PURDUE UNIVERSITY

COMPUTER RESEARCH PROGRAM

PURDUE COMPILER

GENERAL DESCRIPTION

.‘Sylivia Orgel

Copyright July, 1958

PURDUE RESEARCH FOUNDATION

SUMMARY

The Purdue Compiler, a mathematical language
compiler, is herein defined and its structure outlined,
The compiler generates a machine language program from
a flow chart written in the form of statements for the
Datatron Computer, This can result in a decrease in the
coding staff of an installation.

The "matrix logic" of the compiler is of prime
importance., A symbol scamner examines pairs of symbols,
determines their admissibility from an entry in a matrix,
and triggers a unique generator which compiles the symbols?
meaning, This allows for a simple scanner structure regard=-
less of the complexity of the string of symbols being scanned,
The matrix which is easily augmented or changed, is the core
of the compiler, B

The compiler uses:

1, The Yain Computer

2. Two Magnetic Tape Units
3. Paper Tape Input

Lo Paper Tape Output

5. Flexowriter Output
6, Card Input (Optional)

v

CONTENTS

PREFACE

INTRODUCTION

THE COMPILER LANGUAGE

A, Elements

1. Constants
2, Variables
3., Operators
L. Punctuation

B, , Functions
C. Operands and Expressions
D. Statements

1. Substitution Statement
2. Linkage Statement

3, Relation Statement

L. Halt Statement

5, Output Statement

6, Input Statement

7. Extension Statement

THE PROCESS OF COMPILATION
THE STRUCTURE OF THE COMPILER
A, Introduction
B, Section I
Ce Seciion II

D., Section III

EXAMPLE

Page

\O\Om\]ﬂo\\n\n\n\nl\)k‘

i
EERRKED

5 F

17
20
22
25

28

A.

B.

Two Digit Compiler Code

Admissible Symbol Pairs

APPENDICES

30

31

PREFACE

In September, 1955, four members of the Purdue University
Computing Laboratory [Mark Koschman, Sylvia Orgel, Alan Perlis
and Joe Smith] began a series of conferences to discuss methods
of automatic coding. [Joanne Chipps joined the group in March,
1956.] A compiler, programmed to be used on the Datatron, was
the goal and result.

These conferences continued until June, 1956, at which time

. an outline of the basic logic, language and general aspects of

the compiler was completed. Further work on the logic, programming
and coding of the compiler was continued by J. Chipps and S. Orgel.

The compiler was completéd in the summer of 1957.

This report is the first part of a complete description of the
Purdue Compiler. Other parts will include a modification and
revision of the current handbook, the detailed information of the

structure of the Compiler, and the Compiler flow diagrams.

Sapaite s s bl e lhinE oo Fiad At D

o 8 B el 14

S, e

“ A fitr b ot b Sk Py e

INTRODUCTION

A compiler may be defined as a program which satisfies the
following conditions: ’

1, It provides direct machine translation of flow charts into
a program. ' '

2, Tt has the ability to translate into machine language any
program which could have been coded into machine language.
(This is trivially satisfied if the compiler can accept
machine language.)

3, It automatically allocates machine storage.

The motivations leading to the consideration of a compiler are

obvious to any one who has ever written at least.ane program. Never-

theless, they are summarized briefly as follows:
1. Coding is a highly repetitive technique and hence capable

of automation, ,
2. People who propose problems should. program them, but should

not be required to code them,
3. The ratio of the time required to flow chart a problem to
that for coding it should be much larger than one. Currently

using manual coding, it is much smaller than one.

The usual sequence of steps in solving a problem with a digital
computer is as follows:

1. Definition of the problem. A problem which is not well
defined is a problem which cannot be solved. In order
for a computer to te of use in solving a problem, the
problem must be well defined and thoroughly understood

by the person making use of the computers.

¢

-2 -

[EFIR
Lo

2. Logical solution of the problem, This is generally
done by means of a flow chart, that is, a diagram~
matic device for representing those logical operations
necessary to arrive at a solution of the problem.

This logical solution is common to all ﬁethods of

problem solving.

-

3, Coding or translation of the program into machine: . -
language. Using the flow chart as a guide, the logical
operations are written in the language of the computer
(machine language), The sum total of all the coding
for the solution of the problem is called a routine,

or a program,

Definition and logical solution of the problem should be the
domain of the person who proposes the problem with the aid (if
needed) of a programmer or analyst. Coding requires a person
conversant with the language of the computer used to obtain the

solution of the problem,

An automatic coding system (or compiler) uses the computer
to perform the detailed coding of the problem. Thus, as the flow -
chart is the guide to the ccder, it should also be the guide (or
input) to the compiler.

A flow chart is a graphical representation of the analysis
of the problem into a logical sequence of operations, The oper~:

ations.fall into the following general categories:

1. Communication of information - input to and output

of the problem,
2. Arithmetic Computations of the problem.
3, Decisions within the problem,
L. Linkages among the above three.

The elements of a flow chart are constants, variables,

operators, punctuations, functions, and some means of .

-3 -

D e e oy

3
representing the different operations (statements).

The Purdue Compiler was developed primarily for scientific

and engineering applications; therefore, the structure of its
input was chosen to be similar to mathematical formulation.
The Datatron can accept, as input, only decimal digits. Thus,
in order to extend the language, a two digit .code was assigned
to each letter, digit, punctuation, and operator. A total of
L8 characters make up the language - 26 letters, 1C digits, *+,
- 5 ¥y (5 0y)y = /s <5 <, ", and space. The two digit
code is given in Appendix A,

The compiler is written for the Datatron but can be used

only if the following auxiliary equipment is available:
1, Two magnetic tape units.
2, Paper Tape input.
3, Flexowriter or high speed punch output.

Card input can also be used but is not mandatory.

There are two versions of the compiler, one for machine
(automatic) floating point and the other for programmed

floating point.

THE COMPILER LANGUAGE

4, Elements

1, Constants
Constants are represented in two forms - fixed point
integers and floating point constants. Fixed point integers

_can contain at most ten digits and are positive. Floating.

point constants are positive, must lie in the range of 10 =50
to 1049 and consist of, at most, eight digits.
General Form . Examples
Fixed Point A sequence of 1 to 10 32L
decimal digits 7
123456789
Floating Point A sequence of decimal 23L, = J23L X J.O-!.3
digits including a decimal 7.9207 = , X lO+8
; point, a b (base 10) or 12b(-3) = ,12 x 10_l
% both,

2. Variables

Two kinds of variables are required since the computer
arithmetic functions in both the fixed and floating point

modes. Each variable is designated by a letter and a subscript.

s

The subscripts, written on the same line to the right of the 4, 1
[U2) g

(]

variable letter designation, must be fixed point varlables or

DIRLE.Y

composites of both delimited by parenthesis., Fixed point

RAE

variables (indices) are represented by the letter 1 -
Floating point variables have two representations, y and c.

This aids in external differentation &zgce internally they are

treated identically,

General Form Examples
Fixed Point in(1) i3
iissen. iii2
i(ees). i(3 x i1)
Floating Point yn y27
yieeein yi3
¥(ess) y(i1 + i2/2)
cn 335
Ciyeein ciil2
c(ess) c((iz2 x 3) + 22)

3+ Operators

Operators are classified as arithmetic, both unary and

W A a . M s L tmde

binary; substitutional; and relational.

Symbol Heaning :

Arithmetic !

’ Unary a absolute value

(= o00) negative of

Binary + addition

- subtraction

X multiplication

L / division

E : % exponentiation : ;:

: p integral power :

= b base 10 = defined j

only for, ¢onélants |

Substitution = replacement 1

; Relational < less than or equal to 5}
< ' less than |
7 equal to ,

AT R R mmm e em G wan Gme hew R TP W MME A e e wm e e e e e A e e e mem wee e

(y) The letters n, m, and k will be used to denote integers.

—-~ b - |

s it ol

B
ks

t
2

Bl b e s G

{'%‘

i
{

‘v;(\%_!i,_ ":".HJL\\“

Henceforth, w will be used to designate any binary arith-

metic operator and A, any relational operator.

L. Punctuations

Symbol Usage
(}begm...ﬁ'lw[oﬁ om‘(
. with floating point
constants

3 . !:‘s t\‘-[{)(c;.\ ;f::{lml—:(; o—_‘(\.,0
" 39‘30-\-'& O Oi:emls - 4}’4“5“

\\\ j - . » -
L{wahwg ond 4l aL 4>ﬂmsu~
—— ed ol date

B, Functions

Functions are represented by the symbol pair ne — the
n th extension (subroutine) to the compiler. They are

delimited by quotes and the parameters are separated by commas.

General Form Ixample
e, _, _seees " 12C0e,yl" = Vyl

1230e,c2" = logloczh

The arithmetic mode of the result of the function is }:(
determined by the first digit of the three digit extension

number. If even, the result is in floating point; if odd,

in fixed point.

C. Operands and Expressions

it F

?' S‘;“E) le ver o~ o $7""

—————
1. Operands (2
s wasle
ae Q,variable or constant is an operand.

| %i b. If vl and v2 are operands, (vl w v2) is an
‘ operand. (w is a binary arithmetic operator.)

c. Extensions are operands.

' 2. Expressions
a. If vl and v2 are operands, vl w v2 1s an expression.
be. #ll operands are expressions.
3, Arithmetic _
_ s—d%
a. If an operand is a,variable or constant, its arith-

metic is that of the variable or constant.

b. If one varisble in an operand, not including
extensions, is in floating point form, the

operand is floating point,

¢s The arithmetic of extensions is discussed on

page 15
B
Examples Meaning
i2 x il Fix Fixed point multiplication
. i il

vl p il H v FL P Resctd
. vyl p c2 - Not permitted since cl is
; not a fixed point integer mvi vsedudl g
N _ yh ,
R (c3 * yb)) €3
, y23 * 17 Fi y2317 (y23pi7 would be preferable)
: (y2 x 11) F Convert il to a floating point

number and multiply by y2

F[P\} rz5. [7 .

pr—

D, Statements w,

The input to the Purdue Compiler is a{statement progfaﬁl
The statements are the equivalent of a flow chart written in
the language of the compiler, The general format of all

statements is: -
4 Leﬁ l-(n$ [PV +(‘

a. ~The first symbod—of-+he statement,4e an integer, the

statement number. This will be designated by k..

"fe\b t‘d&k{‘(ﬁé l'(v.c \{ch a‘

b. & letteng following the statement number, is the
statement. desteration.,
wbol
¢. The last symbol of the statement is a finish.p§1591=>f.,

The statement number uniquely identifies each statement oF

rekabive-6o 2 problem., Since g
intQ_hhﬁ_QQmpuLsrgpzhe statement numbersneed bear no relation to

the physical ordering of the statements,

The statements types that are, at present, incorporated

into the compiler are discussed below.
1. Substitution Statement.
Format Example
k s vn = an expression f 3sy2=cl+ (y1xy7) f

A substitution statement is identified by the letter s..-
The value of the variable to the left of the equal sign o
designated here by vm——1is set egual to the result of the
expression. That is, thesanbedis of the cell desisssked by
the left hand variable is replaced by the result of the right

hand expression. The result will be stored in fixed or float;

ing point according as the variable on the left hand side is a

fixed or floating point variable.

If the varizble on the left is fixed point and the expression
of the right is floating point, the result will first be computed
in flozting point and the greatest integer in the result will be

-9 -

744

S o AR RN S S B SR 2
i AE R St I MRS

IR e
st Sere

e I P e
gl R T S TR

i ol S

g T e e e e S

¥ o o

gy et

e g7y s STy
P R I TSI A PP =7 S LT Yo SUTEH. e T

e

AR 3 T ARTpE e

the value of the fixed point variable, Thus, if the result is
1 2.893, the fixed point number stored will be * 2.

Examples of Substitution Statements,

Statement " - Meaning

"lsyl=y2r¢ ¥1 is repalced -by the value of 72

2sil=ylf The greatest integer in yl replaces il,

7syh =13 ¢ Convert i3 to floating point and
store in y4,

3sil =il +17¢ Add 1 to il and store in il. This
exemple illustrates the point that
a substitution statement is not an
equation but a command to replace
a value,

2 sil =3 xyl f Convert 3 to floating point, multiply

by ¥1, obtain the greatest integer of
the result, and replace il by this

value,
2. Linkage Statement,
Format Ixample
kgnft 2g3f

Linkage statements are used to rodify the natural order of j) ;uo”
statements and are identified by the letter g (i.e., g for go),

They link the preceeding statement to the statement whose number

is n or i...in. The use of fixed point variables as statement

numbers in linkage statements allows for variable connections

between statements in a flow chart,

- 10 -

¥

g B

B3

% 3. Relation Staterent,

Format . Example
k r g n, r operand A expression f 2rg7, ryl z cil f
krgi ...in, r operand A expression f 34rg i2, r i1 <1 f

Relation statements provide conditional linkages -- the
condition being the satisfying of the relation between the
operand on the left and the expression on the right of the
relation operator A, If the condition is satisfied, the next
statement to be executed is that one whose number follows the g.
If the condition is not satisfied, the statement of the program

immediately following is executed.
Note: The left side of the relation must be an operand.

If the arithmetic mode of the iwo sides of the relation are
not the same, the arithmetic of the relation operator is determined
by the right side.

_Examples of Relation Statements,

Statements Examples

7rg 12, r (L + y2) 2 c3 £ Go to statement 12 if the value
of y1 + y2 is equal to c¢3; if not
go to the messh statementio L\..('\ “allowg.

7rg 12. ryl +y2zc3 § Not admissible since yl + y2 is an
expression but not an operand. [’“vgj vse }
2rg i2, r il <yl f If il converted to floating point parenTs
is less than the values of yl, go

to statement i2,

225rg 107, ry2 <il f If the greatest integer in y2 is
less than il, proceed to statement
107,

L. Halt Statement

Format Example
- . khf 251 h £

[EREGEEE OREE T R

Halt statements cause the computer to stop. Pressing the

'gi"'?r

)
continuous button on the console causes the.program to resume et<»u¢ft\

i

the next statement. Therefore, a halt statement can be used as

a terminal or temporary stop.

i

Y

5, Output Statement

" Format Example

= kovnft 17o0y21 £

' Ko vVia.inf 31 o cil f
koV (ese) f 7o0i(i2 +7) f

Output statements, identified by the letter o, result in
the print out of two words (ten digits and sign if negative).
The first word whose format is kkkCC4qCmmm identifies the state-
ment number, k, of the output statement, the variable, d =1,
2, or3isv =1, y, or c, an/the value of the subscript m, m=n
or m = the current vzlue of isesinor (s..). :The second word is
- the current value of the variable,

- EXamples of Cutput Statements.

Statement = Print Out

17 o0y21 £ 0170020021 value of y21
314 o cil £ Assuming that the current value of

= il is ecual to 26,

. 314003C026 value of ¢c26

. 70 i(i2 +7) f If i2 + 7 is currently equal to 14,
0C7CC1001, value of ily

-12 =

o
¥
Ry

S
3w

&=
.
e

haecy
Ré"

R

5
£
B
=
k4
-

& Lok
ERNITRRER. ST e M

IV Y A S

v e B e cet Rl

b

et

FTR A r .

1

s 3 L

6. Input Statement,
Format Example
input in yn cn sn £ input 112 y83 c7 s4l f

Input statements are used as lead statements to each problem
and have no statement number associated with them. The numbers
following i, y, and c denote the maximum value of the subscript
associated with each in the problem, The number following s

 denotes the maximum statement number used in the problem, The

compiler uses this statement to allocate storage for the variable
and for a statement dictionary. In the example given above, 13
memory cells are allocated for the i’s (io through i12), 84 for
the y’s, 8 for the c¢’s and 42 for the statement dictionary of
this problem,

Input statements are used by the compiler and do not con-
tribute directly to the compiled program,
7. Extension Statement.
Format Example
ke™e, _, se, _"T 27 e "8l2e, 6, yl" £

Extension statements contain extensions that perform sequences
of operations not leading to the definition of a single variable, -
Extension statements can be used for the following, provided the
extensions are available.

a. To obtain format control of output.
b. To arrange p variables in numerical sequence
¢, ror card output,

etc,

-13 -

W

s R e A g el bkl

P Sprvene Y

i A

ks

S SN

o Py

s ek

g g

Ak pik

S

FLR T

REEE

THEZ PROCTAS OF CCIPILATION

Statements are compiled in their order of entry into the
computer regardless of their statement nurber:: The compilation
process for any statement is independent of the nature and presence

of other statements, It is unidirectional from right to left.:

The binary arithmetic operstor w (vhere w = +, =5 x, /; ¥*;
or p) is found in an expression in the form a w 8/:; a is the
operand whose rightmost character is adjacent to w on the lefts
B is the expression that starts to the right of w and is termis~
nated on the right by an unpaired right parenthesis, a comma,

a quote; or the end of the statement.

The relation operator A (where A = z, <, or <) follows the
same rules as the binary arithmetic operators. Therefore, an

expression is not allowed as the left hand side of a relation

statement,

The unary operator a (absolute value) only refers to the
operand immediately to its right., The unary operator (- (negative
of) operates either on an operand or on an expression which is

terminated on the right by an unpaired right parenthesis.,

Within an expression, binary arithmetic operators are
compiled from right to left in the order in which the leftmost
character of their left operands are found, Unary operators

are compiled as they occur,

This method of compiling an arithmetic expression does not
conform to the sterdard hierarchiy of operations. The expression
yl/y2 + cl is compiled as y1/(72 *+ cl) unless parenthesis are

used to give it the meaninz (v1/72) + cl,

Example of Compilation Order:

gl + (y2 x (2 +i4)/ i1 + 1) - a (y2 p i1)

&

Order of Left Operator Right Arithmetic
Compilation Mode

1 y2 il floating
(y2pil) - floating

1 fixed

iL fixed

i141 fixed
(2+i4)/il+1 floating
a(y2pil) floating

(y2x(2+il)/il+1)-a(y2pil)
floating

it

il
2
(2+i)
y2
(yox(2+ik)/i1+1)
vyl

M N+ + O

0N 3 o wWN

o+

The arithmetic of extensions is determined by the extension
number, n; N, Nge If ny is odd, the result of the extension is

in fixed point formj if ny is even, in floating point form,

The basic logic of an automatic coding system depends upon
the method of translating a problem written in the language of
the system into 2 machine language code. The structure of the
Purdue Compiler was enormously simplified by attaching meaning
only to an ordered pair of symbols, The scanning of the statement
from left to right is accomplished by stepwise examining symbol

pairs - Si—lsi’ This method of scanning permits the psuedo-
machine code for a statement.to be generated in a single pass

through the statement.

ithin the compiler, there exists a matrix with one entry
for each possible symbol pair. The numerical value of this

matrix entry together with the symtol pair determines:
1., The admissibility of the symbol pair. A zero matrix
entry indicates an inadmissible symbol pair.

2, 4 generator which prepares the psuedo-machine code of
the symbol pair.
. =15 -

N

=
3
s
o
5
%
o8
3
1
o4
2
%
&
£y
4
5

St Tt

e B

g SRS

TR (U ;‘q,}ig‘ vedilloncn e o ag

B

oY e

L

[P

by b Ay

Associated with the matrix and generators are a multiple set of
accumulators, operator registers, and current arithmetic register.
The latter two are used onlycduring compilation. There are 18 of
each available., This limits the resting of parentheses and

quotes in one expression to 18,

There are thirty nine (39) distinct symbols in the compiler
language, The digits O through 9 are herein considered as a
single symbol, Spaces are ignored in scanning a spatemént by
symbol pairs., Therefore, a space is not considered as a symbolA
when referring to the matrix, Cf the one thousand five hundred
and twenty one (1521 = 39 x 39) possible symbol pairs, only one
hundred and ninety eight (198) are admissible. There are only
seventy one (71) distinct generators since many symbol pairs
result in similar generated codes. Appendix B lists the
admissible symbol pairs, grouped according to generators,

-16 -

THE STRUCTURE OF THE CCHPILER

A, Introcduction

The process of compilation logically divides into three
sections which are translation, assembly, and display,., Section I,
the "translator", scans the statement program which represents the
flow chart of the problem, In addition to allocating storage for
the variables, it prepares a program in a psuedo-machine code for~
using relative and floating addresses. Section II, the tassembler®,
allocates storage for the program, translates it into Datatron
code and optimizes the coded program by a looping routine, '
Section III, the '"displayer", supplies to the programmer all the
jinformation needed for running the compiled program, This includes
a detailed print out of the original statements and of the program, -

and a paper tape of the progran,

The main compiler routine is composed of these three sections
and an extension dictionary., In addition, there is a preliminary
part which stores the statement program on magnetic tape and
initiates compilation. At present there are three routines that

will accomplish this aspect. They are:

1. Pretape - for use when the statement program is on

paper tape in the compiler code,

2, Card Input Translation Routine ~ for use when the
statement program is on cards, The card code, a
two digit code, must first be translated into the
compiler two digit code before it is stored on .

magnetic tape.

3, Compiler Statement Check Routine (CSCR) - for use
both with paper tape.and cards, This routine

incorporates routines 1 and 2 , and also checks the

- 17 =°

statements for: format errors. and inadmissible symbol
pairs prior to compilation,

The compiler is stored on magnetic tape from four paper tapes.

These are:

1.
2.
3.
b

Section I
Section II
Section IIT

Extension Dictionary

The auxiliary equipment listed below is necessary if the

Purdue compiler is to be used. In addition, the function of

each is given,

: 1.

2.
E 3.
. Le

Tape Unit I

a, For storage of the original statement program

in the ccmpiler two digit code.
b. For temporary storage of the semi-looped program.
Tape Unit 2
a, For storaze of the compiler routine.

b. For temporazry storage of
i, the psuedo-machine code program,
ii, the lcoped program.
Paper Tape Inpub
a. To read the compilér into main memory for
positioning on magnetic tape.
b, For input of the statement program,

Card. Input (optional)

For input of the statement program,

- 18 =

5¢ Flexowriter
For detailed print ocut of the original statement

program and the compiled machine language program. o \&A
Nt

‘High Speed Punch < ¢

. , ctl)
For punch out of the compiled machine language program, (!‘c\w:\ b

-19 -

B, Section I,

Section I has two functions: assigning storage for the
variables and the statement dictionary, and generating a psuedo-
machine language program for each statement. The overall flow
diagram of 3ection I is given below and the function of each

part is discussed.,

Input
| Scanner

IEnd of Statement
S Routine

= fn

N ——
Stat ement SymbOl i Matrix Generatorsi
Scanner .4DCannerr“*“““"’"“-"“'**

1 # fn

last
statement

|

./ A
{Section II|

1, Input Scanner,

The input scanner examines only the first statement of the
program - the input statement, Starting with the word input,
the scanner proceeds from left to right assigning storage first
for the i variables, then the y’s, the ¢’s, and the statement
dictionary. The latter is used by linkage and relatidn state-
ments, The Base address of the compiled program is also

determined by the input scanner,
2, Statement Scanner.

The statement scanner examines one statement at a time,
It starts with the finish pulse at the end of the last state-
ment (left f) and searches for the location of the finish pulse
at the end of the current statement (right f). These two finish
pulses delimit the statement, If, instead of a right f, a flag
indicates the end of the statement program is detected, control

is transferred to Section II,

- 20 =

3, Symbol 3canner.

The symbol scanner starts with the right f of the current

statement and proceeds from right to left examining symbol

pairs using the matrix. The matrix determines if a symbol pair

is admissible and the generator associated with it.
L, Generators,

The generators compile the orders - in psuedo-machine
language code - or set up the compiler parameters as dic--
tated by the symbol pair. The exit of all generators with
exception of that one associated with fn, is to the symbol"

scanner,
5, End of Statement Routine.

The end of statement routine inserts after the compiled
psuedo-machine language program of the statement, information
about the statement, This includes the statement number and
information as to the location of the statement on magnetic:
tape in its original form. The latter is .used for part of .
the detailed print out in Section III. Thebcompiled psuedo--
machine language program for the statement is then stored on

magnetic tape and control returned to the statement scanner,

- 2] -

Ce Section II,

£ The overall flow diagram of Section II is given below,
Its main function is that of an assembler - starting with

. - the psuedo-machine language code of each statement and

= resulting in the final looped progran.

,; I+ —

Psuedo-Code Translation First Pass
Generation of D and S’ of Looping|

|
z

Rt
———

\[/

L

£l

last
statement

i

Y
Extension Storage Allocation
Generation of D/ Using D

and E Dictionary

|

Second Pass |
of Looping ’

Modification of !
Addresses in §' |

jiv —
_ |Section IIT|

1. Psuedo-Code Translation.

In this part, the psuedo-machine language ccde is changed
into Datatron code, statement by statement.. The relative pro-
gram addresses are changed to machine addresses., The first
address of the program is set equal to the base address as
determined by the input scanner in Section I, Two dictionaries,
the internal statement dictionary, S' , and the current exten-—
sion dictionary, D, are generated. The contents of D is a list

of the extensions required by the program.
2., Internal Statement Dictionary - S'.

The internal statement dictionary is generated using the
information inserted by ‘the end of statement routine of
Section I. It is arranged according to the incoming sequence
of the statements and is composed of two Datatron words per
statement. The first word contains the statement number and
the address of the first order in the statement program. This
address is modified after the second pass of looping. This
modification results from the expansion of the program by the
looping routine, The second word contains the block and symbol
information necessary to locate on magnetic tape the left and

right finish pulses which delimit the statement.
3. First Pass of Looping.

The first pass of looping generates a semi-looped programn,
Tt divides the program and constants into blocks of twenty,
with orders starting in the zero modulo twenty location and
constants in the nineteen modulo twenty location. A1l refer—
ences to constants are modified so that they refer to the
7 loop. As each block of twenty is completed, a cub order to
the next block is inserted as the last order of the block.

This is done, statement by statement, but more than one statement

{or parts thereof) can be contained in a single block of twenty,

-23 -

,* . s

L. Extension Storage Allocation,

After the last statement has been semi-locoped, main memory
storage is allocated for the extensicns., This utilizes the exten= .-
sion dictionary, E, on magnetic tape and the current extension
dictionary, D, and generates D', For each extension listed in D,
the contents of D' is the block length, tape address, and assigned
main merory address. If an extension is listed in D, but the
information concerning it is not stored in E, the block length is

entered by the programmer (or operator) from the computer console,
5. Second Pass of Looping,

The second pass of looping modifies the semi~looped program
block by block. For change of control to extensions, the main mem-
ory address: of the extension is inserted using D and D', If an
order refers to the program, its a2ddress must be modified. This is
necessitated by the expansion of the program through looping, With
certain orders, a simple change of address is not always possible
and a block dictionary must be generated as part of the final
program, ’

ks
!
4
H
-%

H

f

A

b oo ot vt trr

D. Section III.

The general flow diagram of Section III, the displayer,

is shown below,
|
Detailed
Print Out
|

i

3
Punch out of D, |
D', and tape call
for Extension
Positioning Routine;

Geﬁerate Statement
Dictionary =~ S

Punch out of S,
compiled program,
and mod one sum
check

Position program
and extensions in
main memory

- 25 -

B e T) W

N
el

s S, oW g i BRI Y

b e ot

1. Detailed Print Cut.

Thé detailed print out contains all pertinent information

concerning the program, It is ordered as follows:
a. The addresses of 10, yO, c¢0, sO, and kO,

These are the first addresses used by the variables,

i, ¥y, and c, the statement dictionary, and the program,

b, A list of the extensions in the program, their block

length, main memory address, and tape address,
‘¢. The first statement of the problem,

d, The program associated with the first statement

including the addresses and their contents.

€. A repftition of c. and d. for each statement of

the problem.

f, The block dictionary if one was generated in the

second pass of looping,

2. Extension Positioning Rcoutine,

This routine positions in main memory the extensions used
in the problem that are stored in magnetic tape. The decisions

are based on the contents of D and D!.

The extension positioning routine is employed both by the
compiler and the final compiled program, The compiler uses it
when positioning the program for immediate running., In order
for the final compiled progran to utilize it, D, D, a tape
search and a tape read of the routine is punched out as part

of the compiled program,
- 3+ Statement Dfictionary.

This dictionary is part of the compiled program and

is used by relation and linkage statements, It is ordered

/7
- 25 -

5o, dine s b ki

ko Mt b b T R

e e

ol

L

SRR SN T WO 1

kaccording to statement number and starts in address sO. There

is one word per statement whose contents is a cub to the first
order in the statement, It is generated from the internal

statement dictionary, S7.
Le Punch Cut,

The punch out contains the statement dictionary, the
compiled program, a mod one sum check of both, and the necessary
paper tape commands for reading the information back into the
computer,

5. Final Positioning,

This portion of Section III is equivalent to reading
in of the punched out informaticn; i.e., the complete program.
Its purpose is to permit immediate running after read-in of the
data for the problem,

- 27 -

Example

The following example will indicate the use of the compiler
with a relatively simple problem, namely, the standard deviation.

Given a set of variables x. where 1 < J 5 n and n < 999,

compute and print out the standard deviation, The formula for
the standard deviation, s, is | '

=2
(1) s=='-\/2j o :

Sl

. x.
J J

where x =

I. x% - % (. x‘)2
or (2) s =\ J 3 J J

Relabeling the variables for use with the compiler, we have
il = j and yil = x,. Since n is itself g variable, let i2 = n,

cl and ¢2 will be used as temporary storage,

Thus, the flow diagram of formula 2 is:

cl = 0| el = yil + cl |
>R =0 — s i) =31 + 1], 2

il =0 2 =yil” + S?J

o5 ki1 2 3o

no

* “"I
, “r jc - 012/—{2

’print oub e Je2 = 1/

| c2 F | Y12 -~ 1
STOP|

N, et bt ai gy

The compiler statements for this flow diagram are:

input i2 y999 c2 si0 f

1scl=0fFf
2s5c2=0f
3sil=0f
i Ls il =3l +1f
- 55 cl=yil + el f
6sc2=c2+yilp2f
o 7rgh, ril<i2f
8 s c2 = "200e, (c2 - ((cLp2)/i2))/ (i2-1) "¢
9o0c2f
10h f

Code

00
o1
02
03
oL
05
06
07
08
09

10

12
13

15
16
17
18
19
20

22
23

APPENDIX A -~ TWO DIGIT CODE

Character

(@)

N B N1 O W

OBBI—‘WL’-P'S'OQV&O'Q-OU‘@

- 30 =

Code

25
26
27
28
29
30
31
32
33
3L
35

1O
L1
42
43
L
45
L6
L7
L8
49
50
51

99

Character

B ¥ E 9 8 N oo

+

~— % e

ANIAN 1 o~ o

~
-

space

DAL R

‘Appendix B

The admissible symbol pairs are listed below grouped

according to generators, n designates a digit,

+ ci in

ng n
n, n -
R nr n x
nh n/ cn ii
: n) np
3 ne n ¥
n s c (i(
nll
no ai
€, 0.y
e U
n ay
b ac ocC
n . fn
a oi
nf gn
a (rn
A gi »
<
< bn
hf
n = b (a
-~ 31 -

FIRp—

XU\ W +
Lo PP oPpP P P oW

~

* YO\ M

N

- 32 -

+

TN X

?

| ad e fede

~

T NN H® KO

£

b3

o~ N

i
i
i

[ad

H,

AN B

SNOWOW |
4 oY od oW oY

~
Q

L
0«

NN
0 Y9

A ANINIA B n

27y
7 C
<7

<¢c

<7y
<c¢c

AN B

AN ®
Mo

e

AN W

-33 =

n

TN ™

%

AIAw

TN M

AN IA D

+ i

	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif
	p 0013.tif
	p 0014.tif
	p 0015.tif
	p 0016.tif
	p 0017.tif
	p 0018.tif
	p 0019.tif
	p 0020.tif
	p 0021.tif
	p 0022.tif
	p 0023.tif
	p 0024.tif
	p 0025.tif
	p 0026.tif
	p 0027.tif
	p 0028.tif
	p 0029.tif
	p 0030.tif
	p 0031.tif
	p 0032.tif
	p 0033.tif
	p 0034.tif
	p 0035.tif
	p 0036.tif
	p 0037.tif
	p 0038.tif

