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ABOUT THIS ARTICLE 
I 

Innovations in computer design, which motivate 
us  to  replace existing computer systems wi th  new 
and better systems, also compel u s  to develop 
techniques for simulating the  new computer before 
i t  arrives. Called simulation and emulation, these 
techniques enables us  to  imitate all the  functions 
o f  the n e w  computer using the  old computer. Not 
only does this facilitate conversion from one sys- 
t e m  to d o t h e r ,  but  it also enables u s  to test pro- 
grams for a new computer even before the  ma-  
chine is  built. Simulation mainly concerns the 
software which enables the use o f  existing ma-  
chine applications o n  the  new system prior to re- 
programming. Emulation involves hardware fea- 
tures specifically designed within the  new compu- 
ter to  promote simulation compatibility. Many 
problems arise because o f  basic differences in 
machine operation and simulation objectives. 

One o f  the  more exotic applications o f  digital computers 
i s  to simulate a digital computer on  another entirely 
dif ferent type o f  computer. Using a simulation pro- 
gram, application programs developed for the  first 
computer, the  source computer, m a y  be executed o n  a 
second computer, the object computer. 

Simulation obviously provides m a n y  advantages in 
situations where a computer i s  replaced by  a dif fer- 
ent computer, for which the  applications have not yet 
been programmed. Simulation techniques enable a n  
installation to  continue solving problems using existing 
programs after the  n e w  computer has  been installed and 

L the old one removed. 
Simulation o f  the  replaced computer i s  obviously a 

m u c h  less efficient means  o f  solving the problem than 
reprogramming the applications for the n e w  computer. 
W h e n  such a switchover is  made,  however, it is not 
practical to reprogram all the applications for the  n e w  
machine immediately. Use o f  a simulator permits the  
installation to continue running i t s  programs as re- 
programming proceeds o n  a reasonable schedule. I n  
fact ,  for some o f  the  very infrequently used programs, 
reprogramming m a y  not be worthwhile. 

Another situation in which simulation i s  advan- 
tageous is  during the  development o f  a n e w  computer. 
Once specifications for the  n e w  computer have been 
established, programming o f  applications for the  com- 
puter can proceed in parallel w i th  hardware develop- 
men t .  T h e  use o f  a simulator in this situation enables 
the  users to debug their applications before the hard- 
ware is  actually available. 

Simulation o f  a n  unbuilt computer i s  advantageous 
for other reasons as well. Sometimes n e w  equipment 
has bugs in it  which m a y  not be discovered during as- 
sembly and final test procedures. Debugging a com- 
puter program o n  a n e w  piece o f  equipment frequently 
results in errors which can not be firmly associated wi th  
either the  equipment or the  program. I f ,  however, the  
program has  been debugged o n  a simulator, greater 
assurance can  be placed in the  program and i t  i s  more 
likely that problems encountered are equipment prob- 
lems. 

Another advantage o f  simulation is  that sophisti- 
cated debugging aids can be built into the  simulator 
which would be very dif f icult ,  i f  not impossible, to 
build into a debugging system for the computer being 
simulated. Selective dumping and tracing are examples 
o f  the type o f  debugging facilities which can be incor- 
porated into a simulator. 

Simulation Objectives 
A simulator has two  principal objectives. First and 
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foremost, the simulator must faithfully duplicate the 
functions of the computer being simulated. The re- 
sults of arithmetical and logical operations must be 
precisely the same as those which would be obtained 
if the program were run on the source computer itself. 
Simulation of the timing of asychronous functions may 
not be as critical, but in some situations even the timing 
must be simulated as precisely as possible. 

By faithful simulation it is not to be implied that 
functions on the circuit level must be duplicated, but 
rather functions which are pertinent to the programmer 
must be simulated. For example, the contents of the 
arithmetic registers and the status of various indicators 
must be duplicated. The functions of an adder or a 
shift register do not have to be duplicated precisely, 
but the effects of these devices on the contents of the 
registers which are accessible to the programmer must 
be duplicated. 

The second principal objective of a simulator is 
speed of simulation. Since the process of simulation 
is inherently inefficient, it may occur that the program 
may operate slower on the object computer than it 
does on the source computer even though the object 
computer is considerably faster than the source com- 
puter. Advantage must be taken of every feature of 
the object computer to increase speed of simulation. 
This implies that great care must be taken in the 
coding of critical portions of the simulator, such as the 
instruction fetch and basic instruction execution rou- 
tines. It frequently occurs that a function which is 
common to many subroutines should not be made a 
subroutine itself but instead should be programmed in 
its entirety each time that function is required. For 
example, a subroutine to simulate a subtract instruc- 
tion differs from the subroutine to simuIate an add 
instruction only in that the sign of the operand is re- 
versed. It would be much more efficient from a storage 
view point to reverse the sign of the operand and then 
transfer control to some point within the subroutine 
which simulates an add instruction. This approach, 
however, would require at least one additional branch 
instruction to be executed when a subtract instruction 
is simulated. It is, therefore, faster to write out the 
subtract subroutine in its entirety, separate and dis- 
tinct from the add subroutine, even though 90 per cent 
of the instructions may be identical. 

This philosophy could be carried out to an extreme, 
however, and judgment of when to duplicate coding 
must be based on the frequency with which specific 
functions are performed. If the object computer is 
limited in its storage available, it may be necessary to 
sacrifice speed in order to make the program even fit 
within the memory space available. 

Approach to Simulation 
The characteristics of simulators described above 

point out the necessity for having two types of simula- 
tors. Changing an installation from one computer to 
another means that the programs to be executed have 
already been debugged and are in a production state. 
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I I 
Speed is the most important factor in this situation and 
debugging facilities are minimal or non-existent. This 
type of simulator is called a production simulator. 

The other type of simulator is used to debug pro- 
grams for an unbuilt computer and is called a debug- 
ging simulator. Speed is also important here but many 
additional features are built into the simulator to fa- 
cilitate debugging of programs. In fact, the debugging LA' 

facilities made available in the simulator can be so 
significantly superior to those available in the object 
computer that it is preferable to debug programs using 
the simulator even if the object computer has been 
built and is available. 

The classical organization of digital computers is into 
control, arithmetic, memory, and 1/0 sections. The 
development of a simulator very much parallels this & 
organization 

The memory of a computer may consist of words or 
characters. A portion of the object computers memory 
is set aside so that the words or characters of the source 
computers memory can be simulated. If both comput- 
ers have word memories, for example, one word of the 
object computer may be used to represent one word of 
the source computer. 

Obviously this depends upon the word length of the .> 
two computers. In some cases it may be possible to 
represent two source computer words in one object 
computer word, while in other cases it may be neces- 
sary to use two object computer words to represent one 
source computer word. An analogous comparison can be 
made for simulating a character memory in a word 
memory in which several characters of the source com- 
puter may be packed in one word of the object com- 
puter's memory for efficient utilization of memory. 

The control section of the computer is simulated by 
having a register which performs the same functions 
as the program location counter in the source com- 
puter. An instruction fetch routine is used to refer to 
the contents of the simulated program location counter 
in order to determine the location of the next instruc- 
tion to be simulated. The instruction fetch routine then 
refers to simulated memory to obtain the instruction 
and the contents of the simulated memory location are 
analyzed to determine what must be done. The instruc- d 



tion code is examined and control is transferred to a 
subroutine whose function is to simulate the specific 
instruction being simulated. Other functions performed 
in this process may include, for example,, determination 

&of which index register is to be used as a modifier, 
computation of the effective address based on the index 
register modification, and obtaining the data from the 
simulated location or storing the results of the opera- 
tion in the simulated location determined as a result of 
this address computation. 

The arithmetic section is simulated by the many 
subroutines which are required to simulate the indi- 

1 vidual instructions. The registers which must be sim- 

I 
ulated in  the arithmetic unit are those which are 
significant from the programmers viewpoint. For ex- 
ample, a machine which has an accumulator register, 
and an auxiliary arithmetic register would require that 
locations in the object computer be used to simulate the 
contents of these registers, All operations which per- 
form some modification of these registers in  the source 
computer would, therefore, require that the subroutines 
.vhich simulate those operations perform the same modi- 

I (yications upon the locations used to simulate these 
registers. 

Auxiliary registers such as index registers, additional 
arithmetic registers, or temporary registers for buffer- 
ing must also be simulated. Locations in  the object 
computer are set aside to simulate the corresponding 
registers in the source computer. In addition to the 
various registers and address counters which are re- 
quired, it is also necessary to simulate many of the indi- 

b c a t o r s  of the source computer by having a bit in the 
object computer simulate the function of the corres- 
ponding indicator in  the source computer. For example, 
overflow in arithmetic operations may cause an  over- 
flow indicator to come on. Therefore, it is necessary 
that the object computer use a switch of some sort to 
simulate the overflow indicator. Similarly, such indi- 
cators as high, low and equal indicators for comparison 
Yurposes may have to be simulated. 

k- Simulation of the input/output facilities of the 
source computer frequently present the most difficult 
problem. To simulate a card reader, for example, the 
object computer should have a card reader. It is not 
always necessary that this exact simulation take place, 
however, since it is possible to simulate a card reader 
by having card images on magnetic tape which are then 
read by the simulator program in the object computer. 
The simulator program simply reads in  the next card 
image from this simulated card input data tape when 
the source computer program calls for a "read c a r d  
instruction. Through .use of magnetic tapes on the 
object computer, it is possible to simulate a wide variety 
of input/output devices. It  is necessary only to read 
from or write on the specific tape being used to simulate 
the device when the corresponding instruction is sim- 
ulated in the source computers program. 

One of the most difficult functions to simulate is the 
manual operation of the source computer console. In C general, console operations are not duplicated, because 

the consoles of the two computers are usually quite 
different. It is possible to simulate most console opera- 
tions by using control cards to set program switches, 
initialize registers, or perform similar functions. This 
implies that console operations which would normally 
be performed during a run would not be performed 
during a simulation run unless they had been pre- 
programmed in the input data in such a way that the 
simulator could recognize this control data and take the 
required action. If, however, the console facilities of the 
object computer are such as to permit easy duplication 
of the console functions of the source computer, it I 

certainly is possible to permit on-line simulation of I 
manual console operations during execution of the I 

I 

program. 
The approach taken in  the development of produc- 

tion simulators is somewhat different from that taken 
I 
I 

in the development of debugging simulators. A produc- 
tion simulator requires simply that the programs for the 
source machine be loaded and execution of these pro- 

I 
grams through simulation be initiated. The results of 
the computations may be recorded on magnetic tape or 
given directly as output via a printer. 

A debugging simulator requires that considerable ad- 
ditional information be provided to the simulator i n  the 
form of control information specifying where dumps 
and traces are to occur, specifying the initial conditions 
of switches and registers, and providing for the chang- 
ing of switches and registers during a particular simula- 
tion run. In order to accommodate these control cards, 
a program is required to read in the control cards, 
analyze the data on the control cards, and set up tables 
and indicators required for performance of the functions 
indicated on the control cards. This program is a pre- 
processor which is executed prior to the particular 
simulation run. Upon completion of a simulation run, 
control is returned to the pre-processor in order to read 
in the control cards for the next simulation run to be 
made. I t  is the pre-processor which enables the addi- 
tion of debugging facilities, providing flexible control 
over the entire simulation run. 

In some situations i t  is necessary to perform post- 
processing on the output generated by the simulation 
run. The results obtained during a simulation run may 
be recorded in a highly compact form for efficient sim- 
ulation. However, such compact information is not 
amenable to easy interpretation by the user so that a 
post-processing run is required to convert the output to 
a form which the user can understand. 

Another important characteristic of a debugging sim- 
ulator is that it can be intimately connected with the 
assembly system which produces the object code which 
is the input to the simulator run. Although ultimately 
the output of the assembly program must be used as 
input to the source computer itself for execution, the 
output of the assembly program may be modified to 
be more convenient for use in the object computer 
which is being used in  the simulation. For example, 
instead of paper tape for input to the source computer, 
a binary magnetic tape can be generated for direct input 
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to the simulator. 
The relationship between the assembly program and 

the simulator can be extended even further. The 
symbol tables generated by the assembly program can 
be used by the pre-processor so that debugging specifi- 
cations defining dumps and traces need riot be in 
absolute machine language form. They can be speci- 
fied using symbols which were used i n  writing the pro- 
gram originally. The pre-processor uses the symbol 
tables produced by the assembly program to convert 
symbolic debugging specifications to the absolute 
specifications which are used in  the simulation run. 

Simulator Generators 
A logical consequence of the common characteristics 

of simulators is that one can abstract those features 
which are common to many different computers. A 
prime example is the instruction fetch routine which 
uses the program location counter to fetch the next 
instruction and then updates the instruction location 
counter. In the same way that emulators capitalize on 
this function and perform it by hardware, it is possible 
to write a simulator generator in which the same func- 
tions are performed by a general purpose routine. The 
routine to performing instruction fetch would be com- 
mon to many simulators. 

There are many common characteristics of com- 
puters which could be built into generaked subrou- 
tines. For example, binary computers using two's com- 
plement arithmetic, having a fixed word length and two 
arithmetic registers, as is commonly the practice, 
would all perform the basic operations of addition, sub- 
traction, multiplication and division in essentially the 
same manner. Thus, the subroutines for performing 
these operations would vary depending upon only the 
word length of the computer. Carries from the low 
order arithmetic register to the high order arithmetic 
register, handling of overflows, underflows, operands 
with different signs, and storage of results, would all 
have common characteristics. 

A simulator generator is a program i n  which the 
user can specify the characteristics of the source ma- 
chine that he wishes to simulate, and the generator will 
produce specific subroutines which will perform the 
required functions in  a fairly efficient manner. 

There are many other functions which are common 
to simulators to which the same type of reasoning ap- 
plies. Included are indexing addresses, indirect addres- 
sing, and conversion from decimal to binary or binary to 
decimal. 

Obviously, any general system wiLl suffer in that 
generality will reduce the efficiency of the specific 
routines written for performing that function. By 
restricting the routines to a class of machines, this loss 
of efficiency can be minimized. If the source machines 
are sufficiently similar, there can be great savings in 
the construction of simulators. Thus, it would not be 
economical to construct a simulator generator which 
would handle fixed-word-length binary machines as well 
as being able to handle variable-word-length decimal 

machines. However, if the source machines are all 
binary but of different word lengths, even if the num- 
ber representation may be different i n  the sense of one's 
complement vs. two's complement vs. magnitude and 
sign; the routines to perform these functions can still 
be written with very little loss of efficiency. 

A simulator generator would be useful for an installa- 
tion which has one machine which is to be used as the 
object machine for simulation and several source 
machines which are of different characteristics. Rather 
than write a specific simulator for each of the source 
machines on the object machine, a simulator generator 
enables one to easily build simulators for each of the 
source machines to run on the one object machine. 

Emulation 
A recent development in  the computer industry has 

been the use of emulation to facilitate the conversion 
from one computer system to another computer system. 
Emulation is a means of facilitating simulation through 
the use of hardware features in the object computer. 
Emulation is obviously economical only when a large 
family of machines is replaced by another family of 
machines. An example of this situation is the IBM 
System/360 in  which emulators are available for 
various models of the 360 to assist simulation by many 
of the 7000 series IBM equipment. 

In terms of the simulators discussed previously, 
emulation is obviously of value only as an aid in per- 
forming the functions of a production simulator. Use 
of hardware features to aid simulation is obviously 
much more efficient and results in faster execution of 
the source computers program than does pure simula- 
tion. As was indicated, speed is the most important 
factor in a production simulator so that emulators are 
of great value here. 

On the other hand, emulation is not an efficient ap- 
proach to building a debugging simulator. One char- 
acteristic of unbuilt computers is that design changes 
frequently occur. These changes necessitate only pro- 
gram modifications in a program simulator, but may 
require major hardware changes in an emulator. 

The description of simulation and the functions per- 
formed in  simulation provide the basis for determining 
those functions which an  emulator can be the greatest 
value in performing. The heart of any simulator is the 
loop in which the simulated, program location counter 
determines the location of the next instruction. Since 
this loop must be performed for every instruction 
executed, the use of hardware facilities to perform these 
functions would vastly improve the efficiency of the 
simulator. This is one of the functions of a simulator 
which is performed by hardware in an  emulator. 

Having fetched the instruction, the operation code for 
the source machine is examined and control branches 
to one of a series of subroutines to perform the instruc- 
tion. Depending upon the complexity of the source 
machine and the similarity of the object machine's hard- 
ware to the source machine's hardware, some of the 
operations can be performed by the addition of other 
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hardware. In some cases however, the source machine 
instruction is so different, that the structure of the 
object machine does not enable economical implemen- 
tation of the instruction in the object machine. In this 
case, a subroutine is executed which performs the 
functions required to simulate the source machines 
instruction. This subroutine is identical to what would 
be required if a full simulation of the source machine 
were done. 

Simulators and emulators are not two mutually ex- 
clusive ways of performing the same function, but are 
instead two techniques which implement each other. 
Emulation is able to perform functions much more 
efficiently and quickly than a simulation program can 
do. This speed is of great significance i n  a production 
simulator, but, it is not economical to emulate all of the 
source machines instructions. Simulation should be 
used to perform the functions which cannot be eco- 
nomically performed by hardware emulation. 

Simulation of the Control Data Digital Control 
Computer on the IBM 7030 Stretch 

b The Control Data DCC is a binary machine having a 
24 bit word length. This computer is one of the fire 
control computers used i n  the Polaris system and has 
input/output instructions which are specifically related 
to weapon control functions. Since it is a real time com- 
puter, the timing of the program is very significant so 
that the simulator must take these timing considera- 
tions into account. 

The heart of the simulator is a table called the object- 
it time table. Events which are time dependent cause an 

entry to be placed in this table so that the event can be 
activated by the simulator when the proper time occurs. 
The simulator keeps track of time in a simulated DCC 
clock by accumulating the time required to execute 
each DCC instruction. 

Entries in the object-time table are kept sorted in 
increasing time sequence. The value of the programmed 
DCC clock is compared with the time associated with 

k t h e  entry at the top of the object-time table at comple- 
tion of simulation of each DCC instruction. Wher, the 
comparison indicates that the event is to be activated, 
control is transferred to a subroutine to perform the 
event. The events which can be specified by the object- 
time table are primarily associated with input/output 
operations, such as reading a character into memory, 
writing a character to the printer, transmitting data to 
the missile, or an interrupt caused by the return of data 
from the missile. 

The approach used in the DCC simulator permlts a 
detailed timing simulation not only of the internal pro- 
gram functions but also of the asychronous input/ 
output operations. Users of the DCC were able to debug 
their programs before the machine was actually avail- 
able. Included in the debugging of DCC programs was 
the checking of intricate timing relationships required 
to assure successful operation of the real-time program. 

Simulation of the IBM 650  on the Honeywell 800  
The IBM 650 is a decimal-digit drum-memory com- 

puter whereas the Honeywell 800 is a 48-bit core- 
memory computer which can perform both decimal and 
binary arithmetic. The approach to interpretation of 
650 instructions on the H-800 was determined by the 
fact that the H-800 could perform both decimal and 
binary arithmetic. 

Each 650 word is simulated in one H-800 word. The 
format of the word simulated, however, depends upon 
whether the word is an instruction or data. By storing 
650 data in  decimal form, the H-800 decimal arithmetic 
features were utilized. This speeded up the simulation 
of arithmetic operations. 

On the other hand, the H-800 requires binary address- 
es to access the words of memory which are used to 
simulate the 650 words. Addresses in  the 650 program 
are in  decimal so that they must be converted to binary 
for the H-800. This problem is solved by representing 
650 instructions in  a blocked binary format. This means 
that the two-digit operation code of the 650 is repre- 
sented by seven binary bits in the H-800, and each of 
the four-digit addresses of the 650 instruction is repre- 
sented by fourteen binary bits of the H-800. Three 
additional bits are used in  the H-800 representation to 
tag the addresses. 

Using this technique, instructions for the 650 are 
stored i n  a convenient form so that they can be picked 
up and interpreted without further conversion. Data 
which these instructions operate upon is in decimal 
format so that the decimal operation capabilities of the 
H-800 can be employed. Problems arise when the 650 

instructions are modified arithmetically. Since they are 
not in  correct format, it is necessary to go through a 
conversion from the blocked binary format to the deci- 
mal format, to perform the modification of the 650 
instruction. Similarly, if data is ever interpreted as an 
instruction, it is necessary to convert from decimal 
format to the blocked binary format. The additional 
bits in H-800 words are used to indicate the format so 
that the simulator performs the necessary conversion 
when required. 

Simulation of the IBM 650  on the IBM 704 
The IBM 704 is a 36-bit binary riachine whereas the 

650 is a 10-digit decimal machine. The approach taken 
for representation of a 650 word on the 704 is as 
follows: 1 bit represents the sign of the 650 word, 7 
bits represent the two-digit 650 operation code, and 14 
bits represent each of the four decimal-digit addresses. 
Thus, the entire 36 bits of a 704 word are required to 
represent a single 650 word. This format is called a 
blocked binary format and is similar to the format in 
the H-800 simulation of the 650 except that no addi- 
tional bits are available for control purposes. 

One characteristic of the 650 programs being simu- 
lated is that the input programs required for simulation 
utilize a floating-point interpretative system for the 650. 
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This system is capable of including pseudo-instructions 
in  addition to 650 machine-language instructions. I n  
these programs the data which the floating-point inter- 
pretative system operates upon is always segregated 
from the instructions which operate upon that data. 
Thus, no arithmetic operations are ever performed on 
the instructions using the floating-point interpretative 
system. Nor does the reverse take place, that is, in no  
case are 650 machine-language instructions used to 
operate upon the decimal data words which are the 
data that the floating-point interpretative system 
operates upon. 

Segregation of 650 instructions and floating-point 
data makes i t  possible to provide a much more efficient 
simulation system. First, the 650 operation codes are 
simulated to perform exactly the functions required by 
the 650. Only 33 of the basic operation codes need to 
be simulated since the operations of multiplication and 

division and their variations were always performed in 
the floating-point interpretative system. 

A second part of the simulator is a 704 interpretative 
system which interprets the pseudo-operations as  the 
650 does with one exception. The interpretation is im-4 
plemented directly by 704 subroutines, rather than 
through simulation of the 650 r~t t t ines which interpret 
the pseudo-instructions. 

The approach of simulating only the basic 650 in- 
structions and providing a 704 floating-point interpre- 
tive system results in  much greater efficiency in execut- 
ing 650 programs on the 704. As a result 650 pro- 
grams operate approximately 40 times faster on the 
704 than on the 650. If a straightforward interpreta- 
tion of the 650 without a second floating-point inter- 
pretative system is used, the simulation would run at a 
ration of 3 or 4 to 1 rather than 40 to 1. 
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