70 1 E F‘ém“ . T 7 ~a —~
Cur Experience

With
The System /360

FOR OVER eight months, more than forty CUC _
Programmers and Analysts with varied back-
grounds in systems, data processing, and scientific
programming have been working with the IBM

System/360. Two facts have emerged from the
self-teaching experience on this machine.

First,

no one “knows” how to program the 360 until they

code it. Second, it is very dangerous fo assume
that you know the 360; it is a tricky machine, not
because it has a complex instruction seét, but in
the way functions are linked and dependent on
one another. .

What follows is derived from our day-in, day-

at experience in coding the 360. If we seem to
emphasize the problems, we do this to offer con-
structive help to those who will be working with
the machine.

PROGRAMMING STRATEGY

Although the 360 may be less than perfect to
program, we have found that it is seldom necessary
to have bad or extremely slow code. This often
" appens on the 7090, when characters are manipu-
—.ated, and on the 1401, when long moves or ex-
tensive arithmetic operations are attempted.

The 360 does impose one critical consideration
on the programmer—careful planning. There are
various approaches to almost every coding prob-
lem on the 360; a hasty decision or short-cut
‘trategy might lead to unexpected difficulties. For
.xample, when a programmer decides to use deci-
mal rather than binary arithmetic to save con-
version time, he cannot, conveniently, use the coni-
puted quantities for address arithmetic because the
internal addressing is binary. The choice of radix
(binary or decimal) is even more complex and will
be considered in detail after the nature of the
registers is explained.

Good programming strategy depends on under-
standing the registers. There are 16 fixed-point
registers, each 32 bits long. The odd and even
numbered registers are paired for double-length
shifts, multiples, ete. Registers “1” and ‘“2" are
implicit operands in some operations, and register
“0” is restricted in its use. All the registers can
be used as accumulators. You'll find the situation

is like the 705-7080, where the ASU’s are used as _

temporaries, counters, etc. A good program must

2ep many intermediate results in the registers
and thus, minimize “saves” and “restores.” In ad-
dition, you can use the registers as index registers
and for linkage.

By Marty Hopkins

In a nutshell, CUC found that:
© THE 360 IS REALLY DIFFERENT AND TRICKY

© YOU WON'T BE ABLE TO PROGRAM THE 360 UNTIL YOU
CODE IT, BUT

© ADVICE WILL HELP, AND HERE ARE SPECIFIC SUGGESTIONS.

REGISTER MANIPULATION

A 360 instruction allows only 12 bits for the ad-
dress. In 360 terminology, those 12 bits are called
the displacement. This means only 4096 bytes can
be addressed directly. Four bits are provided to
specify a base register. The contents of this
register are added to the 12 bit displacement to
obtain an effective address. Some instructions
allow the specification of a second register for ad-
dress modification; this is the index register. Thus,
an effective address is formed by adding the 12
bit displacement to the contents of the registers
specified in the base and index fields. When speci-
fied as a base or index, the contents of register
zero is zero. So, in order to address anything be-
yond the first 4096 bytes, a base or index must have
been loaded. This is a critical consideration in
programming; the more bases loaded, the fewer
registers available for indexing or use as tempor-
aries. There is an added difficulty in planning
due to the even-odd pair arrangement and the
special characteristics of registers *“0”, “1”, and
B

The register problem also extends to the float-
ing-point registers. The four floating-point regis-
ters are separate from the 16 fixed-point registers;
therefore, only'floating-point operations may be
performed in them. This might sound innocent
enough until you realize that to float a fixed-point
number, you must (1) load it into a fixed-point
register, (2) “OR” in a characteristic, (3) store
the word in core, (4) load it into a floating-point
register, (5) normalize it by adding floating-point
zero, and then, finally, (6) store the result. This
separation of fixed and floating registers makes it
essential that subroutines agree on the registers
to be used for passing arguments. In large systems
involving many programmers, the choice is not
always easy. The wrong decision will cost each
programmer many programming steps.

The method you choose for linkage will also af-
fect overall register assignment. The most inef-
ficient code I have seen, occurs in linking to sub-
routines and the transmission of arguments. Many



tecliniques are available, but there is no single one
which is particularly good in every situation, nor,
for that matter, even in a majority of situations.
As soon as you have a basic understanding of the

), you should consider the various possible
methods for linkage and select the best one as each
new problem presents itself. I don’t think any-
thing else will teach you more about the computer
or be as necessary in developing a good program-
ming strategy.

Our programmers have found that register al-
location is not difficult if it is planned in advance.
' It is helpful to break your programs into subrou-
tines, each covered by a base register. Two regis-
ters should be permanently reserved for linkage.
Data and constants should be kept together for
convenient coverage by a base. Large sets of data,
such as tables and arrays, whic}} must be addressed
via indexing should also be kept separate. Youwll
v -ally find it sufficient to réserve one base regis-
. for data and one for instructions within any
subroutine. Registers should be specified sym-
bolically so when register assignments must be
changed, you can do it by reassembly. This is a
sound precaution for all programs. We discovered
that it is necessary to save one register for an
emergency. A small change in logic may cause
a complete rewrite in a tight routine because a
r~~igter is not available. Don’t attempt to address

first 4096 bytes directly. Some system prob-
ably expects to use them, and even if this is not so,
the program is’useless if it has to be relocated.

DATA LAYOUT

The other broad area where we advise careful
7 'ning 1s aata layout. Harly In the analysis
Suwge, you must decide if data are to be decimal
or binary. You’'ll notice each radix has advantages
and disadvantages. Binary data is more compact,
is operated on faster, and can be used for address
computation.
a word boundry and requires conversion when the
Ainput is unedited. Decimal instructions have two
addresses; they allow for variable length fields,
and they do not require a register as an operand.
However, because decimal instructions may not be
indexed, an extra base is often needed. Instrue-
tions to convert binary to decimal and vice-versa
are available. In most cases we have found that
binary data produces the most efficient code.
The variable-length “Move” and “Compare” in-
structions are a great help in coding, and they will
operate on binary data. IBM 1400 series pro-
grammers should remember that the word length
ot contained in the data. When the word size
is carried with the data, it must be a binary count
or a special control character. The former can be
used to modify an-instruction; you must scan for

However, it must be positioned on

the latter. In general, though, youw’ll find the
variable-length properties of this machine are less
flexible than that of the 1400 series. This may be
a good thing because instruction-controlled word
length, as found in the RCA 301 or STRETCIHI,
allows easy debugging and produces good code.

ACCURACY

Those who plan to do heavy computation should
be aware of the accuracy problem. A single pre-
cision floating-point number has a 24 bit mantissa.
The characteristic is a power of 16, not a power
of two, so a number is normalized when one of the
left hand four bits of the mantissa is a one bit.
This means up to 3 bits can be lost in normaliza-
tion; thus, the mantissa may have only 21 bits of
accuracy. That is a little more than six digits.
The 7090 gives over eight digits. It may turn out
that most scientific programs will be done in
double precision. They will be almost as fast,
even if they use more storage.

Fixed-point accuracy of 81 bits probably is not

going to please those who have finally gotten 35

bits from 7090 Fortran IV. If you want more ac-
curacy in fixed-point computation, do not try to
use unnormalized-double precision unless you have
no multiplies or divides, as those operations always
normalize. It is possible to get 31 digits of ac-
curacy in decimal operations, but those operations
are slow,

In summary, we would say that the 360 deserves
careful study. In most cases, the programmer
must start from scratch and reorganize his exisi-
ing procedures to effectively use the 360. The
changeover is radical; it is in the order of going
from EAM to the 650. Characteristically, the
difficulties encountered in overcoming this rather
wide gap are laid to “the machine.” But this is
unfair, for we have found that each time a pro-
grammer invents a tricky new technique to bridge
this gap, “the machine” looks better and better to
him. Ask our people who are already at work on
the 360.

MARTY HOPKINS is a
Senior Analyst with CTJC
where, over the past five
years, he has worked on
several projects in sys-
i tems programming. These

T, included the design of

ya | £ COBOL compilers for the
i 1 | H-400 and 800, and a
F' — L\L_._..-, Later, he

FORTRAN compiler for
the H-800.

made a feasibility study on translating 705 programs to
the H-800. Marty played a key role in the design and
implementation of the DCC simulator, a real time com-
puter, and worked on a study contract for a proposed
FORTRAN IV compiler. He was in charge of Project
A, now completed, on the assignment that gave him his
System /360 experience. (Barbara Lesser is overall pro-
ject supervisor, Betty Burton was head of Project B, and
Martha Wilensky heads Project C.) Marty lives with his
wife, two children, dog, and cat on a quiet tree-lined
street in Bronxville, a suburb of N. Y.



	computerusagecompany.experience_w_system_360.102679065.p01.src.tif
	computerusagecompany.experience_w_system_360.102679065.p02.src.tif

