2439

Gier Algol Tramslator -] -
General Pass Hochanisn
3. May 1962.

THE TRANSLATION PROBLEM IN MACHIKIS WITH A NON-HOHMOGENEOUS STORE.

The translation of an Algol program ccmsists basically in the combinatiom of
tvo dodiea of information, viz. the information supplied by the Algol scurce rregra
and that of ths trenslation program (fhe translator). Unless the machine has a s
ficiently large fast homogensous store to hold both of thase bodies simultanecusly
some division of these bodiss becomes necsssary. Two ways of making ¢this division
suggest themsslves: In the one we attempt to perform a purely secquential scan throug
the sourcs program, taking a small sectiom at a time. In the other we ;| divide the
translator into several functional sulunits and let thess opsrate on the complete
source programx or the partially tranulated interwediate vorsions of it in turn.
This latter method is thon a multisean proceas.

In a machina which has a sufficimmtly large fast store to hold ths ccaplote
translator and its tables the sequential method is ¢learly preferable. However, if
the fast store is not large enough to hold the transléitor the multigcen process is
" better. This is because in a mequentisl procees the order in which reforences are

mado to tho various perts of the tramslator is unknown, since this order dopsnds
on tho source program. tharefore, in & sequential process, we arve forced to™ < Simul-
ar scan of the source program and almost random references to all parts
of the tromslator. In a multiscan process, on the other hand, the part of the trans
lator used during a particular scan is fixed snd the only roference to a large body
of information is the purely linear scan through the partially translated program.
For tlicse reasons the Cior Algol Translator will use a maltiscan mothod.
It is interesting to note that o Gier this choice is entirely compatible with
a high trenslation speed. In fact, the time for tranaferring a program occupying
150 drum tracks into the core store ard back again, as it will be neccscary during
each pass, takes only about 6 seconds. If 10 pesses are necessary the total drum
transfor time will thus be about 1 minute for this rather large progrom. It must
be oxpected that the actual translaticn process will require considerably more tizeo
" than this, and thus the simultaneous drun tronsfer facility in Gier will work to
our full advantage.

INTERMEDIATE LANGUAGES.

Ina mltlpnss translator the choica of intermediate languages becomes of prime
inportanca The following conflicting factors have to be considered: From the point
of view of the individual socans (or translator"pesses"”) great flexibility amd a grea
nultitudo of structures of varying length is deeirable. From the point of view of
the ... programs which have to perform the packing and wnpacking of information, whi
in mmaary during each scan, uniformity of structure is daairable. Uniformity is
&8lso desirable for translator checking purposes.

In view of these consideeations the following compromize has beom adepted: All
intormediate langua ges are expressed in torms of basic units of information each of
10 bits. This unit is called a"byte". . Thus the.
input to each pass and the output from it will always conaist of a uniforn string
of bytes. Within each intermediate language any amount of structure within this
byte string may be employed in ordsr to communicate more intricate structures.

Tlms. for example, a nunhor :Ln the original Algol program will in most of the inte:o»
i ";f.w\ ‘i-mmsmn e varvenon e o

Gier Algel Translater =2=
Genernl ’ass Hochanica
30 I‘w 1962

"nmumbor mark™ whils the remalning fcur supply the actual valus of the number.
However, from ths point sf vicw of the gerorsl packing and wapscking progres the
various intermediate lansuagss are vadistinguiskable, simce they all consist of
a wnifora bLyte string,

By this nethed the rrograms vwhich will perform the paciding end unpackiag of
the intermediate versiom3s of the prczrem and whiech will teke them from the drum
and store them om the drum will bo the sams fer all #8338, In additica sines ths
output from each pass iz always ¢f ithe same form the) test cutput program con be
used for all passee gnd can be ccupled to ths ¢onmon pasa gdmimistraiicm. This
will probably facilitate ths checking of the transiator greatly.

. REVERSE SCAHS AND ERECR REXOVAL.

In 8 mlidpass {translater it iz highly advestegeoas o lot soms of the sems
bs roverse szans, i.e. s3sns vhich start at the end of e progren axd move howard
the begin. First of all ihe problsm of farwerd rofsrences clearly is solved comple
in this menmer. In adlition it besomes ensy to eliminate syntastically incerrac
soctione of the program kiring the translationm, This is imporisat beczuss it is
highly desirsble that en error which haz bsen detected doss not prevent the trans-
lation process frem continuing to chssk ths rest of the program. The way of doing
this in the Cier Algol tremslator is as Tollowa: During the syntectical cheek of
the program (pess 3) e secisl byte *statement start" is cutput at every point whe
an Algol stetcment starts in the texi. If a syntestical error is foumd in 2 stata-
ment a spocial byte "troible™ is cutgsut and the vest of Hhe symbols of 2he statame
up till the first following semicolo: (3} or end are skipped complotely. The follo
scan is 2 backward scan. Every time this scon finds the byie "iSroudlo™ it will ski
~all bytos back to the first "statemsat start" point. In this way the coaplete in-
correct text is removed. At the some tims various parameters describing the state-
of the translation are ruset to appripriats values to cneble the translatica to co
tinme to translate the fullowing staiement correctly.

ERHNOR SIGNALING.

The translator inclides an extensive checking of the formai correciness of ta
source progrem. Lvary tis an error :is found en orror description will be preduced
idn the ocutput from the tansletor. This will include the location and kind of the
errar. The location will bs indisated by the number of the line in the original
Algol test where it ocewrz. In erder to facilitate the ideatification of lines
the first pass of the trinslatiom will produes a copy of every 10'th line of the
progran in its eutput, with the lino nwabsr insertsd at the beogimming of the linae.
The kind of the errcr will be described by an appropriate exrror messago.

Gier Algol Translator : -3
Gettoral Pass Hochanism
5+ Hay 1962

STORAGE OF THE PARMIALLY TRANSATED PHOGHAM.

, According to the deucriptiom givem zbove all passcs vse the sume penerel pend
administration. Az far as ths individusl pass nrograsms arve ecmosrmsd the gonevel

' pass administration is a subroutine with two entriss, we Tor inmat and e for e
In fact these two eatriec are almost completely independent sinca they ve Hwo in-
dependent buffers in their commmica’ion with the drum. The gousral ross sdmivde
stration usez 4 sections of 40 werds each in the core store. Fro of thote ars wesd
as buffers for the input to thz pass programs, the other twe for tha oulpst fram
‘the pass program. Normally one of tho imput buffers holds the brrtes of thal szetie
of the program which is presently being procszsed by the pess progras while the
othor input tuffer holds the next imjmt drum traclk. Whem o1l the bytes oz %he
active buffer have been used the .. . transfer from &um

of the mext following drum {rack is initiatsd. At ithe sezg tims the poss progrex
can proceed to provess tke input bytcs waiting ir the sther ot Sufler. A sipdlw
buffering technigue is used oo the ocutput sids.

The bytes packed into the Cier words with 4 bytse in a word. Thus cme drum
track holds 160 bytes. The unpackimg {on the imput sids) snd pocking {on the sutm
side) of the bytes into the words arc performed by the genersl pers sdndzivivation.
This turns out to be a moere time contuming process then the sorrenpending druws tram

fors. In fect the average unpacking {ims por byte is shout 220 eicircrocends, which
means that the unpacking of the 160 tytos on a track will taits sbeub 35 rdllizecon
This again means that except for collisions between dmume transfers callsd frox the
input and output side ths timo for dzum trassfers will be nezlisible, owing ts the
parallel opsration during drum transiers in Gior. Tha time for pecking on ths cut-
put side being about 26C micrcseconds poer byte, the total tims for the admi-
nistration of a pass bacones about 77 millissconds per drum track plus the time
wasted due te collisions of drum transfers, about 5 milliseconds on tho averais.
The processing time por byte of course varies greatly, the minimum boing abous

80 microseconds (dircct copying from input to output) while a normel figure of
perhaps 500 microsaeconds amay be éxpected, If this holds the pess gdrdristration
and processing times are comparable end the total time for 10 passes will be about
2 seconds per drun track.

On the drum the tracis holding the partially translalsd progran sro used in a
cyclic manner. Probably adout half ths drum will be aveilable for this, ukle tho
rest of the drum will hold the translator and the running systen programs. Suppsas
that the available tracks ere numberel from 1 to N. The first pasz will them plass
ita output in tracks no. 1 to I, say, whore clearly Il € H. Ths nsccnd pazs will
take its input from tracks no. 1, 2, zte. and will pilace ilis culpui iz tracks
Hrl, M2, etc. When output to track ns. N has been me do the aduinistindlion will
continue to output into track no. 1, 2, ete. vwhich presumsbly huvs now been relusss
by the input side sdminisirstion. This process is continusd smoothly from ons pass
to tho next, except for the case that the direction of scanning is roversed. This

does not cause difficulty howover, since the cyclic uso of tha diun trackes nay
. with oqual eas place in either dirsetion. only in the prograss which perforn 4

packing and unpacking a feuw changes are nccessary.

Gier Algol Translator . o .
Goneral Pass liechanism
4. May 1962

HACHINE A:RANGEMENT OF THE GENERAL PASS ADFINISTRATION.

Algol descriptions o the ganeral pass sdministratious sve found brlow. The
following netes show the storsge of £1¢ tramelator om the dnm axd ths use of tha
core store during translaiioa.

Drum: 320 tracks (40 words each) Core store: 1024 wordn

SLIP Absoluts

address sddrcan

0-31 SLIP (symbolic imwmut program) 0-15 Ressyved Tox SLIP

32~ ? Running system 16=54 Drum and pecking sdzdinistration

Jel4 = Forward paas;j se) core store of partially translofted pregram

2014 . Backward pas: {16 - 55 {foxward or baskuzard).

Jel4 testprint, print, new line, y 55 Base in = 13
entry to message .1 treek total) 56-95 Input buffer 1 i rrmad

4c14 endpass (1 track) 96 suffor stop K‘%ﬁ;g jrentiiell

5el4 messsge (output moogram,l trak) G7-136 Input uffer 2 & ©Uoxts by moass

6014 - texts for message (1 track) 137 Bass out

Tel4-? Pass n 338177 Cutmt buifer 1 et P

Po? Passnel (o ter cass 178 Buffar stop i:)‘(;‘;‘f‘i",‘fff’“‘ HoE
... E 279-218 Output tuffer 2 ¥ (EI93683

?-? Passl HeogTans 219 Buffer siop

? = 7 . Partially txanslaied 220~259 testprint, prini, new lins, eniry
Algol program to message, waiveraal trmaslator
(tracknumbers FIRST to LAST) paranetors

. 262~ Translaior pess progrems
LASP+) Table of strings, formsd ' and their tables
- 319 during pass 1 ' 99g

960-339 Also usged for endpass
1000 Resexrved for SLIP
~1023 :

Taking the tracks of the drum in oxder, this gives a general survey of the
moaning of the various parts: '

SLIP is the input progran used for reading the trenslater into the mechire.
then the translator is corplseted this will of courss bseeme ummscesssry and the com-
plete translator be shifted forward on the dxum,

' The running syster: is the cet of administrative prograws end siandard procs-
dures used by the rumning Algol progrim, when the translation ie comploted. See CGler
Algol Runming System, '

Forward pess and tackward pss: are ths rrogrems perforzing the packing, uvn-
pecking and drum transfersz deseribod cbove in the sescticn cn STCRAGE OF THAR PASTIALL
TRAISIATED PROGRAM. One of these traclks will be placed from 15 t6 54 in the cares.
Two soparate programs have been writtcn in order to make surs that this central pro-
cess runs at the highest possible speed. The . = psss program approprinte to each
soparate pass is transferred to the cores by cndpass.

Gier Algol Translator ol
Gensral Pass Mochanism
7. May 1962

The track holding the programs tostprint, print, new line, and eniry to mee-
sege, in addition to certain universal translator parameters, is permanently held
in the cere store 220-259. Entry to message is used for transferring the message
printing program from drum. The message program will be placed in that ocne of the
tvo output buffers which is not currently being used for collecting outrut. .

s . e This output buffer will always have been
transferved to drum before it is overwritten by message and thorefore neod not be
saved. On exit message will only have to make sure that the output buffer is left
with the correct marks on all words. :

The next frack holds the program emdpess which is used to perform the trensi-
tion from one pass to the next. Whem used this progrsm is transferred to 960-999 in
tho core store. Endpass does the following: 1) The last cutput buffer is filled up
with dummy bytes until it is tremsferrved to the drum. 2) Information about the pess
vhich has just been completed is printed. This will always include the mmber of
used tracks. 3) According to a table held by endpass itself the direction of scan
is peversed if necessary, the appropriate pass program (forward or backward) is trans
forred to 16-54 in the cores, and the program for the pass itself is transferred %o
locations 261 and following.

The message program is a text printing program. As described above it will bs
placed in one of the two output buffers when it is needed. It starts by transferring
a track of text information from the following track to that one of the two input
buffers which has last been t#ansferred from the drum and which has therofore not
yet been processed. At the end of its work the measage program st rostore the
input treck which was overwritten by the text track.

The next seotion of the drum holds the translation programs proper. Thie is
followed by the working section of the drum (see the section on STORAGE OF THE PAR-
TIALLY TRANSLATED FROGRAM above). ,

The very top end of the drum is used for holding a table of strings in the Algo
progrm.‘rhiaiefomdwngﬂwmﬁmtpasaandwinresemdasmchofﬁxe
working seotion of tho drum as it needs. This is possible during pass 1 because the
cyclic use of the working tracks has not yet had the chance of moving to the top of
store (unless the program is too big for the machine).

Gier Algol Translator -
General Pass Mechanism

ALGOL PROGRAMS F(OR THE PASS /DMINISTRATIONS.

The following Algol desciiptioms follow the mmchine codes sufficiently closely
to be of help in decipherirg v,ese. It should be noted, first of all, that the input
and output procedures are righly "snealy" since they use and change a number of non-
local variables. These variablis ave:

intoger cutput word address, output byte number, number of used tracks, number of
available tracks, cutpu: track, last track, input word address, byte address,
input track;

boolean in testmode;
integer arrmy BYTE BUFFER(1:5];
integer arrgy WORD BUFFER[0:164];

The WORD BUFFER is the section 'n the core store from 55 to 219 (page 4). The five
words placed in between and at \ne ends of the buffers proper are used to control
the counting through their marls in Gier. The marks placed on the words in the
WORD BUFFER are as follows:
Marits Usa of tuffor
WORD BUFFER O
1-40
41
42-81
82
83-122
123
124-163
164

In addition to the non-local variable:t a number of non-local procedures are used.
Hopefully those of them which are not declared may be understood from thoir identifie:

Irput 1
Injut 2

OQutput 1

MOMOWONOWMW

Output 2

Drocedure output(byte); value byte; inieger byte; comment This performs the packing
- and drum transfers of the output from each pass in turn. The algorithm given
works only for a forward pass. The one for backward passes is so similar that it
will not be reproducad. For further notes, see the section on STORAGE OF THE PAR-
PIALLY TRANSLATED PROGRAM on page 3;
bogin switch packing := pack first, pack second, pack third, pack fourth;
if in testmode then testprint(byte);
output byte number := output byte number + 1;
£9_to packing foutput byte number];
pack firat: output word address := output word address + 1;
WORD BUFFER ;output word address] := byte;
£o 1o output done;
pack second: WORD BUFFER joutput word address] :=
WORD BUFFER joutput word address] < 2710 + byte;
£ _to output done;
pack third: WORD BUFFER[output word address] t=
WORD BUFFER foutput word address]= 2810 4+ byte;

£9 _fo output done;

L4

Gier Algol Translator : T :
Genoral Pass Mechanism |
10. fiay 1962

pack fourth: WORD BUFFER [output word address] :=
WORD BUFFER [oatput word eddressix2T10 + byte;
output byte number := 03
if maris of(WORD BUFFSR output word address) > O then
begin number of ised tracks := number of used tracks + 1;
if number of used tracks > number of available tracls
then alarm(<<program overflow>, ‘stop');
byte := WORD BUFFER [output word address;
output track := output track + (if output track = lastirack
tken 1 - available tracks
else 1);
TRANSFER TO DRUM(cutput track)from:(output word address - 40)3
if merks = 3 then outyut vord address := output word address - 81;

go to if tris is last then exit from pass olgse pack first
end;
output done:
end output;

integer procedure input; comment This performs the drum transfers and wnpacking
used for input to all pasees except tre first which reads the paper tape. In the
machine code this is coded as an opsn subroutine of the following 2 long orders:
ARS (el) t+1 or P (el) t+l
HS e2 1A HS o2 IAj
begin byte address := ¢ address + 1;
R := BYTE BUFFER[byte address];
Af R = "nonsensebyte" then UNPACK BYTES;
input = R
end input;

UNPACK BYPES; comment This is called every time an input word must be
unpacked, i.e. once for every 4 bytes input by input;
begin integer marks;
input word address := input woxl address + 1; -
narks := marks of (WORD BUFFER [input word address]);
if marks > O then
begin input track = input “rack +
(if input track = last track then l-available tracks else 1);
PRANSFER I'ROM DRUM(input track)tosfinput word address - 40);
if marks = 3 then input word address := input word address - 81;
number of used tracks := number of used tracks - 1
end; .
word = WORD BUFFER| input word nddress];
R := BYTE BUFFER[1] := first part(word);
BYTE BUFFER[2] := socond part(word);
BYTE BUFFER[3] := third part(word);
BYTE BUFFER[4] := fourth part (word);
cogment BYTE BUFFER{S] permanently holds the valus "nonsensebyte”;
byte address := 1
end UNPACK BYTES;

waelr Algol iransiatoy e
Goneral Pase Mechanism
12. May 1962

procedure TRANSFER TO DRUM(track rumber)froms(buffer location)s godes

procedure TRARSFER FROM DRUM(track number)to:(buffer location); sodes

corment; These procedures transfer the 40 words of a track to or from the 40 words
held in the W(RD BUFFER from WORD BUFFER[tuffer location] and onwards;

The following procedures use sowme further non~-local parsmeters:

integer rest of line, pass mumber, CRcounter, information 1, information 2, pass mumber;
boolegn first print in pass, no running, . .- - = ... this is last}

: mg_' dure testprint(n); yalue n; integer n;
begin rest of line := rest of line - 1;
if rest of line = O then new line;
slarv({dddal, n, skrvml(2));
ond testprint;

procedure print(n); value n; interer n;
bogin rest of line := O;

- skrv({ddad}, n, skrvml(2));
end print;

procedure new line;
begin skrvvr; skrvvr
if first print in pass then
begin first print in pass := falges;
skrv({d}, pase nuuber);
skrvtekst({<o });

end
else skrvml(3);
rest of line := 10
end new line;

procedure message(n, kind); value n, kind; integer o, kind;
begin boolsan give up; |
switch action := hopeless, sericus error, error, line number, no line number;
TRANSFER FROM DRUM("message track”)to:(if input word address > 41 them 1
. ’ ~ else 42);
new line;
g0 to action kind ;
hopeless: give up := trus;
serious error: no running = true;
red output;
error: printtext(*error');
line number: printtext(*line*);
print(CRcounter);
no line number: = printtext(n); comment printtext is a procsdure which prints
that text in the text list which has the number given as parameter;
TRANSFER FROM DRUM(track in)to:(if input word sddress > 41 then 1 else 42);
black output;
wait: if drum transfer in progress then go to wait;
if give up then stop
gnd messages

id

Gier Algol Translator =G
Genoral Pass Mechanism

Ls

end pass?

output(0);

working boolean := in testmodes

in testmode := falsa;

output(o); output (0); comment Tais fills the remainder of the output track
until it has been transfexred to drum. output jumps to "exit from pass"
vhen a drum transfer has been completed end "this is last" iz true;

this is last = trus; go to L;

exit from pass: new line;

print(used tracks);
if information 1 # O then print (information 1);
if information 2 # O then print (information 2);
pass number t= pass number + 1;
in testmode := woriing boolean;
if in testimode then wait;
first print in pass 3= true;
marks := marks of(passinformatim|pass number});
R := pass informationjpass numbri;
The table "pase information” tells whether the direction of scan shoul
s reversed (marks > 2). Also fiur addresses are given telling where to find
the new pass program on the drun and where to enter into it
if merks > 1 $hen exchange (inp1t track, ocutput track);
TRAKSFER FROM DRUM(input track) to:(1);

begin integer track, store, first trask, exit;

track := part 1(R);

firat track = pa rt 2(R);

store := part 3(R);

exit 3= part 4(R)s

TRANSFER FROM DRUM(if marks = O v marks = 2 then forward track else backward
track)to:(pass mechanism);

more: track = track ~ 1; store := store - 40;

Ls

end;

TRANSFER FROM DRUM(track)to:(store)s

if track > first track then go_to more;

if input = O then go %o L; coument This eliminates the filler zeroés;

byte address := byte address - 1; comment In this way the last byte will
be repeated;

go_to instructionjexit];

Gier Algol Translator ' -1C-
General Pass Mechanism
12. Hay 1962

SYMBOLIC NAMES FOR THE WHOLE TRANSLATOR (e=NAMES).
Entry points and parameters held as addresses in instructions:

el byte address

€2 inaddress (input word address aad entry to UNPACK BYTES)
e3 outpat

e4 (see below)

e5 entry to message

eb testprint

o7 newline and print
eB8 nswline

e9 print

el0

ell

012 outaddress (output ‘ord address)

General paremeters for translator (ar> storsed at the end of the track holding :
print etc. and are initialized to the values indicated when reading that track from
drum). o4 must be defined right at bezinning of loading.

holds initial value
o4 CRoounter Q o 1
le4 number of used tracis QQ O
2¢4 information 1 for sutput of Q O
%e4 information 2 statistics Q O
44 last track - 1 QQ €20 - 1
S5e4 available tracks - 1 QQ 620 - el9
6e4 input track QQ el9
Te4 output track QQ el9
8s4 no ruming (>0 = false) R 1
9¢4 pass number QQ 1
1004

first track + 1 Q e€l9+1

Gier Algol Translator -l _
Pass 6: Conversion to Polish notation. Type checking.
2. May 1962

INTRODUCTION.

The analysis of expressions and conversion to final machine form ctarts in
pass 6. In this pass expressions are converted into so-called inverse Polish form.
In this form the operations are chosen to conform to those available in the order
code of the machine, but no account is taken of the use of the available machine
rogisters. In pass 7 this string is converted into an oporation string which refers
directly to machine registers. '

THE FORM AND MEANING OF TH: INVERSE POLISH NOTATION.

In the inverse Polish notation expressions consist of a string of .
operands (identifiers etc.) and operators (+ = / > etc.). However, parentheses have
been eliming ted. Examples: '

abs+cd-/

anbecoa
The meaning of an inverse Polish string, i.e. the rules for evaluating the result
of the expression, assumes the existence of a gtack for holding the actual values
of operands, including intermediate results. Let us donote this as follows:
. axzay OPERAND STACK{1:some unknown upper 1imit)
The Polish string never refers directly to a given location in the OPTRAND STACT.
Rather the references are implied in the structure of the Polish string itsclf.
ZThus the . " intermediate results of the evaluation are anonymous.

Now the evaluatinn can be described as follows: Proceed through the string
from left to right in a strictly sequential fashion. When encountering an operand
place this at the top of the OPERAND STACK by performing the following operations:

last used := last used + 1;

OPERAND STACK [last used] := value(operand);
When encountering an operator, perform the corresponding operation on the values
found at the top of the stack and place the result of the operation also at the
top of the stack. The exsct action depends on the nature of the operator. Unary
operators ("negative", = and others to be introduced later) do mot change "last
used". Sxample: - produces the following action:

OPERARD STACK[1ast used] := - OPERAND STACK [last used]
Binary operators (+ / > A etc.) remove one item from the top of the stack. Examplo:
/ produces the following actiom:

last used := last used - 1;

OPERAND STACK [last used] := OPERAND STACK[last used |/

' < OPSRAND STACK [lost used + 1]

As an illustration a step-by-step evaluation of the two above examples will be
presented. In addition to the values held in the OPERAND STACK the mathomatical
expression for these values are given. It should be carefully noted, however, that
the OPERAND STACK can only hold values (numbers, logical values) and the expressions
given are anly for the readers convenience.

Gier Algol Translator o
Pass 6: Conversion to Polish notation. Type checking
21, HMay 1962,

Example of evaluation: a b+ cd -~/
Assume n=l, b=2, c=3, d=A.

Input symbol a |b + ¢ a - /
After processing
of input symbol:
OPERAND STACK[11{1(a){1 (a){3 (atb) 3 (arb)] 3 (a+b}|3 (a+b)| =3 ((a+b)/(c-d))
%3], 2 (v) 3() |3 gcg «1 (c=d)

' 4 (d

Exsmple 2: aabc > A
Assume a=false, b=2, c=3.

Input symbol c > A
After procoss
OPERAND STACK{ 1 i&\e_ (a)|true (-a) true (~a) trua (9a)|true (wa) |false («anbde)
: (v) gbg faloe (bdc)
3 c

CONVERSION OF ALGOL EZXPRESSION INTG INVERSE POLISH FORM.

The converaion of a parenthesized ALGOL expression into inverse Polish form
may be aBpmplished by means of a mothod which has been described by Dijkstra
(APIC Bulletin no. 7, May 1961 and AIGOL Bulletin Supplement no. 10: Making a
Translator for ALGOL 60). This method makes use of priority numbers associated
vwith the operators and psa rentheses as follows.

Priority number Delimiter

0 9282-_[(.1_{.1'2!
1 end |) then elss
2 = :
3 =

4 >

5 v

6 A

7 -

8 < &= 2> %
9 + =

10 "negative" x /
1 1

The mesthod works briefly as follows: The ALGOL axpression is scanned from left
to right. Operands are immediately trensmitted to the output. Operators and left
parentheses are entered into an OPERATOR STACK. This will at any one time hold
those operators which have already occurred in the input but which have not yet
been intered in the output (the Polish string) because the quantity on which the
operator will operate has not yet beer completed. Kach new operator encountered
in the input is compared with the operator waiting at the top of the GPERATOR
STACK. If the priority of the operator waiting in the stack is higher than that
of the new operator the operator waiting is removed from the stack and sent to

Gier Algol Translator =Zen
Pass 6.
2. Hay 1962

the output. This comparison of priorities is repeated until no operator having

a higher priority than the new operator is found in the OPERATOR STACK. Then the
new operator is placed at the top of the stack. Left parantheses arc treated lile
other operators. Right parsntheses (incl. end] ")' then else) on the other hand
will not be placed in the OPERATOL STACK, but will remowe tho corresponding left
parenthesis.

Ezample of conversion from ALGOL to inverse folish notation: {((asb)/(c-d))
Input C ICga = P D)/ | e = ja {))
After processing:
oPERATOR STACK[1 [[C [C ¢ € 1C {C 1C 1C ¢ [C |¢

21 (G L O Q¢ VAR VA VR VR VAR V'

F] - ¢ 1C 10 §{

4] - |-
Output (Polish) a b |+ c d |= !/

A more complete discussion of the operators used in Gisr Algol will be givea
bolow,

TYPE CHECKILG.

The above conversion algorithm may very conveniently be extended with faci-
lities for a complete type checking and a detection of typss of the cperands for
each occurrence of the operators. This latter is of interest particularly for the
power operator because a distinction is needed between intoger and real exponents,

For this present purpose we psrfomm a pseudo evaluation of the expression at
the same time as it is gensrated in ths inverss Polish form. ‘This pseudo evaluation
will of course not involve actual values but will only operate with thefypes of the
values. This, however, is oxactly what is necessary to perform a type checking. ‘
In order to illustrate this approach we give anothor example of a conversion which
includes the behavior of the STACK FOR TYPE COF OPERAND:

Example of conversion with type development: (= aab > ¢), Boolesn a; integer b;

Input: (|~ j&8 |~ b |> e |) zeal c;
After processing
OPERATOR STACK 1] |((I« ((((
2} S N A N L I
3] > >
Output (Polish) - la |-~ |b c |» A
STACK FOR TYPE
OF OPERAND - [1] Boo | Boo | Boo | Boo| Boo |Boo | Boo
2 int | int} int |Boo
[3 resl

Note that the final) produces tho output of two operators > and A.

Gier Algol Translator. ' -
Pass 6.
2. Hoy 1962

oporedds axo oome

By this medhind it is posnibls io 2leok
; censlsteney rale? nay

sistent with the operabors opure?l
be stated as fGlLS’&;Bj. g

Cperator oonds Lield venulis of type
- Ardthmetic
_Relational
Boolesn
For binery opersiors the hendling of i
modified in the follm«:infr 1 muiar. Insboad of

STACK exactly it is posasible to extvact and chogk rhﬂ iy Pl o
the first opsrand b@lengww to a birary opervabor
is entered into the OPERATRSPACK. The m‘ivazzﬁgsggﬁ c~"

" o2

‘s'i*. we d\.s :ﬂet have
to check the consistcncy of an operatiadind bokh of 3 et the same tirs.
A disadvantege iz that in the case of the speiihosdic prrators, + = A/ T we nave
to attach the type of the firzt operenl to that opareiny which is entersd into

the OPERATCR STACK. Thus for example %tiere will be iwo posnible 4+ oporators in the
OPERATOR STACK, ons "integers" and the other "reals". Tha follewing ezample shows’
the use of this mothed: . :

Example of conversion to Polisk notatiza with D&ilfi@c? «,ﬁya msuwlmg.
integer i, J, &k, n, m; resl 8; :

((1 + a)T(J + kxntn))

Input: . ({2 i+ (a) T (i ik jc|n [T]n|))
After processing: :) S ﬁ 11 .
OPERATOR STACK [IC 1 C L CHCTCTOLCIC O TCrCTehe] et [«
2 CLOLOTC T Teti ot ot ot o7 o] o1 2h] oF | 2f
3 i4f 44 SIS IGIeIe
14 U] A S o] i A4
G b o dean] i ix
lel| ‘ o : G EAY |
Output (Polish) il la|+ 3 x| |n m | x 4. |"Fie
TYPE CHECK smcxuj in) | ze|xe inj i [l |dn| in | re-

Noto that in this example the type of n’ﬁ'm is taken to be integer. Further that
it is asoumed that there oxist distinct operstors "Ti" (power to ineger exponent)
and "fr" (power to real exvoment). The dotaila of the t**eamum of arithmotic tynes
will be discussed below,

gt b

Iaie i £

v

wie¥ Algol lhaming Lysvon
26. Jen. 1962 ‘

THE GIER ALGOL RURWIKG SYSPifii.

The mtmetim of #n Algel system mey be divided into 2 najor caeticno:

1. The woming systea (i.e. the programs vhich are used by the ruming Algol code).

. Tho tramelator (i.s. the propran for transforming the scurce progrmm :mto the

fesn roquived by the rumning cy=tem).
) It 43 now quito elear that ths dezizn of an Algol systexm should stert trith the
desise of the ruming srstem, The princiml ivason for fhis is. that the transliation
nreszat i3 not definsd tefore its outpu? has bosa definsd. '

. The majer rroblems of an Algol xumning syastan are the followings
1. sterege allocaticn.
2, Addressing.
3. Jreosdure entyv.

The fourth major vrcblem, dynamic. owm arrays, will bo mored here fxincs it

i;ill ot be imcluded in Gior Algel. .

Solutidns of these problene, nz usad ca DASK, have slresdy besn deseribed
(Jongam, mar: An Inplemnta‘?:im of ALGOL 60 Prosedures, 3IT7 Vol. 1 no. 1 (1961),
Jensem, lendyup, iaur: A torage 2lleccation wehsme for ALGOL €O, BIT Yol, 1 no.
2 (1961) and Coma. ACH about Oct. 1351). Howewver, owing to the differencos in tha
charectoristics of DAX and GIER the prodleme have been attacked aneu.)

Tha characteristics of Gisr which are pezticulerly selovant to the folloring
disguesion exe:

" he coro mewmory is small (4r DASK the wired store has o~factively doubled the
rapld mocses nemory). The drum ie divided ir&o treciks of fimed langth, Llnborate
addrsesing feoilities: relstive, indirees, index, and subroatine marks. Built-in
Tloating point operations, While s dzum trorsfer is ir progress other operatxma

may 3o pepfoined,
SJEORACT ATLUCATION,

Io dssipning the steragy allcoabien ths prinary cwmeesrn is the optivwm uss of
e ey Uimited core 5toers. Aather 4% must Lo copsidorsd a faet that at v time
ZeEdd frequent transidions frem ome past of the pregram te snother, usually ins
cyelie fashion, will deminate. £z am illustuatiom consider the following fregments
of @ procuum, showing the lomer cysls of am iterative msthed for finding the root
of &3 eyeation, e azsuzs That the progran 1o gfored e the drum tracks showm to

e wights

sroosdasy Meee 2 (¥, . . . }; real Py Dy trnck
bagin . . ‘
feg q = q/2 uhilo shs(5) > eps do p
. % i= (Af P> C Shes q 8l3g.-¢) ¢ X J
ot
ises 2(8f2 ¢ (1= (24 13 ¥ ‘ IR
s+ 1)/s) ¥ ebier, . ..) 7 8

RGB! .;.LRALEN ‘ -gm
Gier Algol iuming System
26. Jam. 1962

The for statesent of this fragment will give rise to & cyclic executiom of nrogran
parts rlnoed on the follewing tracks (the 'cracxs hoving the fuacticas abs ol In
have mot boan nmurbered):

6' ﬂb’a. 6' ?’ 8' 1!‘-’ 81. 6. ab&, . @ o

L

eyele
Fron this end oimila® examples we corclwde:
1. The time spent om a particular drum traek is uswally quite short ccmpared
with the time of a drun transfer. .
2. Tho dren trecke needed in a partéflar eycle will contain widely ocattored
‘soetions of the progcren froa diffsront blocks. S
On the basis of this we further conclude ihat the proviows solutica of always
having the conplete prograa belan.m %o a particuinr blocl. in the mpz.d store
at the aame time is poor..
‘mv now attack is dased on tho following schems:

‘1. 7he progran is8 held completsly em the drum, It is divided into seseicma 'hzch
are mplcthindopaadmt, esch section occupying a drem twack, The indoprmisnce
of the sections will moan, in particular, that (m) ths sectice ray be omscuted
fron any place in the core store snd (b) durirg cxecutica the sceticn ¥#ill meke
no asaun:tions whatever with regard to what other zections ney bo presant in the
core store at the samo time, This aguin ncers that vhenevor a refereans fron
one soction to another has to take place thxs mist be handled by a ecmtral, per-
nanant aduinistration.

2. A]) wariables are held in a stack {(of. Dijkatra: GRecursive Prograweing, lua,
fath, Vol. 2 (1960) 312<313). .iote that this is priumarily a storsge sawing
mossure., Tho recursivenesa of procedures becones en almost Iree extre fwoility.

3. ALl that part of the core store vhich is not usod by tho stack or by the adni-
nistrative progrems will be used fo hold as mapy sections of the progrem &3
possible. Jlms the azount of storage availeble for progranm in the sore store
a® well as tho.sections held in this omce mkxeapxezzxikza will be eatirely
dopsndent on the dovelopnont of tho vrogram. In other vords, a clotd-to-optizwe
utilization of the cores store is attempted,

™e permanent adninistration required to handlo thiu schams will keep & 4able
of tho numbore of the drun tracks currently held in the availabls core spass. Jhea-
mcumtomotwtmnmdoﬁonmchemmt& rumning Eogran or
in tho sdninistration this table will be searchod to soo uicither the ¢track is al-
roedy iz tho core store. If it is not it rust be tramoferred from the drem, The
only rwoainiag quostion 1s: whexo to put §t? Or, rathor: which of the currently
availablo trecks should de deetroyed in crder to nake room fox the nov tresk?

In the exanples and dismsioa below two diffarent stratecics for this eholee aze
conaidered:

S?mmfl.fbmxtm&plmtobouodmubo the ome (ollowing the oo
to vhich a drum tranafer has last beem mede, the word "follouving™ understoed in
cyclia: menner. Thus if thexe are 4 track places in tho core stors theso w1l be
filled from the drum in the following order: 1, 2, 3, 4,1, 2, 3, 4, 1, . . .
irrespective of the use which is boing rmade of ‘the available trecis in batien

REOGICRUTRAL R B
Gier Algol ixmming System
26, Jan. 1962. '

STRATEGY 2. The saxt tsack placs to bs used is the one hiolding Sin$ traci
vhich at the moment the naw frwek st be tremsferred Lae been left urmmsed for
tha leagont time. -

In eonparing these two stratesics it should be kept in mind that eleariy
strategy 2 will require s table snd core adnimistration tamm sirate y 1. Thao
it wvill probabdbly bo roalistic ¢o comyarc the porformance of wtrategy 1 having
npl tenci: spaces availabls with that of strategy 2 hawing only a troek smess.

It should further be noted that sinee a ccaplets ssarsh of tho iable of the
aveilable tracis is made before a mew track is tramsferred fronm drum it is olear
that if thore are » track spaces them emy cycls of p { n dvu= traciks esn Bo held
corplotely in tho cores asd no transfers froc dir are necwesary while this eyele
i3 running. this eguin pemms that if stretsgy 1 leaves mel track spaces them o
progras of Nl tracks will rum withou: dyun trsssfszs with sirategy 3, whils
acme transfers vill be neceszary il siretegy 2 withk o tzeeck spaess is usced, In
other words thore will be cesss whero stratezy 1 will be bettar.

Hovewer this is counferacted by ke edvanlagez of zizmlesy 2 in cased where
the progran has cycles which cenmot bu beld conploisly in the zvailudlis spese.
The following table showrs the poresatuge of te@azk transfore whieh do nst rPequire
transfers fron drun for saoe verious <rack eyclos.

Pexcentogs of comtrel tennsfers whish do met
require drun tranofers

~sated trac .
Sepeate syole Strategy 1 Stratsgy 1 Otrategy 2
3 places 4 places 3 places
1, 2,3 4, 3, 2, »-. 23 . 300 6'7
1, 2, 34 49 5. 4, 3, 2, ... 37 37 50
1, 2¢ 30 4, 3 5 3 2, ... 37 37 50
10 2’ ,’ 4' 2. " 5, 2. 3, swe 44 44 6"
1. 2. l’ 3, 4’ 5. 4' cee 28 28 m

Tho 1ast of thess caves ic the ome usod as illustratiom above.

The cedes shown hore have been cixsen mare or less et remdon, alibeush with
some thought to the kind of cycling which night ccour frequemtly i Algel yropTenma,
They shou that the choieo of the strategy is by no nosns obwices, but thet strate-
¢y 2 socens to offexr apprecisble gming at least in scmo casso.

REGR CENIRALSE f=
Gier Algol Humnimg Jystem
295 Jun. 19620

The sbovs appresch werks well for short track cycles, whieh can be held con-
plately in the eveilsble trask ssuess, and for track cycles of mediuz length in
vhich one or more trocks are called ,repentedly dewing the cycle. It is clear that
rothing much can be schisved in the case of lomg track cydles, The remaining case
is that i3 which the nuaber of trucks im the eycle is slightly hizher than the
ribsy of Availeble track places and there ar: no or only insignificant reuse of
tracks within the cy2@s. iz this ease the two abeve strategies will .force a new
drum teansfor al overy trsnsitiem from came track to anothar vhile an appreciable
zain night be achieved by res:rving. all track places but cne for fixed trncks
vhile wsing the last track space {‘or all the remaining trac:s of the eyele.

If situations of this lind are to be discovered it is clear that additional
information adout hx the track cycle must be collected. This auggestion is attrace
tive in the present context because xost of this extra wori: may be porformed vhile
the machine is waitirg for a tranufer from drum to be accomplished.

The following is a spocifie nchome for this purpose: In addition to the above
ndministration a table of the frequency of use of tracks is kept. uinece references
to this tabdle will be made only while the machinc is wajiting for » drum track to
be tronsferred we make this table short, but inconwvenient. It will consist of
s fixed number of items, X say, wherc each itom consists of a. traci: number and
g countor. ithe size of this table, i, will delermine how long cycles we will try
to hendle in an improved manner. L should be sreater than the average number of
available traci: vlaces. Anr upper bound for K will be imposed partly by storage
capacity roasons, partly by the effect of "diminishing retums". when R becomes
much larger than the rumber of avnilable traek spaces.

A the sccond part of this scheme a periodie analysis of the informationm in
the frequoncy teblae iu assumed. - Dasically it is assumed that this analysis will
to perfernmad so rarely that the complete program for doing the analysis is stored
cn drwi. This suggests thab the cignal indieating that the analysis should be
vzrfermicd should depernd primarily on a count of the number of nctual trmsfers
fres drun. : : : - -

vo thus arrive st the following pmicture: dvery tinme sn actual tronsfer from
drum is ¢called the ccumtzr in the frequency table corresnonding . to this track
is increasad. .hen a certain total number of druzm transfers has been porformed
the crdinary srogrnm nction is interruptsd, the special analysis progranm is ealled
froem drum and poseibly a change of' the parameters controlling the strategy ia
nade. ' ‘ _

This leaves the cuesticom of vhat to do if a drum traek which has no entry in
ths frocauency table is c¢nrlled, ané the Trequency table leaves -no wore room for
nay entries. the most 1ikely answer to this seems te be that the conmplete table
s1ould be cleared and the counter of drunm transfers reset to zoro. Xamsrexzaaxfss
iszzxke-ascfaiiexex In aldition rny rescrved traclk spsees should be returned to
tae cormon vool. Jhe reasca for this is as follows: the fact that a tracl: vhich
dscs not appear in the fregquency table i3 beir . transferred imdicates one of two
situations: {a) the track cyele hes more differcat tracks in it than R. Jut this
rz2ans that nonc of the available cirategies will ve of much help and we must just
¢lear the situatien to be resdy tc discover a nowv, adlhorter ¢ycle as quicily as
passible. {b) Ths program is passing from one shorter cycle into another. Again
it da important nct %o let the cbsolete infortmtien in the froquency table influence
the transition into the now situation.

REGNECENTRALRN -5
Gigr Alzol hunning System
29. Jan. 1962.

Finally ve must decide vhat the periodic analysis should do. ‘‘he available
information is: 1) ‘he frequency table: integer array hot track, frequency[l.R]
2) P, the number of transitions between tracks which have not made a dyum transfer
necessary. In addition we know that the sum of the frequencies is equal to a
Tized quantity, K, which is the nuaber of actual drum transfers among a group of
less than R+l tracks which we are prapa red to perform before we wish to perform
the anaiysie. What we want to find out is whether any of the available traeck spa-
cgs should be used to hold cortain tracks permsnontly. A simple and safe test
for this may be performed as follows: If we fix the positions of certain tracks
we must expsct that certain of the advantages of the previous strategy will be
lost. Actually the worst thing vhich may happen is that all the T simple trans-
itions from ome track to andther will now have to in duce a transfer from drws.
This is then tho maximum loea of the new scheme. On the other hand, fixing the
positions of tracks no. tl1, t2, ... , tp, in the available track places means that
all transfers of these tracks will be saved., As long as the current cycle of tracks
continues the loss of T drun trensfers must then bo comparsd with the gain of

Z frequency [v]

drva tmmi‘ars. In ofzher worda. if we cen find P (= n«l where n is the number of
track spaces) fyequencies in the frequency table such that their sum is greater
than ¥ then the tracks corxesponding to these frequencies should be held permanent-
1y in the aveibable spaces as long as the present cycle contimies.
There is no question that considersble gains may be achioved by usmg this
;schnigue. Congsider as aen illustration the adniniatratim of the following track
@:7:‘1{;:
1, £r504£394t5'6D°"'
whsn thers ave § track speces available. Using atratogy 2 the development of a
typleal ¢yele will be hendlod by the following tables:

Stago of Track no, of space Priobity of spece Frequency of treck
Gevolopmont no. 12345 " n0.’1 2 3 45 ne.l &3 45 6
Bsfora cycla 62345 13 7 81114 20 202020 120
ihen im track no.)

i} 1 15 2

2 2 16 , 21

3 3 17 .21

4 4 18 - 21

S v 19

4 v 20

5 v ‘ 21 ’ ,
& 6 . 2 ' 21
> v - 23

After cyclas . 46235 20 22 16 17 23 21212121 1 23

Here only the changed values heve normally been entored. A v in the track i;o. table

REGNZXCINTRALEN efm
Gier Algol Ruming System
30. Jan. 1962

indicates that no transfer from drum i3 nscessary. This table shows that during
one cycle 4 track transitions ars "good® (i.e. requirs no drum trassfer) vhile
5 are "bad". If this cycle is repeated ocur T will incrasse by 4 in each cycle
while the frequencies of tracks no.s8 I, 2, 3, 4, and 6 will increase by 1.

If the cycling is interrupted the ana y=is will accept that 4 tracks be fixed
as long as track no. 5 is not smong thome which are fixed. Dopending on uhich
additionnl track is not fixed the porformance varies as follows:

Traclks not in fixed p placcs Performance
Goed tronsitioas Bad tremsitiens
(1,5), (2,5), (3,5), sand (6,5) N 2
(4,5), 5 4
Strategy 2 for comperison ‘ 4 5

It is interesting to note that the fact that the most frequently used track, no.
5 is oxcluded from being fixod doos not have any particularly undesirable effect.
In fact a cycle having only 2 "bed"™ itrmmsitioms iz as good a porformansze as can
possibly be achiseved under the given c¢ireunstances.

An additional complicating effect sriscs from the fact that in genaral it
cannot be oxpscted that the number of available trmci spaces otays constant during
a ¢ycle. If the cycle incindos entries snd exits from blocks (which mormally it
will) tho space requirements of ths stack will vary. A sizmple way of handlinzy this
is to keep a variable vhich always tells what is the minimum numbor of track
spaces vwhich has been avaikable sinoe the current cycle started. The mumber of
trecks which mpy bo fixed is then ome lass than this minimum figara. For the ssme
reason the tracks which are fixed should be placed at the lov end of the sectice
used for the program tracks in the core stoxe.

The above scheme for handling special cyeles is, however, by no means the only
poesibility. cince i1t is possible that the simple strategy 2 will in practise tuim
out to be quits satisfactory, and sints a detailsd development of the more elaborate
schones will require a considerable amount of work such schemes will lx not bo oom-
sidored any more at pmesent. Consequartly the following Algol program ocmly makes
"use of strategy 2. y

DRUH ADMINISTRATION USING STRATEGY 2.
cament The following program has 4 entries: 1. initialize is entered once at the
beginning of the complete Algol progreme. 2. take item is used to take an item loca-
ted in the program at a point described by the wvalues of "current itrack" and
"relative address", 3. next track is entered from the last instruction of each
track, It will jump to the first instiuction of the next follewing track. 4. trans-
for jumps to the point in the progrem described by "current track" and “relative
address”.;
integer absolute address, bass address, current place, current traek, highest
priority, j, lowest priority, max number of places, number of places,
. relative address; '
Boologn jump;
w a rray track number, priority [1: max number of pla cos] ;

REGNECENTRALEN T
Gier Algel Rumning System

30. Jan.1962

inifialize :

take items
next track:

" transfer:

highest pricrity := pumbor of places := max mumber o placesy
for J :=1 step 1 ustil rumber of plages do
begin track mmba-gﬁ 0;
retarity[3] =
end;
go to instruction E:all address 3]jg

Jump := false;
go_to track sdministration;

current track := currant track + 1;
relative address := O;

Jump := true;

track administration:

track iz in:

for currant plase := nusber of places step =] watil 1 do
if track nunber[cuxmnt plaes] = curreat t-ack then go to track is
lovest prioz*ity ;= highest prierity -~ nupber of plasces;
for J := 1stiep 1 until number of pleces do
_5_4;‘_ . - - lowest priority > pmorityij} then
begin curremt place := J;
lowest priority := priority {j]
end;
PRARSFER FﬁOA .)Rwa(cur'*ant track)i’lace in cores:(base address
+ 407 qwrrent place);
comment ‘he following statexents maks sure that the quantitiss holding
priorities do not overflow;
for J := 1 step 1 until number of places do
priority[j] := pncrzty[sl - lowost prioritys:
highest priority := highest priority - lewest priority;
track numberfcurrent place] := curreat trask; |
highest priority := nrlori‘s‘;yﬁ:urmnt place].-. héigheat priority + 1;
absolute address := base addmas + 40x% current place;

uit for drum transfer:

if drum tranafer is in progross then go to weit for drum transfer;
11‘ jump then go to instruction [ab.aolvte addrgss]

g;g_‘o, iizen = stare{_abscluto &ddress] 3
go_to instma..tzun[call address + l]

T?.ST IIXAHPLE. Follow the retion stcp~-hy=stop. Aftor each jump to & track do next
the a,ct:.cn glven in tho test cxample.

baso address := 160; max numbor of placos = 3¢ cell address := P

P: go to initialisze;

current track = 1; relative address := (; go to transfer,

g0 to next track; -

REGNECETRALN |
Gier Algol Rumning System
30. Jan. 1962.

go_te next track;
go_to next track;

current track := 2; relative addres

go to next trnck;
call address := S; current track := 7; relative address := T;
3: zmo to take itexm;

3 = 12; go to transfaxs;

As the final illustration of the pres:nt storage alleeation scheme, here are
three conceivable situatione taken from ths develepsont during the run of one
program. The vertical lime is & picture of the core stere. At any time it will'

' be divided into thraee major sections: the fixed adzinistration, the program, snd
the stack. The program sgcticn is divided if o the track places, while tho stack
is divided into sections corresponding to the Algol blecks which are presently
active in the progranm.

Situatien 1

po

poe

Fixod sdministration

including variables

Traeck 2

Track 7

Track 4

Track 5

Track 8

jg— Top of stask

Block 5

}_}1cck 4

v Block 1

situation 2

[

Tracic 8
‘racic 7

Traclt 9

~i_,,..---‘l‘s:p of stack

Blecl: 7

Block 5

3309 4

 Bloal: 1

Situabtion 3

el

hazen

Track 8

Track 7

Track 2

“reck 3

Track 4

Treck 5

%:.em Top of stack

Block 4

slock 1

Note that the entry in the stack corresponding to a particular blocic need not be
the sane in the difforent situations because tho arrays declared im the block
nay be of varigblo size.

REGNPCENTRALEN G-

Gier Algel Running byateu
31. Jan. 1962.

#ithin eaeh prograr ivack there cre twe sections: 1) Active instructions,
and 2) Constants. It seems remsomable that the camstants needsd by a particular
piece of ovrogram be stored on the sam: track so that a fized table of constants
is avoided at run time. Excepticm may peasibly be ta}-:en with respect to 2 few of
the smnll integers which sre relatively frequen

Within the section of the stack tslonging te ome bleck thae structure will be
approxinntely as follows:

Part 1: Intermal dlock parameters
(fixed format, fized order)

Part 2: Formg 1 locations and local veriables Value of type proocdure

including temporsries Formal lceations

(the format varies from ome blesk to Injazsrs

the other, tut is cemplotely ceoter= faala

mined by the translator) _ Boolesns
Array identificre and utarage

soefficients

Switoh identificrs and tables (
Tempossries

Part 3: Components of locesl arrays
(the format is calculated et run time)

ADDAESSIHG.

The active instructicas of a progrem traek will need 4 kinds ¢f roferences
to variables or other program sections:

1) References within the same pregram track (short Jjumps, use of constants).
These references obviously can be handled Ly means of relative addressing in Giex.

2) Jumps leading outside the program track, tut within the sawe Algol block.
These will make use of the drum administration dessribed above {onags 7, emtries
“noxt track" and "transfor').

3) doferences to varia bles im ths stack.

4) Go to statements leading out of blesks.

In addition there will be references > a list of constentz, if such a ll-.vt is
used.

The main problems are the kimds %) end 4) snd the sssocisted adwinistretion
of cntries and exits from blocks. The soluticss deszeridsd below largely follow the
principlos described by Dijkstrs (Zin ALGOL-80-Ubersetzer fur dic X1, rathematik
Technik irtschaft, Vol., 8, Wiem (1961}, pp. 54=56 and 115-11Y, translated iato
inzlish as ALGOL Bulletin Supplement no. 10, available from linthematisch Centrum,
28 Boerhanvestraat 49, Austerdam).

HEGNECS! B «10~
Gier Algol Rumning System
31l. Jan. 1962.

The references to wvariables (which all sit in the stack) must all make use
of two pieces of information: '

1) The block number of the variable, mnd

2) The relative addrass of the variable. _ _

The block mumber of a particuler block is obtaimed by scamning the program, countin
+1 at coch block begin snd =1 at each block ond. Thie kind of block number counts
vhat Dijkstra calls the lexicographical depth of the block. For overy block it
indicates the number of lexicographicnlly enclosing blocks. The besie prineciple

of the referencing is the following: at any time the variables vhich may be re-
ferances are the omes declared in the youngest incarnations of the lexicographicall
enclosing blocks. Here the words "reuagest inearnations” refer to the possible
reactivations of blocks through recursive procedure calls., . -

The relative address is simply the position of the variable within that sec-
tion of the stack which vas resorved when the block in which the variable is local
vas ontored. Both the block mumber and the relative eddress cen be detozmined com-
plotely for all variablea by the translator.

. In order to calculate the absolute location of & varieble when the bloeck munbe:
and rolative address are givem it is necessery also to kmow the positions efxai?
in the stack of all those block sections which may be reforenced at the given
moment. This is what Dijkstra calls tie DISPLAY. It is simply e table with an entry
for each of the blocks having numbers n, n<l, n=2, ... 1, 0, where n is the.block
mumber of the block in which we are now working. The entries are tho cbsolite ad—
dresses of the firet item of each of these blocks. In an. obvicus natation we have:

absolute address = relative address + DISPLAY | block mumbor]

Hore it is assumed that the stack is filled at small addresses first. If it starts
-at the high end the relative address should be subtracted.
From this it is cloar that the DISPLAY will have to be changed every time
- blocks are entered or exited from, or oven whon tho value of an expression called
" by name is evaluated. : :
© - As an illustration consider the Zollowing progrom structure and the correspon—
ding davelopment of the contents of the stack: ’ , .

ronl procedure B(. .); . . . o |
. . 3lock B
. Lo .M" om B(S); - T_ 1)4 v
- c Block B
- ¢nd proeedure B; | | o ,
C: bogin . . . - F— P
) pimqe+B(..); ' : Block ¢
S = - HE- P2 ,
&block Cs ' | BlOGk:A
Mu"& b - - = ¥ n

RO

REGNECENTRALEN =11~
Gior Algol mumning System A

31. Jan. 1962.
In this program the block nukbers are:
- ’ Block number
Bloek A 0
Procedure B 1l
Block C 1

Thus the DISPLAY will only have two entries, The values of these two entries
during the development of the programare shown here:

Situation prspravfo] broeray[y]
l. After entry into A Pl -
- 2. Afteor entry into C Pl P2
3¢ After first call of B Py P3
4, After call of B from inside itself P P4
5« After complotion of 4 Pl P3
6. After return to block C Pl P2

It is clear the the DISPLAY acts very much like a set of index rogisters -
and if a sufficient mumbor of index registors were available they might be used
for this purpose. In Gier there is only ome index regiator and it becomes necessary
to keep the DISPLAY separately in the store among the administrative parazeters.
vhen reforencing a variable the-contents of the index register must be set to the
value hold in the appropriate locationm in the store, If, as i3 often tho case,
several variables vhich all bolong to the same block are reforenced just after
each other it is of course only necessary to set the value of tie index register
onde., This can be taken care of by the tramnslator. In addition the varigbles
in thoe outermost block of the program will aluvays be stored at the same place and
ha may bo addressed absolutoly. .

The proper values are inserted into the display with the aid of internal
block paremeters. These consist of 3 permanent locations holding

1. "blosk number", i.¢. the nmumber of the innermost currently active block.

2. "stack reference”, iee. thzmzmmzthczazukthnuzthszmnﬁmzmm

ntztmthtzhumutznumzxznﬁnxhhzkxsmiszxzkélznianxgim the
position in the stack where the pwevious values of the internsl block
paraneters are stored., '

3. "firat free”, i.s. tho address of the first fres location in the stack

(the "top of the stack").

4.

The paramoters located at and next to the location indicated by "stack reference"
are the following:

Location leaning of parsmeter
atack reforence - 4 the return point to use when the current bloek is
exitad from (track number and relative addruss).
stack reforence - 3 "firet free" belonging to the previous block
stacl: reference ~ 3 "dlock number”of previous block
stack refersnce - 1 "stack reference” corresponding to previous block
stack rofcrence "stack referesnce” corresponding to the yourngest incar-

nation of the innermost enclosing block,

REGNECENTRALEN =12=
Gier Algol Ruming System
1. Febr., 1962.

The antry into a simple block may now be deacribed as a call of the follewdng
procedure': : :

procedure LOCK FNTRY(new block number);
begin integor Jj; ' . '-
stack|first frce - 4] := -1; commont This is a dummy return addreas;
stack [first froe - 2] := block mumber;
stack Ifirst free - 1] := stack referencas;
stack|first free - 3] := stack roference := first froe;
first free := first free - 4; :
SUORT CIRCUIT:)
‘block number := new block muamber; .
stack[stack reference] := DISPLAY[block musber - i;
UPDATE DISPLAY:
DISPLAY[block number] := stack roferonce;
for j := block munbor gstep -1 until 1 do
DISPLAY[§=1] := stack [DIsPLazl3]T
end BLOCX EWTRY; |

dore tho mechanisms labelled uiHOiXT CILHCUIT and UPDATS DI.PLAY should properly
be reprosented by calls of procedures since they will be used in othor contexts.
Short eircuit links the new block with the youngest incarnation of the innermost
enclosing block. In doing this it will in general short circuit other blocks in
tho stack, namely any such which have block numbers ireater than "nev block number”
=1, UPDAPE DIGPLAY extracts the addresses along the chain established by JliORT
(EIRCUIT- am;. puts them info the DI.srLAY. This mechaniom was invented by Dijlkstra
loe. cit.). . . .

In simplo blocks the address hold at stack reference - 3 uill be stnck re-
foronco itself. This does not hold for procedure bodies {soe later).

The corresponding exit mechanism, to be used on exit from blocks and proce-
dures, and for go to statements leading out of blocks, will make use of the fol-
lowing procedure: ‘

Dprocedure DEC:.IASE LiVEL; .

baogin block pumber := stack[atack reforence - 21 ;
first free :w stack [stack reference - 3
retum := stack [stack reference - 4]; :
stack roference := atacz:[s'tach reference - l] 3

UPDATE DIGPLAY: A
DI LAY [block nmber] 3= otack reference;
Lor j := block number step -1 until 1 do

DISPLAY [§-1) := stack [prsPLaY [3]T
end DECRIASE LEViL; | |

.
4

REGNECZNIRALEN 13-
Cier Algol Ruaniang System
2. Febr. 1962.

FROCEDURE EWTRY.

The handlirs of preeedure eniry rust to some cextent depcnd oa the storage
allocation and sddrassing. Therefore solutioms, which differ from those used fer
DASK (J. Jensen and P. Naur: An Implementatian of ALGOL 60 Procedures, BIT Vol.
1no. 1 (1961)) must be considsred, zlthough the basic diseussion of course
nay be takem from this earlier work.

The procedure eatry is a prodlem of internal commnicetion within the running
progren. ihere is a choice open as to how to distribute the informatica of what
process has to take place betwesn the ruwming program code itself and the associatesd
administrative programs. If the imforration im the rumning progrem is closoly packed
it will have to be interpreted by a mers elsborate adwministrative program, and
vice versa. In the ;n'esent projact we heve chosen to make a cholcae at this point
vhich differs from that me de in DASK ALGOL. In fact, largely spealing, vhore
there is a choice of where to save stevege spece we . decide as follows:

Host important apaea to save: fixed administratien.

- Less - - = 3 steck,

Least - - e « « 3 rucning program.

The roason for this is thaet tha spece taken by the fixed admmistration is perma-
nontly occupied, while the stack end rwming progrem only take space in the core
storc whon necessary. Thus the above choice iz diroctly a consequence of the sto=
rage allocation schemec, particuhr]y the drum administrntion scheme for.the program,

" The following decislems follow slmost necessarily from the previous design:

Tho formal locatioms must be stored in the stack, like ell other variable parts
of the progrem. They must bo placed in a fixed position relative to the local
quantities of the procedurc body, since they will ba addressed from within the

. body with the aid of the sams referencs address ir the DISPlAY. Whatovor addi-
tional data must also be transmitted durimg a particular procedurc call must
also be pla“eed in the stack. These ccnsiderations give us the following picture
of the stack just after a procedurs haz been called and tha procedure body has
boen entered:

firet freo -l _
Local quantities This is reserved ,
' by the prooedure This structure
body

‘Formal locations 1 is lmoufn,’insido
This is reserved the procedure
Blocl: parametors by the eall e

stack reference ——) body

'Additionll data
“belonging to procedurs
“eall

Previous reseorvations

REX_}HE;CF;’NTRALEN 14~
Gier Algol Running System
5. Febr. 1962.

This arrangement is consistent with the idea that moat of the admimistrative
work of the procedurc entry may be doio using only information availsbic or the
exll side. This is desiratle begsuss {he drum sdministratien makes it umdesirable
to refer repeatedly back snd forth beiwesn the call and the deeleratiocn. The pre—
sent scherwo divides the piocedure entiy work im two:

1) Transmit the namee of all aetval parameters from the call to the stack.,

This can be done exclusively ca the basis of the information in the call.
2) Do eny desired checking of the comsistemey of call s ad doclarvation amd

take value of paremeters called by valuo. This is dens as the first thing

accomplished Wy the pmocedure declaraticn. :

There is still a certzin choice &8 to what shonld be cogsidered to be "addi-
tional data” belomging te the varicus kinds of actual parazetors. Obviously, the
more information has to be transmitied to the stack the more difficult will the
procedure entry became, but on the ctler hand the refcrences {rom within the pro-
cedure body to this inforvation will tacome sasisr. It sssus fairly clear that
constonts im the call should bs transnitted as additional information bocsuse
the information in the foram) locatier thereby gets simplifisd, thus compensating
for the loss of trouble azi storage in the stask. Compound expressiens supplied
as &ctq'al paraneters are lsms ovvicus. It was decided not to trensmit them to the
sta ¢k, but to let the prepedure body refsr to them directly where thoy are in the
call, for the following reasons:

1) If the full advantage of transmitting them to the atack should be gained
it would be necessary to modilfy the sddresses in them %o absolute sddresses in
the process of transmissica to the stack. This weuld recuire sdainistration of
considerable complexity, doing essentially the work which the DISPLAY mechemism
has already been designed to take care of. o

2) - Expressions called by value are called only ocnce at each entry. It would
be an undesirable waste of atorage capacity to let such paraneters eccupy space
in thedtack after it is certain that they will not be used any more. '

With respect to strings (text sirings, not layouts) thesez will be stored
in a special table on the drum. ‘fhey will be addrezsed like progran sections,
the beginning of a particular string being dsscribed oy a "track nucher" and a
"relative address”,

In the description of the form of the procsdure call givea beles: the program
will be represented as a coatinuous string of sy:-bols (integsrs). The information
in this string is given both by tho siagle symbols and by their contoxt. This is
pictured as being written .in the program itself, like program parametors following
the jump to the procedure :all administration.

REGNECERTRALEN ~15-
Gior Algol Rumning System
13. Febr. 1962

The moet complicated problem in the procedure call is the c¢sll of cxpresziona
by nake. It has been decided to use, assentially, the idea of Thunk {see Coemn. ACH
Jan. 1961, by Ingsrman), i.e. every reference from within the proccduze bedy to
a formal paremeter called by name will, if neosssary, evaluato the value of the
corrosponding sctual paramster, place this value in acme location end return with
the address of this location placed in szome umiversal location (a registor of the
machine). This approsch differms from the method used im DASK XLGOL (sce Jensen .
and Naur,loc. cit.) vhere sither tho value or the locatica could be obtained. Ths
reason for this dafferemcs is twofold: a) The treatmsni is simpler because aay
kind of expression (including subseripted varisbles) will be trssted alike in
all eases (both as left parts and in expressions). b) With built-in floating point
tho address (placed in a register) is more generally useful ineido the procedure
body » . . ' .

.The action to take place whencvar a reference to an expression cazlled by name
is made is tho following:

1, Store the current "stack reforsnce”™ and the calling peint, "treck mumber”

and "relative addresa” im suitablo safe locations,

2. Update the display, using the value of "stask reference"” wibich was valid

when the procedure call was mada.

3. Transfer control to ths prograa represeating the expreszign.

' Aftor completion of its work the code for ths expressicn must cell the following
action: : ‘

4. Reset "stack referance”.

5. Update DISPIAY.

6. Return to place from wvhore the refercnce was made,

Note that this description assumes a olight improvemont of the mochanisme
of pa'ges 11 and 12 as follows: At bottom of page 1l correct to read:

stack roference -~ 2 "block numbor"of curéent block

In this vay tho number of input parameters to UiDATT DISPLAY is reduced to boing
"stack referenco™: ’

procedure UPDATE DISPLAY;
block number := 5tackEstnck rofarence + l];
DISPLAY [blook mumber] := stack roforence;
for j := block number step ~1 until 1 do
DISPLAY(§=1] t= atack [DISPLAY [§1]
end UPDATE DISPLAY;

This improvement is due to a private communication by E. \. Dijkstra,

RAGRECENTRALEN -16~
Gier Algol lunning Systin
22, Febr. 1962

SHITCHES.

Switches will be hsndled in the following manner: On entry into the bleck
where the switch is declared a table of the meaning of each switch element is
transferred to the stack. Zach item in this table has exsctly the samc form as
the cantents of a formal loeation. In zddition one extra word tells vhere this
table is placed and how many elements it contains. Subsequent references to
the switch by means of switch desisnstors need only refer to the infermation
in the stack, and in fact primaZily meed only be supplied the locatiom ‘of the
extra word. (ne advantage of this method is that when the identifiecr of a switch
is supplied as an actual parameter in & procedure statement only this extra word
need be transferred and there is no need in references to switch desigznators
to distinguish between formal and non-formsl switeh identifiers.

ihe forn of the information in the sta ck created by the switch declaration
is as follows:

S -~ n: Description of n'th alement
S-nsl: - - (n=1)s% elemont
S - 1: Deseription of lst eluneht
St Address of 1st element = S-1, mumder of ‘elements
This information will ds atorod amorg the other local quamtities of the block.
‘the form of the switch declaration i3 similar to that of a srocedure sta-
terent and will be explained below.

LABELS AXD PHOCEDURZ IDENTIPISRS.

In annlogy with the treatment of switehes labels and procedure idemtifiers
will havo .locations reserved for them in that secticn of the stack which holds the
loeal quantities of the block inm which they are local. Although thisz is not strictly
necesanry this treatrent has been chosen because it simplifies the administration.
In fact the difference batween formal and noa-formal procedure identifiers is not
made in procedure statomonts.

The form of labels in the stack: One word is reserved having 4 conpenments:

track number, '
track relative sddress, of point in program
staclk reference of section in stack wherc the lgsbel is local
“constant" s mark indicating the kind.
The form of procedure identifiers in.‘ the atack: One word having 4 componémis:
tra ck mumber } '
track relative address of point in program
stack reference of soction in stack where the procedure iz declared

"procedure” a mark indicating the kind.

REGNZCETRALER -17-
Gier Algol Running System
5. Hareh 1962

% LOCAL DICLAATION.

The initialization of the locations in the stack corresponding to switch de-
clarationa, labels and procedure identiTiers imist be made at each entry into the
blocks where any of these cimstructions are used. This initialization is made by
n so~called local declaration. ‘the form of this is similar to that of procedure
stntemnts, vhich is described bslow. The local declaration will in general have
the follozdnp form: . :

:le A jump to the administration:
. call address := q3
'q: go to local declaration:

2. An initiali zer word, having 3 er 4 constifuents:
appetite of blesk, ig. nuwber ot words needsd for losal quantities
block number _
mber of foimsl {only or procedure bodies)
"initialize block"
or “initialize procedure bodr”

3. A list of labels, csch having 3 censtitnénta:

tragk number
track relative indiceting the proper point in the program
"label" a specisl mark

4. A list of procedurs identifiers, each having 3 constitusnts:

track number . ‘as ', <
track relative } indiceting the position of the proceodurc declaration
"procedure” a spocial mark

5. Any numbar of swiich declaratiors. Yach switch declaration will bo deseribad
by one word of the form:
number of slements
"switch" a spscial mark
followed by any numbor of words deseribing the switch elemut;a. Theso ars
. of one of the following two foxms:

Label as switch elemsut:
:ﬁﬁ:;?:::mu } of point in the steck
"stack valus® a apecial mark

Zxpresaion as switch element:

track number
track relma tive
"axpression” a8 spacial mark

i ef code for oxprossica

6. A terninator word for the whole local declaration.
track number .
rolative address of the roentxy. point in the program
“complete local declaration"

7. Track tormination (may occur Mtnre among the above words):
“"track completed” a special mark

REGHECHNTRALS: ‘ -18-
Gier Algol Running Systen
5. Hnreh 1962

PROCEDURE STATIR:NTS, FUNCTION DESICNATORS.

These constructions will in the running presran be representsd 85 & cede
hd 3ring in general 3 sectioms as follcws:

Section 1: A jump to the administration. ‘ '

Section 2: Words containimg coded dsscriptioms of the sciual parastters, of tha
’ ~ procedure to be called, and of the return point to which the proce—

"~ dure should retum.
Section 3: Codes reprssenting those mctusl psremstors which sre not Just iden-
tifiers.

The detailed descriptions of thess 3 ssctions follew:

Section 1: éall address := q; q: go o precedure emtxy;

Section 2: Zach descriptica normally will ccoupy one maching word. Only the
description of the procodure to be called and the refusm padat will cesupy 2 words,
If the section cresses a drum track divisies e suseia) masioing word will be imser-
ted. In any case the maohiw word will costelin sa integer indieatizg the ind of the
description ss a part of it. The remaizing part of the werd will centaiz variows
kinds of additional informaticm sccordimg fo the follewing tabls:

Kind 1: Initialize (tais must cccur cace bsfors the deacyiption of paremeters).
nuabor of paremsters :
"initialize ‘call" :
Kind 2: Integer sand raal comstants, laycuts, strings.
value (for strings the value has two parts: 1) track number, and 2} track relative,
roferring to a table of strings oz the drum).

"constant"

Kind 3. Array, switch, procedure identifiers, lsbels, formal parametors.
bloeX number } refar to a point in the stask where tho curront deseription
relative asddress is stored
"stacl: value®

Kind 4: Simple variables. ,
bloek nmumber { refor to a point in the stack whers the current volue is
relative address } atored
"sinpl‘."

Kind 5; Expressions other than kiads 2, 3, 4.
track number } refer to a& point in the progrem whsre the z¢de for the exe-
track relative { pressicns is siored .
"expression" '

kind 6. Track cempletod

Xind 7. Enter body.
track mwmber } for return point in program

track rclative
block number 'S{ for point in stack containing the identifior of the procedurs
.rolative address being called (whether formal or not).

REGNECENTRALEN -19-
Gier Algol Running System
7. Harch 1962

Section 3: Bach actual pargmeter which is an expression 1s *epresanted by a piece
of code which if necessary evaluates the valuc of the expression (this is the

case of a genermrl compound exprossion), and in any case finally assigns the address
of this value to register p (in case of a subscripted variasble thiz will of course
require some calculation in any case), follewed by a jump to a fixed admimistration

go to exit from parameter expressaion;

The ”track number® and "track relative" appearing in the description of this kind
of actual parameter refer to the first instruction of this piece of code.

VARIABLES AHND PARAMETERS IN THE STACK. '

The picture of the stack structure given on page 13 should be changed to
be as followe (note that the "additional data" belonging to a procedure call have
been eliminated):

first free i :
Subseripted variables

Temporeries

‘Simple variables (incl. value

_ : of procedura)

Lecal quantities Array identifiers and coef-

: . ficients '‘"his is reserved
Switches by the procedure
Procedure identificrs {P"g* " bedy

| labels
Block parameters: .-
stack reforence: "stack reference” correspon-
' -1 ding to the youngost incar-
" nation of the immermost en-
: : closing block -
stacl: referonce+l: "block number” of currcnt
block
stack reference+2: "block divz.sion". 0. first
free of current block '

‘stack reference+3: "stack reference” for . :
provious block in stack This is roserved
asta ok reference+d: return data: track number . by the procedurs
(not for ordinary and track relative statoment
blocks) |
Formal locaticns
T =

Previbidus rosor-
vations

REGNECZii l‘RAL'm 20
Gicr Algol iunning System
2l. Febr. 1962

Part of this rearrangement is made in order to make the administratien of
exvresesions ealled by nemo coincide with that of procsdure ealis. In fact,
unon calling an expressicn by name the items at stack reference+3 xd stack
referonce + 4 are entered into the stack, while the remaining blocl: paramecters
AT unnecoessary.

sach formal locaticn occupies cne full word in the machine. In some cases
the narks on the GISK word are used to indicate the interpresation of the word.
In any case the meaning of the contents of the word depends on the kind of the
corrvsponding actual parametsr. Tho variocus cases are the following:

Labal
Hark: "constant”
{track oumber
trac: relative.
stack referénce correspcading to the proper incamnation of tha block in which

the label is local.

- Procedure idcntifie:r.

Hark: "’rocedure”.
track number
track relative .
stack reference correspcnding to the proper incarnation of‘ the block in which
- the procedure is doclared. : -
. . Constent .
Harlc? “"eonstant”
value

of point in prog*'an

of point in program whare declaration starts.

Array identifier, switch identifiexr

fark: irrelevant

absolute base address (for array: wvhore elements are stored, for switch: vhere

table of olemert descriptions is stored)

second address (for arrey: where cocfficionts am, forssitch: numbor of elements)
Simple variable

Marks "gimple"

absolute address of valve
Expression

Hark: "oxpression™

track number

track relative

ataci: reference correspending to the proper incamatiasn of the block in which

the oxpression is written in a procadure statement.

RAGRECEHTRALEN . G) 18
Gier Algol Runmning System
5. ilarch 1962 :

PROGRAI® FOR LOCAL DECLARATION AND PROCEDURS ANTRY.

The sdminisizrations reforred to abyre may now be specificd. HNote that come
lzbels refer to placses not yet spscified.)

local declaration:
procedure entry:
- absolute sddress := cal.. address; gy to ¥;

next parmeter
. addross of formal := address of forsml -~ 1;
W: absolute address := absolute address + 1;
item := qtem[absolu+e nddreza]

transfom.
bogin switch transformation := initialize block, initialize procudure body,
lebel, procsdure, swilch, séack value, exprossion, complete local
decleration, track cospleted, initialise call, conmstant, simple,
enter procedure body;
initializo bloek:
stack [first free)} := siack refercnes
go to common block stasking;
initialize procedurc body: :
if first free - block division = mamber of formsls pari(item) them
- ALAIGI("irong number of parameters”); :
firat free := first free - 1;
comnon block stacking:
atac}:Lt‘irst free - '5] := stack reference;
block number :i=
astack [first free - 21 := block numbor part(item);
stack reference := first free -~ 3;
DISPLAY Ii;lock number] := stack refarencs;
first free :i=

stacl.&tack reference - 2] s= first ﬁ'ee -~ appetite part(itaw),
" address of formal := stack reference -~ 1j
£o to reserve spacé i1 stack;
initialize procedurs statemant:
addreas of formal := .hlock divisim := first {xee;
~ firot free := first frse - musber of paramuter part{item);
roscrve space in stack: _
relntive address := absolute addross - current track start + 1;
rumber of places := entier(firat frec - 5 - base address)/40);
S: call address := Q;

Q: fo_to take item;
‘ go to transform;

REGNUCENTRALEN -22~
Gier Algol Iunning System
7. larch 1962

label:
stack [address of formai] :=
combination("constant”,
track number part({item),
track relative pe:it(item),
stack reference);
go to next parameter;
procedures
- stack{address of romalj
conbinat;on("proee«dm"
track number pert{item),
track relative part(itam),
stack reforence);
_ fio_to next parameter;
syitch:
stack[address of formal] i=
. combination(address of formal - 1,
nunber of elemant« pert{item));
£9 _to next paramster;

stack value:
atack [ad..revs of famal}
DISPLAY E)locl. numbst pt.rt(i be..z)} + relative address v rt(item)} 5

£0 to next paramtcr
expressiom _

stack&zddreas of formal] :=
combination("expresaioa”,

' track numbor part(item),
relative address pa.rt(item).
stack referencs):

£o _to noxt paramster;
complote local declarationm:
curront track := track mumber part(item); ;
relative addres := relative address part(item);
£o to transfer; -
track completed: .
current track := current track + 1;
rolative address := Og
£ to S;
constant:
stack [address of formel] :=
combination("constant",
-value part(item)};
go _to next parsmeter
simple: '
stack[address of formal] :=
* combination("simple”
DISPLAY@].ock nunbsy part(:.ton)l + Telative address part(item)});

8o to next parameter;

REGNECENTRALEN : -23-
Cicr Algol Running System :
5. farch 1962

PROGRAMS FOR FINAL STRY INTO PROCIDURES ARD PARAITSTER B XAHESSTORS.
" The following programs are entered from the programs of the preceding sections:

enter procodure body:
expr := false;
descriptim 1= store bsolute addmss + 1}
doscription := stack [DISPLAY bleek mmber part(des.riotion)]
+ addres part(deseription)];
return description := itenm;
fo to common;
procedure as expressien:
oxpr := false; go to B;
expression:
expr = true
B: return descnption = wombination(mrrent track,
~ sall address - eurrezat track start + 1)
commons '
' stack[first frea] := return descrs ption;
‘stack|first free - 1] := stack reference;
stack roference := stack reference part(dsscription);
UPDATE DISPLAY; comment This is noit necessary in case of nen-~formal procsdv.re
. idontifiors. The distinction betweea formal and nen-formal
procedure identifiors is lost at this stage, hewever;
curront track := track part(deseristion);
relative address := address part(description);
if oxprr then ‘
m firat free := ~. ~ . - first free - 2;
number of wnused := nuaber of unused - 2;
1f pumber of unused < O then
begin numbor of wwsed := number of wnused 4+ 403
number of places := numbexr of places - 1
end;
ond;)
£o to tranafer;

':::so programs are also used for ohtering expressions called by neme, as shown
on. ' '

REGNSCENTRALEN 24~
Gier Algol Rumning System
7. iiaxreh 1962

RIPERENCE 70 EXPRESSION CALLED BY NANS, .

According to the convention stated on page 15 any reference o = formal para-
meter oxmressica called by name will rasult in the mechine retuwrning with the addrecs
of the location where the value is stored pleced in register p. This is ascoaplished
&s follows: ’

' The form of the formal paremeter within the procedwre boly is:

p = DISPLAY [block nusber of formal] + relative address of formal;
cnall address := q;
q9: o _to take address of formal;

On return to q#l the destrod address is placed in ths p register.
The administration is

take addroass of formal:
. begin switch evaluate sad return with eddress := sisple, constant, cxpressian,

procedurc as oxprassiony:
description := steck[p)s

o to evaluate and refwrn with addrsss @.rl pam(deseriptim)];
aimple:”

p := address part(dezeription);
constant:

go_to instructiem [call addvess + 1};

comment The fwo rogaixzd.ng cases have been specified o pags 233

snd;

REPURN FROM PARAMITER EXPRESSIONS AND EmD.
The ond of a simple block is reprosented by
call address := q; q: go %o end block;
the administration is: ' ~

ond block: first free := stack refereace + 4;
stack reference := steck[stack reference + 3];

w instruction [cﬁll address «+ 1],

e

REGHHCENTRALSN =25~
Gier Algol Iunning System
8. Farch 1962

‘The end of type procedures is repressnted 83

firat free := steck referenct + nurber of formsls + 4;
:= addvress of jrocedure value;
go_to end type procsdure;

The end of non-type procedures is representod:

firat froe := stack rcference + mumber of formals + 4;
pi= address of procedurec value;
go to end tyve procedurs

The gdministrations used ar2 a&s follows:

end type procedure: '
universal value := steck[p];
p := address of univeisal location;
end procedure: -
return deseripticn := stack[stack wference + g;,é,
atack reference := stcck(stack reference + 3];
coawon end:
UPDATE DISPLAY;
current track := track mumber part(refurn descriptioml); .
relative address := track relative part(return dsscription);
%o to transfer;

The following administration has been referzred to ain pags 19:

exit fron parameter expression:
return description := staick[first frec + 2(;
first froe := firast free + 2;
stacl: reference := st&ck[first. free - 1;
2o to common end;

	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif
	p 0013.tif
	pg 0014.tif
	p 0015.tif
	p 0016.tif
	p 0017.tif
	p 0018.tif
	p 0019.tif
	p 0020.tif
	p 0021.tif
	p 0022.tif
	p 0023.tif
	p 0024.tif
	p 0025.tif
	p 0026.tif
	p 0027.tif
	p 0028.tif
	p 0029.tif
	p 0030.tif
	p 0031.tif
	p 0032.tif
	p 0033.tif
	p 0034.tif
	p 0035.tif
	p 0036.tif
	p 0037.tif
	p 0038.tif
	p 0039.tif

