
Mount Kisco office. He has been in
the computing field since 1 9 5 7 ,
when he received his B .A. in Phi-
losophy from Amherst College.

Marty and his wife Camille live in
Chap aqua, N.Y. with their two
child!en, Ellen and Andrew.

A
CRITICISM
OF
COBOL
FOR
DOCUMENTATION
by
Martin Hopkins

As COBOL processors appear that compile rapidly
and produce fair object code, there has been a
resurgence of interest i n that language. Therefore,
I think i t i s an appropriate time to raise a word of
caution about the virtues of COBOL as a vehicle
for documentation. I feel caution i s necessary be-
cause there are many who claim that the COBOL
program itself is a l l the documentation required.

First, i t is possible to write a well documented or
poorly documented program in any language. If you
don't think this i s possible consider a COBOL
program written with a maze of ALTERS and PER-
FORMS and no use of NOTE, and compare i t with
an intelligently commented assembly language
listing. Of course that i s an unfair comparison, but
i t serves to il lustrate the point.

But my concern here is: How good is the language
for documentation? And does i t encourage good
documentation practices? In this instance I think,
COBOL can be contrasted with an assembly lan-
guage listing, which i s often considered to be a
bad vehicle for information about a program.

There used to be a belief that COBOL programs
were written by vice presidents and stock boys.
This i s now generally recognized to be nonsense.
Programs are written by programmers no matter what
the language. However, there i s s t i l l a belief that
i f stock boys don't have the patience or sk i l l to
read a COBOL program, perhaps vice presidents
and even accountants wi l l be wil l ing to try. How-
ever, i n any we1 l run shop even this isn't necessary
A l l they have to do i s read the write-up which the
project supervisor requires.

1 feel i t is important that people on this level know
what programmers are doing. To do this rapid1 y, a
proper write-up of the program i s required. Most
supervisors simply don't have the time to walk the
data through the program. So, the non-programmers
are saved - they can read the external documen-
tat ion. Of course programmers doing mai ntenance
wi l l want more, but their problems w i l l be covered
later.

Many people seem surprised at the idea that a well
documented COBOL program is real ly not adequate
documentation. Therefore, let me give an example.
Supposing a manager asks, "What does this program
do?" The answer he gets is a COBOL program that
beg i ns:

NOTE. CLEAR ALL TABLES TO ZERO.

HOUSE-KEEPING.

PERFORM CLEAR - TAB VARYING I FROM
1 BY 1 UNTIL I EQUALS 1 0 0 .

PERFORM

Obviously, a write-up is required. A program (an
algorithm) and a description are different things.
A program, whether in COBOL or any other lan-
guage i s designed to solve a problem. A description

i s organized to explain a problem. They just don't
look the same. A program is f i l led with t r iv ia that
are not separated from what's important in a de-
scription. Part of the problem is: What's an unim-
portant detail in a description, i s a bug in a pro-
gram. When you consider that most programs reflect
their checkout history and changes in design during
init ial implementation and maintenance, i t 's hard
to think of a worse way to describe a problem.

Of course some technicians must look at programs.
For the most part, such l ist ing readers are pro-
grammers doing maintenance. But, there wi l l be a
teW people who w i l l require more tnan the concise,
written description and flow charts. A l l these poor
souls must look at a source language listing for
ultimate resolution of details.

I f you should come to a COBOL source program
after working with reasonable assembl y language
listings, several immediate flaws in the "higher
level" language wi l l be obvious. First, there i s no
way to skip to a new page in COBOL. This serves
to separate portions of a listing and helps mak-
for clarity. Also, there i s no way to skip s e v e r u
lines with one statement. Another good format
feature in many assemblers i s the abil i ty to vary
the heading and subheading throughout the listing.
Assembly language programmers are used to looking
for the important comments that are clearly desig-
nated with a n asterisk. The COBOL NOTE just
doesn't stand out.

Finally, there is 'always the horrible chance that
the COBOL programmer took the format rules of
the language seriously and wrote this program in
free form to make i t look l ike English. After looking
at such a program you are thankful that the as-
sembler requires the operation code to begin in
column 1 0 , or whatever.

Any attempts to dig into a COBOL listing wi l l
reveal further problems in understanding. Many of
these arise from the separation of information about
a process. Ostensibly the Procedure Division
describes what is happening. But in reality many
operations are implied in Data Division data de-
script ions. Conversions, scaling, truncation, re-
moval of signs, editing and variety of padding
options are al l implied by Data Division clauses.
This forces the reader of the Procedure Division
to constantly cross reference the Data Division to
understand what's going on. This constant flipping
back and forth is not the only adverse effect of
this remote implication. Since the performance t
the operation depends on how the data i s describe#
programmers have to redefine areas and assign new
names and data descriptions to vary the processing
on a particular data field that logically has a single
name.

COBOL i s not the only problem oriented language
with th is characteristic. But, with other languages
you don't have this problem in assembly language.
Even a novice coder can see that the absolute
value of a variable i s being taken in a program
written in assembly language. A COBOL program-
mer can easily forget that a series of moves to
differently named f ields actually refers to the same
area with the S missing from the picture in one data
description.

In addition to the problems of clari ty from Data
Division implications there is the problem of ex-
cessive names. There are just too many to re-
member. Every programmer who comes from as-
sembl y language to COBOL is shocked when he
learns how much effort and how many names are
required to describe data. P i ty the poor reader who
is trying to figure out what's going on as the data
i s manipulated in redefined areas. Then too, the
lack of relative addressi ng causes more names.
If a programmer wants to work on the last charac-
ter of a s ix character f ie ld called BOX, he must
redefine the area rather than refer to BOX + 5 ,

'ch i s beautifully clear The COBOL program- h? ers may cal l i t "BOX-PLUS-5 ", but th is is am-
biguous. I t just happens that th is i s a common
case where assembly language is much easier to
comprehend and, to code.

Another consequence of remote implication i s
that no person can be sure of the meaning of a
MOVE CORRESPONDING without a detailed ex-
amination of the data. The consequences of seg-
mentation rules on the ALTER and PERFORM
verbs can be a source of misunderstanding. Some
switches are reset each time a segment is read
in. Some remain set and you can't te l l by looking
at either the switch or setting statement.

Another problem is: The COBOL language isn't
concerned with subroutines. Relocatable loaders,
linkage editors, binders (or whatever program that
f i l Is in external references, incorporates library
subroutines and assigns absolute locations to sepa-
rately compiled subroutines is called), have be-
come the dominant mode of operation. There are
some advantages to this. For instance you can
work with smaller modules and therefore, isolate

'problems. COBOL programs are often too large
and diffuse for easy understanding, yet the ac-
customed method of coping with this problem i s
not available. (IBM has implemented, through
ENTER, something that makes a COBOL program

,/' fave l ike a FORTRAN Subprogram. This i s wise,
not COBOL. IBOL?)

The final objection to COBOL for documentation
is psychological. Even if the supervisor insists
on a description and adequate use of NOTE, sheer
weariness overtakes the programmer who has to

I

code a Data Div is ion larger than a Procedure Di-
vision which, in turn, has such abominations as:

"PERFORM P-20 VARYING I FROM 1 BY
1 UNTIL I EQUALS 10." Rather than
"DO201 1 , 1 0 . "

Can you blame the supervisor i f out of charity, he
permits a l i t t le skimping on documentation? Es-
pecial ly when some "experts" say the program
itself i s easy to understand.

In order to write we1 l documented COBOL programs,
installations should develop standard practices.
The following i s a suggested l is t :

1 . Make al l names unique. This eliminates the

clari ty and makes maintenance easier.
7 CORRESPONDING option but increases

2. Always use the simplest forms. It helps to
begin each statement on a new card.

3. Never use compound conditionals or implied
subjects.

4 . Standardize on data names. It i s helpful to
indicate a field to be edited by beginning i t
with an E.

5 . Follow each NOTE with an asterisk. In this
way they bvi l l stand out.

6 . Begin each section with a NOTE describing
tne function of the section.

7. Make al l PERFORM loops nest .so that there
i s no overlap. Always use an EXIT.

A COBOL installation w i l l want to extend this list.
I t w i l l probably develop standard data descriptions
with systematical l y derived names. The guiding
principal in a l l such efforts w i l l be simplicity
and the use of an installation prescribed method
when there are several COBOL options which wi l l
work.

Given a good compiler, COBOL has great value
in many situations. However, the COBOL l ist ing
i s not acceptable as the only documentation be-
cause the COBOL language tends to obscure mean-
ing rather than clari fy it. Rather than adding such
features as an RPG or ADD CORRESPONDING
THE CODASYL, a committee should concentrate
on adding useful documentat ion faci l i t ies. Mean-
while, the COBOL programmer should provide ade-
quate documentation beyond his COBOL source
program.

COMPUTER USAGE COMPANY. INC. 144 Main Street, Mount Kirco. N.Y. 10519

	computerusagecompany.cobol_for_doc_con_1967.102679045.fc.src.tif
	computerusagecompany.cobol_for_doc_con_1967.102679045.p01.src.tif
	computerusagecompany.cobol_for_doc_con_1967.102679045.p02.src.tif
	computerusagecompany.cobol_for_doc_con_1967.102679045.bc.src.tif

