
\ ,· . 1
.i· .
'-·

RICE COMPUTER-2

GENERAL SPECIFICATIONS

by

The Research Staff of

The Rice University Laboratory

For Computer Science and Enqineering

Rice University

Houston, Texas

This work was sunporten in part by the United States Atorrtic
Energy Commission, r.ontract# .AT-(40-1)-2572, to the Rice
Computer Project, Rice University, Houston, Texas, and by
NSF University Science Development Grant GT.T-1153.

'--... ..

TABLE OF CONTENTS

INTRODUCTION

CLASSIFICATION OF DATA IN STORAGE I-1
I-3
I-5
I-7
I-10

Tags for Arrays
Tags Interpreted by Software
Microcode Control by Interpretation of Hardware Tags
Reference

ADDRESSING .
The Addressing Problem
Hardware Structures
Addressing Rule for Operand Access
Addressing Rule for Data Arrays
Addressing Rule for Storage Management Functions
Dynamic Relocation of Selected Blocks of Storage
Chaining of Addresses
Conclusions

STACK OPERATIONS.
The Stack Concept
The General Addressing Rule
Structure of the Stack
Allocation of Storage to the Stack
Double Length Operands
Program Branching
Segmentation of the Stack
Conclusions
Reference

PROGRAM BRANCHING

MACHINE
1.
2.
3.
4.
5.

FUNCTION LIST
OPERATIONS ON NUMERIC CLASSES
DATA MANIPULATIONS
PROGRl\.M EPJ"\NCHING
ADDRESSING OPERATIONS
WORD BUILDING

MICROPROGRAMS

II-1
II-1
II-2
II-4
II-8
II-9
II-10
II-12
II-13

III-1
III-1
III-2
III-4
III-5
III-6
III-8
III-9
III-13
III-15

IV-1

V-1
V-1
V-4
V-7
V-9
V-10

VI-1

INTRODUCTION

The Rice Computer was constructed on the Rice Campus during the

years 1958 and 1959, and was placed in limited operation early in

1960. It was made available as a computing facility on a campus-wide

basis in 1961. The Project was directed by Dr. Martin Graham, now

Professor of Computer Science at the University of California,

Berkeley. The software complement of the system was prepared under

the direction of Mr. John Iliffe, now with International Computers,

London. The computer architecture and the software system are des­

cribed in the publications listed at the end of this section.

The system became widely known because of the advanced concepts

in its operating system, particularly for its fully generalized dy­

namic storage allocation. These techniques were made attractive, at

least in part, because the hardware has unusually versatile addressing

facilities. It can form addresses with accumulated index registers.

It uses multiple level indirect addressing with indexing at all levels.

It has a set of four storage registers addressable by short address

fields in the instruction.

The system has always been known simply as the Rice Computer,

without benefit of either an acronym or an exotic sounding number.

After all that it has taught about the management of data structures,

and all the work it has done, its arithmetic and logical unit is about

to be supplanted by a successor, which is completely new in its

architecture. The change has been made, first of all, to explore new

and interesting ideas in computer architecture. Secondly, the old

computer was not well suited to handle real time interrupts, so a new

organization is needed to do experiments in time sharing or any regimen

involving multiple independent resident programs. A third motivation

is the advantage to be had from contemporary circuit technology, for

the sake of speed, reliability, simplicity, and a reasonable degree

of compatibility with any new peripherals which might be acquired.

The following text describes the architecture of this new

processor. Since the processor plays the largest role in character­

izing the system, it will be called the Rice Computer-2 or for

brevity R-2.· The architecture of R-2 has been influenced in part by

features incorporated into the software operating system of the

Rice Computer. This influence may also be noted in John Iliffe's

Basic Language Machine, a model of which was constructed at

International Computers Ltd. during 1967-68. Finally, the architec­

ture of the Basic Language Machine served as a starting point for

the design of R-2, with Mr. Iliffe present to guide the development.

The outstanding features of R-2 are briefly stated in the

following points. 1. Storage protection both between programs, and

within them. 2. Convenient hardware aids to addressing multi­

dimensional arrays. 3. Fully automatic stack arrangements, with

provision for access by conventional addressing to items within the

stack. 4. A system of data tags which simplifies the order codes,

permits correct computation with mixed operands, and prevents errors

due to operations inappropriate to the data.

PUBLICATIONS

Iliffe, John and ,Jodeit, Jane. "A Dynamic Storage Allocation Scheme",
The Computer Journal, Vol. 5, No. 3, October 1962.

Jodeit, Jane. "Storage Organization in Programming Systems", Comm.
of the ACM, Vol. 11, No. 11, November 1968.

Iliffe, John. "The Use of the Genie System in Numerical Calculation",
Annual Review in Automatic Programming. 2. Pergamon Press 1961.

Iliffe, John. "Basic Machine Principles", American Elsevier
Publishing Co.

I-1

I

CLASSIFICATION OF DATA IN STORAGE

The use of a single, undifferentiated store to contain

various classes of data and programs has been common practice

for decades. The segregation and identification of these classes

has been universally a software function, usually implemented by

a system of named arrays, with reference tables, etc. A means

for differentiation which applies to each storage location is

described in the following section.

The R-2 is modeled in part on the Basic Language Machine

[1][2]. The Computer accommodates four major categories of words

in central storage, and some of these categories include several

subclasses. The four major categories are: 1. Instruction Words,

2. Numeric Words, 3. Address Words, 4. Control Words. Instruction

and numeric words serve their usual purposes. Each instruction word

contains two instructions. Control words contain the information

necessary to locate entry points to programs.

Word categories 2, 3, and 4 all contain subclasses, and they

may be organized into ordered sets in storage. Address words

contain the information necessary to locate any stored word of

categories 2, 3, and 4. Access to storage for such words can be

made only through the use of address words, which include the

first word location, length, and initial index of data arrays.

A proliferation of data types is characteristic of modern

I-2

computer systems. Operation types are provided to match the

requirements of operand types. It is a considerable challenge

to an operating system to keep the types all properly segregated

and matched with appropriate operations [3]. The structure of

R-2 is designed to aid this process through the use of data tags.

Tags are understood to be symbols which are associated with items

of data in memory, but are not a part of the data, and are not

processed along with the data. They must therefore be interpreted

by the control hardware.

In the R-2 design, all words except instruction words have

a data field which is 54 bits long. There are ten additional

bits provided as a control field. Seven of these function as

tags, in one manner or another. The 8th indicates word parity,

and the 9th and 10th are spares, for the time being. In principle,

the seven tags could be used to categorize individual register

entries into 128 distinct classes. In practice, it is convenient

to mai~tain relationships between major classes and subclasses,

so it may not be appropriate to use all possible tag codes as

class designators. Four of the seven data tag bits are so used,

providing for 16 classes. Figure I illustrates the format of

each major word category. The fifth and sixth control bits provide

for classification that is defined by program. The seventh is a

write lockout bit.

Tags associated with individual locations, as described above,

,.,.--.. "1

8 BIT
CONTROL

FIELD

R G

54 BIT
ARITHMETIC AND DATA FIELD

It 8

COEFFICIENT

NUMERIC WORDS

1 It 2 1 1 2. 1

CHAIN H MODE LOCATION

CONTROL HORDS

l It 1 It 20

I-2A

I LENGTH INITIAL LOCATIOII (i max) INDEX (i0) (loc)

R G

2 2 It 6 It

OP I y I

ADDRESS HORDS
or

PART I T I ON \·/ 0 R D S

1 ..

±N

l ..

±N

FIRST INSTRUCTION SECOND INSTRUCTION

s---Software-defined tags
D---Dircct tags
!---Indirect tags
M---Mark
P---Parity
L---Write lockout
A---Literal value of ±N

INSTRUCTION WORDS

N---Oisplacement of Location
R---Restricted access to array
G---Array present in core
X---lst operand reg. selector
V---Variant on operation
Y---2nd operand reg. selector

OP- - - 0 p e r a t i on c o d e
c---Condition code

DIAGRAM OF R-2 WORD FORMATS

Figure 1-1

I-3

may be considered as direct tags, since they are physically

associated with individual data items and may be interpreted as

the items are read. They serve as identifiers for data which is

not organized by category, and in fact they make it possible to

organize data in storage on any desired basis.

Tags for Arrays

Since every item of data of category 2, 3, or 4 must be

accessed in the store by way of an address word, it may be con-

venient in many cases to organize the data into arrays consisting

of a single category or class, and in fact that is the required

(
organization for most conventional computer systems. The R-2

""- . address word contains a four bit field which identifies the class

of the items in the array to which it refers. This is called the

indirect tag, since the tag is not physically associated with the

words in store but is effectively assigned when the words are

called. Referring to Table I-1, consider an address word which

refers to a vector of real numbers. It may have a direct tag 1110,

meaning that it contains an absolute address to some memory location.

Its indirect tag field will be 0100, indicating that the memory

locations it refers to contain real numbers.

If the address word has 0000 in its indirect tag field,

I-4

this means that the word refers to an array containing elements

of more than one type. The direct tag associated with each item

then determines its class. Otherwise, the tags must agree.

Control words can refer only to instructions, so they do

not need an indirect field for a class designator. The

corresponding field is used to carry a mark which defines the

position of the control word in some hiecarchy of control words.

They do include direct tag fields, since their own identity as

control words must be made manifest when they occur in a mixed array.

With the above hardware tagging system, it is clear that

any given item of data will be described by two separate identi­

fiers. These must agree if they identify specific types of data.

If the array contains elements of more than one type, the indirect

tag will be 0000. In this case the direct tag identifies the element.

If both tags are 0000, a program exception occurs. On storing into

an unmixed array, the tag of the item to be stored must agree with

the indirect tag for the array or a program exception occurs.

The uses developed thus far for the tags which are interpreted

by hardware are:

1. to give warning, or corrective action when an attempt

is made to combine items from different classes which

are incompatible;

I-5

2. to modify the execution microcode, as needed, to

properly combine items from different classes when

such combination is permissible;

3. to provide an identification for a result which does not

fit the classes from which it was derived; for example,

a number produced as a result of overflow, or underflow.

Tags Interpreted by Software

The fifth and sixth tag bits in words other than instruction

words are reserved for identifying classes which are defined at

users option by software. A single tag of similar purpose is

associated with each of the two instructions that comprise an

instruction word. Response to these tags is accomplished by an

automatic program branch to a reserved location in core. This is

called trapping. There are separate reserved core locations

corresponding to the instruction tag, and to configurations 01, 10,

11 of the data tags. The value 00 is regarded as an untagged item.

In usage, each reserved core location will be loaded with an entry

to a routine which is programmed for.whatever action is desired

in connection with the tag.

Trapping occurs only if there is a certain correspondence

between a tag configuration and a pattern of bits in the MODE

register. Three bits are assigned to the data tags, one bit being

(~

I-6

associated with each of the three possible tag values. A trap to

the corresponding core location will occur if there is a corres­

pondence between a tag value and the presence of a 1 in the MODE

register bit associated with that tag value. One bit will in­

itiate a trap to the location corresponding to instruction tags

if a tagged instruction appears. Thus, the system can trap on

any selection of the software tags.

Software-defined tags provide for the arbitrary definition

of any item of data as an element of a distinct class, and the

associated program can carry out any desired action with respect

to this element. Thus an array that is made up of a single hard­

ware-defined category of data may be divided into four categories

by the two software tag bits. Trapping on instruction tags provide

an easy way to control a tracing operation.

The two software-defined tags have a counterpart in Rice

Computer #1, and other computers [5][6]. The greatest merit

of this arrangement lies with its utility in interactive operation.

By use of such tags and appropriate trapping procedures, any

program may have a control regimen superimposed on it after it is

written, without making any changes in the program itself, except

for insertion or deletion of tags at appropriate points.

I-7

Microcode Control by Interpretation of Hardware Tags

The instruction set contains only one set of arithmetic and

logical operations. The data tags are interpreted by the control,

and the microcode for these operations is altered to suit the

data types involved. Thus the operation type within these classes

is determined by the data itself, and not by the compilation

process. An example of this is the treatment of double length

operands. These are stored in sequential address pairs. Stepping

through such an array by increments of two is automatically pro-

vided by hardware. Operations applied to such operands will be

appropriately altered by interpretation of the tags, and the correct

procedures will be applied. Thus complex numbers, or numbers re-

presented in double precision may be combined using the one

operation set.

If a binary operation is directed to incompatible operands,

one of them will be automatically converted, if possible. If it

is not possible, or if any illegal combination is attempted, a

program exception occurs. An appropriate tag for a result is

derived from the tags of the operands, and from the outcome of the

operation.

A null element, as described in [l], is "any element which

cannot be directly represented by hardware, such as an out-of-range

numerical result, or an undefined item". Such elements carry a

"---.-··

(_ __ .

I-8

specific tag in the Basic Machine, and they normally cause a trap

when they appear.

It is immediately evident that this device is useful for

dealing with mishaps such as overflow, or programming errors, and

of course, as a mea~s of provoking trapping actions. M. B. Wells

has disclosed the real power of this concept [7]. He points out

that many results of computer operations may be perfectly valid

results, but they are not included in the number representations

defined for the computer. He suggests that "non-existent number"

is a valid result, "indeterminate" is another and "infinite" is

yet another, and that these results should not lose their identity

due to lack of representation. He suggests a representation much

like the one proposed for the Rice Processor.

A word with tag 1000 is an element "undefined for normal

operations". For such a word, a 4 bit field internal to the

word is used to distinguish the species of elements,

from a total of 16 possible species. The three suggested by

Wells will be included, along with others which may appear to be

useful.

The appearance of any operand with tag 1000 will cause a

trap. The program initiated by the trap will examine the indirect

tag field of the operand which caused the trap, and will jump to

a routine appropriate for the species indicated. The portions

I-9

\~.

of such words apart from the tag fields will contain such in-

formation as might be meaningful for the species, and this can

be extracted by the routine.

The seventh of the bits available for tagging is interpreted

in every word as a "read only" tag. Instructions will be stored

in "read only" status when they are used in recursive and other

reentrant programs.

,,,.-
I
\.. .

I-10

Reference

[1] Iliffe, J. K. , 11 Basic Machine Principles, 11 Elsevier Publishing
Company, 1968.

[2] Iliffe, J.K., 11 Elements of BLM, 11 Comp. J., Vol. 12, #3,
August 1969.

[3] Hauck, A. and Dent, B.A., 11 Burroughs B/6500 and B/7500 Stack
Mechanism, 11 Spring Joint Computer Conference, 1968.

[4] McKeeman, W., "Language Directed Computer Design, 11 Proc. FJCC,
1967.

[5] 11 IBM 1401 System Surnmary 11 IBM Form A24-1401-1, September 1964.

[6] Gram, C. et al, 11 Gier - A Danish Computer of Medium Size, 11

IEEE Trans. on Electronic Computers, EC-12, December 1963.

[7] Wells, M.B., "Elements of Combinatorial Computing, 11 Pergamon
Press (to be published).

II-1

II. ADDRESSING

The Addressing Problem

Storage systems for modern computers designed for multi-

programming operation must have a means for mapping and remapping

program name space into physical memory space. Commonly used

systems are oriented toward conceptual and physical simplicity,

and they provide hardware aids for mapping linear name space into

linear memory space, with a minimal set of constraints on the

user. [1] [2]

In practice, the name space for a program needs to be organized

into structures more complicated than a simple linear sequence.

The system described here has been derived from earlier storage

mapping systems, in which arrays of data in storage are delineated

by codewords. •rhese are interpreted by software routines included

in the operating system.[3] Since codewords can themselves be

organized into arrays, the relationships within high order data

structures of any degree of complexity may be readily represented

and interpreted.

'l'h_e system described is based on a similar approach, but

the software is simpler. In this system, the interpretation of the

words involved in the storage mapping function is done by hardware

provided specifically for that purpose. This hardware generates

all storage addresses. It can operate concurrently with computations

in process in the numeric section of the computer.

I
i

II- 2

Hardware Structures

The addressing system of the Rice Computer (R-2) has an

effective address length of 20 bits. Such addresses refer to

storage locations, each of which contains a 64 bit word. Although

addresses are thus directed to words, each word includes tags

which can identify the nature of the data stored in the remainder

of the word. By this device, the correct location and length of

data entities longer or shorter than a storage word may be derived.

Accordingly, the system is designed to operate on data entities

whose length is specified for each particular array. At present,

operations have been implemented for full word and for double word

entities.

A set of sixteen 64 bit general purpose registers is provided

in the processor structure. Ei3-ch register includes a tag field

which identifies register content as explained in Section 1. Re­

gisters may contain Numeric Words, Address Words, or Control Words.

The registers are not used for storing instructions. Figure II-1

shows the format of the various word types recognized in R-2, and

Table I-1. indicates the assignment of data tags.

The computer instruction occupies half of a computer word.

Each instruction word contains two completely independent instruc-

tions. Program entrance or exit may be made at either instruction

in a word, because storage addresses which designate instruction

locations are 21 bits long, and therefore can designate half-words.

c···
'·~

8 BIT
CONTROL

FIELD

[!:I.: !'1: f I
R

2 2 It 1 4

54 BIT
ARITHMETIC AND DATA FIELD

.. 8

COEF

NUMERIC WORDS

1 4 2 l 1 2 l

CHAIN IC I MODE LOC · ..

CONTROL HO RDS

1 .. l .. 20

II-2A

I

I LENGTH INITIAL LOCATION

R G

2 2 4 4

p s ·.·· I A l OP y
/v l A

(i max) INDEX (i0)

ADDRESS HORDS
or

PARTITION HORDS

l .. 2 4

±N :11v1

6

OP

(loc)

.. 1 ..

I y I ±N I
FIRST INSTRUCTION SECOND INSTRUCTION

S---Software-defined tags
0---Direct tags
1---lndirect tags
M---Mark
P---Parity
l---Write lockout
A---Literal value of ±N

INSTRUCTION WORDS

N---Displacement of Location
R---Restricted access to array
G---Array present in core
X---lst operand reg. selector
v-~-Variant on operation
Y---2nd operand reg. selector

OP- - - 0 p e r a t i on c o d e
C---Condition code

DIAGRAM OF R-2 WORD FORMATS

Figure rr-1

\.____)

II-3

The instruction format includes the three address fields,

labeled X, Y, and ±N. X and Y are each 4 bit fields which des­

ignate a register from the sixteen included in the processor.

~egister O is reserved for use as the stack pointer. Register 1 is

the two word arithmetic register combination which functions

as accumulator in arithmetic and logic operations and contains the

final result of any such operation. The high order member of this

pair is called U; the low order member is called R. Reg·isters which

are specifically committed, as these are, may be addressed implicitly

in appropriate operations. Registers 2 through 15 are available to

the program as general purpose registers. The Field ±N is a 14 bit

field used according to rules to be described in following sections.

The computer instruction provides for, at most, two explicit

operand address designators. Some functions may require no explicit

addresses. Others may require one, or may make one explicit and one

or more implicit. A few may be viewed as "wired macros", because

they may imply a sequence of elementary functions from the set, and

may utilize both explicit and implicit addresses. This is not a new

idea. Existing computers, for example, have instructions for testing,

for indexing, and for program jumps, and then a set for doing all

three by a single instruction.

Arithmetic and logic functions of two arguments take the first

argument from Register 1. The second argument is specified by the

(

I

II-4

the Y field, according to addressing rules to be discussed in a

later section. For these functions, the X field serves as a modifier

of the operation code, rather than as a register designator. For

some functions, the four data tags also operate as inflections on the

operation code. This leads to the notion that the vocabulary list

is enormous. There are, in fact 6 bits in the function code, so

there can be 64 primitive operations. This is a generous allotment,

since these can be fitted to the data as required, by using in­

formation in the operand tags to modify the operation microcode as

required.

Addressing Rule for Operand Access

Binary operations are understood to be of the form x op y +- X.

For operations other than arithmetic or logic, the operand xis

found in the register designated by instruction field x, and the

operand y is found in the register designated by instruction field

Y. If the content of either register is tagged as an Address

Word, and the operation is not one involving address modification

or any other process which may be applied to Address Words, the

word in the register will be used to form a memory location number.

For the operand designated by field X, the unmodified LOCATION

field of the register is taken as the memory location number.

II-5

The corresponding word in memory will be used as an operand if it

bears an appropriate tag. If it bears the tag of a Chained Address

Word, another access will be made, using the new address. If it

is neither a Chained Address nor a legitimate operand, a program

exception will be indicated.

For the operand designated by field Y, the formation of the

effective memory location number is done according to an addressing

rule which involves interpretation of the special tag in the in­

struction, called the 11 a" bit, and an evaluation, with interpretation,

of the fields Y and ±Nin the instruction. The "a" bit determines

whether or not the register designated by field Y is to be used in

obtaining the operand.

If "a"= 1, the register is not used. In that case, the Y

field is used to designate the choice of one of several options:

1. If Y=O, the value of the ±N field itself is used as the

operand. This is the familiar immediate addressing option,

available on many computers.

2. If Y = 1, the number in the ±N field is used as an absolute

core location number, without further modification, and

the operand is fetched from, or stored into this location.

The first 16K memory locations may be addressed in this

way. This region is available for parts of the operating

system whose location must be invariant.

3. If Y=2 or 3, the number in the ±N field is added to the

(___ location number of the memory word containing the current

II-6

instruction, to form the effective location number re-

quired by the operation. This provides addressing relative

to program location. It is useful in programs which are

expected to be relocated. Jump addresses for branching

within a program segment are formed in this way, and

constants stored within the segment are referenced by this

means. Store operations to such locations can be prevented

by setting the Write Lock-Out bit.

4. If Y=4 and the instruction is a jump, the ±N field is added

to the current location number, as in Y=2 or 3. The word

fetched from that location must be an address word; it must

point to a vector of control words. The address word is

then modified by the contents of Register 1 (U), a pre-

viously set integer, and control is transferred to the

instruction addressed by the designated control word. A

program exception occurs if any of the conditions are not

met.

If "a"=O, the register designated by the Y field will be used

in obtaining the operand. The register may contain the operand or

an Address Word; this is made manifest by the tags. If the register

contains an Address Word, that word will be used to form a memory

location number for the operand. If the register content, regardless

of tags, is required, the ±N field will contain all ones. This is

equivalent to minus zero, in the one's complement system, so it is an

II- 7

unused element in the range of values of ±N. When this des-

ignation appears, the content of the register designated by Y

is used as the operand, whatever it may be~ Of course,

the tags associated with the operand are interpreted according

to the rules, and no illegal combinations are permitted. This

option eliminates the need for special function codes for register

to register transfers, etc.

If "a" == 0, and ±N =/ (-0) , a normal storage access is to be

made. If the register Y is not tagged as an address, its content

is taken as the operand, and ±N is ignored, unless Y is tagged as

an integer. In that case the operand is (Y) + (±N). If Y is tagged

as an address, the memory location number is formed from the fields

i 0 and loc of the address word, as illustrated in Fig. I-1, and

field ±N of the instruction word, as [(±N) - (±i 0)] + loc.

From the above explanations of the function of the X and Y

field in the instruction, it is evident that accesses outside

the first 16K words can be made only by addressing through one of

the 16 registers, and the contents of the register must be tagged

as an Address Word. 'rhe rules of tag interpretation are drawn for

all operations in such a way that words tagged as addresses cannot

be inadvertently spoiled by mistakenly combining them in arithmetic

operations, or overwriting them with data.

(

I ' \. __ ,,,

II-8

Addressing Rule for Data Arrays

Each address word may define an array of data. The 20 bit

location number specifies the location of the first stored word

of the array. The field of 14 bits, labeled i , specifies the max

length of the array. If all arrays were simple lists of numbers,

it might be reasonable to consider the first stored word as being

the first word of the array. However, there are cases in which

a given array is related to one or more other arrays. The rows or

columns of a matrix are examples.of such a grouping of related

arrays. The numbering of the elements in each array is usually

conceptually important. An irregular matrix, or a triangular matrix

may be conceived as a rectangular matrix with all its positions

numbered, but with many of these positions empty. It is, of course,

desirable to store only the values for the non-empty positions.

Thus, for a particular vector, all elements up to the nth may be

empty, so the nth element must be the first stored element of the

array. The difference between the conceptual numbering of the nth

element, and its physical position as the first stored element in

the array, can be accounted for simply by assigning the value n to

the field i 0 in the address word which describes the array.

In referencing an element by an instruction, if the ith element

is wanted, the i will be placed in the ±N field of the instruction.

'l'he address is formed as [(±N)-(±i0)]+LOCATION. For example, if the

(_,,

(,
....__,

,....... ~

l_,/

,
a:

,
LL.I I
,:Q I ::::!!:::
::::>

- ,.
I

- Ii
I a

II-8A

I I I
0 ••• 08 I. +0 ••. 05 I 0 .•• 03 I

- - - - _! - - - - _·!._ - --- - - - - J
RELATIVE ADDRESS WORD IN MEMORY AT ! LOC 13

>Z I a:
oz: I

03
+13 :E: 0

L,.J ..-.t w :!!::I-
< u
0
...J

0
I

1

2

3

..
5

I

g I
I

7
I

8

I
9

' 1 0 I

1 1 I
I

1 2 I

. '

YES
I II

0 ••• 08 +O ••• 05 0 ••• 16

.ADDRESS WORD IN_Rn

- - --i-......--....------...-......-------
NO
->TRAP I 0 ••• 06

YES

.. ,
- - --I--''----:.----'---------.----

NO
~TRAP

v

X/V OP Y ±N
INSTRUCTION

1 3 <f- _,

1 ..

1 5

1'

1 7 .· -
1 8

1 9

20

2 1

22

23

2 ..

LOC+(N-i 0)

' ~ (N-i 0=+ 1}.

A RELATIVE ADDRESS DESCRIBING AN ARRAY OF 12 ELEMENTS

It is known that elements 1, 2, 3 and 4 do not exist
ro in mem~ry_. The first stored element is 5. It is stored
~ at location 16.
1- The address ii stored at location 13. The array
: .which it describes is 3 spaces up from its own location.

2S

~ ~hus its location field is ltored ~ith the value 3. When l it was brought to register Rn, its own location number, 13
i was added into its location field 3 to give a value 16, the

--~ absolute address of the first stored word of the -array.

26

The instruction is to operate on element 6 of the array.
This is stored at location 17.·

Figure 11-2

(

~-/

(_)

II-9

first 7 elements of a conceptual array are null, and element 8 is

the first stored, i 0 will be given value +8. A reference to this

element will be of the form op(Y±N) where N = +8. The quantity

N-i wi'll b f d 8 8 0 h' h dd . O e orme as - = , w 1c a ed to the loc field, gives

the first stored word. A valid address must satisfy the rule

imax > (N-i 0) ~ O, to insure that it lies within the defined limits

of the array. This test is applied automatically by hardware to

every address before it is used. The use of addresses is ill-

ustrated by diagram in Figure II-2.

Special operations are available for setting the location

number to point to successive words of the array. This is done by

the MOD function, which adds an increment to the loc field, and

subtracts this same quantity from the length field. When the

length field goes negative, the bound has been exceeded, and a

program branch or a program exception occurs.

Addressing Rule for Storage Management Functions

The inclusion of the initial index value, i 0 in addresses

requires that the value of ±N be consistent with i 0 for all

instructions referencing this array. This is a convenient

arrangement, when both code and data are created under known

conditions, as is the case in many applications programs.

II-10

It sometimes happens, however, that a particular system program

must access several arrays belonging to user programs. The initial

indices may not be known, and even if they were, alteration of the

±N value or any other field in an instruction is not permitted in

a program, once it has been loaded. For this reason, a set of load,

store and move functions is included in the vocabulary set which in-

terpret the field i 0 in an address as being zero, regardless of its

content. A value of zero in the ±N field will then reference the

first stored word of an array, etc. For storage allocation, and

other system processes, this is a convenient and natural way to

reference blocks of storage.

Dynamic Relocation of Selected Blocks of Storage

By means of addressing rules developed thus far, Address Words

can be used to describe the detailed structure of the programmer's

name space. Storage relocation procedures must preserve this

structure, but they will not always need to be applied to data arrays

individually. In many cases, larger blocks of storage, including

several arrays, and perhaps several program segments, may be taken

as a unit for a storage relocation procedure.

It is obvious that if an array is relocated in store, any

Address Word which designates the actual physical location of the

array must have its location field updated to reflect that change.

The updating of all Address Words so involved must be a part of

{
I .___.

II-11

the relocation procedure. Address Words of this form are tagged

as absolute.

Alternatively, the location field of an Address Word may specify

just the displacement of the beginning of its array with respect to

its own location. It is then easy to derive the absolute location

of the array as required, because the absolute location of the

Address Word will be at hand when the word is loaded into a register.

Such Address Words are tagged as relative. When they are loaded

into registers, the absolute location of the beginning of the array

is automatically determined and written into the location field

of the register, as a hardware function.

If a relocation procedure involves the movement of arrays

described by relative Address Words, and the Address Words are

. moved together with the arrays, with no alteration of their relative

locations, then the Address Wo~ds need not be updated. Obviously,

Address Words which are absolute must be updated in any case. Should

a relocation procedure be performed which does result in a change

of the relative locations of relative Address Words, their location

fields must likewise be updated.

The use of relative Address Words provides the opportunity to

simplify and shorten storage relocation procedures if suitable

conventions and strategems are observed in the.designation of blocks

to be moved. This is entirely a system function, and there are no

hardware imposed conventions on the block structure for storage

allocation.

II-12

Chaining of Addresses

Address Words which describe arrays are normally brought

from storage to one of the sixteen general registers before they

are used for referencing memory. This is done because alterations

required in indexing may be performed on copies hel<l in registers,

while the Address Word in storage remains in storage in the original

form, properly describing the full array.

Address Words are frequently used to obtain an item from a

single location in storage, so that no alteration of the Address

Word is involved. An instance of this usage is the process of

transmitting arguments to subroutines. In the simplest case, the

(_; subroutine would be supplied with an Address Word pointing to a

sequence of Address Words, each of which points to one of the

arguments of the subroutine. rhe Address Words pointing to the

arguments would be most conveniently used as Indirect Addresses,

so that the subroutine could reference an argument in a single

operation. Notice that there is no occasion to index any of the

argument Address Words. Such addressing procedures are referred

to as Chained Addresses in this discussion, since R-2 does not

use direct addressing except in a highly restricted sense .

. The R--2 chaining procedure avoids the necessity of loading

addresses into registers before using them. This saves time,

reduces register occupancy and avoids the use of specific

(..
"--...:"

II-13

instructions for the process. It is implemented by tagging

Address Words as either Chained or Unchained. The rule of tag

interpretation for chaining may be stated as follows:

For any access, location information will be extracted and

used from, at most, one Unchained Address Word, but it may

be extracted and used from as many Chained Address Words as

occur in any sequence.

It follows from this that if the Address Word in the register

which is used to start the sequence is Unchained, the next Un-

chained Address Word, or any word not tagged as an Address, will

be taken as the final operand. If the initial Address Word in the

register is Chained, the datum to which it points is extracted

and the process is repeated until either data is encountered,

and the sequence ends, or an Unchained Address Word is found

This word will have its location information extracted and used

for a further access, and the chaining will continue until a

non-Address, or a second Unchained Address Word is encountered

and taken as the operand.

Conclusions

It has been deemed important in this system to provide a

means for keeping storage references within the defined boundaries

of an array, whatever its length. This requires that the computer

./-----,

II-14

be able to evaluate datum and limit information for every reference.

Given the hardware for doing this, it is natural to express lengths

of storage blocks in words, not in pages. Variable length

blocks are natural in this system, so blocks can be arranged to

correspond to the form of arrays as they are conceived by the

programmer, or developed during execution.

Most storage control systems are at their best when the program

calls for many successive references to a particular region of

storage, so that the amount of updating of the block index is

reduced [1]. Similarly, this system is at its best when the program

calls for many successive references to a particular array. Once

an array has been entered, the system can derive addresses for

successive references without a table look-up.

The components involved iti the bounds checking hardware

represent a trade-off against the associative memory used for the

block index look-up used in some other systems [2]. It gains the

advantage of easy monitoring of the very cormnon prograrmning error

which produces out-of-bounds references. It provides storage

protection by blocking the source of storage violations. This not

only blocks references to other programs, it blocks references

which might be valid in form, but are directed to the wrong array

in the current program.

This system avoids the loss of storage space due to partially

,,,,.----.-.
I
\.___ .

II-15

filled pages. It makes addressing of structured data simpler,

since the storage addresses are formed. in the· addressing unit

according to the structure, and the arithmetic processor does

not need to be committed to evaluation of storage mapping functions.

The result should be simpler and shorter programs which run faster.

III-1

III. STACK OPERATIONS

The Stack Concept

A stack is generally understood to mean an addressing arrange­

ment organized in such a way that the last item to be stored will

be the next one to be called. Stacks are often implemented in

software by an appropriate algorithm for the formation of the

addresses.

Stacking procedures may also be implemented in hardware. In

such machines, the formation of storage addresses which form the

stack is done by hard-wired sequences. In one well known hardware

arrangement, operation codes are associated with operands derived

from the stack, and they are not, in general, associated with

explicit addresses [l].

The concept of stacking developed from the fact that data

storage locations must be chosen according to some well defined

and easily interpreted convention to minimize the amount of com­

puting effort and storage space needed to keep track of wheie things

are stored. The stack is one of the most efficient and powerful

tools for this purpose. As a result, during the past decade it has

been customary to characterize computer architecture as stack

oriented or conventional, in a mutually exclusive sense [2]. The

stack convention is a powerful one, but it can be a handicap if

the conunitment is so inflexible that data thus stored cannot be

retrieved by alternative means.

III-2

The system to be described is included in a new arithmetic

and logic unit made for the Rice Computer System, known as R-2.

It provides the options of both the stack convention, with

automatic generation of the stack addresses, and the familiar

arrangement of operations associated with explicit operand add-

resses. Both options are available at all times, with no mode

switching required. As a consequence any element of the stack

is accessible, simply by associating its address explicitly with

an operation.

In this processor, one unique address is used to designate

the stack domain. When this address is used storage accesses

follow the stack convention, with address generation being done by

hardware. Since, for all instructions, operations are associated

with at least one explicit address, any operation may be associated

with the address designating the stack domain. This is expressed

in the second operand address field of the instruction. (See Fig-

ure III-1)· When the configuration "a"=O, Y=OOOO, N=O ... O appears

as an effective address in an instruction, the operand used will

be the top element of the stack. Stacking or unstacking, with

adjustment of the pointer, occurs as a part of the execution.

The General Addressing Rule

Operations in the R-2 System are of the form X op Y + X,

where X and Y may be the contents of any of sixteen registers

(_'

CJ

8 BIT
CONTROL

FJELD

R G

2 2 It 1 I\

54 .BIT
ARITHMETIC AND DATA FIELD

COEFFICIENT

NUMERIC WORDS

1 It 2 1 l 2 l

CHAIN H MODE LOCATION

CONTROL WORDS

1 .. 1 .. 20

III-2A

p s D I LENGTH . INITIAL LOCATION INDEX L (i max)

R G

2 2 .. 6 ..

OP I y I

ADDRESS WORDS
or

PARTITION WORDS

l ..

±N

l ..

±N

FIRST INSTRUCTION SECOND INSTRUCTION

s---Software-defined tags
0---Direct tags
!---Indirect tags
M---Mark
P---Parity
L---Write lockout
A---Literal value of ±N

INSTRUCTION WORDS

N---Oisplacernent of Location
R---Restricted access to array
G---Array present in core
X---lst operand reg. selector
V---Variant on operation
V---2nd operand reg. selector

OP- - - 0 p e r a t i on c o d e
C---Condition code

DIAGRAM OF R-2 WORD FORMATS

Figure rII-1

(~
\ _____ ,

III-3

designated by two four bit fields, the X and Y fields in the

instruction. Figure III-1 illustrates the format of instruction

words and of other word types. Each register, and each location

in store, includes a tag which indicates the word type occupying

the rest of the location.

The content of either or both of the designated registers

may be tagged as Address Words. If so, the LOCATION field of the

address word designates the memory location to be accessed when

the register is selected by the instruction field X. When the

register is selected by the instruction field Y, the memory location

is formed from the LOCATION field and the INITIAL INDEX field of

the address word, and from the ±N field of the instruction, by the

summation

A= [±N-(±i0)]+LOCATION

where INITIAL INDEX is represented as i 0 .

Since Address Words describe data arrays, they include the LENGTH

field, which specifies the length of the array. A hardware bounds

check is made to insure that the relation

i >(N-i 0)>0 max -

is satisfied, where LENGTH is represented as i max

III-4

Structure of the Stack

The physical arrangement of the stack in memory in its simplest

form is a sequence of contiguous storage locations, with a distinc-

tive marker stored at each end of the sequence. A word type defined

and tagged as a Partition Word is used for this purpose. The format

of a Partition Word is identical to that of an Address Word. (Fig-

ure III-U. The I field of the Partition Word is used to c~tegorize

it as to subtype. The subtypes used for defining stack structures

are: 1. "Beginning", 2. "End", or "Forward Reference", 3. "Change Stack

Mode", 4. "Back Reference". The beginning of the stack will contain a

Partition Word of the subtype 11 Beginning 11 • It will occupy the

highest location number in the region of memory assigned to the

stack. Items added to the stack occupy successively smaller

location numbers. The end of the sequence of locations available

for stack building will contain a word tagged as a Partition Word

of subtype "End". On every stacking operation, the resident word

is first tested. If the end of stack symbol is detected, an error

trap will occur. Otherwise, normal stacking will proceed. The

end of stack symbol will occupy the lowest location number in the

stack sequence.

The special register R0 is dedicated to serve as the stack

pointer; it is not a full length register, but its content is tagged

as an address and interpreted according to the common addressing

rules. Its LOCATION field, a, points to the location of the next

III-5

vacant address in the section of memory available for stack build-

ing. By convention, the top of the stack is address a+l and

unstacking of the top element includes the operation a+l+a.

The content of register R0 may be used as an ordinary address,

simply by using a value other than 0 ... 0 in field N of the in-

struction. Such a configuration is not interpreted as a normal

reference to the stack domain, so the hardware operation a±l+a

does not occur. For example, the configuration a=O, y=O, N=Q ... 01

will form an effective address a+l and will access the top element

of the stack without changing the value of a in R0 . Such an

operation is convenient for copying the top of the stack without

unstacking. Similarly, the configuration a=O, y=O, N=k will access

the element of the stack kth from the top, without unstacking. In

general, any element within the range delimited by the bounds check

as applied to R0 may be accessed. This covers all of the topmost

segment of the stack, as further explanation will show. All

elements of the stack may be accessed by use of suitably constructed

address words held in registers other than R0 •

Allocation of Storage to the Stack

A region of memory for the stack is assigned initially with

a length specified by the input program. Dynamic storage allocation

is applicable to all storage, including the region occupied by the

stack. The space initially assigned may not meet the maximum

III-6

required by the running program. In the event of a trap on the end

of stack symbol, a recovery procedure may be taken which first calls

for the allocation of an additional region, anywhere in memory, to

the stack. Then the Partition Word of subtype 11 End 11 will be re-

placed by subtype "Forward Reference", with the LOCATION field

pointing to the first location of the new region. This location

will receive a subtype "Back Reference" which points to the last

it~m before the "Forward Reference". Normal stacking and unstacking

is performed by the hardware across such a link.

The use of Partition Words thus provides hardware accommodation

for a dynamically varying stack with a length up to the maximum

available memory. Although the required length of stack is typically

short for some computations, there are many which require an amount

which is unpredictable and may at times be very large.

Double Length Operands

The computer can operate on double word operands, and generate

double word results. These must be stored as single items occupying

two storage locations. By convention, the two locations are con-

secutive, with no restriction on the odd-even relationship.

For stacking operations, single word storage is taken as the

normal mode when any program segment is entered. Upon occurrence

of a double word operand, a hardware procedure sets 11 MODE 11 bit 8

L,

(I ,...__...,

III-7.

to double word mode and then stacks a Partition Word of subtype

11 Change Mode 11 • The LENGTH field of this word will show the length

of the segment of single word items immediately preceding it. A

subtype 11 Change Mode11 may be stacked, at the programmers option, to

return to single word mode. Alternatively, single word items can

be stored while in double length stacking mode, with the waste of

the extra storage location. The LENGTH field of the 11 Change Mode"

word will show the number of single word locations occupied by the

sequence of double words preceding it. Indexing is by items, not

by words. The length of the partition immediately preceding the top

of the stack is expressed in the LENGTH field of the stack pointer

as a number of words, designated as i max To begin the indexing

operation, the index value is converted to words according to the

state of the double word mode bit. If i > index value, the max -

desired item lies within the partition. The index value is added

to the LOCATION field of the stack pointer, and the item is taken

from the location so formed.

If i < index value, the value of i is converted to items, max max

and the index value in items is reduced by this amount. Then the

value i + 1, in words, is added to the stack pointer and the 0th
max

wor~which identifies the end of the partition, is accessed. If it

is a Partition Word of the subtype 11 Beginning", or if it is a

Control Word, a bounds check error is indicated. If it is any other

c:.

()

III-8

subtype of Partition Word, its LENGTH field is used to form a new

value for i , and the above process is iterated until the index max

falls within the partition.

Program Branching

A jump which requires linkage must find its jump destination

in a word called a Control Word. (The word format is illustrated

in Figure III-1).

A Control Word has some similarity to the program status word

in certain contemporary computers. It contains a twenty-one bit

LOCATION field which is used as a jump destination. This provides

for jumping_ to either of the two instructions in a word. It also

contains a field for displaying a condition code which records the

result of test operations, and a MODE field which displays the

operating mode of the processor. There are two other fields,

labeled MARK and CHAIN. The use of these fields will be ex-

plained in a later section.

The normal addressing rule is applied to determine the

destination of jump instructions. If the instruction nan bit

has the value 1, the Y field is decoded to distinguish between

absolute addresses given by the displacement field N, and addresses

relative to the program counter, given by CN±N. If the nan bit is

III-9

zero the jump destination is taken from a Control Word which either

resides in the designated register, or is taken from memory by the

ordinary addressing process. If this process does not reference a

word tagged as a Control Word, an error will be indicated.

Control Words will be created when a program is compiled, to

link various program segments. All the fields will appear in an

initialized form, with the appropriate value appearing in the

jump address.

Segmentation of the Stack

Although the stack concept is a simple one, the stack structure

is not a simple structure. The stack grows as a succession of seg-

ments because the program which uses it traverses a succession of

program segments. The program may need to retrace its path, or to

re-enter it in some other fashion. If a program is to be re-

entered, operations must be resumed with its stack segment as it

existed when the previous exit was made. Since the stack pointer

has all the features of an address word, the i field can be max

used to indicate the length of a stack segment. By convention,

stack building is accompanied by the operation a-l+a, whereas un-

stacking includes the operation a+l+a. Along with this, stack

building includes the operation (imax+l)+imax and unstacking includes

the opposite. Thus i always shows the current length of the max

,,,,.-···,

(:.
'-....,·'

,,.,..-·--

III-10

stack segment. When the stack pointer, R0 , is used either in an

unstacking operation, or as an ordinary address, the normal hardware

check is made to see that the effective address is within this

segment.

Two specific jump instructions are provided for maintaining

a succession of stack segments corresponding to a succession of

program segments. These are the operation JSM (JUMP and SET MARK),

and the operation RET (RETURN TO rv1ARK). The JSM operation creates

a Control Word and stacks it by a normal stacking operation before

the JUMP is made. Figure 2 illustrates the information transfers

that are involved.

The Control Word is formed by the following procedure. The

LOCATION field of the Control Word is loaded with the address of

the instruction following the JUMP instruction. This is called the

CONTROL NUMBER (CN). It is just the content of the program counter

after fetching the jump but before its execution. This is the

natural point for re-entry to the program segment.

The CHAIN field is loaded with the present value of imax'

from R0 . Finally, the MARK field of the Control Word is loaded

from the X/V field of the jump instruction. The Control Word is

then stacked, the imax field of R0 is set to 0, and the jump is

executed. A new stack segment will be constructed as the new

program segment proceeds, until another jump occurs. This may be

JSM

III-lOA

PROGRAM
COUNTER

'

JSM RET

,~
p

s D M CHAIN c MODE LOCATION
L

d\
CONTROL vJORD ·; (IN HARDWARE PROPRIETARY REG I ST ER)

/
JSM RET

,v -- -
LENGTH LOCATION
(imax) (a)

- - -
STACK POINTER (RO)

~
RET

~
RET

> <;> -<;

p

L
sx sx OP y ±N OP
A V A V

JSM RET
INSTRUCTION vJORD

INFORMATION TRANSFERS FOR MICROPROGRAM
OF THE OPERATIONS JSM AND RET

Figure III-2

y ±N

li

c~.,

III-11

another JSM, or it may be RET (RETURN TO MARK).

When RET is to be executed, the X/v field of this instruction

will contain a value related to the MARK of the Control Word at the

top of the desired segment. The return may go to any segment in

the stack, by a proper choice of marking conventions. The desired

segment is found by successive examination of the Control Words,

and only the Control Words, in the stack. No reference table is

required.

This process begins by fetching the top Control Word or

Partition Word in the stack. The location number of this is formed

simply by forming a+l+i from the stack pointer, R0 • This location max

number is loaded into the location field of R0 . When the word is

obtained, the i field in R0 is loaded from the CHAIN field of max

the Control Word, or the LENGTH field of a Partition Word. The

stack pointer is thus initialized for the partition which precedes

the word. When this is accomplished, theX/V field of the RET

instruction is compared to the MARK field of the word, if it is

tagged as a Control Word. If the MARK value is> the value in

±N, this is the desired entry point. The program counter is

loaded from the LOCATION field of the Control Word, and the program

resumes at this point. Note that the stack pointer is set to over-

write the Control Word on the next stack building operation, and

will continue to overwrite subsequent locations. Its LENGTH field

III-12

defines the length of the partition which occupied the top of

the stack at the time the Control Word was written, and, of course,

will be adjusted as stacking or unstacking occurs. The bounds

check is applied on all unstacking operations, so a warning is

provided when the limit of a stack segment is reached.

If MARK value is< the value in ±Nor if the word is a Partition

Word, this is not the desired entry point. In this case, the next

Control or Partition Word is addressed and tested by exactly the

same procedure as before, using the stack pointer with its new

values for a and i max This iterative process continues until the

desired entry point is found, or until a Partition Word of subtype

"Beginning" is read out. This indicates that the entire stack has

been traversed, so an error trap occurs. Usually subsequent Control

Words would be marked in a descending sequence, although several

Control Words can have the same MARK. In such a case, the first

one encountered which satisfies the test will be used. In a RET

sequence, Partition Words are addressed just as Control Words are,

taking i from the LENGTH field, but they are not tested. max

It should be noted that the return to a particular MARK does

not involve an unstacking procedure. The return requires one

fairly simple hardware process for each segment traversed, to get

to any desired point. The time required is independent of the

number of data items that are entered in the stack. It is therefore

III-13

(
I
'-.__ I

a much faster process than the usual unstacking procedure.

The operations JSM and RET, aided by the marking facility,

are a great convenience for any computational task which has a

tree-like form. Such tasks are very common in modern computing

practice. In general, any process that can be recursively defined

can be arranged in this form.

A simple example pertinent to the use of these operations is

the problem of determining whether a tree contains a given item.

The comparison process continues as long as the items do not match,

until the elements have all been examined. Upon any instance of

a match, whether it occurs early or late in the sequence of tests,

CJ
the comparison process is terminated, and control must go to a

different program segment, perhaps at a higher node in a tree

structure. The RET operation is designed to aid this process.

Such procedures are used frequently in programs for implementing

compilers for high level computer languages. These programs should

benefit greatly from the marking facility.

Conclusions

In normal programming practice, a stack is an attractive

storage structure for operands which are to be processed on a last

in-first-out basis, such as arguments for recursively called

procedures. It is also attractive for data of arbitrary ordering

c

III-14

which must be simply stored and recovered. Such a case arises

when several registers must be saved to accommodate an interrupt.

For all systems in which stacks are formed and operated by

a prog~ammed algorithm, the option of explicit addressing is

retained and used extensively. In the hardware implementation,

where the choice between explicit addressing or stacked operands

has been made as one or the other, but not both, explicit address-

ing has the greatest number of adherents. This is understandable,

because explicit addressing has the greatest generality, at least

for conceptually simple storage arrangements. The system described

here has brought the advantage of automatic stack manipulation to

a machine which is fully committed to explicit addressing, thus

bridging the choice which has led to two widely differing concepts

in computer architecture.

(,

III-15

Reference

[l] Burroughs Corporation, "The Descriptor 11 , Bulletin 5000-20002-P,
February, 1961.

[2] Amdahl, G.M., Blaauw, G.A., and Brooks, F.P., 11 Architecture
of the IBM System 360 11 , IBM J. of Res. and Dev., Vol. 8
No. 2, April, 1964.

[3] Iliffe, J.K., 11 Basic Machine Principles 11
, (Book)

American Elsevier Publishing Company, New York, 1968.

[4] IBM System 360 System Summary, Form A22-6810-2.

"-.,,--·

('
,.______,,

IV
IV-1

PROGRAM BRANCHING

Program branching within a program segment will use the literal

value of the location field in the jump instruction. ("a" bit must

be = 1.) This is modified by the value of the control counter

(instruction counter) and used as the jump destination. The jump

address is thus relative to the present location of the program.

Such jumps do not require recording of the status of the processor,

nor any return linkages.

A jump to a different program segment must find its jump

destination in a word called a control word (tagged 1010 or

1011). The jump instruction will contain an address in the

Y + N field. The register Y may be tagged 1010. If so, ±_N is

ignored and this is taken as the desired control word. If not,

it must be tagged as an address, in which case the addressing rules

are followed to find the control word. If it is not tagged either

as a control word or an address, or if the addressing rule does

not locate a control word, a program exception occurs.

Control words have some similarity to the program status word

in contemporary computers. It contains a twenty bit location field

which is used as a jump destination. It also contains a field

labeled "Mark", which identifies the position of this control word

in a sequence of control words. Another field called "Chain''

indicates the number of address spaces to the location of the next

-..____,

IV-2

related control word. It contains a field for displaying a con-

dition code which records the result of test operations, and a

field which displays the operating mode of the processor.

Control words will be created when a program is compiled,

to link various program segments. All the fields will appear in

an initialized form, with the appropriate value appearing in the

jump address.

Control words will also be created when a program interrupt

occurs, or on a jump in which a return link is desired. In these

cases the location field will be loaded with the value of the

control counter+ 1, and the other fields will be loaded with the

conditions that exist at the time of the interrupt or jump.

Control words are related to instruction arrays the way

addresses are related to data arrays, and instruction arrays are

subject to change of location, just as data arrays are. Accordingly,

control words stored in core point to instruction lists relative

to their own location. When they are brought to registers to be

used, they are made absolute by modifying their location field by

the value of the location at which they were stored. If needed,

control words may be tagged as absolute.

used as found, without any modification.

In this case they are

V-1

v

MACHINE FUNCTION LIST

This section consists of a brief description of the R-2

instruction set. A detailed description is given by the

microprograms in section VI.

1. Operations on Numeric Classes

Number representation, and the results of arithmetic operations

are the same as their counterparts in the Rice Computer and will

not be elaborated here. In the following descriptions, Bis a

general buffer register which contains the second or Y operand

fetched by means of the general addressing rule.

00 - EXTRACT/MASK COMPARE (XTR/MCP)

The operation is specified by bits 3 and 4 of the x field of

the instruction:

00 - Replace bit i of u with bit i of B if·bit i of R is 1.

01 - Replace bit i of u with bit i of B if bit i of R is 0 .

10 - Bit i of- u is 1 if the i-th bits of u and B are different

and bit i of R is 0 .

11 - Bit i of u is 1 if the i-th bi ts of u and B are different

and bit i of R is 1 .

The Boolean condition code is set in register CC and the store

option is applied.

.-:j~o "'"" i"• ~ l '!,..l ,~::1 ~~ f

\ ;--._.,:,

,· -·· "·r~ ~~.
"'

I Cf

<-'l .. .tI

<l.ri .,h :rNL
,J ;

'f-(; :i-; ·r '"~1 \.c<'" ~

4? "'~""" _,....
,J(:;J t.

'

t5o

.f)}

fitL

:,?3

"".., u,f)~~J-

r,-.:? • ..,
""

r-;
.. "::J.(;?

57

5NIFTA

r ~· j01

/' r T CJ r.: '
,p; I '7"
r: \,.; J

/MOD

j l Vl
"~ i f '

Mf:M ~-P.1: f~i

((: ~r ;-c::

DfT 8\

· Cl .)'

,) ff°)
t., ~· l,.,., :STD

:? j
,-.J::

(: i.3L.

:;.1~,
;~...; ,~ ... · LPI
.2.3 fl~

2-1~ ,,,,-B :-t. __ (,-- .' .,- ~ .
;') .,;;
;..~r,~ 5.iVF

~~~ ~·~~ {Ji v 
;:.:;7 '1:rrrt 

1;0 
<;;·•,,o4 

OA '?o t 
<,;;,;, ... ,..J .. 

~,l UNUSt=D 
N? 
/i 

G.2 

I 
'72 l ., 

(, ~s ,-;-:r.~ 
/.,";,. ~. -

,;.~~/ I .rJ~~ 
'+,' < I,· 

I 
,ll..._. l ·?J:;;" {1,·-) l i -?' 

l 
/' ' ,-,/ 

t;,, r:, 
I 

I if I 6::/ ·'7 "''1' ,, v I I ~ 



c 

:.? D O {.) 

D O O } 

uc/f) 

()/ ·0(} 

l) l O 

,('• fl J ,:) ~! , ' 
f1 i1 j 
" 

/()().{) 

/D/0 

.i O ,· / 
i § f 

i I ()CJ 
' ! 

l 1 Di' .. f 

JO 

l / / l 

Tit,:) ···-- ·' . ./ 

.. , FiJN C TLC.ls.' .. 

., 
) 
l 

cc __ _ 

// 

JJ 

II 

,. 
d 

u l 
... / 

f .. / ~ / ' 'r r ! i (~: f\ : ' 
. ' 1 '· • IV, 

·-,\ 

/ STOR'E5 
.? .. 
\, 

~) t)~~//,j (? 

BUT 

' I •I I •1 f .... :, • 
r v:) f ~ 

. . ( ,., 
~ .•• -'\ I. / ~~ 
,,) 

c 
/ ' ' \ { {} l ;_,• / / 

"J' .c1 
/\ I 

·,r·-
/!'i; l 

··ro 

I<: ,..., 



' /~'£:.-/-}/) 
! 

/':1,1',7 

.~.:-.:~:. ) 

I' 

{j' -- ilJT.r. 
'i. .. l 
(,i - J'l\iF . 
,J 

// !; ff 
:I 

ii ii ~" •I !l f) 

co / II :fVll\ £)j; ~---- ~-

IJ ..... !/ ,i'I· 

) 
// 11 

;1t ..... ,h 
'1\ _., 

.'/ /,I 

c /' {) () () 

// / 

[) , ..... o,,•, 

hf.: ,1 

F:cri P:'.'1 \l -,,,_,, · !;,.; 1,,,,1,1 To /;/\ /\ r;,1/ 
~ 'd '\, t,~ (·) {~,.,..lj -y '?'l Ti) Di( I... lE':.~; ~:3· .. ._,.,,.{ ·'/.} ~ f! 

/ JJ,· tV T /r./\ 
...!::,, 1./V j " 

ii' ,, ,rl .~ r 

" !I /l Ii 6Xc'Jilf.R /l JI 



c 

', ..... -,/ 

i: ,, 

i! 
l 

!, 
I' ,, 
,, ,. 
i: 

A Ai 

3 ,"i 
""'re, 

(.I 

.. , I 
:) (;8 --

./.!: FF.E!W PT 

,F:?.PA 

rzr-s 
·~-' f'II. 

d / .. i 
,1·~ 
•t;: 

~ ... 1,j; .,. ' " 

.;J1'1J' :, ,, :: ',.!) ,,_ 
, , I -1 i })_ -· 

() r== 

JS 

I l'i:' IC/ 0 <\:' ii 1t:. ... , -4 0 -j5 
. I(; 

) 
/ r'"."( 1::' ,f ~<Aoo· «:~ J{ -~ 3! \ 
''- f , ,. 1-V -~· / " tJ J~) 
,, ,• ' ( ,r/f !..[> ~- c /:) .i ;· 

f/lf..) ,, 

OT/f.El? FIE}.l> 



' I ·,.___,; 

.., 

,~< \ ) 
\.___,,L. 

..,--~. 
! ;;: ) . \,e:. .. ..r. 

j; \ ,. 
,. 
Ii 

t?i;· 
\.!£_,,' : 

\ 
I 

. JF 
l• 

,, ,. 
i 

!. 
i! ,, 
l' 
Ii ,. 
i: 
'· I· 

li 

l(Y) = o ,'\ND 

-'!:·c __ ) !: 

PFA 

Rf-/3 

:::. ..- .A , .... 
i {~t \.:· 

il!E 

J!TTEMPT TO 

RES))LT5 

' . . ... .,.. /. ''\ 
r.fli; . -I {ti)= .:: l) - ) 

__.., _ .. 
;' ii t: Of 

AN /NT'i":6£R.' i5 

I 
O-i~c) lFIELO$ 

,/'·, ... 
it- 3! \ (._r/EL[)S 

,, J~ ) 
( 
- ) F}E!..0:- c -- !5' 

!.tJ 

... ,1, : • , ..... \ ·l 

/"i t',::,·11).1 =- / ;l/J'/ OT/!£1? FiEli> 

/t!T.EG,E/?. 

!N£ /0 .. P 

.I } c - I ... ( .r cJ·, :::. 



, I 
''-. .. / 

V-2 

01 - LOGICAL PRODUCT (AND) 

The operation is determined by bits 3 and 4 of the X field 

of the instruction as follows: 

00 - Replace U by the bitwise logical product (AND) of 

registers U and B. 

01 - Replace U by the complement of the bitwise logical product 

of U and B. 

10 - Form the logical product of U and Band the Boolean 

condition code is set but U is unchanged. 

11 - The bitwise complement of U replaces U. 

The Boolean condition code is set and the store option applied. 

02 - LOGICAL SUM (OR) 

This operation is the same as AND except that the logical 

sum (OR) is used for inflections 00, 01, and 10 and the complement 

of B replaces U for inflection 11. 

03 - SYMMETRIC DIFFERENCE (SYD) 

This operation is the same as AND except that the symmetric 

difference (exclusive OR) is used for inflections 00, 01, and 10. 

Inflection 11 is not used. 

04 - IMPLICATION (IMP) 

This is the same as SYD except that the result of the logical 

expression "U implies B" (DVB) is used instead of symmetric difference. 



\ 
'--· ·' 

,,-----.. 
( 
"'----· 

( 
\._____./ 

V-3 

0 5 - REVERSE IMPLICATION ( RIMP) 

This is the same as IMP except that "B implies U" (BVU 

is used. 

10 - ADDITION/SUBTRACTION (ADD/SUB) 

If bit 4 of the X field of the instruction is 0, U and Bare 

added and the result placed in U, R. If it is 1, Bis subtracted 

from U. In both cases, if bit 3 of the X field is 1, the result 

is negated. The arithmetic condition code is set and the store 

option applied. 

13 - REMAINDER DIVIDE (REM) 

If bit 4 of the X field is O, the double length operand in 

registers U, R is divided by the operand in register B. If bit 4 

of the X field is 1, the operand in Bis divided by the one in u. 

The quotient is put in Rand the remainder in U. 

If bit 3 of the X field is 1, the result is negated. 

11 - MULTIPLY (MPY) 

When bit 4 of the X field is O, the operand in U is multiplied 

by the operand in Band the product placed in the extended register 

U, R. When bit 4 is 1, Bis multiplied by U. If bit 3 of the X 

field if 1, the result is negated. 



~1~ indicating a le 

c., .. ",;",! .: .. ',. ·.·-.~ •·1·-. , •. -~ ·1.' ", .. ··,-.-· ,:·,-~,".-, .... ~. ,.,.,~ .. :=,: ~~t • .... -~. ..,,.,·- ,,.., ,.,., ....... , •• -.. ,. ... .J:.; .~ .•::: .. ~ ... ·,1- .-. .,...._~r,J"•, ,.. ..... ..,,.,, ,,, "' 
- .. !. ·-'- ! _·1,:;::. C!..~'-~ 1 .. 1:;!·tc:._1. ... :::,.·.-;:!i:o..J. .J.~J .. L, .. !~"";: ~-;t_.•.;:;:;J .. C!.t"-G 

U to R respective 

' ·, 
-.'), 



I , 

. -- ...._, :: ~/ . 

('-.../ 

.. ,., 
,-:-.::. 

6 (not assigned) 

10 bit count ~CT 

:,.' . .,, ' ' . . ., .!. " t, .l t. C () \l !1 t: ti <:; t: 'J}Ifftl J .c: "t: 1. ?J. ~f 

12 ~~er{) cot1!1t . 

. 15 

fi 'j 'l 

,...-
/ I 
\ ' 

'----/ 



.,------., 
I . 

c 

7 f 

a~ithmetic shifts will o be reversed for~ ne 

-') 

'L·~·'-- !( 0 \~ ___ 1 /I.•-: 1 

in Br 

·..:.] ... ,.,.. 

}bj_ 

·,.: :~- .. 



c 



( 
' I 
~ 

- V-4 

12 - DIVIDE (DIV) 

This operation is the same as RDIV except that the quotient 

is put in register U and the remainder in register R. 

14 - TEST (TEST) 

The X field of the instruction is used to specify one of 16 

possible arithmetic or logical operations to be performed. The 

result is used to set the CC register but no other registers are 

changed. 

2. DATA :MANIPULATIONS l 1 /,} I 1 1 / · r I 

' ' ,40 - LOAD (LD) 

The Y operand address is formed by means of the general 

addressing rule. The contents of that address is then transferred 

into register x. (If register X contains an address, it will be over­

written.) The condition code is set on the basis of the direct tag 

of the data fetched. 

2.1 Q,fr - CHAIN BREAK LOAD (CBL) 

The same as LD except that no chaining of addresses is allowed. 

-34, - LOAD INITIAL (LIZ) 

The same as LD except that the I 0 field of the address is 

taken to be zero. 



V-5 

, .· 4-J: - SAVE AND FETCH ( SVF) 

The same as LD except that the contents of register Xis 

saved on the top of the stack before the register is loaded. 

::'.II 4-3- - STORE (STO) 

The Y operand address is formed according to the general 

addressing rule. The contents of register Xis then trans­

ferred to this location. 

,:; , -2--7 - CHAIN BREAK STORE (CBS) 

The same as STO except that no chaining of addresses is 

allowed . 

. ,., -J-5· - STORE INI'rIAL (SIZ) 

The same as STO except that the r 0 field of the address is 

ta.ken to be zero. 

l\ ,42· - MOVE (MV) 

The Y operand address is formed using the general addressing 

rule. The contents of this address are then copied into register 

X, or into the address specified by register X if it is tagged as 

an address. 



' '--· 

v- 6 

1' ,; . 3~· - BLOCK TRANSFER (BLT) 

The same as MV except that register X must contain an address 

and relative address and control words are not derelativized or 

relativized as they are transferred. 

:., ~: ·50 - EXCHANGE (EXCH) 

The general addressing rule is used to form the Y operand 

address. Then the contents of this address is exchanged with the 

contents of register X. 

:)'1 2-4· - GET ELEMENT ( GET) 

The general address rule is applied to form the Y operand 

address. The contents of this location must be an integer and the 

contents of register X must be an address. Then they-th element 

of the array pointed to by register Xis loaded into the U register. 

25 - PUT ELEMENT (PUT) 

The same as GET except that the contents of U is put into the 

y-th element of the array pointed to by register X. 

: ,·· 5-2 - DOT (DOT) 

The same as GET except that the contents of they-th element 

of the array pointed to by register Xis loaded into register X. 



/,-
\ __ _ 

i 
\......_,.-, 

V-7 

3. PROGRAM BRANCHING 

:,: '5-1: - JUMP AND SET LINK (JSL) 

This is an unconditional branch operation. Control is trans-

ferred to the location formed by the general addressing rule after 

a return link (control word) has been created and stored in register X. 

20 - JUMP AND SET MARK (JSM) 

This is similar to JSL. The return link is stored on the stack 

and has the effect of saving the contents of the stack and creating 

a new stack region. 

-2-2' - RETURN ( RET) 

This instruction is used to restore the stack after a JSM in-

struction and return to a previous program segment. 

:( 21: - JUMP ON CONDITION CODE ( JCC) 

This is a conditional branch instruction. It is conditioned 

by the state of the condition code (CC) register which has pre-

viously been set by another instruction (e.g. logical, arithmetic, 

or data handling). The CC register has two bits and so may 

be viewed as storing a number from Oto 3. A correspondence between 

the X field of the instruction and these numbers may be made by 

numbering the X-field bits from Oto 3. If bit j of the X field is 

1 and cc=j, then control is transferred to the location specified 

by the Y operand using the general addressing rule. Otheiwise the 



c, 

( / 
-..../ 

V-8 

next instruction in sequence is executed. Note that by setting more 

than one bit of the X field to 1 the branch can be conditioned on 

more than one condition. 

54- - JUMP ON PROGRAM TAGS (JPT) 

This is the same as JCC except that the software tag register 

(ST) is used in place of the CC register. 

· 44· - JUMP IF LAST (JL) 

Register X must contain an address. The program will branch 

to the location specified by field Y if the LENGTH field of register 

Xis O. Otherwise the length field is decremented by 1 and the 

LOCATION field is incremented by 1. (This is equivalent to a MOD 

(56) by 1). Execution continues in sequence. 

'45 - JUMP IF NOT LAST (JNL) 

This is the same as ~except that the branch is taken if the 
/ 

LENGTH field is not zero. 

t';{~ - JUMP IF LESS THAN O (JLT) 

Register X must contain an integer. The program branches if 

this number is less than zero. Otherwise the number is decremented 

by 1 and the next instruction is executed. 



V-9 

47:.... JUMP IF GREATER THAN OR EQUAL TO) (JGE) 

This is the same as JLT except that the branch is taken when 

register Xis greater than or equal to zero. 

4. ADDRESSING OPERATIONS 

.5fr MODIFY ADDRESS (MOD) 

The Y operand address is computed by means of the general 

addressing rule. It must contain a nonnegative integer and register 

X must contain an address. If this integer is less than or equal 

to the LENGTH field of the address, it is added to the LOCATION 

field and subtracted from the length field. This has the effect of 

c:. shortening the array addressed by X,from the end with the lowest 

indices. 

57 - SET LIMIT (LIM) 

This operation is the same as MOD except that the Y operand 

replaces LENGTH field of the address. This shortens the array 

addressed by X from the end with the highest indices. 

S-3' - TEST MEMBERSHIP (MEM) 

Register X and Y must contain addresses. The operation checks 

to see if the LOCATION field of register Xis pointing to a location 

which is a member of the array defined by register Y. The result 

is indicated by the CC register and if it is in the array, its 

index is stored in register X. 



V-10 

( __ , 

5. WORD BUILDING OPERATIONS 

,, , ·, @-0·,3I - EXTRACT FIELD {XFA, XFB) 
' ·, ~ •: l : l 

A word is fetched using the general addressing rule. The 

X field of the instruction is then used to select a field of this 

word which is extracted and put into the U register. Fields O 

through 15 {as listed in Table VI-2) can be selected using XFA and 

fields 16-31 can be specified using XFB. 
·t ~~ ' { .) (:)~ (~C ~· :· ~::?c ~ 

-~ \ :: . 3-2--,-33' - REPLACE FIELD {RFA, RFB) 

These operations are the opposite of XFA and XFB. The contents 

of the U register replace the specified field. 

c ,55. - FIELp REPLACEMENT (TAG) 

The general addressing rule is not used and register Y contains 

the word to be altered. The X field of the instruction is augmented 

by the 11 a 11 bit so that any one of the 32 fields can be selected. The 

specified field is replaced by as many bits an needed from the low-

order end of the ±N field of the instruction. This is an "immediate" 

operation, which allows it to be monitored at assembly time. The 

general user will use this operation instead of the more general 

RFA and RFB operations. 



( '-.___,-

\ '----·· 

i~ i···· 
,: 

>
 ..... 

t.!\ 
~i..!~ 

''~} 

it~? 
L~ 

(:.? ..... 

(
t 

:;,.., ... 
.t.!·.: 
t\r, 
~t: :c: 
<-9 

U
) 

{/) 
(.:-:t 

,;,~-. 
[~

}, 

\,_;, 
:·.:;: \.) 
fl 

il 
"'··~ ............ 'l.,•t, 

\'"'-'-

-... 1 
,,-.. 

U
J 

.J
.-.) 

;:c.;, 
~)~,. 

1.u 
!,..r;!; 

·~,;;,.,<~ 

;::: 
~-

., ~'"'"' 
~
 

i~': 
('.; 

!.:J. 
(\::: 

. ..,,.,,. 
!,\. 

i:-.~-.:.i 

,;(. 
..... 
·< 
........ 

'.'.[.";," 
fr•• 

S::) 
M

 .. 
,::( 

0 

tts 
{l'a 

I•'' 

"' ;~ '\"; 
{.,'( 
~.:J 
,, (7

"1
• 

(
)
 

Q
i. 

{
) 

,:~ 
~.I~ 

,'"' 

fi:£ 
,,_J 

<c;J 
:.~!, 
j;; 

!<'!.;J 

G!: 

C
c', 

-1
 

{)'.'.) 
-,-u 
-· 

'}··~ 
f,'j, 

·~:~5 
lj.-~

 
:n 

,;,1=-.,..~ 
11{~ 

. 
·, 

'jn...._, 
t 

•-.-~,.,, 

,}fl; ' 
~.,_ ... ~

 
t ..... 

~,,,,, 
(}) 

t .. ...., 

'\\1,J 
~

\ . 
......... _.., 
qi). 

iJ,c._, 
""'"-':. 

;. 
-·:,,,. 

~
' 

c~. 
~,lj_: 
~· ,, 

'',2 
(f...t-1 

ff~ 

b
.g

 
~--.... 

it: 
~: 
·~

 

;,Cf} 

j
,
 

w
,. 

,U
j 

.:o 
i~

 
lfY 

'-"' 
•:;.-• 
..-2:.. 

ft~: 
-
"
:)

-

;:.;;: 
ti.: 

"J-·~
 

:~r:: 
::?~ 

V
J 

'li., 
tn 

.;v .... 
:~:::; 

'. ..... n 
:t~ 

"":;, 

c5 
tt. 

~
~
)
 

iD~~ 
~: :·) 

P,,,; 

5il 
(t) 



C, 

IN 1\/1 !:' 1'\ A (}.j'."t,' V I ,.:; 1111 - ~,J :> 

... 2.1 .. ___________ ·sorrl/lJ11~Rf .. _~rAG . • ~_1_1 ~rn.~p .... · .. ___ __: ________ :-·-'-·---:-··:····--·· ......... .. 

·----···· ____ . 5i?F'TWAR.i= ... TA6 

2. s _________ . .. ... sortWltRlf . TAG 

"f"'O A ~ 
I I\ r'i J. 

Tfi.AP .. ·····-·---·-- ·----- -----·--·-----·· -···-·· -····--·· 

~.b' : --- --····- -·· -····--

.: . l&_ ..... _-----··· t7?.RtHi ....... _:1;.iPf.:.R l\s IJ'P __ _ 

.. 21. ···-- --- -- :. 1( ii-.,,ACE ~-. OPEl?.ANf> . .# ;J, 
w G . ·. -~ 

._ 30 ____ ----~ . 11 . ___ --'--~- ~, i _ ONLY. _l}$E/9. •... f~f!.. ;_!J1JU!iUL WtJ!W . .. Jr,_~JW::) 

31 ____ . _._:.._ ___ ,,{TRAC~ .. __ OPfAAPJ{) #2. _ ·-·····------·-··-·-··----·-··· .. 

··- ~J: ... ·-·····-·· -·· ,.- . II _._:__.~I /f.· 2. __ (.. ~ ____ ." .. __ -~'_ _· __ 1!_ _______ fl~- ...... ·-· _ :~ ) .. 

. it<A-P. 

. aUFFEfi ... (.!lgi'J __ W~l?£~.s) ... 
··7 . q .. ·--- ..... TRA 9 ... ' 

' . __ " • • ·~ , , a • .' :· 4 · 

1 ••. ·-· .... S'o ___ --·· .... . ,• '\ .. 

;_:.._ 

.: .... !.k"'VEL. B ··- .. INT'€1l.RlJP1 . ... - , ·_ .. .. . . ·. : i·. ") 
·:·-' , ...... ,.·•-·· ...... ,. ---···· . .-S·-- ... ---- -- .. 

.. U!.V!L _. C . .. I.NT!!. RRUPT •• '.t"""." ·r?· /;;,. _.,.. t .• • ,,,···.· .. 
/ 

',, .... ______ .. _____ .. ,, ,. 
J · •. _) _____ , ___ ........ .. 

. 5f . .. ---· .... ____ ( J.. 
..' __ , ... ------·· --·- -· --·-

I 

!' .. - ... 
I u 

:._.,/ ,· _. _ (5Pf.1tE )· ! ·' • 

,o = 75: .· .. •.: .... ,COMM1\NP '"' STATUS .. -.:.-,.·- . 



VI-1 

VI. MICROPROGRAMS 

The microprograms which describe the behavior of the various 

instructions are presented in the form of flow charts. No attempt 

has been made to accurately represent that part of the hardware 

of the machine which is hidden from the user. Instead, registers 

and register transfers were selected and used to facilitate the 

descriptions. However, the effect of these instructions on the 

programmable registers and memory is accurately described. 

All registers are referred to by a name which has been selected 

to indicate its function wherever possible. A complete list of 

these registers is given in Figure VI-1. It is also possible to refer 

to various subfields of the registers and these are listed in 

Figure VI-2. The convention which is used is that the subfield is 

identified, either by number or name, in parentheses following the 

register name. For example, U(15) denotes the LOCATION field of 

the U register and IN(OP) denotes the OP code field (field 3) of 

the instruction register. Individual bits of registers and sub-

fields can be referenced by means of subscripts. For example MODE 7 

indicates bit 7 (counting from the left and starting with 1) of 

the MODE register and IN{X1 2 ) is the first two bits of the X field , 
of the instruction register. 

Registers can be thought of as 1-dimensional arrays. There 



VI-2 

are two sets of registers which are conveniently viewed as 

2-dimensional arrays or arrays of registers. 

1-·---------· ............. ···- ..... . 

! M. 
]. 

R. 
]. 

B 

IN 

p 

CN 

T 

u 

R 

cc 

ST 

MODE 

TPR 

TPG 

ITAG 

OL 

CH 

i-th location (absolute) of main core memory 

i-th general purpose register (i=O,l, ... ,15) 

Buffer register 

Instruction register 

Memory pointer 

Control Number (Program counter) 

Temporary storage register 

R1 , general purpose register Number 1 

Extension of U 

Condition code register 

Software tag register 

Mode register 

Temporary store for R field 

Temporary store for G field 

Temporary store for Indirect tags 

Operand location flag 

Chain register 

···-.-·--·----------·-.. -------·--------.. -----····-··--' ___ .. _____ ,. __ ---.------·--·~ 

Figure VI-1. Register Designations 

These are the sixteen general registers and the core memory 



(~---. 

'-----' 

(~' 
\~ 

VI-3 

which are referred to by the names Rand M respectively. For 

these arrays, subscripts are used to indicate a particular register 

of the set. Thus M258 is word number 258 of the memory, and R0 

is the first general purpose register. The subscripts in this 

case can also be a register name. Then RIN(X) is the general 

purpose register indicated by the number stored in the X field of 

the instruction register. 

There are two types of register transfers that are used in 

these diagrams. The first may be thought of as a bitwise transfer 

and is indicated by a left pointing arrow. Thus if the operation 

U+-R2 is executed, U would be set to contain the same bit pattern 

as R2 . The second type of transfer is indicated by a left pointing 

double arrow. In this case, u~R2 means that U is to be set equal 

tc the number stored in R2 . 

Two types of transfer are the same if the lengths of the 

registers involved are equal. To illustrate the differences let 

Sand T be two registers and assume that S has more bits than T. 

Then the transfer S+-T would cause the contents of T to be set into 

s, right justified and all other bits of S set to O. If on the 

other hand T contained a negative number, then s~T would cause the 

left most positions of S to be set to 1 since l's complement re-

presentation is used. 

Several {micro) subroutines are used in the flow charts and 

these are briefly described below. 



C' 
•' 

I 
I 
l 

l 
I 

("-..,,' 

VI-4 
r···· ........ ~-... ·". ·-· ....... ·"· ---····--·-· ..... ----·----.. ·-···---- ---·. . ...... ' ........... -........ _ ..... _ .. _____ ~-- .. -~·---------·-··---·' ...... _, ----·· 

I NAME 

TAG 

s 

WP 

R 

G 

N 

y 

OP 

x 

A 

L 

IO 

IM 

I 

L 

MD 

cc 

CH 

MK 

DESCRIPTION 

Direct tag field 

Software tag field 

Write Protect bit 

Restricted access bit 

Array present in Core bit 

±N field of instructions 

Second operand field of instructions 

Operation code field of instructions 

First operand field of instructions 

"a" bit of instructions 

Location field of addresses 

Initial index field of addresses 

Length field of addresses 

Indirect tag field of addresses 

FIELD 
NUMBER 

8 

7 

6 

9 

11 

5 

4 

3 

2 

18 

14 

13 

12 

10 

Location field of control words 15 

Mode field of control words 23 

Condition code field of control words 16 

Chain field of control words 12 

Mark field of control words 10 

Figure VI-2. Subfield Designations 



l 

-I 
\ .. ·. "------ / 

VI-5 

ADDR - This routine defines the general addressing rule explained 

previously. There are four possible exits: 

P - This exit is taken whenever a memory access, other 

than to the stack, must be made. A pointer to the 

memory location is returned in register P. A 

routine such as FETCH must be used to actually make 

the access. 

S - This exit is taken whenever a stack access is to be 

made. No pointer is returned1 the stack routines 

calculate it depending on the function. 

V - This exit is taken whenever a memory access is not 

needed. The operand itself is returned in the 

buffer register B. 

E - This exit is usually taken to indicate an error but 

some operations make special use of it. 

FETCH - This routine is used to fetch the word pointed to by 

register P. It is returned in the buffer register B. No 

chaining is allowed. 

CHAIN FETCH - This is the same as fetch except that chaining is 

allowed and the last word in the chain is returned in 

register B. 



VI-6 

STORE - This routine stores the contents of register B into the 

location indicated by the contents of register P. 

CHAIN STORE - Th-is is the same as STORE except that the word is 

stored in the last location of the chain. 

DESTIN - This routine is used to determine the destination of a 

JUMP instruction. It also restores the status of the 

machine according to the control word it finds there and 

modifies the control number (CN) so that transfer of control 

can be made. 

PUSH STACK - The contents of buffer register Bare stored on the 

top of the stack and the stack pointer is incremented 

automatically. 

READ STACK - If the ±N field of the instruction is zero, the top 

word of the stack is returned in register B (exit V) as 

long as that word is not an address word. Otherwise, 

a pointer to memory is returned (exit P). This pointer is 

determined by the address word on the top of the stack if 

±N is zero otherwise it points to the N-th word on the 

stack. 

( __ ) 



VI-7 

WRITE STACK - The contents of register Bare stored in the stack. 

If the ±N field of the instruction is O, they are stored 

on the top of the stack. Otherwise, a pointer to the 

N-th location of the stack is returned. 

OPERAND FETCH - This routine is used to fetch the second (or Y) 

operand for arithmetic operations. 

SET A-CC - This routine sets the condition code register after 

numeric operations. 

SET B-CC - This routine sets the condition code register after 

Boolean operations. 

STORE OPTION - This routine is used to perform the store option 

operation after certain arithmetic and Boolean operations. 

( ; 
...._/ 



\ 

oPt:rlfJ.tvfJ 
F~iC..1-1 / 

/ 

T~U 

U~( lJ©8)1l;i \ 

VI-8 

) 
I 

[
XTl!<'.R) 

OO- XT~ (ii) . 
MCf{~) 
Mc.1'(i!) 



(_) 

() 

r··. 
,.._ .... / 

T~U 

\ ______ ,-.----, 

S"TOfl.E. 
OPr/O,J 

E/lltJ 

VI-9 

B ~ U@/3 G~ 8" U Bc::- U "B 

\ 

'01-RJJD 
o~-oR 
o3-SYO 

oq.- IMP 

0 5"- R. I /YIP 



U,f!..~ U+e, 

/JU/11[1./(_ 

{tf,S".6, 1) 

OPE({AN1J 
FE'TGH 

u~ U,l!../B 
u.R.~ u-e , f..A:. l<Et"I ( (), 12/e) 

R. <co 8/u 

U4f<ui(BhJ 
l 

'--,----~-·--' 

VI-10 

E(UlO(l ) 

/3(U<..OR_ ) _· __ _ 

U4r'8/U 

R. ¢ R.cM (8/u) 

\ 

$£1 A-c..c) 

~____, _ _/ 

STOR.£ \ 
\ C>PT[(JN . 

\__ / 

,,----------L-
( ~NO ) 

10 -AtJO,SU(3 

11- RD/\./ 

12-fVIPY 

13 - ()/\} 



U<;: U-IB/) 

··-·&;- / 
,, 

I I 

):¢ ( 8/1 te) v 
\_ (Ul\i) 

1 

"Vl'loftlG 
(tf,5,6,7) 

OP£'f<.llND 

FETC.H 

T~U 

\ 
UE;;. JU/-t-8 \ 

f 
i 

u~ lvl-lV!./ \ 

\_ 4l ' 

$£, 11-C.C 

V&T 

VI-11 

/ ---

£(<..f<..OR 
"-._ _____ ____/ 

3 

Uc,;. tul+Jel\ 
/ 

-~-_/ 

9) 

'-'* VitB) 
--~-/ 

'" 
(!' .B~ ( U(f,rJ) u ¢f: REY,,(U/r3) 

~I\_~ 

~-

11t -TE.5T 



( 

\._ 

CH!IIN 

F£1CH 

ADOR. 

/ 
P 5 V E 

I R..£A(J 

\ STACK/ 

_y;---- " 

El<.f.OR. j 
\,._ 1 _________ / 

! 
t<C----J 

c.c.~ (::l("(""Jl,;} 

.sr~,a(s} 
{3(s)~o 

B(WP)~o 

R.1N{X)~ (3 

( ENO ) 

-\ 
PUS/.-/ ) 

\ S1ACI< 3-.(, - CBL 

\_-------+-------' 34-L/Z 

J./.o-LD 

1.//- S\JF 

VI-12 



(; 

}. 
I \. I \, 

/ J/J(oP)i 

4.J 'J..7 

I 

·-· \k' 
( : 

--.._./ (3. ~ fl1rJ(X) 

I 
I , 
\ I 

'-....../ 

t 
I 

VI-13 

ADDR 
I 

/ 
~~-------~ 

t 
I s~f<JN{J 

WR.1TE. 

, ____ j_ 
( P.ETU~ 

J...7 - Cf3S 
3s-SJZ 
43 - ~TO 



( ___ / 

ADKJR \ 

.-----p--1 s ' / ~ 
f{E Jl'IJ 
5 T/.lt.."..K 

p v 

i 

I 
I. 
• 
i 

Ct.~ 6(TAG} 

ST4f- tUs) 

.37-BJ.... T 
ti~· f(J v 

VI-14 



/2.,13 

Cl-IE-I 

TPll~R-,,.,c,,ift) 

TPG"'" t?.,,.,l:,,:> {G) 

ITA G <':--!("' t.xi(r 
p ~ ((_ IN (X) ( L) 

8 

C.f.JA IN > 
\ 

£R.1'..0f<. 

FE1CH, 
I -~ 

VI-15 

----------·----··-·-··· 

.37 

~ 

PUS/./ 
ST/JC/l: 

'\ __ ·---·-· . . ... .. ----1 

37-BLT 
41...-MV 



,-~ 
I i 
'-.__./ 

Te- R.,,.,lxJ 

T( l4JP) ~ B(wP) 

T(6}~ 8(.S) 

CC..~ f:/(TAG) 

ST~ f.3(5) 

BlWP)~o 

,B(S).!:-c> 

~IIJ(X) <E- 8 

8 ~r 

$TOI<£ 

I 

APDR 

p s v t: 

fl~AO 

STACt.. 

p v 

T~ l<.}N(X) 

T(G)~ l3l5) 

(3{S}k o 
B 1.WP)~O 

K ,,.,c"> c:- 8 

e. e- ,­
cc.~ f!,{Ttii; 

~T~ B(.S) 

r;:H 
\ STACI<:'. 

\ 
I 
'-···----+-----' 

VI-16 

,,.,---------

£fU<.tJR.. 

f<.1NOIJ ~/!.,,1(.x) ! 

~~~J«-8J 
,./

C.C.. <!!:- 8 [TAG}

S Te-- 8 (sJ __ J

so-£XCH

A DDR.

p S V IZ

< /?..£AD
·_ STACK.

C.HIIIN
FETCH

-;---r----1
p v

p~ /?.,,.,,.,,) (L)-+-(3

TPR.. ~ f!,,.,cx> (R.)

TPG ~ /<,,;U<l (G)

ITAG~/l.,,.,u/rl

2.1-1-GET
i.s- POT
!,']..- DOT

VI-17

L·

c-·}
·-·

B (WP} 4:::-0
C.C ~ /3. !TAG}

~T~ 8/:;)
ets}=-o

u~e

STORE

ENO
' , __ .,.,.

VI-18

I
CAJTIJ

(
'-·

,~.

(I

'------ ,

13 ~ 0
8(L) ~ CN

B (c c) .e:- cc..
BlMD)~ fflOIJt

13 (TAG)<== If

T<'-G

fJ~STJII)

I) c-T
"- /NlX)

VI-20

s,- JSL

('

''----- ·'

c.

8~0

S(L) 4'- CN

tHed E-- c.c..
(!i (IVI l)} ~ /YIODE:

B(TAG)~ II

B(MK)te- IAltx}

8(CH)-':-/'l0 l1M}

T~B

PU.SH
STACI<

END

VI-21

~o - ~SM

T~P

FETCI-/

/

Jeo(IMJc- B(c.J.d

Ro(L) ~ T

CN4'=- B(L)

(t'JO'tJE "=:-- t3 (MD)

c.e..~ l3[c_t:.-)

VI-22

,.,._ le.ET

.. --·- \

\,______,-'

BIT\
no.\,

I • T.::1 otLI'!~~
=I ' , =O

l<
,r-1---\

I DESTIN \ .,.

. I c __ 1_ - -.-.
END _)

54 21

;
--·----

21-JCC
54-JPT

VI-23

(',
'-.---

\ I , _ __.,

I LESTIN

____ /

\

R IN{X) (TAG~\
ADDRESS I OTHER ,,-----

(12,13, 1 r ~
14,15) · > i\ ERROR)

'------~--/"

t
/ -.

I .
/

1-,.;E------------ -------- --- _, _____ I

ENC

44-JL
45-JNL

VI-24

C>

\
tr \'

R,NCX) AG,.

R,,,1,,~

>o f.O

I I
R111(x) ~ Rm(l()-1 : i

//N(OP) -- . :;.~)~

L--·r-··
117 I 46 H:. I.fl

\
OESTIN 1

I

c END)

I
_J

/...-··~,

l"-._,.,11 4 6 - J LT
47- JG£

VI-25

(
\
'-----

,a,1:J,14,1.;
OTI-IE"R

ST~ R,,.,1yJ (5) ,

13~ R1JY(i<JlL) - I
---·-·-· R1N(y)(l.)

T~B

Jg~ R1N(;')(IM)-B

ec.~o

~---·--
.------ll----i

Rm(,r,{L) tf::. T l

R11J(x/TAG)e b I

VI-27

cc.~ 3

c.c.~ 3

c.c.~ 1.

S3-M£f1

U{TP. G)I!; S

U ~ B{1N(xl)

VI-28

I

,---~P=~s-.--v=ii-£~----.."""~~~oR ~

CHA/Al
FEiCH

0/..I:- 3

llt:.·no \
\

STA cl(/

{J "

cc..r.. 19{TA&J

STeBls)

ulm~).c= s

()~ E(1,v{xl}

~-.--------

_J;d··- u,·:~\~r
.tt:- Ue !

(IJJ(xH/1,) (3 / IN[~)t-lG

---i
B(JJJ(x)~u\ B(1AJ(x)+1t:)~ U

--,---.-·J
1-E'-----·- ___ J

---------------·

--·]
__ , _______ .. __

3o- XPI/

3/ _ :>(F B

(
'-.___,

8 ~ R._ IN(Y)

.ST~ 8(5)

JNCA)

0

G(JN{xJ)tt: JN(t.J} 1 flJ{f1Jlx)+lt.)c:-JN<A1)
I

C' R.j,J(yJ~ B

£.ND

(')

I~_.// SS-TAG

VI-29

VI-31

£.RROR)

E~[L)•PI
l ·--·----

N

(ERROR
___,) ----

RETU!!..N

,..
(
'----·-'

1"',,
I '
' '----'

I
i

13 <':- O
TP~*a
TPG<;::.·o

ITAG-.t:=0

I ;/
k------1 -----.

ru:. Tu ({. AJ ---...
/ZXC E:: /JTIOAJ

;

I

+---'

. -1

r·
I ~{TIH!=)4'" .i"
i

(3 ~ J/ll{tv}

v

CH¢0

B~R,wcyJ

R.ETVRN
VALUE I _.,/

_

JN(Y) \

~

TPR.~ B(R/
TPG~ 8(~)
/11/G~ ,g(:I

O!:,
JN(N)-13(Io)

~ B(IM)

VI-30

A ODR..

(
'-----'

f<. '" {// J (L) <{: f<..1111(xl L) + (3

R,l'Jt,<l (1M)~ R.,.,c,) 1M)-B

CHAIN

!="ETC 14

£/VD

R.£/j()
STIJC.K.

.sr,,- MOO
S7- LIM

VI-26

(

T'=:= T-1

(c:HAIN \
__F~TC.H)

T¢3/

FETCH

T(Jfi. E-- 6lR.)

TPG <E- G(&)

ITAG~ B(:I)

p ¢:. B (L.) (~ tJ9 (~~
,;/~""'(: g -r.~·-r-=1 l',l

'----------.J (:(Wl~

CHAIN

F£TCH

VI-32

)--· .,

I I
'--/

MoJ.~ i 1·s- t-h.~
w.f. D,~ ... bk
c,!,I:.() ro\: "'j t.
Moc!~ As~'S"""Q.i.ts

{,/7171
!J.r'lj)

STOI<.£ VI-33

T<!E- B

---.. ·-·--·-,

'
£(</(O(l)

i
_________ ,.___./

-~

10,12.,14

ft,{L)4;: B{L)-P

~TO/.?.£

(

p(£=. 2 p

~· r s · v. Tu~=-· ------~
.-------'---' /\

\.,

IN(Y) \,, R£AD
\

0 1 1;..-r-, !
,, Tj'·r I/ I

_ ' I

4 OTIIE/11.

(' v

___ __:L_

CN~ f3{L)

frtDDE~ 8(110)
(:_Ck- l!,(C.C.)

R.t:TURN

r~:;':cH)

VI-34

------.... \.

,,,. .. _.,
(' ... ___ ./

' / \........,

C.HAIN

PETCH

DL~3

ST~R,(s)

R.ETUllAl

p

OPcfl..!'rNIJ '\
Ft:TC.J.I)

ADDR

S V E

({F ll ()

ST/IC./(. I

OL~2.

di...~ I

VI-35

OL =t - {(.,NlY)

OL: ~ - rOfO or: GT/lCI<

OL-:: 3 - Mp

OPER./1/IID

FETCH

SET A-C..C VI-36

· .. __ .. /

cc~o cc~ J cc~ 3

fl£ TlJf</11

SET 8-CC.

--~--_.../

CC.¢-0

/

·~--;t;:l•L __ _.

S"TOl<.e
OP1JOIJ ;

'-----r--_./

\

B <t- tJ

Pll.SH

STACK.

R..,AJ{Y)(IM) ~R1JJ{YI{ IIVl)-1

R1>Jl'il(L} ~R/NlY)(L)+I

UE:-T

VI-37

B-E:-U

STOrtE"

	Table of contents
	Introduction
	I. Classification of data in storage
	II. Addressing
	III. Stack operations
	IV. Program branching
	V. Machine function list
	VI. Microprograms

