
RELATIONAL
DATABASE
SYSTEMS, INC.

Database Management
System

1 What is MARATHON?

2 The INFORMER Query Language

3 ENTER I Turn-Key Data Entry Program

4 Application Language Library

5 Full Data Integrity for Multiple Users

6 Audit Trail Backup and Recovery

7 MARATHON Report Writers

8 Sophisticated Internal Architecture Provides High
Performance

9 Summary

1 What is MARATHON? Nearly all computer users store information on disks, modify it
regularly, and wish to query it and have reports written from it. If the
application is very common, such as payroll, a packaged program
may be available to perform these tasks. However, most user's
requirements have a great deal of uniqueness. For example, a blood
bank's supply tracking needs probably won't be satisfied by the
capabilities of a ready-made inventory control package. In fact, many
companies inventory control requirements are not met by the
capabilities of any pre-programmed packages. Some customization
is usually needed, and that means programming. If no package is
available at all, the amount of programming needed to start from
scratch is often prohibitive.

Many consultants, system designers and programmers are turning to
UNIX to increase their custom programming productivity. UNIX
provides not only a pleasant environment for software development,
but also provides a wide variety of programs that are already written,
and designed to work together. Programmers are using these off-the-
shelf components to build custom systems without starting
completely from scratch. By doing this they are cutting their costs
and increasing their productivity enormously.

As valuable as UNIX is, however, it lacks the most important tool for
building commercial application software, a database management
system (DBMS). A database management system is a collection of
programs that work together to make the construction of an
application system simply a matter of assembling a flexible set of
building blocks, using a simple set of tools. The resulting application
system is built faster and is more dependable because the building
blocks are sturdier than newly-written code. The same tools used to
build the software make it easy to modify and enhance as the user's
needs mature and change.

MARATHON is a collection of such programs designed to aid the
building of single or multi-user applications on UNIX, UNIX look-a-
like and UNIX-compatible operating systems. MARATHON'S
components include an interactive query language, an interactive
data entry and maintenance program, several report writers, audit
trail and recovery programs and all the utilities needed to create,
optimize and modify databases.

This set of tools is so flexible and complete that many simple
applications need only be configured, and not programmed at all. For
situations where detailed customization is a must, powerful
interfaces to standard programming languages are naturally part of
the system.

2 The INFORMER Query
Language

The INFORMER query language allows users to interactively list any
subset of the data in the database that is desired. Consider the two
data files below to be part of a MARATHON database maintained by a
retail store that operates on credit.

A customer of the store orders items, and when they are delivered the
customer is billed, and assumes a non-zero balance until the bill is
paid. The first file, customers, contains a name, address and balance.
There will be only one record in this file for each customer.

The orders file contains a record for each order that is pending. The
records contain the customer's name, the item ordered and the
quantity of the item ordered.

customers

cname address balance

Brooks, B. 7 Apple Rd. 10.50
Field, W. 43 Cherry Ln. 0
Robin, R. 12 Heather Ct. 23.45
Hart, W. 65 Lark Rd. 43.00
Court, S. 56 Blossom Rd. 0
English, D. 82 Alpine Rd. 0

orders

oname item quantity

Brooks, B. Work Bench 5
Brooks, B. Saw 1
Robin, R. Work Bench 3
Hart, W. File 3
Robin, R. Hammer 8
Court, S. Saw 3
Court, S. File 5
English, D. File 1
English, D. Hammer 2

perhaps the store manager has determined that the people that have
their bills paid at any given time are the people that pay their bills
early. He would like a list of their names so he can service them more
promptly. The READ and PRINT commands of INFORMER could be
typed as below to provide such a list.

read into x cname, balance where balance = 0 end
print x end

cname balance

Field, W. 0
Court, S. 0
English, D. 0

The READ command creates a scratch file, in this case called x, that
contains the cname and balance fields from the file CUSTOMERS.
However, it contains only the records that reflect a zero balance.
Taking a subset of the records in a file is called a SELECTION. Also
notice that the f i lex has only two of the three fields that are in
CUSTOMERS. Taking asubset of the fields is called a PROJECTION.

SELECTION and PROJECTION are two of the three relational
operators that make MARATHON a relationally complete DBMS. The
third operator, the JOIN, allows questions to be answered based on
information that exists in more than one file. For example, now that
thestore manager has the names of the people who pay their bills, he
may want to know what they are ordering so he can be careful to keep
these items in stock. This requires that item fields of the orders file be
printed based upon the contents of the balance field of the customers
file.

The customers file and the orders file are related. The customers file
contains a field that holds customer's names, cname. The oname field
of the orders file contains some of the same names. The relationship
is called a one to n mapping. For each record in the customers file,
there could be n records in the orders file.

The JOIN operator can be used to exploit this relationship and the
fields that link the files together. The scratch file xalreadycontains the
names of the customers with their bills paid. The following READ
command will pull the items out of the orders file that are on order by
the customers in file x. These items will be put in another scratch file,
this one called y.

read into y item from join on x.cname = oname end
print y end

item

File
Hammer
Saw

If there are other files in the database, the JOIN operator can be used
again to easily answer questions that are even more involved. There
is no limit to the number of files that can be used to answer a
question. The only requirement is that the fields involved in a JOIN be
key fields. The interactive database utility DBSTATUS can be used to
turn a non-key field into a key field at any time.

3 ENTER I Turn-Key Data
Entry Program

Ttie data in the customers and orders files got there by one of two
means, a custom application program or the ENTER I automatic data
entry program.

ENTER I has interactive commands that allow the user to add, delete
and update records. Records can also be found based on the
contents of a field. If that field is a key field, the next or previous
record in sorted order can be found.

In the example below, the customers record for Brooks is added. All
of the commands can be abbreviated with their first character.

cname
>> Brooks, 6 .

address
>> 7 Apple Rd.

balance
>> 10.50

cname Brooks, 6.
address 7 Apple Rd.
balance 10.50

If any of the information is incorrect, the update command can be
used to change it.

4 Application Language
Library

The subroutines that are used by the INFORMER query language and
the ENTER I data entry program are available to the database
programmer as a relocatable library. This small collection of
parameterized calls turns the C programming language into a
relational database programming language. Interfaces to other
languages will also be available.

The routines make the database capabilities available at a very high
level. For example, the DBREAD routine allows the programmer to
perform any operations that can be performed interactively with the
READ command of INFORMER, with only one subroutine call.
DBASSIGN makes all of the set operations of INFORMER available.

The records in database files can be read, written or deleted with the
DBGET, DBADD and DBDELETE calls. Routines are also available to
load a permanent file from a temporary file, and erase a permanent
file. DBADDKEY and DBREMOVEKEY can be used to optimize
database performance or make a field a key when uniqueness or a
sorted ordering is required. Concurrency control is provided by
DBLOCK and DBUNLOCK.

The MARATHON manuals discuss how these calls can be used
together to easily create custom query languages or data entry
programs with a minimum of programming.

5 Full Data Integrity for
Multiple Users

Interactive database modification in a multi-user environment has
always posed a tricky technical problem known as concurrency
control. The DBLOCK and DBUNLOCK routines in the Application
Language Library allow programs to be written that eliminate this
problem. ENTER I uses these routines so that MARATHON users
need never worry about loss of data integrity due to problems with
concurrency control. The MARATHON manuals contain a tutorial on
this problem which shows how ENTER I uses these calls to solve the
problem while letting a maximum amount of concurrent update
activity take place.

6 Audit Trail Backup and Often when an application software system is built the problems of
backup and recovery are put off until the end, and sometimes
forgotten about completely. The daily or weekly backup of the file
system onto tape is only one part of a useful backup and recovery
program.

If the data on the disk is lost due to hardware or software failure, it is
only recoverable back to the last time'a backup was made. A great
many transactions can still be lost, and users will be forced to
maintain paper backup systems, and depend upon them. This may
significantly lessen the benefits of the automated system.

The MARATHON program DBSTATUS can be used to activate an
automatic transaction audit trail. This audit trail can be kept on any
desired disk or tape. It is recommended that the physical device be
different than the device that holds the data.

If a failure should occur, the data can be recovered from the backup
tapes. Then all of the transactions that were performed since the
backup can be re-run against the database programmatically, to
restore the system completely to the time of failure.

Some of the transactions that were recorded in the audit trail may not
be desired in the restored database. Perhaps they were associated
with the program that caused the damage. Selected transactions can
be kept out of the restoration based upon the time of the transaction,
the process that executed it, the user that initially ran the program,
the content of the transaction itself or any combination.

7 MARATHON Report
Writers

When buried in the complexity of building a software system by
conventional means it is easy to overlook the fact that people only put
information into a computer so they can get it back out. Database
industry observers have predicted that report writers will be the "tail
that wags the dog." No single feature of a database system improves
its usability as much as a good report writing language.

Most commercial database systems provide one report writing
language. Unfortunately, this language often falls short of what is
needed to produce a wide range of commercial reports. The least
effective languages are only extended query languages which do
minimal formatting or calculation.

RDS realizes the importance of the report writing function. We have
chosen to leave our query language simple, and attack the report
writing problem with several english-like languages that provide the
calculation and formatting features needed in the commercial world.

ACE is a general-purpose report writer, useful in creating standard
data processing reports with page headings, column headings and
columns of data sorted in any order. The functions TOTAL,
AVERAGE, PERCENT and others are available. ACE is designed to
meet the needs of the reporting problems it confronts with less than
one tenth of the programming effort that would be needed to write
equivalent programs in a conventional language.

The ten-fold increase in productivity is possible because ACE is
designed to be a tool to perform a restricted class of tasks, write
reports. Because this is assumed, the language only contains syntax
to state what the report is to look like, not how the files are to be
opened, the data read, calculated, sorted and written. ACE takes care
of all the details of the algorithm of the program. Languages such as
ACE that do not require the programmer to break the task down into
subtasks and algorithms are known as non-procedural languages, or
specification languages.

The MARATHON system will constantly grow with the addition of
new report writers. All of them will be non-procedural and will
address a particular class of reporting needs. They will all contain the
same constructs as the INFORMER query language for selecting the
data from the database.

The PERFORM report writing language is designed to fill out pre-
printed forms, such as government or insurance forms, with data
drawn from the database. PERFORM is an excellent tool for building
application systems that are form intensive, such as medical or legal
office management systems.

DBMAILER is designed to print mailing labels or type addresses
directly onto envelopes. Combining this formatting ability with the
database selection power of MARATHON will produce the world's
best mailing label package.

INFER will be a language designed specifically for scientific labs, and
will greatly aid in the production of reports that perform inferential
statistics. Once again, combined with the MARATHON system, this
statistics package will be far more usuable than those that make the
user worry about how to get the data into the computer and manage it
while it is there. The relational model also allows researchers to
model their data so that sophisticated questions, possibly involving
data in many files, can be answered easily.

8 Sophisticated Internal
I p Architecture Provides

High Performance

There are non-relational models for storing and retrieving
information with computers. Systems based on non-relational
models have been justifiably praised. Considering the alternative has
been to start building an application from scratch, they have been
enormously useful tools. These models evolved from internal
programming techniques that were easy to implement and ran
quickly in the computer.

Unfortunately, much of this software that is convenient for the
computer to execute has proven to be inconvenient for application
programmers to use. Non-relational systems are notorious for being
difficult to use in arbitrary ways, due to artifacts of how the software
evolved. The databases built cannot always be queried on an ad hoc
basis. New reports often require database restructuring. Finally, most
systems lack the utilities to perform any restructuring easily.

The relational model was invented and refined during the 1970's.
During that time many prototype systems were built in the academic
community as research projects. Some research work was also done
cornrnercially. This work was aimed at defining a set of data
structures and operations that performed a great deal of desired work
simply, while restricting the user as little as possible. The result was
the relational model.

The public was told that although this new model was wonderful for
the user, it was difficult to implement with adequate performance.
Indeed, implementations of these early systems did not perform well,
and for the most part, still don't. However the reasons for the poor
performance have been recognized and alternative methods realized.

MARATHON benefits greatly from this research work and has
eliminated performance problems by heeding these lessons.
MARATHON has been kept sleek, and runs as one process on UNIX.
The b-tree technique of building key files is used, and is the only
method that is used. MARATHON rests on top of the operating
system, and does not require any changes to perform well.
MARATHON was designed to be a multi-user system from the
beginning. The system has not had to be altered or performance
compromised due to internal architecture ill-suited for multi-
processing.

9 Summary MARATHON is the first commercial DBMS for UNIX. It is not based
upon any particular academic system or commercial prototype, but
rather it draws f rom the best features of all of them. The sole reason
for its existence is the commercial UNIX user, and the design and
future directions of the product reflect this.

Good documentation, error messages, enhancements, host language
compatability, training and support are all expected by commercial
users. RDS is committed to helping system designers and
programmers cut the costs and heighten the reliability and
expandability of their applications. The MARATHON system and its
report writers are the base for that help.

No application should be built for UNIX starting from scratch. Any
data intensive software system should include the data manipulation
and maintenance functions provided by MARATHON. Systems
designers and applications programmers owe it to their users to start
building an application with a firm foundation.

For a license agreement, product availability bulletin or order form
call or write to:

Relational Database Systems, Inc
1208 Apollo Way
Suite 503
Sunnyvale, California
94086
(408) 746-0982

REMTIONAL
DATABASE
SYSTEMS, ING.

1208 Apollo Way, Suite 503
Sunnyvale, California 94086
Telephone 4081746 0982

	informix.marathon_rdbms.xxxx.fc.src.tif
	informix.marathon_rdbms.xxxx.p01.src.tif
	informix.marathon_rdbms.xxxx.p02.src.tif
	informix.marathon_rdbms.xxxx.p03.src.tif
	informix.marathon_rdbms.xxxx.p04.src.tif
	informix.marathon_rdbms.xxxx.p05.src.tif
	informix.marathon_rdbms.xxxx.p06.src.tif
	informix.marathon_rdbms.xxxx.p07.src.tif
	informix.marathon_rdbms.xxxx.p08.src.tif
	informix.marathon_rdbms.xxxx.p09.src.tif
	informix.marathon_rdbms.xxxx.p10.src.tif
	informix.marathon_rdbms.xxxx.p11.src.tif
	informix.marathon_rdbms.xxxx.p12.src.tif
	informix.marathon_rdbms.xxxx.bc.src.tif

