
>

load files system file error
JBP 17-OCT-74 14823 24238

i tried several times to load file a nls file from another directory
but each time i received the message "system file error", i then
tried to get the file by jumping to the file by giving the jump
address command the file name in link form, this worked fine,
»•j on,

1

load fiiej system file error
JBP 17 «QCT>7 4 14123 24238

CJ24238) 17»»CCT-74 14?23 nti Title! Author(s)! Jonathan B,
Postel/JBPJ Distribution! /BUGSC C ACTION 3) I Sub*Collections?
SRI-ARC BUGS! ClerKl OB?!

KEV X7»0CTw74 148 46 24239
anthropomor,,, 8,34

brevity is indeed important, but not as important as clarity,
anthropomorpbasizing (?) can sometimes aid the causes of both clarity
and brevity, as well as making the material more enjoyable to read --
an oft times overlooked aspect o f our documentation, 1

anthropomor,,, 8,34
KEV 17.QCT-74 14146 24239

CJ24239) 17-CCT-74 14I46UI) Title! Author(s)! Kenneth E, (Ken)
Vletor/KEV! Distribution! /SRI-ARC(t INFO-ONLY J) : Sub-Collections:
SRl-ARC(ClerK: KEVI

Pete Tasker to visit 18 Oct 74 at 1330
DCE 17-OCT-74 16 5 50 24240

Jim# Dicks Pete Tasker will visit ARC at 1 5 3 0 tomorrow# Friday,
He'd like to see AKW in action, He is a MITRE guy (friend of Jean
Iseli's)# whose current work is associated with (like) COTCO out on
Oahu# in a "loose framework" there, I gather that he is doing a
study in an environment similar to what COTCO was to be aimed at# and
that he has evolved toward wanting to consider/experiment with
services more towards a fuller AKW than just message system, i

This visit would (to me) be classed as "potential Utlity client", He
may bring a second MITRE guy along, I told him that JCN and I would
probably meet initially just to hear his story* probably have a third
ARC (application) guy to hear# too# who could then give him demo and
discussion -- closing by base touching with DCE/JCN before he leaves, 2

Dicks we can easily include you (or Development person) if you want# 3

Regards# Doug 4

DCE 17-OCT-74 16 C 50 24240
Pete Tasker to visit 18 Oct 74 at 1330

CJ24240) 17-OCX-74 ISISOMH Title! Authorts3i Douglas C,
Enoeibart/DCE; Distribution! /JCNC [ACTION 3 3 RWWC t ACTION 3)
SRI-AFCC t INFO-ONLI 3 3 I Sub-Collections! 5PI-ARC| Clerk! DCEj

HQh 17-QCT-74 17 s 53 24241
A tes t of Journal delivery

Does it worx?

1

HGL 17-0CT-74 17 ; 53 24241
A test of Journal delivery

(J24241) 17-CCT-74 17t53)|>) Tltlei AuthorCsJi Harvey G.
Lehtman/HGL) Distribution! /BUGSC t ACTION]) JDH([INFO-ONLY]) HGLC
t INFO-ONLY]) ! SUb-CollectiOfls« SHI-ABC BUGS) ClerKl HGL)

DVN 17«*0CT«74 2l?26 24242
Missing Indecesi All the Linics in the Attached Group Yield the
Message File Net Online

From JUL 72 Thru JUL 73
(:eotz) 1

AUTHOR INDEX
(catalog# arcjatnchl# Oswp) la

NUMBER INDEX
(catalog# arcjnincnl# OjwDD lb

A*F TITLEWOPD INDEX
(catalog# arcjtafIncnl# OfwD) lc

G-0 TITLEWOPD INDEX
(catalog# arcl'tgoincnl# OIWD) Id

P*Z TITLEWOPD INDEX
(catalog# arcjtpzincni# OtwD) le

From JUL 73 Thru DEC 73
Cieotz) 2

AUTHOR INDEX
(catalog# barcjamcni# OjwD) 2a

NUMBER INDEX
(catalog# barcjnincnl# OiwD) 2b

A*F TITLEWOPD INDEX
(catalog# bareJtafincnl# OJWD) 2c

G*0 TITLEWOPD INDEX
(catalog# baredtgoincnl# OjwD) 2d

P-Z TITLEWOPD INDEX
(catalog# baredtpzincnl#OJwD) 2e

From JAN 74 Thru JUN 74
(jeotz) i

AUTHOR INDEX
(catalog# carcjaincni# OjwD) 3a

NUMBER INDEX
(catalog# carejnincnl# OiwD) 3b

A»F TITLEWOPD INDEX
(catalog# caredtafincnl# OiwD) 3c

1

DVN 17-OCT-74 21126 24242
Hissing Indecess All the Linfcs in the Attached Group Yield the
Message File Net Online

G-0 TXTLEWCpD INDEX
(catalog# carcjtgoincnl# oswo) 3d

P-Z TITLEWOPD INDEX
(catalog# carcjtpzinCni, OswD) 3e

Froir. JUL 74 Thru DgC 74
(sebtz) 4

AUTHOP INDEX
(catalog# darcjaincnl# 0swo3 4a

NUMBEP INDEX
(catalog# derc^nincnl# 0:WD) 4b

A-F TITLEWOPD INDEX
(catalog# darejtafincnl# Q:WD3 4c

G-Q TITLEWOFD INDEX
(catalog# darcjtgoincni# OswD) 4d

P-Z TITLEWOPD INDEX
(catalog# darcjtpzinCni# OJWD) 4e

2

DVN 17-0CT-74 2H26 24242
Missing Indecesi Ail the Links in the Attached Group Yield the
Message File Net Online

CJ24242) 17-0CT-74 21t26)m Titles Authorfs)! DirkH, Van
NOUhuys/DVN) Distribution! /JCNC t ACTION]) JCP(t ACTION)) K1RKC t
ACTION]) | Sub-Collections I SP1-ARC) ClerK! DVN)

JBp 18»OCT*74 10 S 31 24243
Trip of 7*9 oct 74 to bbn & compass

< PQSTEL, TRIP „ NLS? 2 , >, 10-OCT-74 15:15 JBP ???? 1

Jim White and i have just returned from meetings with CD Vint
Cerf, on internet protocol? (2) Boo Thomas and RicK schantz, on
R5EXEC and procedure call protocol? and (3) Steve warshall and Bob
Miilstein, cn "Worfcs Manager and procedure call protocol, la

It is my opinion that the procedure call protocol is the correct
approach to the process to process level ot interactions between
the nsw components, lb

There is general agreement on the form and function of the
procedure call protocol, although there needs to be some worK
on the environment control package, It is expected that a
updated set of documents will be ready at the end of October
whic describe the proceture call protocol and the support and
environment control packages, These new documents will be close
enough to the final form that others can use them for preparing
proceedure pacfcaqes, Ibl

An initial implementation of the procedure call mechanism was
started by Jim for the NLS split into front and bacK ends, the
discussions have lead to a decision that the implementation
should be made in a language that will easily run on any tenex,
so the implementation may be changed from LiO to BCPL* lb2

it is my current view that the Internet Protocol will not be
sufficiently implemented and tested (debugged) ot use in the first
year nsw, ic

I do pelieve that the Internet Protocol is liKely to offer
significat advantages in performance over tne existing host to
host protocol* therefore we will attempt to implement the
procedure call protocol in such a way that it can be easily
switched from one to the other underlying protocol, lcl

I expect that the internet Protocol development continue and
that experiments be carried out to snow the thruput and delay
characteristics of each of the protocols (current host»host*
and internet), These studies should be completed by the end of
the first year of nsw, that is 30 June 1975,

lc2

An area of concern is the ADR tasks# rumors have come my way that
ADR is not camming up to speed as fast as desirable on ARPANET
technology and protocol considerations# T here is a lot of help
available in the boston area, and if necessary 1 would be willing
to spend some time speeding their education, it is crucial for nsw
that the B47Q0 interface be ready as soon as possible, Id

1

Trip of 7*9 oct 74 to bfcn & compass
UDf lO - UV 1 • / «) iVi

Bob Thomas expresses his interest in
willingness to comment on any plans
urge all nsw participants to receive
exprience with RSEXEC and TENEX,

the nsw development and his
for protocols or software, I
the advantage of Bob's

le

2

Trip of 7-9 oct 74 to bbn & compass
JBP 18-UCT-74 10131 24243

CJ24243) 18-OCT-74 10i31jn; Titles Author(s)i Jonathan B,
Postei/jBp> Distribution! /JBP(c ACTION J) > 5ub-c 0iiectionsi
SPI-ARCI ClerKI JBPi

JOAN 18-OCT-74 10;36 24244
File name write up in Help

The word field is confusing,since altmode doesn't worfc in TNLS it too
is confusing, l

1

File name write UP in Help
JOAN i 8»UCT-7 4 10(36 24244

(024244) 18-CCT-74 1 0 8 3 6 J J J ? Title: Author(S): JOAN HAMILTON/JOAN J
Distribution: /FDBKC C ACTION] 1 KIRK([ACTION)) > Sub-Colleetlons:
SRI-ARC; Clerk: JOAN:

JBP 18«0CT*74 13:08 24245
Protocol implementation plan draft

< POSTEL# NSW-PPOT*IMPL-PLAN,NLSj4, >, 1S-OCT-74 13506 JBP 1

The NSW project requires protocols and service routines to be
implemented at several levels, la

There needs to be a more effective host-to-host Protocol, lb

The INTERNET protocol is a good candidate? but there must be a
test implementation and a comprehensive comparative measurement
against the standard nost-to*nost protocol, Ibl

Beyond this the NSW will use a Procedure Call Protocol CPCP) for
communication Of service requests between the NSW modules,Tnis
will require implementation of the pep mechanism in each "of the
computers that participate in the NSw, 1c

There will also be a set of standard service pacKages that may
communicate Cvia PCPJ with other modules in NSW, This set of
service packages includes Id

a File Manipulation Package ldi

This package contains functions to move tiles between
workspaces either on the same system or between systems,
This package implements most of the "blackboxes" suggested
by compass, idla

a Remote job Entry Package id2

This package contains functions to submit and retrieve files
from tn® hatch processing facility of this system, ld2a

an Executive Pacfcage idj

This package contains functions to report status information
about the system or tasks operating ont the system, For
example accounting information, ld3a

and for the satellite a Front End Control package ld4

This package contains functions for the control of the users
terminal from the works manager or tools, The type of thing
envisioned is indicating how a screen should be divided into
windows, id4a

ARC has the responsibility for specifying the protocols and
service packages for NSW, In the implementation of these pacKages
however ARC needs assistance, It is our understanding that BBN has
been funded by ARPA to assist in the development of NSW protocols

1

JBP 18-QCT-.74 13 5 08
Protocol implementation plan draft

in cooperation with ARC, We realize that BBN has some specific
direction from ARPA on which protocols to expend effort on, we are
asking for assistance as available in the areas listed below,

The following indicate our current perception of the protocol
implementations needed for the NSW initial phase,

Here we are discussing the TENEX implementation of the various
pacfcades, we expect other parties to implement these protocols
for other systems.

Host-to-host protocol

The internet protocol as specified by Cerf must be
implemented and tested in comparison with the standard
protocol, we expect that BBN an SU (and perhaps others) will
carry out these activities,

A comprehensive test program may require the
implementation of Temet and File Transfer protocol
interfaces to Internet protocol,

Perhaps constrain the implementations of the standard
protocol to conform to certain buffering and allocation
policies, we expect that these policies will be specified
by ARC and installed by BBN,

Procedure Call Protocol

implementation of Procedure Can Protocol by ARC with advice
from BBN,

File Manipulation Package

specification by ARC ana implementation by BBN,

Remote Job Entry Packaoe

Specification by ARC and implementation by BBN•

Executive Package

Specification by ARC and implementation by BBN,

Front End Control Package

Specification and implementation by ARC,

24245

le

if

19

m

lgia

lglal

igib

192

ig2a

193

ig3a

194

194a

igb ;

195a

196

196a

2

JBP 18*0CT-74 13|08 2424&
Protocol implementation plan draft

Please note that In all cases the specification process will
involve review for comments and suggestions by interested parties
including BBN, ih

3

Protocol implementation plan draft
JBP 18-UCT-74 13108 24245

(024245) 18-CCT-74 13i08;m Title! Author(s)! Jonathan B,
Postei/JBP! Distribution! /Rwac t ACTION 1) JEW([ACTION 1) ;
Sub-Collections! SRI-ARC) ClerKi JBP!

Express Log suggestion
NDM 18«QCT*74 1 J!13 24246

When I Express log in, i would like to Know from the beginning at
what time I wll be logged out,

1

Express Lo<3 suggestion
NDM 1 8-QCT-74 1 3 S13

CJ24246) 18-CCT-74 13813?*** Titles AUthorCs)! N» Dean Meyer/NDM*
Distribution* /FDBKl t ACTION 3 3 * sub-Coliections: SRI-ARC* CierSct
NDM*

DVN 18"QCT-74 13?49 24247
MINUTES OF DOCUMENTATION MEETING OF 10-14-741 Status Of
Documentation, Plans for Introductory Hardcopy for Help, Plans for
Something for Learners to Head,

ATTENDEES? RWW, DVN, POOH, KIRK 1

Status of various documents stands as follows? 2

Cue^card, Finished, A few small errors, available from
Documentation shelf, Jim Bair took a supply with him when he left
of the east Sunday to present NLS-8 to various user groups, 2a

TNLS-8 Primers Bair took a draft CMjournal,23911,3 acceptable to
him, A COM version is being processed at DDSI, JCN may still
have input, 2b

Command Summary. A version reflecting the language as of October
6th is online (Userguides, Commands) and Cm journal,23912,) and Dim
Bair took a supply with him, we will produce a new version when
the languages is realy frozen and consider CQMing it, 2c

NLS-8 Equivalents of NLS*J Commands* Finished as
Cmjournal,23913,), Jim Bair took a supply with him, 2d

Line Processor User's Guide, J i m Bair took a draft with him that
did not include all recent suggestions from MEH, RWW,DIA 2e

The Glossary, we considered Dick's suggestions Ann, is now going
over the Glossary with an eye toward making it more readalbe to
new users, 2f

we agreed that procedures that differ between ARC and offlce*i
will be written up for office*l, Ce,g, login, feedback, guest
accounts) 2fl

we agreed that the plan to pun the branch (documentation,
help, how) out of the Help Data Base with minor modification to
serve as an introduction to the Glossary did not work, 2£2

At about this point in the meeting Dick left, Before he left the
others askd now much worktime we had to devote to the efforts
discussed here. He suggested about person-month, 2g

Those of us remaining strove to define what minimum knowledge a
user needs go aheaa and learn from Help, We agreed that the
minimum included live experience, and we would assume that anyone
trying to learn from Help had access to the Primer, we agreed
that Ann should try to assemble a two-page document giving the
other information necessary. It will include a anotated diagram
of the syntax of an NLs Command which Dir* will contribute, the

1

I*)

DVN 18«QCT*74 13!49 24247
MINUTES OF DOCUMENTATION MEETING OF 10-14-74J Status of
Documentation# Plans tor Introductory Hardcopy for Help# Plans for
Something for learners to Read,

figure of NLS structures for Help, and a separate one»page write
up on TNLs addressing which Dirk will contribute, 2h

These writeups will assume that the user begins at the point where
she sees the TENEX haraid, we considerd a wrteup that listed all
the ways you can reach NLS# but in a later conversation Dick
discouraged that idea 21

Drafts were due FridaylO/18 but didnot makeit, 23

The question remains of providing in a reasonable time a document
for people who want to sit down and read ana get a. general notion
of NLS useful in their leading Process, Dirk will endeavor to
create such a document based on Help, As a first cut he assembled
the following rough list of topics from (documentaton#help#how)
and welcomes suggestions for addtions and omissions* 2k

How to use NLS8
You use NLS by typing in Commands, Commands begin with verbs
such as "Insert" or "Substitute"# or "Delete", They write in#
locate# transform# or disseminate text from tbe computer, To
use NLS# you must understand commanding, See also? NLS# 2K1

Getting Helps
1) strike ? at any point in an NLS command for a list of

alternatives currently available to you,
2) hold down the <CTRL> button and hit q, at any point#

for an explanation of your current alternatives,
Method 2 puts you into the Help command repeat mode until you
hit CD (Command Delete <CTRL*X>) See also? HELP# CD, REPEAT, 2k2

questionmark
##<questionmark>## 2k3

<CTRL»Q>
##<CTRL*o>## 2k4

Getting just the syntax of a command <CTRL*S>
If you hold down the CTRL key and type s# you will get the
command syntax for the command which you are currently using, 2k5

when help tails
Novices should feel free to connect to experienced users and
ask questions, Keeney# Kelley# van Nouhuys# Beck# and Bair are
particularly open to connecting, Also# sendmail to ident FDBK
explaining what went wrong, 2kt>

2

DVN 18-0CT-74 13:49 24247
MINUTES OF DOCUMENTATION MEETING OF 10-14-741 Status of
Documentation, Plans for introductory Hardcopy for Help, Plans tor
Something for Learners to Head,

Subsystems: entering and leaving
When you enter NLS, you begin in the Base subsystem, A number

of other SUBSYSTEMS are available, To leave NLS or any other
SUBSYSTEM, use the Quit command. To goto"another NLS
SUBSYSTEM, use the Goto SUBSYSTEM command, See also: SUBSYSTEM 2X7

A list of subsystems with their uses, 2X8

Commanding:
##<command>## 2X9

Nominal-verbal rhythm. Options, etc* 2X9a

Pointing to information: addressing and bugging
in TNLS, pointing moves an invisible Control MarXer (CM5 to a
specific character in a statement within a file, You point in
this way whenever a command asks f©r an ADDRESS (prompts you
with A:). In DNLS, you can also point by bugging with the
mouse, if a linX appears in the text of a file, you may point
at the linX'and then indicate to the system that you want the
command to act at the place named in the linX, 2X10

Reading and viewing information:
you can read all NLS files whose name you xnow, except tiles
whose access has been specifically restricted, You call files
with the Load File Command, After you have loaded it, you can
move around*within its structure by pointing,* view it in
different ways with viewspecs, and print or output it for
reading, see also* pointing, information, For DNLS, see also:
viewing 2X11

accessing files:
Wherever an ADDRESS (AO is prompted* you can go to a
particular file whose FILEADDHESS you Xnow--type it in, You
can also use the Load File command to open a file for read
or w rite access, Ypu can insert into a Statement a LINK
that points to a file whicn can then later be used to access
the file by pointing to the linX, A record of the files you
have teen in during your current NLS session, the
file-return stacX, provides another method of accessing
those files easily. When you use the Create File command in
NLS, the new file is immediately loaded for you, Access to
files may be protected, See also: prompts, creating,
modifying, 2klla

moving around in files and printing on your terminal in
TNLS:

3

DVN 18-UCT-74 13849 24247
MINUTES OF DOCUMENTATION MEETING OF 10-14-74! Status Of
Documentation# Plans for Introductory Hardcopy for Help# Plans for
Something for Learners to Read,

The family of Jump and Print commands are used to view
information in TNLS, Jump to Address is the basic TNLS
pointing command, other Jump commands point to a character
within a statement! some point to files; and some point to
statements by their structural position. See also;
pointing# file# structural# Jump Address TNLS
##<printin9>* # 2)cllb

Hardcopy printing and formatting
##<hardcopy>## 2Xllc

% 2)<lld

writing# creating and modifying information!
you can create new files, copy all or selected parts of
existing files, insert text by typing Into existing files, and
edit existing text, Access for these operations may be
restricted, See also: commanding, pointing, viewing,
information# file, 2X12

The insert command allows you to create information,
##<insert>## 2*13

creating files!
##<create>## 2X14

handling whole files!
NLS provides many commands that deal with whole files allowing
you to incorporate modifications# delete modifications# send
them to people, ##<%archive them on tape,>## delete their, and
transfer them from one directory or site to another# and return
to recent files you have accessed. See also; accessing#
creating# modifying# sending# updating# directory# site, 2ki5

modification file!
you can edit files temporarily or permanently using the NLS
Base subsystem. The name you were logged in under when you
made the modifications precedes the filename in parentheses,
Its version number is the same as the NLS file, but Its
extension is ,PC? (for Partial Copy) instead of ,NLSj» This
file disappears when the update# or Delete Modification
commands are used. The Update command incorporates the changes
permanently into the Nt.S file, To delete the modifications you
have made since the last update# use the Delete Modification
command, 2X16

correcting errors!

4

DVN 18-OCT-74 13849
MINUTES OF DOCUMENTATION MEETING OF 10-14-748 Status of
Documentation! Plans for Introductory Hardcopy for Help* Plans for
Something for learners to Read,

24247

To escape from a command you have started, type <CTRl*x>,
Inside a TYPEIN (following Ti), to backspace and delete one
character, type <CTPL*a>8 to backspace and delete back to the
previous space, type <CTRU-w>t The commands people use most
often to correct errors in text that is already online are
Substitute and Replace See aisos Substitute, Replace, BW, BC,
CD, CTRL-X. CTRL-a, CTRL-w ~ 2kl7

% 2kl 8

Sending maili
#<sendirail># # 2kl9

Hardcopy printing ana formatting!
You may print your Nls files at your terminal, at a line

printer at ARC, at a printer at your site if it is available,
or through COM (Computer output, to Microfilm, COM offers
offset with graphic arts quality type, A set of embedded
directives allows you to design formats flexibly, see also!
sendmail offline, 2K2Q

Profile definin5! the useroptions subsystem
##<useroptibn«>## 2K21

programming for users?
##<programs>M 2k22

Addressing 2k23

Bug 2k23a

SOURCEkDESTlNATION CONTENT 2k23b

Address elements 2k23c

information Hierarchy (bit to site, from Help) 2X24

Printing 2X25

At your terminal 2X25a

Quicxprmt 2X25b

Output Printer 2X25C

Output COM 2k25d

5

DVN 18-0CT>74 13149 24247
MINUTES OF DOCUMENTATION MEETING OF 10-14-748 Status Of
Documentation# Plans for Introductory Hardcopy for H eip, Plans for
Something for learners to Fead,

NLS files vs Sequentail Files 2K2t>

Filter Options and conten Analyser 2K27

BsVs 2k28

6

DVN 1B-OCT-74 13349 24247
MINUTES OF DOCUMENTATION MEETING OF 10»14»74| Status of
Documentation/ Plans for introductory Hardcopy tor Help# Plans tor
Something for Learners to Fead,

CJ24247) 18-QCT-74 13 s 49;3 ; ; T
Nouhuys/DvNj Distribution* /JOANC
notebook) DIPT(t INFO.ONLY 3) 1
DVN;

tie; Autnor(s); Dirk H, van
[ACTION] Please add this to the dirt
Sub.Collections! 5RI-AKC DIPT* Clerks

This is a test of journal delivery

Another test of the journal delivery.

HGL 18-0CT-74 14 111 24248

I

1

HGL 18-QCT-74 14811 24248
This is a test of journal delivery

CJ24248) i8»CCT*74 14811?1, >i 18-0CT-74 14121 XXX ;;;) Title:
AuthorCsD? Harvey G# Lebtrcan/HGL? Distributioni /BUGs(t ACTION] 3 JDHC
C INFO-ONLY 3 3 f Sub-Collections I SRI-ARC BUGS? Cler*? HGL?

m m

LP Problems
NDM 18*UCT-74 15:27

I'm on the Delta-Data*-line-Processor vie the high-speed line and TIP
to AFC running the running version of NLS, X have a horizontally
split screen with viewspec o in the bottom window, no statement
numbers, blanfc lines en,

I've been getting the error message "Illegal number ot bianKs
requested in CLINfc", Also, when I do an edit which shortens a
statement, it doesn't erase the line which should then he blanfc (£»£•
the line above the one which was blanic before the eait),

LP Problems
NDM 18-QCT-74 15 S 27 24249

CJ24249) 18-CCT-74 15:27jm? Title? AutborCs): N, Dean Meyer/NDMf
Distribution: /FDBKC C ACTION 3 3 CHIC C INF0»0NL* 3 3 UIA(C INFO-ONLY
3 3 f Sub-Collections: SBI-APC? Clerk: NDM;

DIA 18*QCT*74 15854 24250
Notes on OFFICE*! Swapping and Resoonse

This is a collection of notes by DIA concerning the response ana
swapping problems at OFFICE*! as of 10/18/74, 1

The problem, as I currently see it is? 2

My statistics were taken when OFFICE*! had 192K, and was badly
overloaded, (10/7/74) But I think my comments hold even with 256K, 2a

The system is much better than with 128K in terms of efficiency
and CPU utilization, but still not as good as the ARC system.
Notices 2b

Parameter FL (frustration level) is nigh (10*15), Indicates
that users are waiting a great deal for the system to perform
for them, Users don't need to be told thati Ft should be about
5, 2bl

%SYS is large (about 9o%) and indicates that a very small
amount of time (10%) is spent actuaily executing user program
code, %5TS is about 70*80% on ARC (2-3 times better), 2b2

1/0 wait IQW is high (20%), but worst of ail, most of the IUW
time is spent with the drum free -* i,e, system is waiting on
the disk (%DW about 20% also), This indicates that the drum is
not doing its job, 2b3

There are other indications that the system is overloaded for
its configuration, and that swapping in the chief bottleneck, 2b4

It is pretty clear t© me tnat i) system efficiency and 2) user
response would be improved by providing a better swapping
mechanism, 2c

The drum is not doing its job because it is not large enough,
I think it now holds only 600 pages, I would guess it should
be more like 2000 pages, 2ci

As a result programs are spending lots of time waiting for disk
pages to come in," 2c2

Drum transfers take about 10 ms, per page on the OFFICE*! drum,
I don't know what a disk transfer takes, but it must be m the
range 50*80 ms, A program must wait for transfers that are
ahead of it in the queue* hence (approximately) multiply these
times by the queue length for the time a program must wait.
These figures affect system efficiency by enlarging IOW **
however lots of balance set jobs would be a hedge against the
chances of no runnable jobs, But these figures affect user
response directly since the user's program must wait that long

I

Notes on OFFICE•1 Swapping and Response
DIA 18-DCT-74 lb 5 54 24250

for eacn page fault -- and there are many page faults during
any typical NLs activation, HENCE, for a responsive system,
fast swapping is crutial, 2c3

Options for better swapping facility ares 3

The first option is to obtain a better swapping device to replace
the DEC RM10B (current drum)# 3a m ~

The problem is# what? It is difficult to obtain a Bryant drum
like ARC'S# and that would be questionable as'far as
maintenance etc, goes, A more likely possibility would be the
swapping * fixed had disk device that ISi is using, same"
questions about how Tymeshare would like that# tho, 3ai

Looks to me like the others alternatives should oe pushed, 3a2

Second# forget the drum altogether and try just using disk packs, 3b

(andrews#packs) fr©m April 1972 contains calculations on
service that could be expected from a dis* pack system,
assuming good algorithms and alocation, 3bi

That file indicates that with three dis* controllers and two
drives on each controller# a disk oueue length of 2 on each
controller (total queue length = 6)# that the total time to
read a page" Cincluding queue wait) is about 65-70 ms, 3b2

I w0n*t go into additional doodling I have done to come to my
conclusions, 3b3

But my conclusions are that it may be close choosing between
this option and the n^xt (third option), However# I think this
option may hurt user response more than the next option# simply
because the time a prooram waits for a page will probably be
longer, Nore expensive too? 3te4

In any event# I don't think it would be good to try it with
only two disk controllers. Response may even be worse than it
is now! To do this right# X would even suggest three
controllers and three Dacks on each controller (i,e, three
moving arms on each controller), Three arms is "more efficient
than two, It doesn't pay to go above three however# except to
get more disk space, 3b5

Third# expand the current drum, 3c

The current RMiOB does not have the swapping characteristics
that devices such as ARC'S Bryant drum have. Namely# their

2

DIA 18-0CT-74 15:54 24250
Notes on OFFICE *1 Swapping and Response

etfeciency is very low and constant. The system can count on
an average of about one transfer per rev max, It taxes about
10 ms, to get a page from it, no matter the queue length or
what, del

A swapping device like the Bryant drum has more pages pass
under the heads per rev and can *skip f f rom one tracx to
another between sectors, The system can count on many transfers
per rev, by ordering the hardware-readabie queue to correspond
with the order on the drum. The result is that the device has
low efficiency at low queues, but the efficiency goes up as"the
queue length goes upi Our empirical experience with the Bryant
drum is that it taxes 30 ms, total wait time to get a page from
it no matter what the queue iengthl (Faster at low queue
length, e,g„ 18 ms when q«l), 3c2

Note that the DEC RMlOB is actualy faster * 10 ms vs, 18 ms,
with a queue length of i. But when the queue length gets
longer, the Bryant wins big, Say, with a queue of 5, DEC taxes
50 ms and Bryant taxes 30 ms. The moral is that if your drum
queue length is greater than 3, you should have a Bryant»type
device, 3c3

My observation is that ABC's drum queue length is not often
very much over 3*4 so the DEC drum is a reasonable device if it
had the capacity needed ana the system load were controlled so
that the drum queue did not get out of hand, 3c4

The drum capacity can be increased - uP to 4 'drums' Per drum
controller, I would strongly suggest tnat OFFICE-1 foixs do
that as soon as possible. It would not involve even a software
change (except for drum bit tables etc,) If done soon enough,
perhaps there will be time to reevaluate before the
configuration of 0FFXCE-2 etc is/are firm, 3c5

Notes about maximizing disk utilization, swapping on them or not: 4

I have my doubts about the performance of the QFFiCE-1 disx
system, as It stands now, I do not have ail the statistics
because of a problem in the disk driver code, so I can't say for
sure,,, 4a

Here is a summary of things the disk system should have/do in
order to be efficient: 4b

File pages should be spread evenly over all packs, TENEX
originally tried to assign related pages to the same pack but
that is nonsense, we have modified the system to assign new
pages randomly over pac<<s, We also attempt to assign new pages

3

DIA 18hQCTW74 15:54 24250
Notes on OFFICE"! Swapping and Response

to the center tracks -- thinking that most transfers are to
•young' pages, and that most transfers should ideally be to the
center tracks to minimize arm movement, $e even impiimented
but never tried ci think) a system of loading the entire disk
from tape , allocating edge tracks first - Keeping ?old' pages
out of the center. Our packs are so nearly full tho, that this
would not make much difference, 4bl

You want three if possible, but certainly at least two drives
per controller, and you want software that win position the
headCs) cn one/two drives while doing a transfer on the other, 4b2

You want a good algoritnm for selecting which of the transfers
in the queue for a given pae* win be transferred next, ARC's
system currently takes the transfer closest to the current head
position (minimum head movement), 4b3

you want the disk software to do all reads before writes, No
programs wait directly for writes to occur, AH reads have a
program waiting for them, 4b4

One additional note: 4c

The users of ARC'S s ystem benefit from the fact that there are
two disk controllers disk transfers take place faster. To
get the most out of a PDP*1Q for NLS usage, I would suggest
256K, swapping device, ana two disk pack controllers with three
drives or each, 4ci

4

Notes on OFFICE"! Swapping and Response
DXA 18-0CI-74 15!54 24250

CJ24250) 18-0CT-74 15I54|)M Titles Author(s)s Don 1, Andrews/CIA)
Distribotioni /RLLC t ACTION J) } Sub-Collectlonss SRX-ARCJ ClerKs
DIA) origins < ANDREWS, OFFICE-I-SWAP,NLSJ3, >, 18-OCT»74 issbO
DIA s S ! > *t#» |

FORGETFULLNESS
G3G 20*QCT-74 20 J 41 24252

TODAY, IF YOU HAPPEN TO SEE IT, COULDD YOU PLEASE GIVE IT TO SANDY 1

FOR PICK UP BY HE WHEN I COME IN, THX,,,CGEOFF3 2

m m m m m m m 3

4

1

FORGETFULLNESS
GSG 20-UCl>74 20S41 24252

CJ24252) 20-CCT-74 20:41? Title* Author(s)* Geoffrey S*
Goodfellow/GSG JF Distribution? /spI-ARC? sub-Collections* NIC SFL*ARC?
ClerKi GSG?

JCN 21-OCT*74 09} 29 24253
The Best One Can

re 2425 2# s ive located today,t#,but cant seem to get a hold on it, wn
and/or if 1 do ili certainly deliver it to sandy for you,, keep
hoping Jim X

1

The Best One Can
JCN 21-OCT-74 09129 24253

CJ24253) 21-CCT-74 09!29|1, >, 21-OCT-74 10t43 XXX |||| Title!
Author(s)! James C, Norton/JCNj Distribution! /SLJt C INFO-ONLY J) KEV(
[INFO-ONLY]) (Sub-Collections: SRI-ARC! Clerk! JCN|

JAKE 21-OCT-74 10830 24254
Confused

Geoff, What Is the 'it* to which you are referring? Is it Host Addr
180? if so, this is a new TIP at ISI but as yet they have not
responded to my request for a name, so until X get one it is 3ust
180, 52 and 244 are also on the same IMP, Call decimal - sorryl),
Jake 1

1

Contused
JAKE 21-OCT-74 10:30 24254

CJ24254) 21-CCT-74 10:30(1, >, 21-QCX-74 10(45 XXX ((((Xltle(
Author(s)i E lizabeth J. tJaxe) Feinler/JAKE: Distribution: /GSGC [
ACTION J) (Sub-Collections: 5RI-ARC(Cleric: JAKE(

DIA 21-QCT-74 11121 24255
Requested cnanqe in screen update procedure

NLS currently repaints both frozen statements and the dotted line on
every update* whether necessary or not, Would oe nice Cesp, for 1200
baud LP's3 if they were left alone, Also* the last statement
fragments are rePainted when not necessary -- pathetic when the last
statement covers half the screeni

1

Requested change in screen update procedure
DIA 21-OCT-74 11:21

CJ24255) 21-CCT-74 111 2111 # ># 21-0CT-74 11?3R XXX ;;;; Title*
AuthorCsD; Don X, Andrews/DIA; Distribution J /FDBK([ACTION 3) CHIC I
INFO*QMLY 3) KJMC C INFO»ONLY 3 3 ; Sub-Collectionsj SRI-ARCl ClerK;
DIA;

HGL 21•OCT-74 13:28 24256
Form System Design Sent to Bill Carlson

Augmentation Research Center
Stanford Research Institute
Menlo Park, California 94025

William E, Carlson
U5AF AFDSC/SFP
The Pentagon
Washington# D,Cf 2 0330

Dear Bill:

Dick watson told me to send you information about the Forms
system design created by Elizabeth and me about a year ago,
I have therefore included copies of ARC Journal documents
(21808#) on tne Form system itself and (22394,) on the use of
the Datacomputer in the system, While most of the design
remains viable today, it should be read with the following
understandings: 1

1, Because of various shifts in priorities and shortages
in Programming resources, the design was never implemented
fully# though various tests were carried out. The
designs, however# remain essentially valid, la

2, The system was d esigned with the Proposed MST
enviroment in mind, Hence tne emphasis on the use of tne
Datacomputer for the Data Management part o f the system,
Note that the use of the Datacomputer is not essential and
that the discussion of tne advantages and disadvantages of
the Datacomputer was made almost a year ago, ib

3, Implementaton of the new NDS file system with extended
property list structure had not been expected to occur
before tne implementation of the form system, As noted#
sucn a file system would make it easier to construct tne
form system as designed, The property list structure is
essential to our new line drawing graphics system and will
be implemented soon, Thus the form system should take
advantage of its features, lc

i

HGL 21-OCT-74 13:28 24256
Form system Design Sent to Bill Carlson

It you have any questions ot the enclosed design documents#
Elizabeth or 1 win try to answer them,

Sincerely#

Harvey G# Lehtman
Augmentation Research Center

2

Form system Design sent to Bill Carlson
HGL 21-0CT-74 13(28 24256

CJ24256J 21-0CI-74 13l28lin Titles AUthor(s3i Harvey G,
Lehtman/HGLl Distribution! /WECC C ACTION 3) RWWC t INFO-ONLY 3 3 EKMC
C INFO-ONLY 3 3 DVNC [INFO-ONLY 3 3 I Sub-Collect ionsi SRI-ARCi Clerk!
HGL> Origin! < LEHTMAN, FORMS,NLS)lf >, 21-0CT-74 11154 HGL'
! I t !«###!

JDH 21-OCT-74 13S 02 24257
New Version ot PREVIEW at Office-l Tomorrow Evening

I expect to bring up a new version of PREVIEW at Office-1 on Tuesday
evening (10*22), 1

The Main changes are j 2

y viewspec works 2a

Set NLS Protection worKs 2P

The substitute command has been changed* (don't have a fit 'til
after you read this) 2c

The "Finished?" question allows a "Show status" in addition to
"Yes" or "No", 2c1

The only drawback t s a seemingly unavoidable Prompting glitch
in TNLS wmch leaves your printout looking like " (Finished?)
S/Y/NJ Y/NS" when you take the "yes" or "no" options, 2c2

Now you can have a fit, 2c3

Other bugs/mods are listed m CMJOURNAL#242l7/liw), 3

1

JUH 21-OCT«74 13102 24257
New version of PREVIEW at Office-l Tomorrow Evening

CJ242573 21-0CX'74 13sQ2m? Title! Author(s)s J, D, Hopper/JDHf
Distributions /JHB(i ACTION 3) RLE(C ACTION 3 3 KWACC t ACTION 3) }
Sub*CoiiectionsI SRX*AFC KWACf ClerXs JDHj

L1Q Users' Guide
&SFX-AHC 3J•OCT"74 14:54 24258

ARC "Rev. t NOV 74

The L1O Users' Guide has been updated# New offline copies are
available on the shelves in room J202& or sendmsg to 'Weinberg at
SRI-ARC and request an offline copy, To read the most recent
version of this document, jump to link:
<USERGUIDE5fLlQ«Guldef1!W>

page i J

L10 Users' Guide
&SRI-AKC 31-GCT-74 14 j b4 24258

ARC Rev, X'NOV 74

&SFI-ARC 31-UCT-74 X4 S54
L10 Users' Guide ARC Rev. i NUV
Table of contents

TABLE OF CONTENTS

INTRODUCTION, ,2

PART ONEi Content A naiyzer patterns ...3

Section i s Introduction.. 3A
Section 2s Patterns 3B
Section 3s Examples of Content A nalyzer Patterns3C
Section 4s Using the Content A nalyzer,, ,,3D

PART TWOi introduction to L1Q Programming4

Section Is Content Analyzer Programs.4A
introduction, ., 4A1
Program Structure., ,4A2
Procedure Structure... 4A3
Example ,^A4
Declaration statements.,,, ,4A5
Body of tne Procedure,,, 4A6
programming Style? File Structure,,,, ,4A7
UsinR Content A naiyzer p rograms, ...4AB
problems ».4A9

section 2s Content A nalyzer p rograms? M odifying40
introduction, .4B1
string Construction, M4B2
ExamPies .4B3
More Than One Change Per Statement. 4B4
Controlling w hich Statements are Modified ,,.,465
problems ,4B6

PART THREE? Basic L1G Programming, ,,,,, ,5

section 1? The user Program Environment5A
introduction,, .5A1
Sequence Generator ,5A2
Formatter 5A3
Content A nalyzers ,5A4
User»Written Sequence Generatcrs,,,,,^A5

s e c t i o n 2 ? p r o g r a m S t r u c t u r e , , , , , , , , , . , 5 B
An NLs user program consists of tne following,........bBl
An example of a simple f,iQ program is provided here,,,,562

section 3? Declarations,,,.,.,,,., ,5C
Introduction §•••SC1
variables,,,,,, ,5C2
Simple v ariables, .SC3
Arrays 5C4
Text Pointers,,..,,,,,,,,,,,,,, ,5C5

L1Q Users' Guide
Table of Conterts

&5RI-AKC 31-OCT-74 14854 24258
ARC Rev, 1 NOV 74

string®, ,,5c&
Referenced Va riables,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,f,,,5C/
Declaring M any Variables in one Statement 5C8
Declaring Locals , ,5C9

Section 4? Statements MI|M5C

Introduction,501
Assionment ,502
IF Statement , ,503
CASE Statement ,5D4
LOOp statement .50 5
WHILE,,,DO Statement, «5D6
UMIL,, ,DQ Statement 507
00,,,UNUL/DO,, .WHILE statement ,508
FOR,, ,00 Statement 5D9
BEGIN,,.END statement 5D10
LX.IT Stat
REPEAT Statement, ,5012
DIVIDE Statement. 5013
PROCEDURE CALL st8tementM(M t im 5^14

RETURN S t a t e m e n t , , ^ , 5 0 1 b
G O T O S t a t e m e n t , , | 5 0 1 6
NULL Statement ,!!., •..!,!••#!!!!!#!, ,5017

section 5s Expressions,5E
introduction, 1.1,5E1
Primitives,.,,,. ,5g2
Operators. 5E3
Expressions 5E4

Section 6J String Test and Manipulation.,. 5F
introduction, ,5F1
Current character position C CCPOS),,., ,5F2
FIND Statement,, 5F3
FIND Patterns 5F4
string Construction,,,,5F5
Example j ,5F6
More Than One Change per Statement ,bF7
Text pointer Comparisons .,,,SF8

section 71 invocation of user Filters and programs »,,5G
introduction,, ,5G L
Programs Subsystem,,,,,,,,,F,,,,,,,,,,,,,,, 5G2
Examples of user Preorams ,................,..........,5G3

PART FOUR I Advanced 110 Programming6

Section 1 ? Executable Programs,,..,,,,,. 6A
introduction, ,,,6A1
Moving Around a File,,,,,6A2
Input/Output ,,,,,,, , , , ,, 6A3
Calling NLS commands,,,,6A4

page iv

L10 Users* Guice
Table of Contents

&SRI-AKC il-OCT-74 14{54 24258
ARC Rev, 1 NOV 74

Open!no Files, ,,6A5
Other useful Procedures
Globais cf Interest#t*. f«6A7

section 2i Error Handling - SIGNALS
introduction, , 6B1
Trapping Signals, , ,6B2
Cancelling Signal Traps • 6B3
Specific Signals ,664
Generating Signals # ,,,, t,,,,,,.,,, #.., f, •,.,, 6B5

ASCII 7-BIT CHARACTER CODES,,, ,7

LlO Users' Guide
Introduction

&SKI-AHC 31-OCT-74 14:54 24258
ARC Rev # 1 NQV 74

page yj

L1Q Users' Guice
introduction

&SRI-ARC 31-UCT-74 14854 24258
ARC Rev • X NPV 74

INTRODUCTION 2

NLS provides e variety of commands tor file manipulation and
viewing. Editing commands allow the user to insert and change the
text in a file, viewing commands (viewspecs) allow the user to
control now the sYsterr prints or displays the file, Line
truncation ano control of statement numbers are examples of these
viewing facilities, 2a

occasionally one may need more sophisticated view controls than
those available with th« vfewspec and viewcnange features in NLS, 2b

For example# o ne may wart to see only those statements that
contain a particular wore or phrase, 2bl

Ur one might w ant to see one line of text that compacts the
information r ound i n several l onger statements* 2b2

One might als° wish t° P e r f o r m a series °t r °Utine editing
operations without specifying each of tne NLS commands over and
over again, 2c

User-Written programs may tailor the presentation of the
information in a file to particular needs. Experienced users may
write programs that e dit tiles automatically, 2d

User«written programs currentiV must be coded in ARC#S
procedure.0rfertea proararrming language# L 10, NL$ Itseif js coded
in L10, L10 is a high-level language which must be compiled into
machine-readable instructions, 2e

This document describes three general types of Programs!
"-Simpi» filters tpat control what is portrayed op

the user's teletype or display (Parts une and Two)#
••programs that may modify the statements as they

decide whether to print them (Parts Two and Three)#
••those that# like commands# are explicitly given

control ct the job and interact with the user (Part Four). 2f

User orograns that contr°i what materiel is portrayed take
effect wnen NLS presents a seouence of statements in response
to a command l ike Print C or Jump in DNLS), 2fl

In processing such & command# NLS looks at a sequence of
statements, examining eacn statement to see ff ft satisfies
the viewspecs tnen in force. At this point NLS may pass the
statement to a user*written program to see if it satisfies

hlO Users' Guide
Introduction

&SRI-ARC 3X'UCT"74 14l54 24258
ARC " Rev, i NUV 74

the reouirements specified in that program, if the user
program returns a value ot TRUE# the (passed) statement is
printed and the next statement in the'gequence is tested? if
FALSE# N LS lust goes on to the next statement, 2fia

while the program is examining the statement to ciecide whether
or not to print it, it may modify the contents of the
statement, Such a program can do anything the user can do with
NLS commands, 2f2

For more complicated tftgKs, control may oe passed explicitly to
tpe program, in this case, a user program appears as a
special-purpose subsystem having cm addition to the supervisor
commands) one or more commands, once such a program is loaded,
it can be used just lifce any of the standard subsystems, (The
MESSAGE procram is an example,) 2f3

This document describes the L10 programming language used at ARC, 2g

Part One is intended for the general user, 2gl

It is a primer on content Analyzer patterns. This does not
involve learning the L10 language nor programming, This
section can stand alone, and the general (if somewhat
experienced) NLS user should find it useful, 291a

Part Two is intended for the beginning pro9rammer, 2g2

It presents a hasty overview of tlO programming, with enough
tools to write simple programs, This is intended as an
Introduction for the beginning programmer# who we assume
is reasonably familiar with NLS Cits commands# subsystems#
and capabilities) and has some aptitude for programming, 2g2a

Part Three is a more complete presentation of LIU, 2g3

It is intenced to acquaint a potential MG programmer in
enough of the language anq NLS environment to satisfy most
requirements for automated editing programs, Many of the
concepts in part Two are repeated in part Three so that it
may stand alone as an intermediate programmer's reference
auide, 2g3a

Part Four presents more advanced L10 tools and an introduction
to CML# anting command syntax specification,

This should give the programmer the ability to write
programs which worx across files, which move through files

294

page 2

LtO Users' Guide
Introduction

&SPI-ARC 31-UCT-74 14:54 24258
ARC Rev • 1 NOV 74

in other than the standard sequential order* and which
interact with the user. 2g4a

We surest that; those who are new to LID begin with Section 1
and read this document one section, at a time* pausing between
sections to try out the concepts presented py actually writing
patterns or programs that put the new ideas to experimental
use. Bands.on experience is of at least as much value as this
tutorial, it you have problems at any point, you should get
help from AFC before proceeding to the next section, 2g5

More complete documentation can pe found in (7052,1). For
examples of user Programs which serve a variety of needs, consult
the User Programs Library Table of contents
(programs,"contents,1)» For information about commands mentioned,
as* for the programming subsystem with the NLS Help command, 2h

LlO users' Guide
Part Ones Introduction

&SRI-ARC 31-OCT-74 14 S 54 24258
AFC Rev, 1 MOV 74

page 4

I

&SRI-AKC 31 «OCX<•?4 14:54 24258
L10 users' Guide ARC Rev# l'NOV 74
Part One: introduction

PART ONE: content Analyzer Patterns 3

Section i: introduction 3a

Content analysis pattern? cannot affect the format of a statement#
nor can they edit a file. They can only cetermine whether a
statement should be printed at all. They are# in a sense# a
filter throuon which you may view the file. More complex tasKs
can be accomplished through programs, as described later in this
document, 3al

The Content Analyzer filter is creates oy typing in Cor selecting
from the text m a file) a string of a special form. This string
is called the "Content Analyzer pattern". Each statement is
checked against the pattern before it is printed? only statements
that are described by the pattern will be printed, 3a2

Some quick examples of Content, Analyzer Patterns: 3a3

f(sup •) will show all statements whose first
character is an open parenthesis# then any
number of letters or digits# then a close
parenthesis. 3a3a

t"blap") will show all statements with the
string "blap" somewhere in them, 3a3b

SIhCE C3»JUN*73 00:00) will show all statements
edited since june 3, 1973 3a3c

The next part of this section win describe the elements which
make up Content Analyzer p atterns, followed oy some examples. The
final subject of this section is now to out them to use, 3a4

&SKI-AFC 31-DCT-74 14:54 24258
L10 Users' Guide AHC Rev, 1 NOV 74
Part On®: Patterns

Section 2; Patterns 3b

Elements of Content Analyzer Patterns 3bl

Content Analyzer Patterns describe certain things the system
must check before printing a statement, It may check one or a
series of things, The content A nalyzer searches a statement
from the beginning, character by character* for described
elements, As it encounters each element of the Pattern, the
Content Analyzer cnecks the statement for the occurrence of
that pattern? if the test fails* the whole statement is tailed
(unless there was an "or" condition# as oescrihed later) and
not printed? it the test is passed# an imaginary marker moves
on to the next character in the statement# and the next test in
the pattern is considered, 3bla

The pattern may inciude any seouence 0 t the f0U0win9 elements;
the Content Analyzer moves the marker through the statement
checking for each element of the pattern in turn: 3blb

Literal Strings 3tolc
•c the given character fe.g, a ^ower case c)
"string" the given string (may include

non-printing characters# such as spaces)
Character classes 3bld

CH any character
L lowercase or uppercase letter
D digit
UL uppercase letter
Lb lowercase letter
ULD uppercase letter# or digit
LLD lowercase letter, or digit
LP lowercase or Uppercase letter, or digit
NLD not a letter nor digit
PT any printing character
NP any non-printing character (e.g. space)

Special characters 3ble
SP a space
TAB tab character
CR a'carrjane return
LF line feed character
ELL TEFCEX ELL character
ALT altmode character

Special elements 3blf
EKDCHR beginning and end of every

statement? can't scan past it

pade b

LlO Users' Guide
Part One: Patterns

&SRI-ARC 3 1 - OCT «•? 4 14?54 24258
ARC Rev, 1 NOV 74

TRUE is true without checking anything
in statement

ID- id statement created by user whose
ident is given

ID# id statement not created by user whose
ident is given

BEFORE C d-t) statement edited before given aate and time
SINCE (d»t) statement edited since given date and time

efg, BEFORE (1 OCT 1974 QQ?00) ?
The date and time must botn appear* in the parentheses,
it accepts almost any reasonable date ana time syntax.

Examples of valid dates?
17-APR-74 17 APRIL 74
APR*17-74 17/5/1974
APR 17 74 5/17/74
APRIL 17* 1974

Examples of valid times?
1 j 1 2 ; 13 12.3 4 j 5 6
1234 1 J 56AM
1 J 56*EST 120 0NOON
16*30 C4I30 ?F)
12800100AM (midnight)
118 59!59AM**E$T (late morning)
12500:01AM (early morning)

scan direction
<
>

3blg
set scan direction to the left
set scan direction to the right

The default, re-initialized for each pew statement, is
scan to tne right.

Combining Elements 3to2

These elements may be combined in any order, spaces within the
pattern are ignored (except in literal strings) so they may be
used to make reading easier for you. Several operators can
modify tne elements? 3b2a

NUMBER *** multiple occurrences

A number preceding any element other than one of the
"Special elements" means that tne test will succeed only if
it finds exactly that many occurrences of the element. If
there aren't that many, the statement win be rejected,
Even though there may be more, it win stop after that many
and go or to check the next element in the pattern,

3UL meens three upper case letters

3 b 2b

page 7

&SRI-ARC 31-OCT-74 14154 24258
L10 Users' Guide ARC Rev. 1 NOV 74
Part Ones Patterns

$ -- range ci occurrences 3fc2c

A dollar sign ($) preceding any element other than the
"Special elements" means "any number of occurrences of".
This may include zero occurrences.

$ * - means any number ot dashes

A number in front of the dollar sign sets a lower limit,
3SD means three or more digits

A number after the dollar sign sets an upper limit for the
search, it will stop after tnat number and then check tor
the next element in the pattern, even if it could have found
more •

$3LD means from zero to three letters or digits
5S7FT means from 5 to 7 (inclusive) printing

characters

U -- floating scan 3b2d

To do other than a character by character check# you may
enclose an element or series of elements in square brackets
U. The Content Analyzer will scan a statement until the
element is found, (if the element is not in square
brackets, the whole statement fails if the very next
character or string fails the test of the next element.)
This test will reject the statement if it can't find the
element anywhere in the statement, Tl it succeeds# i t will
leave the marker for the next test just after the string
satisfying the contents of the square brackets,

"start" means check to see if the statement
beoins with the string "start" (or#
if it is in the middle of a pattern#
check the next 5 characters to see
it they are s t a r),

("start") means scan until it finds the
string start,

C3Dj means scan until it finds
three digits,

I 3D '!] means scan until it finds three
digits followed by a colon

m mm negation

14 0 Users' Guide
Part Ones Patterns

&SBI-ARC 3i~UCT>74 14:54 24258
AFC Rev, 1 NOV 74

If an element is preceded by a minus sign -» the statement
will pass that test it the element does not occur,

»LD means anything other than a letter
or digit, such as punctuation,
invisibles, etc,

You may put together any number of any of these to form a
pattern, 3b2f

E,Q, 15FT P'.NLS;" 1SD] -SP

Logic in Patterns Jb3

More sophisticated patterns can py written by using the logic
features of Liu, Generally, an expression is executed left to
rioht. The following operations are done in the given order:

C)
/
NOT
AND
CR 3b3a

C) 3b3b

Parentheses (anO square brackets for floating scans! may be
used to group elements, it is good practice to use
parenthesis liberally,

/ 3b3c

/ means "either of": the element will be true if either
element is true,

(3D L / 4D) means either three digits and a letter
or tour digits.

Sometimes you may want want the scan to pass your marker
over something i f it happens to be there C an optional
element), "TRUE" is true without testing the statement. If
the other tests fail, the imaginary marker is not moved,

(D / TRUE) locks tor a digit apo passes the
imaginary marker over it. It the
next character is not a digit, it
will lust go on to the next test
element in the pattern without moving
the marker. This test always passes,

LlQ users' Guide
Part One! Patterns

&5RI-ARC 31-UCT-74 14:54 24258
AHC Rev« 1 NOV 74

i,e, It is usee to scan past semething(s) which may or
way net be there,

since expressions are executed fr0m left to right# it does
no good to have TRUE as the first option, (If it is first,
the test will Immediately pass without trying to scan over
anv elements,)

NOT 3fe3d

NOT win be TRUE if the element or group of elements
enclosed in parentheses following the NOT is false,

NOT LD will pass if the next character is neither
a letter nor a digit.

Since the slash is executed first# NOT D f *h will be true
if the next character is NEITHER a digit nor the letter "h"
It is the same as NOT CD/'hD,

AND 3b3e

OR

AND means both of t'ne two generated groups ot elements must
be true for tne statement to pass,

SXNCE (3/6/73 GhzCO) AND JD#NDM means statements
written since March 6, 1973 by
someone other than NDM,

PR means the test will oe true if either of the separated
elements is true, it does the same thing as slash# b ut
after "AND" and "NOT" have been executed# allowing greater
flexibility,

D AND LLd OR UL means the same as CD AND ODD) OR UL
D AND LLD / UL means the same as o AND (LLD / UL)

While such patterns are correct and succinct# parentheses
make for much clearer patterns, Elements within
parentheses are taken as a group; the group win be true
only it the $tatemert passes all the requirements 0t the
group, it is a good idea to use parentheses whenever
there might be any ambiguity,

3b3£

page JO

&SRI *ARC il-UCT-74 14:54 24258
L10 Users' Guide ARC "Rev, 1 NOV 74
Part One: Examples of Content Analyzer Patterns

section 3: Examples of Content Analyzer Patterns 3c

D 2$LD / C"CA»3 t ["Content Analyzer»3 3cl

this oattern will match any of tnree types of statements: those
beginning *ith a numerical digit followed by at least two
characters which may he either letters or digits, and
statements with either the patterns "CA" or "Content Analyzer"
anywhere in the statement, 3cia

Note the use of the square brackets to Permit a floating
scan -- a search for a pattern anywhere in the statement,
Note also the use of the slash for alternatives,

BEFORE C 25"JAN*?2 12100) 3c2

This pattern will match those statements created or modified
before noon on 2b January 1972» 3c2a

C1P = HGL3 OP CID s NDM) 3c3

This pattern will match all statements created or modified by
users with the identifiers "HGL" or "NDM", 3c3a

t C2L C5P/TRUE) / 2D) D f- 4D] ic4

This pattern will match characters in the form of phone numbers
anywhere in a statement, Numbers matched may have an
alphabetic exchange followed by an optional space (note the use
Of the TRUE construction to accomplish thisj or a numerical
exchange, 3c4a

Examples include DA 200, DA6-620G, ana 326-6200,

CENDCHRJ < "cba " 3c5

This will pass those statements ending with "abc", it will go
to the end of the statement# change the scan direction to left#
and checic tor the characters "cba". Note that since you are
scanning bacKwards, to find "abc" you must look for "cba",
Since the "coa" is not enclosed in square brackets, it must be
the very last characters in the statement, 3c5a

page 11

&5RI-ARC 3 1 «UCT-»74 14854 24258
Lio users' Guide ARC Rev* 1 NOV 74
Part Ones Using the Content Analyzer

section 4! Using the content Analyzer 3d

Content Analyzer Patterns may be entered in two ways? 3dl

1) From the BABE subsystem* use the command? 3dla

Set Content (pattern1) To PATTERN OK

2) From the PROGRAMS subsystem, use the command? 3dib

Compile content (pattern) PATTERN OK

OK means "Command Accept"* a controls °f'
in TNLS (by default) a carriage return,

In either cases 3d2

1) Patterns ^ay be typed in from the Keyboard* or 3d2a

2) they may be addressed from a file, 3d2b

In this case, the pattern will be read *rom the first
character addressed and continue until It finds a semicolon
(!) so ycu must put a semicolon at the end of the pattern
(in the file),

Viewspec j must ce on (i.e, C 0 n
te nt Anaiyzer off) when e ntering

a pattern, 3d2c

Entering a content Analyzer Pattern automatically does two things? 3d3

1) compiles a small user program from the characters in the
pattern* and 3d3a

2) takes that program and "institutes" it as the current
Content Analyzer filter program, deinstituting any previous
pattern, 3d3b

"Instituting" a program means selecting it as the one to
take effect when the Content Analyzer is turned on, You may
have more than one program compiled but only one instituted,

when a pattern is deinstituted, it still exists in your
program buffer space and may o e instituted again at any time
with the command in the PROGRAMS subsystem;

institute Program PROGRAM-NAME (as) Content (analyzer) OK

page 12

&SRI-ARC 31-QCT-74 14854 24258
L10 Users' Guide AFC Rev, 1 NOV 74
Part One! Using the Content Analyzer

The programs may be reared to by number instead of
nan®, Ihey are numbered sequentially, the tirst
entered being number l,

All tne programs you have compiled and the one you have
instituted may be listed with the command in the PROGRAMS
subsystemj

show Status (of pr°orams buffer) OK

Programs may build up in your program buffer, To clear tne
program buffer* use the PROGRAMS subsystem command?'

Delete Ail (programs in buffer) UK

we recommend that you do this before each new pattern*
unless you specifically want to preserve previous
patterns,

To invoke the Content Analyzer! 3d4

When viewspec i is on, the instituted Content Analyzer program
(if any) will Check every statement before it is printed (or"
displayed), 3d4a

If a statement does not all of the requirements of the
Content Analyzer Program* i t will not be printed,

jn DNtS# if no statements from the top of the screen on
pass the content Analyzer* the word "Empty" will be
displayed,

Note! iou win not see the normal structure since one
statement may pass the Content Analyzer although its source
does not, Viewspec m (statement numbers on) wil1 heip you
determine the position of trie statement in tne file,

'when viewspec K is on, the instituted Content A nalyzer search
program will check until it finds one statement that passes the
requirements of the pattern* Then* the rest of the output
(branch* Plex* display screen, etc,) will be printed without
checking the Content Analyzer, 3d4b

When viewspec 1 is on, no content Analyzer searching is done.
This is the default state? every statement in the output
(branch* p lex* display screen* etc,) will be printed. Note
that it It and k are mutually exclusive, 3d4c

L10 users' Guide
Part One? Using the Content Analyzer

&SRI-ARC 31-OCT-74
ARC Rev,

1 4 j 5 4 24258
1 NOV 74

Notes on the use of content Analyzer filters* 3d5

Some NJUS commands are always affected bv the current viewspecs
(including i#j, or'JOi 3d5a

Output

Jump (in DNLs)

Print (in TNLS)

Host NLS commands ignore tne Content Analyzer in their editing.
The following BASE subsystem commands offer the option of
specifying viewspecs, or "Filters", (which may turn on the
Content Analyzer) which apply only for the purpose o£ that one
command ana affect what statements the command wOrXs om" 3P5b

COPy

Delete

Hove

Substitute

At this point# it would be wise to practice until yog become
proficient at Content Analyzer patterns. You might begin by
trying to use some of the patterns given in the above examples#
and then try Writing a tew patterns of your own, These patterns
are both a useful NLS tool and a basic component of many L10
programs, 3d6

page 14

L10 Users* Guide
Pert Two J Content Analyzer Programs

&SBI-A«C 3 1 "OCT ""7 4 14S54 24258
ARC Rev, l NOV 74

PART TWpj Introduction to LtQ PrograitiminSl 4

section Is Content Analyzer programs 4a

Introduction 4al

When you specify a Content Analyzer Pattern, the PROGRAMS
subsystem constructs a program which looks for the pattern in
each statement ana only displays the statement if the pattern
matching succeeds, you can gain more control and do more
things if ycu build the program yourself, The program will be
used Just HKe the simple pattern program and has many of the
same limitations, Programs are written in NLs just lifce any
other text file, They then can be converted to executable code
by a compiler. This code resides (or is loaded) in your
programs buffer s pace? it can be instituted as tne current
Content Analyzer filter program like a Content Analyzer
Pattern, 4aia

program Structure 4a2

If you specify a Content Analyzer Pattern# N LS compiles a small
program that looks like this (with the word "pattern" standing
for whatever you typed irn s " 4a2a

PROGRAM name

(name) PROCEDURE*

IF FIND pattern THEN RETURN(TRUE) E^sE RETURN(FALSE)1

END,

FINISH

All LiO programs must begin with a header statement# t he word
PROGRAM C all caps) followed oy the name of the first procedure
t© tee executed can lower-case), This name is also the name of
the program, If the program is being complied into a file (t0
be described at the end of this section)# tne word FIL& should
oe substituted for the word PROGRAM * 4a2b

e.g, PROGRAM first
FILE deidir

page 15

&SRI-ARC 31-OCT-74 14 8 b4 24258
L10 Users' Guide ARC Rev, i NOV 74
Part Two! Content Analyzer programs

(Note? the Content Analyzer majceS U P a program NAME
consisting of UP#ixxxxx # where

is a sequential nymber, the first pattern being number
one# and

xxxxx is the first five characters °f your pattern,)

The body of a program consists of a series of DECLARATION
statements and PROCEDURES (in any order). In the above case#
the program consisted of only one small procedure and no
declarations, when the program is loaded into your programs
buffer space, the declarations reserve space in the system to
store information (variables), when the program is used as a
Content Analyzer filter program, the first oroceaure is called
for each statement, it may in turn call other procedures and
access variables in the proaram or in the NfcS system, 4a2c

e,g, DECLARE y>f y, z (describees below)
(first) PROCEDURE?

The end of the program is delimited by the word "FINISH" (in
all upper case), 4a2d

Comments may be enclosed in percent signs C %) anywhere in the
program* even in the middle of LID statements, Tne Lio
compiler will ignore them, 4a2e

Except within literal strings, variable names and special LIO
words, spaces are igncrec. It is good practice t© use them

liberally so that your program will be easy to read, Also, NL5
file structure is ignored, structure is, however, very
valuable in making the program readable, and it is good
practice to use it in close correlation to the program's
logical structure, For instance, the programmer usually maxes
each Of the elements of a program (declarations, procedures,
anp FINISH) sePerate statements, below the header statement in
file structure, This point will be discussed further later, 4a2f

So far# we have file which looks something like? 4a2g

PROGRAM name!

DECLARE ,,, ?

DECLARE #,. ?

page 16

L10 users' Guide
Part Twoi content: Analy^r Programs

&SR1-AKC 31-OCT-74 14*54 24258
ARC* Rev, 1 NOV 74

enamel} PROCEDURE ?

(name2) PROCEDURE)

FINISH

Procedure Structure 4a|

Each procedure must begin with its header statement, This
header statement is a name enclosed in Parentheses followed by
the word PROCEDURE, and terminated by a semicolon, 4a3a

e,g, (name) PROCEDURE ?

The body ot the procedure may consist of Local declarations,
then HQ statements, An plh statement is any program
instruction, terminated by a semicolon, The body must at some
point return control to the Procedure that called it, All this
will be discussed more later, 4a3b

The procedure must end with the terminal s tatem®nt! 4a3c

END»

L1C Users' Guise
Part TWO: Content Analyzer Pro9ratrs

&SRI-ABC 31-OCT-74 14154 24258
ARC Rev, 1 NOV 74

Example ?

PRGGKAH compare

% Content analyzer, Displays statement if first two
vlsibies are the same, %
DECLARE TEXT POINTER Ptl# Pt2, Pt3f pt4; %reServes

space for ("declares") four
text pointers named "Ptl"
through «pt4»%

DECLARE STRING visitlOOj, vis2U00)j %reserves 100
characters of space for each
of two string variaoies named
"visi" and "Vls2«#%

(compare) PROCEDURE t
IF FI^D SNP -ptl 1SpT -pt2 SNP *pt3 1SPT "pt4 THEN

%set pointers atound first
two visib^es (strings of
printng characters)*

BEGIN %if it found two visibles%
visl - Ptl Pt2 ; %put visibles in strings%
ViS 2 „ P13 P14 J
IF *visi* s #vls2* THEN RETURN(TRUE)1 %eompare

contents of strings# return
and display the statement
if identical?;

4a4

4a4a

%otherwiser return and don't
displayi

END }
return C FAL5E) t

END,
FINISH

Declaration Statements 4ab

As you may have guessed from the aoove example, Content
Analyzer programs can deai with variables (like text pointers
and strings), while patterns cannot, 4a§a

Text Pointers 4a5b

A text pointer points to a particular location within an MLS
statement (Or into a string# as described later).

The text pointer points between two characters in a
statement. By nutting the pointers between characters# a
single pointer can pe used to mark both the end of one
string and the beginning of the string starting with the
next character,

page 18

L10 Users' Guide
Part Two: Content Analyzer Programs

&SRI-AKC 31-UCT-74 14:54 24258
ARC Rev. i NOV 74

Text pointers are declared with the following Declaration
statement I

DECLARE TEXT POINTER name ?

Strings 4a5c

String variables hold text, When they are declared, the
maximum number of characters is set.

To declare a strings

DECLARE STRING name[hum] ?

num is the maximum number of characters allowed for the
string»

e.g. DECLARE STRING 1Strihg[1003 J

declares a string named "istring" with a maximum
length of 100 characters and a current length of 0
characters (.it's empty).

Tou can refer to the contents ot a string variable by
surrounaind the name with asterisks,

e,g, *lstring* is the string stored in the
variable named "istring".

You can Put the text between two text Pointers in a string
variable with the LlO statement:

#1 string# •» ptri ptr2 :

where ptrl and ptr2 are the names of previously declared
and set text pointers, and Istring is a previously
declared string variable.

These variables will retain their value from one statement to
the next, otner types of variables and their use win be
discussed in detail in Part Three, Section 4a5d

Body of the procedure 4a6

RETURN Statement 4aba

NO m atter what it does, every procedure must return control

L I 0 Users* Guide
Part Twoi Content Analyzer Programs

&SRI-ARC 31-OCT-74 14354 24258
ARC Rev, 1 NOV 74

to the procedure that called it. The statement wnich does
this is the RETURN statement,

e,g, RETURN?

A RETURN statement may pass values to the procedure that
called it, The values must fee enclosed in parentheses after
the word RETURN,

e.g, RETURN (1,23,47)?

A Content Analyzer program must return either a value of
TRUE or of FALSE, if it returns the value TRUE (1), the
statement will be printed? i f it returns FALSE (0), the
statement will not tee orinted.

i.e. RETURN (TRUE)?
RETURN (FALSE)?

will print the statement
will not print the statement

The RETURN statement often is at the end of a procedure, but
it n^ed pot be, F0r example, in the middle ot the procedure
you may want to either RETURN or go on depending on the
result of a test,

Other than the requirement of a RETURN statement* the body of
the procedure is entirely a function ot the Purpose Of the
Procedure, A few of the many possible statements will be
described here? others will be introduced in part Three of this
document. 4a6b

FIND Statement

one of the most useful statements for Content Analyzer
programs is the FIND statement. The FIND statement
specifies a Content A nalyzer pattern to be tested against
the statement, and text pointers to be manipulated and set,
starting from the Current Character position (that invisible
marker refered to in Section l), if the test'succeeds, the
character position is moved past the last character read,
If the test fails, the character position is left at the
position prior to the FIND statement and the values of an
text pointers set within the statement will be reset,

FIND pattern ?

The Current character position is initialized to BEFORE THE
FIRST CHARACTER# and the scan direction is initialized to

4a6c

page 20

LI0 users' Guide
Part Twos Content Analyzer programs

&SRI-AKC il-GCT-74 14 s 54 24258
ARC Rev, 1"NOV 74

left to FIGHT, FOP EACH NEW STATEMENT passed to the Content
Analyzer program,

Any simple Content Analyzer pattern (as describe above) is
valid in a FIND statement• in addition, the following
elements can be incorporated in the pattern!

stringname

the contents of the string variable

'ptr

store current scan position into the text pointer
specified by ptr, the name of a declared text pointer

JNUM ptr

bacK up the specified text pointer by the specified
nurrcer (NUM) of characters, if NUM is not specified,
t will be assumed. Backup is in the direction
opposite to the current scan direction,

ptr

Set current character position to this position, ptr
is the name of a previously set text pointer,

$F Cptr)

The current Character position is set to the front of
the statement in which the text pointer ptr is set and
scan direction is set from left to right,

sE(ptr)

The Current Character Position is set to the end of
the statement in which the text pointer ptr is set and
scan direction is set from rignt to left.

BETWEEN ptr ptr (pattern)

Search limited to between positions specified, ptr is
a previously set text pointer? the two must be in the
same statement or string. Current Character Position
is set to first position before the pattern is tested,

e,g, BETWEEN ptl pt2 C2D t .J S NP)

&SRI-ARC 31-UCT-74 14i54 24258
LlO Users' Guide "ARC "Rev, i NOV 74
Part Two? content Analyzer Programs

FINDS may be used as expressions as well as free-standing
statements, If used as an expression# for example in IF
statements# i t has the value TRUE if all pattern elements
within it are true and the value FALSE if any one of the
elements is false,

efg, IF FIND pattern THEN „,, j

Complicated examples

IF FIND "Sf $NP #($(LO/'-) ' 1 C", " #Str#3 SE(Sf) $NP
% THEN RETURNCTRUE) ELSE RETURNCFALSE),

IF Statement 4a6d

l i causes execution of a statement if a tested expression is
TRUE, if It is FALSE and the optional ELSE part is present#
the statement foiiowinn the ELSE is executed, control then
passes to the statement immediately following the IF
statement,

IF testexp THEN statement ?

IF testexp THEN statement! ELSE statement2 ;

The statements within the IF statement can be any valid LlO
statement# Put are not followed fey the usual semicolon? the
whole IF statement is treated like one statement and
followed by the semicolon,

e.9.

IF FIND C 5D1 THEN RETURN(FALSE) ELSE RETURNCTRUE) ?

programming Style? File structure 4a7

You may remember that the comoiier which converts your NLS text
to code ignores tile structure, This allows you to use
structure to make your program t ext easier to read and
understand, Logical use of structure often facilitates the
actual programming task as well, Some conventions have
developed at ARC in this respect. An of these should seem
obvious and logical to yog, 4a7a

All declarations and PROCEDURE statements should be one
level beiow the PROGRAM statement.

page 27

&SRI-ARC 31-OCT-74 14554
L10 Users' Guide ARC Rev, 1 NOV
Part Twos Content Analyzer Programs

2425
74

All local declarations C not yet described) and code should
be one level below the PROCEDURE statement,

It is good style, and makes for much easier programming, to
list what you want to do as comment statements (in percent
signs) at the level below the PROCEDURE statement, Then you
can go back and fin in the code that accomplishes the task
described in each comment statement. The code should go one
level below the comment,

We will later describe
where one is required#
the statement of which

how to block a series o t statements
These blocks sho uig go a level below

they are a part*

File structure should follow the
program as closely as possible,

e,a, IF FIND C 5D3

logical structure of the

THEN RETURN(TRUE)

ELSE RETURNCFALSE)?

Using content A nalyzer Proorams

Once the Content A nalyzer program has been written C in an NLS
tile), there are tw0 steps in using it. First, the program
must be "compiled," i,e, translated into machine-readable code;
the compiled code is "loaded" into a space reserved tor user
programs (the user programs butter). Secondly, the loaded
program must be "instituted" as the current Content Analyzer
program,

There are two ways to compile and lead a program?

1) You may compile a program and load it into your programs
buffer ail in one operation. The program header statement
must have the word PROGRAM in it# When the user resets his
job or logs off, the compiled code will disappear.

First# enter the Programs subsystem with the command!

Goto Programs OK

Then you may compile the program with the command:

Compile Lio (user program at) SOURCE OK

4a8

4a8a

4a8b

page 23

LI 0 Users* Guide
Part Twos Content Analyzer programs

&SRI-ARC 31-QCT-74
ARC Rev.

14 S b4 24258
X NOV 74

SOURCE is the address of the PROGRAM statement,

2) you may compile a prooram into a file and tnen load it
into your buffer as a separate operation, The program can
then be loadeo from the file into your user programs duffer
at any time without recompiling. The header statement must
use the word FILE instead of PROGRAM. Use the PROGRAMS
subsystem command:

Compile File (at) SOURCE (using) L10 (to file) FILENAME
OK

The FILENAME must be the same as the program's name.

The code file is called a REL (R.ELocatable code) file,
"Whenever you wish to load the program code into the user
programs buffer* use the PROGRAMS subsystem command:

Load REL (file) FILENAME OK

Once a compiled program has been loaded (by either r oute), it
must be instituted. This is done with the PROGRAMS subsystem
command: 4a8c

Institute Program PROGRAM-NAME
(as) Content (analyzer program) OK

The named program will be instituted as the current Content
Analyzer program* and any previous program will be
deinstituted (but win remain in the buffer).

Again* the programs in the buffer are numbered, the first in
being number one, YOU MAY use the number instead of the
program's name as a shorthand for PROGRAM-NAME,

To invoice the Content Analyzer usino whatever program is
currently instituted* use the viewsoec i* j* or K, as described
in part One# Section 4 (3d4)«

Problems

Given these few constructs* you should now be able to write a
number of useful content Analyzer programs. Try programming
the following:

1) Show those statements which have a. number somewhere in
the first 20 characters,

4a8d

4a9

4a9a

page 24

&SRI-AHC 31-OCT»74 14|b4 24258
L10 Users' Guide ARC Rev, 1 NOV 74
Part Twoi Content Analyzer programs

2) Snow those statements where the first visible in the
statement is repeated somewhere in the statement.

page 25

&SH1-ARC 31-DCT-74 14 s 54 24258
L10 users' Guide ARC Rev, TNUV 74
Part Two? Content Analyzer Programs

Sample solutions! 4a9b

Proplew 1

PROGRAM NUMBER
DECLARE TEXT POINTER ptrl, ptr2 ?
(number) FRCCEDURE ?

FIND "ptrl S20CH "ptr2 f
IF FIND BETWEEN ptri Ptr2 (CD])

THEN RETURNCTRUE)
ELSE PETURN(FALSE)>

END,
FINISH

problem 2

PROGRAM vis
DECLARE TEXT POINTER ptrl, Ptr2 !
DECLARE STRING strfSOO] t
(ViS) PROCEDURE >

FIND SNP "Ptrl 13PT "ptr2 f
*str# ~ ptrl ptr2 j
IF find Ptr2 [HP *str# NP]

THEN RETURN(TRUE)
ELSE RETURN(FALSE) 1

END,
FINISH

&SR I -ARC 31-OCT-74 14*54 24258
Lio Users' Guide ARC Rev, 1 NOV 74
Part Two* Content Analyzer Programs* Modifying Statements

Section 2} Content Analyzer Programs; Modifying statements 40

introduction 4bl

Content Analyzer programs may edit the statements as well as
decide whether or not they are printed, They are very useful
where a series of editing operations has to pe done time and
time again, This section will introduce you to these
capabilities* All those constructs wll be covered in detail in
Part Three, 4bla

A Content Analyzer program has several limitations. It can
manipulate only one file and it can look at statements only in
sequential order (as they appear in the tile), it cannot back
up and re-examine previous statements# nor can it skip ahead to
other parts of tne file. It cannot interact with the user,
Part Four provides the tools to overcome these limitations, 4bib

String Construction 4b2

Statements and the contents of string variables may be modified
by either of the following two statements* 4b2a

ST ptr . striist *

The whole statement in which the text pointer named "ptr"
resides will, be replaced by the string list (to be
described in a minute).

ST Ptr ptr - striist ;

The part of the statement from the first ptr to the
second ptr will be replaced by the string list,

Ptr may be a previously set text pointer or SF(Ptr) or
SE(ptr).

String variables may also be modified with the string
assignment statements 1 4b2b

#strinanarre* . striist *

The string list (striist) may be any series of string
designators# separated py commas. The string designators may
be any of the following (other possibilities to be described
later)s 4b2c

•

&5RI-ARC 31-OCT-74 14 154 24258 J
Lio users' Guide ARC Rey, 1" NOV 74
Part Twos Content Analyzer Programs; Modifying Statements

a string constant, e, g, "ABC" or 'w

ptr ptr

the text between two text pointers previously set in
either a statement or a string

stringnarre

a string name in asterisks# refering to the contents of
the string

E«9„! 4b2d

ST pi n2 - *string* ?
or

ST pi . SF(pl) pi* string# p? SE(p2)f

(Note; these have exactly the same meaning,)

Example; 4b3

PROGRAM deisp 4b3a

% Content analyzer, Deletes all leading spaces from
statements, %
DECLARE TEXT POINTER pt; Preserves soace for

C"declares") a text pointer
named "pt"%

(deisp) PROCEDURE ?
IF FIND 1SSP "Pt THEN %scans over leading spaces,

then sets pointer^
ST Pt „ pt SE(Pt); ^replaces statement with text

from pointer to statement eng%
RETURN (FALSE) ? %return, don't display anything%
END,

FINISH

More Than One change per Statement 4b4

Part of a text nointer is a character count. This count stays
the same until the text pointer is again set (to some other
position), even though the statement has been edited, If, for
example, you have the statement, 4b4a

abcdefghijXlmnopgrstuvwxyz

and if you have set a pointer between the "d» and trie "e", it

page 28

&SKI«*AKC 3X-OCT-74 14 j 54 24258
Lio Users' Guide ABC Rev, 1 NOV 74
Part Twos Content Analyzer Programss M odifying Statements

will always point between the fourth ana fifth characters in
the statement* If vou then delete the character "a", your
pointer will be between the "e" and the "£"* now the fourth and
fifth characters* F©r this reason* you probably want to do a
series of edits beginning with the last one in the statement
and wording backwards through the statement,

controlling which Statements are Modified

In TNkS' the content Analyzer program will be called for
commands which construct a printout of the file Cprint and
Output2. The program will run on every statement for which it
is called C e, g, every statement in the branch during a Print
Branch command) which pass all tne other viewspecs» once you
have written* compiled* and instituted a program which does
s 0me editing operation^ t h e Print Command is the easiest way to
run the program on a statement, branch, plex, or group,

In DNL5* the system will call the Content Analyzer program
whenever the display is recreated (*,3, viewspec t and the jump
commands), and also for the Output commands, if the program
returns TRUE* it will only run on enough statements to fill the
screen, it is safer to have programs that edit the file return
FALSE, Then when you set viewspec i, it will run on all
statements from the top Of the display on, and when it is done
it will display the word "Empty". At that point* change to
viewspec j and recreate the display with viewspec f* then all
statements including the changes will be displayed* Y©u can
control which statements ar* edited with level viewspecs and
the branch only (g) or plex only (1) viewspecs*

After havinq run your program on a file* you may wish to Update
to permanently incorporate the changes in the fixe. It is wise
to update before you run the program so that* if the program
does something unexpected* you can Delete Modifications and
return to a good file.

Problems

Try writing the following programs!

i) Remove any invisibles from the end of each statement.

2) Make the first visible a statement name (surrounded by
parenthesis) if it is a word (letters and digits).

4b4b

4b5

4b5a

4b5b

4b5c

4bb

4b6a

page 29

&SHI-AKC 31-QCT-74 14;54 24258
Lio Users' Guide ARC Rev. 1 NOV 74
Part Twoj content Analyzer Programs! Modifying statements

Sample solutions 4b6b

Problem 1

PROGRAM endinv
DECLARE TEXT POINTER ptr ?
Cendinv) PROCEDURE I

IF FIND "ptr SE(Ptr D 1SNP "ptr

FINISH

problem 2

PROGRAM makenanre
DECLARE TEXT POINTER ptri, ptr2 ;
(makeharce) PROCEDURE ?

IF FIND SMP "ptrl 1SLD *ptr2 NP
THEN ST ptr1 - ptr1 ptr2, ptr2 5E(ptr2)j

RETURNCFALSE)
END,

THEN ST ptr - SFCptr) ptr t
RETURN (FALSE) ?
END,

FINISH

page 30

&SRI-AKC 31-DCT-74 14 ? 54 24258
LlO Users' Guide ARC Rev, i NOV 74
Part Three? The User program Environment

PART THREEi Basic LIO Programming

From here on has not Been updated? the commands mentioned may
be syntactically incorrect? and the section on'user interface is

obsolete (having been replaced ov CMU» hew documentation should
be expected by the end of the year*

Section it me user Program Environment 5a

Introduction 5al

User-written Content Analyzer programs run in the framewor* of
the portrayal generator. They may he invoKed In several ways?
described below, whenever one as^s to view a portion of the
file, e.g., with a print command in TNLS? with any of the
output commands, and with the Jump command in DNLS• 5ala

All of the portrayal generators in MLS have at l east two
sections -• the formatter and the seque nce ge nerat©r; if the
user invoKes a Content Analyzer program of his own, the
portrayal generator will have one adaitionai part • - the user
program, 5alb

Executable programs are independent of the portrayal generator,
although they are welcome to m^e use of it. They are caned
as procedures by the Programs subsystem, and have ail the
powers of any other Nps procedure. Sale

Sequence Generator 5a2

The sequence generator looKs at statements one at a time?
beginning at the point specified by the user. It observes
viewspecs iiKe level truncation in determining which statements
to oass on to the formatter. 5a2a

For example? the viewspecs may indicate that only the first
line of statements in the two highest levels are to be
output. The default MLS sequence generator will return
pointers only to those statements passing the structural
filters; the formatter will further truncate the text to
only the first line.

page 31

*
L10 Users* Guide
D ^ r t T k r q o i T w o

&SRI-ARC 31"OCT-7 4 X 4;54 24258
ARC Rev, 1 NOV 74

Part ihreer The User Program Environment

When the sequence generator finds a statement that passes ail
the viewspec requirements, it returns the statement to the''
formatter and waits to be called again for the next statement
in the sequence.

One of the yiewsPecs that the sequence generator pays
particular attention to Is "i" -- the viewspec that indicates
whether a user filter is to be applied to the statement. If
this viewspec is on, the seauence generator passes control to a
user Content Analyzer program, which Iooks at the statement and
decides whether it should be included in the sequence, If the
statement passes the content Analyzer (i.e, the user program
returns a value of TRUE)# t he sequence qenerator sends the
statement to the formatter: otherwise, it Processes the next
statement in the sequence and sends it to the user Content
Analyzer program for verification, (The particular user
program chosen as a filter is determined by what program is
Instituted as the current Content Analyzer program# as
described below,)

Formatter

The formatter section arranges text passed to it by the
sequence generator in the style snecified by other viewspecs,
The formatter observes viewspecs such as line truncation#
length and indenting* it also formats the text in accord with
the requirements of the output device,

The formatter works by calling the sequence generator#
formatting me text returned# then reheating this process until
the sequence generator decides that the sequence has been
exhausted (e,g# the branch has been printed) or the formatter
has filled the desired area (e,g, the display screen).

Content Analyzers

The NLs Portrayal Generator# made UP of the formatter# the
sequence generator# and user filters# is Invoked whenever the
user requests a new "view» of the tile# for example through the
use of the TNLS "Print" command or any of the output commands,
Thus if one had a us«r Content Analyzer program compiled#
instituted# and invoked# one could have a Printout made
containing only those statements in the file satisfying the
pattern,

When a user writes an content analyzer filter program, the main
routine must RETURN to the Portravax Generator, The RETURN
must have an argument which is checked by tne sequence

5a2b

5a2c

ba3

5 a 3a

5a3b

5a4

5a4a

page 32

&SRI-AKC 31-UCT-74 14:54 24258
ti 10 Users' Guide ARC Rev, 1 NOV 74
Part Three: The User Program Environment

generator, If the value of that argument is TRUE, the
statement will be passed to the formatter to be displayed or
printed? if the value is FALSE, it will not be displayed, in
DHLs, if you display any statements, the program will stop
after filling the screen, if you are not displaying any
statements, the program will run on either the whole file, a
plex fyiewspec 1), or a branch Cyiewspec 9?, These along with
level clipping viewgpees give one precise control over what
statements in the file win be passed to the program, 5a4b

User-Written Sequence Generators 5a5

A user may provide his own sequence generator to be used in
lieu of the regular sequence generator, such a program may
can the normal NLS sequence generator, as wen as content
analysis filters and Executable LIO programs. It may even call
other user-written sequence generators, 5a5a

This technique provides the most powerfui means for a user to
reformat (and even create) fixes and to affect their portraya^,
However, since writing them requires a detailed Knowledge of
the entire NLS program code, the practice is limited to
experienced NLS programmers, and will not be covered in this
document, However, the information provided in these next
sections should provide you with enough, to accomplish most any
tasK. 5a5b

page 33

•
LlO Users' Guide
Part Three; Program Structure

&SRI-A«C 31»OCT»74 14 s 54 24258
ARC Rev« 1 NOV 74

Section 2i program Structure 5b

An NLS user program consists of the following elements# which must
be arranged in a definite manner with strict agheren ce to
syntactic Punctuations 5bi

The header « 5bla

a statement consisting of the WORD PRQGRAMt followed by the
name of a procedure in. the program. Program execution will
begin with a call to the procedure with this name,

PROGRAM name

The word RILE should be substituted for the word PRQGRAM if
the code is to be compiled into a file to be saved.

The body « 5blb

consists of declarations and procedures in any order;

1) declaration statements which specify information
about the data to be processed by the procedures in the
program and enter the data identifiers in the program's
symbol table, terminated by a semicolon,

e,q, DECLARE x#y#z I
DECLARE STRING test [500] ;
REF x# Z f

Declaration statements will be covered in Section 3
C4c) t

2) Procedures which specifv certain execution tasKs.
Each procedure must consist of *

the procedure name enclosed in parentheses followed by
the word PROCEDURE and optionally an argument list
containing names of variables that are passed by the
calling procedure for referencing within the called
procedure, This statement must be terminated by a
semicolon,

e,g, (name) PROCEDURE *
(name) PROCEDURE Cparami# param2) ?

page 34

LlO Users' Guide
Part Three? Program Structure

&SRI-ARC 31-OCT-74 14:54 24258
ARC" Rev, 1 NOV 74

the body of the procedure -which ma.v consist of LOCAL,
REF $ and LlO statements.

LOCAL and REF declarations within a Procedure must
Precede executable code. They will be covered in
Section 3 (4c),

LlO statements will be covered in Sections 4 ana 5
C4d) C 4e),

the statement that terminates the procedure (note the
final period)i

END,

The program terminal statement » 5bic

FINISH

Comments may be enclosed in percent signs C %) anywhere in the
program? ® ven in the middle of LlO statements. They will be
ignored, 5bld

Except t 0 r within literal strings, variable names, and special
LlO reserved words, soaces are ignored, it is good practice"to
use them liberally so that your program will be easy to read.
Also, NLS file structure is ignored, structure is, however,
very valuable in making the program readable, and it is good
practice to use it in close correlation to the program's
logical structure, 5ble

&SRI-ARC 31-OCT-74 14S 54 24258
L10 Users' Guide ARC Rev, l NOV 74
Part Threes Program Structure

An example of a simple LIQ program is provided here, The reader
should easily understand this program after having studied this
document, 5b2

PROGRAM deisp 5b2a
% Content anaivzer, Deletes an leading spaces from
statements, %
DECLARE TEXT POINTER Ptf preserves space for

C"declares") a text
pointer named""pt"%

(deisp) PROCEDURE ?
IF FIND iSSP *pt THEN %scar»s over leading spaces*

tnen sets pointer%
ST pt „ pt SE C Pt) ? %repiaces statement Holding

pt with text from pointer
to statement end%

RETURN (FALSE) ? %return# don't disolay%
END.

FINISH

page 36

&SRI-ARC 31-OCT-74 14 ? 54 24258
L10 Users' Guide ARC Rev, i NOV 74
Part Three: Declarations

Section 3? Declarations 5c

Introduction 5cl

L10 declarations provide information to the compiler about the
cat* that is tc be accessed? they are not executed. Every
variable used in the proflran must be declared somewhere in the
system (either in your program or in the NLS system program), 5cia

There are various types of declarations available? the most
frequently used are discussed here, (Complete documentation is
available in the tio Reference Guide •* 7052,) 5clb

Variables 5C2

Five types of variables are described in this document: simple#
arrays, text Pointers, strings, and referenced, Each can be
declared on two levels: global or local, 5c2a

Global Variables 5c2b

A qlopal variable i s represented by an identifier ana refers
to a cell in memory which is Known and accessible throughout
the nrodram, Global variables are defined in the program's
DECLARE statements or in the NLS system orogram,

Variables specified in these declarations are outside any
procedure and may be used by ali procedures in the program,
Many globals are defined as mart of the NLS system? u ser
programs have complete access to these, Be very careful
about changing their v alues, however.

Local Variables 5c2c

A local variable is Known and accessible only to the
procedure in which it. appears, Local variables must appear
in a procedure argument list or be declared in a prodecurcs
LOCAL declaration statements (to be explained below). Any
LOCAL declarations must precede the executable statements in
a procedure,

Local variables in the different procedures may have the
same name without conflict, A global variable may not be
declared as a local, variable and a procedure name may be
used as neither, in such cases the name is considered to be
multiply aefined and an error results.

page 37

&SRI-ARC 31-OCT-74 14854 24258
L10 users' Guide ARC Rev, 1 NOV 74
Part Three* Declarations

Simple Variables sc3

Simple variables represent one computer word, or 36 bits? of
memory. Each bit is either or or off. allowing binary numbers
to be stored in words, Each word can nold up to five ASCII
7«bit characters, a single number, or may be divided into
fields and bold more than one number, 5c3a

Declaring a variable allocates a word in tne computer to
hold the contents of the variable. The variable name refers
to the contents ©t that word, Gne may refer to the address
of that computer word by preceding the variable name by a
dollar sign ($)„

F©r example, if on e h as declared a simple variable called
»num», one may put the number three in that variable with
the statement!

nurr „ 3 ;

One may add two to a variable with the statement*

num - nun + 2 »

One may put the address of num into a variable called
addr with the statement?

addr - 6num. *

One may refer to predefined fields in any variable by
following the name of the variable with a period, then the
field name, For example, the fields RH and are globally
defined to be the right and left half of tne word
respectively\ efg,

nUm.LH - 2 ?
nUm.RR _ 3 *

Fields may be defined by the user with RECORD statements
(not explained in this document). Additionally, you may
refer to system-definjea fields (e,g, RH). They divide words
into fields by numbers of bits, so they may refer to any
declared word. FOr example, the field "LH" refers to the
left-most 18 bits in any 36-bit word.

Declaring Simple Global Variables 5c3b

DECLARE name ;

page 38

L10 Users' Guide
Part Three? Declarations

&SRI-AHC 31 "DCT-7 4 14?54 24258
ARC Rev, 1 NOV 74

"nane" is the name o t the variable, it must be all
lower-case letters nr dibits# and must begin with a
letter.

e,g, DECLARE xX ?

Optionally# the user may specify the initial value of the
variable being declared, If a simple variable is not
initialized at the program level# for safety it should be
initialized in the first executed procedure in which it
appears •

DECLARE name « constant ?

constant is the initial value of name. It may be any of
the following?

- a numeric constant optionally preceded
by a minus sign (-3

* a string# up to five characters# enclosed
in quotation marks

* another v ariable name# causing the letter's
address to be used as the value of name

Examples ?

DECLARE x2 ss b ; *x2 contains the value b%
DECLARE x3 s "OUT"? %*3 contains the word OUT*
DECLARE xx « x1? %xx contains the address of xi%

Arrays

Rulti-word (one-dimensional 3 array variables may be deciaredj
computer words within the* rav he accessed by indexing the
variable name. The index follows the variable name# a nd is
enclosed in square* brackets [3, The first word of the array
need not be indexed# The index of the first word is zero, so
if we have declared a ten element array named "blah"?

5C4

5c4a

blah is the first word of the array
biahtll i s the second word of the array
blahC93 i s the last word Of the array

Declaring Global Array Variables 5c4b

DECLARE nameCnumj ?

LI0 Users' Guide
Part Three? Declarations

&SRI-ARC 31-GCT-74 14SS4 2425B
ARC Rev, 1 NOV 74

num is the number of elements in the array if the array
is not being initialized, it must, of course, be a
integer,

e,g, DECLARE sam[10]j
\

declares an array named "sam" containing 10 elements.

Optionally, the user may specify the initial value of each
element of the array, if array values are not initialized
at the program level# for safety they should be initialized
in the first executed procedure in which the array is used.

DECLARE name = (nym, num, ,,,) ?

num is the initial value of each element of the array,
The number of constants implicitly defines the number
of elements in the array. They may he any of the
constants allowed for simple variables.

Note? the re i$ a one-to-one correspondence between the
first constant and tne first element, tne second constant
and the second element, etc,

Examples i

DECLARE numbss(1,2,3) ;

declares an array named numbs containing 3 elements
which are initialized such that;

numbs a 1
numbs [1] = 2
numfcs(23 3 3

DECLARE mctley=(10,olah}j

declares an array named motley containing 2
elements which are initialized such that!

motley 3 10

motley [13 * $biah
3 the address of the

variable "blah"

Text Pointers 5 C5

page 40

LI0 Users' Guide
Part Three? Declarations

&SRI-ARC 31-QCT-74 14 s 54 24258
ARC Rev, 1 NOV 74

A text pointer is an liO feature used in string manipulation
constructions, it is a two-word entity which provides
information tor pointing to particular locations within text,
whether in free stancing strings or an NLS' statement, 5c5a

The text pointer points between two characters in a
statement or string. By Putting the pointers between
characters a single pointer can be used t° mark both the end
of on© substring ana the beginning of the substring starting
with the next character, thereby simplifying the string
manipulation algorithms ang the way one thinks about
strings,

A text pointer consists of a string identifier and a character
count, 5c5b

The first word, called an stidi* contains three
system-defined fields!

stfile -• the tile number Cif a n N LS statement)
stastr -• a bit indicating string, not an NLS statement
stpsic -- the psid of the statement?

every statement has a unique number Cpsid)
attached to it,

The stid is the basic ha ndle on statement in LIO,

The second word contains a character count, with the first
position being 1 (before the first character),

For example, one might neve the following series of
assignment statements which fill the three fields of the
first word and the second word with data, with pt being the
name of a declared text pointer:

Pt,stfile - tileno?

pt, stastr ~ FALSE?
ptastpsld - origin?

P111) „ 1 ?

%fileno a simple variable
with a number in it%
%a statement, not a string%
%all origin statements have the
psid = 2? origin is a global
variable with the value 2 in i t %
%the word one after pt Ci,e, the
character count) gets 1i the
beginning of the statement*;

It is important that stid'$ be initialized properly to avoid
strange errors.

L10 users' Guide
Part Threet Declarations

&SRT-ARC ii-OCT-74 14*54 24258
ARC Rev. 1 NUV 74

Declaring Text Pointers 5C5C

DECLARE TEXT POINTER Pt J

The names pi# p2# n3# p4 # ana p5 are globally declared and
reserved for system use.

String variables are a series of woras holding text. When they
are declared# the maximum number of characters is set. The
first word contains the two globally defined fields*

M m m the maximum number of characters the
strina can hole

L •• the actual number of characters currently
in tne string

The next series of words (as many as are required by the
maximum string size) hold the actual characters, five per word,

#str* refers to the contents of the string variable »str"#

str refers to the first wOr d of the string variable "strM»

str,M refers to the maximum declared length of the string
variable "str" can integer),

str.L refers to the curreht length Of the string stored in
the string variable "str" (an inteoer).

Declaring strings 5c6c

The DECLARE STRING enables the user to declare a global
string variable by initializing the string and/or declaring
its maximum character length,

To declare a string*

DECLARE STRING nameCnuml f

nurr is the maximum number of characters allowed for
the string

e,g, DECLARE string istring(lOQ3 *

declares a string named "lstring" with a maximum

Strings 5c6

in ASCII 7-bit code 5c6te

page 42

LlO Users' Guide
Part Three* Declarations

&SRI-AKC 31 »QCT*7 4 14*54 24258
ARC REVT 1"NOV 74

length of 100 characters and a current length ot 0
characters

To declare and initialize a string:

DECLARE STRING name*"Any string of text" :

The length of the literal string defines the maximum
length of the strihg variable.

e.g. DECLARE STRING messages"RED ALERT"?

declares the string message# w ith an actual and
maximum length of 9 characters and contains the
text "RED ALERT"

After a simple variable has been declared, the REF statement
can define it to be a pointer to some other variable, A
referenced variable holds the address of another declared
variable of any type, Whenever the referenced variable is
mentioned, Ll& will operate on the other variable instead,
as if it were declared in that procedure ana named at that
point,

This is useful when you wish a procedure to know about a
multi-wore variable, in procedure calls, you are only
allowed to Pass one-word Parameters. It you wish a called
procedure to know about a text pointer# array, or string,
you may pass the address °f the multi-word variable, Then,
in the called procedure# you must REF the formal parameter
receiving that address. From then on in the called
procedure# w hen you refer to the parameter# you are actually
operatIng on the »ul11-word variable declared in some other
procedure to which the local REFed variable points,

Example *

If the simple variable Hoc" in the current procedure
has been REFed and contains the address of the string
"str" local to the calling procedure, then operations
on ioc actually operate on the string in str:

Referenced V ariables 5C7

Reference Declarations 5c7a

M ® S * „ *1QC* T %mes gets the string in
s t r%

&SHI-AHC 31-QCT-74 14?54 24258
L.10 users' Guide ARC Rev. i NOV 74
Part Three: Declare tiers

lc>c - "corpuscle"? %str gets the strina
"corpuscle"!

Similarly# you cannot return multi-word variables from a
called procedure. If you wish a procedure to return a
string, you must declare the string as a local in the
CALLING procedure# pass Its address to a REFed variable in
the called procedure, and rnen you can modify the string as
if it were local to the called procedure (and return
nothing),

Unreferenced V ariables 5c7b

one may refer to the actual contents (an. address) of a
referenced Variable (i.e. "unref" it) by preceding the
referenced variable name with an ampersand C &), if# t or
example, an address was gassed to a REF«d local, and you
wish now to pass that address on to another procedure# you
can unref it,

e,g, if x has fceen REFed and holds the address 0f y:

z - x ? %z oets the CONTENTS of y%
z ~ &x? %z gets the ADDRESS of y%

This construct might be used# f or example# i f one procedure
has been passed the address of a string# operates on it#
then wishes to pass (the address of) that string on to
another procedure that it calls#

REFing Simple Variables 5c7c

once a simple variable has been declared# it may be REFed
with the statement:

REF var ?

It will te a reference from then on in that procedure# and
you must always use the ampersand to refer to tne actual
contents of the variable.

Declaring Many Variables in one Statement 5c8

One may avoia putting several individual declarations of
variables in a series by cutting variables of similar type,
initialized or not, in a list in one statement following a
single DECLARE, separated by commas and terminated by the usual

page 44

L10 users' Guide
Part Threes Declarations

&SRI-A8C 31-CJCT-74 14 S 54 24258
ARC Rev, 1 NOV 7 4

semicolon. Array and simple varibles may be put together in
one statement, 5c8a

Examples s

DECLARE X, y110]# Z - Cl# 2# - b) i
DECLARE TEXT POINTER tp# S t , ptl* pt2 t
DECLARE STRXnG i strlnh 1100], message = »RED ALERT" y

Declaring Locals 5c9

Program level declarations (DECLARE and REF) and procedures may
appear in 8nV" order, However, procedure level declaration5

(LOCAL and REF inside a procedure) must appear before any
executable statements in the procedure, The different types of
variables may be declared in any order, out a variable must be
declared before it can be REFed, 5c9a

With one exception, a local variable declaration statement is
just the same as a qi0bal with the w0ra ''LOCAL" substituted for
the word "DECLARE", The one exception is that LOCAL
declarations can not initialize the variables, 5c9b

Examples!

LOCAL var, flag# l evel 1123 *
LOCAL TEXT POINTER to# pt# sf y
LOCAL STRING test(1003# outl"2GGQ] ?

When a procedure is called by another procedure# the calling
procedure may pass one*word parameters. The procedure receives
these values in simple local variables declared in the
PROCEDURE statement's parameter list. For example# two locals
win automatically be declared and set to the passed values
whenever t he procedure "procname" is called! 5c9c

(procname) PROCEDURE C vart, var2) t

vari and var2 must not be declared again in a LOCAL
statement. They may, however, be REFed by a REF statement,
as discussed above, and used throughout the procedure,

The statement which cans procname may look: lijcei

procname (iocv«r, 2) y

varl will be initialized to the value of the variable
"locyar" and vsr2 will get the value 2,

page 45

LiG Users' Guide
Part Threes Statements

&SPI-ARC 31-OCT-74 14854 24258
AHC Rev. 1 NOV 74

Section 4S Statements 5d

Introduction 5dl

This section will describe some ot the types of statements with
which on® can buiic a procedure. The term "expression" Coften
abbreviated to <«exp»; win be used in this section, and will be
explained in detail in Section 5 (4e), 5dla

Assignment 5d2

In the assignment statement# the expression on the right side
ot the is evaluated and stored in the variable on the left
side o t the statement, 5d2a

var _ exp ?

where var = any global, local, referenced or
unreferenced variable,

one may make a series of assignments in one statement by
enclosing the list of variables and the list of expressions in
parentheses. "The order of evaluation of the expressions is
left to right. The expressions are evaluated and pressed onto
a stacKf after all are evaluated they are popped from the stac*
and stored in the variables. 5d2b

Cvarl, v a r 2 * ...) - (expi# exp2, Ml) f

Naturally, the number of expressions must equal the number
of variables,

Example s

(a, b) _ Cc+d, a-b)

The expression c+d is evaluated and stacxed, the
expression a»b is evaluated ana stacxed, the value of a*b
is poppeo from the stacx and stored into b, and finally,
the value of c + d is popped and stored into a, it is
equivalent to*

tempi « c+d f
temP2 - a-b •
b m temp2 f
a „ tempi i

Page 46

L10 UsersS' Guide
Part Three? Statements

4SRI"ARC 31-UCT-74 14 S 54 24258
ARC Revt I NOV 74

One may assign a single value to a series of variables by
stringing the assignments together? 5d2c

varl MI var2 . Var3 _ exp ?

var 11 var2# and var3 will all he given the value of the
expressicns

Examplej

a . b . 0?

Both a and b will fee given the value zero. This type of
statement can be useful in initializing a series of
variables at the beginning of a procedure,

IF Statement 5d3

This form causes execution of a statement if a tested
expression is TRUE, if the expression is FALSE and the
optional ELSE part is present, the statement following the ELSE
is executed. Control then passes to the statement i mmediately
following the IF statement, 5d3a

IF testexP THEN statement ?

IF testexp then statement! ELSE statement2 ?

The statements within the IF statement can be any statement#
but are not followed by the usual semicolon? the whole IF
statement is treated l ike one statement and followed my tne
semicolon, 5d3b

£»g, 5d3c

IF y=z THEN y^y+i ELSE y^z \

L10 Users' Guide
Part Three? Statements

5.SHX-AHC Jl-UCT-74 14?54 24258
ARC Rev* i NUV 74

CASE statement

This form is similar to the I** statement except that it causes
one of a series of statements to he executed depending on the
result of a series of tests,

CASE testexp OF
reiop exp s statement ?
reiop exp i statement ?
reiop exp s statement ?

5d4

5d4a

ENDCASE statement ;

where reiop = any relational operator (> =, <
see Section 5 (4e3),

= , IN, etc,)

The CASE statement provides a means of executing one statement
out of many, The express ion*after the word "CASE" is evaluated
ang the result- left in a register, This is used as the
left-hand side of the binary relations at the beginning of the
various cases, E'ach expression is evaluated and compared
according to the relational operator to the CASE expression,
If the relationship is TRUEt the statement is executed, If the
relationship is FALSE, the next expression and relatonal
operator will fee tried. If none of the relations is satisfied,
the statement following the word "ENDCASE" will be executed.
Control then passes to the statement following the CASE
statement 5d4b

Note that the reiop and expressions are followed by a colon,
and the statements are terminated with the usual semicolon.
The word ENDCASE is not f ollowed by a colon. In ENDCASE,
the statement may be left out »» this is the equivalent of
having a NULL statement there; nothing win happen,

Example s

CASE c OF
s a; x . yj
> t? (x, y5 - (x+y, x-y) ?
ENDCASE y .

%Executed if c a a!
%Executed if c > b%
%Executed otherwise!

CASE char UF
• Ci char - '1;
« ULI char r *0;

ENCCASE?

!if char = the code for a digit!
%if char = the code for an
upper-case letter!

%otherwise nothing!

oage 48

Lie Users' Guide
Part Three: Statements

&5P.I "ARC 31 "OCT-74 14854 24258
ARC Rev. 1 NOV 74

Several relations way he listed at the start ot a single ease ?
they should he separated by commas. The statement will be
executed if any of the relations is satisfied. 5d4e

CASE testexp OF
reiop exp : statement ;
reiop exp, reiop exp ? statement t
reiop exp, reion exp# reiop exp j statement ;

*

ENDCASE statement y

Example j

CASE C OF
=a, < 6i %Executed it c=a or c<d%

x - y?
>h9 =o: %Executed if c>b or c = d%

(x#y) „ (xty#x-y)?
ENDCASE %Executed oth«rwise%

y - x:

As a point of style, the conditions of the CASE" statement
should be put one level below the CASE statement in the source
(text) file, The statements (if they are more than one line)
may be put one level below the condition, 5d4d

LOOP statement

The statement following the word
until control leaves by means of
within the loop,

LOOP statement?

5d5

"LOOP" is repeatedly executed
some transfer instruction

5d5a

where statement = any executable L10 statement

Example;

LOOP IF a> = b THEN Ey IT LOOP ELSE a - a + 1 ?

It is assumed that a and b have been initialized before
entering the loop,

The EXIT construction is described below, It is extremely
important to carefully provide for exiting a loop,

WHILE,,,00 Statement 5d6

page 49

L1Q Users' Guide
Part Three: Statements

&SRI-ARC 31-OCT-74 14:54 24258
ARC Rev, 1 NOV 74

This statement causes a statement to be repeatedly executed as
long as the expression immediately following the word WHILE has
a logical value of TRUE or control has not been passed out of
the DP loop by EXIT CASE (described below), 5d6a

WHILE exP DO statement ?

exp is evaluated and it TRUE the statement following the word
DO is executed: exp is then reevaluated and the statement
continually executed until exp is FALSE, Then control will
pass to the next statement. 5d6b

For e xample, if yo u w ant to fill out a string with spaces
through the 20th character position, you could:

WHILE str,L < 20 nu #str* - *str*> SP: %what*s already
there, then a space%

Remember that the first w0rd et every string variable has
two globally defined fields:

L •• actual length of contents of string Variable
M •* maxifuUm ienath 0t strina v ariable

JNTIL...D0 Statement 5d7

the WHILE,,tD0
DO is executed
value of FALSE

statement except
until exp is TRUE„
the statement win

This statement is similar to
that statement following the
As long as exo has a logical
be executed repeatedly, 5d7a

UNTIL exP 00 statement ?

Example j

UNTIL a>b DO a . a+l *

DO,,,UNTIL/DO,,.WHILE Statement 5d8

These statements are like the preceding statements, except that
the logical test is made after the statement has been executed
rather than before, 5d8a

DO statement UNTIL exo?

DO statement WHILF exp?

page 50

jlO Users' Guide
?art Threes Statements

StSRI""AHc 3i-OCT"74 14154 24258
ARC Rev, 1 NOV 74

Thus the specified statement is always executed at least once
Cthe first time, before the test is made), 5d8b

fOR,,, DO Statement 5d9

The FOR statement causes the repeated execution of the
statement following "DO" until a specific terminal value is
reached, 5d9a

FOP var UP UNTjL relop exP DO statement?

(UP will be assumed if left out,)

FOR var DOWN UNTIL relop exp Do statement?

where

var s the variable whose value is Incremented or
decremented each time the FOR statement is
executed

relop * any relational operator (described in 4e3c)

exp = when combined with relop, determines whether
or not another iteration ot the FOR statement
will he performed,

e.g. F o * i UP UNTIL > 7 D0 a _ a + tCU ? 5d9b

Optionally, the user mav initialise the variable and may
increment it by other than the default of one, " 5d9c

FOR var _ expl UP exp2 UNTIL rei0p exP3 DO stateme nt|
DOWN

where

expl = an optional initial value for var, if
expl is not specified, the current value
of var is used.

exp2 « an optional value by which var will be
incremented (if UP specified) or decremented
(if DOWN specified). If exp2 is not
specified, a value of one will be assumed.

Note that eXp2 and exp3 are recomputed on each iteration,

L.1Q Users * Guide
Part Threes Statements

&SRI-ARC 31-0CT-74 14 S 54 2425B
ARC Rev, i NOV 74

Example;

FOR k - n Up k/2 UNTIL > n*3 Do xCk) _ kf

is equivalent to

k - nr
LOOP

BEGIN
IF k >m*3 THEN EXIT LOOP?
x C k 5 - k ?
k k + k / 2 ?
END J

3EGIN,,,END Statement 5dlQ

The BEGIN««.END construction enables the user to group several
statements into one syntactic statement entity, A BEGIN»»«END
construction of any length is valid where one statement is
required, 5 d 10 a

BEGIN statement ? statement t .., END ?

Example;

IF a ># b*c THEN
BEGIN

c^d+5,
END

ELSE
BEGIN
awc)
b„d 4 2 ;
c.fc*d#7
END F

Note the use of NLs file structure to clarify the logic and
separate the blocks, Blocks should always be put one level
below the statement of which they are a part,

SXIT Statement 5dll

This construction provides for forward branches out of CASE or
iterative statements. The optional number (nym) specifies the
number of lexical levels of CASE or iterative statements
respectively that are to be exited Cif loops are nested within
loops), If a number is not diven then 1 is assumed. All of

sade 52

L»10 Users' Guide
part Three: statements

&SRI-ARC 3i-OCT-74 14jb4 24258
ARC Rev, X NOV 74

the iterative statements (LOOP# WHILE» UNUL# PQ> FOR) can be
exited by the EXIT LOOP construct, A CASE statement can'be
left with an EXIT CASE instruction, EXIT and EXIT LOOP nave
the same meaning, Sdlla

EXIT LOOP num or EXIT num.
EXIT CASE num

where num is an optional integer,

Examples:

LOOP
BEGIN

IF test THEN EXIT?
ttPe EXIT will branch out of t^e LOQP%

END?

UNTIL something DO
BEGIN

WHILE test 1 DP
BEGIN

IF *TES12 THEN EXIT:
%the EXIT will branch out of the WHILE%

END:
I M M • I t
END:

UNTIL something DO
BEGIN

WHILE TEST! DO
BEGIN

IF te«t2 THEN" EXIT 2?
%the EXIT 7 will branch out of the UNTIL%

END :

END?

CASE exp OF
ssemething:

page 53

L10 Users' Guide
Part Threei Statements

&SRI-AKC 3i-OCT-74 14«54 24258
ARC Rev, i NOV 74

BEGIN

IF test THEN FXIT CASE?
%the EXIT will oranch out of the CA5E%

END J

REPEAT Statement 5dl2

This construction provides for backward branches to the front
of CASE or iterative statements. The optional number has the
same meaning as in the exit statement, REPEAT and REPEAT CASE
have the same meaning, 5dl2a

REPEAT LOOP num

REPEAT CASE num (exp) or REPEAT num (exp)

If an expression is given with the REPEAT CA.SE, then it is
evaiuated and used in place of the expression given at the he ad
0f the specified CASE statement. If the expression is not
given, then the one at the head of the CASE statement is
reevaluated, 5di2b

Examplesi 5dl2c

CASE expi OF
=somethingi

BEGIN*

IF test! THEN FEPEAT?
%REPEAt with a reevaluated exP*%

I II l| I I I
IF test2 THEN REPEATCexP2)?

^REPEAT with exh2%
« » * , * , » •

END?

ENDCASE ?

LOOP
BEGIN

IF * test * THEN REPEAT LOOP|
% P E P E A T LOOP win 00 to the ton of the LOOP%

I M M I I I
END J

LlO Users' Guide
Part Three? Statements

&SRX-ARC 31-UCT-74 14 s b4 24258
ARC Rev, 1"NOV 74

DIVIDE Statement 5dl3

The divide statement permits botn the quotient ana remainder of
en inteaer division to be saved, The syntax for the divide
statement is as follows: 5dl3a

DIV expi / exp2 # quotient # remainder }

Quotient and remainder are variable names in which the
respective values will be saved after the division, 5dl3b

e«o,

DIV a / b, a# r ?

a will pe set to a/b to the greatest integer w ith r
getting the remainder

PROCEDURE CALL Statement 5di4

This statement is used to direct program control to the
procedure specified, 5dl4a

orocname (e xp# e xp, ? var, var, ,,,) ?

Where procname » the name of a procedure 5dl4b

exp » any valid LlO expression (explained
in Section 5 4e), The set of
expressions separated by commas is
the argument list for the procedure, 5dl4c

var = any variable, The set of variables
is used to store the results of the
procedure if there is more than one
result. 5dl4d

The argument list consists of a number of expressions separated
by commas, The number of arguments should equal the number of
formal parameters for the procedure. The argument, expressions
are evaluated in order from left to right, Each expression
(parameter) must evaluate to a one-word value, To pass an
array* text pointer# string# or any multi-word parameter# the
programmer may pass the address of the first word of the
variable, then R£F the receiving local in the called procedure., 5dl4e

For example, one may pass an stid directly, out to pass a

page 55

110 users' Guide
Part Three: Statements

&SHI-ARC 31-UCT-74 14:54 24258
ARC Rev. 1 NOV 74

text pointer# you must oass the address of the text pointer
and REF the receiving parameter*

The procedure may return one or more values. The first value
is returned as the value of the procedure call. Therefore# if
only one value is returned# one might say! 5dl4f

a - proc Cb) ;

In this context# the procedure call is an expression,

If more than one value is returned by the called procedure, on e

must specify a list of variables in which to store them. The
list of variables tor multiple results is vseparated f rom the
list of argument expressions by a colon. The number of
locations for results need not equal the number of results
actually returned, if there are more locations than results,
then the extra locations net an undefined value, if there are
more results than locations, the extra results are simply lost,
The first RETURN value is still taken only as the value of the
procedure call, 5dl4g

Example i

If procedure "proc" ends with the statement

RETURN ca,p,c)

then the statement

a - proc C;r # s 3:

results in (q,r#s3 (a#n,c).

A procedure call may just exist as a statement alone without
returning a value, Not all procedures require parameters# but
the parentheses are mandatory in order to distinguish a
procedure call from ether constructs. Sdl4h

e»q, at C 5 ?

If a block pt instructions are used repeatedly, or are
duplicated in different sections of a program, it is often wise
to make their a separate procedure and simply call tne procedure
when appropriate, 5dl4i

A great many procedures are part of the NLS system and are
avaiiaoie to your programs, A jist of them is available in the

?age 56

UiO users' Guide
Part Threes Statements

fiSRl-ARC 31-QCT-74 14554 24258
ARC Rev • 1 NOV 74

tile (nls*sysgd*) , They should be used with care, SySGD lists
links to the source code* so that you can examine the procedure
in detail to see just what it expects as arguments and what it
returns, bdl4j

RETURN Statement 5di5

This statement causes a procedure to return control to the
procedure which called it, Qptiona3.lv, it may pass the calling
procedure an arbitrary number of results, The order of
evaluation of results is from left to right, 5dl5a

RETURN ;

RETURN CexP# exp, ..,) ;

E«Q, RETURN (TRUE, a + b) •
RETURN (getnmfcstid)) ?

GOTO Statement Sdife

Any statement may be labeled* one puts the desired label (a
strlho of lower case letters and digits) in parentheses and
followed by a colon at the beginning ot a statements 5dl6a

(lapel); statement ;

e,9, (there); a _ b + c f

GOTO provides for unconditional transfer of control to a new
location, 5dl6b

GOTO label ?

e.g. GOTO there J

GOTO statements make debugging difficult and are n 0t Considered
good style; they can usually be eliminated by use of procedure
cans and the iterative statements, (section 8 will mention
the only condition"in which they are necessary,) 5dl6c

NULL Statement 5di7

The NULL statement may be used as a convenience to the
programmer, It does nothind« 5dl7a

NULL ;

L10 Users' Guide
Part Three? Statements

iSRl-ARC iX-0CT-74 14:54 24258
ARC Rev, rNOV 74

Example!

CASE exP OF"
sQ, =1? NULLs
ENDCASE v.li

LlO Users' Guide
Part Three J Expressions

&SRI-A8C 31-QCT-74 14?54 24258
ARC Rev, 1 NOV 74

Section 5? Expressions 5e

Introduction bei

This section will describe the composition of the expressions#
which are an integral part of many of the statevents described
in. the last section, 5ela

Primitives 5e2

Primitives are the basic units which ar^ used as the operands
of i, 10 expressions, There are many types of elements that can
be used as LIO primitives? each type returns a value which is
used in the evaluation of an expression, 5e2a

Each of the following is a valid primitive? 5e2b

a constant (see beiow)

any vane variable name, refering to the contents (of the
first wore, if not indexed) of that variable

the contents of a string variable, refered to as #var#

a dollar sign ($) followed by a variable name#
refering to the address of the variable

a procedure call which returns at least one value

the first (leftmost) value returned is t he value of the
procedure call? other values may be stored in other
variables as described in section 4 (4dl4f),

an assignment (see belpw)

classes cf characters? described in Sections 1 of
Part One C3a2a3)

MIN (exp, exp, , # #) the minimum of the expressions

MAX (exp, eX D, ,# #) the maximum of the expressions

TRUE has the value i

FALSE has the vaue o

page 59

HO users* Guide
Part Threes Expressions

&SRI-ARC 31»UCT«74 14:54 24258
ARC P.ev • 1 NOV 74

VALUE C astring) aiven the address ot a string containing
a decimal number* has the value of the number

READC (see below)

CCPPS (see below)

FIND

used to test text patterns and load text pointers tor use
in string construction (see section 6 4t3)f returns
the value TRUE or FALSE depending on whether or not. all
the string tests within it succeed,

PGS

POS textpointeri reiop textpointer2

may be usee to compare two text pointers. I* the pos
construction js not used, only the first words of the
pointers (the stid's) will be compared, If a pointer is
before another, it is considered l ess than the other
pointer,

e|Q• PuS ptl = pt2
POS first >s last

Constants 5e2c

A constant hay be either number Or a literal congt^hp,

There are several ways in which numeric values nay be
represented. A seguenee of digits alone (or followed by a
D) is interpreted as base ten. If followed by a B then it
is interpreted as base eight, A scale factor nay be given
after the B for octal numbers or after a D for decimal
numbers, The scale factor is equivalent to adding that many
zeros to the original number,

Examples:

64 s 100B = 102

144B a 100 = 1D2

Literals may be used as constants as they are represented
internally bv numeric values, The following are valid
literal constants:

page 60

110 Users' Guide
Part Threes Expressions

&SBI-AHC 31-QCT-74 X4 3 54 24258
ARC Rev, X NOV 74

•any single character Preceded by an apostrophe

e f o # ** i represents the code for 14iB«

-any string of UP to five characters enclosed in
quotation martes

e,g» "aa" represents the coae for 141141B

-the following synonyms tor commonly used characters*

ENDCHR -endcharacter as returned by READC

SP -space

ALT -Tenex's version of altreode or escape (sJ3B)

CP -carriage return

LF -line feed

EqL -Tenex EQL character

TAB • tab

BC -backspace character

BW -backspace word

C. -center dot

CA -command Accept

CD -Command Delete?

Assignments

An assignment can be used as a primitive in an expression

The form a -
the value ot

b has the effect of storing b into a ana has
a as its value,

Another form of the assionment statement is?

0> m
m
 u or

5e2d

This will store b into a# out have the old value ot a as

u10 Users* Guide
Part Three j Expressions

&SHJ-AHC 31-OCT.74 14*54 24258
AFC Rev, 1 NOV 74

the value of the assignment when used as a primitive in
an expression.

For example#

b - (a i= b) /

The value of b will be Put in a« The assignment will
get the old value of a# which is then put in to, This
transposes the values of a and b#

READC - ENDCttR 5e2e

The primitive READC is a special construction for reading
characters from NLS statements or strings#

A character is re&d t ? o r r the current character position
in the scan direction set by the last CCPQS statement or
stripS analysis FIND statement 0r expression# CCPOS an<*
FIND are explained in detail i n section 6 of tnis
document (4*2) and (4f3),

Attempts to read 0ff the end of a string in either
direction result i n a special "endcharactern being
returned and the character position not feeing moved,
This endcn«r«cter i s included in the set of characters
for which system mneumonics are provided ana may be
referenced by the identifier'"ENDCHR",

For example# to sequentially process the characters of
a string*

CCPQS *str*j

UNTIL (Char - READC) s ENDCHR dq process(char) f

(Notes READC may also be used as a statement if it is
desired to read and simply discard a character)#

CCPOS 5e2£

when used as a primitive# CCPOS has as its value the index
of the character to the right of the current character
position, if str » "giarp"# then after CCPOS *str#» t he
value of CCPQS is 1 and after CCPOS SEC*str*) the value of
CCPQS is fe Cone greater than the length of the string),

CCPOS is more commonly used as a statement to set the

jiO Users' Guide
?art Three f Expressions

&5RX-AHC 31-OCT-74 14 s 54 24258
ARC Rev. 1 NOV 74

current character position tor use in text pattern matching,
This is discussed in detail in Section 6 below C4£2) #

CCPQ5 may be useful as ah ingex to sequentially process the
first n characters of a string (assumed to have at least n
characters)

Example!

CCFCS *str#? %CCP0S now has the index value of
one# the front of the st.ring%

UNTIL CCP05 > n DO processCREADC3•
%pEADC reads the next character
and increments CCP0S%

Dperators be3

Primitives rray be combined with operators t0 f orm expressions.
Four types operators win be described here: arithmetic,
relational, interval, and logical, 5e3a

Arithmetic Operators 5e3b

Operator
r n m m m m m m m

unary +

unary -

+

99

/

MOD

.V

.X

Meanino

positive value (when in front of a number)

negative value

addition

subtraction

multiplication

integer division (remainder not saved)

a MOD b gives the remainder of a / b

a ,V b » bit pattern which has l#s wherever
either an a or b had a I and o elsewhere,

a ,X b s bit pattern which has 1*8 wherever
either an a had a 1 and b had a 0, or a had
a 0 and b had a 1, and o elsewhere.

page 63

L. 10 Users' Guide
Part Threes Expressions

&3RX-ARC 31-OCT-74 14;b4 24258
ARC Rev, 1 NOV 74

,A a fA b a bit pattern which has 1's wherever
both a and b bad i #s* and 0 elsewhere*

Relational Operators 5e3c

A relational operator is used in an expression to compare
one quantity with another. The expression is evaluated for
a logical value. If true* its value is \) if false* its
value is 0,

Operator Meaning Example

55 equal to 4+1 a 3+2 Ctrue* =1)
not equal to 6*8 (true, si)
< less than 6<8 (true, = i)
< S less than or

equal to 8< = b (false* =0)
> greater than 3 >8 (false, s0)
> s greater than or

equal to 8> = 6 (true, s i)
MOT cther-reiationai •operator

6 NOT > 8 (true, s i)

interval operators 5e3d

The interval operators Permit one t° checx whether the value
of a primitive fans in or out of a particular interval,

IN (primitive* primitive) xN (primitive* primitive)

OUT (primitive* primitive) ^equivalent to NOT IN%

The value is tested to see whether or not it lies within (or
outside of) a particular interval. Each side of the
interval may be "coen" or "closed", Thus the values which
determine the boundaries may be included in the interval (by
usinO a square oracKet) or excluded (by using parentheses),

Example»

X I N 1 1 *100)

is the same as

Cx >«n AND (x < too)

Logical operators 5e3e

U X O users* Guide
?art Three; Expressions

^SRI-ARC 31 »OCT««7 4 14:54 24258
ARC Rev * 1 NOV 74

Every numeric vaiu e a lso n®s a logical value. A numeric
value not equal to zero bap a logical value of TRUE? a
numeric value equal to zero has a logical value of FALSE,

Operator Evaluation

OF a CP fc • TRUE if a s TRUE or b = TRUE
= FALSE if a = FALSE and b = FALSE

AND a AND h A TRUE it a s TRUE and b S TRUE
B FALSE it a m FALSE or b S FALSE

NOT NOT a = TRUE if a S FALSE
= FALSE it a s TRUE

Expressions

Introduction

An expression is any constant, variable, special expression
form, or combination of these joined by operators and
parentheses as necessary to denote the order in which
operations are to be performed,

5e4

5e4a

Special 110 expressions are? the FIND expression which is
used for string manipulation, and the c onditional IF and
CASE expressions which may be used to give alternative
values tc expressions depending on tests made in the
expressions. Expressions are used where the syntax requires
a value# While certain of these forms are similar
sybtacticaliy to no statements* when used as an expression
they always have values.

Order of Operator Execution-- Binding Precedence 5e4b

The order ot performing individual operations within an
equation is determined by the heirarchy of operator
execution Cor binding precedence) and the use of
parentheses,

Operations of the same heirarchy are performed from left to
riant in an expression. Operations in parentheses are
performed before operations not in parentheses.

The order of execution of operators (from first to last) is
as follows?

110 Users' Guide
Part Three? Expressions

&SK1-ARC 31-UCT-74 14 5 54 24258
ARC Rev• 1 NOV 74

unary -# unary +

• A

.V# ,X

/# MOD

+ # "

relational tests Ce„g,# > = # <=# ># <# ## IN# OUT)

NOT relational tests (e.g., MQT >)

NOT

AND

OR

Conditional Expressions 5e4c

The two conaitional constructs (IF and CASE) can be used as
expressions as wen 3 5 statements. As expressions# they
must return a value,

IF Expressions

IF testexp THEN exPl ELSE txp2

testexP is tested for its logical value, If testexp is
TRUE then expl win be evaluated, If it is FALSE# then
exp2 is evaluated,

Therefore# the result Of this entire exPressi°n i s EITHER
the result of expl of exp2«

Example s

v „ IF x XN C1# 3 3 THEN X ELSE 4?
%if x = 1# 2# or 3# y„xj otherwise y-4%

CASE Expression

This form is similar to the above except that it causes
any one of a series of expressions to be evaluated and
used as the result of the entire expression,

&SRI-AHC 31-OCT.74 14jb4 24258
LI0 Users' Guice ARC Rev, 1 NOV 74
Part Three? Expressions

CASE testexp Of
relop exP s exP ?
relop exP J exP ?
relop exP : exP ?

ENDCASE exp ?

where relop » any relational operator (>=# <# *# IN#
etc, -see above -- 4e3c)

In the above# the testexp Is evaluated and used with the
ooerator relops and their respective exps to test tor a
value of TRUE or FALSE, If TRUE in any instance, the
companion expression to the right of the colon Is
executed and taken to be tne value of the whole
expression, A value of FALSE for all tests causes the
next reioo in the CASE expression to be tested against
the testexp, if ail reiops are FALSE, the ENDCASE
expression is taken to be the value of the whole
expression.

Note that ENDCASE cannot be null? it must nave a value.

As with the CASE statement# any number of cases may be
specifieo# and each case may incude more than one relop
ana expression# separated by commas,

Example ?

y - CASE x OF
<3J x+lj
= 3# =4? x + 2 ?
= 5S X?
ENDCASE X«2!

Value of x Value of y

2 3
3 5
4 6
5 5
6 1 2

String Expressions 5e4d

Ll° also provides several expression forms which are used
for string manipulation and evaluation. These are discussed

page 67

Li0 Users' Guide
Part Three* Expressions

S.SRI-AKC 31-UCT-74 14*54 24258
ABC Rev, 1 NOV 74

in section 6 of this document, When using string
manipulation statement forms as expressions# parentheses may
be necessary to prevent ambiguities,

page 68

&SRI-ASC 31•OCT"?4 14 5 54 24258
Lio Users' Guide ARC Rev. 1 NOV 74
Part Three! String Test and Manipulation

Section bt String Test and Manipulation 5f

Introduction 5*1

This section describes statements which allow complex string
analysis and construction, The three basic eiements of string
manipulation discussed here are the current Character Position
CCCpOS) and text pointers which allow the user to delimit
substrings within a string (or statement), patterns that cause
the system to search the string for specific occurrences of
text and set up pointers to various textual elements, and
actual string construction, 5fla

Current Character Position CCCPOS) 5f2

The Current Character Position is similar to the TNLS CM
(Control Marker) in that it specifies the location in the
string at which subsequent operations are to begin. AH LIO
strind tests start their search fro"1 the current character
position, jn content Analyzer programs, it is initialized to
the BEGINNING Or EACH NEW STATEMENT. For each new statement,
the scan direction is initialized to left to right. It is
moved through the statement or through strings by FIND
expressions, it may be set to a particular position in a
statement or string by the LIO statement? 5£2a

CCPQS pos ?
or

CCPOS *stringname*Cexp) i

pos is a position in a statement or string that may be
expressed as any of the following! 5f2b

A previously declared and set text pointer.

If a text pointer is given after CCPOS, then the
character position is set to that location, A text
pointer points between two characters in a string, The
scan d irection over the text will remain Unchanged,

e.g. CCPQS ptl j

String Front -• left of the first character

SF(stspec)

&SRI-ARC 31-OCT-74 14554 24258
L10 Users' Guide ARC Rev, 1 NOV 74
Part Three! String Test and Manipulation

When SF is specified scanning win take place from left
to right' within the string,

stspec is a string specification that may be expressed as
an stid (e,g f t he first word of a prevlouly declared text
pointer) or previously declared string name enclosed in
asterisks,

Examples s

CCPOS SFCPtl) J %ptl is a text pointer%
CCPOS SFCstid) i %stid is an stid%
CCPOS SF(#str#) t %str is a strlng%

String End •« riaht of the last character

SE Cstspec)

when SE is specified scanning will take place from right
to left within the string,

if a string C*strIngntWe*) is given after CCPq3# then the
position is moved to that string. The scan direction is set
left to right, 5£2c

Indexing the stringname (by specifying Cexp)) simply
specifies a particular position within the string, Thus
*str*t3j puts the curre nt Character Position between the
second and third characters of the string »str". If the
scan direction is left to right, then the third character
win be read next, if the direction is right to left, then
the second will be read next,

e.9, CCP 0S *str* C3] T

If no indexing is given, then the position is set to the
left of the first character in the string, This is
equivalent to an index of 1,

e,g, CCPPS *str# ?
means tne same as

CCPOS SFC*str*)f

FIND Statement 5f3

The FIND statement specifies a string pattern to be tested
against a statement or string variable# and text pointers to be
manipulated and set# starting from the current character

page 70

&SHI"ABC 31 "GCT-7 4 14 S 54 24258
HO Users' Guide ABC Rev, l NOV 74
Part Threes string Test and Manipulation

position, it the test succeeds the character position is moved
past the last character read, if the test fails the character
position is left at the position prior to the FIND statement
and the values of all text pointers set within the statement
will he reset,

FIND pattern ?

FINDS may be used as expressions as well as free-standing
elements, if used as an expression, for example in IF
statements, it has the value TRUE if all pattern elements
within it are true and the value FALSE it any one of the
elements is false.

e.g. IF FIND pattern THEN ,,, j

FIND Patterns

A string pattern may fee any valid combination of the following
logical operators# testing arguments# and other non-testing
parameters! 5£4a

Pattern Matching Arguments-- 5£4b

(each of these can be TRUE or FALSE)

string constant, e.g, "ABC"

or any character, preceded pv an a postro pny

It sh 0uid pe P Oted that if the sca n d irection is s et
right to left the pattern string constant pattern
shcuia ce reversed. In the above example# one would
have to search for "CBA",

Any ot the system defined mnemonics# as described in
the last section (4e2c), such as "SP" or "CR% are
also valid,

character class

loo* for a character of a specific class? if found# »
TRUE# otherwise FALSE.

Character classes!

5f3a

5f 3b

5 f 4

CH - any character
L - lowercase or uppercase letter

&sri-arc 31-QCT-74 14:54 24258
LiO Users* Guide ARC Rev, \ NOV 74
Part Three: strinQ Test an<S Manipulation

UL - uppercase letter
Ll - lowercase letter
D - digit
LD - lowercase or uppercase letter or digit
NLU * not a letter or digit
U I D - uppercase letter or digit
LL^ " lowercase letter or digit
FT - printing character
MP - nonprinting character

Example ?

char = LD

is TRUE it the variable char contains a value
which is a letter or a digit,

(elements)

XooK tor ap occurrence of the pattern specified by the
elements, if found# « TRUE# otherwise EALSE,
Elements may be any pattern? the parentheses serve to
group the elements so as to he treated as a single
element in any of the following elements,

\ .
•element

TRUE oniv if the element following the dash d 0es not
occur,

[elements]

TRUE if the pattern specified by the elements can be
found anywhere in the remainder of the string,
elements may be any pattern? the squarebracvcets also
arcuP the elements so as to be treated as a single
element, it first searches from current position, if
the search failed# then tne current position is
incremented by one and the pattern is tried again,
incrementing and searching continues until the end of
the string, The value of the search is FALSE if the
testing string entity is not matched before the end of
the string is reached,

NUM element

find [exactly) the specified number of occurrences of
the element,

bade 72

&SRI-ARC 31-OCT-74 14?54 2425b
L10 Users' Guide ARC Rev, I NOV 74
part Three? String Test ano Manipulation

e.9, 3LD means three letters or digits

NUM1 S NUM2 element

Tests for a r&nge of occurrences of the element
specified. If the element Is found at least NUMl
times and at most NUM2 times# the value of the test is
TRUE.

Either number is optional, The default value for
NuMi is zero, Tn* default value for HUM2 is 10000,
Thus a construction of the form »$3 CH" would
search for any number of characters (including
zero) up to and including three,

EXamoies s

2S4 UL - from two to four upper-case letters

$10 SP - up to ten spaces

is - one or more periods

ID s user-ident
ID # user-ident

if the strind bei ng tested is the text of NL&
statement then NjC ident of the user who created or
last edited the statement is tested by this
construction,

SINCE catim

it the string being tested is the text of an NLS
statement# this test is TRUE if the statement was
created or modified after the date and time (datim#
see below) specified.

BEFORE datim

if the string being tested is the text of an NLS
statement# this test is TRUE if the statement was
created or modified before the date and time (datlm#
see below) specified,

Format of date and time for pattern matching

Acceptable dates and times follow the forms

kSRi-AKC 31-OCT-74 14:54 24258
L10 Users* Guide ARC Rev, 1 NOV 74
Part Three: string Test and Manipulation

permitted by the TENEX system's IDTIM jsys
described in detail in the JSyS manual. It accepts
"most any reasonable date and time syntax,"

Examples Of valid dates:

17-APP-70 APR-17-70
APR 17 70 17 APRIL 70
17/5/1970 5/17/70
APRIL XI, 1970

Examples of valid timesl

1I12S13 1234
1234:56 1 J 56AM
1 ?56-EST 1200NODN
16S30 C4S30 PM)
12*00? 00 AM (midnight)
1 1 159:59AM"EST (late morning)
X 2 100 ? 01AM Ceariy mornfnS)

Examples:

BEFORE (MAR 19, 73 16 s 49 7
SINCE (25•JUL-7 3 00:00)

These rrav not appear in C0ntent Anaiysis patterns, hut are
valid elements in FIND statements in any program:

stringn&me

the contents of the string variable

BETWEEN pos pos (element)

Search limited to between positions specified, pos is
a previously set text pointer: the two must be in the
same statement or string# scan character position is
set to first position before the pattern is tested,

e,g, B ETWEEN ptl pt2 (2D t.] $NP)

Logical operators-* 5f4c

These combine and delimit Qroups of patterns. Each compound
group is considered to pe a single pattern with the value
TRUE or FALSE, If text pointers are set within a test
oattern and the pattern is not TRUE, the values of those

page 74

&5RI-AKC 31*QCT«»74 14;S4 24258
L10 users' Guide ARC Rev, i'NQV 74
Part Three; strtna Test an<* Manipulation

text pointers are reset to the values they had before the
test was Maoe, ^See examples below,)

OR
AND
NOT
/

Other Elements-- 5£4d

These do not involve tests? rather* they involve some
execution action. They are always TRUE for the purposes of
pattern matching tests.

These may appear in simple content Analysis Patterns;

<

set scan direction to the left

In this case, care should be ta*en to specify
patterns in reverse, that is in the order which the
computer will scan the text,

>

set scan direction to the right

TRUE

has no effect; it is generally used at the end of CR
when a value of TRUE is desired even if all tests
fail,

E'NDCHF

Attempts to read off the end of a string in either
direction result in a special "endcharacter" being
returned and the character position is not moved,
This enocharacter is included in the set of characters
for which system mneumonics are provided and may be
referenced by the identifier "ENDCHR",

These may not appear in simple Content Analysis Patterns?

pos

pes is a previously set text pointer# or an SECpos) or

&SRI-AKC n-OCT-74 14jS4 24258
L10 Users* Guide ARC Rev, i NOV 74
Part Threes String Test and Manipulation

SF(pos) construction, Set current character position
to this position, if the Se pointer is used, set scan
direction from right to left, If the SF pointer is
used, set scan direction from left to right*

e.c, FIND x? %sets CCPGS to position of
Previously set text pointer x%

* ID

store current scan position into the textpointer
specified by the identifier

«. CNUM3 ID

hac* up the specified text pointer by t ne specified
number (NUM) of characters. Default value for NUM is
one, Backup is in the opposite direction of the
current scan direction.

String Construction 5fb

One hay modify an NLS statement or a string with the statements 5t5a

ST pos „ striist t

The whole statement or string in which pos resides will
be replaced by the string list,

ST pos pos ~ striist i

The part ot the statement or string from the first pos to
the second pos will be replaced by the string list,
"pos" may be a previously set text pointer or the
SFCPOs)/SE(po$) construction,

There are two additional ways of modifying the contents of a
string variables 5f5b

ST *stringname#texp TO exp] «. striist ?
means the same as

*strinoname*Cexp TO exo] _ striist ?

The string from the first position to the second position
win be replaced by the string list. The
sguare-bracXeted range is entirely optional! if it is
left off, the whole string win be replaced.

&SRI-AKC 31-QCT-74 14;54 24258
LlO Users' Guide ARC Rev, 1 NOV 74
Part Threes String Test and Manipulation

Note that the "ST" is optional when assigning a strlist
to the contents of a string variable# The statement then
resembles any simple assignment statement#

The string list (strlist) may be any series of string
designators# separated by commas# The string designators may
be any of the following; 5f5c

the word NULL

represents a zero length (empty? string

string constant# e.g. "ABC" or "w

oart of any string or statement# denoted either by

tw0 t ext pointers previously set in either a statement or
a string

pes pos

a string name in asterisXs# refering to the whole string

#stringn«me#

a strino name in asterisjes followed by an index# refering
to a character in the string

*stringname*rexpl

(The index of the first character is one,)

a strino name in asterisks followed by two indices*
refering to a substring of the string

#stringname*Cexp TO exp)

A construction of the form #str*ti TO jj refers to
the substring starting with the ith character in
the string up and including the 3th character#

Examples J

*str*L7 TO i0j is the four character substring
starting with the 7th character of str,

#str#ti TO str,L? is the string str without the

L10 Users' Guide
Part Three: String Test and Manipulation

&SRI-ARC 31-OCT.74 14 : b4 24258
ARC Rev, t NOV 74

first i-1 characters, Ci is a declared
variable,)

+ substring

substring capitalized

- substring

substring in lower case

exp

value of a general LlO expression ta^en as a character?
i.e.# the character with the ASCII code value equivalent
to the value of the expression

STRING Cexqi, ex p2)J

gives a string which represents the value of the
expression exol as a signed decimal number, It the
s®cond exoresslan is present, a number ot that base is
produced instead of a decimal number,

e#gt S TRING C3*23 is the same as the string "6,0"

Examples* 5f5d

ST pi p2 . *strin<3*j
d0es the same as

ST pi „ SF CP 13 Pii *string*# p2 SE(p2) >

assuming pi and p2 nave been set somewhere in the same
statement, The latter reads "replace the statement
holding pi with the text from the beginning of the
statement to pi, the contents of string, then the text
from p2 to the end of the statements"

st Clow TO high] .. "string":
does the same as

st «. #st* tt TO low«*U# "string"# *st*thiqh+l TO s t«JU 3 ?

assuming low ang high are declared simple variables,

Example: 5£6

Let a "Word" be defined as an arbitrary number of letters and
digits, The two statements in tnis example delete the word

&SRI-ARC 31-0CT»7 4 14*54 24258
L10 Users' Guide *AHC Rev, X NOV 74
Part Three* String Test and Manipulation

pointed to by the text pointer "t"# and if there is a space on
the right of the voro, it is also aeleted, Otherwise, if there
is space on the left of the word it is deleted* 5£6a

The text Pointers x and y are used to delimit the left and
right respectively of the strinn to be deleted, 5f6b

IF (FIND t < SLD ~X > $LD (5P "y / "y x < CSP "x / TRUE)))
THEN

ST X y . NULL* 5f 6c

The reader should work through this example until it is clear
that U really behaves as advertised. 5f6d

More Than One Change per Statement 5f7

The second word of a text pointer, the character count# stays
the same until the text pointer is again set to some other
position (as does the first word), even though the statement
has been edited, if, tor example, you have the statement 5f7a

abcdefghiiklmnopgrstuvwxyz

and if you nave set a pointer between the "d" and the "e", it
will always point between the fourth and fifth characters in
the statement? the second word of the text pointer holds the
number 5, it you then delete the character "a", your pointer
will be between the !,e" and the "£"• por this reason, you
probably want to do a series of edits beginning with the last
one in the statement and working backwards, * 5£7b

Text Pointer Comparisons 5f8

This may be used to compare two text pointers. 5£8a

POS ptl s Pt2 f
a
>
<
>S
< 5

ptl and pt2 are a text pointers,

NOT may precede any of the relational operators. I t the
pointers refer to different statements then all relations
between them are FALSE except "not equal" which is written #
or NOT*, If the pointers refer to the same statement, then

page 79

&SRI-ARC 31-OCT-74 14 s 54 24258
L10 users' Guide ARC Rev, I NOV 74
Part Three! String Test and Manipulation

the truth of the relation is decided on the baSis ot their
location within the statement,

A pointer closer to the front of the statement is "less
than" a pointer closer to the end.

&SRI"ARC 31*UCT*74 14S54 24258
L10 Users' Guide ARC Rev. 1 NOV 74
Part Three? invocation of User Filters and Programs

section 7: Invocation of User Filters and Programs 5g

Introduction 5gi

The yser»written filters described in this document may be
imposed through the NLS command "G 0t 0 Programs", 5Qla

User sequence generator programs for more complex editing
among many files may be written, Additionally# programs may
be written in this L1G subset to be used to generate sort
keys in the NLS S0rt and Merge Commands, Descriptions of
these more complicated types of user programs and of NLS
procedures which may be accessed by such programs is
deferred until a later document, in such examples, however,
the,user would still make use of the commands in the NLS
"Goto Programs" subsystem.

These NLS ccmmanqs ar* us*d to compile# institute and execute
User Programs and filters, Sglb

Compilation--

is the process by which a set of instructions in a
prooram i§ translated trow the L1Q language written in an
NLs file into a form which the computer can use to
execute those instructions.

Institution*-

is the process by which a compiled Content Analyzer
program is linked into the NLS running system for use as
a filter.

Execution*"

is the process in which control is passed to a compiled
Executable orodram,

This section additionally presents examples of the use of the
LlO programming language, These programs were written by
members of ARC who are not experienced programmers. They do
not make use of any constructions not explained in t his manual, 5gic

LlO users' Guide
Pert Three: Invocation of User Filters and Programs

&SRI*• ABC 31-QCT-74 14:54 24258
ARC Rev• 1 NOV 74

Programs Subsystem 5g2

Introduction 592a

This N L5 subsystem p rovide s g evepal facilities for the
processing o f user written nrograms anb filters. It Is
entered by using the NLS commands

Goto programs OK

This subsystem enables the user to compile LlO user programs
as wen as Content Analyzer patterns, control how these are
arranged internally for different uses, define how programs
are used, and interrogate the status of user programs.

Programs subsystem commands 5g2b

After entering the Programs subsystem, the system expects
one of the following commands:

Show status of orograms buffer

This command prints out information concerning active
user Programs and filters which have been compiled
and/or instituted:

Show status (of programs buffer) OK

When this command is executed the sYstem will print:

-» the names of all the programs in the stack#
including those generated tor simple Content
Analysis patterns, starting at the bottom of the
stack. This stack contains the symbolic names at
ail compiled programs ana a pointer to the
corresponding compiled code, The stack is arranged
in order of compilation with the first program
compiled at the bottom ot the stack,

-- the remaining free soace in the butter, The
buffer contains the compiled code tor ail the
current compiled programs. New complied code is
inserted at the first tree location in this buffer,

-* the current Content Analyser Program or "None"

»• the current user Sequence Generator program or
"None"

paoe 82

&SRI-ARC 31-OCT-74 14 S 54
HO Users * Guide ARC Rev, 1 NOV
Part Three! invocation of User Filters and Programs

24258
74

-- the user Sort Key orogram or "None''

Compile

HO Program

This command compiles the program specified,

Compile L10 (user program at) ADDRESS QK

ADDRESS is the address a t the first statement of
the program.

This command causes the program specified to be
compiled into the user program buffer and its name
entered into the stack. The'program is not
instituted,

The name of tne program is the visible following
the word PROGRAM in the statement indicated by
ADDRESS,

The program may be instituted o r e xecuted by the
appropriate commands.

File

The user program buffer Is cleared whenever the
user resets or logs out of the system, if you have
a long program which will be used periodically# you
may wish to save the compiled code in a file which
can be retrieved with the Load Program command,
The command to compile into a tile is?

Compile Fiie Cat) ADDRESS (using) IJQ OK (to
file) FILENAME OK

The FILENAME must be the same as the program name,
The program win then be compiled and stored in the
file of the given name (with the extension REL#
unless otherwise specified), The user may then
load it at any time.

Before doing this, the programmer must replace the
word PROGRAM at the head of the file with the word
FILE,

Content Analyzer Pattern

&SHI-ARC 31-OCT-74 14554 24258
LlO Users* Guide ARC Rev, i NOV 74
Part Three* invocation of User Filters and Programs

This command allows the user to specify a Content
Analyzer pattern as a Content Analyzer filter,

Compile Content (analyzer filter) ADDRESS OK

The pattern must begin with the first visible after
the SELECTQN address, or at that point you may type
it in. It win read the pattern up to a semicolon,
so be sure to insert a semicolon where you wa nt it
to stop,

When this command is executed* the pattern
specified is compiled into the buffer, its name is
put on the stack* AND it is automatically
instituted as the content Analyzer filter,

Load Program

A cre-compiled program existing as a PEL file may be
loaded into the program buffer with the command!

Load Program FILENAME OK

If the FILENAME is specified without specifying an
extension name, this command will search the connected
directory* then the <user-pro9s> directory? for the
following extensions!

PEL it win simply load the REl file
CA it win load the program and institute it

as the current content analyzer program
SK it win load the program and institute it

as the current sort key extractor program
5G it win load the program and institute it

as the current sequence generator program

Sort key extractor and sequence generator programs
are more complex and are generally limited to
experienced LlO programmers. Some are ayailable in
the User Programs Library (user-progs,^contents,1)§

Delete

All

This command clears all programs from the user
program area. All programs are deinstituted? the

page 84

&SRI <"ARC 31-OCT-74 14J54
LiO Users' Guide aPC Rev, x NOV
Part Threes Invocation of User Filters and Programs

24258
74

stack is cleared, and the puifer i s marked as
empty.

Delete All (pr 0grams in b uffer) OK

Last

This command deletes tne too (or most recent)
program on the stack# The program is deinstituted
if instituted, its name removed from the stack, and
its space in the buffer marked as free#

Delete Last (Program in b uffer) OK

Run Program

This command transfers control to the specified
program #

Run Program PRQGNAME QK
NUMBER

PROGNAME is the name of a program wnigh had been
previously compiled, That is> PROGNAME must be in the
buffer when this command is executed,

Instead of PR qG namE# the user may specify the program
to be instituted by its number, This first program
loaded into the buffer is number one,

institute Program

This command enables the user to designate a program
as the current Content Analyzer, Sequence Generator,
or Sort Key extractor program,

institute Program PRQGNAME qK
NUM

(a 5) CA (content anaiyzer) UK
Content (analyzer) QK
Sort (key extractor) QK
Sequence (generator) OK

If a program has already been Instituted in that
capacity, it will pe deinstituted (but not removed
from the buffer and stack),

Instead of PRqGNAME the user may specify the program

page 85

6.SRI-ARC 31-OCT-74 14:54 24258
LlO Users' Guide ARC Rev, l NOV 74
Part Threej Invocation ot User Filters and Programs

to ice instituted by number, The tirst program loaded
into the buffer is number one,

Demstitute Program

This command deactivates the indicated program, but
does not remove it from the stacK and buffer. It may
be reinstituted at any time,

Deinsfcitute Content (analyzer program) OK
Sort (Key extractor program)
Sequence (generator program.)

Set Buffer size

The user programs buffer shares memory with data pages
for files which the user nas ooen, therefore
increasing the size ot the user programs buffer
decrease® the amount of space available for file data
with a possible slowdown in response for that user,
The initial size is set to 4 pages, This m ay be
increased with the commands

Set Buffer (s i z e) NUMBER OK

where NUMBER is the number of pages (512 words
each} to be allocated to the user programs buffer,

If y0u get a n '»£rr 0r in l oading" message whe n
attempting to compile a program or load a REL file,
try increasing the buffer size,

YOU may reset the buffer size (to four pages) with the
command s

Reset Buffer (size) OK

Assemble File

Files written in xree-weta can oe assembled directly
from the NLS source file with the Assemble File
command, This aspect of NLs programming will not be
described in this document,

Examples of User Programs 5g3

The following are examples of user programs which selectively
edit statements in an NL5 file on the basis of text searched

&SRI-AKC 31-QCT-74 14 s 54 24258
L10 Users" Guide ARC Rev, 1 NOV 74
Part Three? Invocation of User Filters and Programs

for by the pattern matching capabilities, Examples of more
sophisticated user programs# including sort Jcevs# can be found
in the <user-progs> directory through the file
(user-progs *-contents#), One can find out how the standard NLS
commands wor* by tracing them through# beginning with (nl$#
syntax* 2), A table of contents to all the global NLS routines
available to the user can be found in (nls# sysqd# 1), 5g3a

Example 1*- Content Analyzer program 5g3b

PROGRAM outname % removes the text and delimiters () of NLs
statement names from the beginning of each statement %

DECLARE TEXT POINTER sff
(outname)PROCEDURE?

IF FIND SNP '((')) "sf THEN %found and s«t
pointer after name*

BEGIN
ST S t w Sf SE(SF)>
RETURN(TPUE)j
END

ELSE RETURNCFAL5E)J
END,

FINISH

Example 2 •« Content Analyzer program 5g3c

PROGRAM changed %This program cnecKs to see if a statement
was written after a certain date, if it was# the"string
" [CHANGEDJ" will be Put at the front of the statement, %

(Changed)PROCEDURE ?
LOCAL TEXT POINTER ptl
%remember* CCPOS is initialised to the beginning of
each new statement*
IF FIND *Pt SINCE (25-VJAN*72 12S00) THEN

ST nt pt «. "(CHANGED)"! %the substring of zero
length is replaced with
» (CHANGED)"%

RETURN(FALSE)!
END.

FINISH

Example 3 -- Executable program 5g3d

FILE toe %This program will generate a table of contents
branch with statement numbers %

(toe) PROCEDURE ?
% declarations %

LOCAL level# da, vspec, last# Place ?

page 87

f cr S R T-ARC 31-OCT-74 14 S 54 24258
L10 Users' Guide ARC Rev, 1 NOV 74
Part Three! Invocation of User Filters and Programs

LOCAL TEXT POINTER ptr »
LOCAL STRING numtS))
REE da ?
num.L » ptr «. Oj %initialisation%

% input file and number of levels %
IF nlmodectypewriter

THEN
BEGIN
crlfO ?
typeas(s"Table of Contents generator; Select
file ») •
tbug CSptr) ? %get a bug from the tty%
crlf o ?
typeas ($"Numbar of levels of depth; ") ;
txtxit ($num) > %get a text string from the
tty%
crlfO f
tyPeas($"running, f, «)>
END

ELSE %disPlav%
BEGIN
dn($»«) ; %clear the name r egisters
DSP C< Table of Contents * Select file) f
INPUT STID ptr CA?
DsP („.< Levels of depth) ?
INPUT NUMBER num CA t
DSP C< Table of Contents being generated) ?
END;

% set to origin %
ptr,stpsid _ origin ?
ptrcn » 1 ?
level ̂ VALUE (6num)j %evaiuate number string!
level, _ MIN (50, MAX Cl#ievei))i %ievels of depth!

% insert table of contents statement !
ptr «» cis (Ptr, $»Tab"fe of Contents", dow n)?
%command Insert statement procedure!

% get viewspec words %
&da 1 da(); %get address of display area records,
which hold all information about display window,
e»g. viewspecs'%
vsPec ~ da.davsPec i %copy viewspec word!
ysPec»vslev - level ? ladjust level viewspec!
vspec,vsbrof vsnec,vspixf - FALSE? %adjust
branch or p)ex only viewspec!

% assimilate group to table ot contents %
place _ ptr ?
last - getsuc (place) f
cea Cptr# getsucCptr), getail(ptr), 0, vspec.

&SRJ-AHC i 1 «"0CT»74 i 4 ; 54 24258
LI0 Users* Guide ARC Rev, 1 NOV 74
part Threes Invocation of User Filters and programs

da,davspc2# da,dausocod# da,aacacode)? %command
execute assimilate procedure, using modified"copy
of first viewspec word and the rest from the
display area descriptors

% for all statements in table of contents %
UNTIL (Place aetnxt (place)) = last pU
dotoc(place) ? ! turns statement into line for
table Of contents?;

% move table of contents to under st 1 %
cmg (ptr* getsue(ptr)# getpro(last) r
^command move group procedure!

% recreate disolay %
IF nlmode = £u11 display then alidspO ELSE erlfU)

RETURN }
END,

(dotoc) PROCEDURE (stid) ! %passed stid, replaces
statement with table of contents line %

% declarations %
LOCAL length?
LOCAL STRING dots[70), stnUm[5G), st[2000J ?
LOCAL TEXT POINTER end ?

! initializations %"
length _ st,L - §tnu?n,L - 0?
•dots# „
»! I l|t M M I II I M II • M t I I I » I |l I M I I I M • I M Mi M I • * I • "

" ?
% get st number %

stnum.L ^ 0?
fechno (stid# sstnum); %pyt statement number in
string!

% get first line %
*st# _ SF(stid) SE(stid) !
length « (65 - C3*getlev(stid)+stnum«L)3' %maximurc
length!
IF length < st.L THEN

BEGIN
st.L „ length ? %truncate statement!
FIND SF(#st*) (NPJ "end > ? %oack up to end of

' last word!
#st# . SF(#st#) end ?
END ?

% format string %
dots ,L « Ciencfth + 2) • st,L? %caicuiate number of
dots!
#st* „ #st## *dots#, #stnum*? !constuct table of
contents string!

% replace statement %
ST stid » #st# ?

page 89

&SPI-ARC 31-0ct-74 14s54 24258
HO users' Guide ARC Rev. 1 NOV 74
Part Three! invocation ot User Filters and Programs

RETURN J
END,

FINISH toe

Procedures Used in Examples! references taken FROM <NL5>SYSGD 5g3e

Format of references*

(proc-name) Clink to source code) st-num-ot-source-eode

(formal' parameters, if, any)

comment taken from source code tile

(andsp) (nls,dspgen,aiidsp) 3A
recreate display for all display areas

(cea) Cnis#coreniiCea) 7A
(target,srcl,src2,ievsta,vsoeel,vspec2,usqcod,cacode)
Core NLS Assimilate Command

(cis) (nls,coreni,eis) 9H
(stidiastrnaflevstg)
core Nts insert Statement command

(cmg) (nls#corenl#cmg) nl
(stidl* stid2 ? stid3 >levstg)
core NLs Hove Group c omma nd

(crlf) (nls *inotbk,crif) 6G
type a carriage return-line teed

(dn) (nls,inofbk »dn) 8E1
Castrng)
display string in name area

(fechno) (nls*seggen#fechno) 4J
Cstid,astr)
puts statement number of stid in string, Uive the STID
as the first argument, and the address of the string
which is to contain the statement number as the second,
The statement number will be built in the string, If
the structure is not intact or the statement vector
cannot be built, a call to REHRQR or an EXCEED CAP1CITY
ERROR may result,

(getaii) (nls,strmnp,getaii) 1 OA
(Stid)
Given an slid, this procedure returns the stid of the
tan of the current Pie*

(get lev) (his f seggen, get lev) 4.1
(stic)
called with STID* returns level of that statement,

(getnxt) (nls* strmnp#getnxt) 1QG
(stid)

&SRI-ARC 31"OCT*74 14:54 24258
L10 Users' Guide ARC Rev, \ NOV 74
Part Three? Invocation of User Filters and Programs

This proceaure finds the sequentially "next" statement,
i.e. the substatement, successor, or successor of up,
etc, of the stld passed as argument, ignores an
viewspecs,

(getprd) Cnls,strmnp,getprd) 10D
CStid)
Given stid, this routine returns the predecessor? if
the psid heads a plex, the stld itself is returned

(getsue) cnls,1iimnp,getsuc) 2Hl
(stidi
The stid for the successor field is returned* If there
Is no successor# the stld of the up is returned*

(Ida? (nls,dactrl#Ida) 5J
returns address of display area where bug resided at last
command terminator

(tbuQ) (nisftxcmnd,thug) 5A
(Ptr)
given the address of a text pointer# gets an address
selection from the TNLS user and puts it in the text
pointer,

Ctxtlit) Cnls,inpfbk,txtlit? 5B
Castrrsg?
passed the address 0f a string, appends text from
Keyboard input buffer to string

(typeas) (nls,inpfbK,typeas) 6C
(astrng)
Given the address of a string, types the string on the
user's teletype,

page 9j

&SRI-AHC 31-OCT-74 14 S 54 24258
L10 Users' Guide ARC Rev, l NOV 74
Part Four? Executable Programs

LiO Users' Guide
part Four: Executable programs

&SRI"ARC 31-QCT-74 14:54 24258
ARC Rev, 1 NOV 74

PART FOURj Advanced LiO Programming 6

section Is Executable programs 6a

introduction 6ai
For most applications, it is sufficient to accept statements
one at a time tron the sequence generator and assume an initial
character position of the beginning of the statement (a content
Analyzer program), when one has more complex applications* one
may have to write more complex programs which are explicitly
passed control, These arp n ot called by the sequence generator
but are passed control from the Programs subsystem (see section
9 mm 4i2), Therefore they must provide themselves with
statements on which to wor*, They should not return a value
Cas did the simpler Content Analyzer type Programs)* but should
just return control to the calling subsystem, All the
capabilities described above are available to such programs.
In addition, the program may s*ip around flies, between files,
and may interact with the user, 6a!a

Moving Around a File ba2
Generally, at least one simple variable or a text pointer will
have to be declared to hold the statement identifier (stid) of
the current statement, (The first word of a text pointer is an
stid,) Assume the simple variable with the name "stid" has
oeen declared for the purpose of the following discussion, 6a2a
In the NLS file system, two basic pointers are Kept with each
statements to the substatement and to the successor, 6a2b

If there is- no substatement, the substatement-pointer will
point to the statement itself,

The Procedure getsub returns the stid of the
substatement. To do something to the substatement if
there is one:

IF (stid := getsub C stid)) * stid THEN something,,:
stid is given the value of the substatement-pointert
then the old value of stid is compared to the new, If
they are the same* then there is no substructure, If
they are different* you have the stid of the
substatement and can operate on it.

It there is no successor (at the tail of a Plex)* the
successor-pointer win point to the statement UP from the
statement (i,e, the statement to which the current statement
is a sub).

The procedure getsuc returns the stid of the successor
(or up).
To move to the successor?

stia w getsuc(stid)t
Given these two basic procedures* a number of other procedures
have been written and are part of the NLS system, An of the

page 93

LlQ Users* Guide
Part Fours Executable Programs

&SB.I-ARC 31-OCT-74 14JS4 24258
ARC Rev, 1 NOV 74

getun (sties)
getprdCstid)
getnxt Cstid)
getbCkCstid)
getned(stid)
getailCstid)
getend(stid)

following procedures take an stid as their only parameter# and
do nothing but return a value# usually a stid, if the end of
the file is encountered# these procedures return' the global
value "endfil", 6a2c

returns the stid of the u©
returns stid of the predecessor
returns stid of next statement or endfll
returns the stid of the back or endfii
returns stid of the head of the piex
returns stid of the tail of tne piex
returns the stid of the end of the
tail of the piex

getftxrstid) - returns TRUE if stid is tail o t piex,
else FALSE

getiev(stid) - returns level of statement
Once you have the stid ot a statement, you may operate on it as
in content Analyzer programs. 6a2d

E.Q, FIND SFCstid) SMNP "Ptr,„,
input/Output 6a3

input ang output must be handled guite differently for TNLS and
DNLSi There are three system globals which, may prove of
service in making this distinctions 6a3a

fulldisplav
typewriter

nlmode • the current value# either fulldisolay
or typewriter

Example s
IF nlmodesfulidlsplaY THEN something ELsE otherthing?

There are a few procedures that work in both DNLS and TNLSS 6a3b
These return the ASCII value of a character from the
keyboard input buffers

inputC) - get next character from keyboard
input buffer

inpcuco * d et character, forced upper-case,
from the keyboard input buffer

lookcc) * returns the next character in the
input buffer without advancing the
buffer pointer (i.e, what the
next inputC) win return)

dismesctype#astring) - given a type number and the
address of a string# will print the message
on the user's teletype or (in DNLs) display
it in the teletype simulation window (above
the command feedback line),

type a0! clear message area? astring not necessary
=n put out message and leave it there
=2! display message for a few seconds (same

as 1 for TNLS)

page 94

&5RI-ARC 31-QCT-74 14 s £>4 24258
LI0 Users' Guide ARC Rev, 1 NOV 74
Part Four* Executable Programs

>1000; display t o r n microseconds (same as
1 for INtS)

Remember# a dollar sign preceding a variable means the
address Of that variable,

e.g. dismes (2, sstrvar) ;
A temporary string may be declared in the procedure call
for the use of that procedure alone;

dismes (1/ $"strina of text to be displayed") ?
levsetCstid/astring) • given an stid and the address of

a string containing levadj characters (u's
and d's)# evaluates levadj ana returns a
target stid and 0 if new statement is to be
aown from target or 1 if successor. Used
in routines which insert statements,

TNLS 6a3c
There are no standard L10 constructs for TNLS I/O, The
following procedures should be of help!

txtlit(astring) - passed the address of a string#
appends text from keyboard to string

typeasCastrIng) - passed the address of a string,
types string on tty, The programmer
may declare a temporary string in cases
like this, e,g,

typeas c$"this will print out") ;
crifO - type a carriage return-line feed

on the tty (You may also have a
carriage return in a string passed
to typeas,)

levadj(stid#astring) - given an stid and the address
of a string variable# gets a string of
levadj characters (u*s and d'S) from the
user and Puts them in the string

tbug(atp) w p assed the address of a text pointer#
gets address from user

tbug2catpl#atp2) - get two bugs# the second relative
to the first

DNLS 6a3d
There are some standard L10 statements for DNLs I/O!

INPUT
INPUT may be followed by any sequence of the
following; backUo within the command (backspaces) is
handled automatically!

8UG ptr - get a bug selection from the cursor
and store the resulting text pointer
(ptr must be a text pointer, not an
stid) in ptr

STID ptr - oet a bug from the cursor or a sp
followed by a statement name# number

page 95

&SRI-ARC 31-OCT-74 14s 54 24258
L10 Users # Guide ARC Rev# 1 NUv 74
Part Four? Executable Programs

or SID* and store the resulting text
pointer in ptr

LEVADJ str - get a sequence of level adjust
characters Cu or and store them
in the string str

TE*T str - net a string of characters Cup to a
CA or Center»Dot), echoing them, in
the text area of the display, and
store them in the string str

STRING Str - like TEXT except echoes in the
name area

NAME str - get a string of characters forced
uppercase, echoing them in the name
area of the display, and store them
in the string str? the characters may
be typed in or a word may be bugged

WORD str - like NAME except not forced
upper*case

NUMBER str - like NAME except inputs a number,
typed or bugged

statement? * any standard LlQ statement,
followed by a semicolon if necessary
to delimit the end of the statement?
the statement will be executed at
that point in the input sequence

char * succeeds if specified character is
input? may be any of the characters
mentioned under "Primitives" or

CA * Command Accept
CU - command Delete
ALT * Alt Mode, Escape
BC - Backspace Character
Bfo - Backspace Word
C, - Center Dot

Example (a simulation of a subset of trie Replace Text
command)?

INPUT BUG bl BUG b2 (BUG bi BUG b4 CA fiag^TRUE? /
TEXT lit CA fiag^FALSE) ?
IF flag 1 HEN sr bi b2 - bi b4

ELSE ST Pi b2 *. *lit# ?
DSP the Command Feedback line

one may control the text of the command feedback line
with the following HO statement?

DSP C dsp-element) ?
where dsp-element is any sequence of the following:

< « clear command feedback line
_ «* move arrow to far left
" - set arrow under start of nxt word

pade 96

fcSRI-AKC Jl-QCT-74 14?54 24258
LlO Users' Guide ARC Rev, 1 NOV 74
Part Four: Executable Programs

,,, * replace last word currently in
command feedback line with next word

a word - including letters or digits only:
will re added to command feedback line

To display special characters# surround them
with quotation marks,

Additionally, the following procedures may be of
service; some take no parameters;

anC) •* turn arrow on
afO • turn arrow off
qm() * turn question mark on
qmoffC) • turn question mark off
armU - arm the bug cursor
disarmp - disarm the cursor
dnCastring) - given the address of a string#

win disoiay the string in the name
register? as with dismescastrinS)# you
may declare a temporary string as the
argument

litdpy(astring) - given the address of a
string, will clear file display area
and display contents of the string

rstiito - restores file area after a litdpyo
Calling NLS Commands 6a4

A program may execute any of the standard NjjS commands by
caning the same procedure tnat the command parser cans for
each command, Tnese procedures are called the "core"
procedures. They are listed in <NLS>SYSGD, Their names begin
with the letter "c"# followed by the initials of the command#
e,g, insert Statement could be executed by calling the
Procedure "cis% 6a4a
Usually the required arguments can be discovered by Knowing the
command and by looking at SYSGD« For example# the formal
Parameters to the procedure "cis" are Cstld#astrng#levstg),
Obviously# the procedure wants a target stid# the address o t a
string of text to be inserted# and the address of a string
holding level adjust characters (u's and dffs). 6a4b
Much can be learned ey looking at the code of the core
procedure, You can see what procedures it in turn calls to
discover how the command is actually performed, But most
importantly# you can find out what the procedure returns, The
RETURN statement for "cis" look like; 6a4c

RETURN CStid)?
from wnich it can be inferred that the procedure returns the
stid of the newly created statement, 6a4d
When you are not sure what the arguments mean, a good way to
find out is to see where the command parser Picks'up the
information, You can follow through the parsing of a command

page 97

L10 Users* Guide
Part Four: executable Programs

&SRX-ARC 31-UCT-74 14:54 24258
ARC Rev • 1 NOV 74

by begiining wlt^ <NLS>NCTRLr the actual command parsing
procedure, 6a4e
Tracing a command from <NLS>NCTFL is also valuable in finding
out how the system performs an operation which you would like
your program to do. For example, if you wish to parse a link
and ooen the given file, you might learn how to do it by
following the jump to Link command through, 6a4f

Opening Files bab
When you ask the user for an address or bug, you don't have to
open the file; you have a handle on it with the stid the user
gives you. There may be times, however, when you wish your
program to open a file. There is a procedure which does this: easa

open (jfn, astrlng);
You should pass zero as the jfn, and the address of a string
containing the name o* the file to estring, This procedure
will return the file number. If the file is not already open,
it will open It, It will also fill out the string with the
Complete file name if you do not specify the directory or
version number. The usual sequence of steps to open a file is
as follows: 6a5b

% stid has been declared as a simple variable or text
pointer!
stid „ ordstid; %or9stid is a global with all zeros except
in the stpsld field, where it has the stpsid of the origin
statement Cthe same for every file)%
str « ,,<.dirname>£iien.ame#nls"; %str is of course a
declared string variable!
stid.stfiie „ gpe n CO.sstr)?

At the end of your program, you should close any flies that you
have opened. Use the procedure; 6a5c

close c t iInUm)y
e.g.

close (stid.stfiie);

Another common operation is to access the statement (file) in
which the CM (or bug) was at the time of the last Command
Accept cor other command terminator). This is stored in the
system, ana can pe accessed with the following procedure call; 6a5d

stid « iccsP C) ?
Ithen# if you wish to set the stpsld to the origin of that
file, you could gay%

stid,stpsld «, origin ? ^origin is a global with the
stpsid of the origin statement in it%

Other Usefui Procedures 6a6
alldspC) «• DNL9 only? recreates display in all display areas#
so that user will see changes the program made, 6a6a

A common way to end a program (just before returning) is
with a statement like:

page 99 J

L10 Users' Guide
Part Four? Executable Programs

&SHJ-AHC 31-OCT-74 14*54 24258
ARC Rev, r NOV 74

IF nlrrode = fulldisplay THEN alldsp() ELSE crif() ?
answerO - waits fop a yes or no from the user? returns 0 if
no, and 1 if yes, 6a6b
astrue(astring) - given the address of a string, sets the
string to upper case, 6a6c
fechno(stid*astring) - given an stid, appends the statement
number string to the string variable whose address is passed, 6a6d
fechsig(stib,astring) * given an stid, appends tne statement
signature to the string variable whose address is passed, 6a6e
Qetdat(astring) w g iven the address of a string# appends date
and time to string, 6a6f
QrptstCstidi,stid2) - checks that two stid's specify a legal
Qroup? returns them ordered or else an "illegal group" signal
is generated, 6a6g
lookupCptr,string,type) -given the address of a text pointer,
the address of a string, and a type, will do a variety of
searches (in the process destroys string and changes pointer)? 6a6h

type a nametyp? non-sequential search for statement of name
given in string? returns stid and sets pointer to stid or
else returns endfil in both places
type s nxtname? like name, also a non-sequential search, but
starts from*place in file ring to which ptr points
type = segnamej starting with the statement following the
one refered to by the ptr, does a sequential search of the
file for the given name? returns stid or endfil"in pointer
type ® contnt? does a sequential search of the file,
beginning with the character following the pointer, for a
statement with the content of the string? returns stid or
endfil in pointer
type a ccnt.isl same as contnt, but looKs only in statement
holding pointer
type « werdtyp! same as contnt, but looks for word given in
string
type a sid: pass an Sin Instead of the address of the
string? searches for statement with that SID and returns in
pointer and as procedure value the stid or endfil

Gjobals of Interests 6a7
initsr is the login idept of tne person currently using the
program, 6a7a
inpstp is incremented every time the user types a <control-s>?
this can be used as a program interruot mecnanlsmj i,e, you can
set it to 0 at the beginning of the program and then check it
at the start of each loop of your program, 6a7b

page 99

&SRI*ARC Ji*QCT"74 14154 24258
L10 Users' Guide ARC Rev, 1 NOV 74
Part Fouri Error Handling »- 5 i G N A L s

Section 2! Error Handling SIGNaLs 6b

Introduction 6bl
When an NTS system procedure fails to perform properly# it may
generate an error signal, Every signal has a value, when a
signal is generated, control is passed bacK to trie last signal
trao in effect. It no explicit program control statement (e,g,
RETURN, GOTO is given, in that signal trap# a new signal win
be generated, Tf the error is not dealt with, the signal will
eventually bubble all the way back to the core NLS system and
the program will stop, You may trap signals and regain control
by setting up the response in advance, 6bla

Trapping Signals 6b2
To trap error signals of any error values 6b2a

ON SIGNAL ELSE Statement ;
e.g. ON SIGNAL ELSE

BEGIN
dismes(2# sstring)?
RETURNf
END?

It is a good idea to set up a signal response before calling
any NLs system procedures. Once the signal response is set# it
remains in effect and will be executed whenever a signal is
received through the end of the procedure or until it is
changed, Any subsequent ON SIGNAL statements will at that
point change the signal response, 6b2b

A signal trap set inside a loop win only remain in effect
within the loop,

Only signals generated py procedures b«iow (e,g, called by)
your procedure win be trapped by your procedure's signal trap,
it win not trap signals generated in the same procedure, 6b2c
The signal response may be any (block of) L10 statement(s), it
will be executed, then 6b2d

• if you have an explicit program control statement (RETURN#
GQTO, EXIT LOOP)# control will be passed accordingly# or
- if the signal trap includes no explicit program control
statement# another signal will be generated, and control
will pass upward through the stack of procedures called
until it encounters another signal trap.

Thus# if you wish to resume control in the current procedure#
the signal trap will have to end with a GOTO statement pointing
to an appropriately labeled statement. This is °ne o f the few
places where a GOTO is really necessary. 6b2e
if the signal trap applies to a loop# an EXIT LQQp or REPEAT
LOOP is a valid signal program control statement. 6b2f

Cancelling Signal Traps 6b3
If# after setting up a signal response# you wish to cancel it

page 100 j

&SRI-AKC 3i.QCT.74 14?54 24258
L10 Users' Guide ARC Rev, \ UOV 74
Part Four? Error Handling • « SIGNALS

so that the signal win just bubble on up, you may do so with
the statement? 6b3a

ON SIGNAL ELSE ?
It may be subseauently reset by another ON SIGNAL statement 6b3b

Specific Signals 6b4
When a signal is g enerated* an NLS system global variable*
sysgnl, is g iven a specific value (the value of the signal),
Each value represents a certain type of error* Also, a system
global variable* sysmsg* is given the address of a string which
holds an error message* 6b4a
The above constructions react to any signal, no matter what its
value may be. The nN SIGNAL statement can be used much liKe a
CASE statement it you wish to trap specific signals* 6b4b

ON SIGNAL
^constant? statement?
^constant? statement?

• * •
ELSE statement;

e.g. ON SIGNAL
=ofilerr? %open file error%

BEGIN
IF svsmsg THEN dismes(2,sysmsg);
RETURN.
END;

EL&E %any other error sianai%
BEGIN
dismes(2,$»Error");
RETURN,
END?

The current signal constants can be found in c n1s,const*)* The
common reason for using this specific signal treatment is when
you call a procedure which you Know will generate a certain
signal value under certain conditions, in sucn a case, you can
learn the signal constant of concern from the SIGNAL statement
which generates it, 6b4e

Generating signals 6b5
¥ou may generate a SIGNAL in a procedure by the statement* 6b5a

SIGNAL (value, astring) i
where value is the value of the signal (perhaps a system
global) and astring is the address of a string holding the
error message. If the second parameter is omitted, it will be
assumed to be zero and no messaoe win be printed, The first
parameter is mandatory? every signal must have a value, 6b5b

Examples •
SIGNAL (ofiierr, shouldn't open your file,") ?
SIGNAL (2) ?

Another way to generate a SIGNAL is by caning the procedure
"err", it takes one parameter, a number"representing the

page 101

aSRT.-ARC 31-UCT-74 14554
LI0 Users' Guide ARC Rev. 1 NOV
Part Four* Error Handing *• SIGNAL®

24258
74

typecf error. It will generate a SIGNAL of the value "errsig"
(a system global) and will set up a message depending on the
error number you pass it, The standard error messages are; 6b5c

errno = 11 "File copy fails";
• 2; "Open scratch fails";
s 3; "Cannot load program";
a 4i "i/o Error";
* 5s "Exceed capacity";
= 6 s "Bad file bioejc";
= 7s "Not implemented";

If you pass it the address of a string as the error number,
it will signal using that address for sysmsg, and that
string will be printed.

Be careful not to call err and then trap its SIGNAL in that
same procedure, you might say; 6b5d

ON SIGNAL
= errsig s NULL;
ELSE * •,

&SRI-AKC 31-OCT-74 14 S 54 24258
LlO Users* Guide AHC Rev, 1 NOV 74
ASCII 7-bit Character Codes

ASCII 7-BTT CHARACTER CODES

Char ASCII Char ASCII Char ASCII Char ASCII Char ASCI

Tab Oil / 057 B 102 U
mi mi MI MI m t MI

125
a® ®® 101 ®® 0® 0® 0® 0®
h 150

LF 012 0 060 C 103 V 126 i 151
Formfeed 014 1 061 D 104 w 127 3 152
CP 015 2 062 E 105 X 130 K 153
SP 040 3 063 F 106 y 131 I 154
I 041 4 064 G 107 z 132 m 155
II 042 5 065 H 110 c 133 n 156
043 6 066 I 111 \ 134 0 157
$ 044 7 067 J 112] 135 P 160
% 045 8 070 K 113 m 1 36 q 161
& 046 9 071 L 114 m m 137 r 162

047 I 072 M 115 s 163
c 050 I 073 N 116 a 141 t 164
) 051 < 074 a 117 b 142 u 165
* 052 s 075 p 120 c 143 V 166
•¥ 053 > 076 Q 121 d 144 w 167
054 ? 077 R 122 e 145 X 170
m 055 § 100 S 123 t 146 y 171
* 056 A 101 T 124 A 147 z 172

page 1Q3

&sri-arc 31-dct-74 14 j £>4 24258

page 104

&5rt *akc 31-0ct-74 14 s 54 24258

hio users' Guide

Augmentation Pesearch Center

1 NOV 74

Stanford Research institute
333 RayenSwood Avenue

Memo Par*, California 94025

&sri-arc 31*uct-74 14:54 24258
For the most recent online version Of the L10«Guide# see

<USERGUIDES,L1Q-Gulde#>

L10 Users* Guide
&SRI*ARC 31-QCT-74

ARC Rev,
14 J 54 24258
i NOV 74

(J24258) 31 -GCX»74 14:54???? Title? AUtborCs)! Augmentation Re;
Center /&SRI-APC? Dxstribution; /DiRTt £ INFO-ONLY 3 3 ?
Sub-Collectionsj DIRT SRI-AFC NIC? Cierxj POOH? origin: <
USERGUIDES, LI 0"GUIDE,NLS>3i9, >, 29-OCT-74 H g 41 NUM ????

?

PGOH 21-OCT-74 14843 24259
Inventory of offline documentation found in room J2Q28

Offline copies of the following Documentation can pe found on the
shelves in room J2028, Please help yourselves, if you take a last
copy# please let me know, A more complete list of ail ARC
Documentation will follow shortly,,,, 1

ARC Tenex Users* Guide 1«

TNLS-R Primer lb

Dex Primer Cto pe updated) lc

Dex User Guide (to fee updated) Id

L*10 Users' Guide (to be updated) le

L-10 Documentation (to be updated) 1*

Output Processor Users' Guide (to be updated) 19

NLs»8 command Summary lh

NLS-8 Equivalents of NLS-7 Commands U

CML Documentation 13

NLS File structure IK

NDDT Sympolic Debugger User's Guide (to Pe updated# commands are
in old syntax pending revisions of commands) 11

Proposed NLS Code format and Documentation standards Im

Links in xnls In

Coordinated Information Service tor a Discipline»or
Mi$sion»Oriented Community lo

The Augmented knowledge workshop lp

Advanced intellect*Augmentat ion Techniques lq

TNLS-8 Quick Reference (Cue Card) lr

i

POOH 21-OCT-74 14i43
Inventory of offline documentation founo In room J2Q2B

tJ24259) 21-0CT-74 14|43|i;; Title! Autnor(s)! Anne Weinberg/POOHS
Distribution! /JOANC t ACTION] Please put a copy of this in the DIRT
notebooK) SRI-ARCC t INFO-ONLY 3 3 RSRC C INFO-ONLY 3 3 MAP2(t
INFO-ONLY 3 3 i Sub-collections! SRI-ARCj ClerKi POOH) Grlgim
< WEINBERG, HARDDOC.NLS!1, >, 21-OCT-74 14:22 POOH !!!!»#*#)

JAKE 21-QCT-74 16 J 35 24260
Hostnames, Liaison lists, and RFC distribution list

The NIC (Adrian and I) maintains the official nostnanes list and the
Liaison list, Gail Hedtler and Jerry Burchfiel are maintaining a
distribution list suitable for RFC distribution a sunset of which is
the Liaison list, The NIC lists ares <NETINFO>LIAlsON,TXT,
<NETINFQ>LIAIS0N«SNDM5GS,TXT and <NETINF0>H0STS,TXT all at Office*!
and available for ftp through nicguest password ARPA, Please direct
all questions about hostnames and liaison lists to me and not to Alex
McKenzie as he is getting annoyed at dealing with several people,
Contact Jon Postel (as group coordinator) to get your name ©n the
RFC distribution list, Feel free to use my lists anytime • I try to
update them weekly if new information is received, Thanks, Jake

1

JAKE 21-OCT-74 16135 24260
Hostnames# Liaison lists# and RFC distribution list

CJ24260) 21-CCT-74 16!35nji Tltlet Author(s)l Elizabeth J, CJaKe)
Feinler/JAKEI Distribution: /SRI-ARCC t INFU-ONLY) J) sub-Collectionsi
SRI-ARC) ClerKi JAKE»

DSN 2 1»0CT»74 17 S 58 24261
New XNLS , Monday Oct 21 1974

NLS BUGS FIXED Monday OCT 21, 1974 1

I brought up an xnls on Monday night with the following
modifications? la

TNLSi lal

the following commands have been removed lala

Jump | to 3 File <SPACE> ' lalai

Jump I to 3 File <OK> lala2

Jump I to 3 Name <OK> lalai

The subsitute Command no longer gives a double prompt when
one replies "y" to the question, <Finished?>„ l a^b

DNLS & TNLSs la2

Replying "NH t o the question <Xnsert Number List?> in the
Reserve Number Command of the Sendmail subsystem no longer
produces a question mark la2a

The changed source files are PsuPPOrt and syntax# I changed both
of th^se files in both directories NLS and NIC-NLSi lb

1

New XNLs i Monday Oct 21 1974
DSM 21-OCT-74 17:58 24261

CJ24261) 21-OC1-74 17:58n>> Title: Authorcs3: David s, Maynard/DSM:
Distribution: /JMBC t ACTION J) KIRK([ACTION 3 3 JDHC t ACTION] J
DSM([INFO-ONLY 3 3 EKM([INFO-ONLY J) ; SUb-Collectlons: SRI-ARC:
CierK: DsM)

dvn 21-oct-74 19:39
Alba Amicorum

Could yo do me the favor of asking Caroline what "alba amicorum"
might mean in the context of christian religious booxs?

i

DVN 21-OCT-74 19:39 24263
Alba Arricorum

CJ24263) 21-CCT-74 191 39 |: Title) AUthOr(S): Dlr* H, Van
K'Ouhuys/DVN> Distribution: /KIRKC t ACIIQN 3 3 I Sub.Coliectlons:
SRI-ARC) Clerx: DVN)

I

Liaison at BPL
JAKE 22-OCT-74 1 1 5 21 24264

Hi, Stan,

Wonder if you could tell rne whether Mike Romanelli is still the
Technical Liaison at BPL, Someone said they thought he was no longer
there and it is a little embarrassing to send a message saying 'are
you still there?*• would appreciate any input you might have,
Thanks, Jake

1

Liaison at BFL
JAKE 22-QCT-74 11:21 24264

CJ24264) 22-CCT-74 111219191 Titles AUthorCs)t Elizabeth J, (JaKeD
Feinler/JAKEj Distributions /OFT(t ACTION 3 3) Sub-Collectionss
SRI-ARC J ClerKs JAKE j

Feedback
JAKE 22«OCT*74 11145 24265

Doug, is it all right if i nroceed with the Arpanews idea (Hjournal,
24049, lf*w) x outlined to you earlier, I need to Know before weds,,
Oct, 23, because Kjeii samueison may be coming through on Thursday
and x would like to let him know what is happening, Also, I need to
contact the others too. Thanks, Jake, 1

1

Feedback
JAKE 22-0CT-74 11:45 24265

CJ24265) 22-CCT-74 11:45?1, ># 23-0CT-74 09837 XXX ;|}| Titles
AutborCs): Elizabeth J• (Jake) Feinler/JAKE? Distributions /DCEC I
ACTION 3) ? Sub^Collectionss SRI-ARC? Clerk: JAKE? Origin: <
FEINLER, DOUG,NLS ? 2 r ># 22-OCT-74 1 1 8 42 JAKE ????####?

	24238-24242
	24243-24246
	24247-24249
	24250-24254
	24255-24258
	24259-24265

