
There are areas o f major difference when
converting existing COBOL programs to
IBM 360 COBOL (E) programs. This arti-
cle considers these major areas, which are
concerned with program preparation and
language dif ferences.

IBM
360
COBOL
CONVERSION

by
Norman H. Leven

When converting to a third generation IBM System
360, modification is necessary of existing COBOL pro-
grams to IBM 360 COBOL (E) programs, using the
Full Operating System. Many of the problems inherent
in this type of conversion also relate to each of IBM's
operating systems and to future released versions of
COBOL.

Considerable time can be saved and maximum
utilization of personnel accomplished if the converting
installation is aware of those problems that others
have already experienced in a COBOL conversion.
This article reflects lessons learned in several success-
ful conversions to System 360. It covers the pros and
cons of alternate approaches to a COBOL system con-
version, and the major COBOL language differences
created by the IBM System 360 machine characteris-
tics. No attempt is made to specify all of the actions
necessary for conversion but rather to note those areas
that can create the greatest conversion problems.

In approaching the conversion phase, decisions must
be made regarding training of programers in machine
language, alternate program testing methods, use of
translational and name-cross-referenced programs,
availability of test data, storage of test data sets, opti-
mization of programs, use of' cataloged procedures,
conversion of master file data, and on-line printing
capabilities for the testing phase.

Program Training

The ability to read a core dump and to understand
data formats and assembly language instructions can
be of great help in assisting the COBOL programer to
"debug" his converted program. These capabilities will
enable the programer to find the exact machine in-
struction that caused his program error and to iden-
tify the format of the data field that the instruction
was manipulating at that point.

From this information, the programer can more
easily determine the nature of his error. Without these
abilities the programer can, at best, limit the source
of error to several data fields and a general section
of the program. Supplementary programing efforts
and machine rerun time will then be necessary to de-
fine the source of error exactly.

If the programer has had previous experience in a
one-for-one type language, a short introductory course
in 360 Basic Assembly Language and core dump for-
mat is highly advisable prior to conversion. This basic
machine language training will provide extensive sav-
ings in programer and machine time during the pro-
gram conversion phase.

Basic assembly language training for COBOL pro-
gramers inexperienced in a one-for-one type language
consumes an unjustifiable amount of time and effort.
These programers should be provided training only
in supplemental 360 COBOL programing.

Alternate Program Testing Methods

Alternative testing methods available to the pro-
gramers that are not trained in the 360 assembly lan-
guage, are the use of the IBM COBOL debug packet
01- an installation-written Abnormal Interrupt Inter-
preting Routine. Use of IBM's debug packet will elimi-
nate recompilation after successful program checkout,
but requires extra prograing effort, and often re-
quires another computer run to obtain more infonna-
tion. Also, unless extreme care is used, the debugging
language procedures will greatly extend computer run
time.

An Abnormal Interrupt Interpreting Routine can
be written by the installation's system-programers or
obtained from another installation. Because of the
complex internal structure of the operating system,
the modification of an existing routine or conception
of a new routine will require a major effort by the
system-programer staff. Also, preliminary attempts
have not provided a completely acceptable Interrupt

Interpreting Routine capable of handling all possible
interrupt conditions.

I/
Translational and Name-Cross-Referencing

A duplication of the initial COBOL source program
decks should be the first physical step in the conver-
sion phase. The original source decks should then be
filed in a safe location for backup protection. Under no
conditions, should modification or processing take
place with the original source program deck.

A translational-language conversion program (LCP)
has been developed by IBM. This program will recode
characters to 360 EBCDIC representation, change the
environment division to reflect the 360 configuration,
and either change or indicate required changes for
those COBOL statements that are incompatible with
the 360 COBOL language. Although the LCP program
will not identify all of the COBOL statements that may
cause conversion problems, its use will greatly reduce
repetitious examination, and human copying errors.

Concurrently, a name-cross-reference program
should be run. This cross-reference program provides
a where-used list for each data and paragraph name
used in a COBOL program. Programing efforts will be
considerably reduced by reference to the cross-refer-
ence list, instead of searching through the entire
COBOL program listing. However, the cross-reference
list should be generated in advance because program-
ers generally will not delay consideration of a program
once the "debugging" phase has started.

Availability of Test Data
If the data used to test the original programs is

available, it should be used for the initial checkout of
the converted programs. The benefits of using the orig-
inal test data are the time savings resulting from the
handling and processing of only small quantities of
data and the comprehensive test of the multiple condi-
tions of the program.

If original test data is not available or when the
converted program has satisfactorily processed the
original data, current actual data should then be used
for program checkout. A converted program should
not be considered in a production status until it has
successfully processed at least two complete sets of
historical data. Even these extensive test procedures
will not completely ensure the accuracy of the conver-
sion and the occurrence of a small number of errors
during initial production runs is still likely.

Storage of Test Data Sets
If small batches of initial test data are available,

and if a disk storage space is available, it is suggested
that the initial test data sets for each program be
loaded onto disk and retained there until successful
program checkout. This procedure eliminates the load-
ing, cataloging and deletion of each data set, every
time a test run is made. '-&

The possibility of having the data deck scrambled
or lost also is significantly decreased by semiperma-
nent disk storage. However, if test data is stored on
disk, extra care must be taken when deleting or modi-
fying any of the cataloged data sets. Historical files
used for testing, because of their size can quickly con-
sume all available disk space; therefore, historical
files should be deleted after each test run.

Optimization of Programs
Though COBOL programs can be optimized to run

more efficiently on the 360 by making use of specific
characteristics of'the hardware and of the 360 COBOL
language, it is suggested that optimization of the pro-
grams be delayed until all direct conversion steps are
complete. The only exception to this is conversion to
computational format, of those fields used in mathe-
matical calculation. Concurrent optimization and con-
version will propagate increases in computer recoding
and logic errors, and increase the number of changes
that the programer must analyze for each error oc-
currence.

Catalog COBOL Test Procedures
Use of catalog COBOL test procedures, similar to

those specified in "IBM System 360 Operating System
COBOL (E) Programer's Guide," will contribute to the
standardization of the installation use of the operating
system, and will enable the COBOL programers to
concentrate on the understanding of a limited number
of control card options.

Most attempts to learn quickly all areas of the oper-
ating system usually result in confusion and failure,
and responsibility for complete understanding of the
operating system should be delegated to the software-
utility programers. Thus, the COBOL programer needs
only to call the test procedures and to describe the
data used by the program through use of the Job
Card, Job Step Card and the LABEL, VOLUME, UNIT,
DS NAME, DISK POSITION, SPACE, DCB and * op-
tion of the Data Definition Card.

Conversion of Master File Data
Although conversion of master file data requires

consideration, the various mediums of data storage,
various formats of both converting and converted
files, and the numerous possible coding structures that
the files can be represented in, make a generalized
solution to the master file conversion problem impos-
sible.

Line Printer ~a~ab i l f i i es
The installation of an on-line printer on the main

processor will be of considerable benefit during the
conversion period. The use of a printer to record the
system and compiler messages, rather than a system
output tape, will enable the computer operators to
immediately ascertain if the job is running correctly.

The operator will initially be unfamiliar with the

360 output formats, and -the printing of the output
during the job run will help the operators to separate
correctlv the o u t ~ u t listings. Also, having the output
printed directly will prevent the loss of prior job run
outputs due to system abnormal end occurrences.
Thus, ON-LINE printer during the program conversion
period will decrease the number of operator errors,
program turn-around time, and lost program run data.

COBOL Language Conversion Problems
Due to its uniqueness of hardware and software de-

sign, the 360 has certain characteristics that differ
from those of other computers and correspondingly
from other COBOL languages. Many COBOL program-
ers, either to take advantage of the unique computer
and language characteristics of other machines or in
error have programed certain COBOL functions in a
manner which is not acceptable to the 360.

Clearing of Memory Core
One of the major differences between the 360 and

other computers is the clearing or blanking of core
memory prior to initial program loading. The 360, be-
cause of its program relocation capabilities, does not
automatically clear core. Thus, when a 360 COBOL
program is loaded, those data areas that were not
given initial values, by the VALUE clause or by the
initid COBOL procedure statements, contain the val-
ues remaining from some prior program.

Thus, the programer must carefully verify that all
alpha areas are initialized or cleared to blanks, and
that all computational areas are cleared to zero or
initialized with a correctly formatted numeric value.

A large percentage of the errors that occur during
production runs are due to areas not initialized which,
by chance, contained satisfactory values during the
program test phase.

Problems of Computational-3 Format
Another area of frequent error occurrence is that of

representing and processing numerical data in Com-

- ABOUT THE AUTHOR -
Norman H . Leven i s an Analyst with
Computer Usage Development Corpo-
ration's Los Angeles o f f i c e . Prior
to joining CUC, he worked as a
Management Consultant with Norris
& Gottfried, Inc., and as a Systems
Engineer for IBM. He was involved
in some o f the first installations o f
360 's in the Los Angeles area. Mr.
Leven holds a B.S. in Engineering
from the University o f Illinois.

putatioral-3 format (packed format). Numerical data
is represented in this format because of the space and
processing efficiencies it provides. The packed format
consists of a valid sign in the right-most four bits of
the low order byte, and numeric values (0-9) in all
other positions.

The packing of a blank character (hexidecimal-40)
provides an invalid sign representation since 4 be-
comes the sign character. The movement of a nu-
meric zero to group level items that contain one or
more computational-3 items can cause an invalid zero
bit configuration to appear in the sign position of the
computational-3 fields. The moving of a field defined
as X format to a computational-3 field does not cause
the data to be packed.

The following COBOL programing procedures
should be implemented when using computational-3
format numeric fields.

1. Add numeric value fields only to computational-3
fields, not blanks or alpha format fields.

2. Examine all input numeric fields that are to be
used in computations for blanks. If the field is defined
as 9's format, redefine the field as X format and then
examine the field, replacing or transforming all blanks
to 0's.

3. Do not move ,an X-formatted field to a compu-
tational-3 field.

4. Do not group-level move an item containing com-
putational-3 fields to another group-level area unless
i t has the same format.

5. Do not move zero to a group-level or occurs area
containing computational-3 fields.

6. Do not compare any unpacked 9's fields possibly
containing blanks (such as account number) with a
computational-3 field.

7. Do not use figurative constants for computations.

Other COBOL Language Problems

The 360 COBOL processor is very stringent in its
programing rules. The following is a list of major
liberties that are not allowable on the 360.

1. No exit from the middle of a PERFORM LOOP.
2. No division by zero.
3. No initial subscript value to zero.
4. No special names for switch settings (the 360

does not contain switches, and leading cards should
be used for program condition settings).

5. No implied subjects or implied objects. (If A =
B or C is incorrect, if A =B or A = C is correct.)

6. No implied at End-Next-Sentence condition; the
statement must be programed.

7. Different characters for printer spacing.
8. The WRITE AFTER option must be used for

every printer line written.
9. The words AND or OR are not interpreted as

meaningless English language connectors, but are used
as logical operations.

Quirks of "DeBug" Trace Package
The followirig are some peculiarities of the debug-

ging package.
1. The system output file must be opened before the

TRACE option can be specified.
2. Because the ABEND program takes priority over

all other queued 1/0 tasks, the last few COBOL para-
graph names that were executed by the TRACEaption
prior to error may not be printed.

3. The TRACE and Exhibit option can consume
large amounts of computer run time and should be
used sparingly.

4. A count of each master tape record will prove
helpful in later locating the erroneous record.

1 s ~ COMPUTER USAGE COMPANY, INC. 314 Main Street. hlount Kiico,-N.Y. 10549

	computerusagecompany.ibm_360_cobol_1968.102679035.fc.src.tif
	computerusagecompany.ibm_360_cobol_1968.102679035.p01.src.tif
	computerusagecompany.ibm_360_cobol_1968.102679035.p02.src.tif
	computerusagecompany.ibm_360_cobol_1968.102679035.bc.src.tif

