
CUC
6

John Rynes i s an Analyst in the Cor-
porate o f f i ce . He has designed and
implemented the new CUC payroll
system in DOS COBOL for the IBM
3 6 0 and, over the past three years
has written programs in 1 2 lan-
guages for nine different machines.

John joined CUC in 1 9 6 4 . He holds
a B.S. degree in mathematics from
the University o f Wisconsin. John,
h is wi fe Beverly and their son,
George l ive in Mt. Kisco.

L i

A
DEFENSE
OF
COBOL
FOR
DOCUMENTATION
by
JOHN RYNES

Author's Note: I had been thinking about writing an
article on the advantages o f COBOL for documentation
for some time. But being involved with writing programs
in that language, I made that article a future project.

After reading Marty Hopkins ' article in the last CU-BITS
I fel t that the question o f COBOL's suitability for docu-
mentation was pertinent and should now be discussed
from the other side.

No source program will ever provide all the documen-
tation needed-not even a COBOL program can do that.
All source programs are concerned with detail. There-
fore, they can supply much o f the required detail docu-
mentation but they can't provide equally essential
general documentation.

When put to proper u s e , however, t h e inherent fea tures carry t o their COBOL programming t h o s e hab i t s a c q u i r e d
of COBOL will yield a better documented source program i n writing assembly language programs. P e r h a p s they
than any other programming language. To prove t h i s should not be COBOL programmers. At a n y ra te , t h e tool
point , you need only compare some of i t s features with i s ava i lab le and any well documented COBOL program
those of other programming languages. makes u s e of it .

One of t h e bes t documentation tools ava i lab le i n COBOL
i s the thirty character t a g for f ie ld and paragraph names.
T h e number of meaningful combinations of charac te rs i s
virtually l imit less . All assembly languages a re more
restr ic t ive. Most of them allow only s i x t o eight char-
a c t e r s i n names. As a result,COBOL names c a n be much
more meaningful than assembly language names. Con-
s ider t h e recognition time required when looking through
a n assembly language l is t ing and coming a c r o s s t h e s e
two tags:

CLCNYITX
EXMFEDTX

Now consider the corresponding two tags in COBOL:

CALCULATE-NEW- YORKINCOME-TAX
EXEMPTIONS-FOR- FEDERAL- TAX

An equal ly valuable documentation feature i n COBOL is
the s t rat i f ied s t ructure of the D a t a Division, something
not found i n most other programming languages. By in-
s i s t i n g on leve l indicators , each o n e l e s s inclusive than
the other , the CODASYL committee h a s removed from
COBOL the n e c e s s i t y of indirect addressing and i t s
documentation problems. Anyone who h a s tried t o docu-
ment an assembly language program filled with indirect
address ing knows what I mean.

A s a.n example of the power of documentation i n s t rat i f ied
da ta , consider a program which combines meaningful
t a g s , s t rat i f ied d a t a and another COBOL feature, quali-
fication. For example a programmer h a s a twenty-five
character field on a payroll master record which con-
t a ins an employee 's name. He w i s h e s t o move the f i rs t
three charac te rs of that name to t h e f i rs t three posi t ions
of a t en character code on the employee 's check s tub.
In assembly language he would h a v e to write somethip
l ike: d

The meanings of the COBOL tags a r e obvious. You c a n MCW NAME1-22,NAME2-7
even identify them a s a paragraph name and a field name.
Good COBOL programmers will take advantage of th i s
feature t o wri te meaningful t ags for a l l f i e l d s and para- But i n COBOL h e can write:
graphs i n their programs.

Even in COBOL, however, i t i s poss ib le for a program-
mer t o write:

MOVE FIRST-THREE CHARACTERS O F
PERSON-NAME IN PAYROLL-MASTER-RECORD
TO FIRST-THREE-CHARACTERS O F
CHECK-CODE I N CHECK-STUB.

GARB (A,G,E)

., When *he means:

ZIP-CODE (POST-OFFICE, CITY, STATE)

Obviously the assembly language s tatement needs more
explanat ion. T h e COBOL statement suppl ies i t s own
documentation -- and what 's more, n e e d s no relat ive
addressing.

T h e above examples of coding point out another ad-
And thereby l o s e a l l semblence of meaning and documen- vantage of COBOL a s a documentation vehicle . I t s v e r b
tation. Perhaps these programmers don't l ike to con- s e t containing words l ike LrlOVE, ADD, DIVIDE and
t r ibute t h e additional effort required or perhaps they PERFORM i s m a d e of common words whose meanings

OCT
STC
CTC

"CI
are easy to grasp for anyone. In contrast, many other pro- vision. Because of this separation there a re no hidden
gramming languages, especial ly assembly languages, da ta implications buried in the procedures a s there can be
have verb s e t s that can be understood only by men trained in assembly languages. All conversion, scal ing, trun-
in the use of the language. Such mnemonic op codes as: cation, removal of signs, editing and padding are implied

by Data Division clauses. For any given field these
c l auses can be found by examining the f ield and i t s re-
definitions in the Data Division. This feature might ap-
pear an inconvenience to an assembly language program-
mer trying to write in COBOL, but to t he maintenance
programmer i t - i s an invaluable aid to documentation. - -

He does not have to read the entire program to find out
Taken from the verb s e t of the EZCODE Ass-embly System what is happening to one field.
for the RCA 5 0 1 or:

BXL E
SRDL
EDMK

Taken from the verb se t of the Bas ic Assembly Language
System for the I3M 3 6 0 , clearly point out one advantage
of the COBOL verb set .

Another advantage of COBOL's verb s e t i s that a pro-
rammer need write only one l ine of program instruction

L a t h e r than the five or ten l ines he would need to code
in an assembly language. As a result , anyone reading
a COBOL list ing for i t s documentation value, or any
other reason, can understand what i s happening by read-
ing one l ine rather than many l ines. For example, here 's
a comparison of the following instructions:

I
MCW GRSPY, WORK # 8
S DED,WORK
A +S,WORK-1
LCA @bbb,b$O .bb-@,NTPY
MCE WORK1,NTPY

S UBTRACT DEDUCTIONS FROM GROSS-PAY GIVING
NET-PAY ROUNDED.
Although both examples could yield the same results ,
it i s obviously easier to understand the COBOL sentence
than the AUTOCODER statements.

Finally, the coding freedom given to COBOL programmers
i s an advantage not found in most programming languages.
A good COBOL programmer will u se t h i s freedom t o
develop techniques that will help him write a well-docu-
mented program. One of these might be a unique number-
ing system for paragraph names. Another might be a poli-
c y of starting all verbs in column 1 2 and all continu-
at ion phases in column 1 6 . Still another might be t he
u s e of EXIT a s termination points for all PERFORM
statements.

I will admit that there a re some documentation tools
available in other programming languages which are not
available in COBOL. The asterisk used to indicate com-
ments in most assembly languages does stand out more
than the COBOL word NOTE. This feature would be nice
to have, but it i s not essent ia l s i nce any COBOL pro-
grammer knows he can make his entire f irst line, or entire
comment, a sol id s e t of as te r i sks if he chooses.

In COBOL there i s no way to skip to a new page at com-
pilation time. This feature would have advantages, but i t
i s not essential s ince (in most COBOL compilers) you
can skip a predetermined number of l ines by inserting
one blank card in the source deck for each l ine skip
desired.

In summary, COBOL inherently contains many outstanding
documentation features. The good COBOL programmer
i s in fact the only requirement for getting good docu-
mentation from COBOL. With that requirement, a COBOL
list ing will provide outstanding documentation because

Another good documentation feature of C 0 9 0 L i s i t s the inherent documentation features in COBOL tend to
separation of the Data Division and the Procedure Di- clerify meaning rather than obscure it.

: .',.
!$ < . ,-

'It

COMPUTER USAGE COMPANY, INC. 144 Main Street. Mount Kirco. N. Y . 10149

	computerusagecompany.cobol_for_doc_pro_1967.102679040.fc.src.tif
	computerusagecompany.cobol_for_doc_pro_1967.102679040.p01.src.tif
	computerusagecompany.cobol_for_doc_pro_1967.102679040.p02.src.tif
	computerusagecompany.cobol_for_doc_pro_1967.102679040.bc.src.tif

