the GAMIMA 60

the computer that was ahead of its time

M. Bataille

Prior to 1960 the Compagnie des Machines Bull (now
Honeywell Bull) delivered the first large computer system
with an architecture designed for multiprogramming.
Many unique features of the Gamma 60 were forerunners
of present system architecture concepts. This article
revisits these concepts.
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INTRODUCTION

The Compagnie des Machines Bull designed a data
processing system, named Gamma 60, which was pub-
licly described in the US in 1958 May [5]. Twenty Gam-
ma 60 systems were produced, ten of which are still in
operation. For this reason we use present tense in the
description. The systems design was revolutionary for its
time, it being the first architecture specifically designed
for parallel and multiprogramming. It might be well to
remember that when the Gamma 60 was designed,
UNIVAC I, the IBM 705, and the RCA 301 were names
of computers known to the public. Many of the unique
features of the Gamma 60 are still in use, indicating the
extensive influence of its innovation. To list them:
® The interrupt instruction, which delimited parallel
asynchronous sequences, was the forerunner of
present-day processes. The number of processes
was, however, defined when the program was
coded, rather than being determined dynamically.

® The combination of interrupt instructions, Pro-
gram and Data Distributors, and Control Return
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Chain is the forerunner of present-day process
management and synchronization, using sema-
phores. Interrupt instructions specifying parallel
paths for program concurrency were later named
FORK and JOIN by Conway [18].

® The Control Return Chain is the parent of today’s
queuing mechanisms.

® The virtual element protecting a subroutine is a
parent of the semaphore.

® The distribution of functions between distributors,
channels, and functional units is accepted practice
in present-day systems (i.e., the 10C function in
multiprocessor systems).

® These technological features enabled the first mul-
tiprogramming to function in a software environ-
ment. However, there was no hardware protection
of memory.

® The “status catena” is the parent of the “status
word”, which did not exist in 1957-vintage com-
puters.

® The use of phase modulation instead of non-
return-to-zero recording for magnetic tape was
an innovation in its day, and was not used in other
computers until several years later.

® The Gamma 60 character set was remarkably simi-
lar to the present ASCI1/1SO code. It was by far the
closest to it of the 65 computer character sets
surveyed in 1960. The blank, alphabet, and digits
are identical in the 4 low-order bits.

GENERAL ORGANIZATION

Figure 1 shows the organization of the Gamma 60. Its
three main sections, which are interconnected in pairs,
are the Central Memory (CM), the Central Processor
(CP), and the Data Distribution and Collection Chan-
nels (DDC and DCC) which link the operational units.
The interconnections shown as double lines are those
used by the catenae. (Catena (“chain”) is the 24-bit
word or byte — the data quantum.) The DDC and DCC
are focal points of the system, through which all data
must pass. The various input, output, and processing
units receive data via the DDC and send it via the DCC.

As each unit transfers data individually at its own
rate, a central component known as the Data Distributor
(DD) controls communication with the central memory
so that each operational unit may request data in turn.
By organizing a priority chain, the Data Distributor
regulates such communications and controls channel
opening (shown by the single lines in Fig. 1; the circles
may be thought of as valves to open and close).

Operational units are connected to the channels via
6 special circuits, as follows:

class 0 — console typewriter, logical unit (binary com-

putation)

class 1 — general comparator, transcoder, and arith-
metic unit

class 2 — magnetic drum and magnetic tape units (2
circuits)



class 3 — unit record multiplexor, card readers,

punches, and printers

class 4 — paper tape readers and punches, type-

writers, etc.
Connection of several teletypes, via a special multi-
plexor, for remote direct access was attempted and
found possible.

The central processor is connected to the central
memory, from which it requests program instructions to
carry out. It is controlled by the data distributor in
doing this, like any other unit. The central processor is
also connected to the channels, through which the
operational units request instructions and receive de-
tailed commands.

Before discussing these data transfers, known as the
central processor’s dialog with the operational units,
we must first cover the simultaneous operation capa-
bilities of the Gamma 60. Simultaneity is the Gamma
60’s main feature; although there were at design time
other systems which could handle a main program while
data is being input and output, the Gamma 60 is the
first electronic computer to handle simultaneous and
independent operation of all the components included
in its organization. This not only optimizes the op-
erating time of a program, but it means that a single
machine can work on several separate problems with
different programs being executed simultaneously. Op-
timization is brought about by maximum operation of
the central memory, which is the heart of the system.

The operational units execute their assigned tasks in
the same amount of time as if they were operating
alone, since central memory operation is much faster
than any of these units. Necessary control is provided
by the data distributor. Operating simultaneity is ab-
solute when the units are not transferring data to or
from the central memory, but is less so at the level of
memory cycle time (10 us) and can be considered as a
sort of multiplex.

CENTRAL PROCESSOR DIALOG WITH UNITS
To illustrate the dialog between the CP and the units,
let us consider the operation of the magnetic tape unit:
® The program requests reading of data (a block)
from tape. A program interrupt instruction is sent
to the tape unit to start its operation. (The various
types of instructions are discussed in the next
Section).
® The tape unit replies with an instruction transfer
request (ITR). This request is queued, since the
program distributor (PD) component of the central
processor (in charge of processing instructions)
does not remain idle while waiting for the reply
from the tape unit, but continues handling other
ITRs that may have been received.
® When our unit’s turn comes, a signal is sent to it.
It answers by giving its number, the result of the
operations carried out earlier, etc. (status catena).
® The program distributor then looks for the line
number (or address) at which the program calling
the tape unit had left off. This address is stored in
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FIGURE 1 Camma 60 Block Diagram

a register which is specific to each unit (but lo-
cated in the central processor), called the Program
Address Register (PAR). The instruction at this
address in the central memory is processed first,
and processing continues sequentially until the DP
reads a command instruction.

® This command (in this case a “read”) is the only
instruction sent to the tape unit. The program
distributor goes on to another task while the tape
unit is being started up. As it reads data from the
tape, it gathers the data together by catenae. Each
complete catena stored is prepared for transfer to
the central memory.

® To do so, the PD sends a data transfer request
(DTR) which joins the data distributor queue.
When its turn comes, it is so informed by the data
distributor, which requests that the corresponding
channel be opened.

m The tape unit then sends its message, which in-
cludes, among other details, its identification num-
ber (other types of units may include additional
information in this message).

® Using this information, the distributor seeks the
address in the central memory to which the catena
is to be transferred. This address is found in the
Data Address Register (DAR), which, like the PAR,
is also specific to the unit and is located in the
central processor. After incrementing or decre-
menting this address according to indications
supplied by the unit, it stores the updated address
in the DAR to be used for the next catena. It then
goes on to handle queued data transfer requests.
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® The reading process continues until the entire
block (i.e., all data between the two start-stop
gaps) has been read. At this point, it requests a
new order by sending a new ITR. It may now re-
ceive another ““read” command or an order to
halt (if this phase of the program no longer re-
quires the use of this tape unit).

THE INSTRUCTION CODE
Before we can discuss what occurs in the central proc-
essor between the sending of commands to the units,
we must have some idea of the way programs are writ-
ten, and of the structure of the instructions.

The Gamma 60 is not classifiable as being an n-ad-
dress instruction machine, where n is fixed. Its instruc-
tions may contain anywhere from 1 to 4 addresses. They
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FIGURE 2 Use of an Interrupt Instruction to Join Simultaneous Sequences
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consist of a variable number of catenae, each catena
containing a “canonical” instruction. The complete
(variable length) instruction is processed without inter-
ruption. The simultaneity on processing program se-
quences that permits multiprogramming is obtained
by the more or less random overlapping of processing
of complete instructions.

When the PD (which processes instructions) has to
communicate with the central memory, it transmits a
DTR as would the other units that are generally com-
municating with the CM at the same time.

Each canonical instruction (1 catena) contains a 15-
bit address identifying a central memory address, a
variable, a unit number, or a length, etc. It also contains
a code which identifies the instruction as belonging to
one of four major categories:

Address
Branch
Interrupt
Command

O w>»

The instructions in these categories will be discussed
in logical order, not alphabetic.

® Interrupt Instruction

The interrupt instruction is used to start an opera-
tional unit. The number of the unit is included in
the instruction. The complex effects of this instruc-
tion will be discussed later, but the one that in-
terests us at the moment is that of loading into the
program address register (PAR) of the unit the
address following its own address. For example, if
the interrupt was at address 748 and indicated the
arithmetic unit, the address 749 will be loaded into
the PAR register for the arithmetic unit (provided
this unit is not otherwise occupied). The instruc-
tions executed for this arithmetic unit will be
those contained in addresses 749, 750, 751, etc.
In addition, the “status busy” symbol will be
placed into another position of the PAR.

Since simultaneous sequences are possible in
the Gamma 60, the interrupt instruction is also
used to combine sequences that were started up
simultaneously (by means of SIMU instructions,
described later). These sequences will all be ex-
ecuted individually, but they must all be com-
pleted before the processing of the problem can
be continued. In this case, each of the sequences
returns control (by a branch) to the same instruc-
tion C (Fig. 2). This instruction not only indicates
the unit (U1) which is to process the data pro-
duced by the various sequences, but also indicates
the number of calls it must receive before it is
ready to continue. (The programmer must leave
one catena free or blank following each interrupt
instruction, which is mainly reserved for the con-
trol return chain, but also counts calls that have
been received. This is the mechanism which pro-
vides processing simultaneity, a specific Gamma 60
characteristic.)



® Address Instruction

By operating on the DAR, this instruction prepares
the address that will be used as the starting point
for data transfers between the central memory and
the operational unit. The address instruction may
fill the register, change its content by addition or
deletion, or transfer the content to a central
memory register for future processing. In a com-
plete instruction, there may be as many address
instructions as there are DAR registers for the
operating unit.

Command Instruction

These are the only instructions sent to the opera-
tional units, and start their operation. The units
may recognize a different number of command
instructions, depending upon the complexity of
the unit. For example, the arithmetic unit recog-
nizes 13 commands, such as addition, division,
roundoff, etc.

Branch Instruction

These instructions are used to skip sequences,
either explicitly or on condition. A conditioned
branch takes the path indicated by the match be-
tween the branch number and an index located in
the unit status catena.

One special instruction is classified among the
branches, but has features very close to interrupt
instructions. This is the simultaneous branch in-
struction known as SIMU, which takes advantage
of the Gamma 60’s multiprogramming capability
by starting up a new sequence simultaneously with
the sequence that would normally come next. This
operation will be examined more closely in the
discussion on the control return chain principle.

Addressing Schemes

It is possible to operate upon the addresses within
the canonical instructions by means of the dif-
ferential or substitution functions, leading to rela-
tive and indirect addressing correspondingly.

SIMULTANEITY

= Waiting for a Unit

A program sequence requests use of a unit by
including its number in an interrupt instruction.
The requested unit may be free, or it may be busy
processing for another sequence, in which case the
sequence requesting the busy unit must wait until
it becomes free. The PD must not, however, be
blocked from processing other executable se-
quences without having to queue. The interrupted
sequence is therefore placed into reserve, to free
the PD. This establishes a queue known as the
control return chain (Fig. 3). Any sequences wait-
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FIGURE3 Logical Organization of Control Return Chain

ing for the same operational unit are added to
this queue (as at a ticket window which can handle
only one person at a time). When a unit is free to
accept work it requests that the PD send the first
sequence in the queue for processing. The control
return chain may be as long as may occur; it is
built in FIFO (first in, first out) order.

Special Logical Organization

Each unit has three registers allocated to it: the
current program address register (PAR) and I, and
I,, which are located in the reserved part of the
central memory (addresses 0 to 127) and are used
for the operation of the control return chain.
Queued sequences, waiting to be processed, are
identified by the address or line number of the
catena following the interrupt instruction. Register
|, stores the address for the first queued sequence
(i.e., the first link in the chain) and |, stores the
address of the last sequence.

Thus 1, is used to build up the chain by adding
another link. The intermediate links connect with
each other via the catena left empty by the pro-
grammer after each interrupt instruction. This
catena is used (among other functions) to contain
the address of the empty catena following the
interrupt of the next sequence in the chain.

Simultaneous Programs

The SIMU instruction, first appearing in the
Gamma 60, is set off by an interrupt instruction. It

HONEYWELL COMPUTER JOURNAL 103




is a canonical instruction used to divide a single
program into two sequences, each to be run
separately. This is done through a control return
chain of the PD. The SIMU calls the instruction at
the address given, but keeps the remainder of the
current program in store by taking advantage of
the PD’s capability of creating its own control re-
turn chain. In this way the programmer can run
the various segments of his problem just as in the
different branches of his flowchart (Fig. 2). By
using successive SIMU it is possible to launch any
number of simultaneities.

® Virtual Units Protection of Subroutines

Program execution simultaneity could cause dif-
ficulties in using standard routines, if there were
no protection features. As an example, take two
programs each involving computation of the sine.
The program for sine computation would not be
duplicated, but performed by a subroutine called
by a branch instruction, and control returned to
the main program after computation.

No other program must be allowed to call the
sine subroutine while it is being executed, because
it would be impossible to return control to the first
program (Note — pure procedure techniques were
not used at the time of this design). To inhibit
simultaneous calling of a subroutine, it is treated
as though it were an operational unit, which is why
it is called a virtual unit. Its own queue can be set
up. Itis protected by an interrupt instruction which
starts the virtual unit and signals “‘red light” or
busy. On termination, another interrupt instruc-
tion frees the virtual unit and changes the signal
to ““green’ so that the queuing program can allow
the next program to call it.

This process is identical to the control return
chain process for operational units, even to the
I, and I, registers and the control circuits.

BRIEF SUMMARY OF PERIPHERALS
AND TECHNOLOGY

® The generalized comparator (class 1) compares
binary data in strings from 1 to 255 catenae in
length.

® The transcoder (class 1) performs code conversion,
to and from the internal character code and the
1/0 device encodings, and edits for output. Two
special core matrices are used.

® The arithmetic unit (class 1) operates in binary
coded decimal format, with 4-bit digits. Self-
checking modulo 7.

® Magnetic drums (class 2) store 25,600 addressable
catenae, 200 per track. At 3000 rpm, transfer rate
is 100 us per catena, with average access of 10 ms.

® Magnetic tapes are recorded in phase modulation,
at 280 bpi. The read head checks after write (write
forward, read both directions). Mylar tape length
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is 17100 m, width is 12.7 mm (0.5 in), 7 tracks plus
a synchronization track. Maximum transfer at 1.9
m/s (75 ips) and 15 KC is 3750 catena/s. Maximum
capacity is 38,000,000 bits. Switching between 12
tape handlers and controller is carried out directly
at read-head level.

® High-speed memory is in 1 to 8 blocks of 4096
catenae (of 24 bits), with a 10 us cycle. Addresses
0 through 127 reserved for special purposes.

® Both card reader and punch operate at 300 cards/
min.

® Wheel printer operates at 300 Ipm, with 120 posi-
tions of 60 characters each. Echo check.
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SOME FRENCH PATENTS ON THE GAMMA 60

1.180.399 (with supplement 72.485)
1.180.400
1.184.076
1.231.549
1.232.587
1.254.998

Ed.

Note — US readers will note here a partial example of

the inverse European usage of period (full stop) to sepa-
rate thousands (and the comma for the radix point).
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