Systems Reference Library

IBM 1620 Symbolic Programming
System Specifications

The 1620 Symbolic Programming System is designed
to simplify program preparation for the IBM 1620
Data Processing System. This manual contains the
specifications of the system (Library Nos. 1620-SP -
008 and 1620-SP-009) and describes 1620 symbolic
language programming techniques as well as general
principles and concepts of symbolic programming.

A knowledge of 1620 machine language is presupposed.

© 1960 by International Business Machines Corporation

File No. 1620-21
Form J26-4201-2

This is a revision of Form J26-4201-1. While the format has been
changed to conform to that of the Systems Reference Library, the
original publication (J26-4201-1) is not obsoleted.

This Manual is to be used with the following IBM Programming

Systems:
1620-SP-008 SPS Two Pass for Paper Tape
1620-SP-009 SPS Two Pass for Cards
Copies of this and other IBM publications can be obtained through IBM Branch Offices. Address comments .

concerning the content of this publication to: IBM, Product Publications Department, San Jose, California

1620 SYMBOLIC PHOGRAMMING SYSTEM: SPECIFICATIONS

In order to perform a given task, the IBM 1620 Data Processing System must be presented
with a detailed set of instructions in its own intricate language. This language, which
consists of numerical codes, is called the "machine language." A logical sequence of
instructions (or steps) in this language is called the machine language program. Specifying
the steps in the solution of a problem using machine language can at times be a difficult
and time-consuming job. The intricacy of the machine language and the complexity of a
program may frequently cause clerical and logical errors. Also, a hand coded machine
language program is not relocatable; that is, it cannot be executed from a different section
of the processing unit without being manually changed.

In order to simplify the preparation of a program for the IBM 1620, the 1620 Symbolic
Programming System has been developed. This bulletin is devoted to a description

of the specifications of the system. It also contains, as introductory material,

a section discussing the basic principles and concepts of symbolic programming. A
knowledge of programming in 1620 machine language is presupposed.

BASIC PRINCIPLES AND CONCEPTS OF SYMBOLIC PROGRAMMING

In the early stages of data processing system development, programs were almost always
written directly in the numerical and alphabetic notation (machine language) used by the
system. As data processing systems developed, larger and more sophisticated machines
were designed. Concurrently, programs for these machines became greater in length

and complexity. As a result, programming efforts were greatly increased. Not only

did it become difficult to memorize the many numerical and alphabetic codes required to
write a program, but the length and complexity of the programs were conducive to
increased numbers of clerical and logical errors. In addition, the problem of correcting
errors in a program was intensified by the difficulty in tracing a machine language program
through its many steps and finding a convenient way of including corrections.

In order to relieve the programmer of writing programs in machine language, symbolic
programming systems were developed. Symbolic programming may be defined as a
method wherein names, characteristics of instructions, or closely related symbols are
used in writing a program. Data to be processed is referred to by name or other meaningful
designation. Operation codes are written in an easily remembered mnemonic form rather
than in the numerical language of the machine. Such systems permit the programmer to
use a simpler, more familiar language in writing programs and often require a less
detailed knowledge of the machine. Associated with each symbolic programming system
is a machine language program called a "processor'. The function of the processor is

to translate the symbolic language of the programming system into the language of the
data processing system. Generally, this translation is a "one-for-one'" translation.

That is, for each instruction written in symbolic form, one machine language instruction
is produced.

The specific benefits derived from using easily recognizable symbols consisting of letters,
numbers and special characters to represent corresponding elements of machine language,
will depend to a large extent on the characteristics of the machine for which the system

is designed. Generally, however, this feature makes it easier for persons unfamiliar
with a program to follow the program's logic. It frequently eliminates the necessity of
detailed flow charts and coding comments by providing, in the body of the instruction
itself, the information usually found in these items. Also, coding is simplified, thereby
decreasing the time required for coding and increasing coding accuracy.

Another advantageous feature of symbolic programming is the relative relationship between
symbolic entries. Coding is facilitated by this feature as it permits instructions and

data to be referred to before they are assigned actual machine addresses and without
regard to their machine addresses. The feature permits sections of other programs or
subroutines (short programs or routines common to a number of programs) to be easily
incorporated in a program. It also permits each routine in a program to be written
independently of the others with little or no loss of efficiency in the final program. Since
instructions are not assigned storage locations by the programmer, the addition, deletion,
modification or correction of instructions entails no reassignment of addresses. Finally,
the feature makes programs and subroutines readily relocatable — i.e., they can be placed
in varying machine locations as desired.

Paralleling the development of symbolic coding was the development of the macro-instruction
concept. A macro-instruction is a synthetic instruction which, during the translation to
machine language, refers the processor to a "library" from which a sequence of machine
language instructions is extracted and placed in the machine language program. These
instructions have been previously written, tested and stored in the library. Macro-
instructions are used to save the programmer from coding certain repetitious sequences

of instructions, such as arithmetic functions.

After a symbolic program, which may consist of a combination of the "one-for-one"
symbolic instructions and the "many-for-one' macros, is completed, it must be converted
into the format required by the machine on which it will be used. As was mentioned
earlier, this is the function of the processor. Processors (sometimes called assembly
programs) are designed to accomplish this conversion quickly, accurately, and as
automatically as possible. Usually, an assembly program utilizes the machine for which
the symbolic program is written. The typical assembly program analyzes all symbolic
entries and macro-instructions and converts them to actual machine operating instructions
and data, and establishes the specified relationships between them. As an additional
feature, assembly programs also indicate various types of coding errors.

GENERAL DESCRIPTION OF THE IBM 1620 SYMBOLIC PROGRAMMING SYSTEM

The 1620 Symbolic Programming System consists of two distinct areas of discussion:
the symbolic language and the processor.

The symbolic language is the notation in which a programmer codes the program. This
language is in the form of mnemonic operation codes provided within the framework of
the system, and also includes definitions of work areas, record areas and other data
supplied by the programmer. Each separate item of information is written on a coding
sheet with one statement per line. Statements are normally written in the order in which
they are to be executed unless some other sequence is specifically indicated by the
programmer. A program written in this manner intended for translation into machine
language is called a "'source' program.

After the program has been written in the symbolic language it is punched into the input
tape. Each statement (one line of the coding sheet) when punched on paper tape must be
terminated by an end-of-line character. Blanks need not separate one statement from
another on the input tape. That is, the next statement may be punched immediately
following the end-of-line character of the previous statement.

The processor is the 1620 machine language program which performs the actual functions

of translation and assembly. The processor takes the source program in symbolic language,
translates the mnemonic codes into machine language codes, assigns core storage addresses
to instructions and symbolic data references, and assembles a finished machine language
program known as the "object' program,

The following pages are devoted to a detailed description of the 1620 symbolic programming
language, and a brief outline of the processor. The description proceeds as follows:

1. The first of the two sections which immediately follow is concerned with a description
of the coding sheet on which the source program will be written. The second section
covers the organization of the processor. The listing and operating instructions for
the processor are not included in this bulletin. These will be made available in a
subsequent publication.

2. A section called ""Programming the 1620 using the Symbolic Programming System"
describes in detail the various steps to be followed in coding a source program. This
section covers the rules and conventions required for using the symbolic language.

It describes the manner in which input/output areas, storage areas and constants are
defined. Examples of all pertinent information are provided.

1620 SYMBOLIC PROGRAMMING SYSTEM CODING SHEET

All information relevant to the coding and subsequent assembly of the object program is
entered on the 1620 Symbolic Programming System Coding Sheet. This form is illustrated
in Figure 1. The information required to produce an object program falls into three
categories as follows:

1 2mbrg

B G T o g R mm Do o R e S mun ER S B AN SN B B SRR D S SR LR RN R B RN B T T T T T rrrrryrrrrrrrurund L ¥ =T A T 1
S S e S S [e S S [S R S S S R B S NN D S N R S R N R B R A R RN L L T™T 1T T T LS L T - == T 1 71 171 T 1
T T T T T T v T T T T r rrrrryrrryvrrrrorrrr v : T S o [[B (= i = R R I RRE A B A M | L {7 TR P S | | |
e e e e T R IR T L L LU L L L L L R =Tk Tat 0 1 Nelat Edal: & F kit b d land LI E |G L R BT T 1
B o o e e it o e [e ol et e i s o P i R A N LR LV T e I I W L A L T TR el R T, A s U I e i = L R e £ T I G [T |
r—rr 7T 7 T T r 7T T T rr T T rrrrrrr e e e A R e i s R A L O . LR L L L ERJs L=l="1=1 =k L)
| S oy e e B G R [e G B B N S BN N BNR G (N NG DN I S S co G NELENL SN AN B D GER DNLINL) s s L LR T T S L L T . L T 1T 1101 Jolol2
SR T e B e e oo e [e i = = e i G Y IR GG N CN ER SL SN LIRS GNL I N L SRLINIL | e fr— G o e O T et = L e b KL B T K | = T B AL L i L RS]
o 2 e (T PR T R, L L T L R L R L L L L L L A LS L s (e e e A S N N U NN S AN O SIS (R DN NS GR DRNLARE 13 T T T 1.1 [ote'!
I A B e B R (i e [e o i o e e A G S i el S L IR R L IR S TR LI L LA | I PR (B R R g Tt S = e] R T S e O R T AL L OTLT1
—-r T 7T T T T T T T r T r T rr e o o i : [A Y D I P R (R O 9 e o e i b T F LT T [o'er]l
L LB L] L] T Ll T 1T]) LEan | L} 1 L L | B T Ll T L) T LI | L L T i LI LI T LR L} LI L] LI | | L T T | DL 1 | e | { il £ 1 L)]] T 1]] oun_-
S e E e s e et TR (RN) AT SN T e SN AN M N BN BN S VN Rt S N ONL NN S I LA AL L LA s el L N G L L L T L L L T L | 0 Bt | T T T T 1T |OoTe'l
LA) T 7 T L T 7 1 Ll L) L | L] T T L | L | | B L] L] T T 7 T L T L] T 5 1 L ¥ L L LJ LI T 1 T L T T L L LB T L T T) LI LI o-»-w
L LI | T 1§ 1 Ll T LI |) T LS | L T T L] L T T L] ¥ T LIRS T LA L] T L B T T L | L | T T L | T 1+ ¥ 1 LI] L I]] T L] L] LB L] 1 L ﬂ.ﬂ——
T LI | LB T]] LI | T Ll LI T T T LB L] L) T T L] L) T | S § L} T T T L] S = ! Ll L L T LI T T § 1 7 1 L] Ll LI 1 Ll 1 1] T T L L | arini
St St e B S ES G S B S mn o o fem S G S S S S S R i S S R A A B B AN L L L o [] (B R [e e R N e e et i o) T LSRR L oTori
N B e S S5 FS [[S S En G A D S S G S S S S S D S N N A S B B N SR BN N L B AL L L) =t e e L L L T L L L T 1 7 7 jre e BTETO
e e v B R T SR L L AL L L AL L L A L R T R L T L " e) e T [S A A WL A LR S L e LR R | T=h=k: "4 ["LE LK:]
T LB LI B) T 7 1 0 T r T 1 L ¥ Ll T T L L f T L] Ll LI T LI T 1 | LI i i L | 3= [| L L 1 1 L] 1 1 1 1 | L]] 1 1 1 T L T T L]] U-h_o
S S T e e S F [[e e G S e [S B S SN S N SN N [N RN N B S BNR N S B NN NN L L L g gt Vi T T AT, L S, L LA i] T=F 5= ¥ LE L)
rrrr—T—T T 7 T T T T T T T T rr T rrrrrrrr e r o Tl S T R DL L S A T L L e TR L L L R L T = L L L UL [LE-AE)
Y e (3 o e S [[B W) B S o B i S e M et IR N KN R I S R TV SN L T . e L LR L L LT, o e i . e e B 8 i T | L] L L L ore’o
T T T T T T T T Ty T rrrrrrrrrrrrr o iy i | T I L L L T L . L L E T L L B) o 17 OTE'0
T LI | T 7 1 L] T L] L LI} L | T T ! T T T T T T T T L | T LI | L] 1 LI Ll T L] LI T 1 LA L T L) T T 1 L L L 1 T T L] T LI | LELI O—N-o
T T T T L] T T T T T T T L) T T T T L] T T L L]] L) L] T) L AL T L) L) ¥ T ¥ L] T L] L] T T T T T T T T T T L) L T L] L) T L) L) L] L] T T T L) L] L] °d-¢°
Bz oL %9 09] 0% 13 oF (33 ot 52 o2 T A O} LR
SYHVM3Y ¥ SONYY3dO NO11v¥3d0 1381 NN

ajeQ Aq pswwnoiBoig

jo —u = 1*oN ebod woiboiy

188yg Burpo)
e | waysAg Bururueaboag arjoquiig DNW.—. zmﬂ

1. Area Definition — These statements are used to assign core storage for input areas,
output areas and working areas. Assigned areas will be utilized
by the object program and may contain the data to be processed
and/or the constants (fixed factors or combinations of characters)
required in the object program when processing data. Area
definition statements are never executed in the object program.

2, Instructions — Most of the statements on the coding sheet will be the instructions,
in symbolic language, which specify the job to be done by the object
program. These entries will be translated and assembled as the

object program.

3. Processor — Processor control operations are commands to the processor which
Control provide the programmer with control over portions of the assembly
Operations process, Instructions of this type are never executed in the object

program.,

The following paragraphs explain the use of each field on the coding sheet. The term
"field, " as used in connection with the coding sheet applies collectively to the character
positions under each heading. Space is provided at the top of the sheet to identify and
date the program. These areas, i.e., Problem, Programmer and Date are not part of
the source program and are not punched.

Page Number

A two-character page number entry sequences the program sheets. This number, which
must be numerical, will be punched as the first two characters of each entry from a sheet.

Line Number (Columns 3-5)

A three-character line number sequences the statements on each coding sheet. The first
twenty lines on the program sheet are prenumbered 010-200. The six non-numbered lines
at the bottom of the sheet are provided for the entry of statements inadvertently omitted
and/or for sheet extension. Insertions may be referenced by numbering the statement
with the hundreds and tens digit of the statement it is to follow and completing the state-
ment number by adding any one of the units digit 1-9. This allows for up to nine insertions
between each statement. Insertions must be punched in their proper sequence when
preparing the input tape. Each line number will be punched as the third, fourth, and

fifth position of its associated statement.

Label (Columns 6-11)

A label is the symbolic name, chosen by the programmer, of an area being defined or
an instruction referred to elsewhere in the program. All labels are assigned addresses
in storage during assembly. A reference to a label in the program is a reference to the
address of the area or instruction so labeled. Consequently, a programmer need not be
concerned with actual memory locations. Only those items specifically referred to
elsewhere in the program need have a label. Unnecessary labels delay the assembly
process. Unlabeled instructions should contain blanks in the label field.

A label may consist of up to six alphameric characters, left-justified in the label field.
The first character of the label must be alphabetic (A through Z). Special characters are
not permitted in the label, It is best to choose labels which are descriptive of the area
or instruction to which they are assigned. Labels which have an obvious meaning not
only provide easily remembered references for the original programmer, but also assist
others who may assume responsibility for the program,

Operation (Columns 12-15)

The four-digit operation field will contain the mnemonic representation of area definitions,
1620 machine language instructions, macro-instructions, and processor control operations.
These mnemonics, which are abbreviations of the operation to be performed, must be
left-justified. Actual 1620 machine codes are not permitted. A list of the mnemonic
equivalents of machine codes is found on page 37.

The functions of area definitions, macro-instructions and processor control operations
are described in the following portions of this bulletin. The functions of the 1620 machine
language instructions are described in the IBM Reference Manual, "1620 Data Processing
System, " form A22-4500.

Operands and Remarks (Columns 16-75)

The operands and remarks field is used to specify the information which is to be operated
upon, and may contain, if desired, any additional remarks concerning the statement. In
the case of area definition type statements this field will contain constants if special
constant areas are being defined.

For instructions, the operands and remarks field will contain, at most, four items,

three of which are operands and the fourth the remarks. The first two operands may

be the symbolic or actual addresses of data or instructions and will be assembled as

the P and Q portions of the instruction. The third operand is used to set flags in the
assembled instruction and is called the flag indicator operand. The final item is the
remarks which may be associated with each statement. Items are separated from each
other by commas. The entire statement is terminated by an end-of-line character. A
description of the format and arrangement of the entries in the operands and remarks
field is given on pages 20 and 21. A brief description of the types of addresses which may
be used in the P and Q operands is given below.

The operands which will be assembled as the P and Q portions of instructions may be one
of four types: actual, symbolic, immediate, and asterisk.

Actual
An actual address consists of five digits 00000-19999 and is, as the name implies,

the actual 1620 core storage address of a piece of data or an instruction. High-order
zeros of an actual address may be eliminated.

Symbolic

A symbolic address is the name assigned by the programmer to a piece of data or
an instruction. A symbolic address is valid only if it is defined somewhere in the
source program or if it is used as the label of an instruction. Symbolic addresses
may contain from one to six letters or digits (no special characters) with the
following restrictions:

a) The first, or left-most, position must be alphabetic.
b) Blanks may not appear within a symbol.

The example shown below contains both an actual address and a symbolic address.

LABEL OPERATION OPERANDS & REMARKS g
ufiz 1516 20 25 30 35 40 45 50
1 1 1 1 1 AI - TIOITAILIIEII&EISI]‘@ i 1 i i 1 L 11 i — 'l L1 1 AL 11 i i1 11 1 IZ
i1 L1 1 L1 i L1 1] S S o W Y N = [L 1 1 1 1 1 | I T 1 11 | Ll i i1 L

In this example, the data in the field whose actual address is 12251 is added to a
field whose symbolic name (address) is TOTAL. The end-of-line character which
terminates each statement is represented by the figure @

Immediate

An immediate address is used with immediate type instructions and represents the
actual data to be used by the instruction. It may be absolute or symbolic. During
assembly the processor will automatically place a flag over position Q7 of an
immediate instruction unless otherwise indicated by a flag indicator operand, For
example, the statement

LABEL [OPERATION OPERANDS & REMARKS 5
1niiz 15116 20 25 30 35 40 45 S0
SRS S | S,M Il TIOI'I_‘LA]".I L1101012|3® S BT] R S i el g I N o Ty e P i P () (s e e [Y IS 1;
L L0 V) | S L T LA S . L T T T S RS T S O T O S O RS TCA P o e T e |

will cause the entire quantity 10023 to be subtracted from the field called TOTAL
because the flag which terminates the field to be subtracted will be automatically
placed over position Q7. However the statement

LABEL |OPERATION OPERANDS & REMARKS g
ujiz 15]16 20 25 30 35 40 LL] 30

Lok bk) S:M i TIOITIAI"’I1]0l012l3|.11l0® T L T T A L S T GBS] el O S Y e Lt el 06 I)

L 1 | L1 1 | JS S I (LS V) S O U TS RS IS S AN S (N N Y N S R ALY (TR R P O NN TN TR NS N I T |

will cause just the quantity 23 to be subtracted from the field called TOTAL because .
the flag indicator operand will place the field terminating flag over position Q;

rather than Q;. There is one exception to this rule. That is, a transmit digit

immediate instruction (TDM) does not require a flag; therefore, none will be set

automatically by the processor.

Asterisk

The character, asterisk, when used as an operand will be interpreted by the processor
as referencing the high-order (left-hand) position of the instruction itself. For
example, the statement

LABEL OPERATION OPERANDS & REMARKS g
1njiz 15116 20 25 30 35 40 45 S0
1 1 1 1 1 B]NIFL SlTlAIRTI 3 I*® I L 1 1 1 1 L 1 i 1 1 i 1 L 1 i1 | 1 i LA __1L L | | 1 1 i IS
" 1 T L /] S (O T S A L (A AR I S T N A ™ et 55 W ST AR, SIS Y W B H I O Ve = S

indicates to the processor that Q portion of the instruction should contain the address
of the instruction itself. If the assembled instruction is assigned address 1876 the
assembled instruction would be 44 01234 01876 where START equals 1234. Thus,
when executed in the object program, this instruction will examine its own left-

hand position for a flag and either branch to instruction 01234 or continue on to the
instruction located at 01888 on the basis of the examination.

Address Arithmetic

Address arithmetic may be used in conjunction with the P and Q operands. In this
event an operand in the source program will contain more than one term. Thus,

the address assembled in the P or Q portion of the instruction may be arithmetically
adjusted if the first term is followed by an arithmetic operator and another term

(or terms) representing the quantity of adjustment. The operators are, + for addition,
- for subtraction, and * for multiplication. Arithmetically adjusted operands may
take the following form

A+BxC+D

where A, B, C, and D may be either numerical quantities or symbols representing
numerical quantities. In arithmetically adjusted operands, the multiplication
operation is always performed first. A table containing examples of address
arithmetic is shown in Figure 2b. Figure 2a contains the assigned address of the
symbols used in 2b.

Equivalent
After
P or Q Operands Assembly
START + 40, 04040
Symbols ALPHA - 30, 00970
Used In START+ 2 %L, 04024
Operands Equivalent START * 3, 12000
ALPHA * 5 + 40, 05040
ALPHA 1000 4 * 13 + OUTPUT, 15052
START 4000 START+ 4 *L - 1, 04047
L 12 ALFHA *L, 12000
ORIGIN 600 500 +20 * 3 - 11, 00549
OUTPUT 15000 OUTPUT - L * ALPHA + ORIGIN 03600

Figure 2a Figure 2b

Addresses which exceed 19999, are considered errors.

Address arithmetic could conceivably reduce the number of labels required by the
source program by giving the programmer the ability to refer to a location which

is a given number of locations away from a symbolic, actual, or asterisk operand.
(Examples of address arithmetic on an asterisk operand is given in a later section

of this bulletin, see page 21). Care must be exercised by the programmer when

using address arithmetic since insertions or deletions could affect the adjusted
operand, For example, if an operation is referred to an address plus 48 (e. g. ,

a transfer to skip four instructions,) the programmer must insure that no new
instructions are introduced within the four instructions to make the "plus 48" incorrect.

ORGANIZATION OF THE PROCESSOR

The translation and assembly function of the processor is a two-pass operation. The
source data, i.e., the information as entered on the coding sheet, is the input to both
passes. For the first pass, the source data may be entered either by means of a punched
input tape or through the console typewriter. In the latter case a tape consisting of the
input data is punched for use during pass 2.

Pass 1

During pass 1, the source data is read and a table of symbolic labels is prepared. Each
symbolic label in the source program is placed in the table together with an equivalent
address. By this process, storage areas are assigned to instructions, work areas,

and constants. Error messages designating invalid entries will appear on the console
typewriter during pass 1. In most cases, these errors may be corrected through the
console.

11

12

Pass 2

The source data used in pass 1 is re-entered and processed. During this pass the
instructions are assembled as follows:

a) Operation codes are changed from mnemonic to actual machine language.

b) Operands are processed. Symbolic operands are looked up in the symbol table for
their equivalent addresses. Address arithmetic is performed, if necessary, to
complete the operands. In addition, flags are set in the assembled instruction as
specified in the flag indicator operand.

c) The assembled instructions are punched out.

The output tape produced by pass 2 contains, in addition to assembled instructions and
addresses in which to store them, the constants and other data required by the object
program. Loading instructions will appear at the beginning of the object tape; addition

and multiplication tables will be punched at the end of the object tape. Thus the data
necessary to load the object program, plus the object program, constants, etc., are on

one tape ready to be entered into the 1620. In addition to the object tape, output from

pass two will include a listing produced at the console, if desired. A sample listing is
shown on pages 34 and 35. Error messages will be typed during pass 2 and corrections may
be made from the console.

L))

PROGRAMMING THE IBM 1620 USING THE SYMBOLIC PROGRAMMING SYSTEM

This section describes in detail the various steps to be followed in writing a program for
the IBM 1620 using the Symbolic Programming System. The material contained in this
section has been divided into the three categories of information required to write a
symbolic program: Area Definitions, Instructions, and Processor Control Operations.

In an effort to make this material more easily understandable, a numerical integration
program (pages 28-33) is used as a theme from which examples are extracted to illustrate
pertinent parts of the text.

AREA DEFINITIONS

In the course of performing its given function, a program will require the use of "input/
output' areas, "work' areas, and "constants''. An input and/or output area is, as might
be_expected, a portion of core storage assigned as an area into which a record, portion
of a record, or piece of data will be read during input, or an area from which a record,
portion of a record, or piece of data will be punched or typed during output. A work area
is a portion of core storage assigned as an area into which a record, part of a record or
piece of data will be transferred for processing. A constant is a fixed quantity or item
of information which will remain the same throughout the course of the program or a
phase of the program.

In programming the 1620, the input and output areas, work areas, and areas for storing
constants must be assigned in storage for all records and any other data which are to be
processed by the program. Such records and data normally consist of fields which are
of known length and arrangement. Unless otherwise specified, areas being defined will
be automatically assigned to core storage locations in the order in which they are defined
in the program.

The use of symbolic programming enables the programmer to refer to input and output
areas, work areas, and constants by their symbolic name without regard to their physical
location within core storage. For example, the sample program used for reference
utilizes a work area which is defined as a seven position field whose symbolic name (label)
is DELTAX and a seven digit constant (0100000) whose symbol is X. To transfer this
constant to the work area for processing merely requires an instruction

TF DELTAX, X (Transmit constant field X to DELTAX.)
To assign core storage space and to define the input and output areas, work areas, and
constants requires the use of area definition codes. Area definition statements are never

executed in an object program. Following are the area definition mnemonic operation
codes.

Code Description

DS & DAS Define Symbol

DC & DAC Define Constant

DSA Define Symbolic Address
DSB Define Symbolic Block.

13

14

Define Symbol (DS)

The mnemonic operation code, DS, may be used to define any contiguous portion of
core storage as an area reserved for numerical data manipulation (i.e., input, output,
or work area). The label (or symbolic name) by which this area may be referenced is
placed in columns 6-11 of the coding sheet. The operation code DS must appear in the
operation field (12-15).

The length of the field being defined must appear as the first operand. This operand

may be an absolute value or a symbolic name. If a symbolic name is used the symbol
must have been previously defined as an absolute value (see below). "Previously defined"
means the definition of the symbol used must appear in a statement of the source program,
which precedes the one in which it is used. Address arithmetic may be used with this
operand.

The address in core storage of the field being defined may be assigned by the programmer
or the programmer may wish to let the processor assign the address. In the latter case,
the statement may be terminated after the first operand. If the programmer wishes to
assign the address, a second operand, which may be symbolic or actual, is used and the
address of the field will be made equivalent to this operand. Since data fields are addressed
by their rightmost (low-order) digit, the processor will assign this position as the address
of the field. Address arithmetic may be used with the second operand. If the second
operand is symbolic it also must have been previously defined. Addresses assigned by

the programmer will not disrupt the sequence of addresses assigned by the processor.

To define a symbol without assigning any storage, i.e., to define it as an absolute value,

a DS statement is used; however, in this case the first operand is omitted (or written as 0)
and the second operand represents the equivalent value. The second operand may be an
absolute value or a symbol; however, the symbol must again have been previously defined.
To define storage which will not be referred to symbolically, the label of the DS

statement may be omitted.

Several types of DS statements are explained below.

LABEL DPERATIDI' OPERANDS & REMARKS 5
L] inliz 15116 20 25 30 35 40 45 S0
L T D 1@ 81 1 i » & 1 3 3) & 1 0 & 0 & L 4)% § 3 % 3§ oyoFo3 o449 3
| O T | 11 I o e N LY ISR N ST VS AR S TN VS N T IS A N (O T N N [N () T [(R S A (S N

defines an area in core storage, seven positions in length into which an X value will be
placed during calculation. The omission of the second operand indicates that the processor
is to assign the address.

LABEL DPEHATIUN[OPERANDS & REMARKS 5
6 1nji2 15116 20 25 30 as 40 45 50 2
Y T EY | ILr e RN W SN S T N R G NN R T O T T N TN S TNAN A TN T W N WA U W N MR (

will assign to the area whose symbol is SUM the address 12930. This field may be
referred to as SUM or 12930 since the latter will be its actual address.

LABEL OPERATION OPERANDS & REMARKS
6 1njiz 15|16 20 25 30 35 40 45 50

L_I_J_l_l 1 |Sl 1 » 11]2@] L — — | L I | Ll L4 1 i i - L1 | T - i1 | T B J)

i1 1 i 1 i I I ! | e T D] L ! 1 Lt 1L i1 i1 I T2 AT I | 1 L1 L1 1 11 i1 Ll

will define the symbol L as being equivalent to the value 12. Subsequent uses of the
symbol L in an operand are allowed since it has been defined.

It should be noted that an area defined with a DS statement is always addressed at the
rightmost position. Therefore, in order to use this area for input/output the leftmost

digit must be addressed. This is accomplished by subtracting a number, which is one

less than the length of the area, from the address of the area. The operand of an instruction
which reads numerical data into the DELTAX field is written as DELTAX-6.

Define Symbol (DAS)

To define a field which will contain alphameric information (generally used for input/output
areas) a define symbol statement with an operation code DAS is used. This type definition
is much like the DS; however, certain differences do exist. First of all, the operand
indicating length will be doubled by the processor to accommodate the alphameric coding

of data.

Secondly, areas used for alphameric input and output are addressed by the "'numerical”
portion of the left-hand (high-order) position of the field. This address must be odd-
numbered. For example, the word TEN when converted to alphameric coding requires
six core positions and is coded as: 634555. The first, third and fifth positions represent
the ''zone' portion of the T, E, and N, respectively, while the second, fourth, and sixth
the numerical portion. The address of this field must be odd-numbered and reference the
numerical portion of the T (3). If the processor assigns the address, adjustments will be
made, if necessary, to make the address odd.

The following example illustrates a DAS statement.

LABEL DPERMIDN[OPERANDS & REMARKS

& npiz 15116 20 25 30 35 40 45 50

TlIthLxE|D|ArS|3|0®]l||||lllillllxllll|ll]1_1|ll]tllll.

Ll 1 1 1 L1 I|||IIIJlllIllliI]|lJl]lllIlllllillll(

defines an area for input/output which will contain a title consisting of 30 characters.

The processor will assign 60 positions in core storage to accommodate alphameric coding.
The listing will indicate this by typing 30 X 2 when this statement is assembled and listed.
The omission of the second operand will cause the processor to assign an address.

15

16

During an internal field transmission in which an input/output area defined with a DAS is
utilized the area must be addressed at its right hand (low-order) position. This address
may be achieved through address arithmetic, i.e., TITLE + 2 * 30 -~ 2.

Define Constant (DC)

The label field of a constant definition will contain the symbolic name by which the constant
will be known. The operation code for a numerical constant is DC. The first operand
indicates the length of the constant field and the second operand is the constant. If the
programmer wishes to assign an address to this constant, a third operand may be used.
Omission of the third operand causes the processor to assign the address. Constants are
addressed by the rightmost (low-order) position of the field.

The first and third operands may be symbolic or actual and may be arithmetically adjusted.
To be valid, a symbolic operand must have been previously defined. During assembly,

the processor will place a flag over the left-hand position of the constant field. Should

the length of the field be greater than the constant specified, the constant will be right-
justified in the field with high order zeros inserted. A length of field which is smaller
than the constant is invalid.

The constant must be in the form of an unsigned integer for a positive number and a signed
integer for a negative number. A negative number produces a flag over the units position
during assembly, A record mark may be used in the constant but must be in the units
position and must be written as@. Negative constants containing a record mark (@) in

the units position will have a flag placed over the digit preceding the record mark.
Constants may not exceed 50 characters.

If the constants 0100000 and -0004337769 are required they may be defined as follows:

LABEL OPERATION OPERANDS & REMARKS 5

6 1nliz 15116 20 25 30 35 40 45
gl | S]_pacl 1 71}|| 1] 01 0! 0! 0I 01@ I B T O 250 B T o S R R T Tl R o LS R SO i [] e e | |)
CD]NIS]Tl CJ 1 1I0III1L413[3]7]7I619® 1 L1 1 | TR . | 11 I 1A) o] N L W T il 41 l2;
L L 1 1 11— B S i G S0 S S S B o T I T Ay e TN AN T S O M T Yl S T s | L1 i <

In both cases the length of field is greater than the constant, and the addresses of these
constants are assigned by the processor.

Define Constant (DAC)

To define a constant consisting of alphameric data, the operation code DAC is used.
This type definition is the same as the DC with certain exceptions. First, the operand
indicating length will be doubled to accommodate the alphameric coding of data. Second,
the address assigned to an alphameric constant references the "numerical" portion of
the left~hand (high order) character of the field. This address must be odd-numbered.

In the sample program the constant

LABEL IE—PERRTIOHI OPERANDS & REMARKS g
50

6 1jiz 1516 20 25 30 35 40 45

0|U|T|P|U|T DIA'SCI 3] 11’ i JFIOIRI IDIEILTIAx‘=I0 L] I0 I0 lo 121 IAIR'IEAzlo 1% l0 iolo 1 0 Iol@® Ll)

B IS) e o N L S e A e) el i 1 i e e ey [A 1 [Y T FE T T T T R i

i - I_L L1 1

was assigned address 03101 in core storage. This address is the core location of the
"numerical" portion of the F. (Second actual core position of the constant.) The entire
constant occupies 62 core positions. A fifty character constant (maximum allowed) will
occupy 100 positions of core. A flag will be set over the left hand position of the field.
Addressing this constant for internal core transmission requires an address:
OUTPUT+31*2-2.

It should be noted that in the sample program this constant was used as the output area.
Quantities obtained in the calculations replaced the zeros of the constant.

Define Symbolic Address (DSA)

It may be desirable at some point in a program to store a series of addresses as constants.
These addresses may be used for instruction initialization or modification, or for setting
up a table of addresses through which the programmer may index to modify a routine.

The operation code for this statement is DSA. Each entry (symbolic or actual) in the
operands field will cause its equivalent machine address to be stored as a five digit
constant, The constants are stored adjacent to each other with a flag over the high-order
position of each. The label field of this statement must contain the symbolic name by

which the table of constants may be referenced. An address at which this table is stored

in core storage may not be assigned by the programmer nor may any remarks be associated
with the statement. The address assigned by the processor is the address at which the
right-hand digit of the first constant will be located.

In the following example, the symbols used are equivalent to the addresses shown in
Figure 2a (page 11).

LABEL OPERATION OPERANDS & REMARKS 5
3 nji2 15]i6 20 23 30 3s 40 a5 50
T)AIB}I-‘EI DlS IAI A!LPIHA_I IOI.RIIJGII IN1,]112l3]4l’ IORUIT]P]UITI -ISIOQ 11 1 11 i1 1 l(

The constant will be stored as

01000006000123414950

If the first digit of the entire constant is located at 01200, then the address equivalent to
TABLE is 01204,

17

18

Define Symbol Block (DSB)

To define an area of storage for the storing of a numerical array a DSB statement is

used. The label of this statement will be converted to the address at which the first

element of the array is stored (i.e., the right-hand position of the first element). The

first operand indicates the size of each element; the second indicates the number of
elements. Either or both operands may be symbolic or actual. (If symbolic, the symbol
must have been previously defined). If the programmer wishes to assign the address, a
third operand is required. For example, to store an array of 75 elements with each element
containing 15 digits, the statement would be

LABEL (OPERATION OPERANDS & REMARKS Ag
[njiz 15116 20 25 io 35 40 45 50
ARIRIAIY1 DrslBu 1|5|1 1715 T] -1 :5:114®1 PRl TR S T O el w1 S o e = L U e B BT = Tt
| EN S N | (L T TR Vi o T e e e Y Vi (s ey L [e T iy () i o et O [(i [N s B L A [1 L

In this example, the array would begin at location 1500 (left most position of the first 15
digit element). ARRAY is equivalent to 1514 (address of first element).

The area definition statements just described provide the object program with the input/
output areas, work areas, and constants it requires to accomplish its assigned task. The
statements discussed never produce instructions which are executed in the object program.
The entries, DS, DAS, and DSB merely define storage. The entries, DC, DAC, and

DSA define storage and produce, on the object tape, the machine address of the area

being defined and the constant(s) which will be stored in this area. Constants are then
loaded with the object tape.

Area definition statements may be entered at any point in the source program. However,
it is wise to place these definitions off by themselves (not within the instruction area),
preferably at the beginning or end of the program. Otherwise, the programmer must
take special care to branch around the area defined so the program will not attempt to
execute something in a data area as an instruction.

No statement in the source language may exceed 75 characters.

1620 SYMBOLIC PROGRAMMING INSTRUCTIONS

This section discusses the operations (instructions), written in symbolic language, which
will be translated by the processor into 1620 machine language. The function of each
machine language code is discussed in the IBM Reference Manual, '"1620 Data Processing
System'', form A22-4500.

Each instruction in symbolic language may contain a label if so desired, must contain a
mnemonic operation code, and may have none or as many as three operands. Remarks
may be associated with each instruction. The entire instruction statement is terminated
by an end-of-line character.

Label

Any instruction in the source program may be labeled. Generally speaking, a labeled
instruction is one which is referenced or used as a point of reference elsewhere in the
program. Many times an instruction which is labeled is the first instruction of a subroutine.
For example, the first instruction of the sample program is appropriately labeled START.

A transfer or branch to the first instruction of the program can be effected by coding the
instruction, B START. Any instruction between the one labeled START and the one

labeled ASINE may be referenced by the operand START+24 (third instruction), START+60
(sixth instruction), or ASINE-12 (eighth instruction).

Operation Code

For each machine language operation code, there exists a mnemonic abbreviation. For
example, the operation code 27, Branch and Transmit, is written as BT. A list of the
machine language codes and their mnemonic equivalents is found on page 37. Note on
this list the eight codes marked with an asterisk. These are the codes which require
modifiers in the Q operand. When the direct mnemonic abbreviation is used for one of
these codes, the programmer must supply the Q operand in absolute.

The 1620 Symbolic Programming System does, however, make available for these type
codes a mnemonic representation for many, and in most cases all, of the several operations
the code may perform. For example, the BI (Branch Indicator) instruction has twelve
different mnemonics which represent nine of the possible fifteen configurations. The

same is true for the BNI instruction. Input/Output instructions (i.e., Read, Write, Dump)
have unique mnemonics for every possible configuration of these instructions (see page 38).

Thus when coding an instruction to write alphamerically on the console typewriter, the
programmer may code

LABEL OPERATION OPERANDS & REMARKS 5
[njiz 15)16 20 25 30 35 40 as 50
11 Ll 1 WA 1 OJUITIPIUITkIIOIOIIIUIO@ T [O L T O el SN T, LA D Rl U N A P o e l)
1 L1 1| 1L L1 = | e D =D B S) L1 1 L1 11 Ll 1 | S S L S S S Sl O L1 L

where 01 is the absolute modifier specifying the typewriter and is necessary to complete
the instruction. Or the programmer may code

LABEL I{}PERATIUII OPERANDS & REMARKS 5
-] iz 13118 20 23 30 35 40 45 so
+ M T T W)AIT IY 0.U.T:P|U. Tl@ TS I I B Y A I ST VR SR R TRy S TS LT Y SSIAT AT Ry LN U A)

where the unique code WATY is all the information required as to the mode and unit
desired. The processor will convert the mnemonic code to the proper machine language
code (39) and insert the necessary modifier,

20

For the six operations (error indicator checks) of each of the codes BI and BNI for
which no unique mnemonic is available, the programmer must use the mnemonic BI or
BNI and must supply the modifier. A list of the unique mnemonics and their equivalents

is found on page 38.

Operands and Remarks

For each instruction, up to four items may be entered in this field; a maximum of three
operands, and remarks if they are desired. These four items are coded and subsequently
punched on tape in "free" form. That is to say, a fixed number of positions is not assigned
to each item. Rather, each item desired in the instruction is separated from the following
item by a comma, with an end-of-line character terminating the entire statement. At
most, three commas will be used since a comma need not follow the last item entered.

An instruction in which all four items are used is as follows:

LABEL TﬂP‘ER&TIDH] OPERANDS & REMARKS
3 njie2 1316 20 25 30 35 40 48 30

oo JTF , IDELTAX, X, 8, TRANSMIT, VALUE, OF INCRE T

) il 1 Lt L L & 1 1 4 1 & L 4 1 1 A 1 1 1 3 & 1 3 1 | & @ L 1 1 4 I I 3 4 A 1 1 2 |\

In this example, DELTAX and X are the symbolic operands which will be converted to
the P and Q portions of the assembled instruction. The third operand will cause a flag
to be set in position Qg of the assembled instruction. The remainder constitute the
remarks. Remarks serve no function other than to aid the programmer when coding.
This sequence of P and Q operands, flag indicator operands, and remarks must be
followed in all instructions.

An instruction need not, however, contain all four items. Any one, or more than one
may be omitted. For example, if the flag indicator operand and remarks are unnecessary,
the end-of-line character would follow the Q operand and terminate the statement.

Example
LABEL OPERATION OPERANDS & REMARKS ?
6 iz 15]16 20 25 30 35 40 45 s0
1 1 1 Ll TI F} L DIEI L!TIAX 3 lx@ 1 L L | - L 1 1 1 L 1 1 L i1 L L 1 1 1 1 L 1 1 L 1 1)

One rule must be followed when omitting an item, If an operand is omitted and there are

more operands or remarks to follow, a comma which normally would terminate the omitted
item must be present. For example, to omit the flag indicator operand and provide remarks,
the format of the operands and remarks field would be:

LABEL OPERATION OPERANDS & REMARKS <
& uliz 15)ie 20 28 30 38 40 48 30
+....|TF |DELTAX,X, , TRANSMIT VALUE OF, .mqnmnm@%

Commas indicating omission need not be present in statements in which the omitted
item(s) follows the last item of data desired for the instruction. For example, in the
statement in which both the flag indicator operand and the remarks are omitted, the
end-of-line character follows the second operand with no intervening commas required.

An omitted P or Q operand will cause zeros to be placed in the P or Q portion of the
assembled instruction.

The flag indicator operand specifies the positions of the assembled instruction, which are
to contain flags. These positions are numbered, from left to right, 0-11 and must be
listed sequentially. For example, if positions 2, 7 and 10 are to be flagged, the flag
indicator operand should be 2710, not 2107. All positions may be flagged if desired.

The operand would be 01234567891011 and must be written in that order.

If the flag indicator operand is omitted, normally no flags will be set. The exception to
this has already been shown. All immediate instructions (except TDM) will have a flag
set automatically in position Qq if the flag indicator operand is omitted. If the operand
is present, only the position(s) indicated will be flagged.

Pages 8 to 11 describe various types of addresses which may be used in the P and Q
operands. Examples of address arithmetic are also given. Address arithmetic is
permitted on all types of operands including the asterisk. For example, an asterisk
operand references the left hand (high-order) position of the instruction in which it is
contained. Therefore to branch to an instruction five instructions ahead, the present
instruction could be coded as B *+60. An asterisk operand may also be arithmetically
adjusted using the multiplication operator (an asterisk). Thus, the instruction B *+5*L,
where L = 12, is the same as the instruction B *+60. The second asterisk in this operand
indicates multiplication.

The sample program on pages 29 to 33 contains many examples of address arithmetic
used in conjunction with symbolic and asterisk operands.

Macro-instructions

A macro-instruction has been previously defined as an instruction which, during assembly,
generates more than one machine language instruction. For the 1620 Symbolic Programming
System, thirteen macro-instructions are available. Each of these macros, when used in

a source program, will generate the instructions which provide linkage to one of thirteen
subroutines. The subroutines, which are of two categories called arithmetic and functional,
are described in the bulletin '"IBM 1620 Subroutines: Preliminary Specifications, ' form
J26-4203. The subroutines and their associated macro-instruction mnemonic operation
codes are shown in the following chart:

21

ARITHMETIC FUNCTIONAL

Fixed Point Floating Point Floating Point
Title Macro Title Macro Title

Divide DIV Floating Add FA Floating Square Root
Floating Subtract Floating Sine
Floating Multiply Floating Cosine
Floating Divide Floating Arctangent
Floating Exponential
(natural)
Floating Exponential
(base 10)
Floating Logarithm
(natural)
Floating Logarithm
(base 10)

NOTE: The bulletin (Form J26-4203) discussing the thirteen subroutines available through
the use of macro-instructions, also contains general discussions of "'linkage" instructions
and "floating point arithmetic, "

In addition to creating linkage to the subroutine desired, the use of a macro-instruction
will cause the subroutine(s) required to be punched into the object program tape. The
necessary subroutines will thus be loaded into core storage during the loading of the

object program. Incorporating the subroutines into the object program requires, however,
that all subroutines be available to the processor during assembly. Therefore, a

separate tape (provided by IBM) containing all of the subroutines must be assembled

in conjunction with the source program. This tape must be entered during both passes

of assembly and must follow the source program tape. The subroutine(s) required will

be selected by the processor from this tape, assigned core storage space and punched

into the object program tape for subsequent loading as part of the object program.

During the processing of the source program, the first occurrence of a macro-instruction
related to any one of the four floating point arithmetic subroutines will cause all four
floating point arithmetic subroutines to be punched into the object program tape. Sub-
sequent macros for these subroutines will, when encountered by the processor, merely
cause the linkage to the desired subroutine to be generated.

If called for through the use of any one macro, the floating point arithmetic subroutines
will, during the loading of the object program, always be loaded into core storage
beginning at location 00402. That is to say, these subroutines are not relocatable and
thus cannot be placed in varying machine locations as desired.

The floating point functional subroutines and the fixed point arithmetic subroutine (Divide)
will appear on the subroutine tape in a form of symbolic language and will be relocatable.
These subroutines, when called for by a macro, will be selected by the processor from
the subroutine tape and will be assigned to an area in core storage which immediately
follows the last location assigned to the source program by the processor. Care must

be exercised by the programmer to provide, between the last location assigned by the
processor and 19999, sufficient space to accommodate the subroutines called for.

Each floating point functional subroutine and the fixed divide subroutine on the tape will
be complete with the constants and working areas it requires for execution. During
assembly, however, those constants and working areas which may be common to several
of the subroutines will be assembled into the object program only once. Sharing common
work areas and constants eliminates redundancy and thereby minimizes storage require-
ments. In order to estimate the amount of storage required by the subroutines to be
called for, it may be wise to total the number of instructions in each subroutine desired
and the amount of working areas and constants associated with each subroutine. This
will yield the most conservative figure.

It should be noted that the use of any macro-instruction related to a floating point
functional subroutine will also automatically cause all four floating point arithmetic
subroutines to be punched into the object program tape and subsequently loaded into the
fixed area of core storage assigned to these arithmetic subroutines. Also, since the
Arctangent subroutine and both Logarithm subroutines (natural and base 10) require the
fixed point divide subroutine, the macros FATN, FLN, and FLOG will call in the Divide
subroutine.

Macro-instructions for the Arithmetic Subroutines — The macro-instructions required
for the arithmetic subroutines are written as follows:

LABEL OPERATION OPERANDS & REMARKS g
6 iz 15116 20 25 30 35 40 45 50

pyy oy A B@_\
e RIS .‘13@.,“..,HH...,..I...L......,l.”(
£ I = M@IIII:LIIIrllll_l_lllllllllllillllll-/
T S Dy 1.IB®III|I]11III!JII11IIllllllli_lllllls
s v ope DIV A...B..S.H.LF.T...L.Q@1.11...1.1.11“_1......L.S
phojl iy g T S ||t||.1|||1|.1||;1||||||1|JJ||:|||11:<

In each case the A and B operands represent the addresses of the quantities to be added,
subtracted, etec. For the fixed divide routine two additional operands, SHIFT and LQ,

are required. The SHIFT operand is described in the following paragraph. The fourth
operand (LQ) indicates the length of the quotient desired by the programmer. All operands
(A, B, SHIFT, and LQ) may be symbolic or actual, and may be used in conjunction with
address arithmetic. Remarks are not permitted in macro-instructions.

The fixed divide subroutine (DIV) accomplishes division through successive subtraction.

It is therefore necessary to specify the position of the divisor with relation to the dividend
when the first subtraction takes place. This is specified in the SHIFT operand. The

SHIFT operand represents the displacement of the right hand position of the divisor in
relation to the right hand position of the dividend. If SHIFT is positive, the divisor is
displaced to the left the number of positions specified by the operand; if negative, displace-
ment is to the right. The SHIFT operand should be such that no more than nine subtractions
will take place before the first overdraw is encountered; otherwise, a divide-overflow

will be indicated.

23

When floating addition or subtraction is executed, the A operand is replaced by the sum
or difference. In the case of floating multiplication or division, the product or quotient
is stored with its low-order digit at 00099. The low-order digit of the quotient generated
in the fixed point divide subroutine is stored at 00099 minus the length of the divisor.

The linkage instructions which the processor generates for the macros FA and FS are
equivalent to the following symbolic instructions:

OPERATION OPERANDS & REMARKS g

12 i15]i6 20 25 3o S0
TFM SUBR+K, *+358. . . . sa
TFM SUBR+C, A , . ., , on
UBR B TE 4 00y -

I B S | L T B S i A EE R L T | B T AT

M S

il
)

where SUBR is the address of the first instruction to be executed in the desired subroutine;
C and K are constants supplied by the processor; and A and B represent the addresses as
specified in the macro.

For the macros FM and FD, the instructions generated are equivalent to the following
symbolic instructions:

OPERATION OPERANDS & REMARKS
2 i5]i6 20 25 30 35

TJFIM SUIBR1+|111III*I +|3I5® 'l i 1 1 1 1 1 1
T.F, |SUBR+,C,, JA@ f J L) A (N PSS T VR (55 =
B SUIBRI-IBI-I?@ T [L O M | 1Y]

1 DO Y Y i (S S T il s e AT G T N v i I o N D A S

where the symbols are the same as described above.

The fixed-divide macro generates the following linkage instructions:

OPERATION OPERANDS & REMARKS
12 15116 20 25 S50
TFM SUBR+K, *+35E) s A

TJFlIm !U1B1R|+IC| s zA.n@ i 1 |] | Sy S T E 1)
B, SUBR.LB.LTE + s T i
DiSIA: ..IY@ 4 BRI S BPS o B B) | 51 G I TS = 1 e (=] s B i | /

AN

The quantities represented above by X and Y will be computed by the processor using the
SHIFT and LQ operands. These quantities will be utilized in the fixed divide subroutine.

S e R R 1]] 111 | N Y T T T R O U [R | 1 Ly | 11 | B e B I

. Macro-instructions for the Functional Subroutines — The macro-instructions for the
floating point functional subroutines are written as follows:

LABEL [OPERATION| OPERANDS & REMARKS ;i)
6 1njiz 15116 20 25 30 35 40 45 50
..,J.F&Qﬁ&am®.,l.‘.‘l.,l,,,...xl,..,,..x,.l.f7
...,LFSJN&HH@..1....”...L1,...,..[”..11.1..K
I e et | IClOS I.IB@IIIJ_LlIJl‘I|1J_(_|_J_11]]_111!Itllllll)
e L T e e L e
SN TR A e s B e ot N St emnlioh
x.,lIFExm,dmg4l.,1.,,......11111111¢¢411L....5
gt o JELND A B solt s rmals smn wottrribnig apesilold ereivs e o Spaiat bl
L 0y ,L.OGA.,:R@..l....l..l....,...‘.;.......J.ix
1]l R T 1]1rJlrIr||r11[|[11|||l|||11:|i|l|[||l|l(_

where B is the address of the argument to be evaluated and A is the address at which
the programmer wishes the result to be placed. These addresses may be actual or
symbolic and may be used in conjunction with address arithmetic. Asterisk may also
be used as an address; it will reference the leftmost position of the first linkage in-
struction generated. The linkage instructions generated by any one of the above macros
is as follows:

o
LABEL DPERATiONI OPERANDS & REMARKS <
6 uliz _ishe 20 25 30 35 40 45 30
v TEM | + *+ ,...,,.....11....1,...1./
l!lilTFll_’L.S_ﬂwnilllllllilrlllllll:lilrl_l_l_b
L1 1 1 | B| 11 SULBRIHIBIQJ'?@ = e L W e e o g] R s, T T e L o Wl L bl L IR o il el
(LT TR 11 b V1 30 Tl Y i] 50 sl it Sl B i W06 o i e W

where SUBR is the address of the first instruction to be executed in the desired sub-
routine, C and K are constants supplied by the processor, and A and B represent the
addresses specified in the macro.

General Notes on 1620 Macro-instructions — Each of the subroutines for which a linkage

is generated will compute the return address and transfer to this address at the completion
of the subroutine when it is executed in the object program. Note that the information
provided to the subroutine by the linkage instructions includes the necessary data to
compute this return address.

A macro-instruction may be labeled in the source program. During assembly, a reference
to this label will be a reference to the first instruction generated by this macro. Care
must be exercised by the programmer when using address arithmetic with this label.

For example, suppose in the source program the following entries are made:

25

26

LABEL IqurunouI OPERANDS & REMARKS
6 ufiz 1516 20 25 __30 35 40 45 50
MAX. . . |FA JALPHA,BETA®, o0 v v v w1000y
..A.R.E.A.,.D.E,LT.g,gg@,,.,l....,u...1..,1.[..5
(U 10 T | lﬁ = | |] T o I L [LT VA e e e T (ST R CR (e e U e P ot P W ST R L B V) S e U

Four instructions will result from this sequence, the first three of which are linkage to

a floating add subroutine. MAX is the address of the first instruction of the linkage.

Now suppose at a later point in the source program, the programmer decides to branch

to the multiply instruction and codes B MAX+12. Since the processor has assigned the
address equivalent to MAX to the first linkage instruction generated, a branch to MAX+12
is a branch to the second linkage instruction rather than to the desired multiply instruction.
Similar precautions should be exercised if the operands of the macro-instruction are

being modified by another instruction in the source program. A reference to MAX+5

is not a reference to the P operand of the macro but a reference to the P operand of the
first linkage instruction generated.

PROCESSOR CONTROL OPERATIONS

For the 1620 Symbolic Programming System, two types of commands are provided to
control the assembly process. These commands are Define Origin and Define End. They
are never executed in the object program. In addition to a description of these two
operation codes, this section includes a discussion of Comments.

Define Origin (DORG)

During program assembly, the 1620 SPS processor assigns core storage addresses to
instructions, input/output areas, work areas, and constants, as they are encountered.
If not otherwise specified, addresses will be automatically assigned beginning with an
address which will be equivalent to 00402 plus the storage required for the arithmetic
floating point subroutines. (The precise address will be made available at a later date.)
Should the programmer wish to initiate address assignment at another location, he may
do so through the use of a DORG statement. However, if any one of the macros which
results in the incorporation of the four floating point arithmetic subroutines into the
object program is used, the programmer should avoid specifying an origin which is
less than the minimum address at which the processor automatically begins assignment.
Failure to do so will result in the address assignment to begin where specified by the
programmer and thereby cause the subroutines to be loaded over a portion of the object
program.

The code DORG must appear in the operation field. The address at which assignment is
to begin is specified as the first operand. A DORG statement may not be labeled. Origin
statements may be used at any point in the source program. All entries subsequent to
the DORG will be assigned addresses beginning at the particular location specified by the
programmer. Addresses specified may be symbolic or actual. If symbolic, the symbol
must have been previously defined.

Define End (DEND)

The statemend DEND is the last statement entered in the source program and is a

command to the processor that all statements of the source program have been processed.

A DEND statement may also be used to begin the execution of the object program
immediately after loading. This is accomplished by the presence of an operand representing
the starting address of the program. This operand may be symbolic or actual. Should

the operand specifying the starting address be omitted the 1620 will halt at the completion

of loading the object program and the operator must take steps to manually start the
program.

Comments

Provisions have been made for the programmer to insert lines of descriptive information
in the source program. This information, when encountered by the processor, will not
be assembled nor will it affect the assembling procedure.

Comments are indicated by an asterisk in the first position of the label field, and the
comments may begin immediately after the asterisk. See sample program on pages 29 to 33
for examples of comments.

217

FUNCTIONAL LIST OF 1620 SYMBOLIC PROGRAMMING MNEMONIC OPERATION CODES 0

AREA DEFINITION

Operation Code Description
DS & DAS Define Symbol
DC & DAC Define Constant
DSA Define Symbolic Address
DSB Define Symbolic Block
INSTRUCTIONS
OPERATION CODE
TYPE Mnemonic Machine OPERATION
Arithmetic A 21 Add
AM 11 Add (Immediate)
S 22 Subtract
SM 12 Subtract (Immediate)
C 24 Compare
cM 14 Compare (Immediate)
M 23 Multiply
MM 13 Multiply (Immediate)
Internal Data TD 25 Transmit Digit @
Transmission TDM 15 Transmit Digit (Immediate)
TF 26 Transmit Field
TFM 16 Transmit Field (Immediate)
TR 31 Transmit Record
Branch B 49 Branch
BNF 44 Branch No Flag
BNR 45 Branch No Record Mark
BD 43 Branch on Digit
*BI 46 Branch Indicator
*BNI 47 Branch No Indicator
BT 27 Branch and Transmit
BTM 17 Branch and Transmit (Immediate)
BB 42 Branch Back
Input Output RN 36 Read Numerically
¥WN 38 Write Numerically
DN 35 Dump Numerically
*RA 37 Read Alphamerically
WA 39 Write Alphamerically
Miscellaneous *¥K 34 Control
SF 32 Set Flag
33 ‘Clear Flag
NOP 41 No Operation
H 48 Halt

* Mnemonic codes which require modifiers in the Q operand.

PROCESSOR OPERATION CODES

Operation Code Description
DORG Define Origin p
DEND Define End .

[AR h . ORIt A I B

. UNIQUE MNEMONICS TO REPLACE MNEMONICS REQUIRING MODIFIERS

The following lists of unique mnemonics may be used in place of the mnemonics

requiring a modifier.

Modifiers for these mnemonics are supplied by the processor.

MNEMONICS
Equivalent Unique OPERATION UNIT REFERENCED
BH Branch High High-positive indicator
BP Branch Positive High-positive indicator
BE Branch Equal Equal-zero indicator
BZ Branch Zero Equal-zero indicator
B BV Branch Overflow Overflow indicator
BA Branch Any ANY latch
BNL Branch Not Low High-positive /equal-zero indicator
BNN Branch Not Negative High-positive/equal-zero indicator
BC1 Branch Console Program Switch 1
Switch 1 ON
BC2 Branch Console Program Switch 2
Switch 2 ON
BC3 Branch Console Program Switch 3
Switch 3 ON
BC4 Branch Comsole - Program Switch 4
Switch 4 ON
BNH Branch Not High High-positive indicator
BNP Branch Not Positive High-positive indicator
ENE Branch Not Equal Equal-zero indicator
o BNZ Branch Not Zero Equal-zero indicator
BNV Branch No Overflow Overflow indicator
BNA Branch Not Any ANY latch
EL Branch Low High-positive /equal-zero indicator
BNI BN Branch Negative High-positive /equal-zero indicator
BNC1 Branch Console Program Switch 1
Switch 1 OFF
BNC2 Branch Console Program Switch 2
Switch 2 OFF
BNC3 Branch Console Program Switch 3
Switch 3 OFF
BNC4 Branch Console Program Switch 4
Switch 4 OFF
RN RNTY Read Numerically Typewriter
RNPT Read Numerically Paper Tape
WN WNTY Write Numerically Typewriter
WNPT Write Numerically Paper Tape
DN DNTY Dump Numerically Typewriter
DNPT Dump Numerically Paper Tape
RA RATY Read Alphamerically Typewriter
RAPT Read Alphamerically Paper Tape
WA WATY Write Alphamerically Typewriter
WAPT Write Alphamerically Paper Tape
K TBTY Tabulate Typewriter -
RCTY Return Carriage Typewriter
SPTY Space Typewriter

J26-4201-2

VSN ul pajund 02971 WdI

Z-1o0zv-9z(

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

LTI

