
(\
i\ ___ ,/\

::i,_,,... :
'r) ..

.,., .

CJ
·,·

(J..
'

Storage Organization in Programming Systems
I

Jane G. Jodeit, Rice University, Houston, Texas I

This paper describes the system of program and data

representation that has been in use on the Rice University

Computer for five years. Each logical entity in storage

occupies a block of consecutive memory locations. Each

block is labelled by a codeword and may contain a program,

a data vector, or codewords which in turn label blocks to

form arrays. This storage arrangement is discussed with

its realized advantages in programming systems: simplicity

of programmed addressing, flexibility of data structures,

efficiency of memory utilization, variability of system

composition during execution, means of linkage between prog-

rams and from programs to data, and basis for storage protection.

The application of labelled blocks may be extended to areas

of time-sharing and multi-media storage control. On the

basis of experience at Rice, some ideas on such extensions

are presented.

(J

CJ

Storage Organization in Programming Systems 2

Jane G. Jodeit, Rice University, Houston, Texas

Introduction

This paper describes a representation of data and programs

in storage that contributes organizational simplicity, coding

convenience, and functional versatility in programming systems.

Here programming system means the realization of a problem

solution on a computer, anything from mathematical analysis to

language translation.

A problem solution is defined by a collection of entities,

programs and data items specifically. The generic term for such

an entity is an array. Each array is named and contains as

elements data (which may be the instructions of a program) or

sub-arrays. In a programming system for the Rice Computer the

elements of an array form a block, a set of consecutive memory

locations which has been called a "segment" 3] . Each block

is labelled by a codeword, a word which corresponds to the name

of the array whose elements occupy the block. If A is an array,

the ith element of A is designated (A,i). If the elements of

A are sub-arrays, the ith word in the block for A is a codeword

which labels the array (A,i).

Thus, an array is a tree structure. The name is the source

from which the elements branch. If the elements are arrays,

they in turn branch; if the elements are data, they are terminal.

A source of branches is represented by a codeword; the set of

0

Q

Storage ·organization in Programming Systems 3

Jane G. Jodeit, Rice University, Houston, Texas

branches from a single source is represented by a block contain-

ing codewords or data as appropriate.

A codeword which corresponds to a simple name, as A above,

but not (A,i), is called a primary codeword. All sub-arrays

and data elements of an array are addressed "relative" to the

simple name. This just means that the mth element of the nth

sub-array in the array DATA is named (DATA,n,m); it has no

other designation. The set of primary codewords then completely

catalogs the entities of a programming system and all addressing

is done through these codewords. The operating system provides

dynamic allocation of blocks and maintenance of codewords.

Primary codewords never move, and the addressing is independent

of system composition and storage allocation.

0

0

0

Storage Organization in Programming Systems

Jane G. Jodeit, Rice University, Houston, Texas

Codewords as Block Labels and Their Use in Addressing

4

A set of consecutive storage locations is called a memory

block. Every such block is labelled by a single word called

a codeword. The codeword for a block corresponds to the name

of the block; it contains descriptive information about the

block, and a portion of the codeword is used in indirectly

addressing the block content.

As realized on the Rice University Computer the general

codeword format is:

(Figure 1. here)

where Lis the length of the block labelled by the codeword C

I is the relative address of the first word in the block

labelled by C

Xis on if the block labelled by C contains codewords

* is on if indirect addressing is to be iterated into

a word in the block labelled by C.

K is present if the block labelled by C is indexed,

i.e., if individual words in the block are to be

addressed from outside the block; K then specifies the

index register used to give the relative address of a

IC)

0

Storage Organization in Programming Systems 5

Jane G. Jodeit, Rice University, Houston, Texas

word in the block (Data vectors are indexed; programs

are not.)

Fis an address associated with the block labelled by C

so that the address of the first word in the block is

F' = F + I

The portion of a codeword used in indirect addressing is

designed to be used with the hardware definition of the Rice

Computer. Indirect addressing may be iterated any number of

times and indexing by any of eight registers may be specified

for each step. If C1 is the codeword in use at the ith level

of indirect addressing, the hardware obtains *i, Ki, and Fi

i from C and proceeds as follows:

(1) If Ki is present, use contents of register specified

and add to obtain

Ci+l = (Ki)+Fi

If Ki is not present,

Ci+l = Fi

{2) If *i is on, return to step (1) for codeword

Ci+l at level i+l.

If *i is not on, use Ci+l as final address and do

not iterate.

The initiation of indirect addressing is from an instruction,

say at c0 , which contains in its indirect addressing portion

0
Storage Organization in Programming Systems

Jane G. Jodeit, Rice University, Houston, Texas

6

0 0 0 * , F , and perhaps K. Thus, from a single instruction the

codeword address c1 is determined and the hardware iterates

through the indirect addressing procedure to provide the final

address.

The full generality of codewords can be implemented with

maximal efficiency with such hardware. It is surprising that

more computers do not employ such an indirect addressing de-

finition or some equivalent addressing mechanism. With more

restrictive hardware capabilities the full generality of a

codeword system can be realized at the expense of some effi-

0 ciency, or some generality can be sacrificed and the most

common applications handled efficiently.

0

0

Storage Organization in Programming Systems

Jane G. Jodeit, Rice University, Houston, Texas

Block Content and Addressing

7

Given the codeword definition of the previous section, we

now examine how labelled blocks are used to build the elements

of a programming system.

In general,

called an array.

any "named'' item in the codeword system is

On the highest level, that addressed in code,

is a single codeword which corresponds to the name of the array

and labels a block which may contain codewords. On the lowest

level is the data of the array. The intermediate levels are

formed by blocks of codewords, the structure of the array.

The array forms most frequently encountered will be discussed

in detail.

A program P may be considered as a set of words to be ex­

ecuted as instructions and should, for efficient control hardware

utilization, occupy consecutive storage locations. Thus, a

program P occupies a memory block. Assume a single entry point

to P; then the block for P need not be indexed because only one

word need be addressed from other programs. If Pis of length k

words with p words of linkage information, the program and its

codeword appear as

(Figure 2. here)

(J

Storage Organization in Programming Systems 8

Jane G. Jodeit, Rice University, Houston, Texas

Control is transferred to program P by the single operation:

transfer control to *Cp~

where* specifies indirect addressing through CP' the codeword

for P. A single step.of indirect addressing is performed:

*C p

indirect

addressing

F+p

and the final address obtained is F+p, the address of the first

word of code for program P. The address F+p never appears in

code, only in the codeword for P. The address CP which appears

in all coded references to the program is invariant while the

address F may vary from run to run or even within a run, as a

function of total storage requirements.

A vector v may be considered as a set of words addressed

by their·relative position in the set and should, for efficient

index hardware utilization, occupy consecutive storage locations.

Thus, the vector V occupies an indexed memory block. If Vis of

length n words with the first word at relative position 1 and

register i is to be used for indexing, the vector and its code-

word appear as

(Figure 3. here)

(J

0

()

Storage Organization in Programming Systems 9

Jane G. Jodeit, Rice University, Houston, Texas

Access to the pth element of vector Vis accomplished by the two

operations:

(1) set index register i top

(2) access *Cv

where* specifies indirect addressing through CV, the codeword

for V. A single step of indirect addressing is performed in

step (2):

*C v

indirect

p+F-1

addressing

and the final address obtained is that of the element V, the
p

pth word in the block beginning at location F. Again, the add-

ress F-1 never appears in code, only in the codeword for V.

Code which references Vis dependent only on the invariant code-

word address, never on the physical location of the memory block

for the vector.

A two-dimensional data structure, matrix M, may be realized

as a vector of vectors. If the matrix Mis m rows by n columns

in size, then it will be represented as a vector of m vectors

each n words in length. Thus, the matrix M occupies m indexed

memory blocks (one per row) of n data words each, and the code-

words for the rows occupy an indexed memory block of m codewords.

If the "upper left" element of matrix Mis to be element M1 1 ,

()

Storage Organization in Programming Systems 10

Jane G. Jodeit, Rice University, Houston, Texas

and row and column indices are to be specified in registers i

and j respectively, the matrix structure appears as

(Figure 4. here)

Access to the qth element of the pth row of matrix Mis ac-

complished by the three operations:

(1) set index register i top

(2) set index register j to q

(3) access *CM

where* specifies indirect addressing through CM' the codeword

for M. Two steps of indirect addressing are performed in step

(3) :

indirect

*C M * (p+F-1)

addressing

and the final address obtained

indirect

addressing

is that of

a+G -1 - p

the element M , the p,q
th q word in the block beginning at location G, which is ad­

p

dressed from the pth word in the block beginning at location

F. The physical locations of the blocks which form the matrix

never appear in code, only in codewords. Code which references

elements of Mis dependent only on the invariant highest level

/---,_

\J

()

Storage Organization in Programming Systems 11

Jane G. Jodeit, Rice University, Houston, Texas

(primary) codeword address. Another very important point is

that the code for access to matrix Min no way depends on the

lengths m and n, only on the fact that Mis two dimensional.

Hence, while the location of blocks which comprise M may vary

as a function of total storage requirements, the size parameters

m and n may as easily vary as a function of dynamic problem de-

finition.

In general, array definition is extremely flexible in the

codeword system, so this organizational form lends itself

naturally to a very large variety of computer problem descriptions.

If A is an array, the elements A. are all data or all arrays.
l

If Ai are data, A is one-dimensional (as programs and vectors

described earlier). If A. are arrays, they are just sub-arrays
l

of A; any array A. may be defined or undefined at any time. The
l

dimension and size of any A. is independent of all others. The
l

same rules of definition apply for arrays Ai as for A.

Thus, a matrix may have rows of unequal length, as in the

case of a triangular matrix, or only a subset of its rows defined

at any time. An array of programs may be defined. This has been

useful in compilation at Rice where on the basis of three integer

values a code-generating routine is selected; not all triads are

meaningful, so the array of code-generating programs is sparse.

Programs may be inserted when new triads are defined, and any

program may be modified and replaced without effect on others.

Storage Organization in Programming Systems

Jane G. Jodeit, Rice University, Houston, Texas

Codeword Location and Reference by Programs

12

The organization of the codeword system provides parallel

tables with one entry per named item:

e symbol table (ST) containing names of items, and

e value table (VT) containing values of scalars and code­

words for non-scalars (arrays).

The address of the VT entry for an item named A will be denoted

VTA. If A is a scalar, it is addressed at VTA during execution.

If A is a non-scalar, it is addressed indirectly through its

codeword at VTA. The location of VT and the order of VT entries

is a function of system composition. So a coded reference to

an item named A is made indirectly through a linkage word LA in

the program:

transfer control to *LA

or access *LA

Loading'of the program provides the address VTA in the linkage

word LA; * is on in LA only if A is a non-scalar. The first

indirect addressing operation then provides:

*L
A

indirect VTA' for scalar A

addressing
*VTA' for non-scalar A

Subsequent addressing is just as if VTA had been addressed

initially.

(J

Storage Organization in Programming Systems

Jane G. Jodeit, Rice University, Houston, Texas

13

These linkages are illustrated in the following diagram by

the program P which references scalar SCALR and non-scalar ARRAY.

(Figure 5. here)

The linkages discussed thus far have been for fixed

references, the name for an item being known at coding time.

Programs may also reference parameters which take on value

assignments at each execution. Linkages to parameters are for

variable references.

Parameters are provided to a program on a push-down list W.

The first free space in Wis maintained during execution as a

pointer WP. A parameter reference is coded indirectly through a

linkage word located in Wat a fixed position relative to the

value of' WP upon entry to the program. Index register Pis set

to the value of WP initially in each execution, and the linkage

word for parameter A is located in Wat WA=(P)+PA where PA is

constant for all executions. Program reference to parameter A

is accomplished by indirect addressing through WA:

transfer control to *((P)+PA)

or access *((P)+PA)

0

Storage Organization in Programming Systems·

Jane G. Jodeit, Rice University, Houston, Texas

which may be written

or

transfer control to *WA

access *W A

14

Linkage for parameters and content of linkage words in Ware

illustrated in the following diagram by program R which provides

scalar SCALR and non-scalar ARRAY as parameters to program Q.

(Figure 6. here)

One further case must be considered. If PAR is a parameter

in program Rand R must execute Q with PAR as a parameter, R

very simply copies its linkage word WPAR into Win the list of

parameter linkages prepared for Q. Then, parameters may be

passed to any level of program nesting during execution.

_)
Storage Organization in Programming Systems

Jane G. Jodeit, Rice University, Houston, Texas

Dynamic Storage Allocation

15

The memory configuration for dynamic allocation in the

codeword system consists of

~ first, the control area which contains special machine

registers, manual communication region, and the list of system

codewords;

o second, any memory blocks which are not to be dynamically

allocated -- as the elements of the operating system;

e third, the remainder of the memory as the dynamic storage

allocation domain.

Dynamic allocation in memory is defined by the two basic

procedures:

activation, or creation, of a memory block labelled by

a codeword, and

inactivation of a memory block labelled by a codeword so

that the space may be subsequently used in allocation for other

blocks.

Initial loading of programs and data is just a sequence of

activations, and the blocks will be sequentially located in the

storage domain. As a run progresses blocks may be inactivated

and new ones activated, so the general state of the storage domain

is a mixture of active and inactive blocks.

Each active block in the storage domain is labelled by a

u

0

Storage Organization in. Programming Systems 16

Jane G. Jodeit, Rice University, Houston, Texas

codeword, which may itself be a word in an active block of code-

words. Each active block is headed by a back-reference word

which contains the codeword address for the block.

Each inactive block in the storage domain contains in its

first word its length. One inactive block is used as the source

of space for activations. This source is initially the whole

domain. When the source is exhausted, active blocks are packed

at one end of the domain, and the resulting single inactive block

is designated as the source. This packing procedure is called

reorganization. The memory of the Rice Computer is not paged;

if it were, reorganization would be effected by packing the page

table [1,4]. Notice that with paging some storage economy is

sacrificed since two blocks should not occupy the same page.

Each dynamic allocation request ·is specified by a codeword

address and the allocation operation to be performed on the block

labelled by the codeword: to free the block or to take a space

of length n words.

The freeing of space labelled by a given codeword is per-

formed by recursive inactivation of all blocks in the array
I

labelled. Each block inactivated has its codeword cleared to

signify that it no longer labels an active block.

The taking of a block of n words to be labelled by a given

codeword is performed by first freeing the array labelled (if any)

0

0

Storage Organization in Programming Systems

Jane G. Jodeit, Rice University, Houston, Texas

17

and then obtaining an active block n+l words long (including the

back-reference word) in the domain. So, a new block definition

automatically replaces an old definition.

(_)

\--)

Storage Organization in Programming Systems

Jane G. Jodeit, Rice University, Houston, Texas

Operations on Arrays

18

There are many useful operations on arrays that are easily

implemented in the codeword system. Already the storage control

operations of block creation to form arrays and freeing of arrays

have been mentioned.

Mathematical operations on data arrays are familiar, such

as transposition of a matrix or cross-correlation of two vectors.

A routine to perform such an operation receives the name of an

operand, i.e., its codeword address, as an argument. The

routine then has access to the codeword for the array as well

as the array elements. Information such as dimension, size, and

natural array indices are available without being given explicitly

as arguments.

The codeword system provides a file structure very much like

that described for secondary storage organization in the MULTICS

system [2]. The implementation on the Rice Computer provides

a representation in primary storage which is immediately applic­

able through a hierarchy of storage devices. The same information

which facilitates addressing and system component linkage is used

by the operating system for file handling functions such as input­

output, execution, insertion and deletion, and establishment of

paths to file elements. The same notations, or naming conventions,

are used in designating file manipulations and in the description

u

0

Storage O!ganization in Programmi~g Systems

Jane G. Jodeit, Rice University, Houston, Texas

19

of data processing. Also, the file-level operations may be

carried out from the console, as an operation quite independent

of program execution, or from a program as it runs.

C)

CJ

CJ

Storage Organization in Programming Systems

Jane G. Jodeit,. Rice University, Houston, Texas

Memory Protection

20

Interest in multiprogramming and time-sharing computer

applications has focused considerable attention on the problem

of memory protection [3,4~]. The objective has been mainly to

prevent each memory resident from interfering with all others.

Codewords provide the basis for a logical protection scheme, one

that insures that no memory references violate the block defi­

nitions of the running system. This scheme differs from those

which provide protection per page of memory. If vector Vis

defined to contain elements v1 ,v2 , ••. ,v5 , logical protection

will prevent reference to v6 ; physical, or page, protection will

prevent this reference only if the word after v5 lies in a

different page and that page is unallowed to the program generating

the reference.

The first premise for logical protection with codewords

is that all memory references from a program to blocks outside

itself are through primary codewords. This is not an unreasonable

requirement; it is not different from the requirement that separate

entities be given distinct segment numbers [3,4]. Then, for each

codeword in the.indirect addressing chain which labels an indexed

block, the index value k is checked to see that

I ~ k < I - L.

I and Lare given in the codeword and are the relative address

0

0

0

Storage Organization in Programming Systems

Jane G. Jodeit, Rice University, Houston, Texas

21

of the first word in the block and the length of the block

respectively. This checking can be implemented in the hardware

and is planned for the Rice Computer at no loss in memory speed.

Logical protection is now implemented in software at Rice*; because

it is slow, it is used only for debugging.

To prevent a user from using a codeword which labels an

array which is not his requires a notation in (or on) the codeword

which has not been included in the earlier definitions. One bit

would suffice; it would be maintained as execution switches from

user to user because it would appear only on the small set of

primary codewords for the user in control. Alternatively, a

field could contain a user number which would not change while

his system was resident in memory. Shared data would have a

codeword for each user allowed access.

* The Rice Computer hardware provides two tag bits per word [8]

which are not part of the data content but are used for control.

Codewords are "marked" with a tag value which cause a trap out of

the indirect addressing chain to a service routine. The service

routine checks the validity of index values on the basis of the

content of codewords in the chain.

Storage Organization in Programming Systems 22

Jane G. Jodeit, Rice University, Houston, Texas

Extensions

The codeword system for the Rice Computer provides

organization and control of primary storage for a single user.

The restrictions of this particular implementation are not im-

posed by inadequacies of the theory. The descriptive properties

of codewords, the modularity of array storage, and the protec-

tion potential in the system allow the codeword storage organi-

zation to be applied in a multiprogramming environment. Interrupt

logic in the hardware and adequate secondary storage media would

be essential. Hardware features for codeword recognition and

0 special actions due to particular codeword content are suggested.

The design of a codeword system to serve more than one

memory user at a time would require that each user have his own

table of codewords (Value Table described earlier). Each table

would be an element of an array which would catalog the systems

of all users. Shared entities would have codewords in several

tables, or a collection of users would be permitted access through

some tables.

Immediately, the allocation of primary storage involves

overlay and automatic retrieval from secondary storage. As in

the B8500 system [9], codewords may be marked when the block

labelled is not available; an interrupt would allow intervention

0

CJ Storage Organization in Programming Systems 23

Jane G. Jodeit, Rice University, Houston, Texas

for retrieval. When a block is not in memory its codeword may

be used to designate where it is. Codewords may be used for the

collection of usage statistics [5] to aid in the decision

about what to overlay. Dynamic demand would determine which

blocks were in memory at any time; not all arrays or all of any

array for a running system need be present.

Structured arrays have been designed for secondary storage

files [2] . This has been done at Rice with no representational

difficulties, but only on magnetic tape, which is a poor medium

for the application. It has been proposed at Rice that the device

which controls transmission between primary and secondary storage

would recognize codewords; it would set codeword and back-reference

content to properly define an array in the storage to which it is

being transmitted. Thus, a single command would suffice to move

an entire array to or from memory; buffering and processor control

would be minimized.

0

()

()

Storage Organization in Programming Systems

Jane G. Jodeit, Rice University, Houston, Texas

Acknowledgment

24

The work described in this paper was supported in part

by the United States Atomic Energy Commission, Contract

Number AT-(40-1)-2572 to the Rice Computer Project,

Rice University, Houston, Texas.

0

()

Storage Organization in Programming Systems

Jane G. Jodeit, Rice University, Houston, Texas

25

1. Comfort, Webb T. A computer system design for user service.

AFIPS Conference Proceedings, Vol. 27, 1965 F.J.C.C.,

Spartan Books, Washington D.C., 1965, p. 619.

2. Daley, R.C. and Neumann, P.G. A general-purpose file

structure for secondary storage. AFIPS Conference

Proceedings, Vol. 27, 1965 F.J.C.C., Spartan Books,

Washington D.C., 1965, p. 213.

3.

4.

5.

Dennis, Jack B. Segmentation and the design of multi­

programmed computer systems. J. ACM 12 (October 1965),

589.

Glaser, E.L., Couleur, J.F.~ and Oliver, G.A. System desigri

of a computer for time sharing applications. AFIPS Pro­

ceedings, Vol. 27, 1965 F.J.C.C., Spartan Books, Washington

D.C., 1965, p. 197.

Graham, Martin. Memory hierarchy study. University of

California, Computation Center, Berkeley, Technical

Report, 1965.

6. Iliffe, J.K. The use of the Genie system in numerical cal­

culations. Annual Review in Automatic Programming, Vol. II,

Pergamon Press, New York, 1961, p. 1.

0

()

0

.
Storage Organization in Progranuning Systems 26

Jane G. Jodeit, Rice University, Houston, Texas

7. Iliffe, J.K. and Jodeit, Jane G. A dynamic storage allocation

scheme. Comput.J. 5 {October 1962), 200.

8. Jodeit, Jane G. and Sitton, Gary A. Tags for description

and control. Rice University Computer Project, Report

OR0-2572-9, Houston, February, 1967.

9. McCullough, James D., Speierman, Kermith H., and Zurcher,

Frank W. A design for a multiple user multiprocessing

system. AFIPS Conference Proceedings, Vol. 27, 1965 F.J.C.C.,

Spartan Books, Washington D.C., 1965, p. 611.

c

0 c,

15 BITS 12 I 2 11

PORTION USED IN

INDIRECT ADDRESSING

8 15

0

I . L I I H1H K I F I
J

NOT USED

0 c)

F

I
Cp I k I -p 11 I F+p I________...

codeword for P
F+p

program P

WORD - p

•
•
•

WORD -I

WORD 0

•
•
•

WORD k- p-1

0

-i
LINKAGE
WORDS

1
CODE

J

0 0 ()

F
---, 1-

v, -
C v I n . I I rt i I F- I I----. .

•
•·

codeword for V -r--

F +p-1 Vp - .
• .

-
Vn

- _J

vector V

0

I
CMI m I I lxl * ii F-1

primary codeword

for M

0

F I n I I II j I G,-1

l_____-r .
: I

F +p-1 n I j I Gp- I

.
: I

n I I ii j I Gn-1

secondary codewords

for rows of M

()

L
M

' I . . .
Mp,q
. . .

Mp,n

p th row of matrix M

I

(_) l) ()

list of system codewords

program p Cvr codeword for VT

Csr codeword for ST "'"
,oe LARRAY *VTARRAY ~
r

link
wor 11

lscALR VTscALR - -
~

*LscALR - n- scalar ARRAY

code
I L *LARRAY -

vector ST vector VT ,

1ARRAY 1
~

VT ARRAY codeword for ARRAY

1 SCALR 1

-~

VTscALR scalar SCA LR

0

prog

r
linkage LscALR

words l LAR:AY I

code

'--

ram

pro
,­

linkage
words

gram

r-
e ode

L -

R

I

VTscALR

*VT ARRAY

Q

* WscALR

*WARRAY

r-) __,

list of system codewords

-codeword for ST .. Csr

Cvr codeword for VT

..__,
I
I

codeword for w ----.. , I
Cw

I I
I -I I

I I

I
I I

I .
copies by

push- down prooram R
list w . , ~.

I I
I I WP at __..,
I I

entry to R I I

vector VT '. I I
I I ,. -~ ~

VTscALR
~ scalar SCA LR

I L-----WscALR

VT SCALR : ~
*VT ARRAY

~ codeword for
L - - - - -W ARRAY -

VT ARRAY
WP at -.
entry to Q

C)

ARRAY ----

	102726221-0001_a
	102726221-0002_a
	102726221-0003_a
	102726221-0004_a
	102726221-0005_a
	102726221-0006_a
	102726221-0007_a
	102726221-0008_a
	102726221-0009_a
	102726221-0010_a
	102726221-0011_a
	102726221-0012_a
	102726221-0013_a
	102726221-0014_a
	102726221-0015_a
	102726221-0016_a
	102726221-0017_a
	102726221-0018_a
	102726221-0019_a
	102726221-0020_a
	102726221-0021_a
	102726221-0022_a
	102726221-0023_a
	102726221-0024_a
	102726221-0025_a
	102726221-0026_a
	102726221-0027_a
	102726221-0028_a
	102726221-0029_a
	102726221-0030_a
	102726221-0031_a
	102726221-0032_a

