John Rynes is an Analyst in the Cor-
porate office. He has designed and
implemented the new CUC payroll
system in DOS COBOL for the IBM
360 and, over the past three years
has written programs in 12 lan-
guages for nine different machines.

John joined CUC in 1964 . He holds
a B.S. degree in mathematics from
the University of Wisconsin. John,
his wife Beverly and their son,
George live in Mt. Kisco.

A

DEFENSE

OF

COBOL

FOR
DOCUMENTATION
by

JOHN RYNES

Author's Note: I had been thinking about writing an
article on the advantages of COBOL for documentation
for some time. But being involved with writing programs
in that language, I made that article a future project.

After reading Marty Hopkins' article in the last CU-BITS
I felt that the question of COBOL's suitability for docu-
mentation was pertinent and should now be discussed
from the other side.

No source program will ever provide all the documen-
tation needed-not even a COBOL program can do that.
All source programs are concerned with detail. There-
fore, they can supply much of the required detail docu-
mentation but they can’t provide equally essential
general documentation.

When put to proper use, however, the inherent features
of COBOL will yield a better documented source program
than any other programming language. To prove this
point, you need only compare some of its features with
those of other programming languages.

One of the best documentation tools available in COBOL
is the thirty character tag for field and paragraph names.
The number of meaningful combinations of characters is
virtually limitless. All assembly languages are more
restrictive. Most of them allow only six to eight char-
acters in names. As a result, COBOL names can be much
more meaningful than assembly language names. Con-
sider the recognition time required when looking through
an assembly language listing and coming across these
two tags:

CLCNYITX
EXMFEDTX

Now consider the corresponding two tags in COBOL:

CALCULATE-NEW-YORK-INCOME-TAX
EXEMPTIONS-FOR-FEDERAL-TAX

The meanings of the COBOL tags are obvious. You can
even identify them as a paragraph name and a field name.
Good COBOL programmers will take advantage of this
feature to write meaningful tags for all fields and para-
graphs in their programs.

Even in COBOL, however, it is possible for a program-
mer to write:

GARB (A,G,E)
.When he means:

ZIP-CODE (POST-OFFICE, CITY, STATE)

And thereby lose all semblence of meaning and documen-
tation. Perhaps these programmers don’t like to con-
tribute the additional effort required or perhaps they

carry to their COBOL programming those habits acquired™
in writing assembly language programs. Perhaps they
should not be COBOL programmers. At any rate, the tool
is available and any well documented COBOL. program
makes use of it.

An equally valuable documentation feature in COBOL is
the stratified structure of the Data Division, something
not found in most other programming languages. By in-
sisting on level indicators, each one less inclusive than
the other, the CODASYL committee has removed from
COBOL the necessity of indirect addressing and its
documentation problems. Anyone who has tried to docu-
ment an assembly language program filled with indirect
addressing knows what I mean.

As an example of the power of documentation in stratified
data, consider a program which combines meaningful
tags, stratified data and another COBOL feature, quali-
fication. For example a programmer has a twenty-five
character field on a payroll master record which con-
tains an employee's name. He wishes to move the first
three characters of that name to the first three positions
of a ten character code on the employee's check stub.
In assembly language he would have to write somethir
like: A

MCW NAME1-22 NAME 2-7

But in COBOL he can write:

MOVE FIRST-THREE CHARACTERS OF
PERSON-NAME IN PAYROLL-MASTER-RECORD
TO FIRST-THREE-CHARACTERS OF
CHECK-CODE IN CHECK-STUB.

Obviously the assembly language statement needs more

explanation. The COBOL statement supplies its own
documentation —— and what's more, needs no relative
addressing.

The above examples of coding point out another ad-
vantage of COBOL as a documentation vehicle. Its verb
set containing words like MOVE, ADD, DIVIDE and
PERFORM is made of common words whose meanings

““are easy to grasp for anyone.In contrast, many other pro-
gramming languages,
have verb sets that can be understood only by men trained

in the use of the language. Such mnemonic op codes as:

OCT
STC
CTC

Taken from the verb set of the EZCODE Assembly System

for the RCA 501 or:

BXLE
SRDL
EDMK

Taken from the verb set of the Basic Assembly Language
System for the IBM 360, clearly point out one advantage
of the COBOL verb set.

Another advantage of COBOL's verb set is that a pro-
rammer need write only one line of program instruction

wcather than the five or ten lines he would need to code
in an assembly language. As a result, anyone reading
a COBOL listing for its documentation value, or any
other reason, can understand what is happening by read-
ing one line rather than many lines. For example, here's
a comparison of the following instructions:

MCW GRSPY,WORK # 8

S DED, WORK

A +5,WORK-1

LCA @bbb,b$0.bb—@ NTPY
MCE WORK1 NTPY

SUBTRACT DEDUCTIONS FROM GROSS-PAY GIVING
NET-PAY ROUNDED.

Although both examples could yield the same results,
it is obviously easier to understand the COBOL sentence
than the AUTOCODER statements.

Another good documentation feature of COBOL is its
separation of the Data Division and the Procedure Di-

especially assembly lanquages,

vision. Because of this separation there are no hidden
data implications buried in the procedures as there can be
in assembly lanquages. All conversion, scaling, trun-
cation, removal of signs, editing and padding are implied
by Data Division clauses. For any given field these
clauses can be found by examining the field and its re-
definitions in the Data Division. This feature might ap-
pear an inconvenience to an assembly language program-
mer trying to write in COBOL, but to the maintenance
programmer it -is an invaluable aid to documentation.
He does not have to read the entire program to find out
what is happening to one field.

Finally, the coding freedom given to COBOL programmers
is an advantage not found in most programming languages.
A good COBOL programmer will use this freedom to
develop techniques that will help him write a well-docu-
mented program. One of these might be a unique number-
ing system for paragraph names. Another might be a poli-
cy of starting all verbs in column 12 and all continu-
ation phases in column 16. Still another might be the
use of EXIT as termination points for all PERFORM
statements.

I will admit that there are some documentation tools
available in other programming languages which are not
available in COBOL. The asterisk used to indicate com-
ments in most assembly languages does stand out more
than the COBOL word NOTE. This feature would be nice
to have, but it is not essential since any COBOL pro-
grammer knows he can make his entire first line, or entire
comment, a solid set of asterisks if he chooses.

In COBOL there is no way to skip to a new page at com-
pilation time. This feature would have advantages, but it
is not essential since (in most COBOL compilers) you
can skip a predetermined number of lines by inserting
one blank card in the source deck for each line skip
desired.

In summary, COBOL inherently contains many outstanding
documentation features. The good COBOL programmer
is in fact the only requirement for getting good docu-
mentation from COBOL. With that requirement, a COBOL
listing will provide outstanding documentation because
the inherent documentation features in COBOL tend to
clerify meaning rather than obscure it.

EUC COMPUTER USAGE COMPARNY, INC. 344 Main Street, Mount Kisco, N.Y. 10549

	computerusagecompany.cobol_for_doc_pro_1967.102679040.fc.src.tif
	computerusagecompany.cobol_for_doc_pro_1967.102679040.p01.src.tif
	computerusagecompany.cobol_for_doc_pro_1967.102679040.p02.src.tif
	computerusagecompany.cobol_for_doc_pro_1967.102679040.bc.src.tif

