JEW 2«SEP=74 04329 23904
Procedyre Call Protocol

. ##DRAFT#% JEW 2 SEP 74 7:135PM

|
Titlegs Author(s); James E, (Jim)
White/JEW; Distributions /NPG([INFO«ONLY)) JBP([INFO=ONLY]) RWW(
[INFO=ONLY)) 3 Sub=Collections: SRI=ARC NPGy Clerk: JEW;

Origing < WHITE, PCPwPCF_ NLS;5, >, 2«SEPw74 04317 JEW 33

(J23904) 2=SEPe74 0432933133

gatey

T

JEW 2«8SEP=74 04329 23904
. #»#DRAFT#% JEW 2 SEP 74 17:35PM Proceduyre Call Protocol

One of a series of related documents,

JEW 2=SEP=74 04329 236904
. ##DRAFT#% JEW 2 SEP 74 7:135PM Procedyre Call Protocol

INTRODUCTION 1

Several ARPANET applications (i,e, third= or fourth=level)

protocols have been designed and {mplemented since the HostwHoOSt

Protocol was adopted in 1970, Most have been bootstrapped from
lowerw=level applications protocols, For example, the File

Transfer Protocol (FTP) was built upon TELNET, the Remote Job

Entry Protcoceol upon both TELNET and FTP, and so forth, The

highest common deénominator of all of these bootstrapped protocols

is TELNET, 1a

Although the bootstrapping principle is a sound basis for Network
protocol deyelopment, the author believes that Telnet {s NOT the

most appropriate foundation for a large class of applications

protocols, cffering little more that a character set in &all but
terminaledriven situationg, The author contends that ag; ib

Procedure Call Protoco)l (PCP) == a Networksstandard mechanism
for inveking arcitrary, named, argumept=driven and
resulteproducing procedures in a server process,,, ibl

is a mych mere appropriate and powerfuyl foundation for many
. applications protocols, 1¢

The author bellieyves that the adopticen by the network commuynity of
a PCP as the basis for most applications protocols Would have at
least the fellowing effectst 1d

1) expedite the specification of applications protocols by
perrmitting their documentation to have a functional, rather
than a syntactic orientation, 1d1

2) 1arge1y ej1iminate the need for separate,
applicationespecific user processes, 1d2

3) reduce the cost of making large, existing software systems
avajlable as Network servers by allowing a Network interface
more compatible with their internal organization, 143

4) provide the basis for a more natyral interface between local
and remote procedures, and therefore 144

5) encourage the sharing Oof goftware, by Mmaking proceduyres on
remote hOsts as accessible t0 the programmer as local ones, 145

JEW 2«5EP=74 04:29

Introduction

. ##DRAFT*% JEW 2 SEP 74 73135pPM Procedure Call Protocol

The PCP proposed in this document is intended to be suitable both
for interlinking procedures on different hosts, and for linking
procedures in different processes within a single host, The
present docyment gives only a functional description of PCP,
applicable tec both classes of use, A supSeguent document will
provide a detalled, syntactic description of the protocol for its
Network application,

The aythor hereby solicitg comments on both PCP and its underlying
Premise; comments should pe addressed to the entire Network
Liaisen Group, As part of its current National Software Works
(NSW) effort, SRI=ARC wil)l {mplement and eMploy the PCP described
in this docyment (perhaps modified by suggestions from the Network
community) to Mmake the core functions (or "backend") of NLS
avallaple both as a Network server processy and as a Tenex fork,
SRI=ARC will also implement an interactive NLS "frontend" for
PDP=10 TENEX which will use the backend in elither of these two
modes; and an additional frontend, for the pDp=il ELF syster,
which will use the backend via the Network,

The present document is the foundation for a series of subsequent
documents describing nigher=level tools desjgned to operate within
the setting provided by the Procedure Call pProtoc€ol,

23904

le

1 £

ig

JEW 2«5EP=74 043129

The Mode)
Environments

. ##DRAFT#» JEW 2 SEP 74 7:35PM Procedure Call Protocol

THE MQODEL

Environments

An "environment" i{s a collection of "procedures" and "data
structures" whicn snare a common host ma@chine, instruction set,
operating system, and runetime program environment, An
enyironment ean run either in parallel with or, by disciplining
itself appropriately, in series with another environment,

PCP provides a mechanisgm by which two such environments,
connectec by a8 logical communjication path, can share one
anothers procedures,

Procedyres

Introduction

A procedure is a named body of executable code, residing
within a particular environment, which is executed in
respons® to & "call" from another procedure, and which
eventuyally "retyrns" to its calling procedure, In
conventional software systems, in which both calling and
called procedyres always reside in the same environment, the
callsreturn mechanisms (CRMS) are each uysually just a few
machine instructions, PCP provides an alternate callereturn
mechanism to be used when the two procedures reside in
different environments,

NOTEt Remotelvecallable procedures are said to be
"external" procedures of the environment in which they
reside; all other procedures in the environment,
presuMably subroutines of external procedures, are called
"internal" procedures, PCP places no restrictions upon
the CRM employed, within the environment, for dispatching
internal prccedures, nor for dispatching locally=called
external precedures,

23904 |

2a
2al

|

I
2a?2
2b

2b1l

2bla

2blal

JEW 2«SEP=74 04329

##DRAFT#% JEW 2 SEP 74 7335PM Procedure Call Protocol

. 7 The Model
Procedures

Arguments, Modifjers, and Fesults

Arguments, Modifiers, and Results

The operation of a procedure is controlled by Means of zero
or mere paraheters or "arguments" passed to it by its
calling procedure; subseguent operation of the calling
procedure is then in turn affected by Zero or More "results"
produced by the called procedure, The transfer of arquments
to, and results from, the called proceduyre is part of the
CRM (and therefore part of PCP),

A procedure also accepts zero or more additional parameters,
or "medifiers", in addition te whatever arguments it
requires, whenever it is called recursively (i,e, by
itself), PCP’s provision for modifiers is simply a device
that permits noth retail and wholesale versjons of an
operation to be implemented a,d described as a single
procedure, rather than as two, slightly different ones,

PCP*s CRM permits a procedure argument or modifier to be

. either;

1) a data structure (data structures can thus be used as
vehicles of communication, as well as storage)
provided by the calling procedure,

2) an external data structure in the called procedyre’s
environment, or

3) an "attribute" of an external data structure in the
called proceduyre’s environment,

wlm

23904

2b2

2b2a

2b2b

2b2c

2p2cl

2b2¢?2

Z2b2c3

JEW 2«SEP=74 04329 23904
##DRAFT#% JEW 2 SEP 74 7335PM Procedyre Call Protocol
- mhe Moged
Procedures
Arguments, Modifiers, and Results

Result Dispositions 2b2d

A procedure’s results can be used in a variety of ways by

the callert they can be examined or manipulated, stored

for later use, used immediately as arguments to other
precedures, or simply ignored, 2b2d1

In conventienal software systems, the cost of returning a
preceduyre result to the calling procedure is low,

involving at worst a main storage transfer, The CRM can
therefore afford to blindly return the results of a

procedure to the caller, and leave their disposition to

hir, 2b2d2

But when the procedure and its caller reside in different
environments, the cost of returning results is
significantly higher, And if after naving been retrieved
at such cost, the result is then ignored by the calling
precedure, Or wOrse still, returned to the same

‘ enyironment as an argument to0 a subsecuent procedure, the
increased ctst is (at least emotionally) very hard to
bear, 2h2d3

To help elirinate such inefficiencies, PCP*s CRM can be
presinstructed as to the procedure results’ intended use,

or "digposition"®, The CRM permits a procedure result

(which, like an argument or modifier, is a data

structure) to be either: 2b2d4

1) returned te the calling procedure (if its
disposition 1s RETURN), 2b2d4a

2) stored automatically in an externa)l data structure
in the called procedure®’s environment (if the
disposition is a reference to a data structure), 2p2d4b

3) used aytomatically to modify an attribute of an
external data structure in the cal)led procedyre’s
environment (if the disposition 15 a reference to

the attribute of a data structuyre), or 2b2d4c
4) discarded immediately by the called procedyre’s
environment (if its disposition 15 DISCARD), 2b2d4d
In the last three cases, the CRM returns an EMPTY result
‘ to the caller, 2b2d5

-5.

JEW 2«SEP=74 04129 23904

##DRAFT#% JEW 2 SEP 74 73135PM Procedure Call Protocol
. The Mode)
Procedures
Qutcomes
nutcomes 2b3

Many procedures attempt well=defined tasks at which they
e{ther succeed or fajyl, The result of such a procedure can
be commynicated to the caller in a variety of ways: it can
be returned as a formal result of the procedure, stored in a
named data structure, Or reaistered in any other way agreed
upon by both caller and callee, Although it cannot prevent
the use Of such ad hoe schemes for reporting the "outcome"
of a remote procedure, PCP provides and encourdages the use
of a more standard mechanism, by allowing for the return of
a special metasresult along with the normal procedure

results, 2e3a
The oytcome Meta=resylt may have any of the following
values, each with the indicated implicationi 2b3b
SUCCESS! the procedure has succeeded at its task, 2b3b1
‘ FAILURE? the procedure has falled at its task, 2b3b2

NEUTRAL? no indieation of success or faijure is returned, 2p3p3

ERROR: the procedure has encountered an unexpected and
irrecoverable error, and has returned a
programereadable error code, and an optional
huransreadable diagnostic message, in place of
the normal procedure results, 2b3b4

-

JEW 2=SEPw74 04129 239504
##DRAFT#% JEW 2 SFP 74 7135PM Procedyre Call Protocel
' The Model
Frocedures
Transfeér and return of Control

Transfer and Return of Control 2b4

A procedure normally receives control from its caller,

perforns its task, and then relinquishes control, More

complicated control transfer seguences are sometimes

required, and are therefore supported by PCp, Besides

providing for the normal callereturn sequence just

described, PCP permits a remote procedure to summon

assistance from any of the procedures along its control

thread, to notify any such procedure of an arbitrary event,

or to interact with its caller as a co=routine, 2bda

When a remote procedure retyrns control to its caller, it

specifies the condition or "terms" under which it does so,

The terms of the return are transmitted to the calling

procedure as a second Metaeresult, which may have any of the
following values, each with the indicated implication: 2b4b

EXIT: the procedure has completed eXecution, and is
‘ returning final control to its caller, along with
the outcome metawsresult and the procedurefs
results, This is the normal return, described in
the preceeding section, 2b4b1i

RPRT: the procedyre nas not yet completeéd execution, but
is returning temporary control to its cajler to
report intermediate status and results, and expects
t0 be resumed with an {ndication Of whether cr not
to proceed, and with optiona)l new arguments, This
is the coercutine return, 2b4b2

NCTE: the procedyre has not yet completed execytion, byt
is returning temporary control to {ts caller to
notify it of a particuylar event, and expects to be
resumed after the calling procedure has acted upon
it, In general, the caller is obligated to
propagate the notice up the thread of control (by
returning to ITS caller under the same terms)
before resuming the remote procedure, 2b4b3

HELPt the procedyre has not vet completed eXecution, and
cannot proceed without first obtaining assistance
from its caller with a particlar problem, The
remote proecedure expects to be resymed with an

' indication of whether or not the reguested help has

been provided, 1In general, if the caller is

-

JEW 2=SEP=74 04329 23904
##DRAFT#% JEW 2 SEP 74 73:38PM Procedure Call Protocol
‘ The Model
Procedures
Transfer and Return of Control

incapable of helping the reMote procedure, it is
obligated to propagate the request up the thread of
contrel (by returning to ITS caller under the same
terms) and then to return to the remote procedure
whatever help the higherwmlevel procedure has

provided, 2bé4b4
WKNG: these terms are reserved for uyse by the

Environmental Control Packafe, 2b4b5

PCP reguires that a calling procedure eventuyally resume a
procedure whieh returns to it on any terms other than EXIT, 2b4c
Syntax Cenvéntions 2b5

pProcedure descriptions in all PCPerelated documents will

hayve the following formats 2b5a
‘ > Terse statement of procedure’s function 2b5al
> Namewofwprocedure (arguments (modifiers) => resu)ts) 2bS5ala

> Verbose description of the procedure’s function, the
arguments and modifiers it reguires, and the results
it returns, 2bSailb
> Argument/result types?! 2bSalc
> A detalled description of arguments, modifiers,
and results, including their tvpes and, where
appropriate, acceptable values, 2bSalct

Throyghout the procedure descriptions, the terms "host"

ané "invoking" wi)) refer, respectively, to the

environment that contains the procedure, and the

enironment from which the procedure i{s Called, 2b5a?2

JEW 2=8SEP=74 04129 23904

##DRAFT## JEW 2 SEP 74 7335PM Procedure Call Protocol
. The Mode)
Data Structures
Introduction
Pata Structyres 2¢
Introduction 2ci

Apart from its use as a communication vehicle, a data
structure is a named data store, resident in a particular
envirenment, which holds environment state information, and
which exists throughout the environment’s lifetime, 1In
conventional software systems,; in whieh both the data
structure and the procedures that manipulate it always
reside Iin the same environment, the readewrite mechanism
(RWM) is usually just a few machine instructions, PCF
provides .an alternate RWM to be used when the data structure
and the procedure desiring to manipulate it reside in
different environments, 2cla

NOTEs FRemotely=manipulable data structures are said to
be "external" data structures of the environment in which
they reside, and all other data structures in the
. environment are called "internal" data structures, PCP
places no restrictions upon the RWM employed, within the
environment, for manipulating internal data structures.
ney fOr manipulating external data structures locally, 2cial

wOw

JEW 2«5SEP=74 04329 23904

##DRAFT#% JEW 2 SEP 74 7:135PM Procedure Call Protocol
. The Mode)
pata Structures
Data Types
pata Types 2¢2
Introduction 2c2a

When transmitted between environments (ag a procedure

argumeént, modifer, or result), the value of a data

structure must, in general, be represented in some

standard format convenient for and agreed upon by both

sénding and recefving environments (whose machines may,

for example, have different word lengths and character

sets), The sender’s CRM ({i,e, PCP) must, therefore,

encode the data structure in the standard format, and the
receiver*s CRM (PCP again) must decode it, 2c2al

[Tt should be clear that, becauge of the required
encoding and decoding, remote Procedure arguments,
modifiers, and results are effectively passed by
value, rather than by name, Hence, pProcedure
"results" cannot he returned by way Of modified

' arquments,] 2c2ala

To entode or decCode a data structure for transmission,
the CEM myst Know} 2c2a?2

1) its "type" (e,9, integer, string, or list) ==
somehow communicated to it by the sending
procedure, 2c2a2a

2) its internal representation == a characteristic ot
the sending envirenment, and 2€2a2b

3) the standard format for data structures of its type
= specified by PCP, 2c2a2¢

Te facilitate the task of encoding and decodino data

structures for transmission, a limjted set of data types

are defined by PCP, Every argument, modjifier, or result

of @ remote procedure must be of Oone 0f the types

permitted by PCP, 2c2a3

-]0-

JEW 2+5EP=74 043129 23904

##DRAFT#% JEW 2 SEP 74 7135PM Procedyre Call Protocol
. The Model
Data Structures
Data Types
|
:
Types 2¢2b
The following types of data structures are currently
supported by PCPg 2¢2b1 |
|
STRING; a text string, with both a current and a
- maximum length (in characters), 2c2bia
INTEGER: a signed integer, 2¢2bib
WORD} an unsigned integer capable of being stored |

in an address space wOrd (used by the
Low=lLevel Debug Package, described in another

document), 2c2blc
BOOLEAN: true or false, 2c2bid
EMPTY} null, 2c2ble
LISTS an ordered set of data structures, with both

a current and a maximum number Of elements,
This last data type provides a mechanism by
which arbitrarily complex "composite" data
structures can pe constructed from the other,
. "atomic" types listed above, 2¢2b1f

In all PCPerelated documents, the following syntax will
be used to describe a data structure (brackets surround

optional elements)? 2¢2b2 |
datastrucdesc ;1= (name *3) ([use %) typelist 2c2b2a
typelist 11= type [f(valuelist *)) [*/ typelist] 2¢2b2b

tvPe 132 "STRINGY / "INTEGER"™ / "WORD" / |

"BOOLEAN" / "EMBTY" / "LIST" [f(|

1ist *)) 7/ “"any" 2¢2b2¢

list 115 datastrycdesc [, (1i85t/",90")) 202b24

vaiyelist 1#% value [f/ valuelist) 2¢2b2e
valye 115 [symb) [*= abg) 2¢2b2f
where: 2¢2b3
NAME is the structuref’s name 2¢c2bla
USE denotes the structure’s function 2¢2b3b
ANY implies that the structure may pbe of any type 2¢2bic

SYMR 1s a symbolic name for the data structure’s

vajue 2¢2b3d

ABS is the data structure’s value in absolute fornm 2¢2b3le
ond irmplies zero or more list elements like the

previous one 2¢2b3f
/ separates alternatives 2¢2b3g

JEW 2=SEP=74 04329 23904

##DRAFT##% JEW 2 SEP 74 73135PM Procedure Call Protocol
. The Model
Data Structures
Data Types
Shorthands for Some Recurring Cemplex Data Types 2¢c2¢

strictly as a convenience in describing certain data

structures, we define the following shorthands or pseudo

data structure types (whose names are suffixed with an

asterisk (*#)): 2c2ci

1) To denote either a single element or & 1ist of
e1ements, assured that the element is not itself a
1ist¢ 2c2cla

LIST# (element) ==> element / LIST (element, .,,4) 2c2clal

2) TO denote a reference to an attribyte of an
external data structure, qualified by its package i
name: 2c2cib

DATAREF#% ==> pkname: strucattrib% STRING 2c2cibl

o1

JEW 2«5EP=74 043129

The Mode)

. #¥DRAFT#% JEW 2 SEP 74 7335PM Procedure Call Protocol

Attributes

Introduction

pata Structures
Attributes

An attribute of a data structure A is itself a data
structure whose value is some simple characteristic of A,
An attribute is thus effectively a PCP builtin function
which maps one data structure into another, Attributes
may be applied recursively,

Types

The following data structure attributes are currently
supported by PCP:

VALUE 3

. DIMEN?}

MAXDIM}

LENGTH}

MAXLEN:

ELEM}

denotes a data structure whoSe type and value
are those of another data struycture, This
attribute tvpe effectively permits implicit
argqument transmission,

denotes a data structure of type INTEGER whose
value is the current Number Oof elements in
another data structure of type LIST, or (when
applied to a data stuctuyre of any other type)
one,

denotes a4 data structure of type INTEGER whoge
value is the maXimum number of elements in
another data structure of type LIST, or (when
applied to a data stucture of any other type)
cne,

denotes a data structure of type INTEGER whose
vajue is the current length in Ccharacters of
another data structure of type STRING,

denotes a data stryctule of tyPe INTEGER whose
value {s the maximum possible lenath {n
characters of another data structure of type
STRING,

denotes a data structure whose type and valye
are those of a specified element of another
data structure of type LIST, If the attribute
is applied to a data structure of any other

~13n

23904

2c3

2c3a

2c3al

2¢3b

203b1

2c3bila

2¢3bib

2¢3bic

2¢3bid

2c3pble

' ##DRAFT#% JEW 2 SEP 74 7:135PM

JEW Z=SEP=74 04129
Procedure Call Protocol

The Mode}
Data Structures
Attributes
type, the latter i{s treated as a
single=element list,

In all PCPerelated documents, the following syntax will
be ysed tO0 describe a reference t0 a data structure
attribute;

strucattrib 3ss ("VALUE"™ ¢/ ®DIMEN® / wMAXDIM" /
"LENGTH" / "MAXLEN®" / "ELEM" elemid)
¢ strucname / datastrucdesc /
strucattrib *)

elemid it1= elemindx / elemname

wheret

STRUCNAME is the name of the data structure,

ELEMINDX is the element®s ordinal positien (beginning
with one) within the 1ist,

ELEMNAME {s the elemept®s name, TIf ELEMNAME {s
ambiguous, the element with lowest ELEMINDX
is selected,

Prototvees

1t is sometimes desireable to transmit, as an arqument,
modifier, or result, the form, but not the content, of a
data structure, FOr example, a remote procedure which
allocates space for a temporary data structure might
require, as one of {ts arguments, an example of the Kind of
data structure to be subseguently stored in that space,

A "prototvpe" is simply a data structuyre whose "shape and
size" are noted by the receiving procedure, but whose value
(or valueg, in the case of a LIST) is ignored, The value of
a prototype should he chosen by the sender to minimize the
expense of its transmission (e,9, by setting the length =«
the curreént, not the maximum length ==~ of a string to zero),

Syntax Cenventions

pata structure descriptions in PCPerejated documents will
have the following formati

> Name=ofwdatamstructure Terse statement of data

structurefs use
» Verbose description of the data structuyre’s use,

wid»

23904

2¢c3bif

2¢3b2

2¢c3b2a
2c3b2b

203b3
2¢3b3a

2c3pib

2¢3kp3c

2c4

2c4a

2¢A4b

205

2¢5a

2¢5al
zZ2cha?

i 5

JEW 2=SEP=74 04129 23904
##DRAFT#*% JEW 2 SEP 74 7335PM Procedyre Call Protocol
. The Model
Data Structures
Attributes

» pata structure typel 2c5a3
> A detalled description of the data structure, 2c5a3a

JEW 2«S5EP=74 04329 23904
##DRAFT#% JEW 2 SEP 74 7:35pPM Procedure Call Protocol
’ The Impiemepntation
Inter=Environment Communication

Attributes
THE IMPLEMENTATION 3
Inter=Environment Communication 3a
Introdyction 3al

PCP assuMes that a loagical data path can be created between

two enyironments, and that each environment provides to its

local procedures the primitives necessary to manipulate it,

That iss the existence of some form of inter=environment
communication (IEC) is assumed, not provided, by PCP, 3ala

Since pcP is designed to be useful for mediating

communication between different kinds of environments, the
peculiarities cf the environment interface are assumed

nidden in and accounted for by IEC, Jaib

What follows is a description of the IEC primitives assumed
({.,e, required) of an environment which seexs to communjcate

‘ with remote environments via PCP, and of their use by PCP, Jalc
Primitives 3a?2

Open path to environment 3a2a

OPNFTH (enyname => pathndle) 3a2al

This primitive creates a full duplex loagical data path

hetween the current environment and the environment

identified by ENVNAME, and returns to the caller a handle
PATHNDLE to the data path, for use in subsequent IEC

primitives, 3a2a?2

This primitive is used by the Environmental Control
Paeckage, described in another document, to create an

inferior environment, 3a2a3l
Argument/result typesi 3a2a4d
envname = STRING Ja2ada
pathndle= any 3a2a4db

-16-

JEW 2=SEP=74 04329 23904
*#DRAFT## JEW 2 SEP 74 7135PM Procedure Call Protocol
. The Implementation
Inter=Environment Commynication
Primitives

Close path to environment 3a2b
CLEPTH (pathndle) 3a2bl

This primitive deletes the data path identified by
PATHNDLE, previously created via OPNPTH, 3a2b2

This primitive ig used by the Environmental Contrel
Package, described i{in another document, to delete an

inferior environment, 3a2b3
Arcument/result tvpesit 3aZb4
pathndle= any Ja2hbda
Send data structure to environment 3aze
SNDPTH (pathndle, datastrucencde) jazcel
. This primitive transmits an encoded data structure
DATASTRUCENCDE to the remote environment along the data
path ldentified by PATHNDLE, 3a2c?2

PCF uses thig, and the RCVETH primitive descriped below,
primitive to transmit a procedure call or return request

to a remote environment, 3a2c3
Arcumént/result typeés: dazc4
pathndle = any Ja2c4da
datastrucencde= any 3a2cép
Accept data structure from environment 3azd
RCVPTH (pathndle »> datastrucencde) 3a241

This primitives accepts delivery Of the next encoded data
structure DATASTRUCENCDE transmitted by the remote

enyironment along the data path identified by PATHNDLE, 3az2d2
Arqument/result typest 3a243
pathnhdle = any 3Ja2d3a
datastrucencde= any 3a2d3b

o]lTm

. #%DRAFT## JEW 2 SEP 74 7:135pM

JEW 2«SEP=74 04329 23904
Procedure Call Protocol

The Implementation
Inter=Environment Communication

Primitives
Test for data structure from environment la2e
TSTPTH (pathndle) 3aZel
This Primitive determines whether or not there exists a
data structure, sent by the remote environment on the
path identified py PATHNDLE, awaiting immediate delivery,
Tf a subsequent RCVPTH primitive can be immediately
satisfied, the primitive returns an outcome of SUCCESS)
otherwise, it returns FAILURE, 3a2e2
The Environmental Control Package uyses this primitive to
test for the completion of a parallel procedure, Jazeld
Arcument/result tvpes$ 3a2e4d
pathndle= any Jazeda
. signal environment a2t
SIGPTH (pathndle, bit) 3a2f)
This primitive transmits a single bit BIT of information
to the remote environment attached to the path PATHNDLE,
awakening or interrupting it as necessary, Ja2f2
The Environrental Control Package, described in another
document, uses this primitive to implement jits SINTEVM
and $RSMEVM procedures, 3a2¢3
Argument/result typest 3a2f4
pathnhdle= any Ja2fda
pit = BOOLEAN Ja2f4b

JEW 2=SEP=74 04329

##DRAFT## JEW 2 SEP 74 7135PM pProcedure Call Protocol

' The Implementation
Inter=Environment Communication

Implementation

Implementation

To completely specify the interconnection 0f any gpecific
pair ¢f environments via PCP, one must more precisely
specify the IEC primitives described above, In particular,
one must specify the format of DATASTRUCENCDE, and the
manner in which the IEC primitives are to be constructed
from still more primitive operations, This much smaller
task will be undertaken in subsequent documents for at least
the fellowing classes of environment pairs!

1) an ARPANET servVer process and any of its user
precesses,

2) a Tenex fork and any of its inferior forks,

23904

3a3

3a3a

3aial

3aldaz

JEW 2=SEP=74 04129
*»DRAFT#¥ JEW 2 SEP 74 7335PM Procedure Call Protocol

’ The Implementation
pCp Communigues

PCP Communjcues
Tntroduction

The PCP CRMs of connected environmentsg commynicate with one
another via the data structures, or "communjques", they
exchange by means Of the IEC SNDPTH and RCVPTH primitives
described above, The three defined commuyniques are
described below,

Thouygh they appbear in commyniques. "Package identifiers", or
pPKIDs, are not used by PCP preoper, A package is a construct
of the PCP Support package, described in another docurent,
Wwhen BCP 1is used outside of the higherslevel framework
provided by the Support Package, PKIDs should be set to 2zero
wherever they are reaguired,

Communiques

‘ Call proceduyre

CALL (pkid, pname, args, mods, disp)

This communique reguests that the receiving environment
call the procedure PNAME in package PKID, with arguments
ARGS and modifiers MODS, on behalf of the sending
environment,

If the remote procedyre returns on terms EXIT (with
outcome other than ERROR) or RPRT, DISP specjfies the
disposition of the procedure’s results =« either a single
disposition for all results, or (if DISP is a LIST) a
separate disposition for each result,

If the remote procedure makes a return on terms NOTE,
HELP, RPRT, or WKNG, it {s obliged to provide the CID
reqguired for the procedure’s subsequent reentry,
Formact!

LIST (op, pkid, pname, args, mods, disp)

op = INTEGER (CALL=0]
pkid = INTEGER

pnameés STRING

w20m

23904

3b

3b1

3bla

3bib
3b2
3b2a
3b2al

3b2a2

3b2a3

In2a4
3b2ab
3b2ab5a
3b2aSb
3b2aSc

3b2a5d
3b2ake

JEW 2=SEP=74 04:29 23904
##DRAFT#% JEW 2 SEF 74 7:35PM Procedyre Call Protocol
. The Implementation
PCP Commuyniques

mods = LIST 3b2as5t

disp = LIST* (INTEGER [RETURN=0 / DISCARD=1] /
dataref% DATAREF#) Ih2a5¢9g
Resume procedure ib2?2b
RESUME (cid, parms, disp) 3b2bl

This communigque reguests that the receiving environment
resume the procedure identified by CID (which must have
previously returned on terms NOTE, HELP, RPRT, or WKNG),
with parameters PARMS, 3b2b2

If the remote procedyre returns on terms EXIT (with
outcome other than ERROR) or RPRT, DISP specjfies the

disposition of the procedure’s results (as for CALL), 3b2b3
Format: 3b2b4
‘ LIST (ops cid, parms, disp) 3bZbda
op = INTEGER [RSME=1] 3b2b4b
cid = INTEGER 3ib2bdce
parmse LIST 3p2bdd
disp « LIST* (INTEGER [RETURN=0 / DISCARD=1]) /
dataref% DATAREF#*) 3b2bde

wZ2lm

JEW 2«SEP=74 04329 23904
##DRAFT## JEW 2 SEP 74 7:138PM Procedyre Call Protocol
' The Implementation
PCP Communiques

Return from procedure 3b2c¢
RETURN (terms, outcome, results, cid) 3b2c!

This communique acknowledges the return of a previously
initiated (or resumed) procedure on the indicated TERMS, 3p2c2

Unless TERMS is EXIT, the CID provided becomes the
receiving environmént’s basis for resuming the remote

precedure, 3b2c3
Format: 3b2c4
LIST (op, terms, outcome, results, cid) 3b2c4da
op = INTEGER [RTN=2] ib2¢4b
terms« INTEGER [EXIT=0 / RPRT=1 / NOTE=2 / HELP=3 /
WKNG=4) 3b2¢c4c
EXIT: outcome= INTEGER [SUCCESS=0 / FAILURE={ /
. NEUTRAL=2 / ERROR=3) 3b2céc
ERROR: resultse= LIST (errcode% INTEGER,
errmsg9g STRING) 3b2c4c?
othert resultse= any 3b2c4c3
RPRT! outcome= status% INTEGER 3b2c4cd
réesults= intres% any 3b2c4chH
NOTE: outcome= event% INTEGER 3b2c4cH
résults= eventdesc% any 3b2cdc?
HELP$ outcomee= condition% INTEGER 3b2cAcS
results« conddescs% any 3b2cdcH9
WKNG: outCcomee= unuseds EMPTY 3b2cdci0
resuits= unused% EMPTY 3b2cdci!
€id = INTEGER / EMPTY 3b2¢44d

VR L

JEW

2=SEP=T74

04329

23904

JEW 2«5EP=74 043129 23904

##DRAFT#% PCP
The Procedure Call Protocol

3=SEp=74

James E, White
Augrentation Research Center

Stanford Research Institute
Menlo Park, California 94025

PCP is an intersenvironment procedure call and return mechanisn
which provicdes a setting {n which higher=level tools can be
remotely offered and uysed,

JEW 2«SEP=74 04332 23905

. ##DRAFT#» JEW 2 SEP 74 7:137PM The PCP Support Package

Author(s); James E, (Jim)

[INFO=ONLY]) JBPC [INFO-ONLY]) RWW(
NPGy Clerks JEW)
L kand)

(J23905) 2=SEFP=74 043327313 Title;
White/JEwy Distributien: /NPG(
[INFO=ONLY 1)

Origin: < WHITE,

} Sub=Ccllectionsi SRI=ARC
PCP=PCPSUP,NLS5}8, >, 2=SEP=74 02333 JEW

' #%#DRAFT#% JEW 2 SEP 74 7:137PM

One of a series of related documents,

wilim

\.'EW
The PCP

2=SEP»74 043132
Support Fackage

23905

JEW 2«SEP=74 04332
. ##DRAFT#% JEW 2 SEP 74 73137PM The PCP Support Fackaage

INTRODUCTION

The PCP Support Package (package name=s$PCPSUP) coOntains those
procedures and data structures which a remote environment requires
to use the host environment conveniently, sPCPSUP includes
procedures for opening and closing packages, manipulating data
structures within the hest environment, creating temporary ones,
for logging into and resetting the host environment, and a NOP,

1t contains data structures with menus of the host environment®s
supported packages, and their external proceduyres and data
structures,

Fackages

The external procedures and data structures within an
environment are partitioned, by function, into one or more
"packages", Packages are referred to initjally (in the SOPNPK
procedure) by name, and thereafter via a "package identifier",
or PKID, The entire contents of a package are accessible to
another enyironment {f and only if it has successfully "ocpened"
the package (i,e, 1f it has obtained a PKID for it),

NOTE: The PCP Support package itself is always considered
open (with PKID=0) and need not, indeed cannot, be
explicitly opened or closed (with SOPNPK and $CLSPK),

A Package Programmer’s Guide (PpG), like the current document,
{5 assumed to exist for each package jimplemented, and to
containg

1) a description of the package and its function,

2) a description of each externa) procedure, including its
nare, function, the type and functjion of each of its
arguments and modifiers, the type and function of each of
its results, and any accessibility peculiarities,

3) the name, type, function, and accessibility peculiarities
of each external data structure,

14

b

ip1

ibla

ib2

1b2a

ib2b

ib2¢c

JEW 2«SEP=74 04332 23905

##DRAFT#% JEW 2 SEP 74 17:137PM The PCP Support Package

& Brocesusen
PROCEDURES 2
Open package 2a
SOPNPK (pkname => pkid) 2ail

This procedure opens the host environment*®s package PKNAME, and
makes it known (and its external procedures and data structures

accessiple) to the invoking environment via the handle PKID, zaz
Argument/result typesi 2a3
pkname= STRING 2ala

pkid = INTEGER 2al3b

Close package 2b
$CLSPK (pkid) 2bl

This procedure closes the host environment’s previously=cpened
package, known to the inyoking environment via PKID, and makes

. its procedures and data structures inaccessible t0 the invoking
environment, 2p2
Argqument/result typess 2b3
pkid= INTEGER 2b3a

JEW 2«SEP=74 04332 23905

& ##DRAFT#% JEW 2 SEP 74 7:137PHM The PCP Support FPackage
‘ Procedures
Read data structure &ttripnte 2c
SRDDATA (dataref => valuye) 2ci

This procedure returns the valye VALUE of an attribute DATAREF
of an external data structure in one of the host environment’s

previously=opeéned packages (implicitly named by DATAREF), 2¢c2
Arqument/result typesi 2c3
dataref= DATAREF#» 2¢3a

value = any 2¢3b

Write data structure attribute 2d
SWRDATA (dataref, value) 241

This procedure assigns & nNew value VALUE to an attribute
DATAREF ¢f an external data structure in one of the host
environment’s previouysly=Opened packages (implicitly named by

DATAREF), 242

. BY definition, the MAXLEN or MAXDIM attribute of a data
structure is immune to SWRDATA, 2d3
Argument/result typesi 2d4
dataref= DATAREF#* 2d4a

value « any 2d4b

JEW 2=5EP=74 04132

##DRAFT## JEW 2 SEP 74 7:137pM The PCP Support Package
. Procedures

Create temporary data structure
SCRTTMP (tmpname, tmppro)
This procedure creates a temporary external data structure
TMPNAME, like the prototype TMPPRO, in the host environment’s
PCP Support package, nnce created, the temporary data
structure can be ysed and manipulated like any other external
data structure,
Argqument/result types?:

tmpnare~ STRING
tmppre = any

Delete tempeorary data structure
SDELTMP (tmpname)

This procedure deletes the temporary data structure TMPNAME,
previously created via SCRTTMP, from the host environmentfs PCP

. Support Package,

Arqument/result typesi

tmpname= STRING

wA=-

23905

2e
2el

2e2
2e3

2ela
2e3b

2f
2£1

2£2
2€3

2t3a

‘ ##DRAFT## JEW 2 SEP 74 7137pPM

JEW 2=5FP=74 04132
The PCP Support Package
Procedures

Reset environment

SRESET ()

This prccedure resets the host environment to its creation
state, 1f the environment supports tne Environment Control
Package, described in another document, it deletes all inferior
environments and releases all VIDs obtained via SGETHND,

Login envircnment

No

SLOGIN (user, password, acct)

This procedure associates the host environment®s use with a
user USER (for accessecontrol purposes), protected by the
password PASSWORD, and an acecount ACCT (for billing purposes),

Argument/result types:

user » STRING

password= STRING

acct = STRING / EMPTY
operaticn

SNOP (arqumeént => araument)

This procedure is a NOp, Simply echoing its argument as its
result, It can be called remotely to verify the communicatien
path to, and proper functioning ¢f the host enyironment,
Argument/result typest

argument= any

wEw

23905

29

291

292
2h

2hi

2h?2
2h3
2h3a
2h3b
2hic
21

211

212
213

213a

JEW 2«SEP=74 04332 23905

#»#DRAFT## JEW 2 SEP 74 7:137pM The pPCp Support Package
. Data Structures

DATA STRUCTURES 3
SPKAGES List of offered packages 3a
This read=only, reader=dependent data structure is a list of

the packages, within the host environment, avajlable to the
invoking environment, and specifies for eachi its name PKNAME,

and, if opened by the invoking environment, its PKID, Jal
Data structure typej 3a2
spkagest LIST (pkname: pkid% INTEGER / EMPTY, 4.4) Ja2a
SEXTPRC Lists of external procedures b

This reaé=only, reader=dependent data structure is a list of
the external procedures contajned in each of the host
environment®s open packages PKNAME, and contains for each
procedures its name PRCNAM, a 1ist ARGPTS of prototype
arguments, @ list MODPTS Of prototype modifiers, and a list

RESPTS of prototype results, bl

. Data strycture typej b2
saceprect LI1ST (pknames LIST (prenami LIST (argptsi LIST,

modptss LIST respts% LIST)s sneldr evs) 3b2a

SEXTDAT Lists of external data structures ic

This read=only, readeredependent data structure is a list of
the external data structures contained in each of the host
environmentts open packages PKNAME, and contains for each data

structures its nare DATNAM and a prototype DATPT, el
Data structure type; 3ec2
saccdatt LIST (pknamei LIST (datnami datpt$ any, seels ses) 3c2a

JEW 2«SEP=74 04132 23905
##DRAFT#®#% JEW 2 SEP 74 7:137PM The PCP Support Package
' AppendiX: Pseldo Implementations
Introduction

APPENDIXs PSEUDO IMPLEMENTATIONS 2
Introductior 44

The follewing are implementations of scme of SPCPSUP’s

procedures in something resembiling SRI=ARC*s Li0 programming

language, Thelr purpOse is t0 help clarify the procedure

definjitions and t¢ suggest, in broad terms, an implementation
strategy, 4al

JEW 2«SEP=74 04332 23905
The PCP Support Package
Appendix: Pseudo Implementations

. *##DRAFT*# JEW 2 SEP 74 T7:3:37PM
Selected Procedures
Selected Precedures 4b

(sopnpk) %open packages
PROCEDURE ;pkhame 3 pkid)s 4b1

$declarations% 4bla

LOCAL INTEGER i} dblal

LOCAL POINTER pack, port; dbhla2

gverify access to package$ 4b1ib

pack . findpack (pkname=pkname)j 4bibi
port - findport (status=active & vidsmasters [(LENGTH

(masters)))y 4pib?2

LOCP 4blb3

BEGIN dbib3la

FCR i{.1 10 LENGTH (port,pklist) DO 4bib3b

IF port,pki1ist (i) = pack,pkid THEN EXIT LOOP 2; 4bib3b1

SABORT (code, "No access to package,"); 4bibic

END 3 4plb3d

gcheck for packace already openg dbic

FOF {.1 TO LENGTH (port,opnpklist) DO dblcl

IF port,opnpklist [i] = pack,pkid THEN 4blcla

. SABORT (codes "Package already open,"); 4plclal

gadd PKID to port’s list% 4b1d

port,opnpklist [(BUMP LENGTH (port,opnpklist)] o

pack,pklid; 4p1di

BUMP pack,opnent? 4b1d2

sreturn% dble

SEXIT (success, pack,pkid); dpnlel

END, 4ple2

JEW 2=SEP=74 04132 23905

#%DRAFT#% JEW 2 SEP 74 7337PM The PCP Support Package
‘ Appendixi Pseudo Implementations
Selected Procedures

(Sclspk) %close package%

PROCEDURE (pkid) 4b2
$declarations% 4b2a
LOCAL INTEGER i; 4h2al
LOCAL POINTER pack, port; 4b2a?2
%¥assure Package open% 4p2b
pack - findpack (pkname=pkname); 4h2b1
port . findport (status=active g vid=masters [(LENGTH
(masters))); 4b2b2
LOCP 4b2b3
BEGIN 4b2b3a
FOR 1.1 TO LENGTH (port,opnpklist) DO 4b2b3b
IF port,opnpklist (1] = pkid THEN EXIT LOOP 23} 4b2b3b}
SABORT (code, "Packade not opéen,"); 4p2b3c
END s 4p2h3d
%¥delete PKID from port’s 1listi 4p2c
port,opnpklist [i] = port,opnpklist [LENGTH
(port,opnpklist)]; 4bh2c1
BUMP DOWN LENGTH (port,opnpklist); é4b2c?2
BUMP DOWN pack,opnent; 4b2c3
. g§returng 4b24d
SEXIT (success); 4b2d1}
END . 4h2d42

JEW 2=8EP=74 04332

##DRAFT## JEW 2 SEP 74 7:37PM The PCP Support Package

. Appendix: Pseudo Implementations
Internal Global Data Structures

Internal Glebal Data Structures
GLOBAL RECORD port

INTEGER vid, $VID to which this poert corresponds%
INTEGER status, gsstatus of this VID%

Sfree == No environment associated with VID%
gactive == eépnvironment assiagned to VID%
%dead == environment assigned to VID byt itfs dead$

INTEGFER type, srelationship of remote environment$%

$self == the host environment®

ssuperior == host environment®s direct syperiors
sinferior == a5 direct inferior%

%head == 3 VIp Obtained (as headvid) via SGETHND%
%link == gupport for SGETHND VIDs known elsewhere$
$tail »= a VID optained (55 tailvid) via SGETHND%

‘ INTEGER bekloes svID of previous environment in chain%
$self == {f this is the head%
INTEGER bekrem, $VID of 1ink element in previous
environment%
%self == 1f this is the head%
INTEGER forloc, %VID of next envirenment in chain%
$self == if this is the tails
INTEGER forrem, $VID Of 1ink element in next environment%
$self == {f this is the tails
STRINC envname, genvironment name$
gnuyll == unless direct inferior%
INTEGER compath, 2IEC path handle%
gnull == (for now) unless direct inferior/superiorsy

INTEGER entent, 3¢ sent CALLs still awalting EXITs%
BOOLEAN wkng, $TRUE if sent CALL still awaiting RETURNg
LIST pklist, spKIps for accessiple local packages%

LIST opnpklisty %PKIDs for open local packades$
GLOBAL RECORD pack
INTEGER pkid, $PXID to which this packagde record
correspondsg
STRING Pknanre, %packace nameg
INTEGER opnenty Snumber of environments with package open%

GLOBAL LIST masters; &VIDs of cadlling environments%
. gtop eleMent == YID of controlling enyironment$

-10.

23905

ac
4ci

4cla
4cib

4cibl
4cib?2
4cib3

4cic

4clel
4cic?2
4clcd
4clcd
4clceh
4clch

4cid
4cldl

dcte
4clel
dcit
4cifl
dclg
4cigl
4clh
4ecind
4cli
4ciil
ac1)
4cik
4c1l
4cim

4c?2
4c2a
4¢c2b
4c2c

4c3
4c3a

\,‘v’ -)
L P
19 SF -”‘ 44' 1\1 !
1 3
|_7
4 2"
v Uo

wlile

JEW 2=SEF=74 04732

#%¥DRAFT#*% sPCPSUP
The PCP Support Package

ImSEP=T74

James E, White
Augnentation Research Center

Stanford Research Institute
Menlo Park, California 94025

$PCPSUP is & procedure call support tool that operates within the
setting provided by the Procedure Call Protocol (PCP == XXXXXX,),
with which the reader of the present document is assumed familiar,

23908

JEW 2«SEP=74 04:34
. ##DRAFT#% JEW 2 SEP 74 7130pPM The Envirenmenta)l Control Fackage

(J2390g) 2«SEP=74 043343454 Titles; Auythor(s):; James E, (Jim)

23906

White/JEW; pistributions /NPG((INFO=ONLY)) JBP([INFO=ONLY]) RWW(

[INFO=ONLY]) 3 SubeCollectionss SRI=ARC NPG; Clerki JEW;
Origing < WHITE, PCP=EVMCTL,NLS)10, >, 2=SEP=74 01316 JEW 3137

 ERER

L AN PNt @ - AN WD

| et SIS L ARG S R R (s T

‘ #*#DRAFT## JEW 2 SEP 74 7339pVM

One of a series of

related documents,

wlw

JEW

The Environmental Control Package

2=SEP=74 043134 23906

JEW 2=SEP=74 04:34

‘ ##DRAFT## JEW 2 SEP 74 7339PM The Environmental Control Package

INTRODUCTION

PCP makes pessible the orderly construction of large,
Networke=pased, distributed software systems, each component
implemented on a different machine, with a different operating
system, in a different programming language,

The Environrental Control Package (package name = SEVMCTL)
provides the necessary tools for interconnecting two or more
environments to form a coherent, MultieEnvironment Software System
(MESS), SEVMCTL contains those procedures and data structures
required to construct from a single "root" environment,
manipylate, and dismantle a myltiw~environment system, The package
includes precedures for creating, deleting, logically
interconnecting, and relaying procedure calls betyeen
environments, and for interrupting and resuming environments,
along with the necessary support data structurées,

The MultisEnvironment Software System
The Environment Tree

Let MESS be, at any point in time, a tree structure of
envirenménts, Every MESS begins with a single, presexistent
root environment to which all other environments are
ultimately subordinate, During the course of its execution,
the reot envircenment creates one or more supbordinate
envirenments, Oone or more o0f which may create sybordinate
envirenments of their own, and so forth,

An environment is said to be the "direct inferior" of the
environment that created it, and the "indirect inferior"
of each environment further up in the environpent tree,

An environment is said to be the "direct superior" of
each environment it creates, and the "indireect superior"
of each epvironment further down in the tree,

An environment may have, at any point in time, an
arbitrary number of directly inferior environments, but
(of course) only one directly superior epvirenment,

23906

1a

¥
ic |

icl

1cla
iclal
icla2

icia3l

JEW 2=SEP=74 04334

. ##DRAFT*# JEW 2 SEP 74 73:39PM The Environmenta) Control Package

: Introduction
The Multi=Environment Software System
Environment Names

Environment Names

An existing environment creates a direct inferior by
offering its "environment name" to the SCRTEVM procedure,
Environment names whieh begin with a dollar sign ("s) are
reserved for MESS=wide assignment; all others are avallable
for lecal assignment, The following MESSestandard generic
envirenment names are currently defined;

1) "SKF" <SP> filename

The environment created from the execytable file
FILENAME in the host environment*®s file system, and
run on the host environment®s machine,

2) "SN" <SP> host <SP> socket

The environment ryn on the ARPANET host HOST (a
standard hosgt name or decimal host address), and
created by the remote system in response tO an ICP to
contact socket SOCKET (specified in decimal),

Known Environments

Onece an environment has been created, it is referenced from
another environment by means of an "environment jidentifjer",
or VID, A VID {s a local handle to an environmenti it is
always evaluated relative to the environment in which it is
used, An environment B is said to be "known" to another
envirenment A if and only if A has a handle to B, SEVMCTL
assures that if B is known to A, then A is known to B as
well,

An environment®s direct superior is always known to {t
(via a special VID whose valuye is SUPER==1), A VID is
assigne¢ to each direct inferior at its creation, VIDs
for other environments must ne explicitly obtained via
SEYNCTL's $GETHND procedure, An environment is always
known to itself via the special VIp whose value 1is
SELF=0,

An environment may ecall remote procedures in any environment
known to it,

23906

1c2

ic2a

ic2al

ic2ala

1ic2a2

ic2a2a
ic3

1c3a

ic3al

1c3b

JEW 2«5FEP=74 04334 23906
##DRAFT#% JEW 2 SEP 74 71:139PM The Environmenta)] Contro]l Package
‘ Introduction
The Multi=Environment Software System
Configuring the MESS

configuring the MESS 1c4d

viewed one way, a MESS is simply a collection of procedures

and data structyres partitioned among some arbitrary number

of enyironments, sSince any procedure can call both local |
and remote procedures and manipulate poth local and remote |
data structures, the system’s procedures and data structures |
could, in principle, be partitioned among environments in |
arbitrary fashion, icda

In practice, however, the programmer must assume that
calling @ rermote procedure or manipulating a remote data
structure is mcre expensive, in terms of both the real and
processing time required, than calling or manipulating a
local cne == an operation which may be as simple as a single |
machine instruction, The process of partitioning the |
system’s components among environments must therefore be

done with intelligence and care, ic4p

‘ Serial and Parallel Operation 1¢5

BY means of the SCALL and SRESUME procedures, SEVMCTL

provides an invokino environment A with a cholce between

seria)l or paralle)l execution of a procedure in an

envirenmént C that {s remote with respect to the host

envirenment B, icS5a

When & procedyre in C is called serially, its execytion ,
is completed (i,e, it signals a return teo B) before the \
sCALL (or sRESUME) pProcedure in B signals a return to A, jeSal o

When the procedure in C s called in parallel, '
environment B signals a return to A on terms WKNG,

imrediately after initiating the procedure call reguest

at C, Environment A is then free to call additional

preceduyres in B, provided that their execution doesn’t

recuire a call upon a procedure in now occupied

environment C, 1c5a2

As B returns (on terms WKNG) to A, it returns a CID by
which the uncompleted procedure call can be
referenced, 1c5a2a

At any time, environment A {s free to test for the
completion of the procedure running in € by calling
. the SRESUME primitive in B {n paralle) mode,

JEW 2=SEP=74 04134 23906
*%¥DRAFT#% JEW 2 SEP 74 17:39pPM The Environmental Control Package
. Introduction
The Multi=Environment Software Systenm
Configuring the MESS

specifying the CID, SRESUME will return, like the
criginal sCALL, on terms WKNG if the procedure {s
still incomplete, and on some Other terms Otherwise, 1c5a2p

Alternately, environment A may commit itself tO0 the

parallel procedure’s completion (as if it had

originally initiated it serially) by SRESUMEing it

serially, rather than in parallel, 1c5a2¢

‘ #*#DRAFT## JEW 2 SEP 74 73139pM

JEW 2+SEP»74 04334 23908
The Environmental Control Package
Procedures

PROCEDURES 2
Create environment 2a
sCRTEVM (enyname => vid) 2a1

This procedure attaches an instance of the environment ENVNAME

as a direct inferior of the hgst environment, and makes it

known to the host environment via the handle VID, 2a2
Argument/result types! 2a3
envnare= STRING 2a3a
vid = INTEGER 2a3b
Delete environment 2b
SDELEVM (vyid) 2b1}

‘ This procedure detaches from the host enyironment and discards,

the environment known to it via VIp and preyioysly attached as
a direct inferior of the host environment via sCRTEVM, 2b2
Argument/result types$ 2b3
vid= INTEGER 2b3a

JEW 2«SEP=74 04334 23906

##DRAFT#% JEW 2 SEF 74 7:139PM The Environmental Control FPackage

’ Procedures
Obtain environment handle 2¢
SGETHND (vidlist (backlink) => headvid, tailvig) 2c1

This precedure returns a handle HEADVID for, and thereby makes

known to the host environment (provided BACKLINK is absent), a

target environment which is presently known indirectly (and

therefore not really at all) via the chain of VIDs VIDLIST, 1In
addition, the host environment is made known te the target

environment via TAILVID, Whenever possible, & direct

communication path is constructed between the two environments, 2c2

The last VID in VIDLIST is evaluated relative t0 the host
environment; every other VID, VIDLIST (i), is evaluated
relative to the environment identified by VIDLIST [i+l), 2¢3

The presence 0f the modifier implies that HEADVID is to be
defined, not for use by procedures within the host envirenment,
hut for relaving procedure calls to adiacent environments: to
. the environment kKnown to the inveking environment via the VID
RACKLINK (in the backward direction), and to the environment
known via VIDLIST [LENGTH (VIDLIST) = 1] to the environment
known to the host environment via VIDLIST [LENGTH (VIDLIST)])

(in the forward direction), 2c4
Argument/resylt typess 2ch
vidlist = LIST (INTEGER, ,..) 2¢c5a
backlink= INTEGER 2¢5b
headvid = INTEGER 2cS¢
tajlvic = INTEGER 2¢c5d

whw

JEW 2=5EP«74 04334

Procedures

. ##DRAFT#» JEW 2 SEP 74 7139PM The Environmental Control Fackage

Release enyironment handle

SRELHND (vid (packlinkl)

This procedure releases the environment handle VID previously
obtained with SGETHND, Once the procedure is executed, the
environment previously known or chained to the host environment
via VID i{s no loenger known or chained to it,

The modifier must be present if and only if it was present in
SGETHND when the VID was obtajined,

Argument/result types:

vid = INTEGER
backlink= INTEGER

InterryPt environment

SINTEYM (vid)

This procedure interrupts the environment known to the host
environment via viIp, and causes it to save its state on a
stack, fer subsequent retrieval via SRSMEVM,
Argument/result types:i

vide INTEGER

Resume envircenment

SRSMEVM (vid)

This procedure resumes the previously interrupted environment
known to the host environment via VID, causing it to first
restore its state from the stack,

Arqument/result typesi

vide INTEGER

wT=

23906

2d

2d1

2d2

243
2d4

2d4a
2d4b

Ze

2el

2e2

2e3

2e3a

2fl

2f2

2f£3

2f£3a

JEW 2«SEP=74 043134 23906

##DRAFT## JEW 2 SEP 74 73139PV The Environmental Control Fackage
. Procedures

Call remote procedure 29

$CALL (vid, pkid, pname, ards, meds, disp, mode ([dummy) =>
terms, outcome, results, cid) 291

This precedure invokes, with arguments ARGS and modifiers MODS,

the external procedure PNAME in package PKID in the environment

known to the host environment via vID, Invoked locally

(without the modifier), sCALL is the host environment®s

mechanism for calling remote procedures, Invoked remotely

(with the modifier), it is the means by which procedure calls

are relayed to environments known, but Not adjacent in the

environment tree, to the invoking environment, 292

pISp, TERMS, QUTCOME, RESULTS, and CID are explained ip the PCP
document, MODE specifies the mode == elther serial or parallel
(with respect to continued operation of the host environment)

== in which execution of the remote procedure is to be carrlied

out, 293
‘ Argument/result types: 294
vid = INTEGER 2gda
pkid = INTEGER 294b
pname = STRING 2g4c
args = ahy 2944
mods = any 204e
disp » LIST# (INTEGER [(RETURN=0 / DISCARD=1] / dataref$
DATAREF#) 204¢
moge » BOOLEAN (SERIAL=TRUE / PARALLEL=FALSE) 294¢
dummy = any 294h
terms = INTEGER [EXIT=0 / RPRT=y{ / NOTE=2 7 HELP=3 /
WKNG=4) 2941
outcome= (outcome% / statuss / event® / condition%) INTEGER
/ EMPTY 294y
results= (resultss / intress / eventdesc% / conddesc%) any /
EMPTY 204k
cid = INTEGER / EMPTY 2941l

wBw

JEW 2=SEP=74 04134

##DRAFT#% JEW 2 SEP 74 7139PM The Environmental Control Package
| ‘ Procedures

Every environment is assumed to provide a primitive (probably
not a procedure, and certainly not an external one) by which
its procedures return to remote calling proceduyres, In its
general form, this primitive might 100k like the following:

RETURN (terms, outcome, results § parms)
The follewing shorthands are also recomMMendedi

Terminate a procedure normally
SEXIT (outccme, results) ==>
SRETURN (EXIT, outcome, results)
Terminate a prccedure abnormally
SARORT (errcode, errmsg) ==>
$RETURN (EXIT, ERROR, LIST (errcode, errmsg))
Report intermedjate results toc caller
SREPORT (status, intres § ansver, newargs, newmods) ==
SRETURN (RPRT, status, intres : LIST (answer, newargs,

’ newmods))
Notify caller of an event

SNOTE (event, eventdesc) ==>

SRETURN (NOTE, event, eventdesc)
§o0licit help from caller

SHELP (condition, econddesc § answer, helpfulparms) ==3>

SRETURN (HELP, condition, conddesc & LIST (answer,
nelpfulparms))

23906

205
2¢5a
206

2964
2g6al
2g6ala
296b
296b1
2g6bla
296¢C
2q6cl

2g6cia
296d
2a6dl
2a06dla
296e
296e]

296ela

JEW 2«SEP=74 04134 23906

*#DRAFT#% JEW 2 SEP 74 73:39PM The Environmental Control Package
' Procedures
Resume remote procedure 2h
$RESUME (pecid, parms, disp, mode => terms, outcome, results,
cid) 2hi
This preccedure resumes with parameters PARMS, the remote
procedure identified by PCID, 2h2
DISP, MDDE, TERMS, QUTCOME, RESULTS, and CID (either EMPTY or
equal in value to PCID) are as in SCALL, 2h3
Argument/result typesi 2hd
peid = INTEGER 2h4a
parms = any 2h4b
disp w LIST# (INTEGER [RETURN=0 / DISCARD=1) / datarefg
DATAREF#) 2hédc
mode » BOOLEAN [SERIALSTRUE / PARALLEL=FALSE] 2hdd
terms = INTEGER (EXIT=0 / RPRT=1 / NOTE=2 / HELP=3 /
‘ WKNG=4) 2hde
outeome» (outecome / statusk / event$ / conditions) INTEGER
/ ENPTY 2h4f
résults= (resultss /7 intresg / eventdesc% / conddesc$) any /
EMPTY 2h4q
cid w INTEGER /7 EMPTY 2hén

vi0=

JEW 2=SEP=74 041334
##DRAFT#% JEW 2 SEP 74 73139FM The Environmental Control Package
. Data Structures

DATA STRUCTURES
SKWNEVM List of known enyironments
This read=only data structure is a list of the names ENVNAMES
(0f direct inferiors onlv) and handles Vips fOr each of the
environments presently knoyn to the host environment (with the
exceptions ©0f SELF and SUPER),
pata structure type

skwneym: LIST (envnames vid% INTEGER, ses)

23906

3a

3al
3a2

Ja2a |

. #%DRAFT#% JEW 2

APPENDIX: PSEUDD

Introduction

JEW 2=SEP=74 043134

SEP 74 7:3139pPM The Environmental Control Package
AppendiXi Pseudo Implementations

IMPLEMENTATIONS

Introduction

The following are implementations of some of SEVMCTL®S
procedures in someéthing resembling SRI=ARC*s L10 programming
Their purpose is to help clarify the procedure

language,

definitions and t0 suggest, in broad terms,

strategy,

L L

an implementation

23906

4a

4al

‘ ##DRAFT#% JEW 2 SEP 74 73139PM

JEW 2=S8EP=74 04334
The Environmental Control Package
Appendix: Pseudp Implementations
Selected Procedures

Selected Precedures

(Sertevm) %Create environment$%
PROCEDURE (eénvname 3§ vid)
$declarations%
LOCAL POINTER port)
%allocate and initialize port%
initport ((port _ findport (status=free)),

status - active,
tyPe - inferior,
bckloc - Self,
bekrem - Self,
forloe - Self,
forrem - Self,
envname - envname,
compath - Opnpth (envname),
entent - 0,
wkng - false,
pklist - empty,
opnhpklist _ empty)y
freturnt .
SEXIT (success, port,vid);
END,

(sdelevm) %delete environment$
PROCEDURE (vid)
$declarationss
LOCAL POINTER port, portpj
$locate and validate ports
pert .. findport (status=active & vidsvid &
type=inferior);
IF port,entent > 0 THEN
$ABDRT (code, "Control thread tangled,");
3close ports
sreset () @ vidy
clspth (port,compath);
$discard broken links%
WHILE (portp . findport (statussactive &
typeshead/link/tail & forloc/bekloc=yvid)) Do
IF portp,forlec = vid THEN portp,statys . dead
ELSE 8relhnd (portp,vid (portp.bckrem));
grelease portsg
port,status ., freej
greturng
SEXIT (success)}
END,

23906

4b

4b1
4bla
4blal
4blb
4bibl
4bibila
4bibib
4bibic
dbibid
dbible
4piblf
d4bibig
4pibkih
4bibii
4bibi]
4bibik
4bib1l
dbic
4pict
4blc2

4b2
4b2a
4b2al
4b2b

dp2bi
4p2b2
4pb2h2a
4b2c
4b2ci
dpb2c2
4b2d

dp2d1
4p2dia
4b2d1b
4b2e
4b2el
4b2f
4h2f1
4b2£2

JEW 2=SEP=74 04134

Appendixi Pseudp Implementations

' ##DRAFT#% JEW 2 SEP 74 7139pPM The Environmenta)l Control Package

Selected Procedures

(S5gethnd) %obtain environment handle%
PROCEDURE (vidlist [backlink] : headvid, tailvid);
$declarations%
LOCAL listelm, tailvid;
LOCAL POINTER portj
$pop top element off of VID stack%
IF LENGTH (vidlist) = 0 THEN
IF backlink ¢ empty THEN listelm _ empty
ELSE SABORT (code, "Null VID list,")
ELSE
BEGIN
l1istelm . vidiist (LENGTH (vidlist)))
BUMP DOWN LENGTH (vidlist))
port . findport (statussactive § vidslistelm);
IF backlink = empty AND port,type = link THEN
SABORT (code, "Unassigned VID,"):
ENDy
%@8110cate and initjialize l1ink elements
port - findport (status=free);
taflvid . port,vid)
initport (port,
status - active,
type -« IF backlink = empty THEN head
ELSE IF listelm = empty THEN tail ELSE link,
peckloe - IF backlink = empty THEN self
ELSE masters (LENGTH (masters)),
bckrem - IF backlink = empty THEN self ELSE
packlink,
forloc - IF listelm = empty THEN self ELSE listelm,
forrem - IF listelm = empty THEN Self ELSE
sgethnd (vidiist (port,vid] ; tailvid) @ 1isteim,

envname - n,
compath - empty,
entent IR
wknhg -~ false,
pklist - empty,
opnpklist .. empty);
greturn%
SEXIT (sucecess) portp,vid, tailvid))
END,

wld=

23906

4b3
4b3a
4p3al
4b3a?2
4b3b
4b3b1
4b3bla
4b3bib
4b3b2
4b3b2a
4b3b2b
4pb3b2c
4b3b2d
4b3b2e
4b3b2el
4b3b2f
4b3c
4picl
4b3c2
4b3c3
4b3cla
4b3ci3b
4b3eidbl
db3c3c
4b3c3ci

4b3cid
4pb3cie
4b3cif
4b3c3fl
4b3c3g
4b3c3hn
4pb3c3i
4b3c3y
4p3cik
4b3c3l
4b3d
4b3d}
4h3d2

\ JEW 2=-SEPe74 04334 23906

| ##DRAFT#% JEW 2 SEF 74 7330PM The Environmental Control Package
‘ Appendixs Pseudo Implementations
Selected Procedures

(srelpnd) %release environment nandles

PROCEDURE (vid [backlink)); 4n4

%declarationss 4bda

LOCAL POINTER port, portp} 4bdal

$locate chain element% db4b
port . findport (status=active/dead & vid=svid &

type=head/link/tail); 4b4b1

IF backlink = empty AND port,type ¢ head THEN 4bdn2

§ABORT (code, "Unassigned VID,"); db4b2a

IF port.,entcnt > 0 THEN 4b4b3

$ABORT (code, "Control thread tangled,"); 4b4bia

gdiscard broken links$ 4b4c

IF port,type # link THEN 4b4cl

WHILE (portp .. findport (status=active &
type=head/link/tail & forloc/bekloe=port,vid)) DO 4bacla
1F portp,forloc = port,vid THEN poOrtp,status .. dead

4bdclal

ELSE Srelhnd (portp,vid [portp,bcKrem])} 4bdcla2

$delete linki 4bdd

‘ IF port,type ¢ tall THEN 4bddl

srelhnd (port,forrem, port,vid) @ port,forlocy 4bddia

port,status _ free) 4p4d2

sreturn% db4e

SEXIT (success)s 4bde)

END, 4bde2

JEW 2«SEPe74 04334 23906

#%DRAFT#% JEW 2 SEP 74 73:39pM The Environmenta)l Control Package

Appendix: Pseudpo Implementations
Selected Procedures

(scall) %call remote procedureg
PROCEDURE (vid, pkid, pname, args, mods, disp, mode ([dummy] ¢}

terms, ocutcome, resuylts, cid)y 4b5
3declarations% 4b5a
LOCAL INTEGER terms, outcome, cid, dir, locvid, remvid,

i, addr, bosst 4bh5al
LOCAL LIST state, resultss 4bbaz
LOCAL POINTER port, cally 4p5a3

$fol)lew link if anv$ 4b5hb

dir - cid _ empty; 4bSb1

boss .. masters [LENGTH (masters))) 4b5b2

port - findport (status=active & vidsvid); 4b5b3

CASE port,type OF 4b5b4

=head! 4b5b4a

IF port,forloc & boss THEN 4b5b4al

BEGIN 4bSb4ala

locvid . port,forloay 4b5bdalb

remyvid _ port.forremjy 4bSbdalc

dir .. forward; 4b5bdald

END 4bS5b4ale

ELSE locvid .. self} 4b5b4a2

=tail: 4bS5béb

IF port,bckloc # boss THEN 4b5b4b1

BEGIN 4b5bdbia

locvid _ port,bcklocs 4b5b4bib

repvid _ port.,bckrem; 4b5bébic

dir .. backward; 4bS5b4bid

END 4bS5b4ble

ELSE locvid . selfy 4b5bab2

=link: 4bSb4c

IF dummy = empty OR port,.,bckloc&forloc # bess THEN 4b5bdcl

SABORT (code, "Unassiagned ViD,") 4bSbdcla

ELSE IF porty,bekloc = poss 4bS5hdc?2

THEN REPEAT CASE head 4bS5h4c2a

ELSE REPEAT CASE tail) 4b5b4c2b

ENDCASE %$self/superior/inferiors 4bSb4dd

loevid . port,vid; 4b5b4dl

$distant environments 4b5¢

IF dir 4 empty THEN 4b5c)

terms 4b5cia
scall (remvid, pkid, pname, args, mods, disp, mode

(dummy) § outcome, results, cid) a loecvid 4b5clal

g(adiacent environment% 4bS5d

ELSE IF locvid # self THEN 4b54d1

BEGIN 4b5dia

gverify environment idle% 4b5dib

1=

JEW 2=5EP=74 043134 23906

Appendixs Pseude Implementations
Selected Procedures

. ##DRAFT#% JEW 2 SEP 74 7:139PM The Environmental Control Package

IF port,wkng THEN 4b5dib1}
SABORT (ceode, "Environment busy,"); 4b5dibla
%¥send call message% 4bSdic
sndpth (port,compath, LIST (call, pkid, pname,
args, mods, disp)); 4bS5dicl
BUMP port,entent) 4b5d1c?
%accept return message% 4b5did
IF mode = geria) THEN 4b5d1d1}

WHILE (OUTCOME OF (terms _ getrth (port,compath
! outcome, results, cid)) # success) DO NULL 4bSdidia

ELSE 4b5d1d2
BECGIN 4b5d1d2a
port,wkng . TRUE} 4b5d1d2b
terms .. wkngjp 4b5d1d2c
outcome _ results _ empty) 4p5d1d24d
END} 4bS5di1d2e
END 4bSdle
$local environment% 4bSe
FLSE 4b5el
BEGIN 4pSela
$force serial operationg db5eib
IF mode # serial THEN 4bSelb)
SABDRT (code, "Run self serially only,"); 4h5eibla
gverify open package% 4bSeilc
LOOP 4pSeict
BEGIN 4pSeicia
FOR {1 TO LENGTH (port,opnpklist) DO 4p5eicib
IF port,opnpklist (i] = pkid THEN EXIT LOOP

23 4bS5elclibl
SABORT (code, "Undefined PKID,"); 4b5eliclic
ENDg 4pSelcla
gmaxe local procedure call% 4bS5eld
addr .. getaddr (pkid, pname)} 4bSeldl

terms . addr (args, mods § terms, outcome, results,
state); 4b5e1d2
results .. dspres (results, disp); 4h5eld3
END} 4pSele
3assign CID% 4p5¢
IF terms 4 exit THEN 4p5f1
BEGIN 4pS5f1a
initcall ((call . findcal) (status=free)), 4b5f1b
status . active, 4bS5f£1b1
type .. IF dummy = empty THEN head ELSE link, 4b5f1b2
forvid . locvid, 4b5f1b3
forecid . cid, 4pb5£1b4d
terms . terms, 4b5£f1b5S

wl7=

JEW 2«SEP=74 043134 23906

##DRAFT#% JEW 2 SEP 74 7339PM The Environmental Control Package
' Appendixt Pseudp Implementations
Selected Procedures

state _ IF locvid = self THEN state ELSE empty); 4b5£1ib6

cia . call,cid; 4bSfic

END g 4b5€1d
$return% 4bS5q
SRETURN (terms, outcome, results, cid); 4b5al
END., 40592
4h593

milfw

JEW 2=SEP=74 04334 23906

AppendiX! Pseudo Implementations

‘ ##DRAFT#* JEW 2 SEP 74 73139PM The Environmental Control Package

Selected Procedures

(sresume) %resupe remote procedurey
PROCEDURE (pecid, parms, disp, mode 3 terms, outcome, results,

cid); 4bb
$declarations$% dhba
LOCAL INTEGER terms, outcome, c¢id, locvid, boss; 4bb6al
LOCAL LIST state, results; 4bbaz
LCCAL POINTER port, call: 4pbal
$locate control threads : 4b6b
call .. findcall (status=active & cid=pcid); 4h6b1l
IF dummy = empty AND call,type # head THEN 4b6b2
SABORT (codes "Unassignhed CID.")} 4béb2a
port . findport (status=3active & vid=call,forvid)) 4pbb3
$follow link {f anvs 4b6C
b0sS . Masters [LENGTH (masters))s T
loevid . CASE port,type OF 4pbe2
=head: 4pbc2a
IF port,forloc # boss THEN port,forloc ELSE selfy 4bbc2al
=tail: 4pbCc2hb
IF port,bckloc # boss THEN port,bCkloc ELSE self; 4bbc2bl
=link: 4bbCc2cC
IF port,bckloC = boss 4bbc2cl
THEN REPEAT CASE head 4b6c2cla
ELSE REPEAT CASE tails 4b6c2cib
ENDCASE gse1f/superior/inferiorg port,vid; 4b6c2d
%$local enyironmentsg 4b6d
IF locvid = self THEN 4bbd}
IF mode ¢ serial THEN 4bbdla
S§ABORT (code, "Resume self serially only,") 4bhbdlal
ELSE 4bbdib
BEGIN 4bbdibi
terns . resume (call,state, parms g outcone,
results, state) 4p6dib2
results _ dspres (results, disp); 4b6dib3 |
END 4bb6dib4
$remote environments 4bbe
ELSE dbbel
BEGIN dpbela
$propagate resumption$ 4b6eld
IF cal),terms # wkng THEN 4bbelbl
sndpth (port,compath, LIST (resume, call,forcid,
parms, disp)); 4bbeibla
g¢serial resumption$ 4b6elc
IF mode = serial THEN 4bbelc)
WHILE (QUTCOME OF (terms _ getrtn (port,compath
! outcome, results)) # success) DO NULL 4phelcia
$paralle]l resumption% 4b6etd

»]G=

JEW 2«SEP=74 04334 23906

. ##DRAFT#% JEW 2 SEP 74 17:39PM The Environmental Control FPackage

Appendix: Pseudo Implementations
Selected Procedures

ELSE 4bbeldl
IF OUTCOME OF tstpth (port,compath) = syccess 4b6eldla
AND QOUTCOME OF (terms .. getrtn (port,compath 1@

outcome, results)) = success THEN 4bbeidlb

port,wkng . FALSE 4bbeldlibl

ELSE terms .. wkng 4bbeldic

END} 4b6eye
$release ClD% 4p6f
IF terms = exit THEN 4bbfl
BEGIN 4bbfila

BUMP DOWN port.,entcnts 4b6f1D
call,status . freej 4bsflc

cid - emptys 4b6fld

END 4p6fle

ELEE 4bbhf2
BEGIN 4b6f2a
call,terms . termsj; 4b6£2b
call,state _ state} Abbf2c

cid - call,clid) 4pb6£f2d

END} 4pb6fle
$returng 4b6g
SRETURN (terms, outcome, results, cid); 4bbgl
END, 4bbg2

JEW 2«SEP=74 04:34

##DRAFT## JEW 2 SEP 74 7:130pPM The Environmenta) Control Package

‘ AppendiX: Pseudo Implementatiocns
Suybroutines

Subreutines

(getrtn) %accept return from adjacent enyironment$
PROCEDURE (port § terms, outcome, results, cid)}
gdeclarationsg

LOCAL INTEGER terms, outcome, cid, op, pkid, pcid,
ansver;

LOCAL STRING pname?

LOCAL LIST parms;

LOCAL WILD results, ardgs, mods, disp;

$fetch message from adjacent environment$%

LIST (op, pkid, pname, args, mods, disp) / LIST (op,
pcid, parms, disp) / LIST (op, terms, outcome, results,
¢id) . revpth (port,compath);

g$return with procedure return%
IF op = return THEN
BEGIN
IF terms = exit THEN BUMP DOWN port.,entent;
port,wkne .. FALSE)
‘ SEXIT (success, terms, outcome, results, cid);
END3
%fleld call/resumption of local procCedure%
masters [BUMP LENGTH (masters)) . port,vidj
terms ., IF ¢cp = call THEN
THEN $call (self, pkid, pname, args, mods, disp,
sérial 3 outcome, results, cid)
ELSE $resume (pcid, parms, disp, serial i outcome,
results, cid);

BUMP DOWN LENGTH (masters)s

snépth (port,compatn, LIST (return, terms, outcome,
results, cid));

greturnsg
SEXIT (failure);
END,

wll=

23906

ac

4cl
4c1a

4clal
4cla?
4cial
4clad

4cib

4clipi
4cic
4clicl
4cicla
4clcib
4ecicic
4cicid
Aclcle
4cid
4cldl
4¢c142

4c1d2a

4c1d2b
4cld3l

4cld4

4cie
4clel
4cle?

4cleld

. ##DRAFT## JEW 2 SEP 74 7:139PM

JEW 2«SEP=74 04334 23906

The Environmenta) Contro) Package
Appendixi Pseudo Implementations

Subroutines
(dspres) %dispose of procedure results$g

PROCEDURE (rawres, disp ! results)) dec?2
$declarationss 4c2a
LOCAL INTEGER i; 4c2al
$individualized dispositiong 4c2b
IF TYPE disp = list THEN 4c2bl
FOR {1 T0 LENGTH (rawres) DO dc2bla
CASE disp i) oF 4c2blal
sreturns NULL, dc2blala
=discard; rawres [1) . empty} 4c2blaib
ENDCASE 4c2blailc
BEGIN 4c2blalc]
gwrdata (disp (1), ravres (1)) 4c2blale?
REPEAT CASE discard; 4c2pblalcel
END 4c2blalcd
gblanket disposition% 4c2c
ELSE 4c2c!
CASE disp OF dc2cia
sreturni NULL; 4c2clal
sdiscard; rawres . emptys 4c2cla?
ENDCASE 4c2clal
BEGIN 4c2ciala
swrdata (disp, rawres (LENGTH (rawres)])i) 4c2cialdp
REPEAT CASE discard) 4c2ctlaic
END3j 4c2clald
sreturng 4c2d
SEXIT (success, rawres); 4c2dl)
END 4c2d?2

.22-

JEW 2=5SEP=74 04:34

##DRAFT#% JEW 2 SEP 74 7139PM The Environmental Control Package

' Appendix; Pseudp Implementations
Internal Globa) Data Structures

Internal Global Data Structures
GLOBAL RgCORD port

INTEGFR vid, $VID to which this port correspondss
INTEGER status, gstatus of this VIn#

$free == no environment associated with VID%

gactive == environment assigned to VIDS%

$dead o= €nvironment assigned to VID but itfs dead%
INTEGER type, grelationship of remote environment%

%self mw= the nost environment$%
$syperior =« host environment’s direct superior$%

$inferior == a direct inferiors
%head == a VID obtained (as headyid) via SGETHND%
%link == sypport for SGETHND VIDs known elsewhere$
stail =« 3 VID Optained (55 tailvid) via SGETHND%
‘ INTEGER bekloc, SvID of previouys environment in chain%

$self == if this is the heads

INTEGER bekrem, %VID of link element in previous

environment$%
$self == if this is the headg

INTEGER forlec, $VIp of next environment in chain%
2self == if this is the tails

INTEGER forrem, $VID of link element in next environment$%

$self == 1f this is the tail%
STRING envname, genvironment name%
%null == unless direct inferior%
INTEGER compath, %$IEC path handlel
%nyull =+ (for now) unless direct inferior/superiors

INTEGER entent., 2¢ sent CALLs stil)l awaiting EXITs%
BOOLEAN wkng, STRUE {f sent CALL still awaiting RETURNg
LIST pklist, $PKIDs for accessible local packagesy

LIST opnpKlist) %PKIDs for open local packages$

23w

23906

4d
4d}

4dla
4dib

4dib1
4d1b2
4d1b3

4dic

4dicl
4d1c?2
4dlc3
4dlca
4dlch
4di1ch

4did
4did1l

ddle
4dlel
4d1f
4d1£1
4d1g
4d1q1
4dihn
4dini
4d11
44111
4413
4dik
4d11l
4a1im

JE¥ 2«SEP=74 04334 23906
##DRAFT#% JEW 2 SEP 74 7:39PWM The Environmenta)l Control Package
‘ Appendixt Pseudp Implementations
Internal Globa)l Data Structures

GLOBAL RECORD call 4d2
INTEGER cid, %CIp to whieh this call element corresponds% 4d2a
INTEGER status, %status of this CID% 4d2p

tfree == np call assocliated with CID% 4d2b1
gactive == call assigned to Cin% 4d2b?2
INTEGER type, gtype of elements 4d2c
$head == CID returned to calling procedure% 4d2c)
%link ==~ support for CID returned elséewhere 4d2c2
INTEGER forvid, %VID of environment with next element in
1ink% 4d2d
INTEGER forc¢id, %CID of call element in next environment$ 4d2e
INTEGER terms, STERMS with which procedure RETURNed% 4d2¢
LIST Statey %Procedure state record% 4d2q
. GLOBAL RECORD paek 443
INTEGER pkid, 2PKID to which this packade record
correspondss 4d3a
STRINC pknarey %package names 4d3p
INTEGER opnent) %number of environments with package open% 4dic

GLOBAL LIST mastersy) %VIDs of calling environments% 4d4

$top element == VID of controlling environment$ 4dda

wlid=-

JEW 2«SEP«74 043134 23906

##¥DRAFT#% SEVMCTL
The Environmental Control Package

3=S5EPmT74

James E, White
Augrentation Research Center

Stanford Research Institute .
Menlo Park, Californjia 94025 |

SEVMCTL is an Organizational tool that operates ¥ithin the setting
provided by the Procedure Call Protocol (PCP =» XxXXXX,), with
. which the reader of the present document is assumed familiar,

-.?-

JEW 2-SEp=74 04335 23907

. #»#DRAFT## JEW 2 SEP 74 7:41PM The Low=Level pebug Package

(J23907) 2=SEF=74 043135331 Titles Author(s)s James E, (Jim)
white/JEw; Distributiongs /NPG([INFO=ONLY]) JBP([INFOwONLY]) RWW(
[INFO=ONLY]) 3 SubeCollectionsy SRI=ARC NPGy Clerksy JEW;

Origing < WHITE, PCP=LLDBUG,NLS16, >, 2=SEP=74 01818 JEW jp3; #4848

wain

JEW 2=SEP=74 04:35 23907
l *#DRAFT#¥ JEW 2 SEP 74 7141PM The LoweLevel Debug Fackage

One of a series of related documents,

JEW 2=SEP=74 04135
. ##DRAFT#% JEW 2 SEF 74 7:141PM The Low=Level Depug Package

INTRODUCTION

The Low=Level Debug Fackage (package namess$LLDBUG) contains those
procedures and data structures wnich a remote environment requires
to debua the host environment at the assembly=language level, The
package contains procedures for manipulating and searching the
host environment’s address space, for manipulating and searching
its symbol tables, and for setting and removing breakpoints from
the environrent?s address space, It contains data structures
which hold environment characteristics and state jinformation, and
the contents of program symbol tables,

This package is apprepriately supplied with any environment that
can be usefylly modeled as data apd executable code, resident {n a
single address space (consisting of an ordered set of words,
addressed 0 through nj), and executed by means Oof a single program
coynter (PC).,

Throughout this document, the following shOrthands denote,
respectively, @ program symbol, and an address inh either absolute
Oor symbelic forms

. SYMBOL¥ ==> tplname: symname% STRING
ADDRESS# ==> INTEGER / LIST (SYMBOL%, offsets INTEGER)

23907

1a

ib

ic

icl
1¢c2

JEW 2=SEP=74 043135 23907
##DRAFT#% JEW 2 SEP 74 73141PM The Low=Level Debug PFackadge
‘ Procedures
The Address Space

PROCEDURES 2
The Address Space 2a
Read address space 2al
SRDCORE (strtaddr, wrdcnt, encoding => values) 2ala

This proCedure retrieves from the host environment’s address
space, the current contents VALUES of the contiguous bplock
of WRDCNT words beginning at address STRTADDR, ENCODING
specifies the manner in which the contents of each word are

to be encoded for returnt z2albp
TXT: as teXt (result type = STRING) 2albl

CDE; as an executable instruction (result type = STRING) 2a81b2

INT? 8s a signed integer (result type = INTEGER) 2albl3

WRE$ uninterpreted (result type = WORD) 2aibié
Argument/result tvpest zalc
. strtaddre ADDRESS# 2aici
wrécnt =« INTEGER 2alc?2
encoding= INTEGER [TXT=0 / CDE=1 / INT=2 / WRD=3) 2alc3i
values = LIST (STRING / INTEGER 7/ WORD, ,44) 2alcd

Write address space 2a2
SWRCORE (strtaddr, wrdent, values, encoding) 2a2a

This procedure replaces the current contents of the
contiguous block of WRDCNT words beginning at address
STRTAPDR in the host environment®s address space, with the
new values VALUES, ENCODING specifies the manner in which
the new contents of each word have been encoded by the

invoking environment (same as in SRDCORE), 2az2b
Argument/result tvpes: 2a82¢
strtaddr= ADDRESS# 2azc]
wrécnt =« INTEGER 2a2c?2
vajues = LIST (STRING / INTEGER / WORD, ,44) 242c¢3
encoding= INTEGER [TXT=0 / CDE=l1 / INT=2 / WRD=3) z2a2cé

=)=

JEW 2=SEPw=74 04135

##DRAFT#* JEW 2 SEP 74 7141pPM The lLow=Level Debug Package

‘ Procedures
The Address Space

Search address space
SSEARCH (strtaddr, wrdent, value, encoding, mask => addrs)

This procedure searches the contiguous block of WRDCNT words
beginning at address STRTADDR in the nost environment’s
address space, for those words ADDRS whose content matches
VALUE, after both have been ANDed with the mask MASK,
ENCODING specifies the manner in which the comparand VALUE
has been encoded by the inveking environment (same as in
$WRCORE) 4

Argument/result tvVpes!

strtaddr= ADDRESS#*

wrdent = INTEGER

value = STRING ¢/ INTEGER / WORD

encoding= INTEGER (TXT=0 / CDE=1 / INT=2 / WRD=3)
mask = WORD

aders = LIST (ADDRESS#, ,.,)

23907

233

2a3a

2a3b
za3c

2ai3ci
2aldc?2
2a3c3
2a3c4
2a3ch
2aidce

‘ ##DRAFT## JEW 2 SEP 74 7:141PM

JEVW 2«SEP=74 04135

The lLow=Leyel Debug Package
Procedures

Symbo] Tables

Symbol Tables

Dpen sympol table

SOPSYMNT (tblname)

This procedure opens the host environment’s symbol table
TBLNAME ,

Argqument/result tvpes!

tblname= STRING

Close syrbol table

SCLSYMT (tblname)

This procedure closes the host environment’s
previously=opened symbo]l table TBLNAME,

Argument/result tvpes

tblname= STRING

Create symbol

SsCRTSYM (symbol, valye)

This procedure adds the symbol SYMBOL with value VALUE to
one of the host environment®’s previously=opened symbol
tables (implicitly named by SYMBOL),

Argument/result tVpes?:

syrbol= SYMEBOL#*
value = ADDRESS#

Delete symbol

SDELSYM (symbol)

This procedure deletes the symbol SYMBOL from one of the
host environment’s previously=opened symbol tables
(implicitly named by SYMBOL),

Argyment/resuylt tvpPes!

23907

2b
2b1

2bla

2bib
2bic
2blci
2b2

2b2a

2b2b
2b2c
2b2cl
2b3

2b3a

2b3b
2b3c

2b3ci
2bi3c?2

2b4d

Z2bda

2b4b

2béc

JEW 2«SEP=74 043135

##DRAFT#% JEW 2 SEP 74 7:141PM The Loww=Leyel Debug Packave

. Procedures
Symbol Tables

syrmbole SYMBOL#*
Read symbol value
SRDSYM (Symbo]l => value)
This procedure returns the value VALUE of the symbol SYMBOL
in one of the host environment®s previouyslysoOpened symbol
tableg (implicitly named by SYMBOL),
Arguyment/resylt typest

symbel= SYMBOL#*
valuye =~ INTEGER

Write symbol value
$WRSYM (Ssymbol, value)
This procedure assigns the value VALUE to the symbol SYMBOL
' in one of the host environment®s previously=opened symbol
taples (implicitly named by SYMBOL),

Argument/result typesi

symbol= SYMBOL#»
value = ADDRESS#

Fit valye t0 symbOl table
$FTVAL (comparand, tblhame =«> symbol, value)

This procedure returns the name SYMBOL and value VALUE of
the syrhol, in the host environment’s previously=opened
symbol table TBLNAME (or in any of its symbol tables, if
TBLNAME 1s EMPTY), whose current value is closest to
COMPARAND,

Argument/result typesi
comparand= ADDRESS#
thlname =« STRING / EMPTY

symbol = SYMBOL#*
.yalue = INTEGER

LR

23907

2bdc)
2b5

2b5a

2b5b
2b5¢c

2b5¢cd
2b5c2

2b6
2bba

2b6b
2béC

2bbcl
2b6C2

2b7
2b7a

2b7b
2blc

2b7ct
2b7c?2
2b7¢c3
2b7¢c4

JEW 2=SEP=74 043135

Procedures

. #%#DRAFT#% JEW 2 SEP 74 7341PM The Low=Level Depug Package

Breakpoints

Breakpoints
Create breakpoint

SSETBRK (addr, pcdent)
This procedure sets a breakpoint at address ADDR in the hgst
envirenment’s address space, The PCDCNTth time the
envirenment’s PC reaches the breakpoint, the environment
will be "frozen" (i,e, its state will be stored in SEVMSTA),
the primitive SNOTE (BRKPNT, addr) will be invoked, and then
the enyironment will be "thawed" (i,e, its state will be
restored from SgpVMSTA),
Argument/result typest

adér = ADDRESS#
pcdent= INTEGER

pelete breakpoint(s)
SREMBRK (addr)
This procedure removes the breakpoint previously set at
address ADDR in the host environment®s address space or, 1if
ADDR is EMPTY, removes all breakpoints from its address
space (as dpoes cloSing SLLDBUG),
Argument/result types:

adére ADDRESS» / EMPTY

Execute intruction
S$EX (inst, enccding)
This procedure thaws the host environment, executes the
single instruection INST, and then reefreezes the
envircnment, ENCODING specifies the manner in which INST
has been encocded by the invoking environment (same as in
S$WRCORE),
Argument/result types?:

inst = STRING 7 INTEGER / WORD
encoding= INTEGER ([TXT=0 / CDE=1 / INT=2 / WRD=3]

mfh=-

23907

2¢
2ci

2¢€1la

2cib
2cic

2cicl
2clce2

2¢2

2c2a

202b
2c2c
2c2ci
2¢3

2c3a

2¢3p
2¢3c

2c3ci
2c3c2

. ##DRAFT#» JEW 2 SEP 74 T7:141PM

JEW 2-8SEP=74 04335
The Low=Level Debuq Packaaqe
Data Structures

DATA STRUCTUREE

SEVMSTA Environment state

This data structure holds the host environment’s state, The
environment®s state is saved in SEVMSTA:

1) whenever SLLDBUG i{s opened,
2) whenever the environment reaches a breakpeint, and
3) after an instruction has been execuyted by means of SEX,

and restored from SEVMSTA;

1) whenever SLLDBUG is closed,

2) whenever the enyironment is continyed from & breakpoint
({,e, when SNOTE retuyrns control).,

3) pefore an instruction is executed by Means Of SEX,

If the host environment supports the Environment Control
package, deseribed in another document, SEVMSTA represents the
environment state (if any) most recently saved by means of the
SINTEVM procedure,

SEVMSTA is somewhat environment=depeéndent in format and
content, but always contains at least the contents of the
environment®s proGram counter PC and its general registers REGS
tif any),

Data structure types

seymstag LIST (pci: ADDRESS#, regsi LIST# (WORD, ,,4)s any,

see)

SEVMCHR Epvironment characteristics

This read=only data structure contains certain characteristic
information about the host environment,

SEVMCHR is somewhat enviropnment=dependent in format and
content, but always contains at least the number of words ASIZE
in the environment*s address space, and the width WRDLEN in
bits of each word,

Data structure types

sevmchr: LIST (asizei INTEGER, wrdleng INTEGER: @NnYy se4)

23907

3a

3al
3ala
3ailb
3alc
3az2
laza

3a2p
dal2c

3a3

3a4d

3as

jaSa

3b

3bi

b2
b3

ib3a

JEW 2=SEP=74 04335
#%DRAFT#% JEW 2 SEP 74 7:341PM The Low=Level Debug Fackage
. Data Structures

SSYMTRBS Svymbol tables
This readg=only data structure represents the contents of all of
the host environment’s opeén symbol tableg, and contains the
name SYMEBQL and value VALUE of each symbol in each open table
TBLNAME,
pata structure type;

$symtbss LIST (tblnamej LIST (symbol: valueg INTEGER, ,,.)/

see)

- i) -

23907

3ci

3c?

3c2a

0w

JEW

2=SEP=74 04335

23907

JEW 2=~SEP=74 04135

##DRAFT#% SLLDBUG
The Low=Level Debug Package

I=SEP=74

James E, White
Augmentation Research Center

Stanford Research Institute
Menlo Park, California 94025

SLLDBUG is @ debugging tool that operates within the setting
provided by the Procedure Call Protocol (PCP == XxXXXX,), with
which the reader of the present document is assumed familiar,

23907

. Ccomments on draft (23886,)

(J23908) 3=85EpP=74 07:523113
Distributions /DVN([INFO=ONLY
SRL}

Titles

)

)

!

SRL 3=SEP=74 07:52

Author(s)s Susan R, Lee/SRLj

Sub=Collections:

SRI=ARC; Clerk:

23908

SRL 3=SEP=74 07:52
' comments on 4raft (23886,)

I Just finished reading your draft on transisting from old to new nls
(23886,), My enly thought was that the section on recognition should
precede the section on question mark since itfs discussed under
question mark, Also, I was reading quickly cbut don‘t remember
anything about changes in TNLS like & » isnft jump to file return
something different? ILooks good and should be helpful, Heard you
all had a d9o0d Chineése banquet = hope to be back in CA oné of these
months!

23908

DYN 3=SEP=74 09300 23909

‘ My Vacation Tire

(J23909) 3I=SEP=74 0931003313 Titled Author(s): DirkK H, Van
Nouhuys/DVN; Distributions /RWW([ACTION)) SLJC [INFO=ONLY]) JOAN(
(INFO=ONLY 1) JMB([INFO=ONLY)) KIRK([INFO=ONLY)) JCN(C (
INFO=ONLY 1) 3 Sub=Collectionsi SRI=ARCj; Clerki: DVN)

DVN 3=5EP=74 09300
My Vacation Tire

I'm schedyled to be on vacation next week, Both for geting out the
documentation and personal convenience it would be better for me to
be away the following week (Septi6=20) and ynless sOme One sees
problems I will do so,

23909

&SRI=ARC 16=0CT=74 17323
TNLS=8 Primer [ADVANCE COPY) SRI=ARC 16 0OCT 74

INTRODUCTICN

NLS or online system is the name of the compyter systenm
you will be using, Online means you receive immediate feedback
aboyt what you have just typed at your terminal,

NLS has facilities to let you do almost everything you
nNeed with texti ecompose ity edit ity send it to (and receive
it ¢rom) other persons) file it in one or More categories) cite
and easily obtain documents! search for docyments by author and
subject! search in documents by word or phrasel and print in
practically any format,

This primer demonstrates the commands used for Writing a
memo, editing it, and distributing it to other people, This
process is explained foyr TNLS which is the typewriter version
of NLS, You will find {t useful to be at a terminal, typing in
the commands and text as the primer degcribes them,

Although this primer describes specific functions, we add
notes at each step which generalize the operation, Given this
primer as a model, the inexperienced user should be able to
perform any of the operations described here and refer to the
full NLS docuymentation for moOre information aboyt the systenm,

Throughout this primer, we spell out the sequence Of Keys
youy strike t© make sOmething happen and separately show what
will appear on yOur terminal i{n respOnse, Keys that 40 not
print, such as carriage return, altmode (called "escape" on
some terminals), and eontyol characters, are named ingide angle
brackets: €,9s SCR>, <ALT>», and <cTRL=C>, <> represents a
Space, Infermation printed by the system is shown in a speclal
typeface, The cantrol Key (CTRL) is used like the shift Key,
Yoy hoeld it down while you type the letter that is after the
hyphen,

23911

page 2

23911

&SRI=ARC 16=0CTe74 17323 23911
TNLSe8 Primer ([ADVANCE CpPY) SRI=ARC 16 OCT 74 23911

O0OPS,,,Xf yecu type an {ncorrect letter or nymber, just type a
backspace or <CTRLe=A> {mmediately following your error and then
you can type the correct character,

Are you stuck?? Confused?? Don’t know what to type next??

Typing "?" will show you the next possible alternatives,
Typing <CR> will put vOu where yoy were before you typed
"?."

Typing <CTRL=Q> will provide you with information and

explanations about NLS,
Typing <CTRL=X> will put You where You were before You
typed <CTRL=Q>,
For mere about getting information via <CTRL=Q> see the
last section ef this primer,

What is the meaning of <CRr>»?
A, County Registrar
B, Cute Reindeer
€, Carriage Returp

‘ The correct choice is C, when you see <CR>, use the return or
carriage return on your keyboard,

page 3

TNLS~8 Primer (ADVANCE COPY)

&SRI=ARC 16=0CT=74 17123

INSTRUCTION

Most users ¢f this primer will reach NLS through the ARPA
Network, For the current connectien procedures at your site,
see some one knewledgeable in NLS, When you have made your
connection you will see "TENEX 1,## ,#% SITENAME 1 #% #8" which
is called a "neader" and an "a@" which is a signal called a
herald, The herald tells you that TENEX, (a system within the
computer that assigns seryice to users) is waiting £Or yoOuy, the
user, to identify yourself,

1, To identify yourself to the TENEX system at Office=l,

!O!OQQ!l!l.!9!0000..0!0!.!.'0!'.!iti0000.!000'.!0!'!0000!!00

If you type, you should see}
109in<CR> @login
DIRECTORYNAMESCR> (USER)DIRECTORYNAME
PSWD<CR> (PASSWORD)
<CR> (ACCQUNT ¢)

JOB # ON TTY ¢ DATE TIME

If You do not Kmo¥ a DIRECTORYNAME or PassWord, ask the
person in your organizatien who usually helps people with
NLS or call (415) 326.6200 extension 3630 between Bam and
S5pm pacific time,

2, To enter the TNLS systemg

’ ' ' | 1] s
SRR NN RN PR RN a et a e AR RRRRRRRRNNRRRNRy

(N RN RN N NN NN
If you type, you should seej
nl1S<CR> @nls
BASE C1i

whep you enter NLS, it prints "Base" which {s the herald
of {ts central subsystem called Base, 1IN using <CTRL=A>
to cOrrect a mistakey, when yoy see only "Bage Ci", you
may begin again,

page

23911

SRI-ARC 16 OCT 74 23911

4

&SRI=ARC 16=0CT=74 17123 23911
TNLS=8 Primer [ADVANCE COPY) SRI=ARC 16 OCT 74 23911

' R Since you are going to write a memo, You will need an
empty f£ile (or workspace) in which to put it, You give the
file a name so that you ¢an call it back in future NLS
sessions,

i ‘ [' '
AR AP R RN r R a RN RN RRR AR R RNt

(R NN NN R NNNEN]
If you type, you should seey
c>crfmemo<CR> BASE C3; Create CyFile Timeme
< DIRECTORYNAME, MEMO,NLSj)i >
BASE C3

PR R RN R RN RNttt RN Rt R R R AR RN RN R RN RN RS

Where NLS expects to do something, it asks you for a
command word by prompting you with a ¢t and where |t
expects you to type in gome text, it prompts you with Ti,

The system ysually finishes or completes a command word
after you have typed in the first letter, 1IN the case of
some comands ysed less often, you have to0 type a space
and then one, two, or three letters, This ig called Terse
recognition, NLS offers other modes of recognitien, To
find eut about them, tyYpe <CTRL»Q> and then the words
"eommand recoanition,"

You new have a new apnd empty file named MEMo, Filepames
may be up te 29 letters and digits beginning with a
letter, File names may not include spaces, commas, Oor
pericds,

I1f vou leave the system without £inisning YeuUr werk, vou
can retrieve it (or any other stored f£ile) in TNLS by
using the command, pecad File, YOU DO NOT NEED TO DO THIS
NOW, becayse yoyr file named MEMO is already loaded,

I R RN EENENENNNEENEEHN)
If you type, you should seeg
1fmemo<CR> BASE CjLoad Cy File T: memo
BASE C3

page §

&SRI=ARC 16+0CT=74 17123 23911
TNLS=8 Primer [ADVANCE COPY] SRI=ARC 16 OCT 74 23911

4, NoWw that You have created MEMO, the syYstem has already
inserted sore information at the file’s beginning or at the
statement numbered 0, Statement 0 identifies MEMO to NLS and
is generally unused by you except te cite the beginning of the
file, To see the statement you are currently at, {,e,,
statement 0, type: \

' » ! !

The response will beq

BASE C1\
¢ DIRCTORYNAME,MEMO,NLSy1 >, DATE TIME IDENT 3499

BASE Ci

l!'ol.l0.0!O"..OO.l!lOO'.OOIOQl..!.!'l..""'O'Ol..'ll!....!.i
5, You begin writing your memo by indicating you are going
to ingert a stagement into yoyr file MEMO starting after
statement 0, and tnen by actually typing in some text,
StateMeNts are coMparable to paragraphs of text, The systenm
will automatically moye the print head back when it runs out of
room at the end of a line, You do not need a carriage return at

. the end of each line, The lines may not be the same as in the
examples, Note intentional typegoofical errors for future
correction,

If you type, you should seej}
is0<CR> BASE Ci Ipsert C; Statepent (to fo11o%W)A10
<CR> L3
Contradictions have TiContradictions have been
been alledged in our alledged {n our description
description of the of the elephant,
elephant <CR> BASE C1i

Notice vou are prempted for specific types ¢f input, in
this case A! asks yoy for an address, Tt fOr typein, An
address specifies a point in a file, In this case, you
gaye an address Of "after statement O" pecayse that was
where you wanted yoyr New statement to begin, If you
were creating a file that used an outline structure, LI
would prompt you to0 specify the level iIn the Outine where
you wanted to put each statement, In this primer you can
ignore Li by typing a <CR>,

page 6

&SRI=ARC 16=0CcTw74 17323 23911
TNLS=8 Primer [ADVANCE COPY) SRI-ARC 16 OCT 74 23911

After this command is executed, the statement
"Contradictions have been,,," is inserted after statement
0, $,e,, at the beginning of the file, and assigned the
staterent number 1,

6, Since statement numbers are invaluable for Keeping track
Of what statements are where, you will want to see them as youy
work on your file,

SRR RNttt RRR R R RN R R R RN RN RS

If you type, you should seeg

<>sevm<CRr> BASE Cy sSet C; Viewspecs Vim
BASE C¢

This comMand acecepts codeg that contrel the Myilew" you
hayve of Your memo) m makes the system nymber statements
in printing,

y As you enter statements into the file, you will

‘ periodically want to check how the memo looks as you go along,
You can look at all or part of vour file by printing it, Te
sete only the statement you are at currently, typer \

The respense will be;

SRR RN RN RNt an R R AR N RBRR R R R R AR AR Rt RERERY O
BASE Ci\

i Contradictions nave been alledged in our description of
the elephant,

BASE C3;

Later on when there are more statements in your file you
can see more by using the Print Rest command, described
in step 14,

&SRI=ARC 16=0CT=74 17123 23911
TNLS=8 Primer [ADVANCE COPY) SRI=ARC 16 OCT 74 23911

8, Step 5 showed you how to enter one statement, more
commonly, yeu will want to enter several statements, one after
the other, Instead of repeating the Insert Statement command
for each new statement, type the character <CTRL=E> at the end
of your first statement, This tells the system to continue
the Insert Statement command, we call this repeat insert, or
insert mode, Once you get in the insert mode, you end each
statement yeu type in with a <CR>, and then immediately type in
another statement, Followy your last statement with & <CR> and
a <CTRL=X>, This will take you out of the insert mode, To
add (after statement 1) three more statements to your file,
completing the rough draft Oof your Memog

If you type, you should seet
is1<CR> BASE Cilnsert Ci:Statement(to follow) Aill
<CR>» L:
The review meeting will be TiThe review meeting will be
at 3100<CTRL=e> at 3100<™E>
<CR> L
Only wise, bling men TIONnlY Wise, blind men shouldg attend,

should attend,<CR>

‘ <CR> Lt
A recurcive redefinition TiA recurcive redefinition

plan should i{merge, <CR> plan should imerge,
<CTRL=X> L
BASE C3

AR EE R R R R ey ey e e e e e N N N NN NN RN RN A

9. you haye now cempleted a roygh draft of your memec and want to
check it for completeness, typing errors, etc, To reyview the content
of the file you use the Print Rest command, The Print Rest command
shown in Step 10 starts printing from the cyrrent statement to the
end of the file, s0 you should first return to the beginning of the
file pefore you use it, (Other versions 0of the Print command are
deseriped below), The command £Or going tO the first statement you
wrote (statement 1) isi

If you type, you should seel

jai<CRr> BASE C! Jump (to) C: Address Al
BASE Ci

' ' :
R R R R R R R R R s e s e N N AN NN N NN

&SRI=ARC 16=0CTe74 17323 23911
TNLSe8 Primer [ADVANCE CoPY) SRI«ARC 16 OCT 74 23911

10, Use the Print Rest command to print the content of your memo
from where you are to the end of your file,

L
If vyou type, you should see}

pr<CR> BASE Cy Print CjRest OK3
{1 contradictions have peen alledged in our
description of the elephant,

2 The review meeting will be at 3:100

3 Only wise, blind men should attend,
4 A recurcive redefinieion plan ghoyld
imerge,

BASE C1

11, Now you might decide that statement 3 is superfluous, To delete
statement 3

. '.I......l'I.l."l.‘l.‘..‘..‘...l.lio'..l...l...I.l.l.l...l.......".l'.
I1f you type, you should see;
ds3<CR> BASE C; Dejete C; Statement cat) A3
<CR> 0K3
BASE Cj

12, you may also decide t0 add text tO the end Of statement 2, To
do g0 yoy use a command virtually identical to the ingert statement
command,

If vyou type, you should see!

1t2<>+e<CR> BASE Ct Insert Ci Text (to follow) Ai2 #e
<>in the project room,<Cr> Tt 4in the project roonm,
BASE C1

PRRR PRttt RN RRR RN RN RRRRRRRRRRRRRRY Y

The significant differepnce in this command from the version VYou
used to insert statements is that you specity where in the
statement You want the text te go, The space followed by "4el
after the statement number tells the gystem to insert the text
at the end of that statement,

page 9

&SRI=ARC 16=0CT=74 17323 23911
TNLS=g Primer (ADVANCE COPY]) SRI=ARC 16 OCT 74 23911

nse" {s & convenient way to point to the end o0f & statement,
However, {f you want tO insert text elsewhere in the statement
yoy muyst specifv exactly where, The easiest way to0 do s0 is toO
cite the place of insertion by content, Thuys instead of using
"se" youy Mmight have specified ""3:100"" with identical results,
The double pairs of guotation marks indicate that you use
guotes when you speecify content, Note that the specific
withinestatement loecation follows the statement Number and is
separated from it by a space, TNLS "reads" addresses from left
to right,

Note also that the primer asks you to type a a space at the
peginning of the insertion) that space avolds having ",,,3100in
the,,." appear in the file, .

13, If you strike \ you ecan look at statement 2 tec check the
changes,

LU
The response should

LN | Ul B B
look liket
BASE C\ .

2 The review meeting will be at 3300 in the project room,
BASE Ci

14, At this point you are ready to check your file for miner errors,
Print it again as you did in Steps 9 and 101

O!Ill'.ll!..l.ll..l'l...l'OIIOOOOQOCODOOOQOOOOUOOOOOQ.QOIQOQQ!OOQ.
1f you types you should seetl

1a1<CRr> BASE Ci Jump (to) Ci Address Al

pr<Cr> BASE ¢t print ¢c: Resgt OK:

1 Contradictions have been alledged
in our description of the elephant,

2 The review meeting will be at
3100 in the project room,

3 A recurcive redefinition plan
should imerge,
BASE C1

page 10

&SRI=ARC 16=0CT»74 17323 23911

TNLS=8 Primer [ADVANCE CoPY) SRI=ARC 16 0QCT 74 23911

Note that when yoy deleted the old statment 3, the system
renymkbered the remajining statements,

15, The most convenient way to correet the kind of typographical
errors found in this memo is by the Substityte Text command, This
command asks yOu fOr the cOrrect text and then the text you want
replaced (Or substituted for), You may specify only one change Or
several without repeating the command, Statement 3 contains two
misspellingst

[R NN NN NN N LN
If you type, you should see?
sts3<CR> BASE Ct! Substitute Ci Text (in) C?
Statement (at) Ai3
sive<CR> <New Text> T: sive
cive<CRrR> <01d Text> Ti eive
n (Finished?) Y/Ni
eme<CR> <New Text> Ti eme
ime<CR> <0l1d Text> Ty ime
Y (Finished?) Y/Ni
Substitutions Made ; 2
BASE C

Use this command cauytiously, You must eliminate ambiguities and
ayoid caysing the system to make substitytions that yoy donft
want, Feor example in the first substitution if youy had specified
ne" for "i" {nstead of "eme" for "ime", the system would have
changed ALL occyrrences of the the letter "i", Make the text
string ynigque to ayoid surprises,

16, To cheek statement 3.str1Ke \3
l"I!lO'l.lOI'.0.0l'.tl.'oOOQOIOI!'.OO!IOO0.00!0'0..0000!.!00'..00!"

The response should look like?

BASE Ci\
3 A recursive redefinition plan should emerge,

BASE Ci

17, The mere 1s finighed and you want to make a fresh copy of your
file that imcludes all your changes,

&SRI=ARC 16#0CTw74 17123 23911
TNLS»8 Primer (ADVANCE COPY] SRI=ARC 16 OCT 74 23911

If you type, you should seel

uf<CR> BASE Cpupdate Cg File OKy/Cy
< DIRECTORYNAME, MEMO,NLS;2 2
BASE Ci

18, A very abbkreviated Sendmail session is shown here to enhable you to
send MEMO to a speclfic distripution list, NLS has a very extensive
system for sending, distriputing, cataloging, indexing, and stering
doeuments (files), However, most of these steps are done automatically
(and invisiply) for vou throuygh the sendmall system, You begin by going
to a subsystem called semdmail, You give your memo the title Elephant
Meeting and then indicate te whom you want it distriputed and for what
reasons, Then you return to the subsystem Base,

K LR

1f you type, yeu should seej
as<CR» BASE C}; Gote (Subsystep) Cy Sepdpai) 0Ky
£<CR> SEND €3 File Ag
tElephant Meeting <CR> SEND Ct Title T3 Elephant Meeting
dajhbeCR> SEND Cy Distribute(for)Ci Action(to) T: Jjhb
didvn<CR> SEND C: Distripbute (for) C: Information

(only)(to) T: dvn
s<CR> SEND Ci8end (the mail) OKi
completed
g<CR> SEND ci1Quit OK/Ct
BASE Ct

To name the reciplents, You type in their IDENT which is a
strineg of characters that identifies a person, (You typed in
your IDENT in Step 1,), This reciplent list may be any lengthj
IDENTS must be separated by spaces or commas,

19, The file you Just created in NLS has been submitted to the
Jeurnal, anéd a ecopy Pas been made for cataleding and future reference
purposes, It is not necessary (although permissaple) for You to
maintain your duplicate version of the file, To delete the file,

page 12

&SRI=ARC 16=0CT=74 17123 23911
TNLS=8 Frimer [ADVANCE COPY) SRI=ARC 16 OCT 74 23911

SRR RN RN RN RN NNt r AR RNt RR N RN YRR

if you type, you shouyld sees

dfmemo<CR?> BASE C: Delete C: File Timemo
<CR> 0Kt
Deleted Files are:
€ DIRECTORYNAME MEMO,NLs31 >
BASE C!

20, Your werk session is over and you leave the gystem!

 FEEEEEREEEREEEEE R E R SR EE R R E R R RN NN RN
If you type, you should see}
<>1<CR> BASE C1 LoGout OK:

TERMINATED JOB #,USER DIRECTORYNAME, ACCT
##4, TTY # AT DATE TIME USED # in #

page 13

&SRI=ARC 16=0CTw74 17123 23911
TNLS=8 Primer [(ADVANCE COPY]) SRI=ARC 16 OCT 74 23911

HERE 1S SOME TNLS COMMAND VOCABULARY YOU HAVE USED AND SOME EASY
EXTENSTONS TO IT, THE EXTENSIONS ALL BEGIN WITH THE WORD "TRY" AND
INCLUDE SOME EXPLANATION OF THE COMMAND,

More about Kelp
Typing <CTRL=Q> will give yoeu information based on what you were
doing begore you typed <CTRL=QG>, Then {t will prompt you "T/.i",
For more information, type in any term you see Or the number of
one of the "menu" of sybjects that appears below each explanation
and then type a <CR>,

1f yOu tvpe = YOu will be able t© return to the last explanation
you were reading, 1If you say yes by tyPing "y", you will see this
jast explanatien again, If you say no by typing "n", you will be
given the chance to see the previoys explanation and so on,

File Manipulation Commands
Create File = createg a new flle
Update File « makes a fresh copy of the file with recent changes

Load File = calls up a previously saved flle

A Few Useful Ccontrol Characterst
<CTRL=X> aports commands befere you have typed <CR>,

<CTRL=0> gives you explanations about what you were doing and
allows you to ask for the meaninds of other terms,

«CTRL=E> allaWs yoU tgo Contipue to ipnsert statemepts,

Try alsos

<CTRL«S> prints out a suyccinct description of your command,

<CTRL=(p> Stops printing,

page 14

&SRI=ARC 16=0CT=74 17123 23911
TNLS=8 Primer [ADVANCE CoPY) SRI=ARC 16 0oCT 74 23911

Insert statement
Insert Text
Try Insert Word - the text you type {s inserted after the point

you specify and the system arranges spacing around {t for a
werd,

Editing

Delete statement

Try Delete Text « it requires that yoy specify the beginning
and ending locations of the text you want deleted,

Try Delete Word = yoy Only haye to specify one location

anywhere in the word you want deleted and spaces, Periods,
coOmmas, etc, are handled appropriately,

Moving Around In The File

. Jump to Ail ADDRESS<CR> = moves yeu to the address specified by
ADDRESS,

The ways you have learned to address are!
whele statements bY number’s;
within statements by "+e" for end of statement, and by
content "text", which searches for text in the remainder of
the file and {f found moves you to the last character of the
text vYou specify,
Seeing Your File
\ = prints the current statement

Try <LF> to print the next statement (<LF> is the Line Feed or
LF key on your terminal),

Print Rest = prints from your current statement tO the end 0f the
file,

page 15

&SRI=ARC 16~0CTw74 173123 23911
TNLS=8 Primer [ADVANCE COPY] SRI=ARC 16 OCT 74 23911

Try Print Statement = it is similar to the "\" cOmmand used in
Step 6 except that it allows vou to specify the address of the
(single) statement to be printed and (optionally) certain view
contrel codes such as the one you used in Step 5 to see
statement numbers’s,
sending Your Flle To nther persons

Goto Subsystem Sendmail
File « sends this file,
Title = gives your ftem a title

send for Actionee-specifies the recipient(s) and that you expect |
some action,

Send for Information==specifies recipient(s) for information
purposes,
Entering/Leaving NLS and TENEX
‘ Login = calls up the TENEX system
NLS = calls up NLS from Tenex |
Goto Sybgystem = To g0 fyOm ONe gubgystem tO0 ancther in NLS§

Logout = T0 leave NL§ and TENEX

page 16

TNLS=8 Primer

&SRI=ARC 16«0CT=74 173123 23911
[ADVANCE COPY) SRI«ARC 16 0OCT 74 23911

TNLS=8 PRIMER

SRI=ARC

16 OCT 74
Augmentation Research Center

STANFORD RESEARCH INSTITUTE
MENLO PARK, CALIFORNIA 94025

&SRI=ARC 16=0CT=74 17123 23911
SRI=ARC 16 0CT 74 23911

TNLS=8 Primer (ADVANCE COPY)

(J23911) 16=0CTe74 17323y Title: Author(s): Augmentation Research
center /&SRI=ARC) Distributiont /JODAN([ACTION) please make this part
of the DIRT notebook) DIRT([INFO-ONLY)) KWAC([INFO=ONLY] Updated
s{nce the architects meeting) j Sub=Collectionsiy DIRT SRI=ARC NIC KWAC)
Cierks DVNy Origin: < WEINBERG, PRIMER,NLS)14, >, 16=0CTw74

10143 POOH 311

page 1

&SRI=ARC 16=0CT=74 17313 23913
NLS=8 Equjivalents of NLS=7 Commands

THE NLSe8 EQUIVALENTS OF THE NLSe7 (0ld NLS) COMMANDS 1

To assist those who have peen using NLS=7 in changing over to

NLS=8 we have prepared this simple alphabetic list of NLS=7

commands with the equivalent NLS=8 command next to them on the

right, Both TNLS and DNLS are included, Where a command exists

only in TNLS or only in DNLS, it is noeted in angle brackets, All

NLS«8 commands are in the Base Supsystem unless noted in square

brackets, The journal item "New and Changed Features in TNLS=8"
(hjournal,31039,) gives a prose account of most of the

differencees between NLS=7 and 8, la

Where an NLSe8 command i{s phrased quite differently from the NLS=7
command, it appears in formal NLS syntax, The definitions Of the
three mogt {mpOrtant ynfamjliar terms in NLs command syntax
folloy, For more information aboyt formal NLS syntax, see the NL§

command Ssumrary (userguides,summary,) and the Help command, ib
Definieicongi ib}
SOURCE}

where NLs syntaXx requires a sOURCE it usyally expects the
address of text already online, but you can also type in new
‘ text, In TNLS, SOURCE wants either an ADDRESS eor an optional
TYPEIN of text (prompted by A/[T)i), In DNLS you can also BUG
(prompted by T/B/([A)1), When pointing (with BUG or ADDRESS) to
group or Text, two BUGS or two ADDRESSES are needed, ib2

DESTINATIONG

DESTINATION wants you to0 point to some location in a flle, in

TNLS, DESTINATION equals ADDRESS (prompted by Asg), In DNLS you

can alsc BUG (prompted by B/A3), DESTINATION {s used in

commands to direct the yverb and nominal commandword operators

"where" to operate, ip3

CONTENT

CONTENT wants Vou to type in characters, an address, idents, or
£ileaddress, etc,, You may also put in the address of the

content if You precede the address with <CTRL=u>, ib4d

Angle prackets also inclose a few explanatory comments, i¢

&SRI=ARC 16=0CT=74 173113 23913
NLS*8 Equivalents of NLS=7 Commands

. snwasnwennnses NLSe] sesvesncemcenmussronncenssrrmenannrenany NLSwE swenceucsawenw

Append weewssswssneswewwe==me= Append Statement
Dreak eesssmsssssmusemsswwew=s Break Statement
CopYy Character semawwewsww=wew Copy Character
COPY WOrd wewwasnsmwewswswewsa= Copy Word
COPY NuMber ewesmsweswwmseswses=s COpy Number
copy visible w=vesesnsnsweneews Copy Visible
copy invisiple =emewesemwwsw=w COpy INvisible
copy link weswssercccvesere=en Copy Link
copY teXt seumwmsmescmwseneews COPYy TeXt
copyY statement w==e=resessss=s= Copy Statement
. copy branch sesesewawwnewawewes Copy Braneh
CopY pleX weesememssswmswnmewa= Copy Plex
COPY QGroup semwewsmwmemsweew== Copy Group
delete character wes=eewwwewwws Delete Character
delete WOrd wwesememeen=ewwnas Delete kord
delete number we=ewswewwswnesw=s Delete Number
delete visible ====reessem==ans Delete Visible
delete invigible mewesesesewws Delete Invisible
delete link e=esememveveverewese«s Delete LiNK
delete text mwesemcrwmese==wes Delete Text
delete statement we=wwewe=wewewes Delete Statement
delete branch eesmawwewse=se=s Delete Branch

delete plex L L T) Delete Plex

&SRI=ARC 16~0CT=74 17313 23913
NLS*B Equivalents of NLS~7 Commands

‘ mweenevesnens NLSe] mesemsvnsenvencsncsnsvesenavenavennns N[Swl wenvanernavans

delete Qroup =eeesevesms====== Delete Group

execute assimilate statement = Copy Statement (from) SQURCE (to follew)
DESTINATION OPTION (Filteredi) VIEWSPECS
LEVEL=ADJUST OK

execute assimilate branch ==« Copy Branch (from) SOURCE (to follow) |
DESTINATION OPTION (Filtered;) VIEWSPECS
LEVEL=ADJUST OK a

execute assimjilate plex ===== Copy Plex (from) SOURCE (to follow)
DESTINATION OPTION (Filtered;) VIEWSPECS
LEVEL=ADJUST QK

execute assimilate group ===« Copy Group (from) SOURCE (to follow)
DESTINATION OPTION (Filtered:i) VIEWSPECS
LEVEL=ADJUST OK

execute browse mode enter ==== Set Temporary (modificatioens)

.execute broWwse mode leave mew=s Reset Tepporary (modifications)
execute catalog numbers ==-e=ee [Sendmail) Reserve

execute connect to terminal <DNLS) ===
Connect (to) Display <DNLs>

execCute dQV1Cl LYPe mrvamawwmmw 51mu13t° (termind) type)
execCute edit <TNLSY> =ewwemewaw pdit Statement <TNLS>
execute file verify wewmeweee= yerify rFile
execute identification submode STNLS>}
execute ldentification status <TNLS? w=e
[sendmail) Show Record (for Ident)
<This is the only funetion of the old ildent
system avallable to Jeneral users Iin NLS»~8,>
execute insert lehuenticl === Copy Seguential
execute Journal eresmsssesmsmes Goto Sendmail

distribute document<INLS> « [Sendmall) Forward

hardcopy distribution ee=eee [Sendmail) 0ffline

&SRI=ARC 16=0CT=74 17:13 23913

NLS=8 Equivalents of NLS=7 Commands

‘ rensunuwnvenn NLSe] sescasveccsnsnnmascnswneswnenesawens [Sof sreneeanerens

insert command form mewese= Insert Sendmail (form)

TCENLeyr comuvemeruswsnmwnus Quit To Sendmall
<works only in same NLS sessionj) journal
work is not saved after Logout>

SUBMIL sewesemewnvpnesevnens
[Sendmail) Statement
(Sendmail) Branch
(Sendmail) PlexXx
[Sendmail)] Group
[Sendmail) Message
[Sendmail) File
[Sendmail) Offline

(sendmail) Authors

SGULHOYrS "escswmescrsuvamesnw

<NO EQUIVALENT==Clerk is automatically assumed

Clerk L L T L

Comments secsemencansanwnes
disttibuticn LA L
JO weweressueememeaesnnesne

interrogate
Keywords semeweasnsssusnpenes
NUMbEr "eesmesmssnssnsansnan
Obsoletes docuMeNt(g) ww=e=
place lipk sesmencacscnanes
process command £Orm eeeses
SLALUS meswemmnwrenenennnes

subcollectien(s)

tltle L s L L L P LT

Updates document(s) wewweus

to be loggedein user>

(sendmail)
(Sendmail)
(Sendmail)
(Sendmail)
(Sendmail)
(Sendmail)
(sendmail)
(sendmail)
[(Sendmail)
(sendmail)
(Sendmail)
(sendmail)

[Sendmail)

Comments
Distribute
Send
Interrogate
Keywords
Number
ObsOletes
Insert Link
Process (sendmall form)
show Sstatus
Subcollections
Title

Update

%

A} .

execute loQout
execute marker
execute marker
execute marger

execute marker

&SRI=ARC 16=0CT=74 17113
NLS=8 Equivalents of NLS=7 Commands

LA AR A A L EL R LA XN] Loqout

fiX resmrnmwnes Mark Ch‘racter

115t womsen=we.s ShOW Marker (list)

release

release

exeCuyte name delimiter

execuyte Name delimiter

execute name delimiter

execute name delimiter

execyte name delimiter

FPememan Del‘te Matker
al]l === Delete All (marxers)

display -a -
Show Name (delimiters)

statement ===
Set Name (delimjiters in) Statement
<AND?>
Reset Name (delimiters in) Statement

pranche Set Name (delimiters in) Branch
<AND>
Reset Name (delimiters in) Branch

plex == Set Name (delimiters in) Plex
<AND>
Reset Name (delimiters in) Plex

qraup » -
Set Name (delimiters {n) group
<AND>
Reset Name (delimiters in) Group

execute ownership of fllev===w Set Link (default for file)

<AND?>
Reset Link (default for file)

execute quit sesevesveeremenee Quit Nls

execute receive connection <DNLS»> ===

Accept Connect <DNLS>

execute secondary distribution ===

[sendmail) rorward

23913

. rerseswsepnes NLSe] rescsencscrsvcsnnsrsnnnnmenasssanenn NLE®E wwewescssarers

&SRI=ARC 16~0CT=74 17113

NLS=8 Equivalents of NLS«=7 Commands

execute

execute

eXeclute

execute

execute

execute
execute

execyece

execute

execute

execuyte

execute

execute

‘ LA AR LR L L L Ll NLS.’ L L L T e PR R L R R R R L L L Ll Rl NLSIS LA L L LA L L b A b

set control characters <TNLS? wwe=
(useroptions] Controel (characters)
<AND?>
(useroptions) Reset Control (characters)

show centrol (mark) <TNLS> ===
<NO EQUIVALENT>

show selections <TNLS> w==
<NO EQUIVALENT>

show upper case <TNLS> wew
<NO EQUIVALENT>

status control characters ee=e
(Useroptions) Show Control (characters)

statys file ewwwerewes Show File Status
status link stack w~=e= Show File Return (ring)

status viewspecs SDNLS> ===
Show ViewspecCs (status)

tabstops set <pNLS>w== (Useroptions] Printoptions Tab
<AND>
[Useroptions) Reset Printoptions Tab

unlock file s=emewwwew Delete Modifications
(Useroptions) Currentcontext (length)

<AND>
(useroptions) Reset Cyrrentcontext (length)

viewchange printing (parameters) ===
(useroptions) Printoptions
<AND>
(useroptions) Reset Printoptioens

viewehange control (characters) ew=

(Useroptions) Reset Control (characters)

23913

&SRI=ARC 16=0CT=74 17:13 23913
NLS=8 Equjivalents of NLS=7 Commands

. FPESEReEReTEEe NLS.’ Tnseerrssercensnsennanesssnennwannny NLSwE sssmevcsenans

L
execute viewchange feedback <TNLS> wmws
[useroptions]) Feedback
<AND>
[useroptions) Reset Feedback

freeze statement <DNLS> ew=wmwe= Freeze Statement <DNLS>

freeze statement release <DNLS> =w=e
Release Frozen (statement) <DNLS>

freeze statement (release) all <DNLS> ww=
Release All <DNLS>

goto control playback <DNLS> « Playback Record (of session)
got0 control quit <DNLS>wmewee StOp RecoOrd (0f session)
goto control record <DNLS>==== Start Record (of Session)

goto display clear (display area) <DNLS> ===
‘ <NO EQUIVALENT>

goto display fermat (displaY area) character (size) <DNLS> ww=e
Set Character (size)

goto display herizontal (split) <DNLS> ===
Insert Edage

goto display meve (boundary) <DNLS> =
Move Edge
<AND>
Delete Edge
goto display tty=simylation (window)<pNLS>===
Set Tty (simylation window)

<AND>
Reset Tty (simulation window)

goto display vertical (split) <DNLS> ===
Insert Edge
JOL0 EXEC wrememwrmeresnmmwnsww Goto (sub’ystem) Tengx

goto merge branCh wesseswwese« Merge Branch

&SRI=ARC 16=0CT=74 171113

NLS»8 Equivalents of NLS=7 Commands

23913

. I I el NLS." [, Lt L L L T e L DA L NLS-S EEEEEREEEE." .

JOotO merge pleéx wrmewesmsemew=s Merge pPlex

goto merge group m=seswswsw==e Merce Group

goto NIC resource guery <TINLS> wuw

goto programs buffer (size)wes

<NO EQUIVALENT>

(Programs) Set Buffer (size)
<AND>
[Programs) Reset Buffer (size)

gote programs content (analyzer)s===

goto prodrams deinstitute ewes

set Content ToO
<AND>

(Programs) Compile Content (pattern)

[Programs) Deinstitute

goto prodrams execute (proQram) ===

.Qoto programs institute ecemwee

(Programs) Run Prodram

(Programs)] Institute program

goto programs L10 (user program compile) we=

goto programs poOp ®=e=seseves
goto programs reset messecewes
goto proOgramg status w=s=s==ces
goto query <TNLS> ewesmemesswas
goto Sort group wossescsessces
GOtO SOrt pléX weseseweccwnnew
goto sort branch ewescewsceceves
gote uUse (measurements) mewews
insert character eseecsem=wee

insert date srerccermvesammcaw

(Programs) CompPile L10O
(Programs) pelete Last (program)
(Programs) Delete All (programs)
(Progpamg) Show Status

<NO EQUIVALENT>

Sort Group

Sort Plex

Sort Branch

<NQ EQUIVALENT>

Insert Charactey

Insert Date

&SRI=ARC 16=0CT=74 17113 23913
NLS=8 Equivalents of NLS=7 Commands

‘ sovsnunsnnses NLSe] sescccsmevsscnnsensnasvensanunavennns NLSel crnvemnsweowse

insert date timé mewwcernwww.es Insert Time (and date)
insert word wesssncewwsw===e= Insert Word

insert number eereverssewew=es Insert Number

insert visible weowseveseseme Insert Visible

insert invisible e==weecaewes= Ingert Invisible
insert linkK weeewsesceescemew=s Insert Link

insert text ewewsscecswsesese= Ingert Text

insert statement eeceswe-=ww.= Insert Statement

jump (to) ahead <DyLS> wwwwwms <yp EQUIVALENT>

jump (to) down <DNLS> suweee=s Jump (te) Down

.jump (to) end (cf ytem) <DNLS> e=e
Jump (te) End (of BrancCh)

jump (to) head <DNLS> emwee=es Jymp (to) Head
jump (to) item <DNLS> =e===mee Jump (to) Item
<AND>

<DNLS> Jump (to) Address (relative to)
jump (to) file ahead <DNLS> == <NO EQUIYALENT>
Jump (to) f£ile return <DNLS> = Jump (te) File Return
jump (to) link <DNLS> eee=eses Jymp (te) Link
jump (to) origin <DNLS> wwes=e Jump (te) QOrigin
jump (to) predecessor <DNLS> = Jump (tp) Predecesseor
jump (to) return <DNLS> wewesee Jump (to) Returp
jump (to) successor <DNLS> =ee Jump (to) Successor

jumP (teo) tail <DNLS> ewswwewes Jump (to) Tail

.jump (t0) up <DNLS> ==ssewe=sew Jymp (t0) yUP

&SRI=ARC 16=0CT»=74 171813 23?13
NLS#8 Equivalents of NLS=7 Commands

. (RS RR 1) 71T A ———————————r TP 1} 1T BT TP PP I
|
|

10ad £il€ wewwesemevencrenenes Load File

moVe characteyr sewewemwsewewwews Move Character

MOVE WOPd wemmmswswuswwwweenwws Move WoOrd

move number wessereweweswe=wes Move Number

move yisible wwwemesseecemnwew Moye Visible

move invisiple =wwewwemswwws=s Move Invisible

move link eswesmesrmewscecwwewss Moye LIiNK

MovVe teXt mewsmesmmvaswswwamsewes Moye Text

move statement ==e=sesesme=e=e=s Move Statement

move pranch sesseswasceawsew=s«e Move Braneh
.move PlEX meswmsswmsemee=ssns=s Move PleX

MOVE QJroUp memsswswemmsss===s=s MOVE Group

null (file) seecemewemewwwene= Create File

oytput assembler (file) wwwwes Qutput Assembler

output compiler =w==semewewe=es (Programs] Compile File |

output device COM mwemewewmwwsew Output CoOm i

output device printer (file) = Output Printer |

output device sequential (file) ww=
Qutput Sequential File

output device teletype <TNLS> w===
Qutput Terminal

output device XCOM wwwemwwsmwes Qutput Com Test
output file erusereccocsanevan Update File Compact

output gquickprint (file) eewews Qutput Quickprint

10

NLS=8 Egujivalents of NLS=7 Commands

&SRI=ARC 16=0CT=74 17:13 23913

‘ rsesnngwnansns NLSm] sereccwesnvessscsnannnewsnavanavancsre NLSel swescesscesas

output seguential ereecccccwns

print
print

print

CA ‘TNLS, LA E L L L T N N
journal <INLS> ewseseces

b!!nch ‘I NLS) LA A A L L L L A J

print statement <INLS> swecsn=
print plex <TNLS> weswsscecnus
print group <TNLS> meccccccmes
Uit sesccvmcscrrmcsesasnennan
replace character s ===ereesses
replace word seescesecenwnccan
.replace NyMbey ==*esesecescecses
replace visible ==e=receraccnss
replace {pvisiple swenceccnves
replace link sesssccncevennnan
replace teXt sevemscwswsncanan
réeplace statement weessrcemsws
replace branch serscecsccescens
réplaceé pléx sessrarcansmceren
replace GrouUp sesmescssscswses
SUbStitute sesamsscsnccsavenan
transpose® Character meseesecmes

tranSpose 'Ord M It Il TN

tranIPOSQ hUmer LA B L L B B R B N & F ¥

Qutput
<TNLS>
<TNLS>
<TNLS>»
<TNLS>
<TNLS>
<TNLS>
Quit Nl
Replace
Replace
Replace
Replace
Replace
Replace
Replace
Replace
Replace
Replace
Replace

Substit

Transpose Character

Seguential Flle

Print
Print
Print

Print

Rest
Journal (mail)
Branmch

Statement

Print Plex

Print Group

s
Character
word
Nymber
yisible
Invisible
Link
TeXxt
Statement
Branch
Plex
Group

ute

Transpose Word

Transpo

se Number

&SRI=ARC 16=0CT=74 17813 23913
NLS»8 Equivalents of NLS=7 Commands

‘ seennennunnrs NLSu] weccnenenevevsvonsnencrnnunanennmene NLS*f swecanamccens

transpose vVisihle wwewewew==e= Transpose Visible
transpose invigible ww=swewwwes Transpose Invisible
transpose link eeseseewwanew=e Transpose Link
transpos® teXt meseweswswwewes Transpose Text
transpose statement wewewwewes Transpose Statement
transpose branch weseswsweese= Transpose Branch
Lranspose pPlex wemwewswwewwsww Iranspose Plex
transpose QroUp w=ewesemew=s=w Iranspose Group
update (file) wewrersnwrennnes Update File
view (set) <DNLS>® mweswesrewema« Set Viewspecs
.viewspecs change STNLS> wewwews Set Viewspecs

viewspecs reset <TNLS> =ewwmew Reset ViewsPecsS <T0O default controlled by
Useroptions>

viewspecs status STNLS> wwem=e= Shoy Viewspecs

xset character ===ee=seswea=we= Force (Case) Character
Xset Word seeseswravesav=wewws Force (Case) Word

xset vigiple wemeneewnnmenene= Force (Case) Vigible
xset invisible eemusemusecemae Force (Cage) Invigible
Xset link sweswavascseweweeeees Force (Case) Link

XSet teXt swwmssmrwwenmwen=wss FOrce (Case) Text

X5et Statement sesemesmeses=mes Force (Case) Statement
xset branch weessvesew=rwe=wws Force (Case) Branch
XS€L pleéX wewmemssusmsemewmves Force (Case) Plex

‘xset groUp meseamsssascccnsses Force (Ca'e) Greup

12

&SRI=ARC 16=0CT=74 17:13 23913
NLS=8 Equivalents of NLS=7 Commands

‘ LA AL DY L L NLS.7 L L PR L L R R L R L L L b Nbs-a LI L T L L

Xset Mode lower ===weewseweses Force (Case) Mode Lower
Xset mode capital wwemwrewws=« Force (Case) Mode Upper
xset mode initial wewsesewew-s Force (Case) Mode First
SP ADDRESS <TNLS> sewswswwweas <TNLS> Jump (to) Address

LF <print next statement> <TNLS> mww
<TNLS>» LF

) <comment> <TNLS? =wwwsnwwwe=s ; <COmment>

, <prinpt lecation of CM> <TNLS> we=
<TNLS> ,

\ <print statement> <TNLS> == <TNLS> \
/ <print context 0f CM> CTNLS> ww=
<TNLS> /

® <print back statement> <TNLS> w==
<TNLS> *

13

&SRI=ARC 16=0CTw74 17313

TNLS«8 EQUIVALENTS OF NLSw=7 COMMANDS

SRI=ARC

16 0CT 74

Augmentatisn Research Center

STANFORD RESEARCH INSTITUTE
MENLD PARK, CALIFORNIA 94025

23913

&SRI=ARC 16«0CTe74 17313 23913
NLS=8 Equivalents of NLS=7 Commands

(J23913) 16«0CT=74 17313331 Titley Author(s): Augmentation Research
Center /&SRI=ARC) Distributiony /JOAN([ACTION) Please make this part
of the DIRT notebOok) DIRT([INFO=ONLY]) SRL([INFO=ONLY]) JMB¢ (
INFO=ONLY)) JHB((INFO=ONLY]) KWAC([INFO=ONLY]))
Sub=Collectionsi SRI=ARC DIRT NIC KWAC) Clerk: DVN} Origini <
VANNOUHUYS, SPLTLVOLDNW,NLSJ1, >, 16=0CT=74 17303 POOH 53533 Title:

RN

RLL 3=SEF=74 15115 23916
bug ussng jump to name external wih split screens,

(J23916) 3«SEP=T74 15:15:;
Lieberman/RLL; Distribution
SRI=ARC; Clerk: RLL;

) Titlet Author(s): Ropert N,
: /FDBK([ACTION]) ; Sub=Cojlectionst

RLL 3=SEP=74 15115

. bug usshg Jump to name external wih split screens,

FST entry nonextistent message with pushdown overflow t 34013, This

happened when I tried a jurp to name external command for & link in
the fije of 1inks, The situation was during a three window
configuration: one vertical split and the left side split
horizontally, the jump was to load the lower left window, 1 tried
this three (3) times with exactly the same results, (ussng NLE not
work of course), Rob

23916

No way to Output SID's

(J23917) A4=SEFP=74 081423337}

Nouhuys/DyN; Distribution; /SRL(

EKM([INFO=ONLY]) NDMC [
SRI=ARC: Clerki DVNj

DUN 4=SEP=74 08342

Titles Author(s): Rirk H, Van

INFO=ONLY]

)

(INFO=ONLYX

J]) JCN¢ ([INFO=ONLY)

Sub=Collections!

DPCS

)

23917

DUN 4=SEP=74 (08342
No way to Output SID's

I donft know of any wady to turn on SID’s with directives, 0Of course
there should be ohe, Quickprint will reproduce just what you see oON
the scecreen, There is a rather complecated way of hayving serial
numbers (numbers the output procesor creates by counting) attached to
statements, Ycu can see it set up in the the header of (hardy.
workstations,) and come back to me for more eXplanation if you want
to use it,

23917

JCN 4=3EP«74 193112 23919

. Agenda for Secend KWAC Meeting, September 9«13, 1974

Titi1es Author(s): James C, Norton/JCNj

Distributiont /KWAC([ACTION)) RSR(([ACTION)) CHIC [ACTION))
RWW([ACTION)) 3 SubeCollectionsi SRI=ARC KWAC; Clerk; JCNj
origingt < NORTON, KWACAGENDA NLSjp3, >, 4=SEP=74 19302 JCN 3539

(J23919) A4=SEp=74 191123313

JCN 4=5EP=74 19312

Agenda for Secend KWAC Meeting, September 9=-13, 1974

Monday 9/9

9300
10300
11300
12:30

2130

Tuesday 9/10

9:00

11300
12300
1130
2130

wednesday 9/11

9:00
10330
12;00

2100

Thursday
9300
10330
123130
2:00
4100

9/12

Friday 9/13

9:00
12330
23130

welcome and Agenda Discussion == Norton

Introduction Of Arehitects and ARC Applications Staft,

The Architect commynity (KWAC) and Roles == Engelpart

Lynch at the I=Building

remote Meeting, Recreation, Repasts at Jim Nortonfs House
(Arehitects and their ARC Workshep utility Contacts)

Talks by Architectsi Experiences to date
(Stone, Mattiuz, MeLindon,,...)
ceen Discussion
runch = with ApC Staff
NLS=8 Introductiong What {s Changed/pdded and Why == Irby
NLS=83 Training, Piscussion, Use (by experience groups)

ARC Development, NSW Projectp Status and Plans == Watson
ARC Applications: Status and Plans == pnorton
Lunch = with ARC Staff

pore New NLS=8; Training, Discussion, use

piscussion of Other commynities: ManagemMent, DDPCS,
piscussion of KWAC Local Training Plansg

Lunch

piscussion of plans for KwACH Activity and Next meeting
specilal soecial Evening fer Architects

at Doug Engelbart’s House

piscussions of Local Applications and plans
Lunch
concluding Discussions

23919

1a
ib
le
id

2a
2b
2c
2d

2e
3a
ib
3e
3d
4a
ab
ac
ad
4e

S5a
Sb

Sc

JCN 4=SEP=74 19112
. Agenda for Second KWAC Meeting, September 9=13, 1974

23919

WORKSHOP ARCHITECTSH

ARPA Connie MeLindon CKM 6a
BRL Stan TaYlor SMT 6b
Bell Inez Mattiuz IMM be
ETS Brian McNally BJM bd
Hudson Rudy Rugdles RLR be
MITeSeismic Bob Sheppard RMS2 6f
NICOPER Jake Feinler JAKE 69
NSRDC Frank Brignoll FGB 6h
RADC Duane Stone DLS 61
SR1 Mike placko MAP2
61
ARC APPLICATICNS WORKSHOP UTILITY STAFF; 7
ARC Director Doug Engelbart DCE 74
Manager/Liajson Jim Norton JCN 70
Contracts/Hardware Martin Hardy MEH 7¢
User Development Jim Bair JHB 7d
Suysan Lee SRL Te
Software/lUser Help Dave HOppPer JDH 7¢
Dean Mever NDM 7¢
Marketing Ropert Lieberman RLL 7h
TENEX/USer Help Jeff peters JCP 74
Consultant Bob Ratner RSR 71

EKM S5«SEpP=74 10819 23920
. IBM Request for Line Processor Papers

(J23920) 5-8Ep=74 103193313 Titie: Author(s):; Elizabeth K,
Michae)/EKM; Distributiony /EKM([ACTION)) BC([INFO=ONLY]) 3

Sub=Cpjllections; SRIeARC; Cjerk; EKM; Origin: < MICHAEL,
LET,NLS;3, >, 5=SEP=74 09346 EKM ;
EREALLS)

Hadley/Michael Fage 0

i
EKM 5=SEP=74 10319 23920
. IBM Request fOr Line Processor Papers
I

Augmentation Research Center

stanford Research Institute
333 Ravenswood Avenue
Menlo Park, California 94025

Thomas M, Hadley

IBM Data Processing Division
444 East Cpllege Avepue
State College pennsylvania
Pennsylvania 16801

Dear Mr, Hadleyi

1 have enclosed preprints Of the two papers on the ARC line
processor, the device we yse to0 interface the mOyse angd
keyset tO standard éisplay terminals, 1

Ce Hy Ipbyer "Digplay Technigues for INnteractive Text

. Manipulation", ia

Ds I, Andrews, "Line Processor! A Devige for
Amplification of Display Terminal Capabilities for Text
Manipulstion" ib

Both papers have been published in the AFIPS Conference
Proceedings, Volumn 43, 1974, nvational Computer Conference, 2

We would be happy te provide any additional information you

might want about the line processor or our NLS system {n
general, 3

Sincerely,

Elizabeth K, Michael
Aygmentation Research Center

KIRK S5«SEPe74 173126 23921
NP for Move Edge

(J23921) S5«SEP=T74 17326311 Titlegt Autnor(¢s); Kirxk E, Kelley/KIRK;
Distributions /NP([ACTION 1) s Sub=Collections: SRI=ARC NPy Clerk;
KIRK}

KIRK 5«SEP=74 17126

’ NP for Move Edaqe

Movinag Edge to the marain should not delete the window, but should
gsave it for later use,

23921

KIRK 5=5SEP=74 20340 23922
NP for jump file return

(J23922) S5«SEFmT74 20340333 Titley Author(s)) Kirk E, Kelley/KIRK)
Distributiont /FDBK(([ACTION]) 3 Sub=Collections! SRI=ARC) Clerki
KIRK};

KIRK S5«-SEP=74 20340 23922

‘ NP for jump file return

Jump to file return choice message (currently a filelink) should be
the complete link containing the statement nuhfper and viewspecs, 1

	23904
	23905
	23906

	23907

	23908-23911

	23913

	23916-23922

