Control Blocks, and more than one Line Driver Control Block for a single input
or output port. The only rules regarding the number and numbering of Line
Driver Control Block are as follows:

 - The Line Driver Control Block numbers must be numbered sequentially
 from 00h.

 - The number of Line Driver Control Blocks in the NIOS must equal the

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG3.TXT[2/7/2012 11:42:46 AM]

 number of Line Driver Control Blocks specified during GENNET and
 GENRQR.

3.1.2 NIOS code segment

The five global routines and the three driver dependent routines provide a
framework for building the NIOS's code segment. Unlike the data segment, there
are no format restrictions on the code segment.

The functions found in the NIOS code segment have some general restrictions.
First, some functions must be reentrant. That is, different processes must be
able to call these functions simultaneously. When a function must be
reentrant, it is noted in the descriptions that follow.

Second, NIOS functions must never call N_ATTACH, even to recover Parameter, or
Requester Configuration, Table values. If you foresee that these values might
be necessary, we recommend making copies of these tables as described in the
NET_INIT function.

Third, some NIOS functions must not make BDOS calls, or make any call that can
result in another network transaction. It is noted in the descriptions that
follow which calls must observe this rule.

Finally, any function can produce a load-time fixup. For example, an assembly
language instruction SEG pseudo-operation is permissible. The DR Net system
generation utilities manage these fixups properly.

3.2 NIOS global NET functions

There are five global functions. Table 3-2 lists the functions by name, and
summarizes their purposes. Table 3-3 lists the input parameters and the
returned values expected by the calling process.

Table 3-2. NIOS global functions

Format: Function
 Purpose

NET_OUT
Return the output Line Driver Control Block number for the current
destination.

NET_IN
Return the input Line Driver Control Block number on which the response
message from the current destination can be expected (used in CP/M-86 only).

NET_STATUS
Return an implementation-defined status byte.

NET_WBOOT

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG3.TXT[2/7/2012 11:42:46 AM]

Perform a non-essential, implementation-defined, warm boot routine after a
function 0 or 143 is executed.

NET_INIT
Perform an optional initialization routine as a subroutine of DR Net
initialization.

Table 3-3. Global function input parameters and returned values

Function Input parameter Returned values
-------- --------------- ---------------
NET_OUT DX = RCB* offset Line driver number
 DS = RCB segment field in RCB updated.

NET_IN DX = RCB offset Line driver number
 DS = RCB segment field in RCB updated.

NET_STATUS DX = RCB offset Al = Network Status Byte
 DS = RCB segment

NET_WBOOT None None

NET_INIT DX = HCB* offset None
 DS = HCB segment

* = "RCB" indicates the "Requester Control Block", "HCB" indicates the "Header
Control Block".

None of these routines is expected to return values in any registers, except
NET_STATUS which returns the Network Status Byte in AL. However, NET_IN and
NET_OUT are expected to write a Line Driver Control Block number into the
Requester Control Block before returning. All global NET functions should
return to the caller by executing a RETF (return far) instruction. No
registers, except for SS and SP, need be preserved.

NET_OUT Network Output port

Return the output Line Driver Control Block (LDCB) number for the current
destination.

Entry Parameters:
 Register DX: Requester Control Block -- Offset
 DS: Requester Control Block -- Segment

 Returned Values: None

 Result: "LDCB #" field in Requester Control Block updated

The NDOS and shadow processes call NET_OUT to determine which Line Driver
Control Block should be used to send a message to a particular destination.
NET_OUT is provided a long pointer to the Requester Control Block in register

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG3.TXT[2/7/2012 11:42:46 AM]

pair DX and DS, and must update the Requester Control Block's "LDCB #" field.
Figure 3-1 illustrates the "LDCB #" field and other significant fields in the
Requester Control Block.

Note: Because it can be called by several processes simultaneously, NET_OUT
must be reentrant. It must also make no system calls that could cause the NDOS
to send a message, because the NDOS handles recursion only if no network
transaction takes place.

 Numbers indicate hex offset from first byte in block.

 00 01 02 03 04 05 06 07
 +---+---+---+---+---+---+---+---+
 | Reserved | * * | * |
 +---+---+---+---+-|-+-|-+---|---+
 | | |
 | | +----> System use only
 | | Requester ID:
 | +----------> Network Process ID
 +--------------> Node ID Number

 08 09 0A 0B 0C 0D 0E 0F 10 11
 +---+---+---+---+---+---+---+---+---+---+
 | * | System use only |Long Pointer to|
 | | | | Message Buffer|
 +-|-+---+---+---+---+---+---+---+---+---+
 |
 +------> Type

 12 13 14
 +---+---+---+
 | * | * |
 +---+---+-|-+
 | |
 | +--> LDCB #
 +--------> Current Message Buffer Size

 Figure 3-1. Significant Requester Control Block fields

In a simple NIOS where there is only a single output line driver, NET_OUT need
set only the number of the output Line Driver Control Block number at offset
14h from the Requester Control Block pointer. In systems with more than two
output lines, identifying which Line Driver Control Block is appropriate for
the current destination is more complicated. The Requester Control Block (RCB)
provides several values that can help your routine locate the right LDCB.

 - When the calling process is a shadow process, the current "LDCB #"
 field in the Requester Control Block contains the number of the line
 driver from which the request was read. (Recall that the NIOS can
 detect the calling process from the "Type" field, offset 08h, in the
 Requester Control Block. A 01h value indicates that the RCB is bound
 to a shadow process. A 03h value indicates a requester process owns
 the RCB.) In most cases, there is always a specific correlation
 between a given input line driver and the output line driver to be

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG3.TXT[2/7/2012 11:42:46 AM]

 used to send the response. However, when the Requester Control Block
 belongs to a requester process, the "LDCB #" value is undefined.

 - When the calling process is a shadow process, offset 04h from the
 Requester Control Block pointer always contains the destination node
 ID number. (However, when the RCB is bound to a requester process,
 this value is the current node number, and has little use.)

 - Requester Control Block bytes 0Eh through 11h contain a long pointer
 to the format field of the message to be sent.

The long message pointer gives NET_OUT direct access to the DR Net logical
message. Most important to NET_OUT's purpose is node ID in the message's
Destination ID (DID) field. In all cases, the destination node ID is a one-
byte value offset 1 byte from the start of the message.

Note: Unlike the LD functions, the message pointer in the Requester Control
Block points directly to the DR Net logical message's format byte. Figure 2-2
illustrates the contents of the logical message. A more extensive description
is provided in Appendix A.

NET_IN Network Input port

Returns the input Line Driver Control Block (LDCB) number for an expected
response message.

Entry Parameters:
 Register DX: Requester Control Block -- Offset
 DS: Requester Control Block -- Segment

 Returned Values: None

 Result: "LDCB #" field in Requester Control Block updated

This function is called only by the NDOS of a CP/M-86 requester. It is called
to return the Line Driver Control Block number of an incoming response
message. Because of the host operating system, this functions need not be
reentrant. However, it must not make any CP/M-86 system calls.

NET_IN is very similar to NET_OUT. Before the NDOS calls NET_IN, it places the
long pointer to the Requester Control Block in register pair DS and DX. All of
the Requester Control Block and DR Net message fields described in NET_OUT are
available to NET_IN to help identify the appropriate Line Driver Control Block
number. However, because the message has not been received, the node ID field
in the message buffer is undefined. Note that the "LDCB #" value in the
Requester Control Block when NET_IN is called contains the number of the Line
Driver Control Block used to output the request message.

NET_STATUS

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG3.TXT[2/7/2012 11:42:46 AM]

Return an implementation-defined network status byte.

Entry Parameters:
 Register DX: Requester Control Block -- Offset
 DS: Requester Control Block -- Segment

 Returned Values:
 AL: Network Status Byte

DR Net calls NET_STATUS after an application process has called function 68,
N_STAT. The NDOS provides NET_STATUS with a long pointer to the Requester
Control Block in register pair DS and DX. DR Net has no requirements for the
value returned in register AL. This function must be reentrant in all
Concurrent CP/M based nodes, and must make no system calls that result in the
NIOS initiating a network transaction.

Should you implement this function, note that DR Net sets several bits before
returning the information to the application. This is done after NET_STATUS
has returned. The bits initialized by DR Net are shown in Figure 3-2.

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 | * | * | * | * | * | * | * | * |
 +-|-+-|-+-|-+-|-+-|-+-|-+-|-+-|-+
 | | | | | | | |
 | | | | | | | +--> Free
 | | | | | | +------> Free
 | | | | | +----------> Reserved (*)
 | | | | +--------------> Free
 | | | +------------------> Logged On (*)
 | | +----------------------> Free
 | +--------------------------> Free
 +------------------------------> Reserved (*)

 (*) Regardless of the value returned by NET_STATUS, these bits are set to
 the appropriate value by DR Net before returning to the calling
 process.

 Figure 3-2. Network Status Byte

When bit 4 in the Network Status Byte is set, the calling process is logged on
to at least one server. Bits 7 and 2 are used, but are reserved for system
use.

NET_WBOOT Network Warm Boot

Non-essential warm-boot routine called by NDOS after P_TERM and P_TERMCPM.

Entry Parameters: None

 Returned Values: None

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG3.TXT[2/7/2012 11:42:46 AM]

NET_WBOOT is called from the NDOS whenever an application calls system
function 0 (P_TERM) or 143 (P_TERMCPM). It is provided as a convenience if you
want to implement some network operation that should take place at the end of
a program. For example, a NET_WBOOT routine could be written that sends a
series of special messages to check for electronic mail. This function should
be reentrant, and should make no system calls that would result in a network
transaction.

Note: DR Net passes no parameters to NET_WBOOT. In addition, DR Net is not
equipped to interpret a return value.

NET_INIT Network Initialization

Non-esential DR Net initialization routine.

Entry Parameters:
 Register DX: Header Control Block -- Offset
 DS: Header Control Block -- Segment

 Returned Values: None

NET_INIT is called from the DR Net initialization procedure when Concurrent
CP/M is cold booted, or when the CP/M-86 NETLDR utility is run. This routine
is provided a long pointer in register pair DS and DX to the DR Net Header
Control Block. Like NET_WBOOT, NET_INIT is provided as a convenience. It has
no DR Net or operating system related duties to perform. In addition, DR Net
requires no return value from NET_INIT. This function need not be reentrant,
and can use all of the system calls.

The Header Control Block is a series of long pointers. Table 3-4 lists the DR
Net routines and data structures available from these pointers. The lefthand
column in the table indicates the offset of each pointer from the pointer
passed by DR Net.

Table 3-4. The DR Net Header Control Block

Pointer DR Net Routine or
Offset Data Structure
------- --------------
00 - 03 DR Net Initialization routine pointer
04 - 07 DR Net Entry routine pointer
08 - 0B DR Net Data segment pointer
0C - 0F NIOS Data segment pointer
10 - 13 DR Net Code segment pointer
14 - 17 NIOS Code segment pointer
18 - 1B Parameter Table pointer
1C - 1F Master Requester Configuration Table pointer
20 - 23 Static Buffer pointer
24 - 27 Dynamic Buffer pointer

Notice that this table provides access to the Parameter and Master Requester
Configuration Tables. Consequently, NET_INIT can insert values in these tables

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG3.TXT[2/7/2012 11:42:46 AM]

when DR Net is loaded. All values set in this manner supercede the values
written by the GENNET or GENRQR DR Net system generation programs.

Another use of NET_INIT is to make copies of the Master Requester
Configuration and/or Parameter Tables. Recall that no NIOS function is allowed
to call the N_ATTACH function. Consequently, is any NIOS function must
reference the original network environment, the NET_INIT routine is the place
to preserve the original contents of these tables in a permanent reference
copy.

3.3 NIOS driver dependent LD functions

The following three functions differ from the NIOS global functions, because
they are line driver dependent. The routines are accessed by DR Net from long
pointers in the Line Driver Control Block. Table 3-5 summarizes the input and
return values of each function. For the description of the Line Driver Control
Block, see Section 2.3.4, "Internal data structures".

Table 3-5. Line Driver dependent function summary

Format: Function
 Description
 Input values
 Returned values

LD_INIT
Network driver initialization
DX = LDCB offset, DS = LDCB segment
AX = 0000h if success, 0FFFFh if failure

LD_DRVR
Input or output line driver
DX = LDCB offset, DS = LDCB segment
AX = 0000h if success, 0FFFFh if failure

LD_ERR
Error recovery
DX = LDCB offset, DS = LDCB segment
None

DR Net does not require a specific interface between the Line Driver Control
Blocks and network I/O ports. Figure 3-3 illustrates three NIOS architectures
that make use of different combinations of Line Driver Control Blocks (LDCB),
input and output LD_DRVR routines, and network controllers. Each sample is
described following the figure.

 1) A simple NIOS configuration

 +--------+ /--------\
 | Input |-->| Input |--+
 | LDCB | | LD_DRVR | | +--------------------+
 +--------+ \--------/ +-->| Network Controller |

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG3.TXT[2/7/2012 11:42:46 AM]

 +--------+ /--------\ | +--------------------+
 | Output |-->| Output |--+
 | LDCB | | LD_DRVR |
 +--------+ \--------/

 2) A NIOS with reentrant routines

 +--------+
 | Input |----+
 | LDCB | |
 +--------+ |
 +--------+ | /--------\ +------------+
 | Output |--+ +-->| Input |--+------>| Network |
 | LDCB | | | | LD_DRVR | | +-->| Controller |
 +--------+ | | \--------/ +-+ | +------------+
 +--------+ | | | |
 | Input |--+-+ +-+-+
 | LDCB | | /--------\ | | +------------+
 +--------+ +---->| Output | | +---->| Network |
 +--------+ | | LD_DRVR |--+------>| Controller |
 | Output |--+ \--------/ +------------+
 | LDCB |
 +--------+

 3) A NIOS with multiple LDCBs driving a single controller

 +--------+
 | Input |----+
 | LDCB | |
 +--------+ |
 +--------+ | /--------\
 | Output |--+ +-->| Input |--+
 | LDCB | | | | LD_DRVR | |
 +--------+ | | \--------/ | +--------------------+
 +--------+ | | +-->| Network Controller |
 | Input |--+-+ | +--------------------+
 | LDCB | | /---------\ |
 +--------+ +---->| Output |--+
 +--------+ | | LD_DRVR |
 | Output |--+ \--------/
 | LDCB |
 +--------+

 Figure 3-3. Sample NIOS architectures

 1. This simple NIOS architecture uses a single input and a single output
 LD_DRVR routine to service a single network controller.

 2. This NIOS architecture uses multiple network controllers, each of
 which can handle message input from, and output to, the network.
 Notice in this model that all controllers are serviced by the same,
 reentrant LD_DRVR input and output routines.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG3.TXT[2/7/2012 11:42:46 AM]

 3. In this model, multiple input and output Line Driver Control Blocks
 reference the same input and output LD_DRVR routines to service a
 single network controller. Certain efficiencies may be realized when
 multiple LDCBs are installed to access a single network controller,
 such as better message throughput, or better error handling
 characteristics.

In general, line driver routines need not be reentrant, although some of the
architectures described above make reentrancy desirable. Line drivers must
never call the N_ATTACH function. However, they can make use of any other
system calls, because the input and output message routing processes are not
logically attached to the network.

All line driver functions should return to their calling processes by
executing a RETF (return far) instruction. No registers need to be preserved,
except for the return code in AX, and SS and SP.

LD_INIT Line Driver Initialization

Initialize an input or output line driver.

Entry Parameters:
 Register DX: Line Driver Control Block -- Offset
 DS: Line Driver Control Block -- Segment

 Returned Values:
 Register AX: 0000h if success
 0FFFFh if failure

Each line driver's LD_INIT function is called by the input or output message
routing process created to manage the driver. (Recall that a separate routing
process is created for every LDCB in the NIOS.) In Concurrent CP/M based
nodes, this occurs when the computer is cold booted. In CP/M-86 nodes, this
occurs when NETLDR is invoked. In both cases, this is the only time LD_INIT is
called.

DR Net expects LD_INIT to return a 0000h if initialization of the line driver
is successful, or 0FFFFh if initialization fails. The message routing process
associated with the line driver terminates if failure is returned, and is not
recreated. If a line driver requires no initialization, the LD_INIT routine
should return with the success code in AX. For example, a single
initialization routine is sufficient to set and test many network controllers.
In this case, only one Line Driver Control Block's LD_INIT function needs to
be implemented.

Although line driver initialization is called only once by DR Net, this does
not preclude its use by other routines. LD_INIT can be called, for example,
from LD_ERR to reinitialize the hardware after an LD_DRVR failure.

LD_DRVR Send or receive driver

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG3.TXT[2/7/2012 11:42:46 AM]

Send or receive a message over the network.

Entry Parameters:
 Register DX: Line Driver Control Block -- Offset
 DS: Line Driver Control Block -- Segment

 Returned Values:
 Register AX: 0000h if success
 0FFFFh if failure

DR Net calls the LD_DRVR function to send or receive a message. The action
depends upon whether the LDCB called is dedicated to message input or message
output. For both message input and output, DR Net provides a long pointer to
the Line Driver Control Block which, in turn, contains a long pointer to the
message buffer. For input line drivers, this pointer marks the destination
address of your LD_DRVR routine. For output line drivers, this pointer
contains the message location. In return, the LD_DRVR must write 0000h to the
AX register to indicate that the message has been successfully sent or
received, or 0FFFFh if success cannot be guaranteed.

The LD_DRVR routines are expected to provide reliable, end-to-end message
service. This means that the NDOS input or output message routing process is
assured of the following when it sends or receives a message or sequence of
messages:

 - The message arrived with no errors.

 - The message was not longer than the size specified in the Line Driver
 Control Block.

 - A sequence of messages arrived with no duplicate messages.

 - The sequence arrived in the same order they were sent.

 - The sequence arrived with no missing messages.

If this cannot be guaranteed, the NIOS's output LD_DRVR on the sending node
and, whenever practical, input LD_DRVR on the receiving node should return the
error code to their respective message routing processes.

A "message size" field is also passed in the Line Driver Control Block. This
field can be used by a receiving driver to guarantee that an incoming message
is not larger than the buffer allocated to receive it. If the size of the
incoming message exceeds the message size specified, the message should not be
copied into the buffer, and 0FFFFh should be returned in AX.

It does not matter how messages are sent over the network. In fact, a single
logical message can be broken up into a sequence of smaller packets by your
NIOS. Should this be implemented, however, the receiving NIOS must be prepared
to reassemble the packets with the assurances listed above. The DR Net logical
message must conform to the server's expectations regarding size and contents
for the server to decode and implement it properly.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG3.TXT[2/7/2012 11:42:46 AM]

Note: DR Net logical messages are always offset from the message buffer
pointer in the Line Driver Control Block by a value equal to the header length
specified at system generation, and recorded in the Parameter Table. This is
unlike the Requester Control Block, where the pointer points directly to the
DR Net logical message. In addition, space is reserved at the end of the
message corresponding to the Parameter Table value for a message trailer.
Figure 3-4 illustrates how the DR Net message is positioned in the message
buffer.

 +---------+-----+--+--+--+--+-----+--+--+-...-+---------+
 | Message | | | | | | | Message |
 | Header | FMT | DID | SID | FNC | SIZ | ... | Trailer |
 | [from | | | | | | | [from |
 |Parameter| | | | | | |Parameter|
 | Table] | | | | | | | Table] |
 +---------+-----+--+--+--+--+-----+--+--+-...-+---------+
 | | | |
 | | +-----+--> DAT
 | | DR Net Logical Message |
 | +-----------------------------------+
 +--> LDCB pointer points here

 Figure 3-4. Dynamic Buffer allocation for network messages

The LD8DRVR send routine can write your header directly into the space
allocated at the message buffer pointer without affecting the DR Net message.
Accordingly, if your header requires information from the DR Net message
header (such as the message format code, destination node ID, or source node
ID), your LD_DRVR routine must pass over the header bytes to locate the
information.

A note of warning regarding message trailers: if your LD_DRVR writes a trailer
directly into the buffer that is longer than the length allotted, you might
violate memory space allocated to another message.

Using a message header and trailer also affects your LD_DRVR input routine. If
they are used, do not strip off the header, or expand the trailer in your
input routine. DR Net does not care what values are recorded in these fields,
but it does expect to find the DR Net message offset by the header value.

There are two more considerations when constructing your LD_DRVR routines.

 - First, a Concurrent CP/M input LD_DRVR routine should not make
 extensive use of CPU time. This has a detrimental effect on your
 system performance. Consequently, the input LD_DRVR should make use of
 synchronization primitives, such as flags and queues, to minimize
 overhead while waiting for a message.

 - Second, DR Net is capable of handling any logical message with formats
0 through 7. DR Net automatically converts all messages to format 6 or 7 and,
should a response message be required, compresses the message back to the
original format. Your LD_DRVR routine might be affected by these different
formats, since the size and location of key fields in the DR Net logical
message header may change.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG3.TXT[2/7/2012 11:42:46 AM]

Note: If your CP/M-86 requester intends to send messages to an MP/M II server
running CP/NET Version 1.2, you must be aware that this server accepts only
format 0 requests. Consequently, your NIOS must be able to automatically
convert format 6 to format 0 requests when the destination is the MP/M II
server. Accordingly, your NIOS must also expand format 1 to format 7 responses
before they are transferred to the message buffer.

LD_ERR Error Recovery

Recover from failure of input or output line driver routine.

Entry Parameters:
 Register DX: Line Driver Control Block -- Offset
 DS: Line Driver Control Block -- Segment

 Returned Values: None

LD_ERR is called by an input or output message routing process only after an
LD_DRVR routine has returned failure. The routine is provided so that you can
recover from any consequences of the failed transaction. DR Net expects no
return value from this routine.

Note: This function should not be used to resend a message. All retries should
be performed by the LD_DRVR routine. Once the 0FFFFh failure code has been
received by DR Net, it cannot be changed.

EOF

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

DNSG4.WS4 (= "DR Net System Guide", section 4)

DR Net
System Guide

First Edition: March 1984

(Retyped by Emmanuel ROCHE.)

Section 4: DR Net system generation

DR Net system generation combines a DR Net invariant module with an assembled
NIOS. For Concurrent CP/M based network nodes, system generation requires
three steps. The same procedure for a CP/M-86 based node requires only the
first two.

 1. Create your NIOS.CMD file.

 2. Run the DR Net system generation utility appropriate to the node's
 host operating system. Use GENRQR.CMD for a CP/M-86 based system, or
 GENNET.CMD for a Concurrent CP/M based system. (CP/M-86 requesters are
 through at this point.)

 3. Run ADDNET.CMD to merge the DR Net module with the CCPM.SYS file.

Besides combining the DR Net invariant module with your NIOS, GENNET and
GENRQR utilities also display a series of prompts. The responses to these
prompts set all Parameter Table and Master requester Configuration Table
values for the node. They also determine implicitly the size of the Static
Buffer, and explicitly the size of the Dynamic Buffer.

This section describes how to generate a DR Net system image from your NIOS
source file, and the resource files provided with DR Net. The first part
describes how to create your NIOS. After that, the system generation programs
used to create the different kinds of nodes -- requesters, servers, and
requester/servers -- are described. The descriptions include explanation of
the prompts displayed by the programs, and the criteria used to respond
accurately. The possible GENNET and GENRQR error messages are also described.

4.1 Creating the NIOS

Before you run the DR Net system generation utilities, you must create a
NIOS.CMD file. The discussion below assumes a NIOS written in RASM-86 assembly
language. However, it is also possible to write a NIOS in a high-level
language, provided it obeys the NIOS.CMD format restrictions described in
Section 3.1, "NIOS structure".

Assembling the NIOS is the same as assembling any other relocatable, small

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

model (independent code and data segments) program. Use either the RASM86.CMD
and LINK86.CMD, or ASM86.CMD and GENCMD.CMD programs, to produce the NIOS.CMD
file. The command sequence for each is shown in Table 4-1.

 Table 4-1. Command sequence to assemble your NIOS

 With ASM-86 With RASM-86
 ----------- ------------
 ASM86 NIOS RASM86 NIOS
 GENCMD NIOS LINK86 NIOS

Note: If ASM86.CMD is used, the beginning of the NIOS data segment must be
offset by 0100h with an ORG directive.

The NIOS.CMD file created by both procedures is merged with one of the three
proprietary DR Net files by GENNET or GENRQR.

4.2 DR Net system generation

Once the NIOS is created, use the system generation utilities to combine it
with a specific DR Net resource file. The utilities and system generation
procedures used for Concurrent CP/M and CP/M-86 bases systems are as follows:

 - For a Concurrent CP/M based system, use GENNET.CMD to create a
 DRNET.CMD file. Next, use ADDNET to merge this file with your CCPM.SYS
 Concurrent CP/M system image file.

 - For a CP/M-86 based system, use GENRQR.CMD to create a DRNET.CMD file.
 (The DRNET.CMD is then dynamically loaded with the NETLDR.CMD
 utility.)

Before the DRNET.CMD file is constructed, GENNET and GENRQR display a series
of prompts. Your answers fill the Parameter Table and Master Requester
Configuration Table. Although these values are permanently recorded as part of
the system image, they can be changed (when DR Net is loaded) by your NIOS
resident NET_INIT routine. The size of the Static and Dynamic Buffers are also
set from GENNET. However, these values are considerably more difficult to
modify from NET_INIT.

GENNET and GENRQR share many of the same prompts. GENRQR, in fact, differs
primarily in that the server related questions have been removed. Table 4-2
lists the complete set of DR Net system generation resource files and
utilities for Concurrent CP/M and CP/M-86 based systems.

Table 4-2. DR Net system generation files and utilities

Concurrent CP/M based nodes

Format: File name
 Description

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

GENNET.CMD
The utility to generate the DRNET.CMD system image file.

ADDNET.CMD
The utility to generate a CCPM.SYS file from CCPM.SYS and DRNET.CMD files.

NIOS.CMD
Your assembled and linked NIOS.

CCPM.SYS
Your Concurrent CP/M system image.

RNET.CMD
The requester-only invariant module.

SNET.CMD
The server-only invariant module.

RSNET.CMD
The requester/server invariant module.

CP/M-86 based requesters

Format: File name
 Description

GENRQR.CMD
The utility to generate the DRNET.CMD system image file.

NIOS.CMD
Your assembled and linked NIOS.

RNET.CMD
The requester function source file.

NETLDR.CMD
The user utility that loads DR Net, and attaches the network.

Note: The RNET.CMD provided for CP/M-86 based systems, and the RNET.CMD
provided for Concurrent CP/M based systems, are entirely different, and must
not be confused.

The files listed under Concurrent CP/M in Table 4-2 are the complete set.
However, all of the resource files are not necessary to generate some DR Net
systems. For instance, GENNET only requires SNET.CMD to build a server node.
RNET.CMD and RSNET.CMD are not used. Similarly, only RSNET.CMD is necessary to
make a requester/server node.

Figures 4-1 and 4-2 illustrates the GENNET and GENRQR dialogues, respectively.
The prompt descriptions that follow are applicable to both programs. How to
integrate the DRNET.CMD file with the local operating system is described in
Section 4.2.4, "Generating a Concurrent CP/M based node", and Section 4.2.5,

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

"Generating a CP/M-86 based node", at the end of this section.

Note: The square bracketed ("[" and "]") numbers shown in the leftmost columns
of Figures 4-1 and 4-2 are not displayed during GENNET or GENRQR execution.
They are included for reference purposes only.

 Please answer the following questions. All numbers are in
 hexadecimal unless preceded by a pound (#) sign. Defaults
 are in parentheses.

[1] What is this machine's physical node ID? :
[2] How many shadow processes can run on this machine? (10):
[3] How many processes can run as network requesters? (0C):
[4] How many copies of the Requester Configuration Table? (08):
[5] How many input Line Driver Control Blocks (LDCBs)? (01):
[6] How many output Line Driver Control Blocks (LDCBs)? (01):
[7] What is the first flag available for use by DR Net? (20):
[8] What is the maximum message buffer size? (10B):
[9] What is the length of any end-to-end message header? (00):
[10] What is the length of any end-to-end message trailer? (00):
[11] How big should the message buffer pool be? (2000):
[12] How many seconds until a transaction timeout? (06):
[13] Network server password (8 characters limit) (PASSWORD):
[14] What server should be your default server? (00):

[15] Note: Flags nn through nn must be used only by the network.

[16] Is all of the information above correct? (Y/N):

[17] What disks do you want mapped across the network initially?
 (Use a carriage return when you are through mapping.)

 Local Disk Drive (A: through P:)? :
[18] Remote Disk Drive (A: through P:)? :
[19] Server node ID of the remote disk drive? :

[20] List all drives you want protected from network access
 (Use a carriage return when you are through mapping.)
 List a private drive :

[21] What printers do you want mapped across the network initially?
 (Use a carriage return when you are through mapping.)

 Local Printer Number (0 through F)? :
[22] Remote Printer Number (0 through F)? :
[23] Server node ID of remote printer? :

[24] What queues do you want mapped across the network?
 (Use a carriage return when you are through mapping.)

 Local Queue Name (8 characters or less)? :
[25] Remote Queue Name (8 characters or less)? :
[26] Server node ID of the remote queue? :

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

[27] Are all of the mappings above correct? (Y/N):

 Building DRNET.CMD ...
 Network System Generation Complete

 Figure 4-1. GENNET dialogue

 Please answer the following questions. All numbers are in
 hexadecimal unless preceded by a pound (#) sign. Defaults
 are in parentheses.

[1] What is this machine's physical node ID? :
[5] How many input Line Driver Control Blocks (LDCBs)? (01):
[6] How many output Line Driver Control Blocks (LDCBs)? (01):
[8] What is the maximum message buffer size? (10B):
[9] What is the length of any end-to-end message header? (00):
[10] What is the length of any end-to-end message trailer? (00):
[11] How big should the message buffer pool be? (2000):
[13] Network server password (8 characters limit) (PASSWORD):
[14] What server should be your default server? (00):

[16] Is all of the information above correct? (Y/N):

[17] What disks do you want mapped across the network initially?
 (Use a carriage return when you are through mapping.)

 Local Disk Drive (A: through P:)? :
[18] Remote Disk Drive (A: through P:)? :
[19] Server node ID of the remote disk drive? :

[21] What printers do you want mapped across the network initially?
 (Use a carriage return when you are through mapping.)

 Local Printer Number (0 through F)? :
[22] Remote Printer Number (0 through F)? :
[23] Server node ID of remote printer? :

[24] What queues do you want mapped across the network?
 (Use a carriage return when you are through mapping.)

 Local Queue Name (8 characters or less)? :
[25] Remote Queue Name (8 characters or less)? :
[26] Server node ID of the remote queue? :

[27] Are all of the mappings above correct? (Y/N):

 Building DRNET.CMD ...
 Network System Generation Complete

 Figure 4-2. GENRQR dialogue

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

4.2.1 GENNET and GENRQR prompt descriptions

GENNET and GENRQR run under Concurrent CP/M and CP/M-86. They display the
prompts shown in Figures 4-1 and 4-2, respectively, that allow you to set the
values for the node's Parameter Table and Master Requester Configuration
Table, and specify the size of the Static and Dynamic Buffers. All entries are
interpreted as hexadecimal values. The values shown in parenthesis in the two
figures are the DR Net defaults that are selected by entering a carriage
return. Two types of error messages can be displayed. First, an improper entry
can cause an immediate error message. Second, GENNET calculations for Dynamic
and Static Buffer sizes can generate errors.

In the prompt descriptions that follow, the numbers in the lefthand column
reference the square bracketed ("[" and "]") numbers in Figure 4-1 and 4-2.
These numbers have no other significance. Following the prompt explanations,
the error messages displayed by GENNET and GENRQR are described.

Table 4-3. GENNET and GENRQR prompts and descriptions

Format: Message
 Meaning

[1] What is this machine's physical node ID?
The unique hex ID number of this node. Values available are 00h through 0FEh.
Nodes need not be numbered sequentially.

[2] How many shadow processes can run on this machine? (10)
This prompt determines whether or not the node functions as a server on the
network. Notice that the question does not ask how many requesters can access
it. Rather, it asks for the number of shadow processes for which it should
reserve memory resources. The difference is important, because one requester
can have multiple concurrent processes, each using the network. Each server
requires three pages (768 bytes) of Static Buffer memory.

[3] How many processes can run as network requesters? (0C)
This prompt determines whether or not the node functions as a requester on the
network. Notice that this question has nothing to do with the number of
shadow processes this node can talk to at any one time. Instead, the number
specifies how many local processes can be attached to the network at any one
time. The value entered impacts upon system memory resources, because each
requester process requires 704 bytes of memory, not including the standard
Process Descriptor (PD) and UDA requirements, when it is attached.

[4] How many copies of the Requester Configuration Table? (08)
Every process family attached to the network has at least one Requester
Configuration Table. When a process already attached calls the DR Net N_ATTACH
function, it gets another copy. The value entered stipulates the maximum
number of copies of the Requester Configuration Tables to be allowed, so that
memory resources can be allocated. Each copy of this table requires 422 bytes.

[5] How many input Line Driver Control Blocks (LDCBs)? (01)
It is essential that the number entered in response to this prompt corresponds
exactly to the number of input Line Driver Control Blocks in the NIOS.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

[6] How many output Line Driver Control Blocks (LDCBs)? (01)
It is esential that the number entered in response to this prompt corresponds
exactly to the number of output Line Driver Control Blocks in the NIOS.

[7] What is the first flag available for use by DR Net? (20)
The total number of flags required is equal to the number of shadow processes
specified in the second prompt, plus the number of requester processes
specified in the third prompt, plus 1. GENNET begins allocating flags from the
value entered in response to this prompt, and stops when every process has
been accounted for, or the value 0FFh has been exceeded. A message appears on
the console later on in GENNET (see the description of prompt 15 below) to
indicate which flags are allocated for DR Net's use. These flags cannot be
used by another system process.

Note: GENNET assumes that the entire range of flags has already been allocated
in GENCCPM. If this is not true, generate another CCPM.SYS file with enough
flags before running ADDNET as described below.

[8] What is the maximum message buffer size? (10B)
This value sets the maximum length of the DR Net logical message. The input
message routing process refers to this value and the values entered for the
optional message and trailer when it reserves message buffer space to
accomodate an incoming message. Note that the default value is also the
minimum. Any size smaller than 010Bh is automatically rounded up to this
value.

[9] What is the length of any end-to-end message header? (00)
This value stipulates the offset of the DR Net message from the message buffer
pointer passed to the NIOS in the Line Driver Control Block. If 0 is entered,
the first byte (the FMT byte) of the message is at the pointer address.

[10] What is the length of any end-to-end message trailer? (00)
This value indicates the amount of space allocated at the end of each DR Net
message in the Dynamic Buffer.

[11] How big should the message buffer pool be? (2000)
This prompt directly specified the size of DR Net's Dynamic Buffer. The
Dynamic Buffer is used only for temporary message storage, as they are
transferred to and from the network controller. How much memory to allocate to
the Dynamic Buffer depends not only upon the message size, but also the
projected number of messages active in the buffer at one time. You will find
below formulas for determining the minimum and maximum buffer value, given
these considerations. The value entered cannot exceed 64 KB, and is routnded
up, so that there are an integral number of Allocation Units. (Allocation
Units are described below.)

Minimum Dynamic Buffer value is: Message Block * (#IN + 1)

Maximum Dynamic Buffer value is: Message Block * (R + S + #IN + 1)

The variables used in these equations are defined as follows:

 - Message Block

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

 Maximum message length + header + trailer (see prompts 8, 9, and 10)
 in whole Allocation Units. (Message space is reserved in the Dynamic
 Buffer in whole Allocation Units. Allocation Units are explained in
 the description of Figure 4-3 below.)

 - #IN
 The number of input Line Driver Control Blocks (see prompt 5).

 - R
 The number of requester processes (see prompt 3).

 - S
 The number of server, shadow processes (see prompt 2).

Figure 4-3, below, illustrates the components of the Dynamic Buffer.

The factors that decide whether the minimum, maximum, or a value in between
should be entered are weighted by concerns for memory resources and the rate
of message throughput. The minimum value is enough to prevent message buffer
deadlocks. (For a description of deadlocks, see Section 4.2.3, "Error
messages", below.) This optimizes memory allocation, but can result in wait
periods for an open buffer when message traffic is heavy. Use the minimum in
requesters and servers where only occasional use is made of the network. Where
you foresee heavy traffic, a buffer size toward the maximum value should be
selected. This value impacts upon your memory resources, but it provides
unimpeded message throughout.

[12] How many seconds until a transaction timeout? (06)
The value determines how many seconds are allowed to elapse for a transaction
time-out. (The transaction time-out is described in the NDOS and watchdog
process descriptions, in sections 2.1.2 and 2.1.6, respectively.

The transaction time-out value specified should be long enough that there is
absolutely no chance that the response will be received after the time-out has
occurred. If a response is ever received after the corresponding time-out has
been signalled, DR Net can behave unreliably.

Note: To disable the watchdog process's transaction time-out, enter a 0 in
response to this prompt. This causes a requester to wait indefinitely for a
response, and is therefore not advised.

[13] Network server password (8 characters limit) (PASSWORD)
In a requester node, the value entered in response to this prompt is used by
utilities such as LOGON.CMD when no password is explicitly specified. In a
server node, this value is compared against the password in the N_LOGON
message before access is allowed. In a simultaneous requester/server, this
value serves both purposes.

[14] What server should be your default server? (00)
This hex value indicates a requester node's default server. (It has no meaning
in server-only nodes.) The default server has significance in two areas.
First, the default server is assumed to have the NAMSVR.DAT file used by many
DR Net utilities for substituting logical ASCII names for hex DR Net node ID
numbers. Second, the default server is the server node referenced when the

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

user omits the server ID number from the command line of a utility.

[15] Note: Flags nn through nn must be used only by the network.
This statement is displayed as a convenience to indicate the range of flags
that are reserved for exclusive use by DR Net. "nn" in both contexts
represents the first and last flag numbers of the range. 5the initial flag is
evoked in prompt 7.)

[16] Is all of the information above correct? (Y/N)
An "N" response returns you to prompt 1 above. All previous entries are
ignored. Only a "Y" response allows you to proceed. Note that upper- and
lower-case "N" and "Y" are accepted.

The previous prompt concludes the GENNET questions that set the Parameter
Table, Dynamic Buffer, and, implictly, Static Buffer values. The remainder of
prompts fill in the Master Requester Configuration Table's map entries. The
values entered in response to these questions are permanently recorded as part
of the DR Net system image. You can change these values when DR Net is loaded
with a NET_INIT routine, or users can temporarily change the disk drive and
list device maps with the NET and LOCAl utilities. In both cases, however, the
values in the system image are not affected.

GENNET cycles repetitively through the next three prompts, and accepts a
different mapping for disk drives A through P. This same style of prompts is
displayed to map list devices and queues. To terminate any of the mapping
prompts for drives, list devices, or queues, enter a carriage return in
response to the first prompt of the series.

[17] What disks do you want mapped across the network initially?
 (Use a carriage return when you are through mapping.)

 Local Disk Drive (A: through P:)?

Enter the name of a local drive to which you wish to refer when accessing a
networked disk drive. This could be a local drive name for which you have a
physical drive (drive B for example), or a virtual drive. In either case, all
references to that drive are trapped and sent to the drive specified by the
next two prompts. Enter a carriage return to complete the mapping of disk
drives.

[18] Remote Disk Drive (A: through P:)?
Enter the logical name of the disk drive that you want to serve as the drive
specified in the previous prompt.

[19] Server node ID of the remote disk drive?
Enter the hex ID node number of the node with the replacement drive. Node
names cannot be used in GENNET; only hex numbers in the range 00h to 0FEh are
accepted by this program.

[20] List all drives you want protected from network access
 (Use a carriage return when you are through mapping.)
 List a private drive (A: through P:)

Drive names entered in response to this prompt are withheld from access by

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

requesters. After each entry, the prompt is redisplayed asking for another.
A carriage return terminates this prompt, and allows you to proceed. Attempts
by any requesters to access a drive marked as private return a BDOS select
error, not a network extended error.

[21] What printers do you want mapped across the network initially?
 (Use a carriage return when you are through mapping.)

 Local Printer Number (0 through F)?

Local printers, like drives, are mapped individually to a specific, remote
list device. A series of three prompts very similar to those displayed for
drives (only the resource is different) are displayed, allowing you to map up
to 16 list devices. In response to the first prompt, enter the physical list
device number of the local printer you wish to refer to when accessing the
networked printer. Any hexadecimal value from 0 through F is valid. Enter a
carriage return in response to this prompt to terminate list device mapping.

[22] Remote Printer Number (0 through F)?

Enter the physical list device number of the replacement printer. Any
hexadecimal value from 0 through F is valid.

[23] Server node ID of remote printer?
Enter the hex ID number of the server node to which the replacement printer is
attached. Only hex values 00h through 0FEh are valid; node names cannot be
used.

[24] What queues do you want mapped across the network?
 (Use a carriage return when you are through mapping.)

 Local Queue Name (8 characters or less)?

Local queues, like list devices and disk drives, are mapped individually to a
specific, remote queue. A series of three prompts just like those for printers
and drives are displayed, allowing you to map up to 16 different queues. In
response to the first prompt, enter the name of the local queue you wish to
refer to when accessing the remote queue. Because both upper- and lowercase
queue names are valid, be sure to use the proper case for each letter, and
observe the 8 character limit. Enter a carriage return in response to this
prompt to terminate queue mapping.

[25] Remote Queue Name (8 characters or less)?
Enter the name of the replacement queue, being careful to match the case of
each character. The name need not be the same as the Local Queue Name entered
above. Again, there is an 8 character limit.

[26] Server node ID of the remote queue?
Enter the hex ID number of the server node where the replacement queue is
located. Only hex values 00h through 0FEh are valid; node names cannot be
used.

[27] Are all of the mappings above correct? (Y/N)
The last prompt allows you to reconsider your entries for the Master Requester

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

Configuration Table. An "N" response returns you to the first prompt of the
drive mapping series. Otherwise, a "Y" response proceeds with the building of
the DRNET.CMD file. This prompt accepts either upper- or lowercase responses.

 Dynamic Buffer
 +-- +-----+
 | | |
 | +-----+-+
 | | | |
 | Actual +-+-----+ | Message Block
 Total length | Message | | | |
 set in GENNET --+ Requirement +-+-----+-+
 | | |
 | Actual +-+-----+-+
 | Message | | | | Allocation Unit
 | Requirement +-+-----+-+
 | | |
 +-- +-----+

Where:
 Maximum Message Length + Header + Trailer
 Message Block = ---
 Allocation Unit

 Allocation Unit = 010Bh + Header + Trailer

 Figure 4-3. Dynamic Buffer allocation

Notice in Figure 4-3 that the entire buffer is divided into Allocation Units.
An Allocation Unit is equal to 010Bh (267) bytes, plus the length of the
message header and message trailer specified in the Parameter Table. As
mentioned above, DR Net allocates space in the Dynamic Buffer in whole
Allocation Units only. Consequently, DR Net's internal message allocation
mechanism does on occasion allocate more buffer space than actually required
by the message.

4.2.2 System Manager information

Because a computer network requires a higher order of care and attention than
a single user system, we have compiled the descriptions of DR Net installation
and maintenance into the "DR Net System Manager's Guide". This manual explains
in general terms DR Net architecture, network topology, software installation,
and other site dependent subjects. It also describes DR Net installation using
the GENNET or GENRQR utilities.

As mentioned elsewhere, the GENNET and GENRQR programs fill in values to the
Requester Configuration Table (RCT) and Parameter Table. The RCT values are
the site dependent parameters that establish the node's resource map. On the
other hand, many Parameter Table values are DR Net implementation dependent,
and an explanation of their options is beyond the scope of the "System
Manager's Guide". Consequently, the proper values for these parameters are not

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

apparent to the installer who is unfamiliar with your implementation.

Table 4-4 below highlights parameters that are not always obvious to the
system installer. There are three ways to ensure that the proper values are
incorporated:

 1) Provide the system installer with a list of the prompts, with the
 proper values.

 2) Use the NIOS-resident NET_INIT function to write the appropriate
 values into the table when DR Net is loaded.

 3) Create a small GENNET program that operates only on the user-
 modifiable parameters of the finished system image. Distribute this
 program with the network systems, instead of the GENNET and ADDNET
 programs supplied by Digital Research.

If the second option is selected, it does not matter what the system installer
enters, values written by your NET_INIT routine override values entered by
GENNET or GENRQR. Your NET_INIT routine has no rules regarding how the values
are determined. For example, the data can be set through special network
transactions, read from a local file, or entered by the user from console
interaction.

Note: The list in Table 4-4 is by no means all inclusive. To ensure that your
DR Net system is installed correctly, it might be necessary to map queues,
specify an exact Dynamic Buffer length, set the number of server and requester
processes, and so forth. Whatever is necessary, all Master Requester
Configuration Table and Parameter Table values can be incorporated with the
NET_INIT routine.

Table 4-4. Implementation bound Parameter Table values

Prompt
Number* Description
------ -----------
 5 The number of input Line Driver Control Blocks
 6 The number of output Line Driver Control Blocks
 7 The first flag available to DR Net
 8 The maximum message buffer size
 9 The message header length
 10 The message trailer length

* = This number refers to the prompt explanation immediately above. Those
numbers are not displayed by either GENNET or GENRQR.

4.2.3 Error messages

The system generation utilities prevent you from entering numbers outside the
range of acceptable values, and from specifying a configuration that cannot be
accommodated. Following is the list of error messages that can be encountered.
Preceding the message is the number of the prompt with which it is associated.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

(The numbers listed apply only to the above prompt descriptions. These numbers
are not displayed by the program.)

The two types of error messages are listed in Table 4-5. The first type is
characterized by the immediate display of the message after the offending
value has been entered. This class is further distinguished in that the prompt
is redisplayed to solicit the entry of another value.

For all errors of this type, the number in the lefthand column corresponds to
the numbers in Figure 4-1 and 4-2.

The other type of error message occurs after a series of related prompts, and
indicates a more profound configuration problem. When this happens, it might
be necessary to repeat the Parameter Table or Requester Configuration Table
portion of the GENNET prompts. This second type of error is preceded by an
asterisk ("*"), rather than a number, in the list below.

Table 4-5. GENNET and GENRQR prompt-phase error messages

Format: Number and Message
 Meaning

Invalid number.
No specific prompt is associated with this error message. It is displayed
whenever an illegal number, such as 0FMh, is entered. This message is not
displayed, however, if a valid number is displayed that is out of the range
allowed for that parameter.

1. Please specify a node ID in the range 00 - FE.
The hex node number entered was 0FFh or greater. Re-enter the node number with
a number in the given range.

2. Can't have more than 83 shadow processes.
More than 53h shadow processes were requested. Re-enter the parameter with a
value less than or equal to 53h.

3. Can't have more than 90 requester processes.
More than 5Ah networked, requester processes were requested. Re-enter the
parameter with a value less than or equal to 5Ah.

4. Can't have more than 149 local RCTs.
More than 95h copies of the Requester Configuration Table were ordered. Re-
enter the parameter with a value less than or equal to 95h.

5. Can't have more than 16 input line drivers.
More than 10h input Line Driver Control Blocks were specified. Re-enter the
parameter with a value less than or equal to 10h.

6. Can't have more than 16 output line drivers.
More than 10h output Line Driver Control Blocks were specified. Re-enter the
parameter with a value less than or equal to 10h.

* Parameters given need more than 64K of static storage.
The memory needs required to support the number of requester and shadow

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

processes, of Requester Configuration Tables, and of input and output message
routing processes, exceeds 64 KB. One or more of these values will have to be
reduced. See the equation for the Static Buffer in Section 1, "Hardware
requirements", for more information on DR Net's memory requirements.

7. Flags must be in the range 00 - FF.
The first flag entered was out of the range shown. Re-enter the parameter, and
specify a beginning flag number within the range.

* Too many flags are required to run this configuration.
The total number of requester and shadow processe specified requires a flag
number in excess of 0FFh. To correct this situation, enter a lower beginning
flag number, or specify fewer requester and/or shadow processes.

Note: This last message can also occur in response to an erroneous answer to
prompt 7.

11. Can't have a buffer pool larger than 64K.
The Dynamic Buffer specified was greater than 0FFFFh. Re-enter the parameter
with a number equal to or below this value.

* Buffer pool isn't big enough to guarantee no deadlocks.
GENNET uses the minimum value formula shown in Table 4-3 to determine if the
Dynamic Buffer specified in prompt 11 is large enough to prevent deadlocks. A
deadlock is a situation where there are no message buffers available and a
process is waiting to receive a message, so that it can deallocate a message
buffer. After this message is displayed, you are returned to the prompt 1.

14. Passwords should be 8 characters or less.
The password entered was in excess of 8 characters in length. Re-ebter the
password, and observe the 8 character limit.

15. Node IDs must be in the range 00 - FE.
The hex node ID number specified was FF or greater. Re-enter the parameter
with a value in the range shown.

16. Please type yes (Y) or no (N).
This prompt, and the last one, respond to an upper- or lowercase "Y" or "N"
only. Any other response results in this error message.

17. Disk drives should be in the range A: through P:.
This error message can also result from an errant entry to prompts 18 and 20.
It indicates that the entry was either a number, or outside the range shown.
Re-enter the value, and be sure to use the logical drive name, rather than a
number. Colons (":") are not necessary.

21. List devices must be in the range 0 - F to be networked.
This message indicates that the entry was a number outside the range shown.
Re-enter the value with a number within the range.

24. Queue names should be 8 characters or less.
The queue name entered was in excess of 8 characters in length. Re-enter the
name, and observe the 8 character limit. This message can also result from
responses to prompt 25 that exceed 8 characters.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

After the prompt phase has been completed, GENNET and GENRQR display the
message

 Building DRNET.CMD ...

and construct the DR Net system image file. Table 4-6 lists and explains the
error messages associated with this phase of DR Net system generation.

Table 4-6. GENNET and GENRQR file system error messages

Format: Message
 Meaning

Can't open network or NIOS input file.
GENNET cannot find or open either the RNET.CMD, SNET.CMD, RSNET.CMD, or
NIOS.CMD file. Confirm that these files are on the current disk, and ensure
that there is nothing to prevent them from being opened.

Can't allocate space to build the output file.
GENNET has run out of memory. The utility will have to be run in a segment
with a larger memory allocation, under a smaller operating system, or on a
machine with more memory.

Can't create the DRNET.CMD output file.
There is something that is preventing the file DRNET.CMD from being written to
the disk. Corroborate that the drive is not set to read only, that the write
protect notch is covered, and that there is enough space in the directory.

Error reading one of the input files.
A BDOS error was encountered while reading RNET.CMD, SNET.CMD, RSNET.CMD, or
NIOS.CMD. Verify that these files do not contain hard errors.

Unexpected error writing the DRNET.CMD output file.
A BDOS error was encountered while writing the DRNET.CMD file. Verify that the
disk has enough space.

4.2.4 Generating a Concurrent CP/M based node

GENNET success is indicated by the message

 Network System Generation Complete

and the return of the command prompt. The file DRNET.CMD is recorded on the
disk in the current drive. This does not, however, complete the installation
of DR Net with the Concurrent CP/M system. Before the system can be used as a
network node, you must run ADDNET.

The ADDNET utility merges the newly created DRNET.CMD file with your CCPM.SYS
file. The result is a new CCPM.SYS file with DR Net installed. ADDNET has a
single option that determines what is to happen to your original CCPM.SYS

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

file.

If you enter just

 ADDNET

your original CCPM.SYS is consumed by ADDNET, and disappears, giving way to
the new CCPM.SYS with DRNET.CMD installed.

If you enter

 ADDNET <filename.typ>

ADDNET assumes that the filename specified contains a Concurrent CP/M system
image identical to the one found in a CCPM.SYS without DR Net installed. The
output from the ADDNET is still written to a file named CCPM.SYS. Rename your
CCPM.SYS file, and use the optional ADDNET command line to preserve your
original Concurrent CP/M system image.

While ADDNET is running, the following messages are displayed to assure you
that the program is progressing without error. Table 4-7 lists the error
messages, and their meanings, displayed when ADDNET encounters a difficulty,
and cannot proceed.

 Reading in system image
 Reading in network system image
 Writing completed system to CCPM.SYS

 Addition of network to system image is complete

The new CCPM.SYS file is loaded by the Concurrent CP/M bootstrap loader, and
leaves the user with an initialized network node. This means that the server
function is available but DR Net must first be attached using NETON before the
operator can use the requester function.

Table 4-7. ADDNET error messages

Format: Error
 Meaning

ADDNET has already been run on this system file.
This indicates that the CCPM.SYS file provided to ADDNET was previously merged
with the DRNET.CMD.

Can't create output CCPM.SYS file.
This indicates that the destination disk, or the original CCPM.SYS, was set to
read only, or that there was no space left in the directory to create a new
CCPM.SYS file.

Can't open an input system file.
ADDnet could not open the CCPM.SYS file or the file specified in the ADDNET
command line. Confirm that the file is present on the current disk, and that
there are no restrictions preventing ADDNET from opening it.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG4.TXT[2/7/2012 11:42:47 AM]

Can't open the network input file DRNET.CMD.
ADDNET could not open or find the DRNET.CMD DR Net system image file. Confirm
that the DRNET.CMD file is present on the current disk, and that there is
nothing preventing ADDNET from opening it.

Encountered an error reading input file.
This indicates that an unrecoverable BDOS error occurred while reading either
the CCPM.SYS or DRNET.CMD file.

Encountered an error writing CCPM.SYS.
This indicates a disk full condition, or a unrecoverable BDOS error occurred.
Confirm that there is room on the disk at least equal to the total of your
CCPM.SYS and DRNET.CMD files.

Not enough memory to add the network to the system.
This message indicates that there is not enough memory for ADDNET to run and
merge the two system files. ADDNET requires a total of the following amounts
of memory to complete:

 - 31 KB of memory for the ADDNET program
 - memory to accomodate the entire CCPM.SYS file
 - memory to accomodate the entire DRNET.CMD file
 - 5 KB to 10 KB for overhead

4.2.5 Generating a CP/M-86 based node

GENRQR success is indicated by the message

 Network System Generation Complete

and the return of the command prompt. The file DRNET.CMD is recorded on the
disk in the current drive. This completes the DR Net system generation
procedure for a CP/M-86 based requester. Unlike the Concurrent CP/M based
nodes, the host operating system and DR Net system images are not merged with
the ADDNET program.

To load and attach DR Net in a CP/M-86 based node, the NETLDR program is used.
This reads the DRNET.CMD file, and initializes the network, as described in
the description of the CP/M-86 requester in Section 2.

EOF

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG5.TXT[2/7/2012 11:42:47 AM]

DNSG5.WS4 (= "DR Net System Guide", appendixes)

DR Net
System Guide

First Edition: March 1984

(Retyped by Emmanuel ROCHE.)

Appendixes

Appendix A: Network message contents

Messages output by DR Net requesters and servers have a fixed format. In turn,
DR Net requesters and servers expect all messages received from the network to
be in this same format. This appendix describes the DR Net logical message
format and the message contents for all system calls that can be executed
remotely.

A.1 DR Net logical message format

The DR Net logical message is the standard medium of exchange between
requesters and servers. The requester module automatically gathers all
pertinent data, and assembles the message into this format when a system call
references a remote resource. All the information required by the server to
perform the function is transferred in the DR Net.

The same format is used for servers' response messages. In this case, the
return value and all data requested in the initial call are returned, so that
the requester can present the response according to the calling convention.

Figure A-1 illustrates the format of the DR Net message. Each field is
described in Table A-1.

 0 1 2 3 4 5+
Formats +-----+-----+-----+-----+-----+-----+ +-----+
00h, 01h | FMT | DID | SID | FNC | SIZ | DAT | ... | DAT |
 +-----+-----+-----+-----+-----+-----+ +-----+

 0 1 2 3 4 5 6 7 8+
Formats +-----+-----+-----+-----+-----+-----+-----+-----+-----+ +-----+
06h, 07h | FMT | DID | SID | FNC | SIZ | DAT | ... | DAT |
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+ +-----+

 Figure A-1. DR Net logical message formats

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG5.TXT[2/7/2012 11:42:47 AM]

Table A-1. DR Net logical message field descriptions

Format: Field
 Description

FMT -- The format code
A message's format code indicates the number of bytes per field, and whether
the message is a request or a response. Table A-2 below lists the different
FMT codes. Even-number FMT codes indicate that the message is a request; odd-
number FMT codes indicate that the message is a response.

DID -- Destination node ID number
The DID field is a 1- or 2-byte value that indicates the message's destination
node, or its destination node and process. In a single-byte DID, only the
destination's hexadecimal ID number is transferred. In a 2-byte DID, the node
ID is recorded in the low-order byte, and the contents of the high-order byte
depend upon whether the message is a request or a response. In a request, the
high-order byte is meaningless. In a response, the high-order byte contains
the requester process's arbitrarily assigned process ID.

SID -- Source node ID number
The SID field is a 1- or 2-byte value that indicates the message's source
node, or its source node and process. In a single-byte SID, only the source
node's hexadecimal ID number is transferred. In a 2-byte SID, the node ID is
recorded in the low-order byte, and the contents of the high-order byte
depend upon whether the message is a request or a response. In a request, the
high-order byte contains the requester process's arbitrarily assigned process
ID. In a response, this field is meaningless.

FNC -- System call function number
The FNC field is always a single byte, and contains the system call's
hexadecimal number.

SIZ -- Data field size
The SIZ field is a 1- or 2-byte value that indicates the length of the data
field that follows. This number is always the number of bytes in the field
minus 1.

DAT -- Data field
The DAT field is variable length, and contains all of the input values and
data required by the server to perform the function, or all the return values
and data returned by the function.

Table A-2. DR Net logical message formats

FMT Number of bytes in
Code DID SID FNC SIZ DAT Description
---- --- --- --- --- --- -----------
 00 1 1 1 1 1-256 CP/NET V1.2 Request
 01 1 1 1 1 1-256 CP/NET V1.2 Response

 02 1 1 1 2 1-65536 Not used (Request)
 03 1 1 1 2 1-65536 Not used (Response)

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG5.TXT[2/7/2012 11:42:47 AM]

 04 2 2 1 1 1-256 Not used (Request)
 05 2 2 1 1 1-256 Not used (Response)

 06 2 2 1 2 1-65536 Concurrent CP/M Request
 07 2 2 1 2 1-65536 Concurrent CP/M Response

 08-127 Undefined
128-255 User definable

Equally as important to the server and requester alike as the DR Net message
format is the format of the DAT filed. Table A-3 lists the message contents
for all system calls that can be networked.

A.2 Special characters, symbols, and terms in Table A-3

The following characters, symbols, and terms are used in the following DAT
field descriptions:

 xx
 Appears occasionally in the DAT field descriptions, to indicate that
 the value is irrelevant.

 - EE -
 Indicates that the function can return BDOS extended errors ("EE"), as
 well as extended network errors 0CFFh, 0DFFh, or 0EFFh. Any message
 can return an extended network error.

 +
 Appears as a suffix to the SIZ field value, and indicates that the
 value is variable. When it is used, consider the SIZ value shown to
 indicate the minimum.

 Simulation Count
 The largest number of 128-byte records that can fit in a single
 transaction. This value is calculated by the NDOS when function 44,
 F_MULTISEC, is called to reconcile the size of the DR Net message
 buffer (through which all messages flow to and from the network) with
 the length of the multisector data block. Dividing the Multisector
 Data Block by the Simulation Count gives you the number of network
 transactions required to complete a multisector data transfer.

Table A-3. DR Net logical message contents

System call FMT FNC SIZ DAT
------------- --- --- ---- ----
* 3: C_RAWIN 0 03 0000 0000-0000 Server Console Number
 1 03 0000 0000-0000 Character Input

* 4: C_RAWOUT 0 04 0001 0000-0000 Server Console Number

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG5.TXT[2/7/2012 11:42:47 AM]

 0001-0001 Raw Character to Output
 1 04 0000 0000-0000 00

 5: L_WRITE 0 05 00nn 0000-0000 Server List Number
 - EE - 0001-00nn Characters To Be Listed
 1 05 0000 0000-0000 00

 Note: nn = 01h to 80h.

* 11: C_STAT 0 0B 0000 0000-0000 Server Console Number
 1 0B 0000 0000-0000 Console Status Byte

* These functions are supported by Concurrent CP/M servers for
 CP/NET Version 1.2 compatibility only. They are never generated
 by a DR Net requester.

 14: DRV_SET 0 0E 0000 0000-0000 Selected Disk
 - EE - 1 0E 0000 0000-0000 Return Code

 15: F_OPEN 0 0F 002C 0000-0000 User Number
 0001-0024 FCB
 - EE - 0025-002C Password
 1 0F 0024 0000-0000 Directory/Return Code
 0001-0024 Opened FCB

 16: F_CLOSE 0 10 002C 0000-0000 User Number
 0001-0024 FCB
 - EE - 0025-002C Not Used
 1 10 0024 0000-0000 Directory/Return Code
 0001-0024 FCB

 17: F_SFIRST 0 11 0025 0000-0000 Current Disk
 0001-0001 User Number
 - EE - 0002-0025 Search FCB
 1 11 0020 0000-0000 Directory/Return Code
 0001-0020 Directory Entry

 Note: "Current Disk" is valid only when there is
 a "?" in the search FCB drive byte field.

 18: F_SNEXT 0 12 0001 0000-0000 xx
 - EE - 1 12 0020 0000-0000 Directory/Return Code
 0001-0020 Directory Entry

 19: F_DELETE 0 13 002C 0000-0000 User Number
 0001-0024 FCB
 - EE - 0025-002C Password
 1 13 0000 0000-0000 Directory/Return Code

 20: F_READ 0 14 0024 0000-0000 User Number
 0001-0024 FCB
 - EE - 1 14 00A5+ 0000-0000 Return Code
 0001-0024 FCB
 0025-xxxx Data That Was Read

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG5.TXT[2/7/2012 11:42:47 AM]

 yyyy-yyyy Multisector Transfer
 Return Code

 Note: xxxx = 00A4 + (80h * (Simulation Count - 1))
 yyyy = xxxx + 1

 21: F_WRITE 0 15 00A4+ 0000-0000 User Number
 0001-0024 FCB
 - EE - 0025-xxxx Data To Be Written
 1 15 0025 0000-0000 Return Code
 0001-0024 FCB
 0025-0025 Multisector Transfer
 Return Code

 Note: xxxx = 00A4 + (80h * (Simulation Count - 1))

 22: F_MAKE 0 16 002D 0000-0000 User Number
 0001-0024 FCB
 - EE - 0025-002C Password
 002D-002D Password Mode Field
 1 16 0001 0000-0000 Directory/Return Code
 0001-0024 FCB

 23: F_RENAME 0 17 002C 0000-0000 User Number
 0001-0024 FCB in RENAME Format
 - EE - 0025-002C Password
 1 17 0000 0000-0000 Directory/Return Code

 24: DRV_LOGINVEC 0 18 0000 0000-0000 xx
 1 18 0001 0000-0001 Log-in Vector

 27: DRV_ALLOCVEC 0 1B 0000 0000-0000 Current Disk
 - EE - 1 1B nnnn 0000-nnnn Allocation Vector

 Note: The size of the allocation vector is
 dependent on the current disk's DPB.

 28: DRV_SETRO 0 1C 0000 0000-0000 Current Disk
 1 1C 0000 0000-0000 00

 29: DRV_ROVEC 0 1D 0000 0000-0000 xx
 1 1D 0001 0000-0001 Read/Only Vector

 30: F_ATTRIB 0 1E 002C 0000-0000 User Number
 0001-0024 FCB with File Attributes
 - EE - 0025-002C Password
 1 1E 0000 0000-0000 Directory/Return Code

 31: DRV_DPB 0 1F 0000 0000-0000 Current Disk
 - EE - 1 1F 000F 0000-000F Disk Parameter Block

 33: F_READRAND 0 21 0024 0000-0000 User Number
 0001-0024 FCB
 - EE - 1 21 00A5+ 0000-0000 Return Code

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG5.TXT[2/7/2012 11:42:47 AM]

 0001-0024 FCB
 0025-xxxx Data That Was Read
 yyyy-yyyy Multisector Transfer
 Return Code

 Note: xxxx = 00A4 + (80h * (Simulation Count - 1))
 yyyy = xxxx + 1

 34: F_WRITERAND 0 22 0024 0000-0000 User Number
 0001-0024 FCB
 - EE - 0025-xxxx Data To Be Written
 1 22 0024 0000-0000 Return Code
 0001-0024 FCB

 Note: xxx = 00A4 + (80h * (Simulation Count - 1))

 35: F_SIZE 0 23 0024 0000-0000 User Number
 0001-0024 FCB
 - EE - 1 23 0024 0000-0000 Return Code
 0001-0024 FCB

 36: DRV_RANDREC 0 24 0024 0000-0000 User Number
 0001-0024 FCB
 - EE - 1 24 0024 0000-0000 Return Code
 0001-0024 FCB

 37: DRV_RESET 0 25 0001 0000-0001 Drive Vector
 1 25 0000 0000-0000 Return Code

 38: DRC_ACCESS 0 26 0001 0000-0001 Drive Vector
 - EE - 1 26 0000 0000-0000 Return Code

 39: DRV_FREE 0 27 0001 0000-0001 Drive Vector
 1 27 0000 0000-0000 Return Code

 40: F_WRITEZF 0 28 00A4+ 0000-0000 User Number
 0001-0024 FCB
 - EE - 0025-xxxx Data To Be Written
 1 28 0024 0000-0000 Return Code
 0001-0024 FCB

 Note: xxxx = 00A4 + (80h * (Simulation Count - 1))

 42: F_LOCK 0 2A 0026 0000-0000 User Number
 0001-0024 FCB
 - EE - 0025-0026 File ID
 1 2A 0024 0000-0000 Return Code
 0001-0024 FCB

 43: F_UNLOCK 0 2B 0026 0000-0000 User Number
 0001-0024 FCB
 - EE - 0025-0026 File ID
 1 2B 0024 0000-0000 Return Code
 0001-0024 FCB

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG5.TXT[2/7/2012 11:42:47 AM]

 44: F_MULTISEC 0 2C 0001 0000-0000 Multisector Count Requested
 0001-0001 Count Used for Simulating
 Multisector I/O Across
 Network
 1 2C 0000 0000-0000 Return Code

 46: DRV_SPACE 0 2E 0000 0000-0000 Drive ID
 1 2E 0003 0000-0000 Return Code
 - EE - 0001-0003 Number of Free Records

 64: N_LOGON 0 40 0012 0000-0007 Server Password
 0008-0009 Process ID
 000A-0011 BDOS Default Password
 0012-0012 Compatibility Attributes
 0013-0013 Version
 0014-0014 First Log Flag
 1 40 0001 0000-0000 Return Code
 0001-0001 Reserved for System Use

 Note: The Process ID is a number arbitrarily
 assigned by the requester. It is not
 the process descriptor address.

 65: N_LOGOFF 0 41 0009 0000-0007 Unused
 0008-0009 Process ID
 1 41 0000 0000-0000 Return Code

 Note: The Process ID in this message is a
 number arbitrarily assigned when the
 process logged on.

 70: N_ATTRIB 0 46 0000 0000-0000 Compatibility Attributes
 1 46 0000 0000-0000 xx

 Note: For CP/M-86 requesters only.

 71: N_SCT 0 47 0000 0000-0000 xx
 1 47 004C 0000-0000 Server Temporary File Drive
 0001-0001 Server Network Status Byte
 0002-0002 Server Node ID
 0003-0003 Maximum Possible Req.
 0004-0004 Num. of Req. Logged On
 0005-0006 Requester Log-on Vector
 0007-0017 IDs of 16 Requesters
 0017-0018 Requester Log-on Vector
 0019-0028 IDs of 16 Requesters
 0029-002A Requesters Log-on Vector
 002B-003A IDs of 16 Requesters
 003B-003C Requester Log-on Vector
 003D-004C IDs of 16 Requesters

 75: N_BUFSIZ 0 4B 0001 0001-0001 Requested Message Buf. Size
 (For system 1 4B 0002 0000-0000 Return Code

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG5.TXT[2/7/2012 11:42:47 AM]

 use only.) 0001-0002 Maximum Allowable Message
 Buffer Size

 77: N_KEEPALIVE 0 4D 0000 0000-0000 xx

 Note: This message is unique in that there
 is no return message.

 99: F_TRUNC 0 63 0024 0000-0000 User Number
 0001-0024 FCB
 - EE - 1 63 0024 0000-0000 Directory/Return Code
 0001-0024 FCB

 100: DRV_SETLABEL 0 64 0034 0000-0000 Unused
 0001-0024 Directory Label FCB
 - EE - 0025-002C Old Default Password
 002D-0034 New Default Password
 1 64 0000 0000-0000 Return Code

 101: DRV_GETLABEL 0 65 0000 0000-0000 Drive ID
 - EE - 1 65 0000 0000-0000 Directory Label Byte

 102: F_TIMEDATE 0 66 0024 0000-0000 User Number
 0001-0024 FCB
 - EE - 1 66 0024 0000-0000 Directory/Return Code
 0001-0024 XFCB

 103: F_WRITEXFCB 0 67 0034 0000-0000 User Number
 0001-0024 XFCB
 - EE - 0025-002C Old Password
 002D-0034 New Password
 1 67 0000 0000-0000 Directory/Return Code

 105: T_GET 0 69 0000 0000-0000 xx
 1 69 0004 0000-0001 Days since 31 DEC 1977
 0002-0002 BCD Hours
 0003-0003 BCD Minutes
 0004-0004 BCD Seconds = 00

 106: F_PASSWD 0 6A 0007 0000-0007 Default Password To Be Set
 1 6A 0000 0000-0000 Return Code

 134: Q_MAKE 0 86 001B 0000-001B Queue Descriptor
 1 86 0003 0000-0003 Return Code (AX and CX)

 135: Q_OPEN 0 87 000F 0000-000F Queue Parameter Block
 1 87 002E 0000-0003 Return Code (AX and CX)
 0004-0013 Queue Parameter Block
 0014-002E Queue Descriptor

 136: Q_DELETE 0 88 001B 0000-001B Queue Descriptor
 1 88 0003 0000-0003 Return Code (AX and CX)

 137: Q_READ 0 89 000F 0000-000F Queue Parameter Block

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG5.TXT[2/7/2012 11:42:47 AM]

 1 89 0003+ 0000-0003 Return Code (AX and CX)
 0004-xxxx Queue Message

 Note: The queue message length cannot exceed
 the maximum message buffer size.

 138: Q_CREAD 0 8A 000F 0000-000F Queue Parameter Block
 1 8A 0003+ 0000-0003 Return Code (AX and CX)
 0004-xxxx Queue Message

 Note: The queue message length cannot exceed
 the maximum message buffer size.

 139: Q_WRITE 0 8B 000F+ 0000-000F Queue Parameter Block
 0010-xxxx Queue Message
 1 8B 0003 0000-0003 Return Code (AX and CX)

 Note: The queue message length cannot exceed
 the maximum message buffer size.

 140: Q_CWRITE 0 8C 000F+ 0000-000F Queue Parameter Block
 0010-xxxx Queue Message
 1 8C 0003 0000-0003 Return Code (AX and CX)

 Note: The queue message length cannot exceed
 the maximum message buffer size.

 158: L_ATTACH 0 9E 0000 0000-0000 Server List Device
 1 9E 0003 0000-0003 Return Code (AX and CX)

 159: L_DETACH 0 9F 0000 0000-0000 Server List Device
 1 9F 0003 0000-0003 Return Code (AX and CX)

 161: L_CATTACH 0 A1 0000 0000-0000 Server List Device
 1 A1 0003 0000-0003 Return Code (AX and CX)

Appendix B: Building a server for another operating system
--

Since DR Net is an open system, it is possible to have requesters accessing
servers that do not belong to the CP/M family of operating systems. There are
two ways for a DR Net requester to access a foreign server. First, all
differences between the systems can be reconciled in the requester nodes. In
this case, the translation of the DR Net message into a form palatable to the
server and then back again would take place in the NIOS-resident, LD_DRVR
output and input routines, respectively. Second, the translation could be
performed in the server. Under these conditions, requesters would communicate
with the server via the standard DR Net message. This appendix addresses the
considerations with respect to the second option.

The broad functions of the DR Net server module, and hence those that must be
implemented by the foreign server, can be classified under the four headings
described in Table B-1.

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG5.TXT[2/7/2012 11:42:47 AM]

Table B-1. DR Net server module

Format: Classification
 Meaning

Communication Control
The server's interface to the network must be built to manage message I/O and
process control. Message I/O involves first message reception and decoding
from the DR Net message format. Second, the response message must be encoded
into the DR Net format, and then output. Some sort of process control is
required, so that multiple requesters and/or processes can access the server
simultaneously.

Function Interpretation
The server must be able to translate the Concurrent CP/M system calls into a
call, or series of calls, that can be executed by its host operating system.

File System Conversion
Besides the system calls, the server must also be equipped to reconcile the
BDOS File Control Blocks (FCBs) with the host operating system's file
management mechanism.

Network Function Management
Finally, the server must be able to respond properly to the DR Net system
calls. Specifically, N_LOGON, N_LOGOFF, and N_SCT must be accommodated.

B.1 The DR Net message components

Unless the requester accommodates it with special messages, the foreign server
is completely reliant upon the DR Net message to deduce what it has been
requested to do. For a description of the DR Net message, see Appendix A.

B.2 Functions to support

To provide complete Concurrent CP/M functionality, all of the functions listed
in Appendix A must be supported. Table B-2 lists these functions by their
associated resource.

Table B-2. Networked system functions by resource

Value in parentheses ["(" and ")"] is the Hex function number.

Disk drive File List device Queue
---------- ---- ----------- -----
DRV_SET (0E) F_OPEN (0F) L_WRITE (05) Q_MAKE (86)
DRV_LOGINVEC (18) F_CLOSE (10) L_ATTACH (9E) Q_OPEN (87)
DRV_ALLOCVEC (1B) F_SFIRST (11) L_DETACH (9F) Q_DELETE (88)
DRV_SETRO (1C) F_SNEXT (12) L_CATTACH (A1) Q_READ (89)
DRV_ROVEC (1D) F_DELETE (13) Q_CREAD (8A)

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG5.TXT[2/7/2012 11:42:47 AM]

DRV_DPB (1F) F_READ (14) Q_WRITE (8B)
DRV_RESET (25) F_WRITE (15) Q_CWRITE (8C)
DRV_ACCESS (26) F_MAKE (16)
DRV_FREE (27) F_RENAME (17)
DRV_SPACE (2E) F_ATTRIB (1E)
DRV_FLUSH (30) F_READRAND (21)
DRV_SETLABEL (64) F_WRITERAND (22)
DRV_GETLABEL (65) F_SIZE (23)
 F_RANDREC (24)
 F_WRITEZF (28)
 F_LOCK (2A)
 F_UNLOCK (2B)
 F_MULTISEC (2C)
 F_TRUNC (63)
 F_TIMEDATE (66)
 F_WRITEXFCB (67)
 F_PASSWD (6A)

Besides these functions, the Concurrent CP/M server is also programmed to
respond to some console-related functions, and to remote requests for the time
and date. Only three console functions are implemented, C_RAWIN (03), C_RAWOUT
(04), and C_STAT (0B), and this is done only to maintain compatibility with
CP/NET Version 1.2. Concurrent CP/M and CP/M-86 based requesters do not allow
the mapping of consoles over the network. The only time and date function
supported over by the server is T_GET (105). Finally, the DR Net functions 64
through 77 must be implemented.

Not all functions listed above need be supported by the foreign server. If one
or more are removed, a process is restricted only in the use of the function
or functions with respect to that server. For instance, if it is decided to
drop queue support from the foreign server, a process can still make queue
calls to a Concurrent CP/M requester and server.

B.3 Multisector transfers

Multisector transfers are allowed under DR Net, and are generally recommended
to speed file data transactions. Before the data blocks can be transferred,
however, the requester first must reconcile the length of the data block with
any limitations imposed by the maximum message buffer size. The logica that
derives the reconciliation is entirely resident in the requester.

The server must emulate the requester's multisector transfer behavior for the
data to be received properly after a read file system call. Refer to Appendix
A for the message contents of the following system calls.

Table B-3. Functions affected by multisector count

Dec Hex Mnemonic
--- --- --------
 20 14 F_READ
 21 15 F_WRITE
 33 21 F_READRAND

file:///C|/...nt%20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/DR%20Net%20System%20Guide/DNSG5.TXT[2/7/2012 11:42:47 AM]

 34 22 F_WRITERAND
 40 28 F_WRITEZF
 42 2A F_LOCK
 43 2B F_UNLOCK

The server's key to the requester's behavior during multisector transfers is
the message sent by the requester when it has trapped a function 44,
F_MULTISEC. As shown in Appendix A, a Simulation Count is included in this
message, along with the multisector count. This value indicates the maximum
number of 128-byte records that can be contained in a single message. Until
another function 44 is called, the multisector count and the Simulation Count
remain in effect for the functions listed in Table B-3.

If you choose to implement multisector transfers on a foreign server, there
are three things you should account for.

 - First, the function 44 message contents contains the multisector count
 in the first DAT field byte, and the Simulation Count in the second
 byte. This differs from the local function 44, which only contains the
 multisector count.

 - Second, there is likely to be one or more leftover 128-byte blocks. By
 comparing the actual count with the simulated count, the number of
 remaining blocks can be deduced.

 - Third, the number of records successfully transferred must be
indicated when there is a non-extended error on the server. Refer to the
"Concurrent CP/M Programmer Reference's Guide" and the description of the BDOS
Error Codes for an explanation of the difference between extended errors
(which always return 0FFh in register AL), and non-extended errors (which
return a value other than 0FFh in register AL).

EOF

	DNSG0
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\DR Net System Guide\DNSG0.TXT

	DNSG1
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\DR Net System Guide\DNSG1.TXT

	DNSG2
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\DR Net System Guide\DNSG2.TXT

	DNSG3
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\DR Net System Guide\DNSG3.TXT

	DNSG4
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\DR Net System Guide\DNSG4.TXT

	DNSG5
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\DR Net System Guide\DNSG5.TXT

