AN

DRAFT

USE OF DYNAMICALLY ALLOCATABLE LABELLED
MEMORY BLOCKS IN PROGRAMMING SYSTEMS

October,

*

1965

Jane G, Jodeit
Computer Project
Rice University
Houston, Texas

N

-

C

draft

Use of Dynamically Allocatable Labelled
Memory Blocks in Programming Systems

ABSTRACT

This paper describes a system of program and data representation

that has been in use on the Rice University Computer for four years,

Each block in the storage domain is labelled by a codeword and may

contain

a program, a data vector, or codewords which in turn label

blocks to form arrays. This internal storage configuration is

discussed with its realized advantages in programming systems:

—

ease of addressing

flexibility of array structures

efficient memory utilization

dynamic allocation

means of linkage between programs and from programs to data
operations on blocks and afrays

influence on formula language definition and compiler coding

The application of labelled blocks may be extended to areas of time

sharing, multi-media storage control, and more complex data re-

presentations., On the basis of experience at Rice, some ideas on

such extensions are presented.

S

—

draft

Use of Dynamically Allocatable Labelled : ' Page 1
Memory Blocks in Programming Systems

Objectives

Memory content in any computer application consists of programs
and data., The representation of these elements in storage con-
tributes directly to the convenience of coding, the organization of
programming systems, and the efficiency of computation.

This paper shows how dynamically allocatable labelled memory
blocks offer great advantages in all of theée areas. A system of
codewords, which are just the one-word labels on blocks of consecutive
memory locations, has been in use on the Rice University Computer
for four years. This system is described in detail, and it is shown
to provide the following specific features:

— ease of addressing

-~ flexibility of data structures

-~ efficient memory utilization

— a powerful basis for dynamic storage allocation

— convenience in linkage of programs to programs and

programsvto data

~- representation which encourageé operations on blocks

-w attractive influence on formula language definition

and compiler coding

draft

Use of Dynamically Allocatable Labelled ' - Page 2
Memory Blocks in Programming Systems

Codewords as Block Labels and Their Use in Addressing

A set of consecutive storage locations is called a
memory block. Every such block is labelled by a single
word called a codeword. The codeword for a block contains
descriptive information about the block, and a portion of
the codeword is used in indirectly addressing the block
content.

As realized on the Rice UniVersity Computer the general
codeword format is:

portion used in
indirect addressing

C: L I x| * x F

where L is the length of the block labelled by the codeword C
I is the relative address by which the first physical
word of the block labelled by C is to be addressed
X is present if the block labelled by C contains
codewords ‘
% is present if indirect addressing is to be iterated
into a word of the block labelled by C
K is present if the block labelled by C is indexed,
i.e.; if the words of the block are to be addressed
' randomly; K then specifies which index register
is used to dynamically contaiﬁ the relative address
of the word within the block
F is an address associated with the block labelled
by C so that the address of the first physical
word of the block is

F' = F + I if K is present

F +I - 1 1if K is not present

draft

Use of Dynamically Allocatable Labelled Page 3
Memory Blocks in Programming Systems

The portion of a codeword used in indirect addressing
is, as described above, designed to be used with the hardware
" definition of the Rice Computer. Indirect addressing may
be iterated any number of times and indexing by any of
six registers may be specified for each iteration. If Ci
is the codeword in use at the ith level of indirect address-

. . W1 i i i
ing, the hardware obtains %) K*, and F~ from C and performs

as follows:
(1) 1f k' is present, use contents of register specified

and add to obtain

- . .
citl o (xly + pt

If K' is not present,
C1+1 = pt

(2) If at is present, return to step (1) for codeword

Ci+1 at level i + 1.
If wt is not present, use Ci+1 as final address
and do not iterate.

The initiation of indirect addressing is from an instruction,

"say at CO, which contains in its indirect addressing protion

*0, Fo, and perhaps K. Thus, from a single instruction

the codeword address C1 is determined and the hardware iterates

through the indirect addressing procedure to provide the final

address for continued execution.

The full generality of codeWorda can be implemented with
maximal efficiency only with such hardware., It is surprising
that more computers do not employ this simple but extremely
powerful indirect addressing definition., With more restric-
tive definitions of indirect addressing the full generality
of a codeword system can be realized at the expense of some
efficiency, or some generality can be sacrificed and the

most common applications handled efficiently.

draft

Use of Dynamically Allocatable Labelled Page 4
Memory Blocks in Programming Systems :

Block Content and Addressing

Given the codeword definition of the previous section,
we now examine how it is used to build the elements of a
programming system. The simple elements are programs and
data lists, to be called vectors.

A program P may be considered as a set of words which
are to be executed as instructions and should, for efficient
control hardware utilization, occupy consecutive storage
locations. .Thus, the program P defines a memory block.
Assume a single entry point at the first word of P so that
only the first word meed be addressed from another program;
so the block for P need not be indexed. TIf P is of length

k words, the program and its codeword appear as

F: ' word 1

P: k{~1 F / | -

-—

!
Codewera

word k-

Control is then transferred to program P by the single
operation:

tansfer control to *
where * -specifies indirect addressing through thé codeword
P. A single indirect addressing level is decoded:

transfer control to %P

F

and the final address obtained is F, the address of the first
word of program P. The address F never appears in code, only

in the codeword for P, The address P which does appear in

RN

draft

Use of Dynamically Allocatable Labelled ' 'Page 5
Memory Blocks in Programming Systems '

all coded references to the program is invariant while F

may vary from run to run or even within a run, as, a function
of total storage requirements.

A vector V may be considered as a set of words which
may be addressed randomly by their relative position and
should, for efficient index hardware utilization, occupy
consecutive storage locations, Thus, the vector V defines
an indexed memory block. If V is of length n words with
the first word at relative position 1 and register i is to

be used for indexing, the vector and its codeword appear as

F: V1
VP

v:| a 1 TEE :
cedeviord V.

Access to the pth element of vector V is accomplished by
the two operations:

(1) set index register i to p

(2) access * _
where % specifies indirect addressing through the codeword
V. A single indirect addressing level is decoded in step (2):

(2) access *V

p+F -1

and the final address obtéined is that of the element V_,
the pth wora in the block beginning at location F. Again,
the address F (or in this case F - 1) never appears in code,
only in the codeword for V. Code which references V is
dependent only on the invariant codeword address, never on

the physical location of the memory block for the vector.

S

draft

Use of Dynamically Allocatable Labelled Page 6
Memory Blocks in Programming Systems

A two-dimensional data structure, matrix M, is simply a
vector of vectors, If the matrix M is m rows by n columns in

size, then it will be represented as a vector of m vectors each

~n words in length. Thus, the matrix M defines m indexed

memory blocks (one per row) containing n data words each, and
the codewords for the rows define an indexed memory block
containing m codewords to complete the representation. If
the "upper left" element of matrix M is to be element Ml,l
and row and column indices are to be specified in registers i

and j respectively, the matrix structure appears as

/4
F: |n 1 j{G,.-1 G :
1 p «p,1
) L] //{ o
M: 1 ix] %i|F-1 1 j G -1 M
" . " J p «P5q
n 1 jl6G -1 M

m | p,n
secondary codewords \\

Access to the qth element of the pth row of matrix M is
accomplished by the three operations:
(1) set index register i to.p
(2) set index register j to q
(3) access %
where % specifies indirect addressing through the codeword M.
Two indirect addressing levels are decoded in step (3):
(3) access *M
*p + F - 1
q+Gp-1
and the final address obtained is that of the element M s
the qth word ih the block beginning at 1oca£ion G _, whigﬁqis
addressed from the pth word in the block beginning at location

F. The physical locations of the blocks which form the matrix

draft

Py

Use of Dynamically Allocatable Labelled , Page 7
Memory Blocks in Programming Systems

never appear in code, only in codewords. Code which references
M is dependent only on the highest level (primaryl invariant
codeword address. Another very important point is that the
code for access to matrix M in no way depends on the lengths
m and n, only on the fact that M is two dimensional. Hence,
while the location of blocks which comprise M may vary as a
function of total storage requirements, the size parameters m
and n may as easily vary as a function of dynamic problem
definition.

In general, a storage configuration in the codeword
system is called an array. On the highest level, that addressed
in code, is a single codeword which labels a block which may
contain codewords. On the lowest level of what is a tree
structure is the data of the array. The intermediate levels

are formed by blocks of codewords, the structure or control

for the array.

draft

AR

Use of Dynamically Allocatable Labelled Page 8
Memory Blocks in Programming Systems

Some Interesting Arrays

The array forms described in the last section satisfy
a large share of programming needs. Because they are en-
countered most frequently, they are termed standard forms.
o A standard program is a one-level array, all of whose
words comprise a memory block for computer execution.
© A standard vector has initial index of 1, and even
the indexing register is fixed in practice.
e A standard matrix is rectangular, has initial row
and column indices of 1, and even the indexing
registers are fixed in practice.
The full generalities of codeword definition and array structure
are not particularly well illustrated by the standard forms.
The logic and organization of a programming system can often
be supported in more unusual array structures, and a few of
these will be examined here.
| The logical or physical situation represented in an indexed
data array may be best satisfied by the use of negative as well
as positive indicies. A plot of y values for a grid in X
across X = 0 is a good example. The left X end point will be
< 0 and determine the initial index on the vector of y values
to be plotted., Similarly, a two dimensional array may contain
Z values for a grid in X and y over the origin x =0, y = 0.
Initial row and column indices will be < 0 and they may not
be equal to each other. Also, there is no reason to adhere
to a rectangular array, for the grid may not be rectangular.
Each row may contain data elements for a given y value as x
'variea, and only the x range of definition for that y value

need be stored for that row, So each row may have different

draft

P]

Use of Dynamically Allocatable Labelled Page 9

‘Memory Blocks in Programming Systems

initial index and length. 1In all cases, the indices used in
code are "natural" to the application, and only the storage
for the defined grid area need be represented at any time.

The content of a program does not always contain just
instructions to be executed. Constants and temporary stofage
locations are conveniently assigned by a translator to words
which follow the code; these need be referenced only from
within the program, and there is no need to maintain a des -
criptor of this area external to the program. Another re-
quirement for programs may be that each be linked to other
arrays at the time they are loaded. The burden of this
function cannot be placed on the program itself, rather, it
is rightly a supervisory programming function. Therefore,

a descriptor of the collection of linkage words need be
maintained external to the program. The words themselves are
to be referenced during program execution and are best kept
in the block for the program. It has worked out very well to
collect linkage words prior to executed code, but code always
beging at relative location 1 in the block. If in the code -
word for a program the initial relative address 1is 4 < 1,
then the 1 _,é words which precede the code are maintained by
supervisory routines as necessafy. The indirect addressing
portion of the codeword is maintained so that a transfer of
control through the codeword produces access to relative
address 1 in all cases.

In mathematical programming it is not uncommon to encounter
matrices with many zero elements and "bunched" non-zero elements.
Triangular and diagonal matrices are good examples. With a
codeword system thése configurations are eésily and economically
represented in storage. The upper right triangle of an n X n

matrix is represented as n row vectors with initial indices

~—

draft

Use of Dynamically Allocatable Labelled Page 10
Memory Blocks in Programming Systems

varying from 1 to n and lengths from n to 1. The lower left
triangle requires variation of only row lengths, from 1 to n,
while all initial indices are 1. A diagonal matrix might
most economically be represented as a one-dimensional array,
a vector., So consider an n X n matrix with only a "strip"
three elements wide down the diagonal, The n row blocks
would have initial indices 1,1,2,3,.,..,n-2,n-1 and lengths
2;3,3,...,3,3,2. These condifurations illustrate some im-
portant advantages of codewords:

o Only the range of elements to be addressed are

stored,
o The economy of data storage is not traded for
coding complexity.
o The code utilizes "“natural" indices in all cases.
A very useful concept is that of an array of programs,

If a different program is to be executed for each parameter
value 1 = 1,2,...,n, these may most conveniently be stored as
a vector of programs, This structure is a two-dimensional array
with unindexed data blocks on the lowest level, certainly not
of uniform length., The programs may be developed independently,
They will certainly be of more manageable length than a single
composite routine., Only those to be executed need be present
in storage at any time., A good example of a sparse four-

dimensional array of program arises in compilation: code

generators with array access on the basis of the three

indices of left operand type, right operand type, and rank of
connecting operand. The array is sparse because not all
triplets may occur in practice, With a minimum of effort,
programs may be individually modified and new programs may

be added as new triplets become meaningful,

draft

USE OF DYNAMICALLY ALLOCATABLE LABELLED ... :Page 11
MEMORY BLOCKS IN PROGRAMMING SYSTEMS

Codeword Location and Reference by Programs

Program references may be to internal or external

quantities. Internal variables are located within a program

and are referenced only from that program; with a codeword
system these are only scalar quantities since all programs

and data arrays are in independent memory blocks. . External

variables are located outside all programs and may be re-

ferenced from any program; scalar quantities to be referenced

by more than one program, all programs, and all data arraysg
fall into this category.
The memory layout in the codeword system provides a

fixed codeword region, C, which contains variables to be

addressed by number. The region C is a range of addresses
of locations which contain values of external scalars and

codewords for external non-scalars (arrays). If c is an

raddress in C which is the codeword address of an external

non-scalar, a program reference is accomplished by indirect

‘addressing through c:

transfer control to *%c
or access %c
Numeric assignment of external quantities to locations
in C is limiting and inconvenient in many applications, in
particular where names are used for all references in the
coding language. Parallel tables are provided:
o symbol table (ST) which contains names of external

variables, and

o value table (VT) which contains values of external

scalars and codewords for external non-scalars (arrays)
which are to be addressed by name.
The value table then is of the same form as the fixed code-

word regionm C. But the VT addresses are not known for coded

draft

.USE OF DYNAMICALLY ALLOCATABLE LABELLED Page 12

MEMORY BLOCKS IN PROGRAMMING SYSTEMS

references. Named references to external variables are
made indirectly through a linkage word in the program (located
prior to code) which is filled with the appropriate VT address
as a supervisory function during loading of the program. If
A is the name of an external non-scalar, the name A will
appear in ST, and the codeword for A will occupy the correspand—
ing VT entry (say located at VTA). Program reference to A is
accomplished by indirect addressing through the linkage word
named A in the program: "

transfer control to *
or access %A

But loading of the program providesg the address VTA in the linkage

word A. So the first indirect addressing operation provides
transfer control to *VTA
or access *VT
v A

Subsequent addressing is just as if a location in C had been
initially addressed. ' :

These linkages are illustrated by the program P which
references

o scalar SNUM by number

o non-scalar NSNUM by number

© scalar SNAM by name

o non-scalar NSNAM by name

draft

l;) ' USE OF DYNAMICALLY ALLOCATABLE LABELLED

. MEMORY BLOCKS IN PROGRAMMING SYSTEMS

fixed codeword

Page

reaten C
o J
NS,
P—_ e
p- vr ¥
Frojra.m H
B ST —
Hnbﬁa R *mISgJ;%rA - } :
Words _m........:?',,__.u.,,,,.,.
SN VTseipon [|
suus =i

Haivm —i-|—
2 o £SHAM

Ly T s e s G

ENENAM

non-

T

13

sealar NSwum

non-sealar NSNA®

%

Vecdsr ST / \ veetor VT
H] z
NSNAM Vligites
g — :
St \/T;;;;M

»a—w.o‘ .

bos s R s own e

#Note that the vectors ST and VT are memory blocks with

codewords in (.

"~

draft

USE OF DYNAMICALLY ALLOCATABLE LABELLED Page 14
MEMORY BLOCKS IN PROGRAMMING SYSTEMS

The linkages discussed thusfar have been for static

‘program references, where the variable is known to be in-

ternal or external at coding time and the number or name

for an external variable is known. Prog;ams may also re-
fefence paraméters which take on argument assignments at

each execution. Linkages to argumenés are for dynamic program
references. '

Arguments are provided to a program on a push-down work-
ing storage list W. Parameter references are coded indirectly
through a dynamic linkage word in W located at a fixed position
relative to the value of the pointer into W upon entry to the
program. Then a parémeter address takes on static relative
value, say W, in W, and a program reference is accomplished
by indirect addressing through t:

transfer control to %
or access %W

The word at W is generated dynamically (for each execution

-0of the program), and the argument address obtained varies

appropriately.

It should be pointed out that at time of execution
arguments are either internal to some program or external,
and if external are either named or numbered. This may not
even be known to the calling program for an argumént may be
passed through several dynamic levels of programs. These
considerations in no way affect parameter references but

must be considered for dynamic set-up of argument linkage

words in W. Dynamic linkage and content of linkage words

in W is illustrated by program P which provides arguments
to program Q as follows:
e scalar IS, internal to P, linkage in W by the direct

.

address 1S

l N
ara-y

P

USE OF DYNAMICALLY ALLOCATABLE LABELLED Page 15
MEMORY BLOCKS IN PROGRAMMING SYSTEMS

© external scalar SNUM, addressed by number, linkage
in W by the direct address SNUM in region C

6 external non-scalar NSNUM, addressed by number,
linkage in W by the indirect address *NSNUM in region C

o external scalaf SNAM or non-scalar NSNAM addressed
by name, linkage in W for Q as static linkage word for P

o scalar or non-scalar PAR, parameter in P, linkage

in W for Q as linkage in W for P

#Note that the push-down list W is a memory block with

draft

USE OF DYNAMICALLY ALLOCATABLE LABELLED

codeword in C.

veodar VT

Page 16
MEMORY BLOCKS IN PROGRAMMING SYSTEMS
Fixed COCI”WO'”J
rcason <
SNUA
~ = -
ngm‘m a NSHmM _ —
E VT -
SuAm VI R E
hnkoae __SNRsA 1 =
§ B | ST e
WDTG
NS Vysnim= =1 : :
= ,' \ W —-l
- | - ¢
' z
T + | 1 push-dovin storage -l
. ! ! Plict w -t
Cs N s en"}ﬂ :
pe l “(tod” ™ =
(.
-1
-~ program P : : \ - '
N, " liakage - eIy = !
mdg § - ;i h; - :
. vy
= 5 Is !
U] ,,LA’ - e
*WIS I J = {
—— — | ! V 2t Sl parrcs | v
W, S - | " : ‘
Mt I = !
= : : Wusnui:l] *HSNUH t— —
¥ V',Ni\ HUts o - E copy
SuheA | V\) = ;
T I
B MM
YR Pt | . Eiland : |
L] Wene L vecheST
tWore —] . -
e - SNAM Ve
NSHif r.{\ Ve

[

draft

. Use of Dynamically Allocatable Labelled - Page 17
\\) ‘ Memory Blocks in Programming Systems

Storage Domain for Dynamic Allocation

The memory configuration for dynamic allocation in the

codeword system consists of

o first, the control area which contains special machine
registers, manual communication region, and the fixed code-
word region C; ‘

o second, any memory blocks which are not to be dy-
namically allocated ~- as the elements of the operating
system; '

o third, the dynamic storagé allocation domain which
occupies the remainder of the memory.

Dynamic allocation in memory is defined by the two

basic procedures:

o activation or creation, of a memory block labelled

>) by a codeword, and

o inactivation of a memory block labelled by a codeword

so that the space may be subsequently used in allocation

for other blocks,
Initial loading of programs and data is just a sequence of
activations, and the blocks loaded will be sequentially
located in the storage domain., But as a run progresses
blocks may bé inactivated and new one octivéted, so the
general state of the storage domain is a mixture of active
and inactive blocks,

Each active block in the storage domain is labelled

by a codeword (which may itself be a word in an active
block). Each active block is immediately preceded by a

back-reference word which contains the codeword address for

the block. So, the activation of block to contain n data
words requires n+l words of storage.

Each inactive block in the storage domain contains in

) its first word its length and the address of the next inactive

draft

e A R

USE OF DYNAMICALLY ALLOCATABLE LABELLED ~Page 18
MEMORY BLOCKS IN PROGRAMMING SYSTEMS

block. The inactive blocks then form a chain. The header
for the inactive chain is located at a fixed address; this
contains the total number of inactive words in the domain
and the address of the first inactive block in the chain.
The last inactive block is distinguished by a null next
block address.

The general layout of the dynamic storage éllocation

domain is illustrated in the following diagram:

/ /El dctive block

T A, . ////’/// »4/ _
. /// /
T, A,

headerfor C e
' L wacthve block

Wnastive chan

+ofal inachive
T=Te T+ T+ T AT, ta,

F/ [biég:—r‘e{ferfncc +o caclaw/om'

// which labele Mock
//
/

)
77

B\
As

T3 words

Ag T& S 0

@,

draft

Use of Dynamically Allocatable Labelled Page 19
Memory Blocks in Programming Systems

Dynamic Allocation Procedures and Operations

The basic dynamic stofage allocation procedures are

inactivation and activation of blocks in the domain,

Inactivation of a block in the dynamic storage allocation

domain is accomplished simply by linking it into the chain of
inactive blocks. The codeword is cleared to signify that

it no longer labels an active block., The total inactive space,
kept in the header for the inactive chain, must be updated,

Activation is attempted only if the total active space

is adequate for the requested allocation. Then three means
of obtaining the space may be utilized:
o First, a simple scan of the chain of inactive blocks
is made, and the first which is large enough to provide the
requested allocation is used; any inactive space remaining in

the block is re=chained,

o Second, if the scan fails, combination of adjacent
inactive blocks is performed and the scan is made again.
o Third, if the scan fails after combination, re-

organization of the storage domain is performed. All

active blocks are packed to the low-address end of memory.
A single inactive block defines the inactive chain, and
this will provide the requested allocation. The packing
of active blocks requires copying memory blocks -and for
each changing the addressing portion of the labelling
codeword to appropriately reflect the new block location.
If the block contains codewords, the back-reference word
for the block labelled by each must be changed to reflect
the new codeword location.
Each dynamic allocation request is defined by a codeword

address and the allocation operation to be performed on the

N

draft

Use of Dynamically Allocatable Labelled Page 20
Memory Blocks in Programming Systems

block labelled by the codeword: to free the block or to
take a space of length n words. ‘ ' |
The freeing of space labelled by a given codeword is
performed by recursive inactivation so that the array
1abe11ed is completely freed.
The taking of a block of n words to be labelled by a
given codeword is performed by first freeing the array

labelled (if any) and then obtaining an active block n+1

words long (including the back-reference word) in the domain,

So, a new block definition automatically replaces an old

definition.

N

draft

Use of Dynamically Allocatable Labelled Page 21
Memory Blocks in Programming Systems

Implications of Block Mobility

If all addressing of memory blécks and the words in
them was done relatively, any memory block could be moved
(in the reorganization procedure described in the preceding
section) at any time. In practice, it is possible with the '
hardware and often efficient in code to obtain absolute
memory addresses, If the words addressed are subject to
being moved and the addresses are retained through a re-
organization, subsequent use 1is meaningless.'

By relative addressing is meant one of the following:

o All addressing of arrays is done through primary

(highest level) codewords in the fixed codeword region,

C, or the value table, VT, This means that VT must be

outside the dynamic storage allocation domain, not an im- |
practical restriction in many cases, 4)

o Or, a “trace" may be kept of the path taken into an

array, and this will be appropriately updated in the

reorganization procedure, Such a trace consits of the

primary codeword address and relative addresses on lower
levels to the element whose absolute address is to be
retained, This absolute address is stored for reference
by programs and fof system maintenance in reorganization,
Some cases in which these considerations have proved im=-
portant in programming for the Rice Computer will be discussed,
For mobility of programs all internal references must
be relative. This is facilitated by the hardward of the
Rice Computer because the instruction counter is an index
register. But since the value of the instruction counter
is an absolute address, a hardware feature of base address
plus offset would be preferred for program addressing.
Similarly, program return addresses must not be saved as

absolute addresses, but as addresses relative to the base

-

draft

USE OF DYNAMICALLY ALLOCATABLE LABELLED Page 22
MEMORY BLOCKS IN PROGRAMMING SYSTEMS

of the calling program. Thus, a trace of program execution
must be maintained, this to include not just base and offset
at each call but also relative codeword address. Such a
control trace is not implemented in the Rice operating
system since a restriction on program mobility is considered
tolerable: 1If a program causes reorganization of the dynamic
storage allocation domain (itself or in any program called),
it ﬁay not be located in the domain. Hardware to prevent
the necessity of absolute control address retention within
programs and to efficiently trace control would be very
desirable.

The array structure is recursively defined so that
sub-arrays are arrays. Operations on arrays should likewise
be well defined at any level. If an array operand is a
sub-array in the dynamic storage allocation'domain, its
primary codéword address is subject to'change in the re-

organization procedure. Therefore operand traces must be

maintained for complete generality of operations on arrays.

This is done in the operating system on the Rice Computer;

only unary array manipulations are available, so a single

trace suffices. The cost of trace maintenance for multiple

operands prohibits the fully recursive implementation. Again,

hardware to facilitate such a feature would be of great value.
In the codeword system in use on the Rice Computer the

codeword storage areas, C and VT, are not movable once loaded.

In applications where a single processor and its extension

in supervisory system is to operate on a number of problems

iﬁ short time intervals, it is not feasible to reload for

each problem. It should be possible to dynamically allocate

C and VT as they pertain to each problem, and then addressing

into these blocks must also be relativized.

draft ' : '

USE OF DYNAMICALLY ALLOCATABLE LABELLED Page 23

. MEMORY BLOCKS IN PROGRAMMING SYSTEMS

Supervisory Operations on Arrays

Many mathematical operations on data arrays are familiar,
such as the transpose of a matrix or the addition of two vectors
which represent polynomials. The example of plotting vector
element values versus the vector indices has been mentioned
earlier. These operations afe performed by subroutines which
are coded for general application, and particular parameters
may be obtained from the codewords for the operands at each
execution.

The operating system for the Rice Computer is defined as

a set of operations on arrays. Communication is through a

"macro-instruction" called a control word which is interpretively
executed. >A control word prescribes -
o the codeword address or name of the array to be
operated upon,
o the operation to be performed,
o where in the array (relative address) the operation
is to begin, and ‘
o the extent (number of elements) of the operation.
A supervisory operation may be applied to the memory
block labelled by the specified codeword; this is simple

application. And more generally, a supervisory operation may

be applied to all data of an array; this is recursive application.

For example, the operation of printing may be applied to the
two-dimensional matrix M to provide output of the vector of
row codewords as a simple operation or all matrix elements as
a recursive operation.

Also, any supervisory operation may(be applied to an array
which is a sub-array. The data trace of the operating system
(described earlier) is set to the level of the memory block of

which the array to be operated upon is an element. The codeword

address in the control word is a relative address. The operation

‘v
N

draft

USE OF DYNAMICALLY ALLOCATABLE LABELLING Page 24
MEMORY. BLOCKS IN PROGRAMMING SYSTEMS

may be specified for simple or recursive application. ‘Suppose
the array L is a vector of two-dimensional matrices. Then
setting the trace to L. and doing a recursive print with code-
word address n would provide output of the‘nth matrix in array
L. Setting the trace to L, then n and doing a print with
codeword address k would provide‘output of the kth row of the
nt maerix in array L.

The supervisory function of loading has been mentioned.
This is done with the Egig_operation in the Rice Computer
system. Read is used to take space for a memory block, set
up the codeword, and fill the space with either zeros or data
obtained from an input medium. The correct operation overlays
all or a portion of an existing memory block with either zeros
or data obtained from an input medium.

An array may be inactivated (in the sense‘of'dynamic storage‘
allocation) by the free operation. Block lengths may be changed

by the operations to insert zeros or delete elements at a

specified relative location. The operation to set initial

index to a specified value will cause the relative addressing

within a block to be changed.

Control for computer execution may be given to any block
element by the execute operation, intended only for application
to programs. Of interesting consequence is the exgcutidn of a
block or an array of control words by the operating system;

this is accomplished by the operation to execute a control word

sequence.

Qutput operations are provided which are appropriate to

the output media of the computer.

/

i
!

i
i
i

USE OF DYNAMICALLY ALLOCATABLE LABELLED Page 25
MEMORY BLOCKS IN PROGRAMMING SYSTEMS

Consequences of Codewords

Program addressing of array elements, for data access or
program execution, has been described in detail. The simplicity
of the use of a single indirect address and natural relative.
indices in code is an immediate advantage of the codeword
system, The addressing format is independent of

© the type of array operand being addressed, named or

numbered, a parameter or known external;

o the dimension, index range, and irregularity of the

array;

o the location of the array in storage.

The hardware execution of index setting and indirect addressing
is most often less expensive in time than direct computation

of addresses as a function of array location and structure,

In the case of constant indices and a fixed array, a single
direct reference could be made with optimum efficiency.
Experience with the Rice Computer system has shown that it is
not always convenient to have the indexing register specified
in the data structure as it is with codewords; rather, it

would often be useful to allow the register used to vary from
instruction to instruction.

The independence of memory blocks afforded by codewords
is an asset in programming systems. This would nét be possible

without the linkages described in earlier sections, of programs

" to programs, programs to data, and within arrays from level

to level. Codewords facilitate the supervisory function of
maintaining linkages, removing ali such concern from in-
dividual programs.

Dynamically, the set of codewords afford a convenient -
catalog of essential information about the state of the running

system. And any specific codeword is available to any program

USE OF DYNAMICALLY ALLOCATABLE LABELLED Page 26

MEMORY BLOCKS IN PROGRAMMING SYSTEMS

for a detailed description of the block it labels. This des-

cription need not be passed from program to program; the

"codeword address (with trace) suffices.

In turn, the advantages of block independence and labels
on blocks greatly facilitate dynamic storage allocation. No
program'depends in any way on the location of any array.

Dynamic storage allocation in the codeword system then
provides the full flexibility of array definition. It is
extremely important that arrays may not only be created and
destroyed, but may also be altered in size, '"shape'", and
even purpose, with the dynamic variability of program demands.
The allocation scheme with codewords does not depend on
fixed block length, so the blocks in use may be packed with
no '"waste'" space,

There are many influences of the codeword system in
formula language definition. The uniformity of addressing
into arrays is an advantage in code generation. Operations
with arrays as entities are very easily provided because a
single address suffices for addressing. Examples of explicit
specification of array manipulations, on the matrix M, would be

o to create M

© to erase M

e to print M
An example of implicit array manipulations, on matrices, is
seen by the expression v

C=AXB
to execute the matrix multiplication routine with A and B as
arguments, creating the resultant matrix, and label the result
with. codeword named C. The mechanisms for labelling of arrays
by named codewords is, of course, essential to the utilization

of a formula language in programming systems. No array

O

USE OF DYNAMICALLY ALLOCATABLE LABELLED Pagé 27
MEMORY BLOCKS IN PROGRAMMING SYSTEMS -

allocation need be done during compilation since all allocation
functions are provided by the operating system at time of

execution.

S’

USE OF DYNAMICALLY ALLOCATABLE LABELLED - Page 28
MEMORY BLOCKS IN PROGRAMMING SYSTEMS ’

Extensions of the Codeword System-,

It is interesting to consider hardware designed for a
codeword system, Instructions should contain no absolute
memory addresses, only relative addresses which may be positive
or negative. A relative address should be the increment on
a base address which is a trace content, the result of address-
ing into an array. Trace maintenahce for control and daté
references should be provided. A protect mechanism for.each
block would easily be implemented as a test of’index or re-
lative address against the range of

initial index
through

initial index -+ block length - 1
as specified in the codeword for the block. Variability of
index registers for addressing of any given array should be
easily controlled from code, not necessarily a parameter of
array definition. The level of indirect addressing for any
instruction should be a function of array structure but also
easily specified in the code, to facilitate access to the
structural portions of an array.

In a time-sharing application protection on memory blocks
would be essential. Mobility of all blocks would also be
necessary. The dynamic context for the application of the
computer to any problem would be found in just the codeword
vectors for that problem, with interrupt register contents,
Since all defined blocks would not be required for execution
in the time interval of cdmputer execution, allocation could
be done when a codeword is utilized and labels a block not
in memory. Block usage could be observed as codewords are
utilized in execution and this information used in the decision

of what to overlay in memory. Storage into a block could be

USE OF DYNAMICALLY ALLOCATABLE LABELLED Page 29
MEMORY BLOCKS IN PROGRAMMING SYSTEMS

dynamically indicated in its codeword so that unnecessary
writes out of memory would not be done in overlay. Organiza-.
tion of supervisory control might be facilitated by consider-
ing all problems on hand as a vector with correspondence of
priority and indices.

A dynamic storage allocation scheme with codewords can
be extended to more than one storage medium. As suggested
for a time-sharing application, not all of an array need be
in program-addressable memory at all times. Trapping should
be provided that is activated by an indication in a codeword
when it is indirectly addressed at any level of address
computation. The indicator would signal that the block labelled
is not in memory but must be obtained from auxiliary storage
and allocated to memory. The codeword can be used in this
case to contain information about auxiliary residence be-
cause the memory addressing portion is not functional. The

problems of buffering onto block-oriented stores (as disc)

‘and linear stores (as magnetic tape) will not be addressed

here. But catalogs of content of auxiliary stores may be
allocated to memory only when needed.

There are some useful array operations and data structures
which are not permitted by the codeword system for the Rice
Computer. With the array definition in use each memory block
belongs to only one array, in fact has only one label. If
two memory blocks require the same content, there should be
no need to havé both in memory. Thus, one block could have
more than one label, one block belonging to more than one
array. If an array has indices ki,izl,...,n on levels into
the array, then the logical structure with indices
ki,izl,...,j—l,j+1,...,n is an array only if j=1. There

are cases where advantages would be gained if j could take on

USE OF DYNAMICALLY ALLOCATABLE LABELLED ~ Page 30

MEMORY BLOCKS IN PROGRAMMING SYSTEMS

any value. For example, the rows of a two-dimensional array
are vectors; the columns are not. Chain storage could occupy
allocatable memory blocks 1if relative chaining is used,
Combinations of linear and chain storage have application

and present interesting problems: chains of vectors and

vectors of chains.

. USE OF DYNAMICALLY ALLOCATABLE LABELLED Page 31
\\) MEMORY BLOCKS IN PROGRAMMING SYSTEMS

Acknowledgment

The work described in this paper was supported in part
by The United States Atomic Energy Commission, Contract
> Number AT-(40-1)-2572 to the Rice Computer Project,

Rice University, Houston, Texas.

USE OF DYNAMICALLY ALLOCATABLE LABELLED . Page 32
MEMORY BLOCKS IN PROGRAMMING SYSTEMS

References

Iliffe, J. K., "The Use of the Genie System in Numerical
Calculations," Annual Review in Automatic Programming,
Vol. II, Pergamon Press, 1961,

Iliffe, J. K. and Jodeit, Jane G., "A dynamic Storage
Allocation Scheme," The Computer Journal, Vol. 5, No. 3,
October, 1962.

Jodeit, Jane G., Letter to the Editor, Communications of the
ACM, Vol. 5, No. 9, September, 1962.

	102726220-0001_a
	102726220-0002_a
	102726220-0003_a
	102726220-0004_a
	102726220-0005_a
	102726220-0006_a
	102726220-0007_a
	102726220-0008_a
	102726220-0009_a
	102726220-0010_a
	102726220-0011_a
	102726220-0012_a
	102726220-0013_a
	102726220-0014_a
	102726220-0015_a
	102726220-0016_a
	102726220-0017_a
	102726220-0018_a
	102726220-0019_a
	102726220-0020_a
	102726220-0021_a
	102726220-0022_a
	102726220-0023_a
	102726220-0024_a
	102726220-0025_a
	102726220-0026_a
	102726220-0027_a
	102726220-0028_a
	102726220-0029_a
	102726220-0030_a
	102726220-0031_a
	102726220-0032_a
	102726220-0033_a
	102726220-0034_a

