
PSO Group Allocation and amy ne ar h ours
KIRK 10—SEP—73 12:43 13967

Since coaiing back from vacation# I have noticed PSO allocation has
been lowered from two to one in the mornings* The reason I notice
this# is because I have started working 8—5 (for several reasons) and
have had difficulty getting online* If the PSO allocation has been
cut back in the mornings because it was assumed that I would be
working nights# I wish to point out that that is no longer the case*
Since you are the assistant director assigned to me and also a
decision maker concerning group allocations# I thought I should point
out the change in my schedule* 1

1

18967 Distribution
James C. Norton*

KIRK 10—SEP—73 12:43 18967
PSO Group Allocation and tay ne ar h ours*

(J18967) 10—SEP—73 12:43; Title: Author!s): Kirk E* Kelley/KIRK;
Distribution: /JCNJ Sub-Collections: SRI-ARC; Clerk: KIRK;

MRL I 0—SEP—73 12:47 18968

Jefff when youget this» let ae know, Mike

1

18968 Distribution
Jeffrey A. Krend,

MRL 10—SEP—73 12:47 18968

(J 18968) 10—SEP—73 12:47; Title: Author(s): M. R. Leavltt/MRLJ
Distribution: /JA.K; Sub-Collections: NIC; Clerk: MRL;

SSRI-ARC 1 I—SEP—73 17:03 18969

LLO USERS' GUIDE

SRI-ARC

12 SEP 73

Augmentation Research Center

STAMFORD RESEARCH INSTITUTE
MENLO PARS., CALIFORNIA 94025

SSRI-ARC 11—SEP—73 17:03 18969
L10 USERS* GUIDE SRI-ARC 12 SEP 73 18969

Obsoletes (9246,) and [17698,)• Current version available through
< user guides , arc locator, 2i teb)•

page i

Lit) USERS' GUIDE
SSRI-ARC 1t —SEP—7 3

SRI-ARC 12 SEP
17:03 18969
73 18969

fable of Contents

INTRODUCTION. 2

PART ONE: Beginning LI 0 Program»irag 3

Section 1. Content Analyzer Pat terns...................... 3A
Introdue 11on.••••••••••••••••••••*••••••*•••••••••••3 A1
Pat te rns.•••••••..... •••••••••••• ••••••••••••••••...3A2
E x a m p l e s . . 3 A 3
Using the Content inalfzer. .3A4

Section 2. Content Analyzer Programs......................38
In t ro due tion................. •••• ••••«•••3Bl
Program St rue ture * .3B2
Procedure Structure. ••••••••••••••••B3
E x a m p l e . 3 B 4
Deciaration Statements...•••••• • . •••••••• ••••••••••.365
Body of the Procedure3B6
Using Content Analyzer Programs.....................3B7

Section 3. Content Analyzer Programs: Modifying..........3C
In troduction.......3C1
String Construetion.......... •••• •••••••••••••••••«.3C2
Example•••••••••••••••••••••••... ••••«•••••••••••••*3C3
Controlling Which Statements are Modi fled••••••••••.3C4

Section 4. Executable Programs............................3D

PART TWO: Intermediate L13 Programming, ...4

Section i. The User Program Environment,..................4A
I n t r o d u c t i o n . . 4 A l
F o r m a t t e r . , . 4 A 2
Sequence Generator. •••••••••••••••••••••••••••••••••4A3
Con tent Analyzers•••• ••••••••••••••••••••••.4 A4
User-Written Sequence Generators*....4A5

Section 2. Program Structure. ...40
An NLS user program consists of the following.......4B1
An example of an LlG program is provided here.......4B2

Section 3. Declarations..40
Introduction.•••••••••••*•••••••• ••••••••••••••••••.4C1
Variables••••••••«••• •••••••• •••• •••*•• •• ••••••••••.402
Simple Variables.••••••••••••••••••••••••••••••••••.4C3
Arrays 4C4
Text Pointers. ...4C5
S t r i n g s . • . 4 C 6
Referenced Variables.........•••••••••••«••••••.4C7
Declaring Many Variaoles in Doe Statement,4C8
Deciaring Locals...., 4C9

Section 4. Statements..•••••••...4D

page ii

S3RI—ARC 11—SEP—73 17:03 18969
L10 USERS* GUIDE SRI-ARC 12 SEP 73 18969

IntPOduct ion••••••«•• ••«••••••••* •••••••• •••«••*••••4 D1
Assignment t ••••••••••••••••••••••••••••.•••.• ••••••• *4 D2
IF Statement.*•••«.••**••••••*•***•*••*•*••*••#•***. 4D3
CASE Statement.. .4D4
LOOP Statement405
WHILE...DO Statement........ 4D6
UNTIL. ..DO Statement..... . . .407
DO...UNTIL/DO...ittlLE Statement.....................4D8
FOR...DO Statement. 4D9
BEGIN...END Statement4D10
EXIT Statement...4D11
REPEAT Statement.4D12
DIVIDE Statement.4D 13
PROCEDURE CALL Statement4014
RETURN Statement. 4D15
GOTO Statement. 4D16
MULL St at emen t.....................................4D17

Sect ion 5. Expressions.4E
I n t r o d u e t i o n . • • . 4 E 1
Primitives.••••••••••••••••••••••••••••.••••4E2
Operators..•••.•••••••••••••••*..••••••••«..••*••••.4E3
Expressions. ..4p:4

Section 6. String Test and liani pula t i on 4F
Int ro due tion•••••4F1
Current Character Position I CCPOS)••••••••••••• •••• .4F2
FIND Stat ement 4P3
Content Analysis Patterns.*............*.....#..*** *4F4
String Cons true ti on. . 4F5
Example. «4F6
Text Pointer Comparisons.••»•••••••••••••••••••••••.4F7

Section 7. Executable Programs.••.••••.•«••••.••••••*•..•»4G
In tPOdue tIon4 Gl
Moving Around a File. •••••••••••• •••••••• •••••••••••402
Input/Out put•4G3

Section 8. Error Handling — SIGNALS. 4.H
Int ro duc t 1o n.4 Hi
Trapplng Signals* **...**..**.*.*.***4H2
Cancelling Signal Traps. .4H3
Spec!tic Signals.••••••••••••••••*•*••••*••.*«•**.•.4H4

Section 9. Invocation of User Filters and Programs.•...,..41
Introdue tion*....•...•••••••••••• •••••••••••••..••..411
Programs Subsystem •••••••••••••.*••••••*.••.•••..••412
Examples of Analyzer-Formatter Programs •••••••••••.413

ASCII 7-BIT CHARACTER CODES.... 5

page iii

USRF-ARC 11—SEP—73 17:03 18969
L10 USERS" GUIDE SRI-ARC 12 SEP 73 18969

INTRODUCTION

NLS provides a variety of commands for file manipulation and
viewing. Editing commands allow the user to insert and change the
text in a file, Viewing commands (viewspecs) allow the user to
control how the system prints or displays the file. Line truncation
and control of statement numbers are examples of these viewing
facilities, 2a

Occasionally one may need more sophisticated view controls than
those available with the viewspec and viewchange features in NLS, 2b

For example* one may want to see only those statements that
contain a particular word or phrase, 2bl

Or one might want to see one line of text that compacts the
information found in several longer statements, 2b2

One might also wish to perform a series of routine editing
operations without specifying each of the NLS commands over and over
again, 2c

User written programs may tailor the presentation of the information
in a file to particular needs. Experienced users may write programs
that edit files automatically, 2d

User written programs currently must be coded in ARC"s
procedure—oriented programming language* LlO. NLS itself is coded
in LiO. LlO is a high-level language which must be compiled into
machine-readable instructions, 2e

This document describes three general types of programs: simple
filters that control what is portrayed on the user's teletype or
display* programs that may modify the statements as they decide
whether to print them* and those that* like commands* are explicitly
given control of the Job, 2f

User programs that control what material is portrayed take effect
when NLS presents a sequence of statements in response to a
command like Print, 2fi

In processing such a command* NLS looks at a sequence of
statements* examining each statement to see if it satisfies
the viewspec3 then in force. At this point NLS may pass the
statement to a user written program to see if it satisfies the
requirements specified in that program. If the user program
returns a value of TRUE* the (passed) statement is printed and

page 1

I

L10 USERS* GUIDE
ESRI—ARC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

the next statement in the sequence is tested; if FALSE* NLS
Just goes on to the next statement, 2fla

User programs that modify flies may gain control at the same
point in processing as those that control the view, In their
consideration of each statement* they may modify the contents of
the statement, 2f2

For more complicated tasks, control may be passed explicitly to
the program. In this case* a user program takes on aspects of a
special—purpose command, 2f3

This document describes tha LlO programming language used at ARC on
the PDP10, 2g

Part One is intended for the beginning programmer. Section 1 is
a primer for the Content Analyzer, The rest presents a hasty
overview of LlO programmi rig* with enough tools to write simple
programs. Part Two is intended for the intermediate programmer.
Many of the concepts in Part One are repeated in Part Two so that
It may stand alone as an intermediate programmer's reference
guide, 2gl

More complete documentation can be found in (7052*1), For
examples of user progra ns which serve a variety of needs* consult
the User Programs Library Table of Contents
(user—progs*—contents*1) • 2g2

page 2

L10 USERS' GUIDE
6SRI-ARC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

PART GNE5 Beginning Ll0 Programming

Section 1: Content Analyzer Patterns 3a

Introduction 3al

Content analysis patterns cannot affect the format of a
statementt nor can they edit a file. They can only determine
whether a statement should be printed at all. They are* in a
sense* a filter through which you may view the file. More
complex tasks can be accomplished through programs, as
described later in this document, 3ala

The Content Analyzer filter is created by typing in (or
selecting from the text in a file) a string of a special form.
This string is called the "Content Analyzer Pattern". The
next part of this section will describe the elements which
make up Content Analyzer Patterns, followed by some examples.
The final subject of this section is how to put them to use. 3alb

Some quick examples of Content Analyzer Patterns: 3alc

*(SLD •) will show all statements whose first
character is an open parenthesis, then any
number of letters or digits, then a close
parenthesis,

["blap"] will show ail statements with the
string "blap" in them.

SINCE (3—JCJN-73 00:90) will show all statements
edited since June 3, 1973

Content Analyzer Patterns describe certain things the system
must check before printing a statement; the Content Analyzer
searches a statement from the beginning, character by
character, for described elements. As it encounters each
element of the pattern, the Content Analyzer checks the
statement for the occurrence of that pattern? if the test
falls, the whole statement is failed (unless there was an "or"
condition, as described later) and not printed; if the test
is passed, an imaginary marker moves on to the next character

Part One, Section 1: Content Analyzer Patterns page 3

SSRI-ARC I1—SEP—73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

in the statement, and the next test in the pattern is
considered. 3a Id

Patt erns 3a 2

Elements of Content Analyzer Patterns 3a2a

The pattern may include any sequence of the following
elements; the Content Analyzer moves the marker through the
statement checking for each element of the Pattern in turn:

Literal Strings
•c the given character (e.g. a lower case c)
"string" the given string (may include

non-printing characters, such as spaces)
Character classes

CH any character
L lowercase or uppercase letter
D digit
UL uppercase letter
LL lowercase letter
OLD uppercase letter, or digit
LLD lowercase letter, or digit
L0 lowercase or uppercase letter, or digit
NfLD not a letter nor digit
PT any printing character
NP any non-printing character (e.g. space)

Special characters
SP a space
TAB tab character
08 a carriage return
LF line feed character
EOL a carriage return (followed by line feed)
ALT alt mode character

Special elements
ENDCHR beginning and end of every

statement; can't scan past it
TRUE is true without checking anything

in st at emen t
ID= id statement created by user whose

ident is given
ID# id statement not created by user whose

ident is given
BEFORE <d-t) statement edited before given date and time
SINCE (d-t) statement edited since given date and time

e.g. BEFORE (1 JUN 1973 00:00) ;
The date and time must both appear, in the
parentheses. It accepts almost any reasonable date
and time syntax.

Part One, Section 1: Content Analyzer Patterns page 4

SSSI-ARC 11—SEP—73 17:03 18969
L10 USERS* GUIDE SRI-ARC 12 SEP 73 18969

Examples of valid dates:
17 —APR —70 17 APRIL 70
APR—17—70 17/5/1970
APR 17 70 5/17/70
APRIL 17, 1970

Examples of valid times:
i: 12:13 1234:56
1234 1:56AM
1:56-EST 1200NOON
16:30 {4:30 PM)
12:00:00AM [midnight)
11:59:59AM-EST (late morning)
12:00:01AM {early morning)

Scan direction
< set scan direction to the left
> set scan direction to the right

The default, re-initiallzed for each new statement,
is scan to the right.

Combining Elements 3a2b

These elements may be combined in any order. Spaces within
the pattern are ignored (except in literal strings) so they
may be used to maRe reading easier for you, Several
operators can modify the elements:

NUMBER — multiple occurrences

A number preceding an element other than one of the
"Special elements" means that the test will succeed only
if it finds exactly that many occurrences of the
element. If there aren't that many, the statement will
be rejected, Even though there may be more, it will
stop after that many and go on to check the next element
in the pattern,

3UL means three upper case letters

S — range of occurrences

A dollar sign (S) preceding any element other than the
"Special elements" means "any number of occurrences of".
This may include zero occurrences,

means any number of dashes

A number in front of the dollar sign sets a lower limit,
3$D means three or more digits

Part One, Section 1: Content Analyzer Patterns page 5

L10 USERS* GUIDE

SSRI—ARC I 1 —SE P—73 17:03 1896 9
SRI-ARC 12 SEP 73 18969

A number after the dollar sign sets an upper limit for
the search, It wilt stop after that number and then
check for the next element in the pattern, even if it
could have found more.

S3LD means from zero to three letters or digits
5S7PT means from 5 to 7 (inclusive) printing

characters

[] — floating scan

To do other than a character by character check, enclose
an element or series of elements in square brackets [].
The Content Analyzer will scan a statement until the
element is found. (If the element is not in square
brackets, the whole statement fails if the very next
character or string fails the test of the next element.)
This test will reject the statement if it can't find the
element anywhere in the statement. If it succeeds, it
will leave the marker for the next test just after the
string satisfying the contents of the square brackets.

"start" means check to see if the statement
begins with the string "start" (or,
if it is in the middle of a pattern,
check the next 5 characters to see
if they a re star t).

["start"] means scan until it finds the
string s t a r t.

[3D] means scan until it finds
three digits.

[3D •:] means scan until it finds three
digits followed by a colon

— — negation

If an element is preceded by a minus sign —, the
statement will pass that test if the element does not
occur•

—LD means other than a letter or
digit, such as punctuation

Part One, Section 1: Content Analyzer Patterns page 6

SSRI-ARC 1l-SEP-73 17:03 18969
L10 USERS• GUIDE SRI—ARC 12 SEP 73 18969

More sophisticated: patterns can by written by using the logic
features of LlO. Generally, an expression is executed left to
right. The following operations are done in the given order:

()
/
MOT
AND
OR 3a2e

()

Parentheses (and square brackets for floating scans) may
be used to group elements.

/ weans "either or"; the element will be true if either
element is true.

(3D L / 4DI means either three digits and a letter
or four digits.

Sometimes &rou aajr w ant want the scan to pass your marker
over something if it happens to be there (an optional
element). 'TRUE" is true without testing the statement.
If the other tests fail, the imaginary marker is not
moved.

(D / TRUE) looks for a digit and passes the
imaginary marker over it. If the
next character is not a digit, it
will just go on to the next test
element in the pattern without moving
the marker. This test always passes.

i.e. It is user to scan past something!s) which may
or may not be there.

Since expressions are executed from left to right, it
does no good to have TRUE as the first option. (If it
is first, the test will immediately pass without trying
to scan over any elements.)

NOT

NOT will be TRUE if the element or group of elements
enclosed in parentheses following the NOT is false.

Part One, Section 1: Content Analyzer Patterns page 7

LiO USERS' GUIDE

SSRI-ARC 11—SEP—73 17:03 18969
SRI—ARC 12 SEP 73 18969

NOT LD will pass if the next character is neither
a letter nor a digit*

Since the slash is executed first, NOT D / *h will be
true if the next character is neither a digit nor the
letter "h".

AND

AND means both of the two separated groups of elements
must be true for the statement to pass*

SINCE (3/6/73 00:00) AND ID#NDM means statements
written since March 6, 1973 by
someone other than NDM*

OR

OR means the test will be true if either of the
separated elements is true. It does the same thing us
slash, but after "AND" and "NOT" have been executed,
allowing greater flexibility.

D AND LED OR UL means the same as (D AND LLD) OR UL
D AND LLD / UL means the same as D AND (LLD / UL)

While such patterns are correct and succinct,
parentheses make for much clearer patterns. Elements
within parentheses are taken as a group; the group
will be true only if the statement passes a.l I the
requirements of the group.

Examples 3a3

D 2SLD / ["CA"] / ["Content Analyzer"] 3a3a

This pattern will match any of three types of statements:
those beginning with a numerical digit followed by at least
two characters which may be either letters or digitsy and
statements with either the patterns "CA" or "Content
Analyzer" anywhere in the statement.

Note the use of the brackets to permit a floating scan
— a search for a pattern anywhere in the statement.
Note also the use of the slash for alternations.

BEFORE (25—JAN—72 12:00) 3a3b

Part One, Section 1: Content Analyzer Patterns page 8

LID USERS* GUIDE
SSRI-ARC 11—SEP—73 17:03 18969

qpt — A»n 19. SRP 73 18969

This pattern »ili match those statements created or
modified before noon on 25 January 1972*

(ID = HGL) OR (ID = NDM) 3a3c

This pattern drill match all statements created or modified
hy users with the identifiers "HGL" or "NDM".

[<2L (SP/TRUE) /2D) D »- 4D] 3a3d

This pattern will match characters in the form of phone
numbers anywhere in a statement. Numbers matched may have
an alphabetic exchange followed by an optional space (note
the use of the TRUE construction to accomplish this) or a
numerical exchange*

Examples include YD 4-1234, YU4-1234, and 984-1234.

[ENDCHRJ < "cba" 3a3e

This will pass those statements ending with "abc". It will
go to the end of the statement, change the scan direction
to left, and check, for the characters "cba". Note that
since you are scanning backwards, to find "abc" you must
look for "cba". Since the "cba" Is not enclosed in square
brackets, it must be the very last characters in the
statement.

Using the Content Analyzer 3a4

Content Analyzer Patterns may be entered in two ways: 3a4a

CA means "Command Accept", a control—D or,
in TNLS (by default), a carriage return

1) First you must enter the Programs subsystem with the
command:

Goto Programs CA

2) Patterns may be typed in from the keyboard,

Coapile Content (analyzer pattern) PATTERN CONFIRM

Viewspec j must oe on (i.e. Content Analyzer off) when
typing in a pattern.

3) or they may be addressed from a file.

Part One, Section 1: Content Analyzer Patterns page 9

LID USERS1 GUIDE
SSRI-ARC 11—SEP—73 17:03 1896 9

SR1-ASC 12 SEP 73 18969

Compile Content I analyzer pattern) ADDRESS CONFIRM

In this case, it will begin reading the pattern from the
first character addressed and continue until it finds a
semicolon (;) so be sure to put a semicolon at the end
of the pattern in the file.

Entering a Content Analyzer Pattern automatically does two
things: 3a4t>

1) It reads the characters in the pattern and compiles
executable instructions from them making a small user
program, and

2) It takes those instructions and "institutes" them as the
current Content Analyzer search program, deinstituting any
previous pattern#

"Instituting" a program means selecting it as the one to
take effect when the Content Analyzer is turned on# You
may have more than one program compiled tout only one
ins tituted#

When a pattern is ieinstltuted, it still exists in your
program buffer space and may be instituted again at any
time with the command

Institute Program PROGRAM—NAME CA (as) Content
(analyzer) CONFIRM

The programs may be refered to by number instead
of name# They are numbered sequentially, the
first entered being number 1#

All the programs you have compiled and all you have
instituted may be listed with the command

Show Status (of programs buffer) CONFIRM

Programs may build up in your program buffer until you
have no room for additional patterns# To clear the
program buffer, use the Programs subsystem command:

Delete All (programs in buffer) CONFIRM

We recommend that you do this before each new
pattern, unless you specifically want to preserve
previous patterns#

Part One, Section 1: Content Analyzer Patterns page 10

6SR1-ARC ll-SEP-73 17:03 18969
L10 USERS* GUIQE SRI—ARC 12 SEP 73 18969

To invoke the Content Analyzer! 3a4c

When viewspec i is on, the Instituted Content Analyzer
program (if any) will cheek every statement before it is
pr in ted.

If a statement does not pass all of the requi retaents of
the Content Analyzer Pattern, it will not be printed.

in DNLS, if no statements from the CM on pass the
Content Analyzer, the word "Empty" will toe displayed.

Note: You will not see the normal structure since one
statement may pass the Content Analyzer although its
source does not.

When viewspec k is on, the instituted Content Analyzer
search program will check until it finds one statement that
passes the requirements of the pattern. Then, the rest of
the output (branch, plex, etc.) will be printed without
checking the Content Analyzer.

When viewspec j is on, no Content Analyzer searching is
done. This is the default state. Note that i, j, and k
are mutually exclusive.

Most of the commands Ignore the Content Analyzer in their
editing. The following Editor subsystem commands offer the
option of specifying vietrspecs (which may turn on the Content
Analyzer) which apply only for the purpose of that one command
and affect what the coamand works on: 3a4d

Copy

De I e t e

Move

Subs titute

Part One, Section 1: Content Analyzer Patterns page 11

L10 USERS' GUIDE

&SRI—ARC ll-SEP-73 17:03 18969
SSI-ARC 12 SEP 73 18969

Section 2: Content Analyzer Programs 3*>

In troduc tion 3b 1

When you specify a Content Analyzer Pattern, the Programs
subsystem constructs a program which looks for the pattern in
each statement and only displays the statement if the pattern
matching succeeds. lou can gain more control and do more
things if you build the program yourself. The program will be
used just like the simple pattern program and has many of the
same limitations. 3b1a

Program Structure 3b 2

If you specify a Content Analyzer Pattern, the actual program
that is compiled looks like this (with the word "pattern"
standing for whatever you typed in): 3b2a

PROGRAM name

{name) PROCEDURE?

IF FIND pattern THEN RETURN! TRUE) ELSE RETUR N(FALSE) ?

END.

FINISH

All L10 programs must begin with a header statement. If the
program is to be compiled into your program buffer space, the
header statement is the word PROGRAM (all caps) followed by
the name of the first procedure to be executed (all
lower-case). This name is also the name of the program. If
the program is being compiled into a file (to be described at
the end of this section), the word FILE should be substituted
for the word PROGRAM. 3b2b

e.g. PROGRAM first
FILE dcldir

(The Content Analyzer makes up a program name consisting of
up# xxxxx , where

is a sequential number, the first pattern being number
one, and

xxxxx is the first five characters of your pattern.)

Part One, Section 2: Content Analyzer Programs page 12

10 USERS* GUIDE
©SRI-ARC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

The body of a prograa consists of a series of Declaration
statements and Procedures (in any order). In the above case,
the program consisted of only one small procedure. When the
program is loaded into your programs buffer space, the
declarations reserve space in the system for variables* When
the program is ran, the first procedure is called* It may
call other procedures and access global variables in the
program or in the NLS system* 3b2c

e*g* DECLARE x, y, z;
DECLARE TEXT POiNER stid? (described below)
(first) PROCEDURE; .*•

The end of the program is delimited by the word FINISH* 3b2d

Comments may be enclosed in percent signs (%) anywhere in the
prograa, even in the middle of Ll0 statements* The LlQ
compiler will ignore them* 3b2e

Except within literal strings, variable names and special LlO
words, spaces are ignored* It is good practice to use them
liberally so that your program will be easy to read* Also,
NL3 file structure is ignored. Structure is, however, very
valuable in making the program readable, and it is good
practice to use it in close correlation to the program's
logical structure. 3b2f

Procedure Structure 3b3

Each procedure must begin with a header statement. The header
statement is a name enclosed in parentheses followed by the
word PROCEDURE, and terminated by a semicolon* 3b3a

e.g. (name) PROCEDURE ;

The body of the procedure may consist of Local declarations,
then LlO statements. An LlO statement is any program
instruction, terminated by a semicolon* The body must at some
point return control to the procedure that called it. 3h3b

The procedure must end with the terminal statement: 3b3c

END.

art One, Section 2: Content Analyzer Programs page 13

©SKI-ARC ll-SEP-73 17:03 18969
LlO USERS* GUIDE SRI-ARC 12 SEP 73 18969

Example:

PROGRAM compare

% Content analyzer. Displays statement if first two
visibles are the same. %
DECLARE TEXT POINTER ptl, pt2* pt3, pt4; Preserves

space for ("declares") four
text pointers named "ptl"
through "pt4"%
vis2[l00]; Preserves 100
characters of space for each
of two string variables named
"visl" and "vis2"»%

3b 4

3b4a

DECLARE STRING vis l[100],

(compare) PROCEDURE •
IF FIND SNP tptl 1SPT 1

BEGIN
#visl* ptl p*2 ;
tvls2* •- p t3 pt4 ;
IF *visl* = *vis2*

END;
RETURN (FALSE)

pt2 SNP tpt3 1SPT t p14 THEN
%set pointers around first
two visibles (strings of
printng characters)%
%if it found two visibles^
%put visibles in strings%

THEN RETURN! TRUE); Compare
c ont ents of strings* return
and display the statement
if identical^

^otherwise* return and don't
display%

END.
FINISH

Declaration Statements 3b5

Content Analyzer programs can deal with text pointers and with
string variables* while patterns cannot. 3b5a

Text Pointers 3b5b

A text pointer points to particular location within an NLS
statement (or into a string* as described later).

The text pointer points between two characters in a
statement. By putting the pointers between characters*
a single pointer can be used to mark both the end of one
string and the beginning of the string starting with the
next character.

Part One* Section 2: Content Analyzer Programs page 14

8SRI-ARC 11—SEP—73 17:03 18P69
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Text pointers are declare! with the following Declaration
statement:

DECLARE TEXT POINTER name ;

Strings 3h5c

String variables hold text. When they are declared, the
maximum number of characters is set.

To declare a string:

DECLARE STRING narae[num] ;

num is the maximum number of characters allowed for the
s tring,

e.g. DECLARE STRING Istring[100];

declares a string named "Istring" with a maximum
length of 100 characters and a current length of 0
characters (it's empty).

You can refer to the contents of a string variable be
surrounding the name with asterisks.

e.g. *lsiring& is the string stored in the
variable named "Istring".

Body of the Procedure 3b6

RETURN Statement 3b6a

No matter what it does* every procedure must return control
to the procedure that called it (minor exceptions to be
noted later). The statement: which does this is the RETURN
statement.

e.g. RETURN;

A RETURN statement may pass values to the procedure that
called it. The values must: be enclosed in parentheses
after the word RETURN.

e.g. RETURN (1,23,47);

A Content Analyzer program must return either a value of
TRUE or of FALSE. If it returns the value TRUE (1), the

Part One, Section 2: Content Analyzer Programs page 15

LlO USERS' GUIDE
BSRI—ARC 11-SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

statement will be printed? if it returns FALSE (0), the
statement will not be printed.

i.e. RETURN (TRUE); will print the statement
RETURN (FALSE); will not print the statement

The RETURN statement often is at the end of a procedure,
hut it need not be. For example, in the middle of the
procedure you may want to either RETURN or go on depending
on the result of a test.

Other than the requirement of a RETURN statement, the body of
the procedure is entirely a function of the purpose of the
procedure. Some of the many possible statements will be
described here; others will be introduced in Part Two of this
document. 3b6b

FIND Statement 3b6c

One of the most useful statements for Content Analyzer
programs is the FIND statement. The FIND statement
specifies a string pattern to be tested against the
statement, and text pointers to be manipulated and set,
starting from the Current Character Position. If the test
succeeds, the character position is moved past the last
character read. If the test falls, the character position
is left at the position prior to the FIND statement and the
values of all text pointers set within the statement will
be reset.

FIND pattern ;

Any simple Content Analyzer pattern (as describe above) is
valid in a FIND statement. In addition, the following
elements can be incorporated in the pattern:

stringname

the contents of the string variable

t pos

store current scan position into the text pointer
specified by pos, the name of a declared text pointer

_NUM pos

back up the specified text pointer by the specified
number (NUM) of characters. If NUM is not specified,

Part One, Section 2: Content Analyzer Programs page 16

SSRl-ARC 11—SEP—73 17:03 18969
L10 USERS' GUIDE SRI—ARC 12 SEP 73 18969

one wilt be assumed* Backup is in the opposite
direction of the current scan direction*

pos

Set current character position to this position* pos
is the name of a previously set text pointer*

SF(pos)

The Current Character Position is set to the front of
the statement in which the text pointer pos is set
and scan direction is set from left to right*

SEC pos)

The Current Character Position is set to the end of
the statement in which the text pointer pos is set
and scan direction is set from right to left*

BETWEEN pos pos [element)

Search limited to between positions specified* pos
is a previously set text pointer; the two must foe in
the same statement or string* Scan character
position is set to first position before the pattern
is tested*

e.g. BETWEEN ptl pt2 <2D [.] SNP)

FINDs may foe used as expressions as well as free-standing
elements* If used as an expression* for example in IF
statements* it ha3 the value TRUE if all pattern elements
within it are true and the value FALSE if any one of the
elements is false.

e.g. IF FIND pattern THEN •*• *

IF Statement 3b6d

IF causes execution of a statement if a tested expression
is TRUE. If it is FALSE and the optional ELSE part is
present* the statement following the ELSE is executed.
Control then passes to the statement immediately following
the IF statement.

IF testexp THEN statement ;

IF testexp THEN statementl ELSE statement2 ;

Part One* Section 2: Content Analyzer Programs page 17

L10 USERS * G UIDE
SSSI-ARC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

The statements within the IF statement can be any
statement, but are not followed by the visual semicolon; the
whole IF statement is treated like one statement and
followed by the semicolon.

e. g.

IF FIND [50] THEN RETURN! FALSE) ELSE RETURN!TRUE) ;

Using Content Analyser Programs 3b7

Once the Content Analyzer program has been written (in an MLS
file), there are three steps in using it. First, the program
must be "compiled," i.e. translated into machine-readable
code. Then, the compiled code must be "loaded" into a space
reserved for user programs (the user programs buffer).
Finally, the loaded program must be "instituted" as the
current Content Analyzer program, 3b7a

There are two ways to compile and load a program: 3b7b

1) You may compile a program and load it into your programs
buffer all in one operation. The program header statement
must have the word PROGRAM in it. When the user resets his
job or logs off, the program code will disappear.

First, enter the Programs subsystem with the command:

Goto Programs CA

Then you may compile the program with the command:

Compile LlQ !user program at) ADDRESS CONFIRM

2) You may compile a program into a tile and then load it
into your buffer as a separate operation. The program can
then be loaded at any time in the future without
recompiling. The header statement must use the word FILE
instead of PROGRAM. Use the Programs subsystem command:

Compile File {at) ADDRESS {using) L10 (to file) FILENAME
CONFIRM

The code file is called a REL ! RFLocatable code) file.
Whenever you wish to load the program code into the user
programs buffer, use the Programs subsystem command:

Load REL (file) FILENAME CONFIRM

Part One, Section 2: Content Analyzer Programs page 18

SSRI-ARC ll-SEP-73 17:03 18969
L10 USERS* GUIDE SRI-ARC 12 SEP 73 18969

Once a compiled program has been loaded, it must be
instituted* This is done with the Programs subsystem command:

3b7c
Institute Program PROGRAM-NAME

(as) Content (analyzer program) CONFIRM

The named program will be instituted as the current Content
Analyzer program, and any previous program will be
deinstituted (but will remain in the buffer).

To invoke the Content Analyzer using whatever program is
currently instituted, use the viewspec i, j, or k, as describe
in the last section (3a4c)• 3b7d

Part One, Section 2: Content Analyzer Programs page 19

8S 81—ARC 11 —SEP—73 17:03 18969
L10 USERS* GUIDE SRI-ARC 12 SEP 73 18969

Section 3: Content Analyser Programs: Modifying Statements 3c

In troduct ion 3c 1

Content Analyzer programs may edit the statements as well as
decide whether or not they are printed. They are very useful
where a series of editing operations has to be done time and
time again* 3c la

A Content Analyzer program has several limitations* It can
manipulate only one file and it can look at statements only in
the order in which they are presented by the NLS sequence
generator* It cannot back up and re-examine previous
statementst nor can it skip ahead to other parts of the file.
It cannot interact with the user* The user may write a
program to which he can explicitly pass control to overcome
these limitations (covered in Section 7 of Part Two 4g)• 3c I b

String Construction 3c2

Statements and the contents of string variables may be
modified by either of the following two statements: 3c2a

ST pos *- strlist ;

The whole statement will be replaced by the string list*

ST pos pos *_ strlist ;

The statement from the first position to the second
position will be replaced by the string list*

pos may be a previously set text pointer or the
SF(pos)/SE(pos) construction*

String variables may also be modified with the string
assignment statement: 3c2b

^striagnaoe* #_ strlist I

The string list (strlist) may foe any series of string
designators) separated by commas* The string designators may
be any of the following (other possibilities to be described
later): 3c2c

a string constant) e•g* "ABC" or * w

Part Onef Section 3: Content Analyzer Programs: Modifying Statements
page 20

L10 USERS * G UIDE
SSRI-ASC ll-SEP-73 17:03 18969

SRI-ARC 12 SEP 73 18969

pos pos

two text pointers previously set in either a statement
or a string

tstringnanet

a string name in asterisks* petering to the whole strinj

E. g. : 3c2d

ST pi p2 »- ^string^ ;
or

ST pi - SF(pi) pi, string, p2 SE(p2);

Example:

PROGRAM dteisp

% Content analyzer, Deletes all leading spaces from
statements, %
DECLARE TEXT POINTER pf, Preserves space for

("declares") a text pointer
named "pt"%

{delsp) PROCEDURE ;
IF FIND 1$SP tpt THEN ^scans over leading spaces,

then sets pointer^
ST pt _ pt SE(pt); Sreplaces statement with text

from pointer to statement end%
RETURN (FALSE) ; % return, don't display^
END.

FINISH

Controlling Which Statements are Modified

3c3

3c3a

3c4

In TNLS, the Content Analyzer program will be called for
commands which construct a printout of the file (Print and
Output), The program will run on every statement for which it
is called, e,g. every statement in the branch during a Print
Branch command, which pass ail the other viewspecs. Once you
have written, compiled, and instituted a program which does
some editing operation, the Print command is the easiest way
to run the program on a statement, branch, plex, or group. 3c4a

In DNLS, the system will call the Content Analyzer program
whenever the display is recreated (e,g, viewspec f and the
Jump commands). If the program returns TRUE, it will only run
on enough statements to fill the screen. It is safer to have
the program return FALSE, Then when you set viewspec i, it

Part One, Section 3: Content Analyzer Programs: Modifying Statements
page 21

&SRI-ARC 11—SEP—73 17:03 18969
L10 USERS* GUIDE SRI—ARC 12 SEP 73 18969

will run on all statements from the top of the display on, and
when it is done it will display the word "Empty". At that
point, change to viewspec j and all statements including the
changes will be displayed. You can control which statements
are edited with level viewspecs and the branch only (g) or
plex only (1) viewspecs. 3c4b

After having run your program on a file, you may wish to
Update to permanently incorporate the changes in the file. It
is wise to Update before you run the program so that, if the
program does something unexpected, you can Unlock and return
to a good file. 3c4c

Part One, Section 3: Content Analyzer Programs: Modifying Statements
page 22

LiO USEES* GUIDE

SSRI—ARC 1 1—SEP—73 17:03 18969
SRI—ARC 12 SEP 73 18969

Section 4: Executable Programs 3d

When it is necessary for the program to interact with the user,
to work on more than one file, or to skip around in a fi le» an
Executable program sust be written* Executable programs may
include any of the features of Content Analyzer programs plus
other abilities. The discussion of Executable programs will be
postponed to Section 7 of Part Two (4g) so as to first establish
a firmer foundation of LlO constructs.

Part One, Section 45 Executable Programs page 23

L10 USERS' GUIDE

8S Ri—ARC 11—SEP—73 17:03 18969
SRI-ARC 12 SEP 73 18969

PART TWO: late mediate LlO Programming

Section 1: The User Program Environment 4a

In troduc t ion

User-written Content An
the portrayal generator
described belotf whenev
file, e.g., with a Prin
output to printer comma

All of the portrayal ge
sections — the foraiatt
user invokes a Content
portrayal generator wil
program.

4a 1

aiyzer programs run in the framework, of
. They may be Invoked in several ways,
er one asks to view a portion of the
t command in TNLS, with any of the
nds, and with the Jump command in DNLS.

aerators in NLS have at least two
er and the sequence generator; if the
Analyzer program of his own, the
I have one additional part — the user

4a 1 a

4a 1 b

Executable programs are independent of the portrayal
generator, although they are welcome to make use of it. They
are called as procedures by the Programs subsystem, and have
all the powers of any other RLS procedure* 4aIc

Sequence Generator 4a2

The sequence generator looks at statements one at a time,
beginning at the point specified by the user. It observes
viewspecs like level truncation in determining which
statements to pass on to the formatter. 4a2a

For example, the viewspecs may indicate that only the first
line of statements in the two highest levels are to be
output. The default fILS sequence generator will return
pointers only to those statements passing the structural
filters; the formatter will further truncate the text to
only the first line.

When the sequence generator finds a statement that passes ail
the viewspec requirenents, it returns the statement to the
formatter and waits to be called again for the next statement
in the sequence* 4a2b

One of the viewspecs that the sequence generator pays

Part Two, Section 1: The User Program Environment page 24

SSRI-ARC lt-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

particular attention to is "i" — the vlewspec that indicates
whether a user filter is to be applied to the statement. If
this vietspec is on, the sequence generator passes control to
a user Content Analyzer program, which looks at the statement
and decides whether it should he included in the sequence. If
the statement passes the Content Analyzer (i,e, the user
program returns a value of TRUE >, t he sequence generator sends
the statement to the formatter? otherwise, it processes the
next statement in the sequence and sends it to the user
Content Analyzer program for verification, (The particular
user program chosen as a filter is determined by what program
is Instituted as the current Content Analyzer program, as
described below,) 4a2c

Formatter 4a3

The formatter section arranges text passed to it by the
sequence generator in the style specified by other viewspecs.
The formatter observes viewspecs such as line truncation,
length and indenting? it also formats the text in accord with
the requirements of the output device, 4a3a

The formatter works by calling the sequence generator,
formatting the text returned, then repeating this process
until the sequence generator decides that the sequence has
been exhausted (e,g, the branch has been printed! or the
formatter has filled the desired area (e,g, the display
screen), 4a3b

Content Analyzers 4a4

The NLS Portrayal Generator, made up of the formatter, the
sequence generator, and user filters, is invoked whenever the
user requests a new "view" of the file, for example through
the use of the TNLS "Print" command or any of the output to
printer commands, Thus if one had a user content filter
compiled, instituted, and invoked, one could have a printout
made containing only those statements in the file satisfying
the pattern, 4a4a

When a user writes an content analyzer filter program, the
main routine must RETURN to the Portrayal Generator, The
RETURN must have an argument which is checked by the sequence
generator. If the value of that argument is TRUE, the
statement will be passed to the formatter to be displayed or
printed; if the value is FALSE, it will not be displayed. In
DNLS, if you display any statements, the program will stop
after filling the screen. If you are not displaying any

Part Two, Section 1: The User Program Environment page 25

©SKI—ARC ll-SEP-73 17:03 18969
L10 USERS * GUIDE SRI-ARC 12 SEP 73 18969

stateaentsi the program will run on either the whole file? a
plex (vlewspec 1), or a branch (viewspec g), 4a4to

User—Written Sequence Generators 4a5

A user may provide his own sequence generator to be used in
lieu of the regular MLS sequence generator. Such a program
may call the normal MLS sequence generator, as well as content
analysis filters and Executable LlO programs. It may even
call other user—written sequence generators. 4aSa

This technique provides the most powerful means for a user to
reformat (and even create) files and to affect their
portrayal. However, since writing them requires a detailed:
knowledge of the entire NLS program code, the practice is
limited to experienced NLS programmers. 4a5b

Part Two, Section 1: The User Program Environment page 26

10 USERS• GUIDE
©SRI—ARC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

Section 2: Program Structure 4 b

An NLS user program consists of the following elements 9 which
must be arranged in a definite manner with strict adherence to

a statement consisting of the word PROGRAM* followed by the
name of a procedure in the program. Program execution will
begin with a call to the procedure with this name.

PROGRAM name

The word FILE should be substituted for the word PROGRAM if
the code is to be compiled into a file to be saved.

The body — 4btb

consists of declarations and procedures in any order:

1) declaration statements which specify information
about the data to be processed by the procedures in the
program and enter the data identifiers in the program's
symbol table* terminated by a semicolon.

e.g. DECLARE x,y,z ;
DECLARE STRING test[500] 5
RE F x» r. «

Declaration statements will be covered in Section 3
(4c).

2) procedures which specify certain execution tasks.
Each procedure must consist of —

the procedure name enclosed in parentheses followed
by the word PROCEDURE and optionally an argument list
containing names of variables that are passed by the
calling procedure for referencing within the called
procedure. This statement must be terminated by a
semicolon.

syntactic punctuation: 4b 1

The header 4bl a

e.g. (name) PROCEDURE ;
(name) PROCEDURE (paraml* param2) ;

t Two* Section 2: Program Structure page 27

L10 USERS' GUIDE

BSRI—ARC 11—SE P—73 17:03 1896 9
SRI-ARC 12 SEP 73 18969

the body of the procedure which may consist of LOCAL,
REF, and LlO statements.

LOCAL and REF declarations within a procedure must
precede executable code.

LOCAL and REF statements will be covered in
Sec ti on 3 (4c).

LlO statements will be covered in Sections 4
through 5 (4d).

the statement that terminates the procedure (note the
final pecLodi)2

END.

The program terminal statement — 4blc

FINISH

Comments may be enclosed in percent signs <%) anywhere in the
program^ even in the middle of LlO statements. They will be
ignored* 4b Id

Except for within literal strings, spaces are ignored. It is
good practice to use them liberally so that your program will
toe easy to read. Also, NLS file structure is ignored.
Structure is, however, very valuable in making the program
readable, and it is good practice to use it in close
correlation to the program's logical structure. 4ble

Part Two, Section 2: Program Structure page 28

Lit) USERS* GUIDE
03RI-ARC 11—SEP-73 17:03 18969

SRI-ARC 12 SEP 73 18969

An example of an Lit) program is provided here# The reader should
easily understand this program after having studied this
document* 4b2

PROGRAM delsp 4b2a
% Content analyzer. Deletes all leading spaces from
statements* %
DECLARE TEXT POINTER pt; Preserves space for

("declares") a text
pointer named "pt"%

(delsp) PROCEDURE 5
IF FIND 1SSP tpt THEN Iscans over leading spaces?

then sets pointer*
ST pt *_ pt SE(pt); ^replaces statement holding

pi with text from pointer
to statement end*

RETURN (FALSE) ; ^return? don't display*
END.

FINISH

Part Two* Section 2: Program Structure page 29

L10 USERS* GUIDE
©SRI—ARC 11—SEP—73 17:03 18960

SRI—ARC 12 SEP 73 18969

Section 3 Dec! a r»a t i ons

Introduction 4cl

L10 declarations provide information to the compiler about the
data that is to be accessed; they are not executed. Every
variable used in the program must be declared somewhere in the
system (either in your program or in the NLS system program). 4c! a

There are various types of declarations available; the most
frequently used are discussed here. (Complete documentation
is available in the LlO Reference Guide — 7052,) 4clb

Variables 4c2

Five types of variables are described in this document:
simple, arrays, text pointers, strings, and referenced. Each
can be declared on two levels: global or local. 4c2a

Global Variables 4c2b

A global variable is represented by an identifier and
refers to a cell in memory which is known and accessible
throughout the program. Global variables are defined in
the program's DECLARE statements or in the NLS system
program.

Variables specified in these declarations are outside any
procedure and may be used by all procedures in the program.
Many globals are defined as part of the NLS system; user
programs have complete access to these. Be very careful
about changing their values, however.

Local Variables 4c2c

A local variable is known and accessible only to the
procedure in which it appears. Local variables must appear
in a procedure arguaent list or be declared in a
prodeeure's L3CAL declaration statements (to foe explained
below). Any LOCAL declarations must precede the executable
statements in a procedure.

Local variables in the different procedures may have the
same name without conflict. A global variable may not be
declared as a local variable and a procedure name may be
used as neither. In such cases the name is considered to
be multiply defined and an error results.

Fart Two, Section 3: Declarations page 30

L10 USERS• GUIDE
6SRI-ARC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

Simple Variables 4c 3

Simple variables represent one computer word, or 36 bits, of
memory. Each bit is either on or off, allowing binary numbers
to be stored in words, Each word can hold up to five ASCII
7—bit characters, a single number, or may be divided into

Declaring a variable allocates a word in the computer to
hold the contents of the variable. The variable name
refers to the contents of that word. One may refer to the
address of that computer word by preceding the variable
name by a dollar sign ($)•

For example, if one has declared a simple variable
called HnuaM, one may put the number three in that
variable with the statement:

nun _ 3 ;

One may add two to a variable with the statement:

nun *. nam * 2 ;

One may put the address of nun into a variable called
addr with the statement:

addr «- Snura ;

One may refer to predefined fields in any variable by
following the name of the variable with a period, then the
field name. For example, the fields RH and LH are globally
defined to be the right and left half of the word
respectively; e.g.

nu» • LH *- 2 ;
nutn.RH *- 3 ;

Fields may be defined by the user with RECORD statements
(not explained in this document). Additionally, you may
refer to systen-defined fields (e.g. RH). They divide
words into fields by numbers of bits, so they may refer to
any declared word. For example, the field MLH" refers to
the left—most 18 bits in any 36—blt word.

Declaring Simple Global Variables 4c3b

DECLARE name ;

fields and hold more than one number. 4c3a

Part Two, Section 35 Declarations page 31

SSRI-ARC 11—SEP—73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

"naae" is the name of the variable. It must foe all
lover—case letters or digits, and must begin with a
letter#

e.g. DECLARE xl 5

Opti anally, the user may specify the initial value of the
variable being declared# If a simple variable is not
initialized at the program level, for safety it should be
initialized in the first executed procedure in which it
appears#

DECLARE name -= co nstant ;

constant is the initial value of name. It may be any of
the following:

— a numeric constant optionally preceded
b y a m i n u s s i g n l - l

— a string, up to five characters, enclosed
in quotation marks

— another variable name, causing the latter*s
address to be used as the value of name

Examples:

DECLARE x2 = 5 ; %x2 con t ai ns the value 5%
DECLARE x3 = " o u r M ; %x3 con t ai ns the word OUT%
DECLARE X X = xl; % X X con t a i ns the address of xt%

Arrays 4c4

Multi-word (one—dimensionai) array variables may be declared;
computer words within theia may be accessed by indexing the
variable name# The index follows the variable name, and is
enclosed in square brackets []• The first word of the array
need not be indexed# The index of the first word is zero, so
if we haee declared a ten element array named "blah": 4c4a

blah is the first word of the array
blah[1] is the second word of the array
blah[B 3 is the last word of the array

Declaring Global Array Variables 4c4b

DECLARE name[nua] i

Part Two, Section 3: Declarations page 32

LlG USERS * GUIDE
8SKI-ABC ll-SEP-73 17:03 18969

SRI—ARC 12 SEP 73 18969

au;a is the number of elements in the array if the array
is not being initialized,

e.g. DECLARE saaClOj;

declares an array named sam containing 10 elements.

Optionally* the user may specify the initial value of each
element of the array. If array values are not initialized
at the program level, for safety they should be initialized
in the first executed procedure in which the array is used.

DECLARE name = (nun, nuti, ...) *

nun is the initial value of each element of the
array. The number of constants implicitly defines
the number of elements in the array. They may be any
of the constants allowed for simple variables.

Mote: there is a one—to—one correspondence between the
first constant and the first element* the second
constant and the second element* etc.

Examples:

DECLARE numbs = (1,2,3);

declares an array named numbs containing 3
elements which are initialized such that:

numbs = I
numbs!. 1] = 2
numbs.2] = 3

DECLARE mo t i ey = (10,blah);

declares an array named motley containing 2
elements which are initialized such that:

A text pointer i3 an LlO feature used in string manipulation
constructions. 1t is a two-word entity which provides

mo 11ey = 10

motley[1] = Iblah
= the address of the

variable 11 blah"

Text Pointers 4c 5

Part Two* Section 3: Declarations page 33

L10 USERS* GUIDE
£?S RI—ARC 11—SEP—73 17:03 1896 9

SRI-ARC 12 SEP 73 18969

information for pointing to particular locations within text,
whether in free standing strings or an NLS statement* 4cba

The text pointer points between two characters in a
statement or string* By putting the pointers between
characters a single pointer can be used to mark both the
end of one substring and the beginning of the substring
starting with the next character, thereby simplifying the
string manipulation algorithms and the way one thinks about
strings*

A text pointer consists of a string identifier and a character
count* 4c5b

The first word, called an stld, contains three fields:

stfile — the file number
stastr — a bit indicating string, not an NLS statement
stpsid the psid of the statement;

every statement has a unique number (psid)
attached to it.

The stid is the basic handle on a statement in LlO*

•
For example, one might have the following series of
assignment statements which fill the three fields of the
first word and the second word with data, with pt being the
name of a declared text pointer:

The second word contains a character count, with the first
position being 1*

pt,stfile *_ fileno; %fileno a simple variable
with a number in it%

pt.stastr «- FALSE; %a statement, not a string^
pt, stpsid «_ or igin; Sail origin statements have the

psid = 2; origin is a global
variable with the value 2 in it%

pt[1 3 *- 1; Ithe word one after pt (i. e» the
character count) gets 1, the
beginning of the statements

It is important that stid*s be initialized properly to
avoid strange errors*

Declaring Text Pointers 4c5c

DECLARE TEXT POINTER pt ;

Part Two, Section 3: Declarations page 34

SS 81—ARC 11—SE P—7-3 17:03 18969
L10 USERS1 GUIDE SRI-ARC 12 SEP 73 18969

The names pi* p2* p3* p4f and p5 are globally declared an
peseryed for system use*

Strings 4c6

String variables are a series of words holding text* When
they are declared* the maximum number of characters is set.
The first word contains the two globally defined fields: 4c6a

M the maximum number of characters the
string can hold

L — the actual number of characters currently
in the string

The next series of words (as many as are required by the
maximum string size) hold the actual characters* five per
word* in ASCII 7-bit code, 4c6b

Declaring Strings 4c6c

The DECLARE STRING enables the user to declare a global
string variable by initializing the string and/or declaring
its maximum character length*

To declare a string:

DECLARE STRING name[num] *,

Qum is the maximum number of characters allowed for
the string

e.g. DECLARE STRING lstring[100];

declares a string named "Istring" with a maximum
length of 100 characters and a current length of 0
characters

To declare and initialize a string:

DECLARE STRING naa»e="Any string of text" ;

The length of the literal string defines the maximum
length of the string variable*

e.g. DECLARE STRING message="RED ALERT";

declares the string message* with an actual and
maximum length of 9 characters and contains the
text "RED ALERT"

Part Two* Section 3: Declarations page 35

L1G USERS* GUIDE
©SRI—ARC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

Referenced Variables 4c7

Reference Declarations 4c7a

After a simple variable has been declared, the REE
statement can define it to be a pointer to some other
variable* A referenced variable holds the address of
another declared variabLe of any type# Whenever the
referenced variable is Mentioned, LlO will operate on the
other variable Instead, as if it were declared in that
procedure and named at that point#

This is useful when you wish a procedure to know about a
multi-word variable# In procedure calls, you are only
allowed to pass one-word parameters. A variable which
contains a pointer to something rather than the thing
Itself may be passed as an argument to a procedure. If, in
the called procedure, one wishes to access the thing
itself, the pointer identifier may he declared to be a
reference by the REF construction.

Example:

If the simple variable "astr" in the current
procedure has been REFed and contains the address of
the string "strM local to some other procedure, then:

mes #- *str£; %mes gets the string in
str%

^str* #. "corpuscle"; Istr gets the string
"corpuscle"%

Unreferenced Variables 4c7b

One may refer to the actual contents (an address) of a
referenced variable (i.e. "unref" it) by preceding the
referenced variable name with an ampersand (8). If, for
example, an address was passed to a REFed local, and you
wish now to pass that address on to another procedure, you
can unref it.

e.g. if x has been REFed and holds the address of yi

z _ x ; %z gets the CONTENTS of y%
z Sx; gets the ADDRESS of y%

REFing Simple Variables 4c7c

Part Two, Section 3: Declarations page 36

10 USERS• GUIDE
8S RI—ARC 11 —SE P—73 17:03 18969

SRI-ARC 12 SEP 73 18969

Once a variable has been declared# it may be REFed with the
st at ement:

REF var ;

Declaring Many Variables in One Statement 4c8

One may avoid putting several individual declarations of
variables in a series by putting variables of similar type*
initialized or not# in a list in one statement following a
single DECLARE# separated by commas and terminated by the
usual semicolon* Array and simple varlbles may be put
together in one statement* 4c8a

Examples:

DECLARE x, y[10]# z = I 1 # 2, -5);
DECLARE TEXT POINTER tp# sf, ptl, pt2 5
DECLARE STRING Is t r i ng[1 09] # message="RED ALERT" ;

Declaring Locals 4c9

Program level declarations (DECLARE and REF) and procedures
may appear in any order* However# procedure level
declarations (LOCAL and REF inside a procedure) must appear
before any executable statements in the procedure* 4c9a

With one exception# a local variable declaration statement is
just the same as a global with the word "LOCAL" substituted
for the word "DECLARE"* The one exception is that LOCAL
declarations can not initialize the variables. 4c9b

Examples:

LOCAL var, flag# level[12] ;
LOCAL TEXT POINTER tp, pt# sf ?
LOCAL STRING test[l00]# out[2000] ;

When a procedure is called by another procedure# the calling
procedure may pass one-word parameters. The procedure
receives these values in simple local variables declared in
the PROCEDURE statement's parameter list, For example# two
locals will automatically be declared and set to the passed
values whenever the procedure "procname" is called: 4c9c

(procnaae) PROCEDURE (varl# var2) ;

varl and var2 must not be declared again in a LOCAL

art Two# Section 3: Declarations page 37

LlO USERS* GUIDE

©SRI-ARC 1 I—SE P—73 17:03 18969
SRI—ARC 12 SEP 73 18969

statement. They may» however, be REFed by a REP statement,
as discussed above.

The statement which calls procname may look like:

procname (locvar, 2) i

varl will be initialized to the value of the local
variable locvar and var2 will get the value 2.

Part Two, Section 3: Declarations page 38

10 USERS' GUIDE
GS RI —ARC 11—SEP—73 17:03 18969

SRI—ARC 12 SEP 73 18969

Section 4: Statements 4d

Introduction 4dl

This section will describe some of the types of statements
with which one can build a procedure. The term "expression"
(often abbreviated to "exp") will be used in this section* and
will be explained in detail in Section 5 (4e), 4dla

Assignment 4d2

In the assignment statement* the expression on the right side
of the nis evaluated and stored in the variable on the left
side of the statement, 4d2a

var •- ex p ;

where var — any global* local* referenced or
unreferenced variable,

One may make a series of assignments in one statement by
enclosing the list of variables and the list of expressions in
parentheses. The order of evaluation of the expressions is
left to right. The expressions are evaluated and pressed onto
a stack; after all are evaluated they are popped from the
stack and stored in the variables, 4d2b

(var 1* var 2* • • •) «- (expi* exp2* • • ,) ;

Naturally* the number of expressions must equal the number
of variables.

Ex ampIe :

(a* b) •- (c+d, a-bl

The expression c*b is evaluated and stacked* the
expression a—b is evaluated and stacked* the value of
a—b is popped from the stack and stored into fo* and
finally* the value of c+d is popped and stored into a.
It is equivalent to:

tempi *- c + d ;
terap2 «. a —b ;
b _ temp2 *
a _ tempi ;

t Two* Section 4: Statements page 39

L10 USERS* GUIDE
&SEI-ARC 11—SEP—73 17203 18969

SRI —AJRC 12 SEP 73 18969

One may assign a single value to a series of variables by
stringing: the assignments together:

varl «- va r2 *- va r3 »- exp ;

varlf var2, and var3 will all be given the value of the
expression•

Example:

a «- b 01

4d 2 c

Both a and b will be given the value zero. This type of
statement can be useful in initializing a series of
variables at the beginning of a procedure,

IF Statement 4d3

This form causes execution of a statement if a tested
expression is TRUE, If the expression is FALSE and the
optional ELSE part is present, the statement following the
ELSE is executed. Control then passes to the statement
immediately following the IF statement, 4d3a

IF tes t exp THEN statement

IF testexp THEN statementl ELSE statements ?

The statements within the IF statement can be any statement,
but are not followed by the usual semicolon? the whole IF
statement is treated like one statement and followed by the
semicolon, 4d3b

e.g. 4d3c

IF y=z THEN y-y+1 ELSE y_z 1

Part Two, Section 42 Statements page 40

10 USERS• GUIDE
SS RI—ARC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

CASE Statement 4d4

This form Is similar to the IF statement except that it causes
one of a series of statements to be executed depending on the

CASE testexp DF
relop exp : statement 5
relop exp : statement ;
relop exp : statement ;

ENDCASE statement ;

where relop = any relational operator (>=» <y -» IN» etc*)
see Section 5 C4e3)•

The CASE statement provides a means of executing one statement
out of many* The expression after the word "CASE" is
evaluated and the result left in a register* This is used as
the left—hand side of the binary relations at the beginning of
the various cases* Each expression is evaluated and compared
according to the relational operator to the CASE expression*
If the relationship is IRUEy the statement is executed* If
the relationship is FALSEy the next expression and relatonal
operator will be tried* If none of the relations is
satisfiedy the statement following the word "ENDCASE" will be
executed* Control then passes to the statement following the
CASE statement 4d4b

Note that the relop and expressions are followed by a
colony and the statements are terminated with the usual
semicolon* The word ENDCASE is not followed by a colon*
In ENDCASEy the statement may be left out — this is the
equivalent of having a NULL statement there; nothing will
happen•

Example:

CASE c OF

result of a series of tests* 4d4a

ENDCASE y *- x;

= a: x *. yi
> b: (xf y)

%Executed if c = n%
*- (xty 9 x—y) ; % Executed if c > b%
x# ^Executed otherwise%

CASE char 3F
= D: char «- ,i

> UL: char *-
%lf char = the code for a digits
%if char = the code for an
upper—case letter%

^otherwise not hing% ENDCASE;

art Twoy Section 4: Statements page 41

LlO USERS' GUIDE

©SRI-ARC 11—SEP—73 17:03 18969
SRI-ARC 12 SEP 73 18969

Several relations may be listed at the start of a single case?
they should be separated by commas# The statement will he
executed if any of the relations is satisfied#

CASE testexp DF
relop exp : statement ?
reIop expt relop exp 2 s tatement ;
relop exp» relop expf relop exp ' statement ?

ENDCASE statement ;

Example 2

CASE c OF
= a» <d: x y?
>b t = d2 (X , K)
ENDCASE y #_ x?

%Executert if c-a or c<d%
(xtyfx—y); ̂ Executed if c>b or c=d%

^Executed otherwise%

LOOP Statement 4ctS

The statement following the word "LOOP" is repeatedly executed
until control leaves by means of some transfer instruction
within the loop#

LOOP statement;

where statement = any executable LlO statement

Example:

LOOP IF a>= b THEM EXIT LOOP ELSE a - a+1 ?

It is assumed that a and b have been initialized before
entering the loop#

The EXIT construction is described below. It is extremely
important to carefully provide for exiting a loop.

WHILE.#.DO Statement 4d6

This statement causes a statement to be repeatedly executed as
long as the expression immediately following the word WHILE
has a logical value of TRUE or control has not been passed out
of the DO loop by EXIT CASE (described below). 4d6a

WHILE exp DO statement ;

exp is evaluated and if TRUE the statement following the word

Part Two* Section 42 Statements page 42

L10 USERS* GUIDE
S3RI-ARC ll-SEP-73 17:03 18969

SRI-ARC 12 SEP 73 18969

DO is executed; exp is then reevaluated and the statement
continually executed until exp is FALSE. Then control will
pass to the next statement. 4d6b

For exampIe, if you want to fill out a string with spaces
through the 20th character position! you could:

WHILE str.L < 20 DO *str^ *- *str*t SP; %what1 s already
theref then a spaced

Reaeiber that the first word of every string variable hs
two globally defined fields:

L actual length of contents of string variable
M — maximum length of string variable

UNTIL...DO Statement 4rt7

This statement is similar to the WHILE...DO statement except
that statement following the DO is executed until exp is TRUE.
As long as exp has a logical value of FALSE the statement will
be executed repeatedly. 4 d7 a

UNTIL exp DO statement ;

Example:

UNTIL a>b DO a _ a*l ;

DO...UNTIL/DO...WHILE Statement 4d8

These statements are like the preceding statements! except
that the logical test is made after the statement has been
executed rather than before. 4d8a

DO statement UNTIL exp;

DO statement WHILE exp;

Thus the specified statement is always executed at least once
(the first time, before the test is made). 4d8b

F08...D0 Statement 4d9

The FOR statement causes the repeated execution of the
statement following MDO" until a specific Terminal value is
reached. 4d9a

FOR var UP UNTIL retop exp DO statement;

Part Two, Section 4: Statements page 43

L10 USERS* GUIDE
©SRI-ARC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

(UP will be assumed if left out.)

FOR var DOWN UNTIL reiop exp DO statement;

where

var = the variable whose value is incremented or
decremented each time the FOR statement is
execute d

relop = anjr relational operator (described in 4e3c)

exp = when combined with relop, determines whether
or not another iteration of the FOR statement
will be performed.

e.g. FOR i UP UNTIL >7DOa*~a + t[l]; 4<t9b

Optionaiiyt the user may initialize the variable and may
increment it by other than the dcfault of one. 4<t9c

FOR var •- expl UP exp2 UNTIL relop exp3 DO statement;
DOf N

where

expl •= an optional initial value for var. If
expl is not specifiedt the current value
of var Is used.

exp2 = an optional value by which var will be
incremented (if UP specified) or decremented
(if DOWN specified). If exp2 is not
specified) a value of one will be assumed.

Note that exp2 and exp3 are recomputed on each iteration.

Example:

FOR k »- n UP k/2 UNIIL > m*3 DO x[k] - k;

is equivalent to

k •- n;
LOOP

BEGIN
IF k >m*3 THEN EXIT LOOP;
x[k] «_ k;

Part Two) Section 4: Statements page 44

L 10 USERS * G UIDE

©SRI-ARC 11—SEP—73 17:03 18969
SRI-ARC 12 SEP 73 18969

k *- k + k/2;
END;

BEGIN,..END Statement 4dl0

The BEGIN « , .END construction enables the user to group several
statements into one syntactic statement entity, A BEGIN.,,END
construction of any length is valid where one statement is
required. 4dl0a

BEGIN statement ; statement ; .,« END ;

Example:

IF a >= b*c THEN
BEGIN
a.~b ;
c*-d+5;
END

ELSE
BEGIN
a,-c;
b_d+2;
c».b*d*7
END ;

EXIT Statement 4dll

This construction provides for forward branches out of CASE or
Iterative statements. The optional- number (num) specifies the
number of Lexical levels of CASE or Iterative statements
respectively that are to he exited (if loops are nested within
loops). If a number is not given then t is assumed. All of
the iterative statements (LOOP* WHILE* UNTIL* DO* FOS) can be
exited by the EXIT LOOP construct. A CASE statement can be
left with an EXIT CASE instruction. EXIT and EXIT LOOP have
the same meaning, 4<tlla

EXIT LOOP num or EXIT num
EXIT CASE num

where num is an optional integer.

Examples:

LOOP
BEGIN
• m m m m
IF test THEN EXIT;

Part Two* Section 45 Statements page 45

L10 USERS1 GUIDE
f?S RX—ARC 1 I —SEP—73 17:03 1896r

SKI-ARC 12 SEP 73 18369

%the EXIT ari 11 branch out of the LOOP%

END;

UNTIL something DO
BEGIN

WHILE testl DO
BEGIN
#••••««•
IF te s12 THEN EXIT?

%the EXIT will branch out of the WHILE*
• • * •
END;

END;

UNTIL something DO
BEGIN

WHILE testl DO
BEGIN
• + ••••••
IF te s 12 THEN EXIT 2;

%the EXIT 2 trill branch out of the UNTIL*
• * • * # • » •
END;

END;

CASE exp OF
=something:

BEGIN

IF test THEN
%t he EXIT

• * • w • • • «
END;

EXIT CASE;
iri Li branch out of the CASE*

REPEAT Statement 4c£t 2

This construction provides for backward branches to the front
of CASE or iterative statements# The optional number has the
same meaning as in the EXIT statement# REPEAT and REPEAT CASE
have the same meaning* 4dl2a

REPEAT LOOP nam

Part TwoY Section 4: Statements page 46

L10 USERS * G UIDE
GS RI—ARC 11 —SEP—73 17:03 1896

SRI-ARC 12 SEP 73 18969

REPEAT CASE nam (exp) or REPEAT nui (exp)

If an expression is given with the REPEAT CASE* then it is
evaluated and used in place of the expression given at the
head of the specified CASE statement. If the expression is
not given* then the one at the head of the CASE statement is
reevaluated. 4dl2b

Examples: 4dl2c

CASE exp1 OF
= some thing:

BEGIN
• • • * • » # *

IF testl THEN REPEAT;
^REPEAT with a reevaluated expl%

IF test2 THEN REPEAT!exp2);
%SEPEAT with exp2 %

END;

ENDCASE ;

LOOP
BEGIN

IF test THEN REPEAT LOOP;
%REPEAT LOOP will go to the top of the LGOP%

END;

DIVIDE Statement 4dl3

The divide statement permits both the quotient and remainder
of an integer division to be saved. The syntax for the divide
statement is as follows: 4dl3a

DIV exp * q uotient * remainder ;

The central connective in the expression must be */• Quotient
and remainder are variable names in which the respective
values will be saved after the division. 4d13b

©• g.

DIV a / bt a* r ;

Part Two* Section 4: Statements page 47

L10 USERS* GUIDE
SSRI-ARC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

a will be set to a/b to the greatest integer with r
getting the remainder

PROCEDURE CALL Statement 4dl4

This statement is used to direct program control to the
procedure specified. 4dl4a

procname { exp} expj ... : var, var » , ««) ?

Where procname = the name of a procedure 4di4h

exp = any valid LlO expression (explained
in Section 5 4e)• The set of
expressions separated by commas is
the argument list for the procedure, 4dl4c

var = any variable. The set of variables
is used to store the results of the
procedure if there is more than one
result, 4d14d

The argument list consists of a number of expressions
separated by commas, The number of arguments should equal the
number of formal parameters for the procedure. The argument
expressions are evaluated in order from left to right. Each
expression (parameter) must evaluate to a one-word value. To
pass an array* text pointer, string, or any multi-word
parameter, the programmer may pass the address of the first
word, of the variable, then REF the receiving local in the
called procedure, 4dl4e

The procedure may return one or
Is returned as the value of the
only one value is returned, one

more values. The first value
procedure call. Therefore, if
might say: 4dl4f

a «- pr oc (b) ;

In this context, the procedure call is an expression,

If more than one value is returned by the called procedure*
one must specify a list of variables in which to store them.
The list of variables for multiple results is separated from
the list of argument expressions by a colon, The number of
locations for results need not equal the number of results
actually returned. If there are more locations than results,
then the extra locations get an undefined value. If there are
more results than locations* the extra results are simply
lost, 4dl4g

Part Two* Section 4: Statements page 48

SSR1-ARC lt-SEP-73 17:03 18969
L10 USERS* GUIDE SRI-ARC 12 SEP 73 18969

Exawpie:

If procedure proc ends with the statement

RETURN (atb,c)

then the statement

q *_ pro c(J r»s);

results in (q,r*s) «- (a»btc).

A procedure call may Just exist as a statement alone without
returning a value* Not ail procedures require parameters* tout
the parentheses are mandatory in order to distinguish a
procedure call from other constructs*

e.g* af() ;

If a block of instructions are used repeatedly* or are
duplicated in different sections of a program, It is often
wise to make them a separate procedure and simply call the
procedure when appropriate*

A great many procedures are part of the NLS system and are
available to your programs* A list of them is available in
the file <nIs *sysgd*)* They should be used with care,

RETURN Statement

This statement causes a procedure to return control to the
procedure which called it* Optionally* it may pass the
calling procedure an arbitrary number of results* The order
of evaluation of results is from left to right* 4d15a

RETURN ;

RETURN (exp* exp* •••) ;

GOTO Statement 4dt6

Any statement may be Labeled; one puts the desired label (a
string of lower case letters and digits) in parentheses and
followed by a colon at the beginning of a statement* 4dl6a

(label)J #stateaettt ;

e* g* (there): a »- b + c ;

4d 1 4h

4dl4i

4d 1 4 j

4dl 5

Part Two* Section 42 Statements page 49

L10 USERS' GUIDE
©SRI-ARC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

GOTO provides for unconditional transfer of control to a new
toeat ion* 4dl 6 b

GOTO label ;

e.g. GOTO there ;

GOTO statements make debugging difficult and are not
considered good style; they can usually be eliminated by use
of procedure calls and the iterative statements* 4dl6c

NULL Statement 4d 17

The NULL statement may be used as a convenience to the
programmer. It does nothing.

NULL ;

Example:

CASE exp OF
=0, =L; NULL;
ENDCASE y_l;

Part Two, Section 45 Statements page 50

©SRI-ASC ll-SEP-73 17:03 18969
L10 USERS' GUIDE SSI-ARC 12 SEP 73 18969

Section 5: Expressions 4e

Introduction 4e1

This section will describe the composition of the expressions
which are an integral part of many of the statements described
in the last section, 4ela

Primitives 4e2

Primitives are the basic units which are used as the operands
of L10 expressions. There are many types of elements that can
be used as L10 primitives; each type returns a value which is
used in the evaluation of an expression. 4e2a

Each of the following is a valid primitive: 4e2b

a constant (see below)

any valid variable name* refering to the contents (of the
first wordy if not indexed) of that variable

the contents of a string variahle» refered to as &var#

a dollar sign ($) followed by a variable namey
refering to the address of the variable

a procedure call which returns at least one value

the first I leftmost) value returned is the value of the
procedure call; other values may be stored in other
variables as described in Section 4 (4dl4f),

an assignment (see below)

classes of characters; described in Sections 1 of
Part One (3a2a3)

MIN (expy expy •••) the minimum of the expressions

MAX (expy expt •••) the maximum of the expressions

TRUE has the value 1

FALSE has the vaue 0

Part Twoy Section 5: Expressions page 51

L10 USERS* GUIbE
SSRI-ARC 11—SE P—73 17:03 18969

SRI—ARC 12 SEP 73 18969

VALUE (astring) given the address of a string containing
a numberf has the value of the number

READC (see below)

CCPOS (see below)

FIND

used to test text patterns and load text pointers for
use in string construction (see Section 6 — 4f3);
returns the value TRUE or FALSE depending on whether or
not all the string tests within It succeed.

POS

P0S textpointerl relop textpointer2

may be used to compare two text pointers. If the POS
construction is not used, only the first words of the
pointers (the 3tid*s) will be compared. If a pointer is
before another, it is considered less than the other
poin ter •

e.g. PDS pt1 - pt2
PDS first >= last

Constants 4e2c

A constant may be either a number or a literal constant.

There are several ways in which numeric values may be
represented. A sequence of digits alone or followed by a D
is interpreted as base ten. If followed by a B then it is
interpreted as base eight. A scale factor may be given
after the B for octal numbers or after a D for decimal
numbers. The scale factor is equivalent to adding that
many zeros to the original number.

Examples:

64 - iOOB = 1B2

1448 = 109 = 1D2

Literals may be used as constants as they are represented
internally by numeric values. The following are valid
literal constants:

Part Two, Section 5: Expressions page 52

L10 USERS" GUIDE

SSRI-ARC 11—SE P—73 17:03 18969
SRI-ARC 12 SEP 73 18969

—any single character preceded toy an apostrophe

e.g. 'a represents the code for 141B.

-any string of up to five characters enclosed In
quotation narks

e.g. "ai" represents the code for 141141B

—the following synonyms for commonly used characters:

ENDCMR -endcharacter as returned by READC

SP -space

-Tenex*s version of CR LF

— Ienex's version of altmode or escape (= 33B)

-carriage return

-line feed

- tab

-backspace character

-backspace word

-center dot

-Command Accept

—Command Delete;

EOL

ALT

CR

LF

TAB

BC

BW

C.

CA

CD

Assignments 4e2d

An assignment can toe used as a primitive in an expression.

The form a •- b has the effect of storing b into a and has
the value of b as its value.

Another form of the assignment statement is:

a : = to

This will store b into a* but have the old value of a as
the value of the assignment when used as a primitive in
an expression.

Part Two, Section 5: Expressions page 53

L10 USERS' G U I D E
SS RI—ARC ll-SEP-73 17:03 1806

SRI-ARC 12 SEP 73 18969

For example,

b «• (a := b) ;

The value of b will be put in a. The assignment will
get the old value of a, which Is then put in b. This
transposes the values of a and b*

The primitive 8EADC is a special construction for reading
characters from NLS statements or strings*

A character is read from the current character position
in the scan direction set by the last CCPOS statement or
string analysis FIND statement or expression* CCPOS and
FIND are explained in detail in Section 6 of this
document (4f2) and (4f3)*

Attempts to read off the end of a string in either
direction result in a special "endcharacter" being
returned and the character position not being moved*
This endcharacter is included in the set of characters
for which system nneuionics are provided and may be
referenced by the identifier "ENDCS8".

For example, to sequentially process the characters
of a string:

CCPOS *str*;

UNTIL (char - READC) = ENOCHS DO process(char);

(Note: READC may also be used as a statement if it is
desired to read and simply discard a character),

CCPOS 4e2f

When used as a primitive, CCPOS has as its value the index
of the character to the right of the current character
position* If str = "glarp'S then after CCPOS ̂ str^i the
value of CCPOS is 1 and after CCPOS SE<*str*) the value of
CCPOS is 6 (one greater than the length of the string)*

CCPOS is more commonly used to set the current character
position for use in text pattern matching. This is
discussed in detail in Section 6 below (4f2).

CCPOS may be useful as an index to sequentially process the

READC - ENDCHR 4e2e

Part Two, Section 5: Expressions page 54

L 10 USERS* GUIDE

©SSI-ARC 11—SEP—73 17:03 18969
SRI-ARC 12 SEP 73 18969

first n characters of a string (assumed to have at least n
characters)

Example

CCPOS ̂ str^J fcCCPOS now has the index value of
one, the front of the string%

UNTIL CCPOS > n DO process(READC).
l&READC reads the next character
and increments CCPOS%

Operators 4e3

Primitives may be combined with operators to form expressions.
Four types of operators will be described here: arithmetic,
relational, interval, and logical. 4e3a

Arithmetic Operators 4eJb

Operator Meaning

unary + positive value

unary — negative value

+ a dd i t i o n

— subtraction

* multiplication

/ integer division (remainder not saved)

MOD a MOD b gives the remainder of a / b

.V a •V b = bit pattern which has l*s wherever
either an a or b had a I and 0 elsewhere.

.X a ,X b = hit pattern which has l*s wherever
either an a had a t and b had a 0, or a had
a 0 and b had a I, and 0 elsewhere.

.A a .A b = bit pattern which has l*s wherever
both a and b had l's, and 0 elsewhere.

Relational Operators 4e3c

A relational operator is used in an expression to compare

Part Two, Section 5: Expressions page 55

L 10 USERS* GUIDE
©SRI—ARC ll-SEP-73 17:03 1896 9

SRI-ARC 12 SEP 73 18969

one quantity rith another#
a logical value. If true*
value is 0,

The expression is evaluated for
its value is 1; if falset its

Operat or

>
>=

Meaning Example

equal to 4+1 = 3+2
not equal to 6#8
less than 6<8
less than or

equal to 8<=6
greater than 3>8
greater than or

equal to 8>=6
NOT o ther—re tationaI—operator

C t rue f =1)
(true, =1)
(true , =1)

(false t -0)
(false, — 0)

(true , = 1)

6 NOT > 8 (true, =1)

Interval Operators 4e3d

The interval operators permit one to check whether the
value of a primitive falls in or out of a particular
interval *

IN (primitive, primitive) IN [primitivey primitive]

OUT (primitive, primitive) ^equivalent to NOT IN%

The value is tested to see whether or not it lies within
(or outside of) a particular interval. Each side of the
interval may be "open" or "closed"* Thus the values which
determine the boundaries may be included in the interval
(by using a square bracket) or excluded (toy using
parentheses)•

Example:

x IN [1, 100)

is the same as

(x > = 1) AND I x < 100)

Logical Operators

Every numeric value also has a logical value, A numeric
value not equal to zero has a logical value of TRUE? a
numeric value equal to zero has a logical value of FALSE.

4e3e

Part Two, Section 5: Expressions page 56

L10 USERS• GUIDE
©SRI—ARC 11 —SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

Ope rat or Evaluation

OR a OR b = TRUE if a •= TR UE or ft ~ TRUE
= FALSE If a = FALSE and b = FALSE

AND a AND b = TRUE if a = TRUE and b = TRUE
= FALSE if a = FALSE or b = FALSE

NOT NOT a = TRUE if a = FALSE
= FALSE If a = TRUE

Express!ons 4e4

Introduct ion 4e4a

An expression is any constant, variable} special expression
form} or combination of these Joined by operators and
parentheses as necessary to denote the order in which
operations are to be performed.

Special L10 expressions are; the FIND expression which is
used for string manipui-ationf and the conditional IF and
CASE expressions which aay be used to give alternative
values to expressions depending on tests made in the
expressions. Expressions are used where the syntax
requires a value. Ifhiie certain of these forms are similar
syntactically to L19 statements} when used as an expression
they always have values.

Order of Operator Execution— Binding Precedence 4e4b

The order of performing individual operations within an
equation is determined by the heirarchy of operator
execution (or binding precedence) and the use of
parent heses.

Operations of the same heirarchy are performed from left to
right in an expression. Operations in parentheses are
performed before operations not in parentheses.

The order of execution of operators (from first to last) is
as follows:

unary —, unary +

.A

.V, .X

Part Two, Section 5; Expressions page 57

L10 USERS* GUIDE
SSRI-ARC 11—SEP—73 17:03 18969

SRI—ARC 12 SEP 73 18969

/, MOD

relational tests (e*g. i >=» <=» X, <, = , #, IN* GUT)

NOT relational tests (e,g,, NOT >)

NOT

AND

OR

Conditional Expressions 4e4c

The two conditional constructs {IF and CASE) can be used as
expressions as tell as statements# As expressions, they
must return a value.

IF Expressions

IF testexp THEN expi ELSE exp2

tesiexp is tested for its logical value. If testexp is
TRUE then expl will be evaluated. If it is FALSE, then
exp2 is evaluated.

Therefore, the result of this entire expression is
EITHER the result of expl of exp2.

Example:

y _ IF x IN[1,3] THF.N x ELSE 4;
%lt x = 1, 2, or 3, y*-x; otherwise y«-4%

CASE Expression

This form is similar to the above except that if causes
any one of a series of expressions to be evaluated and
used as the result of the entire expression.

CASE tesiexp OF
relop exp : exp ;
relop exp : exp ;
relop exp 2 exp ?

•

ENDCASE exp ;

Part Two, Section 5: Expressions page 58

L10 USERS* GUIDE

SS RI—ARC 11—SEP—73 172(33 18969
SRI-ARC 12 SEP 73 18969

where relop = any relational operator (>= , <, = , IN,
etc. See Section 5 — 4e3c)

In the above, the testexp is evaluated and used with the
operator relops and their respective exps to test for a
value of TRUE or FALSE. If TRUE in any instance, the
companion expression on the right of the colon is
executed and taken to be the value of the whole
expression. A value of FALSE for all tests causes the
next relop in the CASE expression to be tested against
the testexp. If all reIops are FALSE, the ENDCASE
expression is taken to be the value of the whole
expression.

Note that ENDCASE cannot be null; it must have a value.

As with the CASE statement, any number of cases may be
specified, and each case may incude more than one relop
and expression, seperated by commas.

Example 2

y _ CASE x OF
<32 x+1;
=3, =4; X+2;
= 52 x;
ENDCASE x*2;

Value of X Value of y

2 3
3 5
4 6
5 5
6 12

String Expressions 4e4d

L10 also provides several expression forms which are used
for string manipulation and evaluation. These are
discussed in Section 6 of this document. Note that when
using string manipulation statement forms as expressions,
parentheses may be necessary to prevent ambiguities.

Part Two, Section 52 Expressions page 59

L10 USERS* GUIDE
SSRI-ARC t1—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

Section 6: String Test and Manipulation 4f

Introduction 4fl

This section describes statements which allow complex string
analysis and construction* The three basic elements of string
manipulation discussed here are the Current Character Position
(CCP03I and text pointers which allow the user to delimit
substrings within a string* patterns that cause the system to
search the string for specific occurrences of text and set up
pointers to various textual elements* and actual string
construction* 4fla

Current Character Position (CCPOS) 4f2

The Current Character Position is similar to the TNLS CM
(Control Marker) in that it specifies the location in the
string at which subsequent operations are to begin. All Ll0
string tests start their search from the current character
position* In Content Analyzer programs, it is initialized to
the beginning of each new statement. It is moved through the
statement or through strings by FIND expressions* It may be
set to a particular position by the statement: 4f2a

CCPOS pos ;
or

CCPOS *stringna»e^[expj 5

pos is a position in a statement or string that may be
expressed as any of the following: 4f2b

A previously declared and set text pointer.

If a text pointer is given after CCPOS* then the
character position is set to that location. A text
pointer points between two characters in a string. The
scan direction over the text will remain unchanged.

e.g. CCPOS ptl ;

String Front — left of the first character

SF(stspec)

When 3F is specified scanning will take place from left
to right within the string.

Part Two* Section 6: String Test and Manipulation page 60

GSRI-ARC 11—SEP—73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

stspec is a string specification that may be expressed
as an stid (e.g. the first word of a prevlouly declared
text pointer) or previously declared string name
enclosed in asterisks.

Examples:

CCPOS SF(ptl) ; %ptl is a text pointer*
CCPOS SF(stid) ; %31 id is an stid%
CCPOS SFC *str*) ; %str is a string*

String End — right of the last character

SEC stspec)

When SE is specified scanning will take place from right
to left within the string.

If a string (*stringnaae*) is given after CCPOS, then the
position is moved to that string. The scan direction is set
left to right, 4f2c

Indexing the stringname (by specifying [exp]) simply
specifies a particular position within the string. Thus
^str*[33 puts the Current Character Position between the
second and third characters of the string "str". If the
scan direction is left to right, then the third character
will be read next. If the direction is right to left, then
the second will be read next,

e,g. CCPOS #str*[3] J

If no indexing is given, then the position is set to the
left of the first character in the string. This is
equivalent to an index of 1,

e.g. CCPOS $str* ;

FIND Statement 4f3

The FIND statement specifies a string pattern to be tested
against a statement or string variable, and text pointers to
be manipulated and set, starting from the current character
position. If the test succeeds the character position is
moved past the last character read. If the test falls the
character position is left at the position prior to the FIND
statement and the values of all text pointers set within the
statement will be reset, 4f3&

Part Two, Section 6: String Test and Manipulation page 61

SSRI-ARC 11—SEP—73 17:03 18969
L10 USERS' GUIDE SRI—ARC 12 SEP 73 18969

FIND pattern ;

FINDs may toe used as expressions as well as free-standing
elements, II used as an express!on, for example In IF
statements, if has the value TRUE if all pattern elements
within if are true and the value FALSE if any one of the
elements Is false, 4 f 3to

e,g. IF FIND pattern THEN 5

FIND Patterns 4 f 4

A string pattern may be any valid combination of the following
logical operators, testing arguments, and other non-testing
parameters: 4f4a

Pattern Matching Arguments— 4 f4to

(each of these can be TRUE or FALSE)

string constant, e.g. "A3CM

or any character, preceded toy an apostrophy

It should be noted that if the scan direction Is set
right to left the pattern string constant pattern
should toe reversed. In the above example, one would
have "CBA".

character class

look, for a character of a specific class; if found, =
TRUE, otherwise FALSE,

Character classes:

CH — any character

L - lowercase or uppercase letter

UL — uppercase letter

LL - lowercase letter

D - digit

LD — lowercase or uppercase letter or digit

NLD - not a letter or digit

Part Two, Section 6: String Test and Manipulation page 62

L10 USERS* GUIDE
SSRI-ARC I1—SEP—73

SRI-ARC 12 SEP
17:03 18969
73 18969

OLD - uppercase letter or digit

LLD — lowercase letter or digit

PT - printing character

MP - nonprinting character

Exaoip I e :

char = LD

is TRUE if the variable char contains a value
which is a letter or a digit,

(el eraen ts)

look for an occurrence of the pattern specified by
the elements. If loundf = TRUE* otherwise FALSE,
Elements may be any pattern? the parentheses serve to
group the elements so as to be treated as a single
element in any of the following elements.

— el etaen t

TRUE only if the element following the dash does not
occur,

[eleaents]

TRUE if the pattern specified by the elements can be
found anywhere in the remainder of the string,
elements may be any pattern? the squarebrackets also
group the elements so as to be treated as a single
element. It first searches from current position.
If the search failed* then the current position is
incremented by one and the pattern is tried again.
Incrementing and searching continues until the end of
the string. The value of the search is FALSE if the
testing string entity is not matched before the end
of the string is reached,

NUM element

find (exactly) the specified number of occurrences of
the element,

e,g, 3LD means three letters or digits

Part Twoj Section 6: String Test and Manipulation page 63

gSRI-ARC 11—SEP—73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

NUM. 1 $ NUM2 element

Tests for a range of occurrences of the element
specified. If the element is found at least NUMt
times and at most NUM2 times, the value of the test
is TRUE.

Either number is optional. The default value for
NUMl is zero, The default value for NUM2 is
10000. Thus a construction of the form "S3 CH"
would search for any number of characters
(including zero) up to and including three.

Examples:

2S4 UL — from two to four upper—case letters

$10 SP — up to ten spaces

1$ *. — one or more periods

ID = user—ident
ID # user—ident

if the string being tested is the text of an NLS
statement then NIC ident of the user who created or
last edited the statement is tested by this
cons truction.

SINCE datia

if the string being tested is the text of an NLS
statement, this test is TRUE if the statement was
created or modified after the date and time (datim,
see below) specified.

BEFORE datim

if the string being tested is the text of an NLS
statement, this test is TRUE if the statement was
created or modified before the date and time (datim,
see below) specified.

Format of date and time for pattern matching

Acceptable dates and times follow the forms
permitted by the TENEX system's IDTIM JSYS
described in detail in the JSYS manual. It

Part Two, Section 65 String Test and Manipulation page 64

L10 USERS* GUIDE
SSRI-ARC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

accepts Mmost any reasonable date and time
syntax. 11

Examples of valid dates

17-APR-70
APR 17 70
17/S/1970

APR-17-70
17 APRIL 70
5/17/70

APRIL 17, 1970

Examples of valid times

1:12: 13
1234:56
1256-EST

12 34
1:56AM
1200NOON

16:30 (4:30 PM)
12:00:00AM (midnight)
11:59:59AM-EST (late morning)
12:00:01AM (early morning)

Example s

BEFORE (MAR 19, 73 16:49)
SI MCE (25-JUL-73 00:00)

These may not appear in Content Analysis patterns, but are
valid elements in program FIND statements:

*stringname^

the contents of the string variable

BETWEEN pos pos (element)

Search limited to between positions specified, pos
is a previously set text pointer; the two must be in
the same statement or string. Scan character
position is set to first position before the pattern
Is tested.

These combine and delimit groups of patterns. Each
compound group is considered to be a single pattern with
the value TRUE or FALSE. If text pointers are set within a
test pattern and the pattern is not TRUE, the values of

e.g. BETWEEN ptl pt2 (2D [.] SNP)

Logical Operators— 4 f 4c

Part Two, Section 6: String Test and Manipulation page 65

L10 USERS* GUIDE
©SRI-ARC 1 I—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

those text pointers are reset to the values they had before
the test was made# (See examples below#)

OR
AND
NOT
/

Other Eleients— 4f4ct

These do not involve tests! rather, they involve some
execution action. They are always TRUE for the purposes of
pattern matching te3ts#

These may appear in simple Content Analysis Patterns:

<

.set scan direction to the left

In this ca3e, care should be taken to specify
patterns in reverse, that is in the order which
the computer will scan the text#

set scan direction to the right

TRUE

has no effect; it is generally used at the end of OR
when a value of TRUE is desired even if all tests
fail .

ENDCHR

Attempts to read off the end of a string in either
direction result in a special "endcharacter" being
returned and the character position is not moved#
This endcharacter is included in the set of
characters for which system raoeumonics are provided
and may be referenced by the identifier "ENDCHR".

These may not appear in simple Content Analysis Patterns:

pos

pos is a previously set text pointer, or an SE(pos)
or SF<pos) construction. Set current character

Part Two, Section 6: String Test and Manipulation page 66

SSKI-ARC 1I-SEP-73 17:03 18969
L10 USERS * G UIDE SRI-ARC 12 SEP 73 18969

position to this position. If the SE pointer is
used, set scan direction frost right to left. If the
SF pointer is used, set scan direction fro® left to
right.

e.g. FIND xj %sets CCPOS to position of
previously set text pointer x%

• ID

store current scan position into the textpolnter
specified by the identifier

_ [NUM] ID

back up the specified text pointer by the specified
number [MUM) of characters. Default value for NUM is
one. Backup is in the opposite direction of the
current scan direction.

String Construction 4f5

One may modify an MLS statement or a string with the
statement: t 4f5a

ST pos ^ strlist ;

The whole statement or string will be replaced by the
string list.

Sr pos pos *- strlist ;

The statement or string from the first position to the
second position will be replaced by the string list.
Mposn may oe a previously set text pointer or the
SFC pos)/SE[pos) construction.

There are two additional ways of modifying the contents of a
string variable: 4f5b

ST ^stringname*[exp TO exp] »- strlist ;
means the 3aae as

stringname[exp TO expj - strlist %

The string from the first position to the second
position will be replaced by the string list. The
square—braeketed range is entirely optional; if it is
left off, the whole string will be replaced.

Part Two, Section 6: String Test and Manipulation page 67

L10 USERS* GUIDE
SSRI-ARC 11—SEP—73 17:03 18969

SHI-ARC 12 SEP 73 18969

Note that the WSFM is optional when assigning a strlist
to the contents of a string variable. The statement
then resembles aay simple assignment statement,

The string list I strlist) may be any series of string
designators, seperated by comas# The string designators may

the word NULL

represents a zero length (empty) string

string constant, e.g, "ABCM or * w

part of any string or statement, denoted either by

two text pointers previously set in either a statement
or a string

a string name in asterisks, refering to the whole string

$stringname*

a string name in asterisks followed by an index,
refering to a character in the string

#stringname*[exp]

(The index of the first character is one,)

a string name in asterisks followed by two indices,
refering to a substring of the string

*stringna»e^[exp TO exp]

A construction of the form #str$[i TO j] refers to
the substring starting with the ith character in
the string up and including the Jth character,

Example s2

s t r[7 TO 10] is the four character substring
starting with the 7th character of str,

str[i TO str.l] is the string str without the
first i-1 characters, (i is a declared
variable,)

be any of the following 415c

pos pos

Part Two, Section 6: String Test and Manipulation page 68

©S8I-ARC t 1 - SEP—73 17:03 18969
L10 USERS * GUIDE SRI-ARC 12 SEP 73 18969

+ substring

substring capitalized

— substring

substring in lower case

exp

value of a general LlO expression taken as a character?
i.e., the character with the ASCII code value equivalent
to the value of the expression

STRING (expl, exp2)|

gives a string which represents the value of the
expression expl as a signed decimal number. If the
second expression is present, a number of that base is
produced instead of a decimal number.

e.g. STRING (3*2) is the same as the string "6.0"

Examples: 4f5d

ST pi p2 *st ring*J
does the same as

ST pi - SF(pl) pi, *st ring*, p2 SE(p2);

assuming pi and p2 have been set somewhere in the same
statement. The latter reads "replace the statement
holding pi with the text from the beginning of the
statement to pi, the contents of string, then the text
from p2 to the end of the statement."

st[low TO high] *. "string"?
does the same as

st _ *st*[1 TO iow-1], "string", *sl*[high+1 TO st.L];

assuming low and high are declared simple variables.

Example: 4f6

Let a "word" be defined as an arbitrary number of letters and
digits. The two statements in this example delete the word
pointed to by the text pointer "t", and if there is a space on
the right of the word, it is also deleted. Otherwise, if
there is space on the left of the word it is deleted. 4f6a

Part Two, Section 6: String Test and Manipulation page 69

L10 USERS * G UIDE
SS RI—ARC ll-SEP-73 17:03 1896 9

SMI-ARC 12 SEP 73 18969

The text pointers x and y a re used to delimit the left and
right respectively of the string to be deleted, 4f6b

IF {FIND t < SLD fx > SLD (SP ty / ly x < (SP fx / TRUE)))
THEN

ST x y - NULL? 4f6c

The readier should work through this example until it is clear
that it really behaves as advertised, 4#6dt

Text Pointer Cotaparisons 4f7

This may be used to compare two text pointers, 4f7a

POS pt1 = pt2;

>
<
>=
<=

ptl and pt2 are a text pointers,

NOT may precede any of the relational operators. If the
pointers refer to different statements then all relations
between these are FALSE except "not equal" which is written
or NOT=» If the pointers refer to the same statement^
then the truth of the relation is decided on the basis of
their location within the statement,

A pointer closer to the front of the statement is "less
than" a pointer closer to the end,

Part Two* Section 6: String Test and Manipulation page 70

L10 USERS* GUIDE
SSRI—A RC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

Section 7: Executable Programs 4g

Introduction 4gl

For most applications* it is sufficient to accept statements
one at a time from the sequence generator and assume an
initial character position of the beginning of the statement
(a Content Analyser program), When one has more complex
applications* one may have to write more complex programs
which are explicitly passed control. These are not called by
the sequence generator but are passed control from the
Programs subsystem (see Section 9 — 412), Therefore they
must provide themselves with statements on which to work.
They should not return a value (as did the simpler Content
Analyzer type programs)* but should just return control to the
calling subsystem. All the capabilities described above are
available to such programs. In addition* the program may skip
around files, between files* and may interact with the user, 4gla

Moving Around a File 4g2

Generally* a simple variable or a text pointer will have to be
declared to hold the statement Identifier (stid) of the
current statement, (The first sord of a text pointer is an
stid,) Assume the simple variable with the name MsiidH has
been declared for the purpose of the following discussion, 4g2a

In the NLS file system* two basic pointers are kept with each
statement: to the substatement and to the successor, 4g2b

If there is no subst at emeri t * the substatement pointer will
point to the statement itself,

The procedure getsub returns the stid of the
substatement. To do something to the substatement if
there is one:

IF (stid := getsub(stid)) # stid THEN something,,;

stid is given the value of the substatement pointer,
then the old value of stid is compared to the new.
If they are the same* then there is no substructure,

If there is no successor (at the tail of a plex), the
successor pointer will point to the statement up from the
statement (i,e, the statement to which the current
statement is a sub).

Part Two* Section 7: Executable Programs page 71

L10 USERS* GUIDE
©SRI-ARC 11—SEP—73 17:03 18969

SRf-ASC 1 2 SEP 73 18969

The procedure getsuc returns the stid of the successor,

To move to the successor:

stid: getsuc(slid);

Given these two basic procedures* a number of other procedures
have been written and are part of the NLS system. All of the
following procedures take an stid as their only parameter, and
do nothing hut return a value, usually a stid, If the end of
the file is encountered, these procedures return the global
value "endfil", 4g2c

getupCstidl - returns the stid of the up

getnxt(stid) - returns stid of next statement

getbck(stid) — returns the stid of the back

gethed(stid) - returns stid of the head of the plex

getailCstid) — returns stid of the tail of the plex

getendi(stid) - returns the stid of the end of the
tail of the plex

getftl(stid) — returns TRUE if stid is tail of plex,
else FALSE

getlevi stid) — returns level of statement

Input/Output 4g3

Input and output must be handled quite differently for TNLS
and DNLS, There are three system globals which may prove of
service in making this distinction: 4g3a

fulIdisplay
typewriter
nI mode — the current value, either fulldisplay

or typewriter

Exampie:

IF nl«ode=fulIdisplay THEN something ELSE other—thing;

There are a few procedures that work in both DNLS and TNLS: 4g3b

Part Two, Section 7: Executable Programs page 72

L10 USERS1 GUIDE

©SRI-ARC 11—SEP—73 17:03 18969
SRI-ARC 12 SEP 73 18969

These return the ASCII value of a character from the
keyboard input buffer:

input!) — get next character from keyboard
input buffer

inpcuct) - get character, forced upper-case,
from the keyboard input buffer

lookc!) - return the next character in the
input buffer without advancing the
buffer pointer

dismesCtype,astring) - given a type number and the
address of a string, will print the message
on the user's teletype or { in DHLS) display
it in the teletype simulation window (above
the command feedback line).

typc-0: clear message area; astring not necessary
=1: put out message and leave it there
= 2: display message for a few seconds {same

as 1 for TNLS)
>1000: display for n microseconds (same as

1 for TNLS)

Remember, a dollar sign preceding a variable means the
address of that variable.

e.g. dismes { 2, Sstrvar) 1

A temporary string may be declared in the procedure call
for the use of that procedure alone:

dismes (1, $nstring of text to be displayed") ;

levset{stid,astring) — given an stid and the address of
a 3tring containing levadj characters (u's
and d's), evaluates levadj and returns a
target stid and 0 if new statement is to be
dovn from target or 1 if successor. Used
in routines which insert statements.

TNLS 4g3c

There are no standard L10 constructs for TNLS I/O. The
following procedures should be of help:

Part Two, Section 7: Executable Programs page 73

L1G USERS * G UIDE
GSRI-ARC 11—SEP—73

SRI-ARC 12 SEP
17:03 18969
73 18969

txt lit{ astring) - passed the address of a stringj
appends text from keyboard to string

levadj{ stid,astring) — given an stid and the address
of a string variable, gets a string of
levadj characters (u's and d*s) from the
user and puts them in the string

tbug(at p) — passed the address of a text pointer,
gets address from user

tbug2C atpl,atp2) — get two bugs, the second relative
to the first

typeast astring) - passed the address of a string,
types string on tty. The programmer
may declare a temporary string in cases
like this* e.g*

typeas ($"this will print out11) ;

crlfi) — type a carriage return—line feed
on the tty (You may also have a
carriage return in a string passed
to typeas*)

DNL3

There are some standard Ll0 statements for DHLS I/O:

INPUT

INPUT may be followed by any sequence of the
following; backup within the command (backspaces) is
handled automatically:

BUG tp - get a bug selection from the cursor
and store the resulting text pointer
in tp

STID tp - get a bug from the cursor or a SP
followed by a statement name, number
or SID, and store the resulting text
pointer in tp

LEVADJ str — get a sequence of level adjust
characters (u or d) and store them
in the string str

4g3d

Part Two, Section 7: Executable Programs page 74

L10 USERS' GUIDE
SSRI-ARC 1l-SEP-73 17:03 18969

SRI-ARC 12 SEP 73 18969

TEXT str — get a string of characters (up to a
CA or Center—Dot)* echoing them in
the text area of the display* and
store them in the string str

STRING str - like TEXT except echoes in the
name area

NAME str - get a string of characters forced
upper-case* echoing them in the name
area of the display* and store them
in the string str; the characters may
be typed in or a word may be bugged

WORD str — like NAME except not forced
upper—case

NUMBER str - like NAME except inputs a number*
typed or bugged

statement; - any standard L10 statement*
followed by a semicolon if necessary
to delimit the end of the statement;
the statement will be executed at
that point in the input sequence

char — succeeds if specified character is
input; may be any of the characters
mentioned under "Priaiitives" or

CA — Command Accept
CD — Command Delete
ALT — Alt Mode* Escape
BC — Backspace Character
Bi — Backspace Word
c. — Center Dot

Example (the Replace Text command):

INPUT BUG ol BUG b2 (BUG b3 BUG b4 OA flag*-TRUE; /
TEXT lit CA flag-FALSE) ;

IF flag THEN ST bl b2 - b3 b4
ELSE ST bl b2 - *lit* ;

DSP — the Command Feedback line

One may control the text of the command feedback line
with the following LlO statement:

Part Two* Section 7: Executable Programs page 75

0SRI-ARC 11—SEP—73 17:03 18969
L10 USERS* GUIDE SRI-ARC 12 SEP 73 18969

DSP C dsp-elenient) %

where dsp-eleaent is any sequence of the
following:

< - clear command feedback line

». - wove arrow to far left

t - set arrow under start of nxt word
••• - replace last word currently in

command feedback line with next word

a word - including letters or digits only;
will be added to command feedback line

To display special characters, surround them
with quotation marks.

The Command Feedback line may hold up to 30
characters.

AdditIonally, the following procedures may be of
service; some take no parameters:

ant) — turn arrow on

aft) — turn arrow off

qiat) — turn question mark on

qraofft) - turn question mark off

dntastringj - given the address of a string,
will display the string in the name
register; as with disiaest astring), you
may declare a temporary string as the
argument

litdpyt astping) - given the address of a
string, will clear file display area
and display contents of the string

rstlitC) - restores file area after a litdpyt)

Part Two, Section 7: Executable Programs page 76

L10 USERSf GUIDE

©SRI-ARC 11—SEP—73 17:03 18963
SRI-ARC 12 SEP 73 18969

Section 8: Error Handling — SIGNALS 4h

In t rodtuc t ion 4h I

When an NLS system procedure fails to perform properly, it may
generate an error signal* Every signal has a value* When a
signal is generated, control is passed back to the last signal
trap In effect* If ao explicit program control statement
(e.g. REIURN) is given in that signal trap, a new signal will
be generated* If the error is not dealt with, the signal will
eventually bubble all the way back and the program wilt stop.
You may trap signals and regain control by setting up the
response in advance. 4hla

Trapping Signals 4h2

To trap error signals with any error value: 4h2a

ON SIGNAL ELSE statement ;

e.g. ON SIGNAL ELSE
BEGIN
dismesi 2,Sstringl;
RETURN;
END;

It Is a good idea to set up a signal response before calling
any NLS system procedures. Once the signal response is set,
it remains in effect and will be executed whenever a signal is
received through the end of the procedure or until it is
changed. A signal trap set inside a loop will only remain in
effect within the loop. Any subsequent ON SIGNAL statements
wilt at that point change the signal response. 4h2b

Only signals generated by procedures called by the procedure
will be trapped by tnat procedure's signal trap. It will not
trap signals generated in the same procedure. 4h2c

The signal response may be any (block of) LlO statement!s)•
It will be executed, then 4h2d

— if you have an explicit program control statement
(RETURN, GOTO, EXIT LOOP), control will be passed
accordingly, or

- if the signal trap includes no explicit program control
statement, another signal will be generated.

Part Two, Section 8: Error Handling — SIGNALS page 77

LiO USERS' GUIDE
SSHI-AKC 11—SEP—73 17:03 18969

SSI—ARC 12 SEP 73 18969

Thus, if you wish to resume control in the current procedure,
the signal trap will have to end with a GOTO statement
pointing to an appropriately labeled statement. This is one
of the few places where a GOTO is really necessary. 4h2e

If the signal trap applies to a loop, an EXIT LOOP or REPEAT
LOOP is a valid signal program control statement. 4h2f

Cancelling Signal Traps 4h3

If, after setting up a signal response, you wish to cancel it
so that the signal will just bubble on up, you may do so with
the statement: 4h3a

ON SIGNAL ELSE ;

Specific Signals 4h4

When a signal is generated, an NLS system global variable,
sysgnI, is given a specific value (the value of the signal).
Each value represents a certain type of error. Also, a system
global variable, sysasg, is given the address of a string
which holds an error message. 4h4a

The above constructions react to any signal, no matter what
its value may be. The ON SIGNAL statement can be used much
like a CASE statement if you wish to trap specific signals: 4h4b

ON SIGNAL
^constant: statement;
—constant: statement;

« t •
ELSE statement;

e.g. ON SIGNAL
=ofllerr: %open file error%

BEG I N
IF sysfflag T HEN dismes(2,sysasg)J
RETURN;
END;

ELSE %any other error signals
BEG I N
di s m e s (2,$"Error");
RETURN;
END;

The current signal constants can be found in (nls,const,)•
The common reason for using this specific signal treatment is
when you call a procedure which you know will generate a

Part Two, Section 8: Error Handling — SIGNALS page 78

SSRl-ARC 11—SEP—73 17:03 18969
1.10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

certain signal value under certain conditions. In such a
case, you can learn the signal constant of concern from the
SIGNAL statement which generates it, 4h4c

Part Two, Section 8: Error Handling — SIGNALS page 79

L10 USERS' GUIDE
©SRI-ARC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18069

Section 9: Invocation of User Filters and Programs 41

In troduction 411

The user-written filters described in this document may be
imposed through the NLS command "Goto Programs", 41 1 a

User sequence generator programs for more complex editing
among many files may be written. Additional1y® programs
may be written in this L19 subset to be used to generate
sort keys in the NfLS So rt and Merge commands. Descriptions
of these more complicated types of user programs and of NLS
procedures which may be accessed by such programs is
deferred until a later document, In such examples®
however® the user would still make use of the commands in
the NLS "Goto Programs" subsystem.

These NLS commands are used to compile® Institute and execute
User Programs and filters. 4 lib

Compilation—

is the process by which a set of instructions in a
program is translated from the LlO language written in
an NLS file into a form which the computer can use to
execute those instructions.

I n s t i t u t i o n—

is the process by which a compiled Content Analyzer
program is Linked into the NLS running system for use as
a fliter.

Execution—

Is the process in which control is passed to a compiled
Executable program.

This section additionally presents® in detail® examples of the
use of the LlO programming language to construct user analyzer
filters and reformatters. These programs were written by
members of ARC who are not experienced programmers. They do
not make use of any constructions not explained in this
manual. 41lc

Part Two® Section 9: Invocation of User Filters and Programs page 80

1,10 USERS* GUIDE

SS SI—ARC ll-SEP-73 17:03 18969
SRI—ARC 12 SEP 73 18969

Programs Subsystem 412

Introduction 4i2a

This MLS subsystem
processing of user
entered by using t

provides several
written programs
e MLS command-

facilities for the
and filters. It is

goto programs OA

This subsystem enables the user to compile LlO user
programs as well as Content Analyzer patterns} control how
these are arranged internally for different uses, define
how programs are used* and interrogate the status of user
programs•

Programs subsystem commands

After entering the Programs sbsystera, the system expects
one of the following commands:

Show Status of programs buffer

This subcommand prints out Information concerning
active user programs and filters which have been
compiled and/or instituted:

Show Status I of programs buffer) CONFIRM

When this command is executed the system will print:

the names of all the programs in the stack,
including those generated for simple Content
Analysis patterns, starting at the bottom of the
stack. This stack contains the symbolic names of
all compiled programs and a pointer to the
corresponding compiled code* The stack is
arranged in order of compilation with the most
recently compiled program at the top of the stack.

—— the remaining free space in the buffer. The
buffer contains the compiled code for all the
current compiled programs. New compiled code is
inserted at the first free location in this
buffer.

— the current Content Analyser Program or "None"

Part Two, Section 9: invocation of User Filters and Programs page 81

L10 USERS' GUIDE

GSRI-ARC 11—SEP—73 17:03 18969
SRI-ARC 12 SEP 73 18969

— the current user Sequence Generator program or
wHone"

— the user Sort Key program or "None"

Coapiie

LlO Program

This subcommand compiles the program specified*

Compile LlO (user program at) ADDRESS CONFIRM

ADDRESS is the address of the first statement of
the program.

This command causes the program specified to be
compiled into the user program buffer and its name
entered into the stack. The program is not
instituted.

The name of the program is the visible
following the word PROGRAM or FILE in the
statement indicated by ADDRESS.

The program may be instituted and executed by the
appropriate commands.

Fi ie

The user program buffer is cleared whenever the
user resets or logs out of the system. If one has
a long program which will be used periodically! he
may wish to save the compiled code in a file which
can be retrieved with the Load REL File command.
The command to do this is!

Compile File Cat) ADDRESS (using) LlO CA (to
file) FILENAME CONFIRM

The FILENAME must be the same as the program name.
The program will then be compiled and stored in
the file of the given name (with the extension
REL# unless otherwise specified). The user may
then load it at any time.

Before doing this# the programmer must:

Part Two# Section 9: Invocation of User Filters and Programs page 82

SSRI-ARC 11—SEP—73 17:03 18969
L10 USERS* GUIDE SRI-ARC 12 SEP 73 18969

1) replace the word PROGRAM at the head of the
file with the word FILE, and

2) position the CM (in DHLS* the top of the
screen) at the FILE (ex PROGRAM) statement*

Content Analyzer Pattern

This subcommand allows the user to specify a
Content Analyzer pattern as a Content Analyzer
filter*

Compile Content (analyzer pattern) SELECTON
CONFIRM

The pattern must begin with the first visible
after the SELECTON address, or at that point you
may type it in*

When this command is executed, the pattern
specified is compiled into the buffer, its name is
put on the stack, and it is instituted as the
Content Analyzer filter*

Load REL file

A pre—compiled program existing as a REL file may be
loaded into the program buffer with the subcommand:

Load Re 1 (file) FILENAME CONFIRM

If the FILENAME is specified without specifying an
extension name, this subcommand will search the
connected directory, then the <user-progs> directory,
for the following ex tensions:

REL it will simply load the REL file
OA it will load the program and institute it

as the current content analyzer program
SK it will load the program and institute it

as the current sort key extractor program
SG it will load the program and institute it

as the current sequence generator program

Sort key extractor and sequence generator programs
are more complex and are generally limited to
experienced LlG programmers* Some are available
in the User Programs Library
(user—progs ,-contents,I)•

Part Two, Section 9: Invocation of User Filters and Programs page 83

SSRI-ARC ll-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Dei e t e

Ail

This subconmind clears all programs from the user
program area* Ail programs are deinstitutedj the
stack is cleared) and the buffer is marked as
empty•

Delete All (programs in buffer) CONFIRM

Last

This subcommand deletes the top (or most recent)
program on the stack. The program is del nst i tut edt
if instituted* its name removed from the stack,
and its space in the buffer marked as free.

Delete Last (program in buffer) CONFIRM

Run Program

This command transfers control to the specified
program.

Run Program PROGNAME CONFIRM
NUM

PROGNAME is the name of a program which had been
previously compiled. That is, PROGNAME must be in
the buffer when this command is executed.

Instead of PROGNAME, the user may specify the program
to be instituted by its number. This first program
loaded into the buffer is number one.

Institute Program

This subcommand enables the user to designate a
program as the current Content Analyzer, Sequence
Generator, or Sort Key extractor program.

Institute Program PROGNAME CA
NUM

(as) CA (content analyzer) CA
Content (analyzer) CA
Sort (key extractor) CA
Sequence (generator) CA

Part Two, Section 9: Invocation of User Filters and Programs page 84

tr 10 USERS* GUIDE

SSRI-ARC 1 I —SE P—73 17:03 18969
SRI—ARC 12 SEP 73 18969

It a progran has already been instituted in that
capacity, it will be deinstituted (but not removed
from the buffer and stack).

Instead of PROGNAME the user may specify the program
to be instituted by number. The first program loaded
into the buffer is number one.

Deinstitute Program

This subcommand deactivates the indicated program,
but does not remove it from the stack and buffer. It
may be reinstituted at any time.

Deinstitute Content (analyzer program) CA
Sort (key extractor program)
Sequence (generator program)

Set Buffer size

The user programs buffer shares memory with data
pages for files which the user has open, therefore
increasing the size of the user programs buffer
decreases the amount of space available for file data
with a possible slowdown in response for that user.
The initial size is set to 4 pages. This may be
increased with the subcommand:

Set Buffer (size) NUMBER CONFIRM

where NUMBER is the number of pages (512 words
each) to be allocated to the user programs buffer.

If you get an "Error in Loading" message when
attempting to compile a program or load a REL file,
try increasing the buffer size.

You may reset the buffer size (to four pages) with
the command:

Reset Buffer (size) CONFIRM

Assemble File

Files written in Tree—Meta can be assembled directly
from the NL3 source file with the Assemble File
command Ihis aspect of NLS programming will not be
described in this document.

Part Two, Section 9: Invocation of User Filters and Programs page 85

L10 USERS* GUIDE
*JS RI—ARC 1l-SEP-73 17:03 18969

SRI-ARC 12 SEP 73 18969

Examples of User Programs

The following are examples of user programs which selectively
edit statements in an NLS file on the basis of text searched
for by the pattern matching capabilities. Examples of more
sophisticated user programs, including sort keys and user
sequence generator programs, can be found in the <user-progs>
directory through the file (user—progs,—con tents,). One can
find out how the standard NLS commands work toy tracing them
through, beginning with Ints, nctrl, 2). A table of contents
to all the global NLS routines available to the user can be
found in (nls, sysgd, 1).

413

4 i 3a

Example 1 Content Analyzer program 4i 3b

PROGRAM outname % removes the text and delimiters <) of MLS
statement names from the beginning of each statement %

DECLARE TEXT POINTER sfJ
< outname)PROCEDUREJ

IF FIND SNP »l [')] tsf THEN %found and set
pointer after name%

BEGIN
ST sf *- sf SE(sf) ;
RETURN* TRUE);
END

ELSE RETURN* FALSE);
END.

FINISH

Example 2 — Content Analyzer program 413c

PROGRAM changed %fhis program checks to see if a
statement was written after a certain date. If it was, the
string "{CHANGED]" will be put at the f ront of the
statement. %

(changed)PROCEDUR E;
LOCAL TEXT POINTER pt;
%remember, CCPOS is initialized to the beginning of
each new statements
IF FIND fpt SINCE (25-JAN-72 12:00) THEN

ST pt pt _ "[CHANGED]"; %the substring of zero
length is replaced with
"[CHANGED]"^

RETURN* FALSE)J
END.

FINISH

Example 3 — Executable program 4i 3d

Part Two, Section 9: Invocation of User Filters and Programs page 86

L10 USERS * G UIDE

©SRI-ARC 11—SEP—73 17;03 18969
SRI-ARC 12 SEP 73 18969

FILE toe %This program will generate a table of contents
branch with statement numbers %

(toe) PROCEDURE J
% declarations &

LOCAL levelf da, vspec, last, place ;
LOCAL TEXT POINTER ptr ;
LOCAL STRING num[5] ;
REF da ;
num.L «- ptr *- 0; % in 11 i a li za t i on%

% input file and number of levels %
IF nloaode = typewri ter

THEN
BEGIN
erifl) ;
typeasl $"Tafole of Contents generator;
Select file ");
tbug ($ptr) ; %get a bug from the tty%
crlft) ;
typeas ($"Number of levels of depth; ") ;
txtlit (Snam) ; %get a text string from the
ttyfc
cri£() ;
typeasl $"punning. ,, M);
END

ELSE *display%
BEGIN
dal $"") ; %clear the name register!
DSP (< Table of Contents t S elect file) ;
INPUT STID ptr CA;
DSP (*-< L evels of depth) ;
INPUT NUMBER num CA ;
DSP (< Table of Contents being genera) »
dn($"ted"); %command feedback, line too
short %
END;

% set to origin %
ptr,3tpsid «_ origin ;
ptr[1] 1 ;
level »- VA LUE (Snum); levaluate number string!
level *. ICIN (50, MAX (1,level))? %levels of depth!

% insert table of contents statement %
ptr cis (ptr, $"Tafoie of Contents", down);
Icooiand insert statement procedure!

% get viewspec words %
Sda dsparea (lcda()); !get address of display
area records, which hold all information about
display window, e.g. vietspecs!
vspec •_ da« davspec ; %copy viewspec word!
vspec.vslev «_ level ; !adjust level viewspec!

Part Two, Section 9; Invocation of User Filters and Programs page 87

*

LlO USERS' GUIDE
&SRI—ARC 11—SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

vspec.vsbrof •_ vs pec, vsplxf FALSE; ^adjust
branch or plex only viesrspecS

% assimilate group to table of contents %
place •- pt r ;
last getsuc (place) ;
eea (ptr, getsuc! ptr), getalUptr), 0, vspecf
da.dtavspc2» da.dausqcod, da.• dacacode) ; %comatand
execute assimilate procedure, using modified copy
of first yietspec word and the rest from the
display area descriptors^

% for all statements In table of contents %
UNTIL (place •- getnxt(place)) = last DO
dotoci place) ; ftturns statement into line for
table of contents%

% move table of contents to under st 1 %
cmg I ptr, getsuc(ptr), getprdC last), S^d");
Scosmand move group procedure^

% recreate display %
IF nlttiode = fulldisplay THEN alldsp() ELSE crlfC) ;

RETURN ;
END.

(do toe) PROCEDURE (stid) ; Ipassed stid, replaces

^statement with table of contents line %
% declarations %

LOCAL length;
LOCAL STRING dots[70], stnum[50], st[2000] ?
LOCAL TEJLT POINTER end ;

% initializations %
length st.L *- stnum.L «- 0;
^dots*

n -

% get st number %
stnum.L •- 0;
fechao (stid, Sstnura); Sput statement number In
sfriagS

% get first line %
st _ SF(stid) SE(stid) ;
length •- (65 - (3*getlev(stid)+st num , L))» ^maximum
Iength%
IF length < st.L THEN

BEGIN
st.L — length ; ^truncate statement%
FIND SE(^st*) [NPj tend > ; %back up to end of
last word%
£31* «- SF(*st*) end ;
END;

% format string %

Part Two, Section 9: Invocation of User Filters and Programs page 88

L10 USERS* GUIDE
SSRI-ARC 11 —SEP—73 17:03 18969

SRI-ARC 12 SEP 73 18969

dots.L •- (length + 2) - st.L; %caiculate number of
dtotsli

•- *8t^(^dots*} •stnum5^; Sconstuct table of
contents string*

% replace statement %
ST stid _ ;

RETURN;
END*

FINISH toe

Procedures Used in Examples; references taken from <NLS>SYSGD 4i3e

Format of references:

(proc—name) (link to source code) st-num-of—source—code

(formal, parameters, if, any)

comment taken from source code file

(alldsp) (nls,dspgen,alldsp) 3A
recreate display for ail display areas

(cea) (n Is , cor enl, cea) 7A
(target,sre1,srei,1evstg,vspec1,vspec2,asqcod,cacode)
Core NLS Assimilate Command

(cis) (nls,corenI, cis) 9H
(stid,astrng, levstg)
Core NLS Insert Statement Command

(cmg) (nIs,corenI,cag) 11L
(stidl,st id2,stid3, levstg)
Core NLs Move Group Command

(crlf) (nls,inpfbk,crlf) 6G
type a carriage ret urn-line feed

(dn) { nls,inpfbk,in) 8BI
{astrng)
display string in name area

(dsparea) (nls,dactrI,dsparea) 5M
(dano)
get da entry address from display number — returns
FALSE if da entry is not allocated.

(fechno) {nls,seqgen,fechno) 4J
(stid,astr)
Puts statement number of stid in string. Give the STID
as the first argument, and the address of the string
which is to contain the statement number as the second.
The statement number will be built in the string. If
the structure is not intact or the statement vector
cannot be built, a call to RERROR or an EXCEED CAP1CITY
ERROR m ay result.

Part Two, Section 9: Invocation of User Filters and Programs page 89

L10 USERS9 GUIDE
&SRI-ARC 1l-SEP-73 17:03 18969

cor-ior iO ccp 1S969

(getail) (nisi strnripfgetai I) 10A
(s t i d J
Given an stid) this procedure returns the stid of the
tail of the current plex

(getlev) (ats,seqgen jgetlev) 41
(stid)
Called with STID* returns level of that statement,

(getnxt) (nlsf strafipigetnxt) 10G
(stid)
This procedure finds the sequentially "next" statement*
i.e. the substateaent* successor* or successor of up*
etc, of the stid passed as argument. Ignores all
viewspecs.

(getprd) (nls* st rianp* getprd) 10D
(stid)
Given an stid* this routine returns the predecessor; if
the psid heads a plex* the stid Itself is returned

(get sue) (nls*filanp*getsuc) 2Ht
(stid)
The stid for the successor field is returned. If there
is no successor* the stid of the up is returned.

(icda) (nls*dactrl,Icda) 5J
returns nunber of display area where bug resided at last
input character

(thug) (nlsttxennd*tbug) 5A
(p* r)
given the address of a text pointer* gets an address
selection from the TNLS user and puts it in the text
pointer•

(txtlit) (nls*inpfbk*txtiit) SB
(as trng)
passed the address of a string* appends text from
keyboard input buffer to string

(typeas) (nls*inpfbk*typeas) 6C
(astrng)
Given the address of a string* types the string on the
user's teletype.

Part Two* Section 9: Invocation of User Filters and Programs page 90

L10 USERS* GUIDE
&SEI-ARC 1 I —SEP—73

SRI-ARC 12 SEP
17:03 18969
73 18369

ASCII 7-BIT CHARACTER CODES

Char ASCII

Tab Oil
LF 012
FormFeed
CR 015
SP 040

041
M 042
043
$ 044
% 045
S 046
• 047
i 050
) 051
* 052
+ 053

054
- 055
m 056

Char ASCII

/ 057
0 060
1 061
2 062
3 063
4 064
5 065
6 066
7 067
8 070
9 071
; 072
5 073
< 074
= 075
> 076
? 077
a 100
A 101

Char ASCII

B I 02
C 103
D 104
E 105
F 1 06
{# 107
a 1 10
i 111
j 1 12
K 1 13
L 1 14
a 115
ti 1 16
0 1 17
p 120
Q 121
R 122
3 123
r 124

Char ASCII

U 125
V 126
W 127
X 130
y 131
z 132
C 133

134
1 135
t 136

137

a 141
b 142
c 143
d 144
e 145
f 146

147

Char ASCII

h 150
i 151
J 152
k 153
I 154
m 155
n 156
o 157
P 160
<1 161
r 162
s 163
t 164
u 165
V 166
w 167
X 170
y 171
z 172

Character Codes page 91

L10 USERS * G UIDE
SS RI —ARC 11 — SEP—7 3 17:03 18969

SRI-ARC 12 SEP 73 18969

(J18969) 11—SEP—73 17: 03; f i tie: Author(s): Stanford Research
Institute /SSR1-ARC; Sub-Collections: SRI-ARC; Clerk: NDM;
Origin: <USBRGUIDES>L1Q-3U1DE.NLS;95, 1l-SFP-73 12:44 NDM ; ,D=On;
*PN=0; .PES;
• DefaultFont=8pt5; .BP=JJ »PxFont[1]=14p,6; .PxFont[1]=12p96;
• PxFon tSho«r= 1 9 2 5
»VlFont=8pi0; • H1 = " L10 USERS• GUIDE .Spilt; SRI-ARC .GDJ 18969";

• Hi Font =12p 9 6 » 0;
.F = "page .GPN;«; .FP=PR; . FFont=!2pf6,0; .PNType = 2;
.LMBase=2, 1.0? .LM=-3; .Rtt=72,S.O; .BRM=68,7.5; .SN=Off;
» SNF=7 2,8. 0; .SNFShow=Off; . StiFFont=6p , 1,LIght; .SNFFontShow=<=2;
,PxPShow=l; •YBS=0 9 2p; .PxFShow-1»2; .PxFYD=l; .PxFY0=1 ; .PxFYS=l;

page

JEW 10—SEP—73 14:59 18976
Proposed Design tor Initial Privacy Features

Please comment if you're so inc
might be interested if you know
otherti se •

ined| distribute to anyone else who
of such a person, and ignore

JEW 10—SEP—73 14:59 18976
Proposed Design for Initial Privacy Features

INTRODUCTION 1

The following are proposed changes to the SRI—ARC system which
would support an initial, limited level of ident-keyed access
control over NLS files. These changes are thought simple enough
to he implenented within a reasonable time frame, yet consistent
with what is believed to be the long—term solution to this fairly
complicated problem,

This proposal is based upon the belief that [dents, not TENEX
directories, must inevitably become the basis for identifying
users within the SRI—ARC system. Hence, the one major change
proposed here is a change to the monitor, one that requires that a
user identify himself by ident, rather than by directory, lb

This change would not be required if users could be placed in
one—to—one correspondence with directories, ltol

This proposal would permit the creator of an NLS file to share it
with and only with — any desired set of users. Initially, to
share a file with another user will mean to allow him to read it
via NLS, and possibly (provided one additional constraint is met)
to edit it • lc

In the implementation described here, the task of actually
checking a user's access to a file is assigned to NLS, rather than
to the monitor. This is done only to simplify the initial
implementation. The check must eventually be performed by the
monitor if a level of security consistent with that of current
TENEX access controls is to be provided, Id

THE PROPOSAL 2

VERIFYING THE USER'S IDENTITY 2a

Use of an ident must be restricted to its owner, Therefore: 2a 1

(Pi) It's proposed that a password be associated with each
individual ident and required of the user at login (i.e., by
the LOGIN JSYS, A supportive change must also be made to the
EXEC*)» An NLS ident and password, rather than a TENEX
directory and password, would thus become the basis for gaining
access to the system. The monitor whould infer the user's
directory from his ident (something which is always possible)
instead of the reverse as is done now (which is only sometimes
possible), use the directory thus obtained to proceed with the
login, and then simply save the login ident in a job—global
cell available to NLS, 2a2

1

JEW 10-SEP-73 14:59 18976
Proposed Design for Initial Privacy Features

There currently exists a sequential file giving ident as a
function of directory. It's suggested that to implement the
above, the file be inverted and NLS passwords included in
it. 2a2a

< P2) It's proposed that a JSYS be provided which returns the
login ident. 2a3

RESTRICTING ACCESS TO FILES 2b

Access to a file must be restricted to the set of users
specified by the creator of the file. Therefore: 2bl

(P3) It's proposed that the NLS 'load file* primitive check the
origin statement of a file being loaded for an optional field
of the form: 2b2

Access List: <identl> ... ,<identn>; 2b2a

containing a list of individual and/or group identsj and if
such a field exists, that NLS deny the user access to the file
(i.e., refuse to load the file) unless the list contains the
login ident or that of a group which contains it (or unless the
user is an enabled wheel). 2b3

To make this check efficient: 2b3a

(P4) It's proposed that at NLS initialization, the login
ident be retrieved from the monitor via the JSYS
provided, and stored in an NLS global. 2b3al

<P5) It's proposed that a list of all those groups of
which the user is a member be maintained in the ident
file for each individual ident, and that this list be
copied to an NLS global at initialization. Verifying
access to the file thus requires only a comparison of
strings, rather than an appeal to the ident system. 2b3a2

This access check always occurs IN ADDITION TO the normal
TENEX access checks, implying the following: 2b3b

(1) A user cannot effectively be granted write access to
an NLS file unless he and the file share the same
directory or TENEX directory group. 2b3bl

(2) Among users who share a directory or directory group,
access to anv NLS file within it can be controlled with
complete freedom: ANY subset of those users can be

2

Proposed Design for Initial Privacy Features
JEW 10—SEP—73 14:59 18976

granted exclusive read/write access to ANY of those
files•

(3) Once a file is journalized, the access list (If there
is one) effectively becomes the set of users with read
access to the file, since TENEX access controls deny
write access to every user.

(P6) It*s proposed that an NLS command be provided to establish
or replace the access field in the origin statement, verifying
the list of idents entered by the user.

The fact that the access list resides in the origin
statement of the file is an artifact of the initial
implementation; the user is not expected to deal with it
directly via NLS editing machinery (though he can't be
prevented from doing so).

(P7) it's proposed that the access list be verified at Journal
submission, since the user may have edited it by hand.

AVOIDING FORGERY

2b 3b 2

2b3b3

2b4

2b4a

2b5

2c

To prevent one's signing someone else's name to a memo that he
neither composed nor authorized: 2c1

(P8) It's proposed that the Journal ALWAYS take the login
ident to be the clerk. 2cla

RESTRICTING ACCESS TO DELIVERED MAIL 2d

To insure the integrity of delivered mail (necessary because
its text may be included in the delivery), some of which may be
of a private nature: 2dl

(P9> It's proposed that initial files be assumed private by
the Journal. That is, whenever the Journal has occasion to
create an initial file to receive delivered mail, it's
proposed that it place the text 'Access List: <owner>;' in
its origin statement. 2dla

Of course, once the initial file is created, the user may
change access to it if he desires. The Journal will never
again interfere, so long as the user refrains from deleting the
file. 2d2

SUMMARY OF SYSTEM CHANGES 3

It's proposed that: 3a

4

3

JEW 10—SEP—73 14:59 18976
Proposed Design for Initial Privacy Features

(PI) a password be associated with each individual ident and
required of the user at login (i.e.* by the LOGIN JSYS. A
supportive change must also be made to the EXEC.)• The monitor
whould infer the user's directory from his ident instead of the
reverse as is done no»i use the directory thus obtained to proceed
with the login} and then simply save the login ident in a
Job—global cell available to NLS. 3b

(P2) a J SYS be provided which returns the login ident. 3c

(P3) the NLS 'load file' primitive check the origin statement of a
file being loaded for an optional field of the form: 3d

Access List: <identl> }<iden tn>; 3d 1

containing a list of individual and/or group identsj and if such a
field exists* that NLS deny the user access to the file (i.e.*
refuse to load the file) unless the list contains the login ident
or that of a group which contains it (or unless the user is an
enabled wheel). 3e

(P4) at NLS initialization* the login ident be retrieved from the
monitor via the JSYS provided* and stored in an NLS global. 3f

(P5) a list of all those groups of which t he user is a member be
maintained in the ident file for each individual ident* and that
this list be copied to an NLS global at initialization. Verifying
access to the file thus requires only a comparison of strings*
rather than an appeal to the ident system. 3g

(P6) an NLS command be provided to establish or replace the access
field in the origin statement* verifying the list of idents
entered by the user. 3h

(P7) the access list be verified at Journal submission* since the
user may have edited it by hand. 3i

(P8) the Journal ALWAYS take the login ident to be the clerk. 3J

(P9) whenever the Journal has occasion to create an initial file
to receive delivered mail* it place the text 'Access List:
<owner>;' in its origin statement. 3k

4

18976 Distribution

Jeanne M. Leavitt, Rodney A. Bondarant} Jeanne M« Beck , Mark
Alexander Beach, Judy D• Cooke, Marcia Lynn Keeney, Carol B»
Guilbault, Susan R« Lee, Elizabeth K« Michael, Charles F. Dornbush,
Elizabeth J• (Jake) Feinler, Kirk E, Kelley, N. Dean Meyer, James E.
(Jim) White, Diane S. Kaye, Paul Rech, Michael D. Kudlick, Ferg R*
Ferguson, Douglas C„ Engelbart, Beauregard A. Hardeman, Martin E»
Hardy, J» D« Hopper, Charles ii. I rby, Mil E. Jernigan, Harvey G.
Lehtoan, Jeanne B. North, James C. Norton, Jeffrey C. Peters, Jake
Ratliff, Edwin K« Van De Riet, Dirk H« Van Nouhuys, Kenneth E» (Ken)
Victor, Donald C« (Smokey) Wallace, Richard W, Watson, Don £« Andrews

JEW 10—SEP-73 14:59 18976
Proposed Design for Initial Privacy Features

{ J189 76) 10—SEP—73 14:59; Title:
White/JEW; Distribution: /3RI-ARC; S
Origin; <WHITE>QUICK-PRi* ACY.NLS; 11,

Author(s): James E« (Jim)
b—Coilections: SRI—ARC; Clerk: JEW;
10—SEP—73 14:51 JEW ;

CFD 10—SEP—73 16:26 18977
Meeting to resolve command language problems

A meeting to discuss and
command language will be
for the short notice, but
ASAP,

resolve existing probl
held on led, Sept, 12
we'd like to resolve

ems in the proposed
at 10:00 AM. Sorry
the known problems

1

18Q77 Distribution
James C. Norton, Richard W. Watson, Charles K. Irhy, Michael D.
Kudlick, Diane S, kaye, Harvey G» Lehtraan, Dirk H» Van Nouhuys, N»
Dean Meyer, Jeanne M« Beck,

1

CFD 10—SEP—73 162 26 18977
Meeting to resolve command language problems

(J18977) 10—SEP —73 16226; ritle:
; Distribution: / J CN R «rw CHI MDK
Sub-Collections: SRI-ARC; Clerk: CFD

Author(s): Charles F» Dornbush/CFD
DSK HGL DVN NDM JMB ;

MDK 10—SEP—73 16:38 18978
More on NLS Command Language Syntax for HELP Users

This responds to Dean Meyer's note C18826*) in which he correctly
pointed out some deficiencies in my earlier note (18818#). In the
present note# it is recommended that we not use the SSEL concept# and
I suggest that we discuss this at C or after) CFD's meeting on the
command language ambiguity he discovered.

MDK 1O-SEP—73 16:38
More on NLS Command Language Syntax for HELP Users

18978

INTRODUCTION 1

In (18826,) Dean Meyer has correctly pointed out some deficiencies
in the NLS command language syntax scheme I described in (18818,). la

This note responds to Dean's suggestions (and implicitly to most
of those of JMB in (18940,))* It also includes ideas generated
from discussions Dean and I had. These discussions were very
useful to me in defining more precisely the particular problems
concerning definition of a "selection" (the SSEL—DSEL—LSEL
concepts). I wish to acknowledge Dean's interest and
understanding of these problems, and his patience with me. 11>

The subject of ADDRESSES needs wider discussion than just between
Dean and aie, so I propose that we have a meeting to discuss the
issues raised below soon. Since Dean's full—time summer
employment ends this Friday (Sept 14), the meeting should be this
week. I suggest we discuss it during the meeting on the use of
"[TOWHESE]" that CFD has asked for, scheduled for Wednesday. lc

ADDRESSES: (18826,2a) 2

De f i ni t i ons 2 a

The definitions of SSEL (source selection), DSEL (destination
selection), and LSEL (literal selection) may be written as: 2a 1

TNLS DNLS 2a2

SSEL
DSEL
LSEL

ADDRESS / (<option>TYPEIN)
ADDRESS

TYPEIN / (<option>ADDRESS)

ADDRESS / TYPEIN
ADDRESS

TYPEIN / ADDRESS 2a3

where in TNLS, ADDRESS = DAE <accept>
in DNLS, ADDRESS = BUG / (<optlon>DAE <accept>) 2 a3a

and TYPEiM = LIT <accept>
<accept> •= < control-d>
<option> = <control-u> 2a3b

(Note: when designating TEXT or a GROUP the above
definitions must of course be modified to allow for two
selections, not one.) 2a 4

SS EL 2b

The main problem from a documentation standpoint stems from the
introduction of the "SSEL" concept, to distinguish it from
"DSEL". 2b 1

1

MD& 10—SEP—73 16:38 18978
More on NLS Command Language Syntax for HELP Users

As I understand it, SSEL was introduced to generalize the
designation of "source" operand selections. These occur only
in the commands APPEND, COPY, MOVE. 2b2

The generalizations define, in a natural way, two alternatives
an ADDRESS and a LITERAL whenever it is possible

that an operand selection might be either typed in as a LIT or
selected from a file* 2b3

However, the SSEL concept seems to be an unnecessary
generalization, because in the three commands in which it is
used it is virtually certain that the user would not want to
type a LIT for the "source selection". 2b4

In fact, if for "source" one were to type a LIT, then the
APPEND, COPY, or MOVE command would perforce he changed to an
INSERT. 2b5

So one objection I have is in allowing anyone using the current
command language to change commands in midstream, except via
the <control-x> mechanism. 2b6

(I don't mean to preclude us from moving in this direction
for future versions of the command language. But it seems
to me that that is a separate research effort itself, and
shouldn't be approached by making isolated changes to the
existing language.} 2b6a

The other objection I have is that the SSEL concept is
especially confusing from a documentation standpoint. It
requires additional explanations and a notation (acronym) for a
situation that will practically never arise. 2b7

What one would invariably type for the source is an ADDRESS
not a LIT. This is in keeping with the definition of
"source" meaning "a string or structure already in a file". 2b7a

If we introduce a new concept that isn't going to be used
much if at all, it seems to me the learning proces is bound
to be more difficult, and the overall form and simplicity of
the language is more obscured, not less. 2b7b

I propose therefore that we eliminate (or at least not
document) the "SSEL" concept, and simply use instead the "DSEL"
concept, which is Just an ADDRESS. 2b8

LSEL 2c

The case for LSEL is different. Dean pointed out to me that

2

MDK 10—SEP—73 16:38 18978
More on MLS Command: Language Syntax for HELP Users

there are many cases where the concept of LSEL would be useful
as a "global acronym", I agree, provided we use a more
descriptive acronym than "LSEL"• I therefore propose the
following list of global acronyms to replace those in (18818,
3b1a) 2 2c 1

OPERAND {replaces LSEL)
= TYPEIN / ADDRESS in DNLS
= TYPEIN / { <option>ADDRESS) in TNLS

ADDRESS (replaces DSEL and SSEL)
= BUG / (<option>DAE <accept>) in DNLS
= DAE <accept> in TNLS

TYPEIN = LIT (accept>
FILENAME = OPERAND for the special string "filename"
STRING (replaces "TEXT-ENTITY")
STRUCTURE (replaces "STRUCTURE—ENTITY")
LEVEL-ADJUST (replaces "LEVADJ") 2c1 a

Note: If anyone has an alternative acronym for OPERAND or
LEVEL—ADJUST, both Dean and I would be happy to consider it, 2c2

JMB has suggested CONTENT instead of OPERAND, How does that
feel? Any other ideas? 2c2a

OTHER ITEMS: 3

(18826, 2b) With the above modifications, It doesn't seem
necessary to separate the command summary into two documents.
Command language differences between DNLS and TNLS have already
been greatly reduced, and the remaining ones (certain viewspecs,
window commands, etc, as well as in the above definitions of
global acronyms) can be noted appropriately, 3a

(18826, 2c) LEVEL is not as accurate as LEVADJ, but it has much
more connotation, which was the intent. We have compromised by
choosing LEVEL—ADJUST as indicated in the above table, 3b

(18826, 3) I agree that the fewer acronyms the better. Where
noise words are descriptive enough, a global acronym should be
used, as Dean suggests, I erred in using OLDSTRING and NEWSTRING
in my SUBSTITUTE example (18818, 7b2), because I didn't know what
the correct noise words were, Use of OPERAND (or its equivalent)
is fine there, given good noise words. But in a command like
PROTECT FILE a local acronym seems far more preferable than a long
string of noise words, 3c

(18826, 4) I gave a bad solution to the problem of "ANSWER" in
(18818, 3b3), The problem, in my opinion, is that the end of a
command always ought to be a (confirm), The way to achieve this

3

MDK 10—SEP-73 16:38 18978
More on NLS Command Language Syntax for HELP Users

in the cases where an "answer" occurs at the end of a command* is
to define ANSfER to be tES or MO or "null". That Is what I
propose. Then in a syntax expression* ANSWES<confirm> is
unambiguous, 3d

(18826* 5) Dean and 1 agreed to tryout some syntax examples on
persons with no prior knowledge of NLS* in order to see what
convention for "space" makes most sense. The main choices are 3©

(1) use <sp> for the space that must be typed* and use an
actual space for readability 3el

(2) use an actual space for the space that must be typed* and
do not use <sp> at all. 3e2

(18826* 6) I think Dean's suggestion of (control-y> is better
than <ctl>y* for the reasons he stated. 3f

(18826* 8) I certainly don't want to de—emphasize the importance
of structure* but I think the LEVEL—ADJUST field should be
optional for two reasons: 3g

1) it isn't always used* even when it can he* and
2) its use as a NDN-optional field would conflict (as at
present) with statements beginning with a "d" or "u" that is
not followed immediately by a space. 3gl

(18826* 9) i prefer the scheme of YES or NO (as modified above in
the acronym ANSWER) rather than an option key to "cycle back". 3h

(18826* 10) CFD discovered through testing that we made a mistake
in defining the option "TOtdERE" immediately preceding "DSEL"*
which itself has an optional alternative in it. This is not
parseable* as he has pointed out* because in effect we have
defined two consecutive optional fields. A separate meeting is
being held to resolve this conflict. I propose that at that
meeting we also bring up and resolve some of the above issues as
well* especially that of "SSEL"« 3i

4

18978 Distribution
Richard W. Watson, Jaaaes E. (Jim) White# Elizabeth J. (Jake) Feinlerf
Harvey G, Lehtnan, Kirk E# Kelley# Laura E* Ciouid# N» Dean Meyer#
Jeanne M* Beck# Charles F. Dornbush, Dirk H. Van Nouhuys, Michael D.
Kuctlick, Diane S. Kaye » J awes C. Norton# Kirk E. Kelley, Harvey G.
Lehtman, Elizabeth J. (Jake) Feinler, Jeanne B. North, Michael D.
Kudlick, Charles H» Irby#

1

M.DK 10—SEP— 7 3 16:38 18978
More on NLS Command Language Syntax for HELP Users

(JT1 8978) 10—SEP—73 16:38; Title: Author(s): Michael D. Kudlick/ MDK;
Distribution: /RWW JEW DIR T NIC-QUERY? S ub-Collections: SRI-ARC DIRT
NIC-QUERY; clerk: MDK;
origin: <kUDLICK>SYNX.NL3;8, 1Q-SEP-73 16:31 MDK ;

KIRK 10—SEP—73 17:41 18979
Appropriate location for S1GARF in the group allocation scheme.

SIGART should be in the network group rather than NIC shouldn't it?

18979 Distribution
Michael D. Kudlick, James C. Morton, Ferg S. Ferguson, L. Stephen
Coles, Richard E» Fikes,

\

1

KIRK 10-SEP— 73 17:41 18979
Appropriate location tor SIGART in the group allocation scheme.

(Jl89 79 J 10—SEP—73 17:41; Title: Author(s): Kirk E. Kelt ey/KIRK;
Distribution: /MDK JCN WKF LSC KEF; Sub—Collections: SRI—ARC; Clerk:
KIRK;

DVN 10—SEP—73 22:21 18980
PeopLe's Computer Center Meeting on Computer Aided Instruction This
Thursday in Menlo Park

The People's Computer Center workes near hear (1919 Menalto» Menlo
Park) to disseminate computer services to the genral public *
particularity as used in teaching elementary and highschooi kids* 1

Some of you may recall their newsletter distributed here a few
months ago* la

This thursday at 3:00 PM they are having one of a continuing series
of meetings on comput er—aided instruction* The meeting trill cover: 2

Future sites and schduies; the need for volunteers to sponsor
meetings; possible financing problems* 2a

Questions to the People's Computer Company staff about how the
company works* who uses recources and how, what's avialabe, etc* 2b

Computerland for Time Travelers, a computer fair at Lawrence Hall
of Science Septermber 20—23* 2c

Browsing and conversation*••guests are invited to stay for
Thursday nite open house* 2d

The Center is on the corner of Menalto and Gilbert. Go east from
Midlefield on Willow to Gilbert, turn right on Gilbert, and go a few
blocks* 3

I have posted a fact sheet on the cork bulleten board* For more
information, seek Phyllis Cole, downstairs at SRI* 4

1

18980 Distribution
James H. Bair, Laura E • Gould, Nancy J. Neigus, L. Peter Deutsch,
Alan C, Kay, Thomas O*Sullivan, Sally McLellan, K. Diane Shaw, Mario
Cm Grignet t i ,
Jeanne M» Leavitt, Rodney A. Bondurant, Jeanne M• Beck, Mark
Alexander Beaeh, Judy Dm Cooke, Marcia Lynn Keeney, Carol B.
Gullhault, Susan R* Lee, Elizabeth Km Michael, Charles F• Dornbushj
Elizabeth J• (Jake) Feinier, Kirk E. Kelley, N» Dean Meyer, James E.
(J i m) W h i t e , D i a n e S . R a y e , P a u l R e c h , M i c h a e l D m K u d l i c k , F e r g R m

Ferguson, Douglas C. Engelbart, Beauregard A. Hardeman, Martin E»
Hardy, J, D. Hopper, Charles H. Irby, Mil E. Jernigan, Harvey G.
Lehtman, Jeanne B« North, James C» Norton, Jeffrey Cm Peters, Jake
Ratliff, Edwin K• Van De Riet, Dirk H» Van Nouhuys, Kenneth E. (Ken)
Victor, Donald C. (Sraokey) Wallace, Richard W. Watson, Don I* Andrews

BVN 10—SEP— 73 22:21 18980
People* s Computer Center Meeting on Computer Aided Instruction This
Thursday in Menlo Park

(J 1 89 80) 10-SEP—73 22:21; Title: Author(s): Dirk H. Van IMouhuys/DVN;
Distribution: /Skl-ARC JHB LEG NJN LP D ACK TO SM2 KDS MCG;
Sub-Collections: Ski—ARC; Clerk: DVN;

JBN 11—SEP—73 03:45 18981
Request for Replies on NIC Questionnaire

To*. NIC Users

From: Jeanne North
Network Information Center
Stanford Research Institute
Menlo Park, Calif. 94025

Re: Questionnaire on NIC Publications

Several of NIC's users have replied to the questionnaire in the ARPANET
NEWS for June regarding the Network Directory and the Catalog of the NIC
Collection. Thanks to those who have replied; your answers are very
thoughtful and will be helpful.

However, not enough replies have been received to give us a strong base
for certainty as to which aspects of the documents are useful, which are
not useful, and what improvements could be made. If you have not
replied, would you please take the time to print out the rest of this
Item, and mark the boxes and mail to me right away. This is especially
important if you have changes to suggest.

1

JBN 11—SEP—73 03:45 13981
Request for Replies on NIC Questionnaire

QUESTIONNAIRE on NIC Publications

Your • Organization,

1• Please check applicable boxes:

NIC docs in hardcopy own have : use use use
copy access : 1/month more less

Directory of Participants!..

Current Catalog

• * * •

2, Check level of use you make of each section of the Directory:

Directory of Participants inetis- very useful not no
pensable useful useful opinion

Individualsi Brief
(Name* phone)

Individuals! Full entry

Gr oups
(name, address etc*!
of all members)

2

Request for Replies on NIC Questionnaire
JBN 11—SEP—73 03:45 18981

Index of I dents :#•: :*»:

Organizations :«•: • .. • ?»»: *•• •
(name* address of org,
with names of people)

Would you miss the listings of people in each organization if they
were discontinued?

Comments about Directory

JBN 11—SEP—73 03:45 18981
Request for Replies on NIC Questionnaire

3* Check level of use you make of each section of the Catalog:

Current Catalog of the indis- very useful not no
NIC Collection pensablr useful useful opinion

Author Index

Number Index

Titleword Index

Listing (with abstracts)

» • • •

• « * * •

• * * * • *

• • » « t t

Would you miss the abstracts if the Listing were discontinued?

Are RFC*s almost the only items you refer to in the Catalog?

Comments about Catalog Indexes and Listin

4

18981 Distribution
Joseph B. Re id , William T. aisencik, Toshl yuki Sakal , Loui s Pouzin,
Yn gvar Lundh, Robert H* Hinckley, Marvin Zelkowi tz, Don D. Cowan,
Louis F. Dixon, Michael O* Malley, Peter Kirsteln, David, J* Farber,
Dave Twyver, Art J. Bernstein, Dave E» Liddle, A» Kenneth Showalter,
D. D. Aufenkaatp, Derek Leslie Arthur Barber, TJaart Schipper, Richard
M« Van Slyke, E. M• Aupperle, Hubert Lipinski, Robert F. Hargraves,
C• D. (Terry) Shephard, Maurice P. Brown, Robert L. Ashenhurst,
Michael D» Kudiick, Richard W» Watson,
Gregory P. Hicks, Gloria Jean Maxey, Roberta J« Peeler, Craig Fields,
Erraaiee SU McCauley, Margaret Iwamoto, Dee Larson, Robert E» Doane,
Brenda Monroe, Jeanne B. North, Pam J. Klotz Cutler, Barbara Barnett,
Stan Goldirig, Steve G, Chipaaan, John P. Barden, Martha A. Ginsberg,
Shirley W» Watkins, Janet W. Troxel, Connie D« Rosewall, Anita L.
Coley, Carol J. Mostrom, Harold F• Arthur, Peter R. Radford, Wayne R•
Robey, Joshua Lederberg, Connie Hoogt James A* Biurake, David Hsiao,
Michael L* Marrah, Vinton G. Cerf, Gerald Kinnlson, Paul Baran,
Henry Chauncey, J. T« Sartain, Robert Lleberman, Ralph Alter, Nils
Maras, Philip H» Enslow, Robert M* Dunn
William K* Pratt, David C. Evans, Douglas C. Engelbart, Bertram
Raphael, Daniel L. Slotnick, Carolyn E» Taynai, Easter D» Russell,
Leonard B» Fall, Peggy D» Irving, Roy Levin, M« P« McCluskey, Pitts
Jarvis, Barbara A» Nicholas, Jacquie A« Priest, Terence E. Devine,
Paul M. Rubin, Paula L. Cotter, G. A. Hansen, Dan Dechatelets, Nancy
C. Thles, Robert Silberski, Marcia Lynn Keeney, Margaret A. (Maggie)
Bassett, J» A. Smith, Leina M. Boone, Diana L» Jones, Nancy J»
Neigus, Terry Sack, Frances A. (loni) McHale, Lucille C, (Lucy)
Gilliard, Ed J. Collins, Gary Biunck, John F* Heafner, Kathy Beaman,
David J. King, C. Jane Moody, Sue Pitkin, Jerry FitzsiMons
Glenn J* Culler, Frank S• Cooper, Bruce G. Buchanan, Kenneth L»
Bowles, Morton !• Bernstein, Paul Baran, Saul Araarel, Roy C» Amara,
John E» Savage, Butler W• Lampson, William R« Sutherland, Thomas G*
Stockham, Gene Raichelson, Michael O'Malley, Peter G. Neumann, Marvin
Minsky, Robert E• Millatein, J. G. R. Licklider, Robert M• Balzep,
Herbert B» Baskiri, Robert P. Abbott, Peter Kirstein, William 8» Kehl,
Roland F* Bryan, James G« Mitchell, Jeanne B, North, Alien Newell,
John McCarthy, Lawrence G« Roberts, Frank E» Heart, Edward L* Glaser,
Thomas M. Marill, T. E. Cheatham, James W. Forgie, Keith W, Oncapher,
Edtward A» Feigenbaum, Leonard Klelnrock
Michael 8. Young, Michael A« Padlipsky, Schuyler Stevenson, L» Peter
Deutsch, John Davidson, Thomas D*Sullivan, Sol F. Seroussi , Scott
Bradner, Robert Thomas, Michael J» Romanelli, Ronald M» Stoughton,
A* D* (Buz) Owen, Robert L» Fink, Jeanne B, North, Steve D» Crocker,
Thomas F» Lawrence, John W# McConnell, James E» (Jim) White, A, Wayne
Hathaway, Patrick W* Fouik, Richard A, Winter, Harold R, Van Zoeren,
Alex A. McKenzie, Abhay K« Bhushan, B# Michael Wllber, Edward A.
Feigenbaun, Robert T„ Braden, James M# Pepin, John T. Meivin, Joshua
Lederbepg, Paul J# Nikolai, Robert J, Gronek, Rein Turn, Mark
Medress, Franklin Kuo, Howard Frank, Robert L« Fink
John F m Wakerly, Tom C. Rindfleisch, Leonard B. Fall, David L. Hyde,
Gary Biunck, Tom P. MiIke, Alan H. Wells, Chuck R. Pierson, Carl M»
Ellison, Robert P. Blanc, Jay R« Walton, Terence Em Devine, David J.
King, William L. Andrews, Milton H. Reese, Kenneth M. Brandon, Lou C.

Nelson, Jeffrey P, Golden, Richard B. Neely, Dan Odtom, Ralph £»
Gorin, Robert G« Merryman, P* Iveitane, Adrian V. Stokes, David L*
Retz, Reg E. Martin, 3ene Leichner, Jean Xseli, James E» (JED)
Donnelley, William kantrotri tz, Michael S. Wolf berg, Yeshiah S*
Feinroth, Anthony C. Beam, Eric F. Harslem, Robert M» (Bob)
Metcalfe, Bradley A# Reussow, Daniel L • Kadunce, George N. Pet regal

2

KNS 11—SEP—73 11:13 18983
PCI/8PO MEETING

w DEAR DR. ALTER
THANK YOU FOR YOUR MESSAGE# HiCH I RECEIVED OK.
I WILL SEE YOU AND MP FOSTER ON TEE HORNING OF
THE 25/SEPT.
KIND REGARDS.
KEITH SANDUM *

1

18983 Distribution
Ralph Alter»

1

VGC 11—SEP—73 12:11 18984
rsponse to JBN prompt

Jeanne, thanks for setting up su-etsl account for me* I thought I had
turned In the NIC questionnaire on network directory and catalog. If
you didn•t get a copy of my filled out form, let me know and I will
do another for you* Vint

1

18984 Distribution
Jeanne B• Northf

1

MDK 11—SEP—73 13:42 18985

Judy Please ask Peter Deatseh (LPOl if he still wants us to make
his Journal del iveryy be H3oliiieH at the NIC, rather than "Netw rk
Online" as it is now* If 30f would jrou please take care of that
change? Thanks Mike.

1

18985 Distritoutio
Judy D. Cookef

JDH 11—SEP—73 16:15 18986
On-line Host field in ident system

My proposal buried in (MJOUR.IALf I8800f l:w) on Interim Dual-site
Ident System to "tenpor&rityn implement "On-line host" or "NLS host"
in the ident system has gotten by without comment so far. I'm
assuming silence is consent.

1

18986 Distribution
James E» (Jim) White* Charles H. Irby, Diane S. Kaye

1

i
JLM I 1-SEP-73 18:23 18987

•an 1 have finally got this to a few peopple 1 quit

JLM 11—SEP—73 18:23 18987

11 Se pt » —SADF R—85 1

Opening remarks by Lt Col o,ieffe

He stated that their vis a lot of interest at the high levels
in fact he apparently briefed yesterday a group of high level
officers on the study.They stressed that the computer must be
used to better help the AF to manage their resources lal

The cuurent base level machines are running out of gas and
room*ie the 3500fs and the 10b0fs ^a2

To upgrade these systems it is important that it be done in
the context of a overall plan-thus the sadpr study was born la2a

He stated that the current systems were designed and
implemented on a functional basis and that it may have been
okay then but it is no longer acceptible and certanily not
efficent. Ia2b

Stated that the study was to deal with base level business
and their were emerging technology's around such as
texteditors and communication systems like the ARPA net
which offered the AF a much more efficent and powe re ful way
of doing busiiness. Ia2c

He stated thaat the STALOGr was considered a good study as a
point of departure as well a3 the Base Comut Study. Ia3

The following is the originaziton of the study. lb

Director—It Col Opeeete lbl

Dep Dir Lt Col Hoffman from the Data Design center lb2

Requirements-Major Eara lb3

Concepts and Technology—Lt Col Conrraty lb4

Resources-Mr zenlea lb5

mitre project officer—j Hitcheil !b6

He stated that j mitchel had prepared a 1980 tchnology forecast
which was just published lb?

He also stated which is probably most significant that the
study would result in a DAH which would then be 1mplemented.As

1

JLM 1 1—SEP—73 18:23 18987

1 read the plan it doe3 imply r£d though I am not too convinced
at this point if they really mean it,

1 tas amazed to observe that I and frank are the only troups
from the rSd side of the house.It is heavily manned by stems
design center peoppte..

They intend to use the redactron system for the prepartion of
the repoptfihich is encouraging but i am nervous about their
willigness to truly look at the 1980 time frame.

2

18987 Distribution
Frank J» Toaainij Duane L. Stone, Edmund J» Kennedy} Richard
Thayerf William P. Bethke,

	18967-18968
	18969
	18976-18977
	18978-18979
	18980-18981
	18983-18987

