Lo

2-27-74
©

'Tl.is fc.fw o(f ﬂecem@/ /9.(5 Weag c:)»c»pw»/'eﬂ
privaly ot Rang, SDC, owd of SAC Hesdguaders.
Tn Mo sumnsv of 58 T weo pasaforred a0 Kin®
lraisen A SAC s Omala ;\/_&?IM/A JV7 /Uﬁvc:ﬁ//
wl«d’ Swued)‘md;j/o: 4es5L (EJ’YG"LC’/C Aivr Conman/
9_(\&\4, __Sr*w)l&oulj ,L. o Wu/?‘t-m‘://f{w jo/[af
bt do ?/..,ﬂuy/7 dot b loasy sofpuon +¢chniprac.
I LQ?,JJ M‘/‘afa//—g{‘ QeZJeo occurrc&o on
schadde -~ At T S /v7 b Lot dy dram mee

a.ao.h. (ﬁv sb-u&uaoo}'a/dv/ﬂsﬁ}cm/s#mﬁwhr

(o] P 9 70,‘}' down b basics ,&«J

vt 90 31 (M o L«f{ Moot ﬁ-‘/l\uﬂm eill

Aﬁ coepavativt . (Onee in, mach e _ we

Ha NX:’& /L;J), o.agw. /ufie (s 73‘2;’1; Aw[d
M)»\.G-IL/ ot ﬂ\z sw* af S‘wer/' cwundev /ZU-
hbl: This is Hu grallewn whidh T wse daa lebat
"Courext" H—&w Ju, and &\A{o\\ inelmdies }né{«
Spa.“’fu\ (uL..{- Aul'u Aus roo:l‘iw. v4-w J-o) | «,'ew\@uvd
(ua\nws does (Y yo.‘-wwxe o.“l..o o.s@:.cts. Push - dewn
Skyg_y '\Sh.‘\‘ cu.\wur ﬂu M‘W,&"&%}L 'Y\M &w r!cu»:‘cm
Qnusas. [\-h{evnck'u.«x C.(V(“ty.‘\‘ W\oa.t a,\a Qﬁ. lm(&\f"m‘l'—
the (rvecessas 3&(o Yourud Woy e }.Lr.o.uhw‘l ~pin d
\m\ W t\~A \At(w&’ c..’\' u\,\‘uL g '3 Q.\A.YVQ\».‘"L' ﬁ;e'-w'
b{-ccw\-eb; s ie vofed iw c.m@’w fw}wwwl-'w\ Wocq:.'n,,:.y.,ﬁ.f

v C.#J
6\ ‘Y‘A-\ ‘M’* ()M\Q I St"’ Jowh o~ ‘F"""‘ 194’3
t I -"L{n(c 3+ T ‘n\.tf f"y w\\'w\ ?)N.A qwn leCvSN)‘QMCM‘VL

’ﬂlm A 087 laran ’AH‘C Iu 1.1 M(J o

CLB:eh
12-16-58 ' -1-

Introduction

This discussion 1s a first attempt to set down some 1deas
relating to the problems of programming a large scale computer
which 18 part of a large scale control system.' Most of the .
remarks apply in general to any such system; others are

speciflically directed towards SACCS.

The fundamental obJjective here 13 to assure that the most
advanced state of the art techniques of progrémming are applied,
Just as a requirement has already been made for the best computer
hardware available at this time. Also, it 18 hoped that some of
these 1deas will assist the designers of the computer order code
to help realize these techniqueé. It is also important to avoid
wasted effort which would result if programs were produced before
sufficlent thought had been given to thelr design and integration
into the over-all system, Such programs often result in ineffi-
clent operation later on and can even be completely incompatible
with the final operating program. It 18 necessary, in a large
computer programming system such as SACCS, to not merely "code
the program,” but rather to design a programming system, which
will provide control over the program as it 1s written to insure
that the desired results are attalned, to provide documentation
of the resulting program, and to provide documentation of the
system, The remarks which follow are directed toward providing
a starting point for such programming system design,

An apology should be made at this point on two counts.

First, many topics discussed here may sound like trivial details;

CLB:eh - .
12-16-58 . -2~
these however, we feel to be fundamental, and their lack of

| application may indeed make a great deal of difference in the
final system operation. Second, an analogy approach will
sometimes be used, as many programming ‘words and concepts are

unfamiliar, undefined, or ambiguous.

Programming System Organization

In discussing the organization of the programming system,
it 18 first necessary to define the difference between a program
and a programming system. A program may be wrlitten as a complete
entity, with no knowledge of the nature of any other programs
which may be written for the same computer, Its only objective
is that of producing the final answers in the time allotted.
A programming system, on the other hand, provides a framework
in which to construct a great number of programs, all of
which will eventually be required to work together, at the
same time, to produce the final results. It is unnecessary and
extremely undesirable for one programmer to know all the intimate
details of the code another programmer 1s writing; it 1is very
necessary, on the other hand, for him to know the requirements
and characteristics that each must have in order to be able to
integrate into the filnal product. An analogy here would be in
the design of the computer 1itself. A falr amount of the effort
in computer design 1s devoted tolinsuring that, for instance,
the designers of the tape system need not be familiar with the

operation of the arithmetic element of the machine, but still

i
!

CLB:eh .

12-16-58 -3-
operate together properly. At the same time, any redundant
effort should be eliminated in the design of the basic circult

building blocks.

The objectives of the programming system deslgn then are
as follows,

1) To provide an orderly framework within which to build the
required programs.

2) To make progr;ms easier to write and easier to check out,

3) To provide a means for integrating various programs on a
time shared basis in a real time application.

4) To delegate to the machine as many programming and machine
operating tasks as feaslble.

5) To develop standards of programming to kcep the over-all
continuity of the project independent of the personnel
involved.

6) To provide standards for documentation and communication
among programs.

7) To provide a means whereby the programming tasks may be
delegated to a large number of programmers while insuring
compatability at all stages.

8) To insure that the operating program complex can be easily

updated as system requirements change.

The approach to this organization 1s threefold:
1) An over-all operational philosophy of the programming system
will be defined, which will be tailored to meet the present and

anticipated needs of the entire control system.

r

CLB:eh ,

12-16-58 4o

2) Specifications for the subsystem program components will be
outlined. These components will be integrable, on a time shared
basis, to comprise the complete operating program.

3) Standard methods of organizing the basic computer 1nstructions
into hierarchies of successively greater complex information
processing capability, will be defined. These hierarchiles will

eventually satisfy the requirements of 1 and 2.

In the language of computer design, these correspond to
1) The over-all system characteristics which the system must
have to do the proposed computing Jjob; 2) the subsystems required
to make up the required system (e.g., tapes, drums, input,
output equipment, arithmetic element, etc.); 3) the electronic
design techniques which will be used, the basic circult module

design, and the production methods to be employed.

Over-all Operational Philosophy

The nature of the task required of the computer, 1i.e., 1t
must be capable of providing control information at any instant
of time, dictates a mode of operation that is time shared with
the 'other functions which the computer must provide. These
include progrém checkout, planning programs (trajectories, war
gaming, etc.), computer preventative maintenance and dlagnostic
programs, system trailning and exercising programs, etc, It 18
almost certain that a human operator or operators would be
incapable of controlling the machine in its execution of these

various functions either rapldly enough or with a sufficient

CLB:eh -

12-16-58 , -5-
degree of reliability to satisfy system requirements. Fortunately,
this is a function which the machine itself 18 extremely capable
of handling, through the means of a "monitor" or "executive"
routine,

The monitor program constitutes the highest echelon of
control within the machine. It dictates the order of executlion
of the various programmed functions Qithin the maéhine, according
to thelr relative priority. It performs a number of bookkeeping
tasks, such as assignment of storage in high-speed memory,
selection of input/output units, and communicates with the human
operator required to change relative priorities, mount tape reels,
change paper, cards, etc. Any forced iInterrupts of machine
operation by external system compopents are handled by this
routine, as are the various error correction procedures.

In order for the monitor program to effectively perform
these functions, 1t is necessary that it be immune to almost
all of the various catastrophic events caused by any operating
program, These are of two types: The offendling program may
destrby vital data, or other programs, It may fail to complete
its execution due to a hang-up in a loop, at a stop, or>at an
illegal instruction., It is therefore necessary that sultable
provisions be made, in machine design, for a "safe" area of
storage for at least enough program to regenerate the monitor
program, and a means of returning to eilther the monltor program
itself or to a short program which will regenerate the monitor

program if i1t has been lost., This return must be made automat-

ically in case of detectable errors, and in any event, after

14

CLB:eh :
12-16-58 * -6-

a given period of time has elapsed.

Detalled specifications for this monitor program cannot
pe given here. It 1s, however, fundamental to the integration
of the computer into the control s&stem, and its detailed
design should be given high priority. W1%h a properly constructed
monitor, possessing the two properties mentioned above (1t must
always be "safe," and 1t must never lose control of the computer
for more than a short time) the data processing subsystem will
be able to perform 1its function of supplying control information

under all conditions short of complete machine breakdown.

Ma jor Program Subsystems

Although the monitor program is in control of thé machine
at all times, it does little if any work itself, but instead
calls on the major program subsystem to perﬁorm the tasks
required. These subsystems themselves have many of the char-
acteristics of a monitor program, but on a much moreilimited
scale, A brief description of the operation and requirements
of each of these follows.

A. Operatlional program,

There is little to be said about the operational program
except to enumerate some of its functions and requirements.
Normally, this will have the highest priority except during
periods of machine malfunction. It requests batches of messages
from the Traffic Control Center on a périodic basis, services
messages of high priority on a request basis, and prepares‘displays

on both a request and periodic basis. It presents alarm conditlons

CLB:eh :
12-16-58 ° -7-
when they are detected. The prograq must also possess the
ability to update itself as the nature of the control system
changes, or when errors in programming are detected., Finally,
1t must be capable of "catching up" if the central processing

system has been inoperative because of machine or communication

breakdown.

B. Program Checkout.

Included in the program checkout system are the various
assembly and compiling programs which the individual programmer
may wish to use. The assembly program, in addition to translating
between the programming pseudo-language and machine language,
performs the‘functions of detecting as many mistakes as possible
before the program 1is actually run, supplies any additional
utility routines desired, supplies any operational data thaé
may be required, runs the program, and presents the results of
this run along with debugging information in the original pro-
gramming language. It should also supply information as to the
machine time used.

At least as ilmportant as the above, it provides a means
for forcing conformity to the rules of the system which have

been set up. It fundamentally assists rapld and smooth program

~ changes and improvements by providing a source of information

about all programs which have been integrated into the subsystems,
and insures system continuity.

C. Planning Programs, etc.

The writers of these programs must also be aware that

their programs are to be integrated, on a time -shared basis, .

—

14

CLB:eh
12-1€-58 * -8-

with other programs, and must thus observe certain rules and
conventions. While they may be relatively independent when
first conceived and run, they may eventually be required to
operate as part of thé operational program, and should be
constructed with this thought in mind. Conformity to the
system will make any such integration relatively easy.

D. Maintenance Programs.

While the maintenance and diagnostic programs are not
normally written by programmers familiar with the control
system, the writers of these programs must be aware that
the dictates of the control s8ystem requires that they should
integrate thelr programs as part of the over-all operating
system whenever possible. These programs may be run during
periods of low activity, by the monitor program, and shbuld
receive information from the monitor as to whichlcomponents of

the machine are available to it, while still allowing for

interruption by the monitor program when a high priority request

1s to be serviced.
E. System Training and Exercisling Programs.

The system training and exercising and tralning subsystem
will be composed, in the main, of the same programs which make
up the operational program.. Although 1t will be running in
real time, and using a large part of the computer system and
display system, 1ts operation must not preclude immediate
return to the operational status of the control system. Both

the operational program and the training programs must be

CLB:eh ,‘
12-16-58 -9-
capable of distingulshing between real and simulated data, as
well as between operational and exercise requests,
F. Inter-control System Communication.

Although no specific requilrements have been made to date,
the entire qontrol system may be required to communicate with
other such systems at a later time. The possible requirements

of such interaction should be studied to insure that this will

be relatively easy to accomplish.

Organization of Computer codes into programs and subsystems.

The various classes of programs requlred for the system
o as a whole are in themselves large and complex. In order to
,(i? be able to construct these efficiently, they must be built
from a series of submodules, each of which performs a task of
a more specific nature. These modules in turn wouid be con-
structed from smaller modules, etc. The lowest level of these
routines would, of course, be constructed from basic machine
instructions in as efficient a manner as possible, with as
little duplication as possible. Thils method of successively
breaking the over-all program into subsections corresponds to
building a machine out of standard modules and provides a means
for easily analyzing the functions performed at each level.
Rigid standards must be set for the construction 6f these
subprograms, an for the means by which they are integrated to
perform more complex functions. Such a set of standards can be

formalized, and comprise the "Program Design Manual," similar

to the "Machine Design Standards Manual" used by machine

CLB:eh R
12-16-58 -10-

manufacturers, Such a manual should fulfill the following
obJjectives:

1) Any portion of the program can be understood and changed

by any programmer that has access to the manual,

2) Conformity to the standards can be checked by the computer
itself whenever possible,

3) Any portion of the code can be changed at any time, with
relatively complete assurance that a) parts'of the code which
should not be affected are indeed undisturbed, and b) all parts
of the code which should be updated are indeed updated.

4) The various portions of the code can be manipulated by the
monitor program, which will be controlling the over-all execution

of the program.

5) All documentation will be supplied and will be in standard
form.

6) Programs may be more easily checked out by first checking

out the lowest level of routines, combining a set of these to

make a higher level routine,vcombining a set of these, and so

on.

The above requirements for the logical construction of a
code corresponds to the way in which a machine is built.
Resistors, transistors, etc., are first packaged into circuits
which are to perform a standard function, e.g., OR gates, AND
gates, triggers, etc. These standard packages are then used éo
buildjgiip-flops, adders, etc., which are then packaged into

accumulators, index registers, etc. It should be noted that

o
I i

CLB:eh

12-16-58. -11-

while any given machine register, e.g., the accumulator, might

be designed to do 1ts Job faster and cheaper.by starting directly

with resistors, etc., the dictates of ease of testing, maintenance,

reliability, and system documentation far outweighs this approach.
The routines with which the program 1s built up are

characterized by:

1) The process the routine performs

2) The input data required

3) The output data generated.

There 18 no necessity for a routine which uses this subroutine

to know in detail the means by which it performs its task, but

it is necessary that a programmer be able to find out this

information when required. If the routine calls on more specific

routines each of a less complex nature, this 1s easily accomplished.
In order to be able to construct a program on this master-

routine, subroutine, sub-subroutine basis, it is extremely

necessary that both the hardware of the machine and the assembly

or compiling process permit programs to be constructed on this

pasis as easily and as efficiently as possible. The mechanism

for constructing theselroutines s%ould include:

1) A mechanism for leaving a sequence of instructions, executing

a subsequence, and returning to the maln sequence upon completion.

The programmer must not have to write more than the bare minimum

of instructions to do this. Also, there must be a means of

doing this in a ;écursive fashion (essentially, the routine

must be capable of executling itself as a subroutine) for the

CLB:eh

12-16-58 " -12-
following reasons: A subprogram may be interrupted by a high
priority request, whose execution requires the use of the same
subprogram that was interrupted. Thus, the routine 1is effec-
tively being executed by two programs at the same time, yet
se-juence of control must not be lost. Aléo, experlence with
extremely complex information pfocessing programs has shown
that this recursive ability 13 extremely desirable.

This requirement may easily be satlisfied by the use of a
so-called "push-down" memory cell in which to store information
about the sequence of program execution. This type of cell has
the property of being able to save many words: when a new word
is stored in the cell, the words already thefe are "pushed down."
When a word is recalled from such a cell, the word previously
stored there 1s "pulled up" and 1is once more available., The
cell is, in effect, a group of cells with one address and the
property of "first in, last out." 1In use, the location of an
order calling for a subroutine 18 placed in the cell, and control
is transferred to the subroutine., To return to the sequence
which originally called for the subroutine, the top word in the
cell is "pulled up" and control returned accordingly to the
higher level routine. The various problems caused by interrupts
and the large amount of "bookkeeping" normally required of the
programmer in building a hierarchy of subroutines 1s thus auto-
matically supplied. |

It should be noted that while the above functions may be

taken care of by machine language coding or by compiler techniques,

' ’ -13-

1t is felt that they are so fundamental to the construction of
a large, complex, data processing code that if at all possible
they should be incorporated into hardware. This appears to be
extremely feasible in the MPD computer.

2) In order for the monitor program to be able to manipulate
the various routines, there are several desirable properties
which these routines should have. First, they should operate
independently of their location in memory. Although 1t 1is
easy to do this in generél, with th; proposed machine, the
assembly program must check to see that this 1s indeed the
case, Further, the assembler should be written, if possible,
to supply the proper instruction modifiers necessary so that
the programmer need not be so burdened. It should be remarked
here that the proper machine instruction modifiers be availlable
(e.g., indirect addressing and indexing, addresses modifiable
by the instruction counter, etc.) so that this is always possible
if the routine is written in standard format.

Secondly, all references by the routine must be rigidly
controlled, and only certailn types of these allowed. These
are: references to itself, references to the data on which it
is operating, references to constant data, references to data
of a constant nature particular to this routine only, references
to input/butput equipment and finally, references to other
routines. Each €§pe of reference must be recognizable by at
least the assembly program, and perhaps, in some cases; by the

operating monitor program. A special class of symbols should

CLB:eh
12-16-58 ' -14-
be adopted for each of these, and conventioné for their use
specified. (The use of thrse speclal classes considerably aids
the programmer not only in understanding other programs in the
system but also in writing and debugging his own routines.)
References by the routine to itself, 1nclﬁding its necessary
.constants, should be processed by the machine so that the ?outine
will work any place in memory. References to the data of the
problem should be made indirect so that the monitor may asslgn
this storage dynamically during the execution of the program.
The same applies to 1nput/butput device selection, when this 1s
not handled by "system" subroutines. Referencea to other
routines must be only through the standard way of executing a
subroutine, as described above, and the monitor must make sure
that the desired routine is in memory at the proper time.
Finally, the dictates of the recursive property that all
routines must have requires that routines never modify themselves
and, probably, that some type of push-down storage be avallable
for working storage and index registers. Here again, although
this property may be achieved through proper programming, 1t
is such a basic property of all routines that hardware should

accomplish this wherever possible.

In addition to the above techniques, many more considerations
must be taken into account before the goals of the programming
system beglin to be realized. These can only be broadly refer-
enced here, but a precise set of definitions should. be made

before programming is begun on actual operational routines,.

CLB:eh
12-16-58 * -15-
Among these 1s the maximum permissible length of any routine.

In a system whereby a one, two or three Ilnstruction subroutine

18 easily implemented, programs may be constructed from a set

of basic functions combined with special subroutines, and perhaps
a routine need never exceed 30 to 50 ordefs. Perhaps a standard
type of flow chart can be specified for each routine from the
basic functions of loop, branch, etc. So called generator
routines can be used to apply a gilven set of functional fout;nes
to a set of data, and the programmer need not be concerned with
many of details of loop initiation, testing, etc. In such ways,
small, basic subprograms can be used to implement many of the
bookkeeping details which at present are time consuming and

_(ﬁ“ sources of error, and a large part of the programming job will

consist of integrating already coded and checked out routines

to perform the processing required.

CLB:eh .
12-16-58 . =16-

1'

11.
12.

13.

1%,

15.

16.
17.

18.

The Master-routine subroutine concept should be applied as
the basis for extensive modularization of the system.

A Monitor routine shall be in control at all times to handle
interruptions, control the execution of the different sub-
programs, communicate with the operators, etc.

Basic function modules shall be specified and coded by
experienced programmers,

The logical control problem and the required machine functions
are much more important than the processing operation codes.

Routines shall be capable of recursive executlion,
Several classes of push-down storage should be avallable.

All control and data specification should be indirect when-
ever possible,

Data and routines should be relocatable dynamlcally.

Routines should never be modified dynamically.

Rigid restrictions and rules shall dictate what a coder may
write down.

Lockout features shall be avallable to insure that the
monitor can keep control.

There shall be a programmable clock interrupt feature in
hardware.

The machine configuration and order 1ist should never be
changed unless a great improvement in over-all operating

efficliency.

No program should assume data block length or data item size
to be fixed.

Only a very small subset of programmers know all machilne
functions--the programmer is effectively removed from the

machine,.

A program design handbook shall define rules, procedures,
standards, and terms in as few pages as possible.

The machine should operate in a non-stop mode at all times
except periods of machine malfunction.

The complex information processing capability of the system
1s at least as important as speed.

	d 0001.tif
	d 0002.tif
	d 0003.tif
	d 0004.tif
	d 0005.tif
	d 0006.tif
	d 0007.tif
	d 0008.tif
	d 0009.tif
	d 0010.tif
	d 0011.tif
	d 0012.tif
	d 0013.tif
	d 0014.tif
	d 0015.tif
	d 0016.tif
	d 0017.tif

