
USONG A COMPUTER TO SUMULAUE A COMPUTER
By GEORGE R. TRIMBLE

ABOUT THIS ARTICLE
I

Innovations in computer design, which motivate
us to replace existing computer systems wi th new
and better systems, also compel u s to develop
techniques for simulating the new computer before
i t arrives. Called simulation and emulation, these
techniques enables us to imitate all the functions
o f the n e w computer using the old computer. Not
only does this facilitate conversion from one sys-
t e m to d o t h e r , but it also enables u s to test pro-
grams for a new computer even before the ma-
chine is built. Simulation mainly concerns the
software which enables the use o f existing ma-
chine applications o n the new system prior to re-
programming. Emulation involves hardware fea-
tures specifically designed within the new compu-
ter to promote simulation compatibility. Many
problems arise because o f basic differences in
machine operation and simulation objectives.

One o f the more exotic applications o f digital computers
i s to simulate a digital computer on another entirely
dif ferent type o f computer. Using a simulation pro-
gram, application programs developed for the first
computer, the source computer, m a y be executed o n a
second computer, the object computer.

Simulation obviously provides m a n y advantages in
situations where a computer i s replaced by a dif fer-
ent computer, for which the applications have not yet
been programmed. Simulation techniques enable a n
installation to continue solving problems using existing
programs after the n e w computer has been installed and

L the old one removed.
Simulation o f the replaced computer i s obviously a

m u c h less efficient means o f solving the problem than
reprogramming the applications for the n e w computer.
W h e n such a switchover is made, however, it is not
practical to reprogram all the applications for the n e w
machine immediately. Use o f a simulator permits the
installation to continue running i t s programs as re-
programming proceeds o n a reasonable schedule. I n
fact , for some o f the very infrequently used programs,
reprogramming m a y not be worthwhile.

Another situation in which simulation i s advan-
tageous is during the development o f a n e w computer.
Once specifications for the n e w computer have been
established, programming o f applications for the com-
puter can proceed in parallel w i th hardware develop-
men t . T h e use o f a simulator in this situation enables
the users to debug their applications before the hard-
ware is actually available.

Simulation o f a n unbuilt computer i s advantageous
for other reasons as well. Sometimes n e w equipment
has bugs in it which m a y not be discovered during as-
sembly and final test procedures. Debugging a com-
puter program o n a n e w piece o f equipment frequently
results in errors which can not be firmly associated wi th
either the equipment or the program. I f , however, the
program has been debugged o n a simulator, greater
assurance can be placed in the program and i t i s more
likely that problems encountered are equipment prob-
lems.

Another advantage o f simulation is that sophisti-
cated debugging aids can be built into the simulator
which would be very dif f icult , i f not impossible, to
build into a debugging system for the computer being
simulated. Selective dumping and tracing are examples
o f the type o f debugging facilities which can be incor-
porated into a simulator.

Simulation Objectives
A simulator has two principal objectives. First and

- DATA PROCESSING MAGAZINE OCTOBER 1965

foremost, the simulator must faithfully duplicate the
functions of the computer being simulated. The re-
sults of arithmetical and logical operations must be
precisely the same as those which would be obtained
if the program were run on the source computer itself.
Simulation of the timing of asychronous functions may
not be as critical, but in some situations even the timing
must be simulated as precisely as possible.

By faithful simulation it is not to be implied that
functions on the circuit level must be duplicated, but
rather functions which are pertinent to the programmer
must be simulated. For example, the contents of the
arithmetic registers and the status of various indicators
must be duplicated. The functions of an adder or a
shift register do not have to be duplicated precisely,
but the effects of these devices on the contents of the
registers which are accessible to the programmer must
be duplicated.

The second principal objective of a simulator is
speed of simulation. Since the process of simulation
is inherently inefficient, it may occur that the program
may operate slower on the object computer than it
does on the source computer even though the object
computer is considerably faster than the source com-
puter. Advantage must be taken of every feature of
the object computer to increase speed of simulation.
This implies that great care must be taken in the
coding of critical portions of the simulator, such as the
instruction fetch and basic instruction execution rou-
tines. It frequently occurs that a function which is
common to many subroutines should not be made a
subroutine itself but instead should be programmed in
its entirety each time that function is required. For
example, a subroutine to simulate a subtract instruc-
tion differs from the subroutine to simuIate an add
instruction only in that the sign of the operand is re-
versed. It would be much more efficient from a storage
view point to reverse the sign of the operand and then
transfer control to some point within the subroutine
which simulates an add instruction. This approach,
however, would require at least one additional branch
instruction to be executed when a subtract instruction
is simulated. It is, therefore, faster to write out the
subtract subroutine in its entirety, separate and dis-
tinct from the add subroutine, even though 90 per cent
of the instructions may be identical.

This philosophy could be carried out to an extreme,
however, and judgment of when to duplicate coding
must be based on the frequency with which specific
functions are performed. If the object computer is
limited in its storage available, it may be necessary to
sacrifice speed in order to make the program even fit
within the memory space available.

Approach to Simulation
The characteristics of simulators described above

point out the necessity for having two types of simula-
tors. Changing an installation from one computer to
another means that the programs to be executed have
already been debugged and are in a production state.

1- ABOUT THE AUTHOR -1

vises major PI

George R. Trimble, Jr., was graduated
from St. John's College in 1948 and
obtained a B.A. and an M.A. in mathe-
matics from the University of Delaware
in 1951. Formerly with the Computing
Laboratory of the Ballistics Research
Laboratories and a senior staff member
in the Applied Science Div. of IBM, Mr.
Trimble joined Computer Usage Co.,
Inc., in -1955. Utilizing experience
on a multitude of computer systems,
he now performs analyses and super-

rograms for manv aoolications usinn a
wide variety of machines, including 'IBM 360, 650, 702,
704, 1401, 7030, 7070, 7090, 7740, Honeywell 800,
Bendix G-15, ISI-609, Univac 1107 and ASI-420.

I I
Speed is the most important factor in this situation and
debugging facilities are minimal or non-existent. This
type of simulator is called a production simulator.

The other type of simulator is used to debug pro-
grams for an unbuilt computer and is called a debug-
ging simulator. Speed is also important here but many
additional features are built into the simulator to fa-
cilitate debugging of programs. In fact, the debugging LA'

facilities made available in the simulator can be so
significantly superior to those available in the object
computer that it is preferable to debug programs using
the simulator even if the object computer has been
built and is available.

The classical organization of digital computers is into
control, arithmetic, memory, and 1/0 sections. The
development of a simulator very much parallels this &
organization

The memory of a computer may consist of words or
characters. A portion of the object computers memory
is set aside so that the words or characters of the source
computers memory can be simulated. If both comput-
ers have word memories, for example, one word of the
object computer may be used to represent one word of
the source computer.

Obviously this depends upon the word length of the .>
two computers. In some cases it may be possible to
represent two source computer words in one object
computer word, while in other cases it may be neces-
sary to use two object computer words to represent one
source computer word. An analogous comparison can be
made for simulating a character memory in a word
memory in which several characters of the source com-
puter may be packed in one word of the object com-
puter's memory for efficient utilization of memory.

The control section of the computer is simulated by
having a register which performs the same functions
as the program location counter in the source com-
puter. An instruction fetch routine is used to refer to
the contents of the simulated program location counter
in order to determine the location of the next instruc-
tion to be simulated. The instruction fetch routine then
refers to simulated memory to obtain the instruction
and the contents of the simulated memory location are
analyzed to determine what must be done. The instruc- d

tion code is examined and control is transferred to a
subroutine whose function is to simulate the specific
instruction being simulated. Other functions performed
in this process may include, for example,, determination

&of which index register is to be used as a modifier,
computation of the effective address based on the index
register modification, and obtaining the data from the
simulated location or storing the results of the opera-
tion in the simulated location determined as a result of
this address computation.

The arithmetic section is simulated by the many
subroutines which are required to simulate the indi-

1 vidual instructions. The registers which must be sim-

I
ulated in the arithmetic unit are those which are
significant from the programmers viewpoint. For ex-
ample, a machine which has an accumulator register,
and an auxiliary arithmetic register would require that
locations in the object computer be used to simulate the
contents of these registers, All operations which per-
form some modification of these registers in the source
computer would, therefore, require that the subroutines
.vhich simulate those operations perform the same modi-

I (yications upon the locations used to simulate these
registers.

Auxiliary registers such as index registers, additional
arithmetic registers, or temporary registers for buffer-
ing must also be simulated. Locations in the object
computer are set aside to simulate the corresponding
registers in the source computer. In addition to the
various registers and address counters which are re-
quired, it is also necessary to simulate many of the indi-

b c a t o r s of the source computer by having a bit in the
object computer simulate the function of the corres-
ponding indicator in the source computer. For example,
overflow in arithmetic operations may cause an over-
flow indicator to come on. Therefore, it is necessary
that the object computer use a switch of some sort to
simulate the overflow indicator. Similarly, such indi-
cators as high, low and equal indicators for comparison
Yurposes may have to be simulated.

k- Simulation of the input/output facilities of the
source computer frequently present the most difficult
problem. To simulate a card reader, for example, the
object computer should have a card reader. It is not
always necessary that this exact simulation take place,
however, since it is possible to simulate a card reader
by having card images on magnetic tape which are then
read by the simulator program in the object computer.
The simulator program simply reads in the next card
image from this simulated card input data tape when
the source computer program calls for a "read c a r d
instruction. Through .use of magnetic tapes on the
object computer, it is possible to simulate a wide variety
of input/output devices. It is necessary only to read
from or write on the specific tape being used to simulate
the device when the corresponding instruction is sim-
ulated in the source computers program.

One of the most difficult functions to simulate is the
manual operation of the source computer console. In C general, console operations are not duplicated, because

the consoles of the two computers are usually quite
different. It is possible to simulate most console opera-
tions by using control cards to set program switches,
initialize registers, or perform similar functions. This
implies that console operations which would normally
be performed during a run would not be performed
during a simulation run unless they had been pre-
programmed in the input data in such a way that the
simulator could recognize this control data and take the
required action. If, however, the console facilities of the
object computer are such as to permit easy duplication
of the console functions of the source computer, it I

certainly is possible to permit on-line simulation of I
manual console operations during execution of the I

I

program.
The approach taken in the development of produc-

tion simulators is somewhat different from that taken
I
I

in the development of debugging simulators. A produc-
tion simulator requires simply that the programs for the
source machine be loaded and execution of these pro-

I
grams through simulation be initiated. The results of
the computations may be recorded on magnetic tape or
given directly as output via a printer.

A debugging simulator requires that considerable ad-
ditional information be provided to the simulator i n the
form of control information specifying where dumps
and traces are to occur, specifying the initial conditions
of switches and registers, and providing for the chang-
ing of switches and registers during a particular simula-
tion run. In order to accommodate these control cards,
a program is required to read in the control cards,
analyze the data on the control cards, and set up tables
and indicators required for performance of the functions
indicated on the control cards. This program is a pre-
processor which is executed prior to the particular
simulation run. Upon completion of a simulation run,
control is returned to the pre-processor in order to read
in the control cards for the next simulation run to be
made. I t is the pre-processor which enables the addi-
tion of debugging facilities, providing flexible control
over the entire simulation run.

In some situations i t is necessary to perform post-
processing on the output generated by the simulation
run. The results obtained during a simulation run may
be recorded in a highly compact form for efficient sim-
ulation. However, such compact information is not
amenable to easy interpretation by the user so that a
post-processing run is required to convert the output to
a form which the user can understand.

Another important characteristic of a debugging sim-
ulator is that it can be intimately connected with the
assembly system which produces the object code which
is the input to the simulator run. Although ultimately
the output of the assembly program must be used as
input to the source computer itself for execution, the
output of the assembly program may be modified to
be more convenient for use in the object computer
which is being used in the simulation. For example,
instead of paper tape for input to the source computer,
a binary magnetic tape can be generated for direct input

DATA PROCESSING MAGAZINE OCTOBER 1965

to the simulator.
The relationship between the assembly program and

the simulator can be extended even further. The
symbol tables generated by the assembly program can
be used by the pre-processor so that debugging specifi-
cations defining dumps and traces need riot be in
absolute machine language form. They can be speci-
fied using symbols which were used i n writing the pro-
gram originally. The pre-processor uses the symbol
tables produced by the assembly program to convert
symbolic debugging specifications to the absolute
specifications which are used in the simulation run.

Simulator Generators
A logical consequence of the common characteristics

of simulators is that one can abstract those features
which are common to many different computers. A
prime example is the instruction fetch routine which
uses the program location counter to fetch the next
instruction and then updates the instruction location
counter. In the same way that emulators capitalize on
this function and perform it by hardware, it is possible
to write a simulator generator in which the same func-
tions are performed by a general purpose routine. The
routine to performing instruction fetch would be com-
mon to many simulators.

There are many common characteristics of com-
puters which could be built into generaked subrou-
tines. For example, binary computers using two's com-
plement arithmetic, having a fixed word length and two
arithmetic registers, as is commonly the practice,
would all perform the basic operations of addition, sub-
traction, multiplication and division in essentially the
same manner. Thus, the subroutines for performing
these operations would vary depending upon only the
word length of the computer. Carries from the low
order arithmetic register to the high order arithmetic
register, handling of overflows, underflows, operands
with different signs, and storage of results, would all
have common characteristics.

A simulator generator is a program i n which the
user can specify the characteristics of the source ma-
chine that he wishes to simulate, and the generator will
produce specific subroutines which will perform the
required functions in a fairly efficient manner.

There are many other functions which are common
to simulators to which the same type of reasoning ap-
plies. Included are indexing addresses, indirect addres-
sing, and conversion from decimal to binary or binary to
decimal.

Obviously, any general system wiLl suffer in that
generality will reduce the efficiency of the specific
routines written for performing that function. By
restricting the routines to a class of machines, this loss
of efficiency can be minimized. If the source machines
are sufficiently similar, there can be great savings in
the construction of simulators. Thus, it would not be
economical to construct a simulator generator which
would handle fixed-word-length binary machines as well
as being able to handle variable-word-length decimal

machines. However, if the source machines are all
binary but of different word lengths, even if the num-
ber representation may be different i n the sense of one's
complement vs. two's complement vs. magnitude and
sign; the routines to perform these functions can still
be written with very little loss of efficiency.

A simulator generator would be useful for an installa-
tion which has one machine which is to be used as the
object machine for simulation and several source
machines which are of different characteristics. Rather
than write a specific simulator for each of the source
machines on the object machine, a simulator generator
enables one to easily build simulators for each of the
source machines to run on the one object machine.

Emulation
A recent development in the computer industry has

been the use of emulation to facilitate the conversion
from one computer system to another computer system.
Emulation is a means of facilitating simulation through
the use of hardware features in the object computer.
Emulation is obviously economical only when a large
family of machines is replaced by another family of
machines. An example of this situation is the IBM
System/360 in which emulators are available for
various models of the 360 to assist simulation by many
of the 7000 series IBM equipment.

In terms of the simulators discussed previously,
emulation is obviously of value only as an aid in per-
forming the functions of a production simulator. Use
of hardware features to aid simulation is obviously
much more efficient and results in faster execution of
the source computers program than does pure simula-
tion. As was indicated, speed is the most important
factor in a production simulator so that emulators are
of great value here.

On the other hand, emulation is not an efficient ap-
proach to building a debugging simulator. One char-
acteristic of unbuilt computers is that design changes
frequently occur. These changes necessitate only pro-
gram modifications in a program simulator, but may
require major hardware changes in an emulator.

The description of simulation and the functions per-
formed in simulation provide the basis for determining
those functions which an emulator can be the greatest
value in performing. The heart of any simulator is the
loop in which the simulated, program location counter
determines the location of the next instruction. Since
this loop must be performed for every instruction
executed, the use of hardware facilities to perform these
functions would vastly improve the efficiency of the
simulator. This is one of the functions of a simulator
which is performed by hardware in an emulator.

Having fetched the instruction, the operation code for
the source machine is examined and control branches
to one of a series of subroutines to perform the instruc-
tion. Depending upon the complexity of the source
machine and the similarity of the object machine's hard-
ware to the source machine's hardware, some of the
operations can be performed by the addition of other

Continued on n e x t page

hardware. In some cases however, the source machine
instruction is so different, that the structure of the
object machine does not enable economical implemen-
tation of the instruction in the object machine. In this
case, a subroutine is executed which performs the
functions required to simulate the source machines
instruction. This subroutine is identical to what would
be required if a full simulation of the source machine
were done.

Simulators and emulators are not two mutually ex-
clusive ways of performing the same function, but are
instead two techniques which implement each other.
Emulation is able to perform functions much more
efficiently and quickly than a simulation program can
do. This speed is of great significance i n a production
simulator, but, it is not economical to emulate all of the
source machines instructions. Simulation should be
used to perform the functions which cannot be eco-
nomically performed by hardware emulation.

Simulation of the Control Data Digital Control
Computer on the IBM 7030 Stretch

b The Control Data DCC is a binary machine having a
24 bit word length. This computer is one of the fire
control computers used i n the Polaris system and has
input/output instructions which are specifically related
to weapon control functions. Since it is a real time com-
puter, the timing of the program is very significant so
that the simulator must take these timing considera-
tions into account.

The heart of the simulator is a table called the object-
it time table. Events which are time dependent cause an

entry to be placed in this table so that the event can be
activated by the simulator when the proper time occurs.
The simulator keeps track of time in a simulated DCC
clock by accumulating the time required to execute
each DCC instruction.

Entries in the object-time table are kept sorted in
increasing time sequence. The value of the programmed
DCC clock is compared with the time associated with

k t h e entry at the top of the object-time table at comple-
tion of simulation of each DCC instruction. Wher, the
comparison indicates that the event is to be activated,
control is transferred to a subroutine to perform the
event. The events which can be specified by the object-
time table are primarily associated with input/output
operations, such as reading a character into memory,
writing a character to the printer, transmitting data to
the missile, or an interrupt caused by the return of data
from the missile.

The approach used in the DCC simulator permlts a
detailed timing simulation not only of the internal pro-
gram functions but also of the asychronous input/
output operations. Users of the DCC were able to debug
their programs before the machine was actually avail-
able. Included in the debugging of DCC programs was
the checking of intricate timing relationships required
to assure successful operation of the real-time program.

Simulation of the IBM 650 on the Honeywell 800
The IBM 650 is a decimal-digit drum-memory com-

puter whereas the Honeywell 800 is a 48-bit core-
memory computer which can perform both decimal and
binary arithmetic. The approach to interpretation of
650 instructions on the H-800 was determined by the
fact that the H-800 could perform both decimal and
binary arithmetic.

Each 650 word is simulated in one H-800 word. The
format of the word simulated, however, depends upon
whether the word is an instruction or data. By storing
650 data in decimal form, the H-800 decimal arithmetic
features were utilized. This speeded up the simulation
of arithmetic operations.

On the other hand, the H-800 requires binary address-
es to access the words of memory which are used to
simulate the 650 words. Addresses in the 650 program
are in decimal so that they must be converted to binary
for the H-800. This problem is solved by representing
650 instructions in a blocked binary format. This means
that the two-digit operation code of the 650 is repre-
sented by seven binary bits in the H-800, and each of
the four-digit addresses of the 650 instruction is repre-
sented by fourteen binary bits of the H-800. Three
additional bits are used in the H-800 representation to
tag the addresses.

Using this technique, instructions for the 650 are
stored i n a convenient form so that they can be picked
up and interpreted without further conversion. Data
which these instructions operate upon is in decimal
format so that the decimal operation capabilities of the
H-800 can be employed. Problems arise when the 650

instructions are modified arithmetically. Since they are
not in correct format, it is necessary to go through a
conversion from the blocked binary format to the deci-
mal format, to perform the modification of the 650
instruction. Similarly, if data is ever interpreted as an
instruction, it is necessary to convert from decimal
format to the blocked binary format. The additional
bits in H-800 words are used to indicate the format so
that the simulator performs the necessary conversion
when required.

Simulation of the IBM 650 on the IBM 704
The IBM 704 is a 36-bit binary riachine whereas the

650 is a 10-digit decimal machine. The approach taken
for representation of a 650 word on the 704 is as
follows: 1 bit represents the sign of the 650 word, 7
bits represent the two-digit 650 operation code, and 14
bits represent each of the four decimal-digit addresses.
Thus, the entire 36 bits of a 704 word are required to
represent a single 650 word. This format is called a
blocked binary format and is similar to the format in
the H-800 simulation of the 650 except that no addi-
tional bits are available for control purposes.

One characteristic of the 650 programs being simu-
lated is that the input programs required for simulation
utilize a floating-point interpretative system for the 650.

Continued on next page

This system is capable of including pseudo-instructions
in addition to 650 machine-language instructions. I n
these programs the data which the floating-point inter-
pretative system operates upon is always segregated
from the instructions which operate upon that data.
Thus, no arithmetic operations are ever performed on
the instructions using the floating-point interpretative
system. Nor does the reverse take place, that is, in no
case are 650 machine-language instructions used to
operate upon the decimal data words which are the
data that the floating-point interpretative system
operates upon.

Segregation of 650 instructions and floating-point
data makes i t possible to provide a much more efficient
simulation system. First, the 650 operation codes are
simulated to perform exactly the functions required by
the 650. Only 33 of the basic operation codes need to
be simulated since the operations of multiplication and

division and their variations were always performed in
the floating-point interpretative system.

A second part of the simulator is a 704 interpretative
system which interprets the pseudo-operations as the
650 does with one exception. The interpretation is im-4
plemented directly by 704 subroutines, rather than
through simulation of the 650 r~t t t ines which interpret
the pseudo-instructions.

The approach of simulating only the basic 650 in-
structions and providing a 704 floating-point interpre-
tive system results in much greater efficiency in execut-
ing 650 programs on the 704. As a result 650 pro-
grams operate approximately 40 times faster on the
704 than on the 650. If a straightforward interpreta-
tion of the 650 without a second floating-point inter-
pretative system is used, the simulation would run at a
ration of 3 or 4 to 1 rather than 40 to 1.

	computerusagecompany.computer_to_simulat_1966.102679070.fc.src.tif
	computerusagecompany.computer_to_simulat_1966.102679070.p01.src.tif
	computerusagecompany.computer_to_simulat_1966.102679070.p02.src.tif
	computerusagecompany.computer_to_simulat_1966.102679070.p03.src.tif
	computerusagecompany.computer_to_simulat_1966.102679070.p04.src.tif
	computerusagecompany.computer_to_simulat_1966.102679070.bc.src.tif

