
The routines to communicate with R2 are written, needing only 
a few additions (I hope). Tape 8 needs to be thrown out and 
the subroutine DOR2 put i·n as the final tape (with .END on it). 
DOR2 needs, on the top of page 2, the code to tell the R2 to 
set up the instruction and do it. The addresses in the definig 
stuff in the beginning of the program need to be put in. e ~ 
The subrt SEND should go on the same tape as DOR2, at th~ 

:;I /l!Ft..EC:::. 
~ JI} s 17?. ==- ? 



COMMUNICATING WITH R2 

Sending data to R2: 
Send U and S for all instructions. 
Send R if U,R/S or XTRMCP (option C is 4, 6, or 10). 

Receiving data from R2: 
Receive U for all instructions. 
Receive R for everything except: 

a) integer and fixed point add and subtract 
b) logic instructions 

R2 Word as represented in the PDP: 4 words of core 

jta g !O I 6 e~ ~ ji man t Ta s l gnl 1 I 
...._____....__. ....._ _.. 

low '.7c O re a d d re S S 

The Tag Byte: and low order word 
This byte is kept as a 4 or 5 until it is sent to the R2. 

Then 2 bits are used to represent each bit, resulting in 
an 8bit representation for the 4 bit R2 field. In each pair, 
the left bit is 1 if the bit is 1, the right bit is 1 if 
the bit is 0. Thus, the tag byte as tramsmitted to the R2 
is either 145 (tag 4) or 146 (tag 5). 

·~~,..---.,~ 
lo11111otoj1j 11 

Memory Address Register: 

19 18 17 16 h5 14 13 12 11 10 9 s l:1 6 5 4 3 2 1 0 

767772 767771 767770 

bit oc ta 1 meaning bit oc ta 1 meaning 
0 1 LOADU 11 4000 R-AD 
1 2 u-~u 12 10000 s...-AD 
2 4 u•..:..u 13 20000 AD..;,CD 
3 10 LOADR 14 40000 
4 20 K.-.R 15 100000 
5 40 R~R 16 1 
6 100 LOADS 17 2 
7 200 s .... s 18 4 
8 400 s !....,. s 19 10 
9 1000 LOAD OPCODE 

10 2000 U.;i,AD 



R0 LOGIC INSTRUCTIONS 

The condition code is set for all logic instructions by 
the routine SETCC. 

XTRMCP: This routine does the following for each bit position: 
X field( the X option) 

O S to U if R is 1 
1 S to U if R is O 
2 1 to U if Sand U are different and R is O 
3 1 to U if Sand U are different and R is 1 

For inflections O and 1, it copies U to PDPU and puts the 
address of the extract routine (XTRCT) on the stack. For 
2 and 3, the address of the masked comparison routine 
(MCPRT) is stacked. Then a routine called LOGIC is called: 
it manipulates a 1 bit mask to cov~t the 54 bits of an R2 
word, using the routine whose address is on the stack to do 
the appropriate action based on U, R, and S, and the bit 
position indicated by the mask. 

AND: T~e X field interpretation: 
O U ANDS to PDPU 
1 NOT (U ANDS) to PDPU 
2 U ANDS to PDPU ( in the R2, only the condition code 

is set with inflection 2) 
3 NOT U to PDPU 

For inflections O ehni· 2, the address of the routine ANDRT 
is stacked. Then LOGIC is called to manipulate the 1 bit 
mask for each bit position, and use ANDRT to do the appro­
priate action for that bit. Inflection 3 copies U to PDPU 
and complements it. 

ORU: The ORU routine copies S to PDPU and then does the 
foldowing; as indicated by the X field: 

O SOR U to PDPU 
1 NOT (SOR U) to PDPU 
2 SOR U to P~PU (in the R2, inflection 2 just sets CC) 
3 NOTS to PDPU 

SYD: Exclusive OR of U ands. This routineGcopies S to ~ritM 
space and U to PDPU. It then clears all the bits of S from 
PDPU and all the bits of U from the workspace. Then the 
routine ORU is called to do the OR of PDPU and the workspace. 
ORU also takes care of the inflections 1-2 (no option 3). 

IMPRT: The implication routine does NOT U ORS to PDPU. 
This routine moves the operand addressed by RO to PDPU and 
complements it. Then ORU does the OR and options 0-2 (no 
option 3 with IMP). 

RIMPRT: Reverse implication does NOTS DRU to PDPU. ThiP 
sets RO and goes to IMPRT, which takes care of everyth 4 

I 



ARTITHMETIC R2 INSTRUCTIONS 

ADDI: Integer add. This routine is called with RO, Rl. and 
R2 addressing the low order byte of the operands and the 
storage location for the result. The bytes addressed by 
RO and Rl are moved to work space, added together with the 
carry from the last addition, and stored in the result 
location. End-around carry from the high order byte is 
added back in and propagated. If there is overflow, an 
indicator (OFLOW) is set, and the sign of the result is 
corrected. 

SUBI: Integer subtract, This is called with the same 
parameters as ADDI. SUBI complements the mantissa of 
the operand addressed by Rl and calls ADDI. On return 
from ADDI, it restores the operand for use in R2 arith­
metic. 

FADD: Floating add. The parameters are the same, FADD 
moves the operand with the smaller exponent to work space 
and shifts it to compensate for the exponent difference, 
after propagating its sign in PDPR (it is shifted into 
PDPR). ADDI is then called to add the mantissas. Over­
flow is checked; if none, the sign of the result is compared 
with the sign of PDPR. If they do not match, and the result 
is 0, the result is set to match the sign of PDPR. If the 

_ result is not zero, 1 is added to or subtracted from PDPU, 
as the sign of PDPR is minus or plus, If the signs matched, 
this correction is skipped. The result is then normalized. 

MPY2: This routine multiplies S XU. It sets the parameters 
(operand addresses) and goes to MPYI. 

MPYI: If called directly, this does U XS. The parameters are 
the same as fox ADDI. The result goes to PDPU and PDPR. 
First, SIGN is set for sign control (0 if the result will be 
positive). Then the operands are copied to the stack, in 
order to leave the original untouched. The 6 ?,DP words of 
the result are shifted right and the final carry tested. 
If the carry is set, ADDI is called to add the multiplicand 
into the partial product. The counter is decrememted and 
the shift repeated as necessary. Then the type is!tested: 
{ype O is an integer operation, in whiph case PDPU and PDPR 
are swapped and the routine exited. If it is a floating MPY, 
then the result is normalized, the exponents added, and 
OFLOW set if necessary. 

Multiplier addressed by Rl. { 
Multiplicand addressed by RO. As called. 
Destination addressed by R2. ----~low core 

____ ,4-low orderword 

multiplier 
4'--]high order 

word 

1------1 result , ___ _ 
----· s i gn bi t ,-,.1 .. 1 ___ -1 

multiplicand 

Tfie stack: 



UTILITY ROUTINES 

CQMPAR: This subroutine does the comparison of results 
after the PDP and R2 are finished. If the operation 
was a logic instruction with inflection= 2, only the 
condition codes are compared. Otherwise, PDPU and R2U 

.are compared. If Rl was not O on entry, PDPR and R2R 
are also comp~red. The value returned in R3 indicates 
the result: R3~0 if no comparison failed. 

NORMZ: Normalizes the words addressed by Rl and R2. 
R2 is set to O for a single length operand. 

ITOFL: Integer to 
addressed by Rl. 
( ca 11 e d CO PY) s o 
used by the R2. 

floating point conversion, of the word 
The data is first copied to storage 

that it can be restored before being 

RANDM: This routine generates random numbers which are 
stored at the location given by Rl. The tag byte is 
not disturbed and the exponent byte is cleared to 6 bits. 

SETCC: Sets the condition code (CCODE) for logic instructions. 
The code is set on the basis 0£ PDPU: 0 if all zeros, 1 
if all ones, 2 for mixed even, 3 for mixed odd. 

SETACC: Sets the condition code for arithmetic instructions. 
The code is set on the basis of PDPU1 0 for result of 0, 
1 if negative, 2 if greater than 0, 3 if overflow. 



INPUT-OUTPUT ROUTINES 

TALK: Parameters are: Rl is a character to be output on the 
TTY. R2 is the address at which to store the input. 
TALK is used in setting the various options, It accepts 

only octal digits; a carriage return causes exit from the 
subroutine; anything else causes a repeat of the option 
request. 

OUTSP: Outputs one space on the TTY. 

OUTC: Outputs one character on the TTY (char in Rl). 

INCH: (INput CHaracter) Receives one character from the 
TTY. Octal digits, spaces, and carriage re~urns are 
echoed. There are 3 exits from INCH: the normal return 
plus 2 instructions if an octal digit is received, the 
normal return plus 1 if a CR is input, and the normal 
return for anything else. 

DATAIN: Parameters are: Rl is a character to be output. 
R2 addresses the exponent of the storage area for the data 
to be accepted. DATAIN handles the input of the operands 
U,R, and S. It looks for the tag first ( a 4 or a 5), then 
a separator ( anything except a CR or an octal digit), than 
the exponent (1 or 2 octal digits), a separator, up to 
16 octal digits for the mantissa, and finally a CR termin-

~taues the input. If the first character received is not 
an octal digit, the subroutine does not return to the 
c~lling point: it restarts the request for all options. 
If more than 2 digits are input for the exponent, or more 
tfian 16 for the mantissa, the last digits received will 
be used. 

OUTWRD: Parameters are: Rl is a character to print. R2 
addresses the word (4 PDP words) to be output. This 
subroutine is used to print the results of PDP and R2 
arithmetic. The tag is output in octal; the exponent 
and mantissa in binary. 

OUTPRl: Spaces the printer. 

OUTPR: Outputs the character in Rl on the printer. 



\ 

Printer output is as follows: 

Whenever the instruction coee (C) or inflection (X) is 
changed, the first line is: 

C nn X n 

This is followed by the data, where tis the tag (oc~al), 
e the exponent (binary), and n the mantissa (binary, spaced 
into bytes): 

s t 
u 
R 
Xl 
PU 
XR 
PR 

eeeeee nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn 
(same format as S) 
(same, but printed only if required by the instruction) 
(same; this is the R2 u register) 
(same; this is the p.D ~ equivalent of R2 U) 
(same; this is the R2 R register) 
(same; this is the PDP equivalent of R2 R) 

This is followed by the condition codes: 

PD PCC==n 
17 

\ 

j 
( 
\ 

R2CC::.n 



: ...
. · ·~ ..
 

.,
;''

:,
) 

· .. :
. 

~
;
~
 

1"
1 

"'i
i~

 
·"'

~)
· ~

. 

0 •'·
ij 

~ 
.....

.. ,,
., .

 .I
' 

0 0 

"'
1

.~
'q

 ...
. 

f;<
-!t

-
{,

f) 
t·"

" 



00 

01 

02 

03 

04 

05 

06 

07 

10 

II 

12 

13 

14 

15 

16 

17 

-

. 

0 

bs 

sp 

( 

0 

8 

@ 

H 

p 

x 

' 

h 

p 

x 

ASCII I FLEX 

2 3 4 5 

• 

bs tab tab nl er ff 27 
,_______ 

---

' 
If 

1T # ti $ E O/o 13 sp . 6" 

' 
( ) ) * * + .,. - -

' ' 
0 I I 2 2 3 3 4 4 5 5 

8 9 9 . 
~ 

. 6. < < = = . ' . 

c( A A 8 8 c c D D E E 

H l I J J K K L L M M 

p Q Q R R s s T T u u 

x y y z z [ -!, ' J 1' 

a a b b c ·C d d e e 
-- . ··----· .. . --- - --- ·-·=------::c.=~~ ~= 

h i . i j j k . k I I m m 

p q q r r s s t t u u 

x y y z 2 { i:( I I } 'E) 
-

27 (stop code) must be punched as overpunch -t-7 

4; is punched as uc ~ bs f 

the symbol < is not permitted- use < = 
.. ., . 

g 

. 
6 

> 
F 

N 
I-· 

v 
" 

f 
--·-

n 

v 

"' 

····-··--···--··--··-··---- --------

6 7 

le ;i: 
I 

1( 
--

• I I 

6 7 7 

f ? 
F G G 

'-----~ 

N 0 o· 

v w w 
-----

-
f g g 

n 0 0 

v w w 


	102726246-0001_a
	102726246-0002_a
	102726246-0003_a
	102726246-0004_a
	102726246-0005_a
	102726246-0006_a
	102726246-0007_a
	102726246-0008_a
	102726246-0009_a

