BURROUGHS CDRFORATION : 2111
Product Plehning, DPS :

April 15, 1963
CONFIDENTIAL

SUBJECT: Preliminary Design of a Business Data Processor

TO: J. N. Me'rnet, Manager
Programming Systems Planning Department

FRQM: D. E. Knuth, Consultant -

This report describes the design'of a data processor oriented towards
business problems. After extensive discussions with Engineering and
Product Planning personnel, I feel this design has a good deal of merit.

I feel the decisions made satisfy the "guidelines™ set up for the proposed
coxputer; the goals which were primarily stressed in this design are the
following:

1. Low cost of the computer. ' This is by far the most importent
© goal. ’

2, Simplicity of compilation and efficiency of execution for COBOL
programs.

3. Emphasis on processing of magnetic tape and bulk file storage.

Ot courée, there are hundreds of alternatives at every step when designing
a computer. With each decision I have reached, I will try to give the main
reasons for adopting this poliey.

Memogx Unit

The memory is to be character organized, so that a single character is used
or written at one time. Characters are addressed in decimal fashion, with
addresses from 0 to 2 maximum of 99999. -

The engineers say that an extremely reliable 2-microsecond memory can be
built; furthermore, they seem to be unanimous in opposition to keeping -
parity bits in memory since they feel this is an unnecessary expense.
Arguments in favor of including parity: (1) The Marketing Division feels

BURROUGHS CDRPORATION
Product Planning, DPS

J. N. Mernmer -2 - April 15, 1963

CONFIDENTIAL

it will be of advantage for selling cowputers snd, (2) In my personal
experience, no core memory has performed as well as the engineers claim,

so only by including parity bits can we ever have proof that the wemory

is as re¥lable as they claim, Arguments against parity: (1) The memory

is quite reliable and has the characteristic that when it fails, it usually
does not affect only a single bit, but rather starts behaving very wildly.
In such cases, the user will know enough to call the engineer promptly
anyway, and the built-in test equipment on Burroughs memories enables good
maintenance. (2) The extra cost of parity actually makes the machine
harder to sell, conteracting the so-celled ssles value of parity.

An interesting fact came to light from discussion with Engineering. When
"modular’ memory is designed so that several sizes of memory are opticnal,

it is relatively easy to design the memory so that the word size changes

and the number of words stays fixed; it is much more expensive to have a
remory which grows by increasing the number of words, leaving the word

size fixed. This suprising fact can be put to good advantage; in particular,
it would seem to solve the parity problem raised in the preceding paragraph,
since we could easily design two sizes of memory, one with parity and one
without. The customer then can buy his memory with parity at a certain extra
cost if he wants; we can put a definite dollar value on parity with little
extra cost to Burroughs.

The choise of memory organized by character (i.e., one word equals one
character plus possible parity) was made for several reasons: .

1. It causes a significant decrease in cost by decreasing the size or
even eliminating registers in the processor, memory unit, and input-
output devices.

2. Although a character-at-a-time memory would seem to be much slower,
tests indicate an increase of running time of less than 10% for arith-
metic processing, with no increase of time for input-output operations.
For the highest speed input-output occurs with the bulk file which can
operate at one character every three microseconds; even with two 100 KC
tapes operating simultaneously, this would mean an average of a character
every five microseconds, and it is possible to minimize the demand on
the memory. The assumption is made here (justified below) that no two
of the three operations "bulk file, tape compute” will be occurring
sxmultaneously, :

3. A machine designed to process business problems (and COBOL in particular)
should preferable allow variable length fields and addressing by char-
acter. When the memory is in fact word-organized, a good deal of hard-
ware is involved to do the automatic adjustment. Suppoeing the word
size is five characters, a field of three characters or less can be
readily accessed one character at a time, while a field of more than

BURROUGHS CORPORATION
Product Planning, DPS

J. N. Merner -3 . April 15, 1963

CONFIDENTIAL

three characters long has better than half a chance of being split
across two or more words. On reading from memory it is a problem to
assemble these words, but the problem is significantly increased when
we attempt to store into memory to avoid changing the unspecified
portions of the words. The simplest soluticns to these problems are
to do them serially with shifting registers, but this actually uses
up the time which was saved by accessing several characters at once,
and it means the introduction of a significant amount of circuitry
and an extra "gathering" register. A fast "record transfer," a
fairly common operation, is impossible on a word-organized computer
unless the addresses are aligned. Tests on word length of one, five,
and ten characters indicate that a greater word size causes a savings
-of time only in the accessing of the stored program; the remainder of
the processing actually takes slightly longer to do (using the serial
shifting registers) and requires much wmore internal circuitry. After
considering a number of machine organizations, it was clear that a
word-organized computer should have word-organized addressing and
word-organized operation codes; therefore, it would be umsuitable

for COBOL programs.

4. There is, however, a way to build the memory so that it (externally)
gives the appearance of being character-organized, but the word size
can be modular. The latter is important because, as mentioned earlier,

- a modular memory is much less expensive when the word size rather than
the nuuaber of words is modular. A way to do this with & minimum of
circuitry is described below; it has the effect of slowing down the
wemory to four microseconds in the worst case (which is rare and can
be avoided when referring to disc files) and speeding up the memory to
one microsecond a good part of the time. The effect of this is to
allow modular memory with a much smaller price tag (in £fact, getting up
to three or four times as much memory at the same cost!) by letting
the word size be modular; when a customer purcheses additional memory,
he gets a slight increase of speed as well!

The minimum memory was stated as 10,000 characters, but 1 believe this is
unrealistic., A COBOL compiler requires extensive tables, and I believe
it could be squeezed into 20,000 characters, which is perhaps equivalent
to less then 3,000 words on the 220 computer, if several passes are used;
but a COBOL im 10,000 characters is fairly ridvculous. Therefore, I would
recommend a 20K memory for the minimum configuration with expansion to
40K, 80K and 100K (by having word sizes of 1, 2, 4, 5 charecters, respec-
tively). A word size of three is incommensurate with 10 and so it is to
be avoided. In this case, it would be silly to market a 60K memory if it
causes the cost of all the other memories to go up significantly.

BURROUGHS CORPORATION
Product Plapning, DPS

J. N, Merner -4 - April 15, 1963

CONFIDENTIAL

If the demand for wmemories in sll sizes from 10K to 100K, in steps of .0K,
is definitely required, this can be done by allowing the capability of
hooking two memory units to the computer, each of which has possible con-
figurations of 10K, 20K, 40K, or 50K (for word size of 1, 2, 4, 5 respec-
tively). PFor the scheme to be described will work without 11mitation
even if several different word sizes are present in memory! A 30K memory
could be built up from a 20K (with word size 2) end a 10K (with word size 1).
A 70K memory could be built up from a 50K and a 20K, ete. The 10,000 word
memory in a 220 ccmputer is done by having two 5,000 word memories.

Here is the scheme referred to for having the memory unit give the impres-
sion of being a character memory, while actually having larger word size.
The MIR has transfer paths leading to and from all character positions.

An auxiliary word register W contains the address of the word currently
sitting in the MIR. The following takes place (let M be the address of
the character desired and let Mw, Mc be the corresponding word address

and character within the word in memory).

Action requested: READ M.

a. If Mw=W, transmit the Mc character of the MIR

b. If Mw # W, and if previous request was a WRITE, then first
do a WRITE cycle to store the MIR, then go to
step c. .

c. If Mu # W, and previous request was READ, then set W = Mw

and do a READ cycle. Go to step a.

Action requested: WRITE M.

a. If Mw = W, replace the Mc character of the MIR,

b. XIf Mu # W, and if previous request was a WRITE, them first
do a WRITE cycle to store the MIR, then go to
step c.

c. IEf Mw # W, and if previous request was READ, then set

W = Mw and do a READ cycle. Go to step a.

Note that this READ cycle could be a destructive read-out of the core if
this is advantageous. Also note that in several cases (such as reading
from bulk f£ile) the READ cycle is unnecessary here; therefore, a way to
inhibit this READ cycle should be provided,

BURROUGHS CORPCRATION
Product Planning, DPS

J« N. Meruer -5~ April 15, 1963

CONFIDENTIAL

This manipulation can all be done by the memory unit, with no change
required in the processor. Experiments indicate that the case Mv = W
occurs frequently, especlially when scanning the stored program, so that
time is saved. The worst case occurs vhen doing simultareous READ~READ
from two tape units vhen the memory slows down to four microseconds per
character. I have not had the opportunity to discuss with experience
whether a simpler scheme (which would read, change ore character, and
store all in one memoxry cycle) is feasible; if this is true, step b, of
this procedure could be ocmitted, and step a. of the WRITE action would
be lengthened to include a memory cycle. Then the worst case would again
be cut to one memory cycle (two microseconds).

To summarize the section on memory, I have presented a case for a character-
at-a-time memory, as far as the processor is concernsd; but a memory device
can be designed with modular word size (thus, with considerably less cost
thon medular number of words) which gives the appearance of being a char-

- acter memory. :

Syllable Structure

One of the significant advances in processor design in recent years has

been the advent of syllables for program strings rather than fixed format
instructions, and Burroughs (with the B5000 and D825) is one of the pioneers
in this field. A sylleble stnicture provides great flexibility and decreases
the memory space reguired for program storage since each operation can be
built to use only as many syllebles as it needs. The design to be described
shows how a machine need not be a ‘one-address,” ‘two-address,” or ‘'three-
address ' machine. Some operations have no addresses; some have one; some
have two; some may have one hundred if the programmer desires. The machine
to be described cannot only do the sequence "ADD A to B’ (2-address), but

it can do "ADD A end B putting the result in " (3-address), also ADD A,B,C
putting the result in D' (k-address), and many other variants, such as

"ADD A,B,C,D GIVING E,F" in COBOL which can be expressed as a 6-address
operation in this computer. A variable number of addresseés is particularly
well suited to COBOL programs, not only because of the arithietic verbs, but
because of the requirements of ‘multiple-precision”’ involved when long fields
are to be manipulated.

A syllable structure also provides advaﬁte.geé for using index registers,
allowing any number of index registers to apply to a given address. This
is importani for efficient handling of COBOL subscripts.

The fact that addresses may go up to 99999 would mean five BCD characters
are necessary to specify the address. But even a casual glance at a
typical program written for the 220 shows that a significant number of
addresses are 0, 1, 2, or 9999 {meaning -1); in fact, nearly all of the
index-modified addresses are of this type. A syllable structure enables
these addresses to be shortened to one digit-signed addresses.

BURRCUGHS CORPORATIOH
Product Planning, DPS

J. N. Merner -6 - April 15, 1963

CONFIDENTIAL

Therefore, the use of syllables tends to shorten the storage space nceded
for programs, tends to imcrease flexibility, and tends 4o fit more nicely
with COBOL than a fixed formzl instruction word. A small portion of the

. storage space gained by going to syllable structure is lost by the require-
ment that the different types of syllables must be identified from each
other, but this loss is minimized by imposing certain rules of sequence

on the syllables.

An interesting development comes to light when using syllables with numeric
data; the least significant digit and sign are needed first. For this
reason, 1% becomes desirable to store the successive steps of a program in
descending locations raether than in ascending order. This simple change
may seem rather radical at Tirst giance; bub actually, there is no reason
for alarm since a COBOL user need never know what direction the program
goes internally, end even an assembly program user doesn't have to make
much of an adjustment. On the other hand, this change makes considerable
savings in circuitry and execution time.

Iet us now describe the general format for syllables before discussing
detailed characteristics. Whenever we refer to the 'following" or "next”
syllable, we actuslly mean the one which will be exscuted next; that is,
one vhich is stored in the preceding character position. Each syllables
is a single character with positions ABB421; an attempt has been made to
ensure that the syllable 11111l will never appear anywhere in a progran
string. .

Address Syllables

Our machine has an I register (holding 5 decimal digits, no sign) which is
used for indexing. Every addrees is normally indexed by the I register;
the resetting end changing of the I register are handled by methods to be
explained later. In a serial machine, it costs no extra time to have -
indexing by I on every address since we merely run the address through the
adder rather than transfer it directly. \

The address sylleble one is identified by A bit = O. If the B bit is 1,
it indicates that the I register is not to be cleared after indexing. If
the B bit is 0, it indicates resetting of I immediately after indexing.
The 421 bits are set to O-T to indicate variants of the current operators
as described under the operator syllsble. The 8 bit is used to suppress
indexing by the I register. - '

The address syllable two follows address syllable one. The A bit is on if
the address is a literal, off otherwise; the B bit is on only if a scali
sylleble follows. The 8421 bits specify the lemgth of the operand field
(except they have specisl meaning on certain operators); this length should

BURRCUGHS CORPORATION
Product Planning, DPS

J. §. Merner -7T- , April 15, 1963

CORFIDERTIAL

normally be from 1 to 8 for alphabetic items, 1 to 12 for numeric items, or
else undefined results occur. If the addresas 1s a literal, the B8 bits of
-address sylleble one are ignored.

The scaling syllable follows address syllable two if its B bit was on.

This is used for decimal-point aligmment as required by COBOL. The effect
is, in general, to make the operand appear as if it were multiplied by v
some positive power of 10. The A bit is reserved for future specifications;
the B bit is on only if rounding of the register is required (see below).
The 8421 bits specify amounts of scaling desired.

If the item is used as a source field; it is effectively multiplied by 10°8
and its length effectively increased by S. If the item is used as a receiv-
ing field, the register being stored is shifted 8 places to the right (with
or without subsequent rounding) before storing the result. The scaling
syllable may also be used for other purposes im certain operations.

The address itself follows, using as many syllebles as digits in the address
(1SD first). In the case of a literal, the length of the literal specified
hovw many characters are given, and they are simply written in the program
string (ISD first). Por nonliterals, the character address is given normally
to be indexed by the I register. If this address is negative, the B bit of
the 1SD is set on (the result after indexing should be positive). The A bit
of the MSD is set on to delimit the end of the address, and all other A bits
are Zero. :

Summary of Address Syllables

Address Scaling Add 8yl 2 Add Syl 1
A end 0 literal 0
B sign round ~'scale save I
8 d s £ i ignore I
L i c a op
2 g a ¢ n vari|
1 i 1t g ant |
% e o t
r|- h

BURRCUGHS CORPORATION
Product Planning, DPS

Jo No lﬁrne!' - 8 - Aml 15’ 1963

CONFIDENTIAL

Examples: The address of character 1002, without indexing, a three-character
field, scale by 1, save I register, op-variant 1:

A : B B
1002 1 3 9

The address "(I-register)-1," a five-character field, no scaling,

op variant 7:' Ab B

1 5 T

The constant "1, " op variant 4:
A

1 1 &

Addresses are usually given for LSD of the operand, except in input-output
operations and other cases which are specifically mentioned. Whenever an
address by MSD is given literal addresses are not allowed. This lack of
consistency between MSD and ISD is done intentionally to save circuitry.

An assembly progrem (having the £ield length) can do the conversion between
MSD and LSD; the programmer needn’'t be mixed up.

Index _S;[lla.bles

There are up to 16 index registers, each of which is stored in memory and
consists of 5 decimel digits (no sign). Tho AB bits of these words are

not part of the index value and mey be cleared by index register operations.
The nemory allocation is:

Locations Index Register Number
¥D LD
00000 OOOOL 0
00005 00009 1
0000 0001k 2
00070 000Th .1k

00075 00079 15

BURROUGHS CORPORATION
Product Planning, DPS

Jo No mrner - 9 - Apﬁl 15’ 1963

CONFIDENTIAL

Eech indexing syllable simply adds the conienés of the specified index
register to the I register. The AB bits of an indexing syllable are set
to 10 (to identify the type of syllable); the 81&21. bits give the number of
the index register (0-15).

Operator Syllsbles

The third major type of syllable is the operator syllable, identified by
AB = 11. The 8421 bits give the operator class. The operator class is a
number from O-1l; operator classes l-1l are for operators with a fixed
number of operands, and operator class O is for those operators with
arbitrarily many operands.

When the operator class is zero, the following syllable gives the current
operator. This "'current operator” is put into a special one-character
register called the C register, but no action takes place until succeeding
address syllables occur. Then the variant portion of that address, together
with the current C reglster setting, specifies the operation which takes
place. The C register is not affected by Operators of class 1-1b; the only
way it can be changed is as mentionmed above.

dnput~Output

Since I am by no means an authority on input-output equipment, it would be
rresumptuous of me to compleiely specify the input-output operations for
the proposed system; I leave that to more capable hands. The input-output -
operations given here are merely suggestions ahcming how input-output may
be incorporated into this processor design.

I have, however, spent a great deal of time considering the con'brovers:i.al
issue of whether read-wyite-compute should be allowed on this system. Afier
many discussions, I am firmly convinced that read-write-compute would raise
the cost of this system out of bounds.

1. The cost of the processor is considerebly increased, since a word-
orgenized memory is necessary to account for increased load on the
wemory unit. This raises the cost of the memory unit a2lso. Further-
wore, a much more extensive interrupt capability would need to be
bullt into the processor.

2. The cost of the tape contrel units is cons:lderably increased, s:lnee they
will neced MIR and MAR registers of their own, and also command and
control registers which are otherwise borrowed from the central -
processor.

BURROUGHS CORPORATION
Product Planning, DPS

J. N. Merner - 10 - April 15, 1963

CONFIDENTIAL

3. The increased complexity of the computer not only increases cost, but
decreases reliability.

L, It is just as easy (if not easier) to write a control program which
utilizes a simultaneous Read-Write (no computation) command as it is
to write a control program which utilizes a simultaneous Read-Write-
Compute. A Read-Write command, together with a Read-Read command,
will nearly cut tape processing time in half, and the further addition
of Read-Write-Compute does not actually give much of an additicnal
saving in time. ' .

Discussions with Engineering indicate a relatively small change in a tape
control unit to work with a Reed-Write command. Furthermore, a Read-Pead
command is very easy to add o the tape control (if there is already a
Read-Write command). The extra cost of Read-Write is the cost of two tape
controls rather than one, and a slight additional cost for each tape unit
because some additional lines between units are necessary.

Therefore, I strongly recommend that this computer have Read-Write and
Read-Read capability, but not Read-Write-Compute which involves extensive
further cost. If we were planning & larger scale computer, Read-Write-Compute
along with several other refinements would be preferable; indeed some more
extensive multiplexing would then be highly desirabie.

Reglsters

The computer achieves greater speed and flexibility from internal registers.
Since arithmetic processing is not emphasized, arithmetic can be done serially,
and the registers will be rather inexpensive since they do not need much
capability (except for shifting to the right). The following registers are
present. :

A Register and B Register: Each has 48 bits plus a sign bit; the 48 bits
hold either 8 characters (ir which case, the sign has no significance)
or 12 digits (BCD form). These registers are capable of shifting right.
The A register can shift by 4- or 6-bit groups, but the B register can

only shift by 4-bit groups.

I Register: 20 bits capable of shifting right only. This register has
already been mentioned.

J, K Registers: 20 bits each; these actually are embedded in the B register.
They are capeble of counting up or down in steps of one. These are used as
auxiliary address registers in input-output commands and the move verb.

BURROUGHS CCRPORATION
Product Planning, DPS

J. N. Merner - 11 - April 15, 1963

CONFIDENTIAL

C Register: 6 bits, holds current class zero operator.
8, L Registers: U bits each, hold scale and length from address syllables.

Toggles 6 bits, 2 bits represent two overflow toggles (for arithmetic
overflow and index register overflow) and are also used as the comparison
toggle (high, low, or equal states). Four bits for tape toggles.

P Register: 20 bits, holds location of current syllable.

M Register: 20 bits, holds location of current operand. (The M register
might be combined with the I register, but this would deiract a little
from the indexing capability as far as "save 1’ goes. However, some
programuing experience may indicate that the M register might as well be
the same as the I register.)

Arithmetic Operatérs

The follcwing operations we designed to implement COBOL arithmetic verbs
satisfactorily, while keeping computer clrcuitry to a minimum. The
minimum requirements of COBOL are met along with the possibility of hand-
ling long operands using multiple precision techniques.

ADD (Class 0); C register settings for Class O operator will be designed
by Engineering.

V =0 Load A numerically (The sign of A is set to the sign of the operand,
and the A register is loaded in BCD fashion with the numeric portion
of the operand. Maximum length scale factor is 12. Overflow toggle
is reset.

V = 1 Store A numerically (The A register is shifted right according to
the scale factor; perhaps rounded, then the numeric portion of the
-operand is set equal to the contents of A. The zone bits of the
operand are all set to zero, except the B bit of 1ISD is set to the
sign of A. The A register is unchanged.

V =2 Add to A (The signed numeric operand is added into the contents of
the A register. If the result is zero, the sign is set to plus.
Overflow may occur.) v

V = 3 On size error (The "length” field L of the operand actually expresses
the maximum allowable size of the operand. If the overflow toggle is
set, or if the contents of the A register is 10~ s & branch occurs to
the syllable specified. The contents of A is unchanged. Note: If
scaling is specified, oﬁ_gnﬂgg mey occur_as in store A; in this case,
the maximum size is 1 rather than 107.) - v ,

BURRCUGHS CORPORATION
Product FPlanning, DPS

J. N. Merner ; o -12 - April 15, 1963

CONFIDENTIAL

V=6 Add to AB, upper half (Registers A,B are treated as single 2h-digit
registers with the sign of A. The operand is added into the upper
portion. This is the same as Add to A except, if the result causes
the sign of A to be changed, the B register is complemented. Over-
flow may occur.

V=T Add to AB, lower half (Analogous to V = 6, adding into B with possible
carry into A, even possible overflow.)
ADD ABSOLUTE (Class 0)

V=0 Ioad A absolute (Same as load A nmnericany, except sign of A is
unconditionally set to plus.)

V=1 Store A sbsolute (Same as Store A numerically, except zone bits of
the operand are unchanged.

V =2 Add to A absolute (Same as Add to A, except operand is treated as
positive.)

V = 3 On size error (Same as for ADD)

L}

L Add to A binary (The numeric portion of the operand is added into

A
the A register treating both as binary numbers, ignoring all signs.)

V = 5 Add absolute and store (The operand, treated positive, plus the
- contents of the A register which is signed replaces the value of the
operand without changing any of the zone bits. The A regilster is
unchanged. Rounding may occur, but A register is still unchanged.
The result of the operation must be positive, negative results are
complemented.)

V=6 Add to AB, upper half, a.bsolube (Same as for ADD, but operand is
positive.) _

V=T Add to AB, lower half, absolute (Sa.me as for ADD, but operand is
pos:ltive.')

SUBTRACT (Class 0O)

V=0 Load A numerically

V=1 BStore A numerically

V=2 Subtract A from operand, putting result in A

BURROUGHS CORPORATION
Product Planning, DES

J. N. Merner -13 - April 15, 1963

CONFIDENTIAL

SUBTRACT (Class O) - Continued
= On size error
Add to A

Subtract operand from AB, upper half

< 49 <« <
]

3
3
6
7 Subtract operand from AB, lower half

SUBTRACT ABSOLUTE (Class 0)
Ioad A absolute

L

Store A absolute

Subtract A from operand absolute (ignore zone bits of operand)
On size error 4

Add to A

< 4 @€ < < <
[}]
A W n -~ O

Subtract A from operand, store absolute (zone bits of operand are
unchanged; A is unchanged. Rounding may occur.)

V = 6 Subtract absolute operand from AB, upper

V = T Subtract absolute operand from AB, lower

MUIPIFLY {(Class O) Perhaps there 1s a better way to arrange this, but
the following seems simples} for hardware and COBOL compatibility.
V=0 Ioad B mmericaily

V = 1 Store A numerically

V =2 Multiply register B by the operend, putting result in register A.
Overflow is possible. ' _

V=3 On size error

BURROUGHS CORPORATION
Product Planning, DPS

J. N. Mexner -1 - April 15, 1963

CONFIDERTIAL

DIVIDE (Class O) More complete specifications for DIVIDE will be made later.

V=0
V=1
V=2

=

V=24

Load B numerically

Store B numerically

Divide B into operand result in A. (The operand is first transferred
to A, then the division cycles occur storing the result in some fixad

reserved memory locations. Afterwords, the result is transferred to
the A register.) .

On size error

Remainder divide B into operand (Same as DIVIDE, but remainder is
left in A.) ‘

LOGIC (Class O)

Ioad A alphabetically. (6 bit characters are loaded imto the A register

V=0
left justified with zero filled on the right. Scale factor indicates
a number of zeroes to be filled in at the left (or blanks if “rounding”
specified). The length L is set to include the scale factor; L-S is
the number of characters in memory. All alphabetic data movement is
in this format. Maximum L is 8. The sign of register A 1s unchanged.)

V = 1 Store A alphabetically

V=2 ADD (logical and with operand)

= 3 ADD without carry (logical exclusive or)

V=4 OR (logiéal or)

Data Movement

MOVE (Class O)

V=0 ZILoad A alphabetically

V=1 Move ALL (Same as MOVE unedited, except the source register is not
used; the MSD of register A is moved into all characters of the
destination.) :

V=2 ILoad sign (The B bit of the character addressed replaces the sign

of register A.)

BURROCUGHS CORPORATION
Product Planning, DFS

J. N. Merner -15 - April 15, 1963

CONFIDENTIAL

MOVE (Class 0) - Continued
V = 3 Branch nonzero move (Branch to this address if overflow is on.)

V=4 Ioad source (The source register J is set to the value of the
address specified. The length scales are ignored.)

V=5 ILoad picture (The picture register K is set to the value of the
address specified.)

V = 6 Move unedited (The length of all moves is specified by the scale
and length fields as 105 + L. The addresses all specify MSD rather
than LSD; the desired number of characters is moved start:lng from
the source address. Afterwards, the source address points to the
character following the last character transferred. The overflow
is set on if any nonzexro characters have occurred in the source
stream, off otherwise.)

V= T Move edited (Same as MOVE, but the picture register specified the
MSD of an editing stream. Editing occurs as specified below.)

The following are editing rules designed to handle any COBOL construction
wvith a transliteration of characters done by the compd.ler. '

Character in Picture Stream

O or any with zone bits on =~ Insert this character (except on
floating , is suppressed).

1 (zero suppress) Transfer blank or zero according
to zero suppress rules.
3 (check protect) Transfer # or zero according to
' zero suppress rules
4 (+ sign) - Insert + if sign A is plus, - if
, sign A is minus

6 (- sign) Insert blank if sign A 1s plus, - if

' sign A is wminus
9 (floating $) If first nonzero character occurs at

this point, back source stream up
by one and insert $ sign there.

BURROUGHS CORPORATION
Product Planning, DPS

J« N. Merner - 16 - Apﬁl 15’ 1963

CORPIDERTIAL

Editing Rules - Continued

Binary

Binary

Character in Picture Streanm

5 (floating +) Combination of 9 and 4

7 (floating -) Combination of 9 and 6

12 CR Insert two blanks if sign A is plus,

: CR if minus.

14 DB A Insert two blanks if sign A is plus,
DB if winus. _

10 transmit alpha ~ Transmit source character unedited.

11 <ransmit numeric Pransmit source character, set zones
Zexro. '

EXAMINE (cla.sa: 0)

lLoad A alphabetically
Store B numerieally

Replace and tally all (The length of the operand addressed by MSD is
given as 10S + L. For every character of this operand which equals
the second character {from the left) of register A, the first char-
acter is substituted and register J (low-order part of B) is increased
by one. A "rounding’ specification means zZone bits are ignored in
the comparison and unchanged in the replacement.

Repl_ace and tally first
Replace and tally leading

'Replace and tally until first

If replacement is not desired, simply uake the two characters in A
egual to each cother.

BURROUGHS CORPORATION
Product Phnning, DPS

Jo No kmz‘ - 17 had Apl‘il 15, 1963

CONFIDENTIAL

Conditions and Branching Verbs

If (Class 0)
V=0 Load A numerically
V=1 Ioad A alphabetically
V=2 COmpare numerically (The eontents of A treated numerically is compared
with the operand treated numerically. The comparison toggles are set
a.ccord:l.nglqr The action is exactly as 1if the subtract operation was
performed and the result tested for positive, negative, or zero;
except the A register is unchanged by this comparison. Minus zero
is equal to plus zero.)
V = 3 Branch on relation (The comparison toggle is set to either low, equal,
or high. The value of L tells what branch is desired:
L = 0 Branch unconditionally
L = 1 Branch on low
L = 2 Branch on equal
L = 3 Branch on low or egual
L = 4 Branch on high
L = 5 Branch on unequal
L = 6 Branch on high or equal
L = 7 Branch unconditionally)
V = 4 Compare alphabetically (L left characters of A are compared with the
L left characters of the operand according to collating sequence.
The operand is addressed by LSD as usual. The result sets the com-
perison toggles to low, egual, or high.)
V = 6 Test A alphabetic (If I leftmost characters of A ars alphabetic, i.e.,
A - % or space, branch to the specified syllable.)
V =7 Test A numeric {If L leftmost characters of A are numeric, i.e.,

0 - 9 or + or -, branch to the specified syllable.)

BURROUGHS CORPORATION
Product Planning, DES

J. N. Merner - 18 - April 15, 1963

CONFIDENTIAL

PERFORM (Class Q) CCBOL specifies a peculiar return wechanism for subroutines.
V= 0 Load A numerically (Used for passing parameters)
V=1l load A alphabetically
V=2 Load B numerically
V = 3 Branch on relation. (Sce 1F verd.)
V = b Store A numerically
V=5 BStore A alphabetically
V = 6 Store B numerically |
V = 7 Record exit (The address must be “subroutine exit switch" syllable
* followed by a five-character address field. The syllable is set

to exit,)and the preceding syllables are set to the current address
minus L.

Set Index Register {Class 1)

The following syllable specifies the index register, and the B bit specifies
“save I” or not. The A bit specifies "ignore I" or not, as in address syllable
one. The following syllables are like numeric address syllables; they replace
the spee:;fied index register. (This address mey be I wodified as an ordimary
address. ’ . o

Increase Index Reglister (Class 2)

Analogous, but increasing the specified index register. The index overflow
toggle is set on if overflow occurs, off otherwlse.

Decrease Index Register (Class 3)

Analogous. Index overflow toggle set if result is less than zero (in com-
plemented form) as in DBB on the 220.

Shift Right A (Class b)
The following syllable tells in its B bit whether an alphabetic shift or

numeric shift is desired. The amount of shift is8 giver in the numeric
portion. The A bit specifiles whether or not the shift is circulating.

BURROUGHS CORPORATIOR
Product Planning, DPFS

J. N. Merner - 19 - April 15, 1963

CONFIDERTIAL

Shift Right AB (Class 5)
Numeric shifts allowed only.

Clear A (Class 6)

The A register is set 4o plus zero.
Clear B (Class 7)

The B regiéter is set to plus zero.
Index Branch (Class 8)

Branch if index overflow is on to the syllable specified by the next five
characters.

Subroutine Exit Off (Class 12)

This is a NO-OP, skip the next five characters of the code.
Subroutine Exit On (Class 13)

This syllable is changed in memory to a “subroutine exit off" and an
unconditional branch to the syllable specified by the next five characters.

No-Operation (Class 1k4)

This syllable is skipped.

Input-Output Operations

Tape File Processing (Class 0)

V = 1 Store B numeric (After a tape operation, the number of characters
processed remains specified in the B register as the address of the
character following the last one transferred.)

V = 3 Branch on tape condition (L specifies the condition and/or conditious
which cause branching: 8 bit for primary error, 4 bit for primary
EOT or T™M, 2 bit for secondary error, 1 bit for secondary EOT or TM.)

V=14 Ioad primary (Ssme as load source in MOVE) L = unit

BURROUGHS CORPQRATION
Product Planning, DPS

J. N. Merner -20 - April 15, 1963

CONFIDENTIAL

V = 5 Ioad secondary (Seme as load picture in MOVE) L = wit

V=6 Tape I/0 (5 and L specify the secondary and primary operations
according to the following code:

"~ 0 FNo operation
1 Read binary (forward) record
2 Read backward record
3 Read forward
L Write binary (specific number of characters)
6 Write (until group mark sensed)

10 Write (specific number of characters)
V = T Tape control (L specifies the unit; 5 specifies

O Erase tape (number of characters given by address)
1 Rewind tape
2 Backspace tape one record
3 Rewind tape with lock.)

The secondary operation may not be a Write operation. The primary and
secondary addresses needed have been already loaded into the B register,

as MSD (except 1SD for read backward). This operation may destroy the con-
tents of the A register. The address specifies the number of characters to
be written, and it is ignored unless L = 4 or 10. If S8 = 0, simultaneous
Read-Read or Read-Write occurs. The tape indicators are reset by this
operation unless a tape error cccurred at this time. A group mark is
written at the end of each input record.

Awxiliary Input-Output Operations (for slower speed input-output)
V =0 Initiate (Input from the unit specified by L)

V = 1 Accept address is ignored. (Input from the buffer of the wmit
specified by L)

V = 2 Select interrupt (The address is selected as the place to branch to
on interrupt; this address i1s stored in a fixed place in memory. L
specifies the unit on which interrupt is selected.)

BURROUGHS CORPORATION
Product Planning, DPS

J. N. Merner -21 - April 15, 1963

CONFIDENTIAL

V = 4 Branch Ready (If unit specified by L is "ready.")
V = 5 Branch Not Ready (If unit specified by L is "not ready.")

V = 6 Display (Initiate output on unit specified by L by transferring a
record to its buffer. For printer, 8 may specify printer comtrol.)

To winimize cost, only a very limited interrupt facility is %o be built into
the processor. Some interrupt processing is desirable in order to be able
to do the lowest level multi-processing, as desired. This type of multi-
processing would allow a card-to-tape, tape-to-printer or punch, inquiry
station, or console routine to operate in conjunction with the main program.
Such a requirement can be met with -a very inexpensive interrupt system in
which precisely one unit is selected. Wkenever this unit goes from "not
ready" to "ready’ status, an interrupt bit is set on; this causes an inter-
rupt to occur as soon as the current operation is finished in the processor.
Interrupt means that P register, C register, and toggles are stored in a
fixed place, and branching occurs to another fixed place.

Restart Processor (Class 9) Iloads P, C, and toggles to restart processgor
after lnterrupt.

Bulk Pile {Class O) This operation remains to be specified.

D. E. Knuth
/s8

OAOW

0192UON ugys wydyy
POITPH ©A0R pelIpaun A0R ¥ pron £ peo] qoueag PROT NIV 3AOR Y peo1 JAOR
; wydiy sydiy
¥0 q0x9 AV | V ax03§ V puo] 01901
Ag apTAIg 20339 g Ag | otasumpN | Otaewuny
Jepurvuey | °21g u) °PTATA | € 92038 g pBo] JAYAIQ
20337 g g | o1ieuny | otasumpy B
3218 uo Aydrayn | v 21035 | @ peoy ATdILT0H
. o - - 1 aIniosqy)
IPH0T § V WOXZ 23ddg g v moag | 930318 2anjosqgy J0117 v |oantoeqy ieanvorqy
aInyoeqy ovaiqng jeanyosqy 3ovaiqng 30vIIGNS Vv O3 PPY | 9218 W) IovIquyg | ¥V 83103§ Y pevol 107084V €NS
AIoueR -
M0 g 3oddp ¢ 30113 moag v | otaommy | orxomny
v woag 3dveaiqng | v woaz ideaiqng Vv 03 ppy | ezys up 310833qNg | v 01038 | ¥V peOT 1oval€ns
10M0" xeddf) 23018 puy Axeurg J031y 23n108qy | 2INntosqy §33niosqy
g V 9INTOSqV PPV | € V 93N[08QV PPY a3niosqyv ppy Y PPY | ®2I5 UQ V PPV | ¥ 23038 Vv peog FLATOSEV aav
_ : . 201313 oraemmpN | ojasuny =
aemoT g ¥ 02 PPV | 20ddn § v o2 PRV 927§ UD V01 PPY | VY ©103g{ YV PROT aqy
{=A 9=A S=A 1=/ - g=A Z=A I=A O=A olez 88810

*a1qissod se 3uor s H uT urswea Avm qaoa 278uTs © 3BY} 08 SIWTI IBI2ASS pIjwadaa 238 siojeiado Ausy

S¥OLVEII0 J0 AJVIBNS

§4a ‘Buruweld IONPOZ;
NOILVEOQRQD SHONOYINE

*do-oy 71
uc 21x3 qng 158§
330 3TX° qng A
11
ot
308830013 3aV189Y 6
Youwlq xXIpul 8
g I8 L
vV 18810 9
g Vv 34312 37748 S
v 39811 IJ7U8 1
X9puy 9seeId8(q £
X9pu} 28VLIOUT 4
xopuy 39g 1
103v39dp 88810
:0J22UON SEBT)
< A Z < < é 4 e 3114 wing
Apeog Apeoy 3dnidequl anduy Induy
nding 4eidsiq JON youwag Youexg 3091eg | 3deooy | e3wr3TuUI 0/1 X8VITIXOV
A1wpuodag Axentag 2dmy, owuaawz S
foaauoy adey, o/1 adag, yeoT PO youwag g 23038 ONISSF00dd Favl
‘ dTI%WNN {UOTIVIAY DTauny Tqd1y | oTIemny
ITXH paoovey draewnN € 23018 | eydiy v 81038 v 23038 yousag g peoq] ¥ peoT] ¥V pBo} Wd0d83dd
Bydiy juotieay oTIounyN Bydly | O7IoumyN
Oflemny v 189 eudty v 1893 axedwmon yousag aa8duon v peo1 v peon a1
38314 | PaTpEet | 3siid STasanN | sadiv
1¥34q g pue g ITpuey | ypue ¥ty 3 pue yi{ g 21038 V peo] - ANIRVXE

§da ‘Sutuue1g 3I°npoag
NOILYVY0Od8Q0D SHONOWINg

	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif
	p 0013.tif
	p 0014.tif
	p 0015.tif
	p 0016.tif
	p 0017.tif
	p 0018.tif
	p 0019.tif
	p 0020.tif
	p 0021.tif
	p 0022.tif
	p 0023.tif

