
?sX>;"' . - - bur - : ~ x p s r i e n e e ith -

4 The Syste /3.60 a<S? 2 1
I kd u I By Marty Hopkins [:

OR OVER jight months, more than forty CUC
FPmgrammers and Analysts with varied back-
grounds 'in systems, data processing, and scientific
programming have been working with the IBA%
-system/360. Two facts have emerged from the I self-teaching experience on this machine. First, -

no one "knows" how to program the 360 until they
code it, Second, it is very dangerous to ass,ume 4
that you know the 360 ; it is a tricky machine, not I

because it has h complex instruction set, but in k
the way functions are linked and dependent on
oneanother. -

What follows is derived from our day-in, day- 7
I L ~ t experience in coding the 360. If we seem to

emphasize the problems, we do this to offer con- -
structive help to those who will be working with 5
the machine.
PROGRRMMING STRATEGY

19 Although the 360 may be less than perfect to
program, we have found that i t is seldom necessary
to have bad or extremely slow code. This often $4

a
appens on the 7090, when characters are manipu-

U t e d , and on the 1401, when Iong moves or ex- J
tensive arithmetic operations are attempted.

The 360 does impose one critical consideration I
4

on the programmer-careful planning. There are
various apprpaches to almost every coding prob- 1

d lem on the 360; a hasty decision or short-cut -
trategy might lead to unexpected difficulties. For erj

' u a m p l e , when a programmer decides t o use deci- f
ma1 rather than binary arithmetic to save con- 4 version time, he cannot, conveniently, use the conl- .

puted quantities for address arithmetic because the 4
internal addressing is binary. The choice of radix 4
(binary or decimal) is even more complex and will ?
be considered in detail after the nature of the I
registers is explained.

Good programming strategy depends on under-
standing the registers. There are 16 fixed-point
registers, each 32 bits long. The odd and even 1
numbered registers are paired for double-length
shifts, multiples, ete. Registers "1" and "2"' are '
implicit operands in some operations, and register 1

i "0" is restricted in its use. All the registers can P/
be used as accumulators. You'll find the situation
is like the 705-7080, where the ASU's are used as '
temporaries, counters, etc. A good program must

f Bep many intermediate results in the registers
L and thus, minimize "saves"and "rwtoiles." In ad-

dition, you can use the registers as index registers
and for linkage,

In a nutshell, CUC found that:

(k THE 360 IS REALLY DIFFERENT AND, TRICKY *

YOU WON'T BE ABLE TO PROGRAM THE 360 UNTIL YOU
CODE IT, BUT 1-

a ADVICE WILL HELP, AND HERE ARE S K C F I C SUGGESTIONS.

REGISTER MANIPIELATIBN
A 360 instruction allows only 12 bits for the ad-

dress. In 360 terminology, those 12 bits are called
the displacement. This means only 4096 bytes can
be addressed directly, Four bits are provided to
specify a base register. The contents of this
register are added to the 12 .bit displacement to
obtain an effective address. Some instructions
allow the specification of a second register for ad-
dress modification ; this is the index register. Thus,
an effective address is formed by adding the 12
bit displacement to the contents of the registers
specified in the base and index fields. When speoi-
fied as a base or index, the contents of register
zero is zero. So, in order to address anything be-
yond the first 4096 bytes, a base or index mast have
been loaded.. This is a critical consideration in
programming; the more bases loaded, the fewer
registers available for indexing or use as tempor-
aries. There is an added difficulty in planning
due to the even-odd pair arrangement and the
specjal characteristics of registers "'O", "I", and
669'"'

- 4 .

The register problem also extends to the float-
ing-point registers.' The four floating-point regis-
ters are separate from the 16 fixed-point registers ;
therbfore, only) floating-point operations may be
perf~rmed in them. This might sound innocent
enough until you realize that to float a fixed-point
number, you must (1) load it into a fixed-point
register, (2) "OR" in a characteristic, (3) store
the word in core, (4) load i t into a floating-point
register, (5) normalize i t by adding floating-point
zero, and then, finally, (6) store the result. This
separation of fixed and floating registers makes it
essential that subroutines agree on the registers
to be used for passing arguments. In large systems
involving many programmers, the choice is not
always easy. The wrong decision will cost eacx
programmer many programming steps.

The method you choose for linkage will also af-
fect overall register assignment. The most inef-
ficient code I have seen, occurs in linking to sub-
routines and the transmission of arguments. Many

' Iwt ion is not difficulL if it is p3anned in advance.

such as tables and arrays, whir;F must be &ldresd
via indming> should be k@t sel3tWate. you'll

5i curacy in fixed-point computation, do not try to :' use unnomalizad~double precision unless you have

input is medited. Decimal inatruetions have two

thns to oonvert binary to decimal axid vie@-verw

	computerusagecompany.experience_w_system_360.102679065.p01.src.tif
	computerusagecompany.experience_w_system_360.102679065.p02.src.tif

