
·~

DRAFT

USE OF DYNAMICALLY ALLOCATABLE LABELLED

MEMORY BLOCKS IN PROGRAMMING SYSTEMS

October, 1965

Jane G. Jodeit
Computer Project
Rice University
Houston, Texas

<J

-~

<J"

~~~-- --- - -.----- ---------

. - draft 

Use of Dynamically Allocatable Labelled 
Memory Blocks in Programming Systems 

ABSTRACT 

This paper describes a system of program and data representation 

that has been in use on the Rice University Computer for four years. 

Each block in the storage domain is labelled by a codeword and .may 

contain a program, a data vector, or codewords which in turn label 

blocks to form arrays. This internal storage configuration is 

discussed with its realized advantages in programming systems: 

ease of addressing 

flexibility of array structures 

efficient memory utilization 

dynamic allocation 

means of linkage between programs and from programs to data 

operations on blocks and arrays 

influence on formula language definition and compiler ~oding 

The application of labelled blocks may be extended to areas of time 

sharing, multi-media storage control, and more complex data re-

presentations, On the basis of experience at Rice, some ideas on 

such extensions are presented. 



. I 
'. 

draft 

Use of Dynamically Allocatable Labelled 
Memory Blocks in Programming Systems 

Objectives 

Page 1 

Memory content in any computer application consists of programs 

and data. The representation of these elements in storage con-

tributes directly to the convenience of coding, the organization of 

programming systems, and the efficiency of computation. 

This paper shows how dynamically allocatable labelled memory 

blocks offer great advantages in all of these areas. A system of 

codewords, which are just the one-word labels on blocks of consecutive 

memory locations, has been· in use on the Rice University Computer 

for four years. This system is described in detail, and it is shown 

to provide the following specific features: 

ease of addressing 

flexibility of data structures 

efficient memory utilization 

a powerful basis for dynamic storage allocation 

convenience in linkage of programs to programs and 

programs to data 

representation which encourages operations on blocks 

attractive influence on formula language definition 

and compiler coding 



dia ft 

Use of Dynamically Allocatable Labelled 
Memory Blocks in Programming Systems 

Page 2 

Codewords as Block Labels and Their Use in Addressing 

A set of consecutive storage locations is called a 

memory block. Every such block is labelled by a single 

word called a codeword. The codeword for a block contains 

des~riptive information about the block, and a portion of 

the codeword is used in indirectly addressing the block 

content. 

As realized on the Rice University Computer the general 

codeword format is: 

portion used in 
indirect addressing 

C: ~:._---+-~I~~~J-X-+--*~-K~_._~~F~~~~ 

where Lis the length of tne block labelled by the codeword C 

I is the relative address by which the first physical 

word of the block labelled by C is to be addressed 

Xis present if the block labelled by C contains 

codewords 

* is present if indirect addressing is to be iterated 

into a word of the block labelled by C 

K is present if the block labelled by C is indexed, 

i.e., if the words of the block ate to be addressed 

randomly; K then specifies which index register 

is used to dynamically contain the relative address 

of the word within the block 

Fis an address associated with the block labelled 

by c so that the address of the first physica 1 

word of the block is 

F I ::: F + I if K is present 

::: F + I - 1 if K is not present 



I 

'-·.! 
r 

:' ) 
~'· 

~- -------

draft 

Use of Dynamically Allocatable Labelled 
Mem~ry Blocks in Programming Systems 

Page 3 

The portion of a codewor4 used in indirect addressing 

is, as described above, designed to be used with t.he hardware 

definition of the Rice Computer. Indirect addressing may 

be iterated any number of times and indexing by any of 

six registers may be specified for each iteration. If Ci 

is the codeword in use at the ith level of indirect address-

* i i i i 
ing, the hardware obtains - K, and F from C and performs 

as follows: 

(1) If Ki is ~resent, use contents of register specified 

and add to obtain 

Ci+l = (Ki) + Fi 

If Ki is not 

Ci+l = Fi 
present, 

(2) If *i is present, return to step (1) for codeword 

Ci+l 1 1 . 1 at eve 1 + . 

If *i is not present, use Ci+l as final address 

and do not iterate. 

The initiation of indirect addressing is from an instruction, 

say at c0 , which contains in its indirect addressing protion 
0 0 0 

*, F , and perhaps K. Thus, from a single instruction 

the codeword address c 1 is determined and the hardware iterates 

through the indirect addressing procedure to provide the final 

address for continued execution. 

The full generality of codeword~ can be implemented with 

maximal efficiency only with such hardware. It is surprising 

that more computers do not employ this simple but extremely 

powerful indirect addressing definition. With more restric­

tive definitions of indirect addressing the full generality 

of a codeword system can be realized at the expense of some 

efficiency, or some generality can be sacrificed and the 

most common applications handled efficiently. 



;,--)· ' . . , 
.. : ·._____., 

:,\ 
J . _ ___, 

draft 

Use of Dynamically Allocatable Labelled 
Memory Blocks in Programming Systems 

Block Content and Addressing 

Page 4 

Given the codeword definition of the previous section, 

we now examine how it is used to bu~ld the elements of a 

programming system. The simple elements are programs and 

data lists, to be called vectors. 

A program P may be considered as a set of words which 

are to be executed as instructions and should, for efficient 

control hardware utilization, occupy consecutive storag~ 

locations. Thus, the program P defines a memory block. 

Assume a single entry point at the first word of P so that 

only the first word meed be addressed from another program; 

so the block for P need not be indexed. If Pis of length 

k words, the program and its codeword appear as_ 

F: word 1 

-
--

P: I k / 1 lj EJ ~ 
Cexl~ tJJ Df"'d 

word k 

Control is then transferred to program P by the single 

operation: 

transfer control to ~~p 

where *·specifies indirect addressing through the codeword 

P. A single indirect addressing level is decoded: 

transfer control to *P 

F 

and the final address obtained is F, the address of the first 

word of program P. The address F never appears in code, only 

in the c~deword for P. The addr~ss P which does appear in 



'f. 

' ,,-J-
'• : ·~ 

draft 

Use of Dynamically Allocatable Labelled 
Memory Blocks in Programming Systems 

Page 5 

all coded references to the program is invariant while F 

may vary from run to run or even within a run, as. a function 

of total storage requirements. 

A vector V may be considered as a set of words which 

may be addressed randomly by their relative position and 

sh~uld, for efficient index hardware utilization, occupy 

consecutive storage locations. Thus, the vector V defines 

an indexed memory block. If Vis of length n words with 

the first word at relative position 1 and register i is to 

be used for indexing, the vector and its codeword appear as 

F : 

v p 

Access 
th 

to the p element of vector Vis accomplished by 

the two operations: 

(1) set index register i top 

( 2) a cc es s *V 

where* specifies indirect addressing through the codeword 

V. A single indirect addressing level is decoded in step (2): 

(2) access *V 

p + F - 1 

and the final address obtained is that of the element V , 
th p 

the p word in the block beginning at location F. Again, 

the address F (or in this case F - 1) never appears in code, 

.£_~~ in the codeword for V. Code which references Vis 

dependent only on the invariant codeword address, never on 

the physical location of the memory blo~k for the vectbr. 



-, 

J 

draft 

Use of Dynamically Allocatable Labelled 
Memory Blocks in Programming Systems 

Page 6 

A two-dimensional data structure, matrix M, is simply a 

vector of vectors. If the matrix Mis m rows by n columns in 

size, then it will be represented as a vector of m vectors each 

n words in length. Thus, the matrix M defines m indexed 

memory blocks (one per row) containing n data words each, and 

th~ codewords for the rows define an indexed memory block 

containing m codewords to complete the representation. If 

the "upper left" element of matrix Mis to be element M1 1 , 
and row and column indices are to be specified in registers i 

and j respectively, the matrix structure appears as 

!G F: n 1 j G -1 
1 p 

M 
• p '1 

H *ilF-1 M: m ] 1 n 1 j G -1 
p 

. 
M 
• p ,q . 

n 1 j G -1 
m ·\ secondary codewords 

M 
p,n 

th th 
Access to the q element of the p row of matrix Mis 

accomplished by the three operations: 

(1) set index register i top 

(2) set index register j to q 

(3) access *M 

where * specifies indirect addressing through the codeword M. 

Two indirect addressing levels are decoded in step (3): 

(3) access *M 

*P + F - 1 

q + G - 1 
p 

and the final address obtained is that of the element M , . p ,q 
the qth word in the block beginning at location G , which is 

addressed from the pth word in the block beginnin: at location 

F. The physical locations of the blocks which form the matri~ 



···. 

. i 

draft 

Use of Dynamically Allocatable Labelled 
Memory Blocks in Programming Systems 

n-e v er _ a pp ea r in code , on 1 y in codewords • 

Page 7 

Code which references 

Mis dependent only on the highest level (primaryl_ invariant 

codeword address. Another very importan~ point is that the 

code for access to matr~x Min no way depends on the lengths 

m and n, only on the fact that Mis two dimensional. Hence, 

while the location of blocks which comprise M may vary as a 

function of total storage requirements, the size parameters m 
and n may as easily vary as a function of dynamic problem 

definition. 

In general, a storage configuration in the codeword 

system is called an array. On the highest level, that addressed 

in code, is a single codeword which labels a block which may 

contain codewords. On the lowest level of what is a tree 

structure is the~ of the array. The intermediate levels 

are formed by blocks of codewords, the structure or control 

for the array. 



'/ --) 
---

draft 

Use of Dynamically Allocatable Labelled 
Memory Blocks in Programming Systems 

Some Interesting Arrays 

Page 8 

The array forms described in the last section satisfy 

a large share of programming needs. Because they are en-

countered most frequently, they are termed standard forms. 

o A standard ptogram is a one-level array, all of whose 

words comprise a memory block for computer execution. 

e A standard vector has initial index of 1, and even 

the indexing regi&ter is fixed in practice. 

@ A standard matrix is rectangular, has initial row 

and column indices of 1, and even the indexing 

registers are fixed in prac~ice. 

The full generalities of codeword definition and array structure 

are not particularly well illustrated by the standard forms. 

The logic and organization of a programming system can often 

be supported in more unusual array structures, and a few of 

these will be examined here. 

The logical or physical situation represented in an iridexed 

data array may be best satisfied by the use of negative as well 

as positive indicies. A plot of y values for a grid in x 

across K = 0 is a good example. The left X end point will be 

~ 0 and determine the initial index on the vector of y values 

to be plotted. Similarly, a two dimensional array may contain 

Z values for a grid in~ and y over the origin X = 0, y = O. 

Initial row and column indices will be~ 0 and they may not 

be equal to each other. Also, there is no reason to adhere 

to a rectangular array, for the grid may not be rectangular. 

Each row may contain data elements for a given y value as x 

v~ricrn, and only the x range of definition for that y value 

need be stored for that row. So each row may have different 



,_J 

... :.J 

draft 

Use of Dynamically Allocatable Labelled 
Memory Blocks in Programming Systems 

Page 9 

initial index and length. In all cases, the indices used in 

code are "natural" to the application, and only the storage 

for the defined grid area need be represented at any time. 

The content of a program does not always contain just 

instructions to be executed. Constants and temporary stofage 

locations are conveniently assigned by a translator to words 

which follow the code; these need be referenced only from 

within the program, and there is no need to maintain a des-

criptor of this area external to the program. Another re-

quirement for programs may be that each be linked to other 

arrays at the time they are loaded. The burden of this 

function c~nnot be placed on the program itself, rather, it 

is rightly a supervisory programming function. Therefore, 

a descriptor of the collection of linkage words need be 

maintained external to the program. The words themselves a re 

to be referenced during program execution and are best kept 

in the block for the program. It has worked out very well to 

collect linkage words prior to executed code, but code always 

begins at relative location 1 in the block. If in the code-

word for a program the initial relative address is Jl < 1, 
/J then the 1 -.,}!_, words which precede the code a re ma in ta in ed by 

supervisory routines as necessary. The indirect addressing 

portion of the codeword is maintained so that a transfer of 

control through the codeword produces access to relative 

address 1 in all cases. 

In mathematicil programming it is not uncommon to encounter 

matrices with many zero elements and "bunched" non-zero elements. 

Triangular and diagonal matrices are good examples. With a 

codeword system these configurations are easily and economically 

represented in storage. The upper right triangle of an n X n 

matrix is represented as n row vectors with initial indices 



._) 

: j' 
,_ 

d r"a ft 

Use of Dynamically Allocatable Labelled 
Me~ory Blocks in Programming Systems 

Page 10 

varying from 1 ton and lengths from n to 1. The lower left 

triangle requires variation of only row lengths, from 1 to _n, 

while all initial indices are 1. A diagonal matrix might 

most economically be represented as a one-dimensional array, 

a vector. So consider an n X n matrix with only a "strip" 

three elements wide down the diagonal. Then row blocks 

would have initial indices l,1,2,3, ••• ,n-2,n-l and _lengths 

2,3,3, ••• ,3,3,2. These condifurations illustrate some im-

portant advantages of codewords: 

o Only the range of elements to be addressed are 

stored. 

o The economy of data storage is not traded for 

coding complexity. 

o The code utilizes ttnatural" indices in all cases. 

A very useful concept is that of an array of programs. 

If a different program is to be executed for each parameter 

value i = 1,2, ••• ,n, these may most conveniently be stored as 

a vector of programs. This structure is a two-dimensional array 

with unindexed data blocks on the lowest level, certainly not 

of uniform length. The programs may be developed independently. 

They will certainly be of more manageable length than a single 

composite routine. Only those to be executed need be present 

in storage at any time. A good example of a sparse four-

dimensional array of program arises in compilation·: code 

generat.ors with array access on the basis of the three 

indices of left operand type, right operand type, and rank of 

connecting operand. The array is sparse because not all 

triplets may occur in practice. With a minimum of effort, 

programs may be ind~vidually modified and new programs may 

be added as new triplets become meaningful. 



:.·J' ·;.._ 

draft 

USE OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

_ :Page 11 

Codeword Location and Reference by Programs 

Program references may be to internal or external 

quantities. Internal variables are located within a program 
-

and are referenced only from that program; with a codeword 

system these are only scalar quantities since all programs 

and data arrays are in independent memory blocks. External 

va~iables are located outside all programs and may be re­

ferenced from any program; scalar quantities to be referenced 

by more than one program, all programs, ~nd all data arraya 

fall into this category. 

The memory layout in the codeword system provides a 

fixed codeword region, C, which contains variables to be 

addressed by number. The region C is a range of addresses 

of locations which contain values of external scalars and 

codewords for externa 1 non-sea lars (arrays). If c is an 

address in C which is the codeword address of an external 

non-scalar, a program reference is accomplished bi indirect 

addressing through c: 

transfer control to *c 

or access *c 

Numeric assignment of external quantities to locations 

in C is limiting and inconvenient in many applications, in 

particular where names are used for all references in the 

coding language. Parallel tables are provided: 

c, symbol ta·ble (ST) which contains names of external 

variables, and 

o vjlue table (VT) which contains values of external 

scalars and codewords for external non-scalars (arrays) 

which are to be addressed by name. 

The value table then is of the same form as the fixed code-

word region C. But the VT addresses are not knnwn for coded 

. i 



._J 

__ J 

draft 

.USE OF DYNAMICALLY ALLOCATABLE LABELLED 

MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Page 12 

references. Named references to external variables are 

made indirectly through a linkage word in the program (located 

prior to code) which is filled with the appropriate VT address 

as a supervisory function during loading of the program. If 

A is the name of an external non-scalar, the name A will 

appear in ST, and the codeword for A will occ~py the corresp6nd-

ing VT entry (say located at VTA). Program reference to A is 

accomplished by indirect addressing through the linkage word 

named A in the program: 

transfer control to *A 

or access "'-A 
-

But loading of the program provides the address VTA in the linkage 

word A. So the first indirect addressing operation provides 

transfer control to *VT 
A 

or access *VT 
A 

Subgequent addressing is just is if a location in Chad been 

initially addressed. 

These linkages are illustrated by the program P which 

references 

o scalar SNUM by number 

o non-scalar NSNUM by number 

o scalar SNAM by name 

o non-scalar NSNAM by name 



draft 

USE OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

tJS,lt\r,1 

.f-;.ud c0,.=.l!v.Jord 
reciio•1 C. 

* VT,.1s: .J" 1,, ----

I -----1 
S1JUl/l i- -

-·-----! 

.I 

Stlur~ 
.,.,..,,~,._,, . ..,. 1-----

' ' 

r.J51Jur1J 
1---_.;: ___ _ 

\Jr -----
- t:--1 l ___ _:_ __ _ 

..___ 

-,-----------· -, 
I 
i 
' 

_, ___ ] __ ~~-1 J 

--~~=J~-_j 
¥--St1/1t;1 

"/.· rJS.rJt, t/i ,-~ 

_:J:_:.=~j 

·----­-------
Srli\ ell 

--------~-

Page 13 

not'\- si:a..1 o..r I-JS Nllf"l 
I ----M1 

~ l _____ _ 

*Note that the vectors s d Tan VT are memory blocks with 

codewords in c. 



--------

draft 

USE OF DYNAMICALLY ALLOCATABLE LABELLED 

MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Page 14 

The linkages discussed thusfar have been for static 

program references, where the variable is known to be in­

ternal or external at coding time and the number or name 

for an external variable is known. Programs may also re-

ference parameters which take on argument assignments at 

each execution. 
, 

Linkages to arguments are for dynamic program 

references. 

Arguments are provided to a program on a push-down work-

ing storage list W. Parameter references are coded indirectly 

through a dynamic linkage word in W located at a fixed position 

relative to the value of the pointer into W upon entry to the 

program. Then a parameter address takes on static relative 

value, say w, in W, and a. program reference is accomplished 

by indirect addressing through w: 
transfer control to *W 

or access ~\'\,,) 

The word at~ is generated dynamically (for each execution 

of the program), and the argument address obtained varies 

appropriately. 

It should be pointed out that at time of execution 

arguments are either internal to some program or external, 

and if external are either named or numbered. This may not 

even be known to the calling program for an argument may be 

passed through several dynamic levels of programs. These 

considerations in no way affect parameter references but 

must be considered for dynamic set-up of argument linkage 

words in W. Dynamic linkage and content of linkage words 

in Wis illustrated by program P which provides arguments 

to program Q as follows: 

o scalar IS, internal to P, linkage in W by the direct 

address IS 



USE OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Page 15 

o external scalar SNUM, addressed by number, linkage 

in W by the direct address SNUM in region C 

e externa 1 non-sea lar NSNUM, addressed by number, 

linkage in W by the indirect address *NSNUM in region C 

o external scalar SNAM or non-scalar NSNAM addressed 

by name, linkage in W for Q as static linkage word for P 

o sea lar or non-sea lar PAR, parameter in P, linkage 

in W for Q as linkage in W for P 



li,1koJ3e 
word, 

draft 

USE OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Page 16 

+ite:d eodc.word 
re310~.--c.--=---~ 

-

1------
f'°1 (DJ'{\ Q_ 

StJAtl) VfsNrw, - - - , 
vr 

5, 

= I I 
--- ---------- I 

: I I i---------- I- -----rs .t.~I I push,-dovhi ?~~----· -
1------ I )1$t" W ,-..-----''--

=- I I 

~--- OiOle.S I J, e1,-h":J -'> 

' { ' -to~ :: 

------· 

*Note that the push-down list Wis a memory block with 

codeword in C. 



draft 

Use of Dynamically Allocatable Labelled 
Memory Blocks in Programming Systems 

Storage Domain for Dynamic Allocation 

Page 17 

The memory configuration for dynamic allocation in the 

codeword system consists of 

o first, the control area which contains special machine 

registers, manual communication region, and the fixed code­

word region C; 

o second, any memory blocks which are not to be dy­

namically allocated -- as the elements of the operating 

sys tern; 

o third, the dynamic storage allocation domain which 

occupies the remainder of the memory. 

Dynamic allocation in memory is defined by the two 

basic procedures: 

o activation or creation, of a memory block labelled 

by a codeword, and 

o inactivation of a memory block labelled by a codeword 

so that the space may be subsequently used in allocation 

for other blocks. 

Initial loading of programs and data is just a sequence of 

activations, and the blocks loaded will be sequentially 

located in the storage domain. But as a run progresses 

blocks may be inactivated and new one activated, so the 

general state of the storage domain is a mixture of active 

and inactive blocks. 

Each active block in the storage domain is labelled 

by a codeword (which may itself be a word in an active 

block). Each active block is immediately preceded by a 

back-reference word which contains the codeword address for 

the block. So, the activation of block to contain n data 

words requires n+l words of storage. 

Each inactive block in the storage domain contains in 

its first word its length and the address of the next inactive 



J 

J 

draft ---

USE OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Page 18 

block. The inactive blocks then form a chain. The header 

for the in a c ti v e ch a in i s 1 o ca t e d 'a t a fix e d a d d re s s ; th i s 

contains the total number of inactive words in the domain 

and the address of the first inactive block in the chain. 

The last inactive block {s distinguished by a null next 

block address. 

The general layout of the dynamic storage allocation 

domain is illustrated in the following diagram: 

heoder+;f" 
ino_c ·h'-1e lho.; n 

+o~u! iM_c+1ve. 
1= 1i t-1z.+13 +·T4 + T5 

~B, 
, /;~ 

T, A:;. 

-
T 

2. l\"!:J 

~I 

i-; Aq 
] T3 words 

Jll/J3 !1/jlt1 
h/////;I 
i:i, As-l 

I 
I -----~ 

Ts ol 

__ _..,..,~""::"; 
_ _J 

- b..zd::-rcfcr.:'ncc. +o (.()deV'lord 
whi'd,, la.be/~ b\oc..k 



_J 

draft 

Use of Dynamically Allocatable Labelled 
Menory· Blocks in Programming Systems 

Dynamic Allocation Procedures and Operations 

Page 19 

The basic dynamic storage al·location procedures are 

inactivation and activation of blocks in the domain. 

Inactivation of a block in the dynamic storage allocation 

domain is accomplished simply by linking it into the chain of 

inactive blocks. The codeword is cleared to signify that 

it no longer labels an active block. The total inactive space, 

kept in the header for the inactive chain, must be updated. 

Activation is attempted only if the total active space 

is adequate for the requested allocation. 

of obtaining the space may be utilized: 

Then three means 

o First, a simple scan of the chain of inactive blocks 

is made, and the first which is large enough to provide the 

requested allocation is used; any inactive space remaining in 

the block is re-chained. 

0 Second, if the scan fails, combination of adjacent 

inactive blocks is performed and the scan is made again. 

o Third, if the scan fails after combination,~ 

organization of the storage domain is performed. All 

active blocks are packed to the low-address end of memory. 

A single inactive block defines the inactive chain, and 

this will provide the requested allocation. The packing 

of active blocks requires copying memory blocks ·and for 

each changing the addressing portion of the labelling 

codeword to appropriately reflect the new block location. 

If the block contains codewords, the back-reference word 

for the block labelled by each must be changed to reflect 

the new codeword location. 

Each dynamic allocation request is defined by a codeword 

address and the allocation operation to be performed on the 



' ' \ 

·~ 

draft 

Use of Dynamically Allocatable Labelled 
Memory Blocks in Programming Systems 

Page 20 

block labelled by the codeword: 

take a space of length n words. 

to free the block or to 

The freeing of space labelled by a given codeword is 

performed by recursive inactivation so that the array 

labelled is completely freed. 

The taking of a block of n words to be labelled by a 

given codeword is performed by first freeing the array 

labelled (if any) and then obtaining an active block n+l 

words long (including the back-reference word) in the domain. 

So, a new block definition automatically replaces an old 

definition. 



·_) 

draft 

Use of Dynamically Allocatable Labelled 
Memory Blocks in Programming Systems 

Implications of Block Mobility 

Page 21 

If all addressing of memory blocks and the words in 

them was done relatively, any memory-block could be moved 

(in the reorganization procedure described in the preceding 

section) at any time. In practice, it is poisible with the 

hardwa~e and often ~fficient in code to obtain absolute 

memory ~ddresses. If the words addressed are subject to 

being moved and the addresses are retained through a re­

organization, subsequent use is meaningless. 

By relative addressing is meant one of the following: 

o All addressing 0£ arrays is done through primary 

(highest level) codewords in the fixed codeword region, 

C, or the value table, VT. This means that VT must be 

outside the dynamic storage allocation domain, not an im­

practical restriction in many cases. 

o Or, a tttrace 11 may be kept of the path taken into an 

array, and this will be appropriately updated in the 

reorganization procedure. Such a trace consits of the 

primary codeword address and relative addresses on lower 

levels to the element whose absolute address is to be 

retained. This absolute address is stored for reference 

by programs and for system maintenance in reorganization. 

Some cases in which these considerations have proved im­

portant in programming for the Rice Computer will ·be discussed. 

For mobility of programs all internal references must 

be relative. This is facilitated by the hardward of the 

Rice Computer because the instruction counter is an index 

register. But since the value of the instruction counter 

is an absolute address, a hardware feature of base address 

plus offset would be preferred for program addressing. 

Similarly, program return addresses must not be saved as 

absolute addresses, but as addresses relative to the base 



'' 
:,.-·) 

draft 

USE OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Page 22 

of the calling program. Thus, a trace of program execution 

must be maintained, this to include not just base and offset 

at each call but also relative codeword address. Such a 

control trace is not implemented in the Rice operating 

system since a restriction on program mobility is considered 

tolerable: If a program causes reorganization of ~he dynamic 

storage allocation domain (itself or in any program called), 

it may not be located in the domain. Hardware to prevent 

the necessity of absolute control address retention within 

programs and to efficiently trace control would be very 

desirable. 

The array structure is recursively defined so that 

sub-arrays are array~. Operations on arrays should likewise 

be well defined at any level. If an array operand is a 

sub-array in the dynamic storage allocation domain, its 

primary codeword address is subject to 1chan&e in the re-

orga~ization procedure. Therefore operand traces must be 
, 

main~ained for complete generality of operations on arrays. 

This is done in the operating system on the Rice Computer; 

only unary array manipulations are available, so a single 

trace suffices. The cost of trace maintenance for multiple 

operands prohibits the fully recursive implementation. Again, 

hardware to facilitate such a feature would be of·great value. 

In the codeword system in use on the Rice Computer the 

codE:word storage areas, C and VT, are not movable once loaded. 

In applications where a single processor and its extension 

in supervisory system is to operate on a number of problems 

in short time intervals, it is not feasible to reload for 

each problem. It should be possible to dynamically allocate 

C and VT as they pertain to each problem, and then addressing 

into these blocks must also be relativized. 



) 

USE OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Supervisory Operations on Arrays 

Page 23 

Many mathematical operations on data arrays are familiar, 

such as the transpose of a matrix or the addition of two vectors 

which represent polynomials. The example of plotting vector 

element values versus the vector indices has been mentioned 

earlier. TheBe operations are performed by subroutines which 

are coded for general application, and particular parameters 

may be obtained from the codewords for the operands at each 

execution. 

The operating systemfur the Rice Computer is defined as 

a set of operations on arrays. Communication is through a 

"macro-instruction" called a control word which is interpretively 

executed. A control word prescribes 

0 the codeword address or name of the array to be 

operated upon, 

o the operation to be performed, 

o where in the array (relative address) the operation 

is to begin, and 

v the extent (number of elements) of the operation. 

A supervisory operation may be applied to the memory 

block labelled by the specified codeword; this is simple 

application. And more generally, a supervisory operation may 

be applied to all data of an array; this is recursive application. 

For example, the operation of printing may be applied to the 

tw~-dimensional matrix M to provide output of the vector of 

row codewords as a simple operation or all matrix elements as 

a recursive operation. 

Also, any supervisory operation may be applied to an array 

which is a sub-array. The data trace of the operating system 

(described earlier) is set to the level of the memory block of 

which the array to be operated upon is an element. 

address in the control word is a relative address. 

The codeword 

The operation 



',.) 

draft 

USE OF DYNAMICALLY ALLOCATABLE LABELLING 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Page 24 

may be specified for simple or recursive applicatioq. 

the array Lis a vector of two-dimensional matrices. 

Suppose 

Then 

setting the trace to Land doing a reeursive print with code­
th 

word address n would provide output of then· matiix in array 

L. Setting the trace to L, then n and doing a print with 
th 

codeword address k would provide output of the k row of the 
th n matrix in array L. 

The supervisory function of loading has been mentioned. 

This is done with the read operation in the Rice Computer 

system. Read is used to take space for a memory block, set 

up the codeword, and fill the space with ~ither zeros or data 

obtained from an input medium. The correct operation overlays 

all or a portion of an existinij memory block with either zeros 

or data obtained from an input medium. 

An array may be inactivated (in the sense of dynamic storage 

allocation) by the free operation. Block lengths may be changed 

by the operations to insert ~eras or delete elements at a 

specified relative location. The operation to set initial 

index to a specified value will cause the relative addressing 

within a block to be changed. 

Control for computer execution may be given to any block 

element by the execute operation, intended only_for application 

to programs. Of interesting consequence is the execution of a 

block or an array of control words by the operating system; 

this is accomplished by the operation to execute a control word 

sequence. 

Output operations are provided which are appropriate to 

the output media of the computer. 



_) 

CJ 

us·E OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Consequences of Codewords 

Page 25 

Program addressing of array elements, for data access or 

program execution, has been described in detail. The simplicity 

of the use of a single indirect address and natural relative 

indices in code is an immediate advantage of the codeword 

system. The addressing foimat is independent of 

0 the type of array operand being addressed, named·or 

numbered, a parameter or known external; 

o the dimension, index range, and irregularity of the 

array; 

e the location of the array in storage. 

The hardware execution of index setting and indirect addressing 

is most often less expensive in time than direct computation 

of addresses as a function of array location and structure. 

In the case of constant indices and a fixed array, a ~ingle 

direct reference could be made with optimum efficiency. 

Experience with the Rice Computer system has shown that it is 

not always convenient to have the indexing register specified 

in the data structure as it is with codewords; rather; it 

would often be useful to allow the register used to vary from 

instruction to instruction. 

The independence of memory blocks afforded by codewords 

is an asset in programming systems. This would not be possible 

without the linkages described in earlier sections, of programs 

to programs, programs to data, and within arrays from level 

to level; Codewords facilitate the supervisory function of 

maintaining linkages, removing all such concern from in­

dividual programs. 

Dynamically, the set of codewords afford a convenient 

catalog of essential information about the state of the running 

system. And any specific codeword is available to any program 



:~ 

.. 

USE OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Page 2 6 

for a d~tailed description of the bl6ck it labels. This des­

cription need not be passed from program to program; the 

codeword address (with trace) suffices, 

In turn, the advantages of block independence and labels 

on blocks greatly facilitate dynamic storage allocation. No 

progiam depends in any way on ihe .location of any array, 
-

Dynamic storage allocation in the codeword system then 

provides the full flexibility of array definition. It is 

extremely important that arrays may not only be created and 

destroyed, but may also be altered in size, "shape'', and 

even purpose, with the dynamic variability of program demands, 

The allocation scheme with codewords does not depend on 

fixed block length, so the blocks in use may be packed with 

no "waste" space, 

There are many influences of the codeword system in 

formula language definition. The uniformity of addressing 

into arrays is an advantage in code generation. Operations 

with arrays as entities are very easily provided because a 

single address suffices for addressing. Examples of explicit 

specification of array manipulations, on the matrix M, would be 

o to create M 

e> to erase M 

o to print M 

An example of implicit array manipulations, on matrices, is 

seen by the expression 

C=AXB 

to execute the matrix multiplication routine with A and Bas 

argum~nts, creating the resultant matrix, and label the result 

with codeword named C. The mechanisms for labelling of arrays 

by named codewords is, of course, essential to the utilization 

of a formula language in programming systems. No array 



USE OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Page 27 

allocation need be done during compilation since all allocation 

functions are provided by the operating system at time of 

execution. 



. ! \ 

·'-J 

USE OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Extensions of the Codeword System"·: 

Page 2 8 

It is interesting to consider hardware designed for a 

codeword system, Instructions should contain no absolute 

memory addresses, only relative addresses which may be positive 

or negative. A relative address should be the.increment on 

a base address which is a trace content, the result of address-

ing into an array. Trace maintenance for control and data 

references should be provided. A protect mecha~ism for. each 

block would easily be implemented as a test of index or re­

lative address against the range of 

ini tia 1 index 

through _ 

initial index+ block length - 1 

as specified in the codeword for the block. Variability of 

index registers for addressing of any given array should be 

easily controlled from code, not necessarily a parameter of 

array definition. The level of indirect addressing for any 

·instruction should be a function of array structure but also 

easily specified in the code, to facilitate access to the 

structural portions of an array, 

In a time-sharing application protection on memory blocks 

would be essential. Mobility of all blocks would .also be 

necessary. The dynamic context for the application of the 

computer to any problem would be found in just the codeword 

vectors for that problem, with interrupt register contents. 

Since all defined blocks would not be required for execution 

in the time interval of computer execution, allocation could 

be done when a codeword is utilized and labels a block not 

in memory. Block usage could be observed as codewords are 

utilized in execution and this information used in the decision 

of what to overlay in memory. Storage into a block could be 



USE OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Page 2 9 

dynamically indicated in its codeword so that unnecessary 

writes out of memory would not be done in overlay. Organiza-

tion of supervisory control might be. facilitated by consider­

ing all problems on hand as a vector with correspondence of 

priority and indices. 

A dynamic storage allocation scheme with codewords can 

be extended to more than one storage medium. As suggested 

for a time-sharing application, not all of an array need be 

in program-addressable memory at all times. Trapping should 

be provided that is activated by an indication in a codeword 

when it is indirectly addressed at any level of address 

computation. The indicator would signal that the block labelled 

is not in memory but must be obtained from auxiliary storage 

and allocated to memory. The codeword can be used in this 

case to contain information about auxiliary resid~nce be­

cause the memory addressing portion is not functional. The 

problems of buffering onto block-oriented stores (as disc) 

and linear stores (as magnetic tape) will not be addressed 

here. But catalogs of content of auxiliary stores may be 

allocated to memory only when needed, 

There are some useful array operations and data structures 

which are not permitted by the codeword system for the Rice 

Computer. With the array definition in use each memory block 

belongs to only one array, in fact has only one label. If 

two memory blocks require the same content, there should be 

no need to hav~ both in memory. Thus, one block could have 

more than one label, one block belonging to more than one 

array. If an array has indices k. ,i=l, ... ,n on levels into 
l. 

the array, then the logical structure with indices 

k. ,i=l, ... ,j-1,j+l, ... ,n is an array only if j=l. There 
l. 

are cases where advantages would be gained if j could take on 



CJ 

USE OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Page 3 0 

any value. For example, the rows of a two-dimensional array 

are vectors; the columns are not. Chain storage could occupy 

allocatable memory blocks if relative chaining is used! 

Combinations of linear and chain storage have application 

and present interesting problems: 

vectors of chains. 

chains of vectors and 



0 

USE OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

Acknowledgment 

Page 3 1 

The work described in this paper was supported in part 

by The United States Atomic Energy Commission, Contract 

Number AT-(40-1)-2572 to the Rice Computer Project, 

Rice University, Houston, Texas. 



USE OF DYNAMICALLY ALLOCATABLE LABELLED 
MEMORY BLOCKS IN PROGRAMMING SYSTEMS 

References 

Page 3 2 

Iliffe, J. K., "The Use of the Genie System in Numerical 
Calculations," Annual Review in Automatic Programming, 
Vol. II, Pergamon Press, 1961. 

Iliffe, J. K. and Jodeit, Jane G., "A dynamic Storage· 
Allocation Scheme," The Computer Journal, Vol. 5, No. 3, 
October, 1962. 

Jodeit, Jane G., Letter to the Editor, Communications of the 
A CM , Vo 1 • 5 , No • 9 , S e p t em b e r , 1 9 6 2 . 


	102726220-0001_a
	102726220-0002_a
	102726220-0003_a
	102726220-0004_a
	102726220-0005_a
	102726220-0006_a
	102726220-0007_a
	102726220-0008_a
	102726220-0009_a
	102726220-0010_a
	102726220-0011_a
	102726220-0012_a
	102726220-0013_a
	102726220-0014_a
	102726220-0015_a
	102726220-0016_a
	102726220-0017_a
	102726220-0018_a
	102726220-0019_a
	102726220-0020_a
	102726220-0021_a
	102726220-0022_a
	102726220-0023_a
	102726220-0024_a
	102726220-0025_a
	102726220-0026_a
	102726220-0027_a
	102726220-0028_a
	102726220-0029_a
	102726220-0030_a
	102726220-0031_a
	102726220-0032_a
	102726220-0033_a
	102726220-0034_a



