
Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

PCPM11PG.WS4 (= Personal CP/M version 1.1 Programmer's Guide)

- "Personal CP/M Version 1.1 -- Programmer's Guide"

(Retyped by Emmanuel ROCHE.)

Foreword

Personal CP/M is a microcomputer operating system designed for the Zilog Z-80
or any compatible microprocessor. To run Personal CP/M, your computer must
have an ASCII console (including at least a keyboard and a video display
screen), 1 to 16 disk drives, and a minimum of 32 kilobytes of Random Access
Memory (RAM).

This manual describes the Basic Disk Operating System (BDOS) functions of
Personal CP/M, and how to call the functions using Zilog Z-80 assembler
language (ROCHE>??? All the sample assembly language programs found are in
Intel 8080 mnemonics, and ZSID is not provided, nor any Z-80 assembler...). It
is written for experienced programmers who are writing application software in
the Personal CP/M environment. It assumes that you are familiar with the
system features and facilities described in the "Personal CP/M User's Guide",
the "Personal CP/M System Guide", and the "Programmer's Utilities Guide for
the CP/M Family of Operating Systems".

Section 1 of this manual describes the components of the operating system,
where they reside in memory, and how they work together to provide a standard
operating environment for application programs.

Section 2 describes how an application program can call on Personal CP/M to
perform serial input and output, and manage disk files. It also provides a
detailed description of each operating system function.

Section 3 presents four example programs.

The appendixes contain a summary of system functions, BDOS error handling
information, and user number conventions.

Table of Contents

(To be done by WS4...)

Appendixes

(idem)

Tables, Figures, and Listing

Tables

(idem)

Figures

(idem)

Listing

(idem)

Section 1: Introduction to Personal CP/M
--

This manual describes Personal CP/M system organization, including the
structure of memory and system entry points. This manual provides information
necessary to write programs that operate under Personal CP/M, and use the

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

peripheral and disk I/O facilities of the system.

1.1 Components of Personal CP/M

Personal CP/M is divided into the Basic Input/Output System (BIOS), the Basic
Disk Operating System (BDOS), and the Console Command Processor (CCP) which
executes in the upper portion of the Transient Program Area (TPA). The BIOS, a
hardware-dependent module, is the exact low-level interface to a particular
computer system for peripheral device I/O. Although a standard BIOS is
supplied by Digital Research, explicit instructions are provided in the
"Personal CP/M System Guide" for field reconfiguration of the BIOS to match
most hardware environments. The BDOS is a hardware-independent module that
provides a standard operating environment for transient programs, by making
services available through numbered system function calls.

1.2 Personal CP/M memory organization

The BIOS and BDOS are combined into a single module with a common entry point,
and referred to as the FDOS ("Full Disk Operating System"). The CCP module is
a distinct program that uses the FDOS to provide you with the user interface
to the operating system. The TPA is an area of memory where non-resident
operating system utilities and user (transient) programs are executed. If
necessary, programs in the TPA can overwrite the CCP to use all available
memory to do its job. The presence of the CCP is not required for any
application program. The lower portion of memory (ROCHE> Called "Page Zero".)
is reserved for system information, and is detailed in Section 2.2.2, "File
Control Block", and in the "Personal CP/M System Guide". The memory
organization of the Personal CP/M system is shown in Figure 1-1.

 +-----------+
 | FDOS |
 FBASE: +--+-----+--+
 | | CCP | |
 | +-----+ |
 | |
 | TPA |
 TBASE: +-----------+
 | Page Zero |
 BOOT: +-----------+

 Figure 1-1. Personal CP/M memory organization

The memory address corresponding to FBASE varies from version to version, and
is described in the "Personal CP/M System Guide". As seen from the preceding
diagram, TBASE=0100H and BOOT=0000H, which is the base of Random Access Memory
(RAM). At location BOOT, there is a jump to the machine code in the BIOS,
which performs a system warm start. The BIOS warm start routine loads and
initializes the program variables necessary to return control to the CCP.
Thus, transient programs need only jump to location BOOT to return control to
Personal CP/M at the command level. The principal entry point to the FDOS is
at location 0005H, where there is a jump to FBASE. The address field at 0006H
contains the value of FBASE, and can be used to determine the size of
available memory, assuming that a transient program is overlaying the CCP.

1.3 Program execution

Transient programs are loaded into the TPA, and executed through the CCP by
typing command lines following each Personal CP/M system prompt ("A>"). The
CCP is capable of parsing the following general form of the command line:

 command
 command file1
 command file1 file2

Programs with different command tail formats must do their own parsing of the
command tail stored in the buffer at 0080H.

If the command is a built-in function of Personal CP/M, it is executed
immediately. Otherwise, the CCP searches the currently-logged drive for a
command file in the following form:

 command.COM

If the COMmand file is found, it is assumed to be a memory image of a program
that executes in the TPA, and thus implicitly originates at TBASE in memory.

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

The CCP loads the COM file from the disk into memory, starting at TBASE. The
COM file can extend up to the beginning of FBASE, using all the TPA area.
Personal CP/M loads a command file from user 0 if it has the system attribute
set, when the current user number is greater than zero. (See Appendix C for
more information on user number conventions.)

If the command is followed by one or two file specifications, the CCP prepares
one or two File Control Block (FCB) names in the system parameter area, the
Page Zero of memory. These optional FCBs are in the form necessary to access
files through the FDOS, and are described in Section 2, "Operating system call
conventions".

The transient program receives control from the CCP, and begins execution
using the I/O facilities of the FDOS. The CCP uses a "call" instruction to
transfer control to the transient program. Thus, the program can execute a
"return" to the CCP upon completion of its processing, provided that it has
not written over any portion of the CCP, or it can execute a jump to location
BOOT to pass control back to the warm boot routine in Personal CP/M. In no
case should the program use any memory above the TPA (FBASE-1).

1.4 Specifying options to a command

From time to time, a command needs to know more than the name of one or two
files in its command tail. Those "run-time parameters" are known as options.
The problem is how to pass them to the command file.

Personal CP/M is a member of the CP/M family of Operating Systems, wich
started to be sold with CP/M Version 1.3, followed by Version 1.4. Then came
CP/M Version 2.0, which used a table-driven BIOS and BDOS (the file system)
Version 2. A quick update, Version 2.1, followed, before CP/M became the de
facto industry standard for 8-bit microcomputers with CP/M Version 2.2.

This was the single-user branch of the family. There is also a multi-user
branch, still 8-bit, called MP/M, which saw 2 versions, using another BDOS
called BDOS 3. In 1982, it was decided to make a single-user version of MP/M
that could use the then awaited Z-800 microprocessor and hard disks that were
providing much more capacity than floppies. This more rational version of CP/M
is CP/M Version 3.0, better known as "CP/M Plus".

Unfortunately, Zilog was unable to provide the Z-800 in time, while Intel was
selling the 8086, and hard disks remained prohibitively expensive, especially
now that the market shifted from home/hobby computing to business with the
badly-named "Personal Computer"... And, of course, companies have more money
than individuals, so why lower the price?

Following its success with MS-DOS, Microsoft then decided to attack the 8-bit
market with an 8-bit version called MSX-DOS. One of their particularities was
that those microcomputers were booting from ROM, rather than from floppies. In
reaction, Digital Research decided to introduce Personal CP/M, a version of
Good Old CP/M Version 2.2 which was rewritten to use Z-80 mnemonics, and
designed to be able to boot from ROM. Unfortunately, Personal CP/M was only
implemented on one microcomputer, the MZ-800 (note the "Z-800" in its name...)
made by Sharp, and it was booting from floppy! At the time, microcomputer
magazines were crazy about the IBM PC, so it was a total flop...

Also, since it was the last son of CP/M 2.2, it was using BDOS Version 2, that
can only manage disks up to 8 Megabytes (versus the 512 Megabytes of CP/M
Plus), just when hard disks became common! And floppy disks died after
reaching 1.44 Megabyte capacity... The problem of Personal CP/M is to find a
drive with circa 8 Megabyte capacity.

(The same year, Digital Research introduced 2 products that could both have
revolutionized microcomputers if the IBM PC had not focused all the attention:
GSX and CP/NET. GSX provides a PORTABLE graphics system (it also works under
Personal CP/M) and CP/NET provides access to another computer's files via a
network (it also works under Personal CP/M). Both products were 20 years in
advance upon their time (and time is running quickly for IBM PCs).
Unfortunately, the market had then shifted to the IBM PC, where hardware
compatibility became essential (contrary to CP/M, which is portable across
many hardware configurations), and all those great programs were soon
forgotten.)

Back to options.

One of the problem with CP/M is that there is no standard for specifying
options to a program. At the beginning, this was not foreseen.

Under CP/M Version 1.4, ASM (the 8080 absolute assembler) was using the
filetype to hold its options.

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

Under CP/M Version 2.2, MAC (the 8080 macro assembler) was using a "$"
character, at the end of the command tail, to specify the options.

Under CP/M Version 3.0, alias CP/M Plus, a standard was finally settled, which
uses the "[" character to indicate options. Thus, one uses:

 A>command file1 file2 [option1,option2,...,optionN]

The closing square bracket ("]") is optional. Options are separated by a comma
(",").

This is this more rational option specification that is used by Personal CP/M.
If you write application programs for Personal CP/M, or modify a CP/M 2.2
program to run under Personal CP/M, please follow this standard.

1.5 Calling a function

The transient program can use the Personal CP/M I/O facilities to communicate
with your console and peripheral devices, including the disk subsystem. To
access the I/O system, the transient program passes a function number and a
parameter to Personal CP/M through the FDOS entry point at location 0005H. In
the case of a disk read, for example, the transient program sends the function
number corresponding to the disk read, with the address of an FCB, to the
Personal CP/M BDOS. In turn, the FDOS performs the operation, and returns with
either a disk read completion indicator, or an error number indicating that
the disk read was unsuccessful.

Some functions have been added or changed from previous CP/M versions to
increase the programming capabilities of Personal CP/M. Functions 7 (AUXILIARY
INPUT STATUS) and 8 (AUXILIARY OUTPUT STATUS) have been changed from GET and
SET I/O BYTE, to enable you to write a program that performs auxiliary I/O
(such as a communications program, file transfer program, or a terminal
emulator), and which is portable across different hardware environments.
Function 45 (SET BDOS ERROR MODE) gives you more control over error handling,
by allowing a BDOS error to be reported back to the program that called the
function. This feature allows a program to control how it responds to BDOS
errors. Normally, programs that encounter a BDOS error would be automatically
terminated. Function 48 (FLUSH BUFFERS) takes all sector buffers, and
immediately writes them to the disk. This feature reduces the risk of losing
file information when the BIOS uses blocking and deblocking, and a system
failure occurs. Functions 109 (GET/SET CONSOLE MODE), 110 (GET/SET OUTPUT
DELIMITER), 111 (PRINT BLOCK), 113 (DIRECT SCREEN FUNCTIONS) are present in
Personal CP/M to improve console I/O performance. Function 112 (LIST BLOCK) is
included to improve printer I/O performance.

(ROCHE> Functions 124 (Byte BLT Copy) and 125 (Byte BLT Alter) are present in
the BDOS, but are not implemented...)

Section 2: Operating system call conventions
--

This section provides detailed information for making direct operating system
calls from user programs. Many of the functions listed below, however, can be
accessed more easily through the sequential I/O macro library provided with
the MAC macro assembler, and listed in the "Programmer's Utilities Guide".

Personal CP/M functions available for access by transient programs fall into 3
categories: simple device I/O, disk file I/O, and high-performance video.

The simple device I/O operations include the following:

- read a console character
- write a console character
- read character from auxiliary device
- write character to auxiliary device
- write a character to list device
- get auxiliary I/O status
- print console buffer
- read console buffer
- interrogate console ready
- get/set output delimiter
- print block
- list block

The following FDOS operations perform disk I/O:

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

- disk system reset
- drive selection
- file creation
- file open
- file close
- directory search
- file delete
- file rename
- random or sequential read
- random or sequential write
- interrogate selected disk
- set DMA address
- set/reset file attributes
- return current disk
- compute file size
- set BDOS error mode
- flush buffers

The high-performance video operations are as follows:

- direct screen functions
- (ROCHE> Missing line(s) listing BDOS Function 124 and 125.)

2.1 FDOS operation

As mentioned in Section 1.4, to access the FDOS functions, the transient
program passes a function number and information address to location
0005H. In general, the program passes a function number in register C.
Single-byte entry parameters are passed in register E, and double-byte entry
parameters are passed in register pair DE. Single-byte values are returned in
register A, and double-byte values are returned in register pair HL. A zero
value is returned when the function number is out of range. Register A = L and
register B = H upon return in all cases. Personal CP/M functions and their
numbers are listed in Appendix A, "System function summary".

Note: Functions 28 (WRITE PROTECT DISK) and 32 (GET/SET USER CODE) should be
avoided in application programs, to maintain upward compatibility with multi-
user CP/M versions.

Upon entry to a transient program, the CCP leaves the stack pointer set to a
32-level stack area, with the CCP return address pushed onto the stack,
leaving 31 levels before overflow occurs. Although this stack is usually not
used by a transient program (most transients return to the CCP through a jump
to location BOOT), it is large enough to make Personal CP/M system calls
because the FDOS switches to a local stack at system entry. For example, the
Intel 8080 assembly-language program segment below reads characters
continuously until an asterisk is encountered, at which time control returns
to the CCP, assuming a standard CP/M system with BOOT = 0000H.

Listing 2-1. Assembly language program segment

bdos EQU 5 ; Standard CP/M entry
conin EQU 1 ; Console input function
;
 ORG 0100H ; Base of TPA
;
nextc: MVI C,conin ; Read next character
 CALL bdos ; Return character in A-reg
 CPI '*' ; End of processing?
 JNZ nextc ; Loop if not
 RET ; Return to CCP
;
 END

2.2 File structure

Personal CP/M implements a named file structure on each disk, providing an
organization that allows a particular file to contain any number of logical
sectors -- from none to full drive capacity. Each logical drive has a separate
disk directory and file data area. The disk filenames are in 3 parts: the
drive specifier (one character: A through P), the filename (consisting of one-
to-eight non-blank characters), and the filetype (consisting of zero-to-three
non-blank characters). Valid characters used in creating filenames and
filetypes are alphabetic characters, numeric characters, and the following
punctuation characters: " # $ % ^ & @ + ' - ` /. You can also create a

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

filename or filetype with lowercase characters, but you can only access it
from a program. It will not be accessible from the CCP. The filename
distinguishes individual files in each category. The filetype names the
generic category of a particular file. The filetypes listed in Table 2-1 name
a few generic categories that have been established, although some filetypes
are arbitrary.

Table 2-1. Personal CP/M filetypes

Filetype Meaning
-------- -------
 ASC ASCII text file
 ASM Assembler source
 BAK Backup file
 BAS BASIC source file
 COM Command file
 HEX Hex machine code
 PLI PL/I source file
 PRN Printer listing
 REL Relocatable module
 SYM SID symbol file
 WS4 WordStar Version 4.0 document file
 $$$ Temporary file

2.2.1 File records

Files in Personal CP/M can be thought of as a sequence of up to 65,535 logical
sectors of 128 bytes each, numbered from 0 through 65,535, thus allowing a
maximum of 8 megabytes for each file. Note, however, that, although the
logical sectors may be considered logically contiguous, they may not be
physically contiguous in the disk data area. Internally, all files are divided
into 16-kilobyte segments called logical extents, so that counters are easily
maintained as 8-bit values. The division into extents is discussed in Section
2.2.2, "File Control Block"; however, they are not particularly significant
for the programmer, because each extent is automatically accessed in both
sequential and random access modes.

Personal CP/M BDOS calls recognize only 128-byte logical sectors. To create a
text (ASCII) file, insert 0DH followed by 0AH (Carriage Return and Line Feed)
at the end of each line of the source file. Add 1AH (Ctrl-Z) at the end of the
ASCII file. To find the end of a binary file, call Function 35 (COMPUTE FILE
SIZE) with the FCB address in register pair DE. Function 35 returns the number
of logical sectors that have been written.

2.2.2 File Control Block

In the file operations starting with Function 15, DE usually addresses an FCB.
Transient programs often use the default FCB area reserved by Personal CP/M at
location 005CH (normally 005CH) for simple file operations. Personal CP/M
provides a default buffer location for disk I/O at location 0080H (normally
0080H), which is the initial default DMA address (see Function 26).

The FCB data area consists of a sequence of 33 bytes when the file is accessed
sequentially, and a series of 36 bytes when the file is accessed randomly. The
default FCB, located at 005CH, can be used for random access files, because
the 3 bytes starting at 007DH are available for this purpose. Figure 2-1 shows
the FCB format with the following fields:

 dr f1 f2 ... f8 t1 t2 t3 ex s1 s2 rc d0 ... dn cr r0 r1 r2
 00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

 Figure 2-1. File Control Block format

Table 2-2 describes each of the fields in the file control block format.

Table 2-2. File Control Block fields

Format: Field
 Definition

DR
Drive code (0-16)
0 = use default drive
1 = auto disk specifier drive A
2 = auto disk specifier drive B
 ...
16 = auto disk specifier drive P

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

F1...F8
Contain the filename in ASCII uppercase, with high bit = 0.

T1,T2,T3
Contain the filetype in ASCII uppercase, with high bit = 0. T1', T2', and T3'
denote the bit of these positions.
T1' = 1 --> Read-Only file
T2' = 1 --> SYS file, no DIR list

EX
Contains the current extent number, normally set to 00H by the user, but in
range 0-31 during file I/O.

S1
Reserved for internal system use.

S2
Reserved for internal system use, set to zero on call to OPEN, MAKE, SEARCH.

RC
Record count for extent EX; takes on values from 0-127.

D0...Dn
Filled in by Personal CP/M; reserved for system use.

CR
Current record to read or write in a sequential file operation; normally set
to zero by user.

R0,R1,R2
Optional random record number in the range 0-65535 (0-FFFF); R0, R1, R2
constitute an 16-bit value with low byte R0, high byte R1, and byte R2 = 0.

Each file being accessed through Personal CP/M must have a corresponding FCB,
which provides the name and allocation information for all subsequent file
operations. Bytes 1 through 11 are set by the CCP to the ASCII character
values for the filename and filetype. Byte 0 is set to the drive specifier.
All other fields are set to zero. When constructing your own FCB, it is your
responsibility to fill the lower 12 bytes of the FCB, and initialize the CR
field to zero.

FCBs are stored by the operating system in a directory area of the disk, and
brought into central memory before you proceed with file operations (see the
OPEN FILE and MAKE FILE functions). The memory copy of the FCB is updated as
file operations take place, and later recorded permanently on disk at the
termination of the file write operations (see the CLOSE command).

The CCP constructs the first 12 bytes of two optional FCBs for a transient
command by scanning the remainder of the command line following the transient
filename, denoted by FILE1 and FILE2 in the prototype command line described
in Section 1.3, "Program execution", with unspecified fields set to ASCII
blanks. If no filenames are specified in the original command, the fields
beginning at 005DH and 006DH contain blanks. In all cases, the CCP translates
lowercase letters to uppercase, to be consistent with the Personal CP/M file-
naming conventions. The first FCB is constructed at location 005CH, and can be
used as is for subsequent file operations. The second FCB occupies the D0...Dn
portion of the first FCB, and must be moved to another area of memory before
use. For example, assume that the command line shown below is typed; then, the
CCP loads the file PROGNAME.COM into the TPA, and initializes the default FCB
at 005CH to drive specifier 2, filename X, and filetype ZOT:

 A>progname b:x.zot y.zap

The drive specifier for the second file specification takes the default value
0, which the CCP places at 006CH, with the filename Y placed into location
006DH, and filetype ZAP located 8 byte later at 0075H. The CCP sets all
remaining fields through CR to zero. Note again that it is your responsibility
to move this second file specification to another area, usually a separate
file control block that you create, before opening the file that begins at
005CH, because the OPEN operation overwrites the second file specification.

As an added convenience, the default buffer area at location 0080H is
initialized to the command tail typed by the operator following the program
name. The first position contains the number of characters, followed by the
actual characters. Given the above command line, the area beginning at 0080H
is initialized as follows. The characters are translated to uppercase ASCII.
Uninitialized memory follows the last valid character:

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

 0080H:
 +00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +0A +0B +0C +0D +0E +0F
 0E ' ' 'B' ':' 'X' '.' 'Z' 'O' 'T' ' ' 'Y' '.' 'Z' 'A' 'P' 00

Again, it is your responsibility as the programmer to extract the information
from this buffer before any file operations are performed, unless you
explicitly change the default DMA address.

2.3 BDOS function calls

Individual functions are described in detail in the following pages.

 BDOS Function 0: System Reset
 Entry parameters:
 Register C: 00H
 Returned value: None

The SYSTEM RESET function returns control to the Personal CP/M operating
system at the CCP level. The CCP reinitializes the disk subsystem. It also
selects drive A. This function has exactly the same effect as a jump to
location BOOT (0000H).

 BDOS Function 1: Console Input
 Entry parameters:
 Register C: 01H
 Returned value:
 Register A: ASCII character

The CONSOLE INPUT function reads the next console character to register A.
Graphic characters, along with Carriage Return, Line Feed, and Backspace
(Ctrl-H), are echoed to the console. Tab characters (Ctrl-I) move the cursor
to the next tab stop. A check is made for start/stop scroll (Ctrl-S). The FDOS
does not return to the calling program until a character has been typed, thus
suspending execution if a character is not ready.

 BDOS Function 2: Console Output
 Entry parameters:
 Register C: 02H
 Register E: ASCII character
 Returned value: None

The CONSOLE OUTPUT function sends the ASCII character from register E to the
console device. As in function 1, tabs are expanded, and checks are made for
start/stop scroll and printer echo (see Function 109).

 BDOS Function 3: Auxiliary Input
 Entry parameters:
 Register C: 03H
 Returned value:
 Register A: ASCII character

The AUXILIARY INPUT function reads the next character from the auxiliary input
device into register A. Control does not return until the character has been
read.

 BDOS Function 4: Auxiliary Output
 Entry parameters:
 Register C: 04H
 Register E: ASCII character
 Returned value: None

The AUXILIARY OUTPUT function sends the character from register E to the
auxiliary output device. Control does not return until the character can be
sent.

 BDOS Function 5: List Output
 Entry parameters:
 Register C: 05H
 Register E: ASCII character
 Returned value: None

The LIST OUTPUT function sends the ASCII character in register E to the
logical listing device. Control does not return until the character can be

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

sent.

 BDOS Function 6: Direct Console I/O
 Entry parameters:
 Register C: 06H
 Register E: 0FFH (input/status), or
 0FEH (status), or
 char (output)
 Returned value:
 Register A: char or status: no value

DIRECT CONSOLE I/O is supported under Personal CP/M for those specialized
applications where basic console input and output are required. Use of this
function bypasses all Personal CP/M normal control character functions (for
example, Ctrl-S and Ctrl-P). Programs that performed direct console I/O
through the BIOS under previous CP/M products should be changed to use this
function, so that they can be fully supported under future products. A program
calls Function 6 by passing one of the 3 different values in register E. The
values and their meanings are summarized in Table 2-3.

Table 2-3. Function 6 entry parameters

Format: Register E value
 Meaning

0FFH -- Console input/status command
Returns an input character; if no character is ready, a value of zero is
returned.

0FEH -- Console status command
On return, register A contains a zero if no character is ready; otherwise, it
contains 0FFH.

ASCII character -- Console output command
Function 6 assumes that register E contains a valid ASCII character, and sends
it to the console.

 BDOS Function 7: Auxiliary Input Status
 Entry parameters:
 Register C: 07H
 Returned value:
 Register A: Auxiliary input status
 00H = no character for input
 0FFH = character ready for input

The AUXILIARY INPUT STATUS function returns the value 0FFH in register A if a
character is ready for input from the logical auxiliary input device, AUXIN:.
If no character is ready for input, the value 00H is returned.

 BDOS Function 8: Auxiliary Output Status
 Entry parameters:
 Register C: 08H
 Returned value:
 Register A: Auxiliary Output Status
 00H = device not ready for output
 0FFH = device ready for output

The AUXILIARY OUTPUT STATUS function returns the value 0FFH in register A if
the logical auxiliary output device, AUXOUT:, is ready to accept a character
for output. If the device is not ready for output, the value 00H is returned.

 BDOS Function 9: Print String
 Entry parameters:
 Register C: 09H
 Register DE: String address
 Returned value: None

The PRINT STRING function sends the character string stored in memory at the
location given by DE to the console device, until a dollar sign ("$") is
encountered in the string. Function 110 can change the delimiter for Function
9. However, the delimiter is initialized to $ when a program begins execution.
Tabs are expanded as in Function 2, and checks are made for start/stop scroll
and printer echo (see Function 109).

 BDOS Function 10: Read Console Buffer
 Entry parameters:

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

 Register C: 0AH
 Register DE: Buffer address
 Returned value: Console characters in buffer

The READ CONSOLE BUFFER functions reads a line of edited console input into a
buffer addressed by register pair DE. Console input is terminated when either
input buffer overflows, or a Carriage Return or Line Feed is typed. Function
10 takes the following form, where MX is the maximum number of characters that
the buffer will hold (1 to 255) and NC is the number of characters read (set
by FDOS upon return), followed by the characters read from the console.

 DE:+0 +1 +2 +3 +4 +5 +6 +7 +8 ... +n
 mc nc c1 c2 c3 c4 c5 c6 c7 ... ??

If NC < MX, then uninitialized positions follow the last character, denoted by
2 question marks ("??") in the above figure. A number of control functions,
summarized in Table 2-4, are recognized during line editing. Note that, if a
Ctrl-P is encountered by Function 10, it toggles printer echo.

Table 2-4. Edit control character

Character Edit control function
--------- ---------------------
 DEL Removes and echoes the last character
 Ctrl-C Reboots when at the beginning of line
 Ctrl-E Causes physical end of line
 Ctrl-H Backspaces one character position
 Ctrl-J (Line Feed) Terminates input line
 Ctrl-M (Carriage Return) Terminates input line
 Ctrl-R Retypes the current line after new line
 Ctrl-U Removes current line
 Ctrl-X (Same as Ctrl-U)

 BDOS Function 11: Get Console Status
 Entry parameters:
 Register C: 0BH
 Returned value:
 Register A: Console status
 00H = no character ready
 0FFH = character ready

The GET CONSOLE STATUS function checks to see if a character been typed at the
console. If a character is ready, the value 0FFH is returned in register A.
Otherwise, a 00H value is returned.

 BDOS Function 12: Return Version Number
 Entry parameters:
 Register C: 0CH
 Returned value:
 Register HL: Version number (0028H)

The RETURN VERSION NUMBER function provides information that allows version-
independent programming. A 2-byte value is returned, with H = 00H designating
the 8-bit CP/M operating system. BDOS version numbers 20H through 27H are
designated for all previous CP/M-80 versions. Personal CP/M returns a
hexadecimal 28 in register L. Function 12 is useful for writing application
programs that must run on multiple CP/M versions.

 BDOS Function 13: Reset Disk System
 Entry parameters:
 Register C: 0DH
 Returned value: None

The RESET DISK SYSTEM function is used to restore the file system to a reset
state where all disks are set to Read/Write (see Function 28 and 29). Disk
drive A is selected, and the default DMA address is reset to 0080H. This
function can be used, for example, by an application program that requires a
disk change without a system reboot.

 BDOS Function 14: Specify Disk Drive
 Entry parameters:
 Register C: 0EH
 Register E: Specified disk drive number
 Returned value:
 Register A: Error flag
 00H if successful, or
 0FFH if failed

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

 Register H: Physical error

The SPECIFY DISK DRIVE function designates the disk drive numbered in register
E as the default disk for subsequent file operations, with E = 0 for drive A,
1 for drive B, and so on through 15 corresponding to drive P in a full 16-
drive system. The drive is placed in an on-line status, which activates its
directory until the next cold start, warm start, or RESET DISK SYSTEM
operation. FCBs that specify drive code zero (DR = 00H) automatically
reference the currently-specified default drive. Drive code values between 1
and 16 ignore the specified default drive, and directly reference drives A
through P.

Upon return, register A contains a zero if the SPECIFY DISK DRIVE operation
was successful. If a physical error was encountered, the SPECIFY DISK DRIVE
function performs different actions, depending on the BDOS error mode (see
Function 45). If the BDOS error mode is in the default mode, a message
identifying the error is displayed at the console (see Appendix A, "BDOS error
handling"), and the calling program is terminated. Otherwise, the SPECIFY DISK
DRIVE function returns to the calling program, with register A set to 0FFH,
and register H set to one of the following physical error codes:

 01: Disk I/O error
 04: Invalid drive

 BDOS Function 15: Open File
 Entry parameters:
 Register C: 0FH
 Register DE: FCB address
 Returned value:
 Register A: 00H if successful, or
 0FFH if failed
 Register H: 00H if successful, or
 Physical error (see below)

The OPEN FILE function is used to activate a file that currently exists in the
disk directory for the currently active user number. The FDOS scans the
referenced disk directory for a match in positions 1 through 14 of the FCB
referenced by DE (byte S2 is automatically zeroed). Normally, bytes EX and S1
of the FCB are zero.

If a directory element is matched, the relevant directory information is
copied into bytes D0 through Dn of the FCB, thus allowing access to the files
through subsequent read and write operations. An existing file must not be
accessed until a successful OPEN FILE operation is completed. Upon return, the
OPEN FILE function returns a directory code with the value 00H if the
operation was successful, or 0FFH (logical FALSE) if the file cannot be found.
If question marks occur in the FCB, the first matching FCB is activated. The
current field (CR) must be zeroed by the program if the file is to be accessed
sequentially from the first record.

Function 15 opens a file under user 0 when the current user number is non-
zero, if 2 conditions exist:

 1) the file is not present under the current user number, and
 2) the file under user 0 has the system attribute T2' set.

However, files opened in this way cannot be written to. (See Function 32 and
Appendix C, "User number conventions", for more discussion of user numbers.)

Upon return, the OPEN FILE function returns a 00H in register A if the open
was successful, or 0FFH (logical FALSE) if the file was not found. Register H
is set to zero in both cases. If a physical error was encountered, the OPEN
FILE function performs different actions depending on the BDOS error mode (see
Function 45). If the BDOS error mode is in the default mode, a message
identifying the error is displayed at the console (see Appendix B, "BDOS error
handling"), and the program is terminated. Otherwise, the OPEN FILE function
returns to the calling program with register A set to 0FFH, and register H set
to one of the following physical error codes:

 01: Disk I/O error
 04: Invalid drive error

 BDOS Function 16: Close File
 Entry parameters:
 Register C: 10H
 Register DE: FCB address
 Returned value:
 Register A: 00H if successful, or
 0FFH if failed

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

 Register H: 00H if successful, or
 Physical error (see below)

The CLOSE FILE function is the reverse of the OPEN FILE function. Given that
the FCB addressed by register pair DE has been previously activated through an
OPEN FILE or MAKE FILE function, the CLOSE FILE function permanently records
the new FCB in the reference disk directory (see Functions 15 and 22). The FCB
matching process for the CLOSE FILE function is identical to the OPEN FILE
function. The directory code returned for a successful CLOSE FILE operation is
00H, while a 0FFH (logical FALSE) is returned if the filename cannot be found
in the directory. If write operations have occurred, the CLOSE FILE operation
is necessary, to record the new directory information permanently.

Upon return, the CLOSE FILE function returns a 00H in register A if the close
was successful, or 0FFH (logical FALSE) if the file was not found. Register H
is set to zero in both cases. If a physical error was encountered, the CLOSE
FILE function performs different actions depending on the BDOS error mode (see
Function 45). If the BDOS error mode is in the default mode, a message
identifying the error is displayed at the console (see Appendix B, "BDOS error
handling"), and the program is terminated. Otherwise, the CLOSE FILE function
returns to the calling program with register A set to 0FFH, and register H set
to one of the following physical error codes:

 01: Disk I/O error
 02: Read/Only disk
 04: Invalid drive error

 BDOS Function 17: Search For First
 Entry parameters:
 Register C: 11H
 Register DE: FCB address
 Returned value:
 Register A: Directory code
 00-03H if successful, or
 0FFH if failed
 Register H: 00H if successful, or
 Physical error (see below)

SEARCH FOR FIRST scans the directory for a match with the file given by the
FCB addressed by DE. The value 0FFH (logical FALSE) is returned if the file is
not found; otherwise, 0, 1, 2, or 3 is returned, indicating that the file is
present. When the file is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting position is
A*32 (that is to say: rotate the A register left 5 bits, or ADD A five times).
Although not normally required for application programs, the directory
information can be extracted from the buffer at this position. Byte 0 of a
returned directory entry contains the file's user number.

An ASCII question mark (63 decimal, 3H hexadecimal) in any position from F1
through EX matches the corresponding field of any directory entry on the
default or auto-specified disk drive. If the DR field contains an ASCII
question mark, the auto disk specify function is disabled and the default disk
is searched, with the SEARCH FOR FIRST function returning any matched entry,
allocated or free, belonging to any user number. This latter function is not
normally used by application programs, but it allows complete flexibility to
scan all current directory values. If the DR field is not an ASCII question
mark, the S2 byte is automatically zeroed.

If a physical error is encountered, the SEARCH FOR FIRST function performs
actions depending on the BDOS error mode (see Function 45). If the BDOS error
mode is in the default mode, a message identifying the error is displayed at
the console, and the calling program is terminated. Otherwise, the SEARCH FOR
FIRST function returns to the calling program with register A set to 0FFH
(logical FALSE) and register H set to one of the following physical error
codes:

 01: Disk I/O error
 04: Invalid drive error

 BDOS Function 18: Search For Next
 Entry parameters:
 Register C: 12H
 Returned value:
 Register A: Directory code
 00-03H if successful, or
 0FFH if failed
 Register H: 00H if successful, or
 Physical error (see Function 17)

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

The SEARCH FOR NEXT function is similar to the SEARCH FOR FIRST function,
except that the directory scan continues from the last matched entry. Similar
to Function 17, Function 18 returns the value 0FFH (logical FALSE) in register
A when no more directory items match.

 BDOS Function 19: Delete File
 Entry parameters:
 Register C: 13H
 Register DE: FCB address
 Returned value:
 Register A: 00H if successful, or
 0FFH if failed
 Register H: 00H if successful, or
 Physical error (see below)

The DELETE FILE functions deletes files that match the FCB addressed by
register pair DE from the directory. The filename and type may contain
ambiguous references (that is to say: question marks in various positions),
but the drive specifier cannot be ambiguous, as in the SEARCH FOR FIRST and
SEARCH FOR NEXT functions. For files that have question marks (ambiguous
deletes) in the filename and/or filetype, no files are deleted if any of the
files are marked Read-Only.

Upon return, the DELETE FILE function returns a 00H in register A if
successful, or 0FFH (logical FALSE) if no file that matches the referenced FCB
is found. Register H is set to zero in both cases. If a physical error is
encountered, the DELETE FILE function performs different actions depending on
the BDOS error mode (see Function 45). If the BDOS error mode is the default
mode, a message identifying the error is displayed at the console, and the
calling program is terminated. Otherwise, the DELETE FILE function returns to
the calling program with register A set to 0FFH (logical FALSE) and register H
set to one of the following physical error codes:

 01: Disk I/O error
 02: Read-Only disk
 03: Read-Only file
 04: Invalid drive error

 BDOS Function 20: Read Sequential
 Entry parameters:
 Register C: 14H
 Register DE: FCB address
 Returned value:
 Register A: Error code
 00H if successful, or
 01H, 0AH, or 0FFH if failed
 Register H: 00H if successful, or
 Physical error if failed

Given that the FCB addressed by register pair DE has been activated through an
OPEN FILE or MAKE FILE function, the READ SEQUENTIAL function reads the next
128-byte record from the file into memory at the current DMA address. The
record is read from position CR of the extent, and the CR field is
automatically incremented to the next record position. If the CR field
overflows, the next logical extent is automatically opened, and the CR field
is reset to zero in preparation for the next read operation.

Upon return, the READ SEQUENTIAL function sets register A to 00H if the read
operation is successful. Otherwise, register A contains an error code
identifying the error as shown:

 01H: Reading unwritten data (end-of-file)
 0AH: Media change occurred
 0FFH: Physical error, refer to register H

Error code 01H is returned if no data exists at the next record position of
the file. Usually, the no-data situation is encountered at the end of a file.
However, it can also occur if an attempt is made to read a data block that has
not been created. These situations are usually restricted to files created or
appended with the BDOS random write functions (see Functions 34 and 40).

Error code 0AH is returned if a media change occurs on the drive after the
referenced FCB is activated by a OPEN FILE or MAKE FILE function.

Error code 0FFH is returned if a physical error is encountered and the BDOS
error mode is "return error" mode, or "return and display error" mode (see
Function 45). If the BDOS error mode is the default mode, a message
identifying the physical error is displayed at the console, and the calling
program is terminated. When a physical error is returned to the calling

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

program, register H contains one of the following error codes:

 01: Disk I/O error
 04: Invalid drive error

 BDOS Function 21: Write Sequential
 Entry parameters:
 Register C: 15H
 Register DE: FCB address
 Returned value:
 Register A: Error code
 00H if successful, or
 01H, 02H, 0AH, or 0FFH if failed
 Register H: 00H if successful, or
 Physical error if failed

Given that the FCB addressed by register pair DE has been activated through an
OPEN FILE or MAKE FILE function, the WRITE SEQUENTIAL function writes the 128-
byte data record at the current DMA address to the file named by the FCB. The
record is placed at position CR of the file, and the CR field is automatically
incremented to the next record position. If the CR field overflows, the next
logical extent is automatically opened, and the CR field is reset to zero in
preparation for the next WRITE SEQUENTIAL operation. WRITE SEQUENTIAL
operations take place into an existing file, in which case newly written
records overlay those already existing in the file.

Upon return, the WRITE SEQUENTIAL function sets register A to 00H if the
operation is successful. Otherwise, register A contains an error code
identifying the error as shown below:

 01H: No available directory space
 02H: No available data block
 0AH: Media change occurred
 0FFH: Physical error, refer to register H

Error code 01H is returned when the WRITE SEQUENTIAL function attempts to
create a new extent that requires a new directory entry, and no available
directory entries exist on the selected disk drive.

Error code 02H is returned when the WRITE SEQUENTIAL function attempts to
allocate a new data block to the file, and no unallocated data blocks exist on
the selected disk drive.

Error code 0AH is returned if a media change occurs on the drive after the
referenced FCB is activated by a OPEN FILE or MAKE FILE function.

Error code 0FFH is returned if a physical error is encountered and the BDOS
error mode is "return error" mode, or "return and display error" mode (see
Function 45). If the error mode is the default mode, a message identifying the
physical error is displayed at the console, and the calling program is
terminated. When a physical error is returned to the calling program, register
H contains one of the following error codes:

 01: Disk I/O error
 02: Read-Only disk
 03: Read-Only file, or
 File open from user zero when the current user number is non-zero
 04: Invalid drive error

 BDOS Function 22: Make File
 Entry parameters:
 Register C: 16H
 Register DE: FCB address
 Returned value:
 Register A: 00H if successful, or
 0FFH if failed
 Register H: 00H if successful, or
 Physical error (see below)

The MAKE FILE function is similar to the OPEN FILE function, except that the
FCB must name a file that does not exist in the currently-referenced disk
directory (that is to say: the one specifed explicitly by a non-zero DR code,
or the default disk if DR is zero). The FDOS creates the file and initializes
both the directory and main memory value to an empty file. As the programmer,
you must ensure that no duplicate filenames occur, and a preceding DELETE FILE
operation is sufficient if there are any possibility of duplication. The MAKE
FILE function has the side effect of activating the FCB, and thus a subsequent
OPEN FILE is not necessary.

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

Upon return, the MAKE FILE function returns a 00H in register A if the
operation is successful, or 0FFH (logical FALSE) if no directory space is
available. Register H is set to 00H in both of these cases. If a physical
error is encountered, the MAKE FILE function performs different actions
depending on the BDOS error mode (see Function 45). If the BDOS error mode is
the default error mode, a message identifying the error is displayed at the
console, and the calling program is terminated. Otherwise, the MAKE FILE
function returns to the calling program with register A set to 0FFH, and
register H set to one of the following physical error codes:

 01: Disk I/O error
 02: Read-Only disk
 04: Invalid drive error

 BDOS Function 23: Rename File
 Entry parameters:
 Register C: 17H
 Register DE: FCB address
 Returned value:
 Register A: 00H if successful, or
 0FFH if failed
 Register H: 00H if successful, or
 Physical error (see below)

The RENAME FILE function uses the FCB addressed by register pair DE to change
the file named in the first 16 bytes, to the file named in the second 16
bytes. The drive code DR at position 0 is used to specify the drive, while the
drive code for the new filename at position 16 of the FCB is assumed to be
zero.

Upon return, the RENAME FILE function returns a 00H in register A if the
operation is successful, or 0FFH (logical FALSE) if the file named by the
first filename in the FCB is not found. Register H is set to 00H in both
cases. If a physical error is encountered, the RENAME FILE function performs
different actions depending on the BDOS error mode (see Function 45). If the
BDOS error mode is the default mode, a message identifying the error is
displayed at the console, and the program is terminated. Otherwise, the RENAME
FILE function returns to the calling program with register A set to 0FFH and
register H set to one of the following physical error codes:

 01: Disk I/O error
 02: Read-Only disk
 03: Read-Only file
 04: Invalid drive error

 BDOS Function 24: Return Login Vector
 Entry parameters:
 Register C: 18H
 Returned value:
 Register HL: Login vector

The login vector value returned by Personal CP/M is a 16-bit value in register
pair HL, where the least significant bit of L corresponds to the first drive
A, and the high-order bit of H corresponds to the 16th drive, P. A 0 bit
indicates that the drive is not on-line, while a 1 bit marks a drive that is
actively on-line as a result of an explicit disk drive specification, or an
implicit drive spec caused by a file operation that specified a non-zero DR
field. The user should note that compatibility is maintained with previous
CP/M versions, because register A and L contain the same value upon return.

 BDOS Function 25: Return Current Drive
 Entry parameters:
 Register C: 19H
 Returned value:
 Register A: Current drive number

The RETURN CURRENT DRIVE function returns the currently-specified default
drive number in register A. The drive numbers range from 0 through 15,
corresponding to drives A through P.

 BDOS Function 26: Set DMA Address
 Entry parameters:
 Register C: 1AH
 Register DE: DMA address
 Returned value: None

DMA is an acronym for "Direct Memory Access", which is often used in

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

connection with disk controllers that directly access the memory of the
mainframe computer to transfer data to and from the disk subsystem. Many
computer systems use non-DMA access (that is to say: the data is transferred
through programmed I/O operations). In Personal CP/M, the DMA address means
the address at which the 128-byte data record resides before a disk write, and
after a disk read. Upon cold start, warm start, or RESET DISK SYSTEM, the DMA
address is automatically set to 0080H. The SET DMA ADDRESS function can be
used to change this default value to address another area of memory where the
data records reside. Thus, the DMA address becomes the value specified by
register pair DE until it is changed by a subsequent SET DMA ADDRESS function,
cold start, warm start, or RESET DISK SYSTEM.

 BDOS Function 27: Get Addr (Alloc)
 Entry parameters:
 Register C: 1BH
 Returned value:
 Register HL: Alloc address if successful, or
 0FFFFH if failed

An allocation vector is maintained in main memory for each on-line disk drive.
Various system programs use the information provided by the allocation vector
to determine the amount of remaining storage (see the STAT program). The GET
ADDR (ALLOC) function returns the base address of the allocation vector for
the currently-specified drive. However, the allocation information might be
invalid if the specified drive has been marked Read-Only. Although this
function is not normally used by application programs, additional details of
the allocation vector are found in the "Personal CP/M System Guide".

If a physical error is encountered when the BDOS error mode is one of the
return modes (see Function 45), the GET ADDR (ALLOC) function returns the
value 0FFFFH in register pair HL.

 BDOS Function 28: Write Protect Disk
 Entry parameters:
 Register C: 1CH
 Returned value: None

The WRITE PROTECT DISK function provides temporary write protection for the
currently-selected disk. A Read-Only disk stays Read-Only until reset by
Function 13 or 37. Any attempt to write to a Read-Only disk produces the
message:

 CP/M Error on x: Read-Only Disk

or returns a physical error 2 if in BDOS "return error" mode (see Function
45).

 BDOS Function 29: Get Read-Only Vector
 Entry parameters:
 Register C: 1DH
 Returned value:
 Register HL: Read-Only vector

The GET READ-ONLY VECTOR function returns a 16-bit value in register pair HL
which indicates drives that have the temporary Read-Only bit set. As in
Function 24, the least significant bit corresponds to drive A, while the most
significant bit corresponds to drive P. The Read-Only bit can only be set by
an explicit call to Function 28.

 BDOS Function 30: Set File Attributes
 Entry parameters:
 Register C: 1EH
 Register DE: FCB address
 Returned value:
 Register A: 00H if successful, or
 0FFH if failed
 Register H: 00H if successful, or
 Physical error (see below)

The SET FILE ATTRIBUTES function allows the permanent attributes attached to
files to be modified by a program. In particular, the Read-Only and system
attributes (T1' and T2') can be set or reset. The DE register pair addresses
an unambiguous filename with the appropriate attributes set or reset. The SET
FILE ATTRIBUTES function searches for a match, and changes the matched
directory entry to contain the selected attributes. Attributes F1' through F8'
are not currently used in Personal CP/M. Attributes F1' through F4' may be
used by application programs, since they are not involved in the matching

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

process during OPEN FILE and CLOSE FILE operations. Attributes F5' through F8'
and T3' are reserved.

Upon return, the SET FILE ATTRIBUTES function returns a 00H in register A if
the function is successful, or 0FFH (logical FALSE) if the file specified by
the referenced FCB is not found. Register H is set to 00H in both cases. If a
physical error is encountered, the SET FILE ATTRIBUTES function performs
different actions depending on the BDOS error mode (see Function 45). If the
BDOS error mode is the default mode, a message identifying the error is
displayed at the console, and the program is terminated. Otherwise, the SET
FILE ATTRIBUTES function returns to the calling program with register A set to
0FFH, and register H set to one of the following physical error codes:

 01: Disk I/O error
 02: Read-Only disk
 04: Invalid drive error

 BDOS Function 31: Get Addr (Disk Parms)
 Entry parameters:
 Register C: 1FH
 Returned value:
 Register HL: DPB address if successful, or
 0FFFFH if failed

The GET ADDR (DISK PARMS) function returns the address of the BIOS-resident
Disk Parameter Block in register pair HL. This address can be used for either
of 2 purposes. First, the disk parameter values can be extracted for display
and space computation purposes, or transient programs can dynamically change
the values of current disk parameters when the disk environment changes, if
required. Normally, application programs do not require this facility.

If a physical error is encountered when the BDOS error mode is one of the
return modes (see Function 45), the GET ADDR (DISK PARMS) function returns the
value 0FFFFH in register pair HL.

 BDOS Function 32: Get/Set User Number
 Entry parameters:
 Register C: 20H
 Register E: 0FFH (Get), or
 User number (Set)
 Returned value:
 Register A: Current user number (Get)

An application program can change or interrogate the currently active user
number by calling the GET/SET USER NUMBER function. If register E = 0FFH, the
value of the current user number is returned in register A, where the value is
in the range of 0 to 15. If register E is not 0FFH, the current user number is
changed to the value of E, modulo 16.

 BDOS Function 33: Read Random
 Entry parameters:
 Register C: 21H
 Register DE: FCB address
 Returned value:
 Register A: Error code
 00H if successful, or
 non-zero if failed (see below)
 Register H: 00H if successful, or
 Physical error (see below)

The READ RANDOM function is similar to the READ SEQUENTIAL operation of
previous CP/M versions, except that the read operation takes place at a
particular record number, selected by the 24-bit value constructed from the 3-
byte field following the FCB (byte positions R0 at 33, R1 at 34, and R2 at
35). You should note that the sequence of 24 bits is stored with least
significant byte first (R0), middle byte next (R1), and high byte last (R2).
Personal CP/M does not reference byte R2, except in computing the size of a
file (Function 35). Byte R2 must be zero, however, since a non-zero value
indicates overflow past the end of file.

Thus, the R0, R1 byte pair is treated as a double byte, or word, value that
contains the record to read. This value ranges from 0 to 65,535, providing
access to any particular record of the 8-megabyte file. To process a file
using random access, the base extent (extent 0) must first be opened. Although
the base extent may or may not contain any allocated data, this step ensures
that the file is properly recorded in the directory, and is visible in DIR
requests. The selected record number is then stored in the random record field
(R0, R1), and the BDOS is called to read the record.

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

Upon return from the call, register A either contains an error code, as listed
below, or the value 00H indicating that the operation was successful. In the
latter case, the current DMA address contains the randomly-accessed record.
Note that, contrary to the READ SEQUENTIAL operation, the record number is not
advanced. Thus, subsequent READ RANDOM operations continue to read the same
record.

Upon each READ RANDOM operation, the logical extent and current record values
are automatically set. Thus, the file can be sequentially read or written,
starting from the current randomly-accessed position. In this case, the last
randomly read record will be re-read as one switches from random mode to
SEQUENTIAL READ, and the last record will be re-written as one switches to a
SEQUENTIAL WRITE operation. The user can advance the random record position
following each READ RANDOM or WRITE RANDOM, to obtain the effect of sequential
I/O operation.

Upon return, the READ RANDOM function sets register A to 00H if the read
operation was successful. Otherwise, register A contains one of the following
error codes:

 01: Reading unwritten data (end of file)
 03: Cannot close current extent
 04: Seek to unwritten extent
 06: Random record number out of range
 0AH: Media change occurred
 0FFH: Physical error, refer to register H

Error code 01 is returned if no data exists at the next record position of the
file. Usually, the no-data situation is encountered at the end of a file.
However, it can also occur if an attempt is made to read a data block that
has not been previously written.

Error code 03 is returned when the READ RANDOM function cannot close the
current extent prior to moving to a new extent.

Error code 04 is returned when a READ RANDOM operation accesses an extent that
has not been created.

Error code 06 is returned when byte 35, R2, of the referenced FCB is non-zero.

Error code 0AH is returned if a media change occurs on the drive after the
referenced FCB is activated by a OPEN FILE or MAKE FILE function call.

Error code 0FFH is returned if a physical error is encountered and the BDOS
error mode is one of the return modes (see Function 45). If the BDOS error
mode is in the default mode, a message identifying the physical error is
displayed at the console, and the calling program is terminated. When a
physical error is returned to the calling program, register H contains one of
the following physical error codes:

 01: Disk I/O error
 04: Invalid drive error

 BDOS Function 34: Write Random
 Entry parameters:
 Register C: 22H
 Register DE: FCB address
 Returned value:
 Register A: Error code
 00H if successful, or
 non-zero if failed (see below)
 Register H: 00H if successful, or
 Physical error (see below)

The WRITE RANDOM function is initiated similarly to the READ RANDOM operation,
except that data is written to the disk from the current DMA address. If the
disk extent or data block that is the target of the WRITE RANDOM operation has
not yet been allocated, the allocation is performed before the operation
continues. As in the READ RANDOM operation, the random record number is not
changed as a result of the WRITE RANDOM function. The logical extent number
and current record positions of the FCB are set to correspond to the random
record being written. Again, READ SEQUENTIAL or WRITE SEQUENTIAL operations
can begin following a WRITE RANDOM operation, remembering that the currently-
addressed record is either read or rewritten again, as the sequential
operation begins. You can also advance the random record position following
each WRITE RANDOM operation, to get the effect of a WRITE SEQUENTIAL
operation. Note that reading or writing the last record of an extent in random
mode does not cause an automatic extent switch, as it does in sequential mode.

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

Upon return, the WRITE RANDOM function sets register A to 00H if the operation
is successful. Otherwise, register A contains one of the following error
codes:

 02: No available data block
 03: Cannot close current extent
 05: No available directory space
 06: Random record number out of range
 0AH: Media change occurred
 0FFH: Physical error, refer to register H

Error code 02 is returned when the WRITE RANDOM function attempts to allocate
a new data block to the file, and no unallocated data blocks exist on the
selected disk drive.

Error code 03 is returned when the WRITE RANDOM function cannot close the
current extent prior to moving to a new extent.

Error code 05 is returned when the WRITE RANDOM function attempts to create a
new extent that requires a new directory entry, and no available directory
entries exist on the selected disk drive.

Error code 06 is returned when byte 35, R2, of the referenced FCB is non-zero.

Error code 0AH is returned if a media change occurs on the drive after the
referenced FCB is activated by an OPEN FILE or MAKE FILE operation.

Error code 0FFH is returned if a physical error is encountered and the BDOS
error mode is one of the return modes (see Function 45). If the BDOS error
mode is the default mode, a message identifying the physical error is
displayed at the console, and the calling program is terminated. When a
physical error is returned to the calling program, register H contains one of
the following error codes:

 01: Disk I/O error
 02: Read-Only disk
 03: Read-Only file, or
 File opened from user zero when current user number is non-zero
 04: Invalid drive error

 BDOS Function 35: Compute File Size
 Entry parameters:
 Register C: 23H
 Register DE: FCB address
 Returned value: Random record number set

When computing the size of a file, the register pair DE addresses an FCB in
random mode format (bytes R0, R1, and R2 are present). The FCB contains an
unambiguous filename that is used in the directory scan. Upon return, the
random record bytes contain the virtual file size, which is, in effect, the
record address of the record following the end of the file. Following a call
to the COMPUTE FILE SIZE function, if the high record byte R2 is 01H, the file
contains the maximum record count 65,536. Otherwise, bytes R0 and R1
constitutes a 16-bit value as before (R0 is the least significant byte), which
is the file size.

Data can be appended to the end of an existing file by calling the COMPUTE
FILE SIZE function to set the random record position to the end of the file,
and then performing a sequence of WRITE RANDOM operations, starting at the
preset record address.

The virtual size of a file corresponds to the physical size when the file is
written sequentially. If the file was created in random mode, and holes exist
in the allocation, the file might contain fewer records than the size
indicated. For example, if only the last record of an 8-megabyte file is
written in random mode (that is to say: record number 65,535), the virtual
size is 65,536 record, although only one block of data is actually allocated.

Note: The BDOS does not require that the file be open to use Function 35.
However, if the file has been written to, it must be closed before calling
Function 35. Otherwise, an incorrect file size might be returned.

Upon return, the COMPUTE FILE SIZE function returns a 00H in register A if the
file specified by the referenced FCB is found, or an 0FFH (logical FALSE) in
register A if the file is not found. Register H is set to 00H in both cases.
If a physical error is encountered, the COMPUTE FILE SIZE function performs
different actions depending on the BDOS error mode (see Function 45). If the
BDOS error mode is the default mode, a message identifying the error is
displayed at the console, and the program is terminated. Otherwise, the
COMPUTE FILE SIZE function returns to the calling program with register A set

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

to 0FFH, and register H set to one of the following physical error codes:

 01: Disk I/O error
 04: Invalid drive error

 BDOS Function 36: Set Random Record
 Entry parameters:
 Register C: 24H
 Register DE: FCB address
 Returned value: Random record number set

The SET RANDOM RECORD function returns the random record number of the next
record to be accessed from a file that has been read or written sequentially
to a particular point. This value is returned in the random record number,
bytes R0, R1, and R2 of the FCB addressed by register pair DE. The SET RANDOM
RECORD function can be useful in 2 ways.

First, it is often necessary to read and scan a sequential file, to extract
the positions of various key fields. As each key is encountered, the SET
RANDOM RECORD function is called to compute the random record position for the
data corresponding to this key. If the data unit size is 128 bytes, the
resulting record number minus one is placed into a table, with the key, for
later retrieval. After scanning the entire file, and tabularizing the keys and
their record numbers, you can move directly to a particular record by
performing a RANDOM RECORD operation using the corresponding random record
number that you saved earlier. The scheme is easily generalized when variable
record lengths are involved, because the program need only store the buffer-
relative byte position, along with the key and record number, to find the
exact starting position of the keyed data at a later time.

A second use of the SET RANDOM RECORD function occurs when switching from a
SEQUENTIAL READ or SEQUENTIAL WRITE operation over to a RANDOM READ or RANDOM
WRITE operation. A file is sequentially accessed to a particular point in the
file; then the SET RANDOM RECORD function is called to set the record number,
and subsequent RANDOM READ and RANDOM WRITE operations continue from the next
record in the file.

 BDOS Function 37: Reset Drive
 Entry parameters:
 Register C: 25H
 Register DE: Drive vector
 Returned value: None

The RESET DRIVE function programmatically restores specified drives to the
reset state. A reset drive is not logged in, and is in Read/Write status. The
passed parameter in register pair DE is a 16-bit vector of drives to be reset,
where the least significant bit corresponds to the first drive A, and the
most significant bit corresponds to drive P. Bit values of 1 indicate that the
specified drive is to be reset.

 BDOS Function 40: Write Random with Zero Fill
 Entry parameters:
 Register C: 28H
 Register DE: FCB address
 Returned value:
 Register A: Error code
 00H if successful, or
 non-zero if failed (see Function 34)
 Register H: 00H if successful, or
 Physical error (see Function 34)

The WRITE RANDOM WITH ZERO FILL function is similar to the WRITE RANDOM
function, except that a previously-unallocated block is filled with 00H before
the data is written.

 BDOS Function 45: Set BDOS Error Mode
 Entry parameters:
 Register C: 2DH
 Register E: BDOS error mode
 0FFH: Return error mode
 0FEH: Return and display mode
 Any other: Default mode
 Returned value: None

The SET BDOS ERROR MODE function sets the BDOS error mode for the calling
program to the mode specified in register E. If register E is set to 0FFH, the
BDOS error mode is set to "return error" mode. If register E is set to 0FEH,

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

the BDOS error mode is set to "return and display" mode. If register E is set
to any other value, the BDOS error mode is set to the "default" mode.

The SET BDOS ERROR MODE function determines how physical errors are handled
for a program. The operation can exist in 3 modes: the default mode, the
return error mode, and the return and display mode. In the "default" mode, the
BDOS displays a system message at the console that identifies the error, and
terminates the calling program. In the return modes, the BDOS sets register A
to 0FFH (logical FALSE), places an error code that identifies the physical
error in register H, and returns to the calling program. In "return and
display" mode, the BDOS displays the system message before returning to the
calling program. No system messages are displayed, however, when the BDOS is
in "return error" mode.

Table 2-5 lists the physical error codes and their corresponding CP/M error
messages. See Appendix B for more information on BDOS error handling.

Table 2-5. Messages for physical errors returned

Physical error Corresponding Personal
codes returned CP/M messages
-------------- ----------------------
 1 Disk I/O error
 2 Read-Only disk
 3 Read-Only file
 4 Invalid drive error

 BDOS Function 48: Flush Buffers
 Entry parameters:
 Register C: 30H
 Returned value:
 Register A: 00H if successful, or
 Error flag if failed
 Register H: Physical error

The FLUSH BUFFERS function forces the write of any write-pending records
contained in internal blocking/deblocking buffers.

Upon return, register A is set to 00H if the operation is successful. If a
physical error is encountered, the FLUSH BUFFERS function performs different
actions depending on the BDOS error mode (see Function 45). If the BDOS error
mode is in the default mode, a message identifying the error is displayed at
the console, and the calling program is terminated. Otherwise, the FLUSH
BUFFERS function returns to the calling program with register A set to 0FFH,
and register H set to one of the following physical error codes:

 01: Disk I/O error
 02: Read-Only disk
 04: Invalid drive error

 BDOS Function 109: Get/Set Console Mode
 Entry parameters:
 Register C: 6DH
 Register DE: 0FFFFH (Get), or
 Console mode (Set)
 Returned value:
 Register HL: Console mode (Get)

A program can set or interrogate the console mode by calling the GET/SET
CONSOLE MODE function. If register pair DE = 0FFFFH, the current console mode
is returned in register pair HL. Otherwise, the GET/SET CONSOLE MODE function
sets the console mode to the value contained in register pair DE.

The console mode is a 16-bit system parameter that determines the action of
certain BDOS console I/O functions. The definition of the bits of the console
mode is described in Table 2-6.

Table 2-6. Get/Set Console Mode description

Bits Definition
---- ----------
0-3 Reserved
4=0 Enable tab expansion, printer echo, and Ctrl-S checking for Functions
 2, 9, and 111.
4=1 Raw console output. Disable tab expansion, printer echo, and Ctrl-S
 checking.
5-15 Reserved

Note that the console mode bits are numbered from right to left. The CCP

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

initializes the console mode to zero when it loads a program.

 BDOS Function 110: Get/Set Output Delimiter
 Entry parameters:
 Register C: 6EH
 Register DE: 0FFFFH (Get), or
 Output delimiter (Set)
 Returned value:
 Register A: Output delimiter (Get)

A program can set or interrogate the current output delimiter by calling the
GET/SET OUTPUT DELIMITER function. If register pair DE = 0FFFFH, the current
output delimiter is returned in register A. Otherwise, the GET/SET OUTPUT
DELIMITER function sets the output delimiter to the value contained in
register E. The GET/SET OUTPUT DELIMITER function sets the string delimiter
for Function 9, PRINT STRING. The default delimiter value is a dollar sign
("$"). The CCP sets the output delimiter to the default value when a transient
program is loaded.

 BDOS Function 111: Print Block
 Entry parameters:
 Register C: 6FH
 Register DE: CCB address
 Returned value: None

The PRINT BLOCK functions sends the character string located by the Character
Control Block, CCB, addressed in register pair DE to the logical console
("CONOUT:"). If the console mode is in the default mode (zero), the PRINT
BLOCK function expands tab characters ("Ctrl-I") in columns of 8 characters.
It also checks for Ctrl-S (start/stop scroll), and echoes to the logical list
device ("LST:") if printer echo ("Ctrl-P") has been invoked. The CCB format is
as follows:

 Byte 0-1: Address of character string (word value)
 Byte 2-3: Length of character string (word value)

 BDOS Function 112: List Block
 Entry parameters:
 Register C: 70H
 Register DE: CCB address
 Returned value: None

The LIST BLOCK function sends the character string located by the Character
Control Block, CCB, addressed in register pair DE to the logical list device
("LST:"). The CCB format is as follows:

 Byte 0-1: Address of character string (word value)
 Byte 2-3: Length of character string (word value)

 BDOS Function 113: Direct Screen Functions
 Entry parameters:
 Register C: 71H
 Register DE: SFB address
 Byte 0 : Subfunction number
 Byte 1-2: Address of extended information
 or
 Byte 0 : Column value
 Byte 1 : Row value
 Returned value: None

The DIRECT SCREEN FUNCTIONS function provides direct access to cursor movement
and screen editing functions typically used by video-intensive applications,
such as word-processing and spreadsheets. The direct access is important
primarily on computers systems with memory-mapped displays. While most BIOS
display drivers provide some terminal emulation for these functions, the
overhead involved in interpreting an ESCape sequence into the corresponding
screen function can slow a video-intensive application to an unacceptable
degree. The DIRECT SCREEN FUNCTIONS function not only allows direct access to
these screen functions, but also can return information to the calling program
about whether a specific function executes fast or slowly on a particular
system (see Subfunction 1). Table 2-7 lists the subfunctions for the DIRECT
SCREEN FUNCTIONS function.

The Screen Functions Block (SFB) format is as follows:

 Byte 0 : Subfunction number
 Byte 1-2: Address of extended information

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

 or
 Byte 0 : Column value
 Byte 1 : Row value

Table 2-7. Subfunctions for Function 113

Format: Subfunction
 Description

0 -- Subfunctions supported
Returned value:
 Register HL: Pointer to bit vector stored as

 +----+----+----+----+----+----+----+----+
 Byte 0: | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
 +----+----+----+----+----+----+----+----+
 Byte 1: | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 |
 +----+----+----+----+----+----+----+----+
 Byte 2: | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
 +----+----+----+----+----+----+----+----+
 Byte 3: | | | | | 27 | 26 | 25 | 24 |
 +----+----+----+----+----+----+----+----+

 The corresponding bit is ON if the subfunction is supported.

1 -- Subfunctions emulated
Returned value:
 Register HL: Pointer to bit vector stored as above. Bit is ON if
subfunction is emulated (and therefore slower).

2 -- Display size
Returned value:
 Register H: Number of columns (n-1)
 Register L: Number of rows (n-1)

3 -- Identify terminal
Returned value:
 Register HL: Pointer to null-terminated identifier string. For a VT-52 type
terminal, it would return a pointer to the byte string ESC, '/', 'K', NULL.

4 -- Cursor up
Move cursor up, but does not scroll screen down if cursor was at top of page.

5 -- Cursor down
Move cursor down, but does not scroll screen up if cursor was at bottom of
page.

6 -- Cursor left
Wrap depends on mode set up by Subfunction 26 or 27.

7 -- Cursor right
Wrap depends on mode set by Subfunction 26 or 27.

8 -- Cursor home
Move cursor to top left-hand corner of screen.

9 -- Cursor on
Make cursor visible.

10 -- Cursor off
Make cursor invisible.

11 -- Direct cursor addressing
Move cursor to absolute column and row in SFB.

12 -- Clear display
Move cursor to top left-hand corner of screen, and erase screen.

13 -- Erase to end of line

14 -- Erase to end of screen

15 -- Enter ANSI mode

16 -- Enter VT-52 mode

17 -- Enter graphics mode (*)

18 -- Exit graphics mode (*)

19 -- Enter alternate keypad mode (*)

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

20 -- Exit alternate keypad mode (*)

(* = Not supported by Personal CP/M for the Sharp MZ-800.)

21 -- Enter hold screen mode

22 -- Exit hold screen mode

23 -- Enter reverse video mode

24 -- Exit reverse video mode

25 -- Reverse line-feed

26 -- Enable wrap-around at end of line

27 -- Truncate characters at end of line

28-255 -- Reserved

(ROCHE>??? The above bit vector supports only 32 Subfunctions, not 255...)

 BDOS Function 124: Byte BLT Copy
 Entry parameters:
 Register C: 7CH
 Register DE: BCB address
 Returned value:
 Register A: 00H if implemented, or
 0FFH if not implemented

ROCHE> BCB = Byte Copy Block. That's all I know...

 BDOS Function 125: Byte BLT Alter
 Entry parameters:
 Register C: 7DH
 Register DE: BCB address
 Returned value:
 Register A: 00H if implemented, or
 0FFH if not implemented

ROCHE> BCB = Byte Copy Block. That's all I know...

Section 3: Sample programs

3.1 Sample file-to-file copy program

This program provides a relatively simple example of file operations. (Refer
to the assembler source for the program on the Personal CP/M distribution
disk, in file COPY.ASM.) The program source file is created using the CP/M ED
program, and then assembled using ASM or MAC, resulting in a HEX file. The
LOAD program is used to produce a COPY.COM file, that executes directly under
Personal CP/M. The program begins by setting the Stack Pointer of the
microprocessor of your microcomputer to a local area, and proceeds to move the
second name from the default area at 006CH to a 33-byte file control block
called DFCB (Destination File Control Block). The DFCB is then prepared for
file operations by clearing the current record field.

At this point, the source and destination FCBs are ready for processing,
because the SFCB (Source File Control Block) at 005CH is properly set up by
the CCP upon entry to the COPY program. That is to say: the first name is
placed into the default FCB, with the proper fields zeroed, including the
current record field at 007CH. The program continues by opening the source
file, deleting any existing destination file, and creating the destination
file. If all this is successful, the program loops at the label COPY until
each 128-byte record is read from the source file, and placed into the
destination file. When the data transfer is complete, the destination file is
closed, and the program returns to the CCP command level by jumping to BOOT.

Note several simplifications in this particular program. First, there are no
checks for invalid filenames that could contain ambiguous references. This
situation could be detected by scanning the 32-byte default area starting at
location 005CH for ASCII question marks. A check should also be made to ensure
that the filenames have been included (check locations 005DH and 006DH for
non-blank ASCII characters). Finally, a check should be made to ensure that
the source and destination filenames are different. An improvement in speed

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

could be obtained by buffering more data on each read operation. You could,
for example, determine the size of memory by fetching FBASE from location
0006H, and using the entire remaining portion of memory for a data buffer. In
this case, you reset the DMA address to the next successive 128-byte area
before each read. Upon writing to the destination file, the DMA address is
reset to the beginning of the buffer, and incremented by 128 bytes to the end
as each record is transferred to the destination file.

3.2 Sample file dump utility

The file dump program is more complex than the simple copy program. (Refer to
the assembler source for the program on the Personal CP/M distribution disk,
in file DUMP.ASM.) The dump program reads an input file specified on the
command line, and displays the content of each record in hexadecimal format at
the console. Note that the dump program saves the CCP's stack upon entry,
resets the stack to a local area, and restores the CCP's stack before
returning directly to the CCP. Thus, the dump program does not perform a warm
start at the end of processing.

3.3 Sample random access program

The random access program presents an extensive example of random access
operation. (Refer to the assembler source for the program on the Personal CP/M
distribution disk, in file RANDOM.ASM.) The program performs the simple
function of reading or writing random records upon command from the terminal.
When a program has been created, assembled, and placed into a file labeled
RANDOM.COM, the following CCP-level command line starts the sample program:

 A>random x.dat

The RANDOM program looks for a file named X.DAT and, if found, proceed to
prompt the console for input. If not found, the file is created before the
prompt is given. Each prompt takes the following form, and is followed by
operator input, followed by a Carriage Return ("RETURN" key).

 Next command?

The input commands take the following form, where n is an integer value in the
range 0 to 65535, and W, R, and Q are simple command characters corresponding
to WRITE RANDOM, READ RANDOM, and Quit processing, respectively.

 nW nR Q

If the W command is issued, the RANDOM program issues the following prompt:

 Type data:

The operator then responds by typing up to 127 characters, followed by a
Carriage Return ("RETURN" key). RANDOM then writes the character string into
the X.DAT file at record n. If the R command is issued, RANDOM reads record
number n, and displays the character string at the console. If the Q command
is issued, the X.DAT file is closed, and the program returns to the CCP. For
brevity, the only error message is

 Error, try again.

The program begins with an initialization section where the input file is
opened or created, followed by a continuous loop at the label READY, where the
individual commands are interpreted. The DFCB at 005CH and the default buffer
at 0080H are used in all disk operations. The utility subroutines then follow,
which contain the principal input line processor, called READC. This
particular program shows the elements of random access processing, and can be
used as the basis for further program development.

This particular program could be improved to enhance its operation. In fact,
the sample random access program could even evolve into a simple data base
management system. For example, you could assume a standard record size of 128
bytes, consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed that first reads a sequential file, and extracts a
specific field defined by the operator. For example, the following command
would cause GETKEY to read the data base file NAMES.DAT and extract the
LASTNAME filed from each record, starting in position 10, and ending at
character 20.

 A>getkey names.dat lastname 10 20

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

GETKEY builds a table in memory consisting of each particular LASTNAME field,
along with its 16-bit record number location within the file. The GETKEY
program then sorts this list, and writes a new file, called LASTNAME.KEY,
which is an alphabetical list of LASTNAME fields with their corresponding
record numbers (also called an inverted index).

If you renamed the program shown as QUERY, and modified it so that it reads a
sorted key file into memory, the command line might appear as:

 A>query names.dat lastname.key

Instead of reading a number, the QUERY program reads an alphanumeric string
that is a particular key to find in the NAMES.DAT data base. Because the
LASTNAME.KEY list is sorted, one can find a particular entry rapidly by
performing a binary search, similar to looking up a name in the telephone
book. Starting at both ends of the list, you examine the entry half-way in
between and, if not matched, splits either the upper half or the lower half
for the next search. You will quickly reach the item you are looking for, and
find the corresponding record number. You should fetch and display this record
at the console, just as was done in this program.

With more work, you can allow a fixed grouping size that differs from the 128-
byte record shown above. Do this by keeping track of the record number and the
byte offset within the record. Knowing the group size, you randomly access the
record containing the proper group, offset to the beginning of the group
within the record, read sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing Boolean expressions,
which compute the set of records that satisfy several relationships, such as a
LASTNAME between HARDY and LAUREL, and an AGE lower than 45. Display all the
records that fit this description. Finally, if your lists are getting too big
to fit into memory, randomly access key files from the disk.

3.4 Full-duplex terminal emulator

The purpose of this sample program is to show how you can use Function 7
(AUXILIARY INPUT STATUS) and Function 8 (AUXILIARY OUTPUT STATUS). The sample
program demonstrates a simple case of a terminal emulator as used in a
portable communications program. "Portable", in this case, means a hardware-
independent program that can be used with many different kinds of computer
systems. (Refer to the assembler source for the program on the Personal CP/M
distribution disk, in file TERMINAL.ASM.)

In Figure 3-1, the flowchart shows how this example works. The numbers in
parentheses on the flowchart refer to Personal CP/M function calls.

 +------------------+
 | |
 | V
 | +----------------------+
 | | Get console char (6) |
 | +----------------------+
 | |
 | V
 | No -------------
 | +--------< Char present? >
 | | -------------
 | | | Yes
 | | V
 | | -------------- Yes
 | | < Char = Ctrl-C? >------> Return to Personal CP/M
 | | --------------
 | | +------------->| No
 | | | V
 | | | No ------------------
 | | +----< AUXOUT: ready? (8) >
 | | ------------------
 | | | Yes
 | | V
 | | +---------------+
 | | | Send char (4) |
 | | +---------------+
 | +--------------->|
 | V
 | No -----------------
 +<--------< AUXIN: ready? (7) >
 | -----------------
 | | Yes

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

 | V
 | +-------------------+
 | | Get AUX: char (3) |
 | +-------------------+
 | |
 | V
 | +--------------------------+
 | | Send char to console (6) |
 | +--------------------------+
 | |
 +<-----------------+

 Figure 3-1. Full-duplex terminal emulator flowchart

AUXILIARY INPUT STATUS (Function 7) and AUXILIARY OUTPUT STATUS (Function 8)
allows you to write portable communications programs. You can use Function 7
to check if a character is available on an auxiliary input device. Previously,
if AUXILIARY INPUT (Function 3) was invoked and no character was available,
the program would stop completely until a character was ready. The other
alternative was for the program to go directly to the hardware port to check
if a character was ready, thus creating machine-dependent code.

Under Personal CP/M, the program can check the status and, even if no
character is available for input from the auxiliary input device, the program
can continue to execute. The program in this example alternates between
checking the keyboard and the auxiliary input device for available characters.
The program can process a character from either the remote computer or the
local terminal -- whichever has a character available.

In the loop highlighted on the flowchart, the program asks if a character is
available at the first Function 6 (DIRECT CONSOLE I/O) decision box. If the
answer is no, the program queries AUXILIARY INPUT STATUS (Function 7) to see
if a character is available. If the answer is still no, the program returns to
Function 6. The decision loop in this example shows how Function 7 allows the
program to continue execution, even though no characters are ready.

3.5 BLTMEMO

ROCHE> Only the name of this sample program is known. Any information
welcomed. (What does mean "BLT"? Why MEMO, instead of DEMO?)

Appendix A: System function summary

Table A-1. System function summary

Format: Dec, Hex, Name
 Input parameters
 Returned value

 0 0 System reset
 none
 none

 1 1 Console input
 none
 A = ASCII char

 2 2 Console output
 A = ASCII char
 none

 3 3 Auxiliary input
 none
 A = ASCII char

 4 4 Auxiliary output
 E = ASCII char
 none

 5 5 List output
 E = ASCII char
 none

 6 6 Direct console I/O
 E = 0FFH/0FEH/char
 A = char/status/none

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

 7 7 Auxiliary input status
 none
 A = AUXIN: status

 8 8 Auxiliary output status
 none
 A = AUXOUT: status

 9 9 Print string
 DE = string addr
 none

 10 A Read console buffer
 DE = buffer addr
 Chars in buffer

 11 B Get console status
 none
 A = 00H/0FFH

 12 C Return version number
 none
 HL = BDOS version number (0028H)

 13 D Reset disk system
 none
 none

 14 E Specify drive
 E = specified drive
 A = err flag/00H/0FFH

 15 F Open file
 DE = FCB addr
 A = 00H/0FFH, H = 00H/phys err

 16 10 Close file
 DE = FCB addr
 A = 00H/0FFH, H = 00H/phys err

 17 11 Search for first
 DE = FCB addr
 A = dir code/00-03H/0FFH, H = 00H/phys err

 18 12 Search for next
 none
 A = dir code/00-03H/0FFH, H = 00H/phys err

 19 13 Delete file
 DE = FCB addr
 A = 00H/0FFH, H = 00H/phys err

 20 14 Read sequential
 DE = FCB addr
 A = err code/00H/01H, 0AH, 0FFH

 21 15 Write sequential
 DE = FCB addr
 A = err code/00H/01H, 02H, 0AH, 0FFH

 22 16 Make file
 DE = FCB addr
 A = 00H/0FFH, H = 00H/phys err

 23 17 Rename file
 DE = FCB addr
 A = 00H/0FFH, H = 00H/phys err

 24 18 Return login vector
 none
 HL = login vector (*)

 25 19 Return current drive
 none
 A = current drive number

 26 1A Set DMA address
 DE = DMA addr
 none

 27 1B Get addr (Alloc)

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

 none
 HL = alloc addr/0FFFFH (*)

 28 1C Write protect disk
 none
 none

 29 1D Get Read-Only vector
 none
 HL = R-O vector (*)

 30 1E Set file
 DE = FCB addr
 A = 00H/0FFH, H = 00H/phys err

 31 1F Get addr (disk parms)
 none
 HL = DPB addr/0FFFFH

 32 20 Get/set user number
 E = user number/0FFH (Get)
 A = curr number/none

 33 21 Read random
 DE = FCB addr
 A = err code/00H/non-zero, H = 00H/phys err

 34 22 Write random
 DE = FCB addr
 A = err code/00H/non-zero, H = 00H/phys err

 35 23 Compute file size
 DE = FCB addr
 A = 00H/0FFH, H = 00H/phys err

 36 24 Set random record
 DE = FCB addr
 Random Record Number set (in FCB)

 37 25 Reset drive
 DE = drive vector
 none

 40 28 Write random with zero fill
 DE = FCB addr
 A = err code/00H/non-zero

 45 2D Set BDOS error mode
 E = BDOS err mode
 none

 48 30 Flush buffers
 none
 A = err flag/00H, H = phys err

109 6D Get/set console mode
 DE = 0FFFFH/con mode
 HL = con mode/none

110 6E Get/set output delimiter
 DE = 0FFFFH/E = output delimiter
 A = output delimiter/none

111 6F Print block
 DE = CCB addr
 none

112 70 List block
 DE = CCB addr
 none

113 71 Direct screen functions
 DE = SFB addr
 none

124 7C Byte BLT copy
 DE = BCB addr
 A = 00H/0FFH

125 7D Byte BLT alter
 DE = BCB addr

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

 A = 00H/0FFH

(*) = Note that A=L and B=H upon return.

Appendix B: BDOS error handling

The BDOS file system responds to error situations in one of three ways:

Method 1
It returns to the calling program with return codes in register A, H, and L
identifying the error.

Method 2
It displays an error message on the console, and branches to the BIOS warm
start entry point, thereby terminating execution of the calling program.

Method 3
It displays an error message on the console, and returns to the calling
program as in Method 1.

The BDOS file system handles the majority of errors it detects by Method 1.
Two examples of this kind of error are the "File not found" error for the OPEN
FILE function, and the "Reading unwritten data" error for a READ function.
More serious errors, such as disk I/O errors, are usually handled by Method 2.
Errors in this category, called physical errors, can also be reported by
Methods 1 and 3 under program control.

The BDOS error mode, which can exist in 3 states, determines how the file
system handles physical errors. In the default state, the BDOS displays the
error message, and terminates the calling program, Method 2. In return error
mode, the BDOS returns control to the calling program with the error
identified in registers A, H, and L, Method 1. In return and display mode, the
BDOS returns control to the calling program with the error identified in
registers A, H, and L, and also displays the error message at the console,
Method 3. While both return modes protect a program from termination because
of a physical error, the return and display mode also allows the calling
program to take advantage of the built-in error reporting of the BDOS file
system. Physical errors are displayed on the console in the following format,
where d: identifies the drive selected when the error condition is detected;
"error message" identifies the error.

 CP/M Error on x: error message

The BDOS physical errors are identified by the following error messages:

 - Disk I/O
 - Invalid drive
 - Read-Only file
 - Read-Only disk

The disk I/O error results from an error condition returned to the BDOS from
the BIOS module. The file system make BIOS read and write calls to execute
file-related BDOS calls. If the BIOS read or write routine detects an error,
it returns an error code to the BDOS, resulting in this error.

The invalid drive error also results from an error condition returned to the
BDOS from the BIOS module. The BDOS makes a BIOS SELECT DISK call prior to
accessing a drive to perform a requested BDOS function. If the BIOS does not
support the selected disk, the BDOS returns an error code resulting in this
error message.

The Read-Only file error is returned when a program attempts to write to a
file that is marked with the Read-Only attribute. It is also returned to a
program that attempts to write to a system file opened under user zero from a
non-zero user number.

The Read-Only disk error is returned when a program writes to a disk that is
in Read-Only status. A drive can be placed in Read-Only status explicitly with
the BDOS WRITE PROTECT DISK function.

The following paragraphs describe the error return code conventions of the
BDOS file system functions. Most BDOS file system functions fall into 3
categories in regard to return codes: they return an error code, a directory
code, or an error flag.

Error code

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

The following BDOS functions return an error code in register A:

 20 Read sequential
 21 Write sequential
 33 Read random
 34 Write random
 40 Write random with zero fill

The error code definitions for register A are shown in Table B-1.

Table B-1. Register A BDOS error codes

Code Meaning
---- -------
 0 Successful function
 1 Reading unwritten data, or no available directory space (Write seq)
 2 No available data block
 3 Cannot close current extent
 4 Seek to unwritten extent
 5 No available directory space
 6 Random Record Number out of range
 10 Media changed (a media change was detected on the FCB's drive after
 the FCB was opened)
255 Physical error, refer to register H

The following BDOS functions return a directory code in register A:

 17 Search for first
 18 Search for next

Directory code

The directory code definitions for register A are shown in Table B-2.

Table B-2. Register A BDOS directory codes

Code Meaning
---- -------
0-3 Successful function
255 Unsuccessful function

A successful directory code identifies the relative starting position of the
directory entry in the calling program's current DMA buffer.

Error flag

If the SET BDOS ERROR MODE function is used to place the BDOS in return error
mode, the following functions return an error flag on physical errors:

 14 Select disk
 15 Open file
 16 Close file
 19 Delete file
 22 Make file
 23 Rename file
 30 Set file attributes
 35 Compute file size
 48 Flush buffers

The error flag definitions for register A are shown in Table B-3.

Table B-3. Register A BDOS error flags

Code Meaning
---- -------
 0 Successful function
255 Physical error, refer to register H

The BDOS returns non-zero values in register H to identify a physical error if
the BDOS error mode is in one of the return modes. Except for functions that
return a directory code, register A equal to 255 indicates that register H
identifies the physical error. For functions that return a directory code, if
register A equals 255, and register H is not equal to 0, register H identifies
the physical error. Table B-4 shows the physical error codes returned in
register H.

Table B-4. Register H BDOS physical errors

Converted from file "PCPM11PG.WS4"

file:///C|/...version%201.1%20Programmers%20Guide/Personal%20CPM%20version%201.1%20Programmers%20Guide.htm[2/7/2012 11:15:13 AM]

Code Meaning
---- -------
 0 No error, or not a physical error
 1 Disk I/O error
 2 Read-Only disk
 3 Read-Only file, or file opened under user zero from another user
 number
 4 Invalid drive error: drive specify error

The following 2 functions represent a special case, because they return an
address in register pair HL.

 27 Get addr (Alloc)
 31 Get addr (Disk Parms)

When the BDOS is in return error mode and it detects a physical error for
these functions, it returns to the calling program with registers A, H, and L
all set to zero. Otherwise, they return no error code.

Appendix C: User number conventions

The Personal CP/M user facility divides each drive directory into 16 logically
independent directories, designated as user 0 through user 15. Physically, all
user directories share the directory area of a drive. In most other aspects,
however, they are independent. For example, files with the same name can exist
on different user numbers of the same drive with no conflict. However, a
single file cannot reside under more than one user number.

Only one user number is active for a program at one time, and the current user
number applies to all drives on the system. Furthermore, the FCB format does
not contain any field that can be used to override the current user number. As
a result, all file and directory operations reference directories associated
with the current user number. However, it is possible for a program to access
files on different user numbers; this can be accomplished by setting the user
number to the file's user number with the BDOS Get/Set User Code function
before making the desired BDOS function call for the file. Note that this
technique must be used carefully. An error occurs if a program attempts to
read or write to a file under a user number different from the user number
that was active when the file was opened.

When the CCP loads and executes a transient program, it initializes the user
number to the value displayed in the system prompt. If the system prompt does
not display a user number, user zero is implied. A transient program can
change its user number by making a BDOS Get/Set User Code function call.
Changing the user number in this way does not affect the CCP's user number
displayed in the system prompt. When the transient program terminates, the
CCP's user number is restored.

User zero has special properties under Personal CP/M. When the current user
number is not equal to zero, and if a requested file is not present under the
current user number, the file system automatically attempts to open the file
under user zero. If the file exists under user zero, and if it has the system
attribute, T2', set, the file is opened from user zero. Note, however, that
files opened in this way cannot be written to; they are available only for
read access. This procedure allows utilities, that may include overlays and
any other commonly-accessed files, to be placed on user zero, but also be
available for access from other user numbers. As a result, commonly-needed
utilities need not be copied to all user numbers on a directory, and you can
control which user zero files are directly accessible from other user numbers.

Index

(To be done by WS4...)

EOF

	Local Disk
	Converted from file "PCPM11PG.WS4"

