
19. CONTINUOUS EVALUATION 
J. K. ILIFFE 

International Computers and Tabulators Ltd., London, England 

I. Introduction 

In Chapter 18, the possibility of segmenting a program into individual 
routines, and separating the processing into several phases was noted. One 
objective of such partitioning is to match, as far as possible, the degree of 
generality in a program at a certain stage of processing to the amount of 
precise information which a programmer can supply. Greater generality 
would lead to inefficient programs, and less would make the programs 
inflexible. 

Complete flexibility is gained by carrying out at execution time ('dynamic­
ally') processes which might otherwise be performed during translation, e.g. 
storage allocation, parameter evaluation. The present chapter is concerned 
with the reverse process, i.e. recognizing during translation situations in 
which action, otherwise delayed until the execution phase, might take place. 
In this way, both time and space may be saved in executing a program. For 
want of a better term, we shall call this intermixing of the translation and 
execution processes continuous evaluation. 

Programming abounds with recognizable instances of continuous evalua­
tion. An optimized compiler specifically seeks out situations where the object 
program may be simplified by preliminary calculation (see Chapter 9), and a 
list processing system (see Chapter 20) mixes the translator-like action of 
symbol manipulation with the interpretive activity of the 'APPLY' operator. 
With such good precedents our attempt to formulate certain rules for evalua­
tion which automatically recognize executable situations is justified, and a 
brief account follows of an investigation along these lines. 

2. Evaluation Rules 

A calculation proceeds by assigning values to certain operands or variables. 
Values are either given a priori in the form of initial data, or are derived from 
given values by the application of certain operations. We shall consider for 
the time being only the binary operations represented by '+' and 'x ', 
applicable to values taken from the domain of integers. When the calculation 
stops, a subset of the values derived for the operands is termed the result of 
the calculation. 

The calculation is usually represented as a series of consecutive steps, at 
each of which a value is assigned to a particular variable. The value derived 
at one step is typically determined by a formula involving the application of 
one or more operations, and the complete value assignment involved in one 
step may be represented by an equation obtained from the schema: 

µ. = F (2.1) 



19. CONTINUOUS EVA LlJATION 277 

by substituting a variable name forµ and a formula for F, e.g.: 

A = B + C x D x (2 + B) (2.2) 

The interpretation of equation (2.2), when it is executed, is that A is to be 
assigned the value obtained by evaluating the right-hand side of the equation 
using the current values of B, C, D (and '2'). 

It is fairly clear that in order to evaluate a formula F three sets of informa­
tion must first be provided: (i) a full value assignment for each operand 
named in F; (ii) a set of precedence rules which determines the order in which 
the operations in F are to be evaluated, and the operands to which each is 
applied; (iii) a set of evaluation operators, one for each operation, which 
determines for given (pairs of) operand values, the result of applying each 
operation to these. We shall denote the evaluation operator for'+' by €+ 
and represent its application to two integers µ, v with result p by the schema: 

£+(1i, v)->p 

Thus, a particular application of£+ gives: 

E+ (3, 4)->-7 

(2.3) 

(2.4) 

Similar remarks apply to the evaluation operator ex corresponding to the 
'x' operation. 

It is of interest to note that the ability to evaluate F depends in turn on 
the ability to apply the e operators, which may themselves be defined in terms 
of similar formulae. This circular mode of definition is stopped, however;by 
the particular form of £ operator exemplified by the multiplication and 
addition tables for the intege1s 0-9, on which the multiplication and addition 
of other integers is made to depend. Another set of e operators on which an 
evaluation may ultimately rest is the function set of a particular computer, 
which is, of course, of immense practical importance in the present context. 

For the principal task of a compiler is to reduce a calculation represented 
in a problem-oriented language to a sequence of single applications of machine 
functions, or of operators (e.g. subroutines) defined directly in terms of 
machine functions. It does this for a particular formula with reference to the 
precedence rules (ii) of the formula, and the list of available machine functions 
and subroutines corresponding to the set e; normally, no referen.ce is made 
to any value assignments (i) which may hold at the time of compilation. 
When a calculation is obeyed by a machine, it is normally followed on the 
assumption a: that all value assignments required for the evaluation of each 
formula have been made. The role of continuous evaluation may perhaps be 
clarified with reference to the statement a. In 'normal' compilation, a con­
verse of a is assumed; in evaluation, we have noted that a is assumed to be 
true; under a regime of continuous evaluation, however, the truth or falsity 
of a must strictly be dctermint'd at each attempt to apply an operator e. 

In practice, the necessary control information is supplied by associating 
with each variable in the context of a calculation one or more bits which 
determine its 'state of definition', er. Although in theory one bit is sufficient 
it is convenient to consider four possible definition states of a variable: 



278 J. K. ILIFFE 

u = 1.. Undefined. 
u = 2. Defined as a function of one or more parameters and other 

variables. 
u = 3. Defined formally in terms of other variables. 
u = 4; 'Numerically' defined. 

In each state, we assume that the domain in which the variable finds its values 
(e.g. integer, word, complex number etc.) is known, hence the definition state 
refers strictly to the representation of its value in that domain. In state l, no 
information concerning the variable is known; in state 4, its full value is 
known, a condition we term numerically defined, although it may equally 
apply to a variable in the domain of character strings. States 2 and 3 corres­
pond to intermediate degrees of knowledge in which the state of definition of 
the variable depends in turn on the definition states of others. For an arbitrary 
variable v, we shall denote its definition state by a(1,). 

Thus, in applying the operator E+ to two variablesµ, v sixteen possibilities 
have to be accounted for. If a(µ) = a(v) = 4, then E+ can be applied 
normally, as in (2.3). If a(p,) = l or a(v) = 1 then E+ cannot be applied. 
In each of the other eight cases, applicability of E+ depends on the resolution 
of the state ofµ or v. Specifically, in case a(µ) = 3, a numerical value ofµ 
can be obtained only if all variables appearing in the formal defoition of µ 
are themselves numerically defined. Also, if a(µ) = 2, then a numerical value 
of p. can be obtained only if all parameters required by µ and all variables 
required by its functional definition are numerically defined. 

In devising a continuous evaluation system, therefore, it is important to 
be able to scan as rapidly as possible the additional information required 
in case a = 2 or a = 3. We must describe the action of the machine when 
confronted with any one of the above situations, or give reasons to believe 
that certaiu situations could not arise in practice. Before doing so, however, 
we must develop a simple method of describing a calculation which enables 
continuous evaluation techniques to be more fully exploited. 

3. Definition Sets 
Most current programming languages rest heavily ori the traditional sequential 
mcde of procedure description derived from the earliest concepts of stored 
program machines. In this, although permitting the use of formulae has 
intr'oduced the idea of implicit rather than explicit sequencing, the essentially 
temporary character of the value assignment made by a single calculation 
step remains unaltered. It is now recognized that the dynamic value assign­
ment characterized by (2.2) and its interpretation must be supplemented by 
static assignments which are not part of the sequential description of a 
procedure. Most obvious candidates for this group are definitions of pre-set 
parameters, macro-operations, and subroutines. 

Accordingly, we shall decompose a description of a calculation initially 
into a finite set of definitions. Each definition in our simplified system will 
have either the form of an equation (2.1) or a function obtained from the 
schema: 

,f,(1r) = F (3.1) 



19. CONTINUOUS EVALUATION 279 

by substituting distinct variable names for -f, and 7T, and a formula containing 
the name Tr for F, e.g. 

f(x) = x + x x y x ::: (3.2) 

We shall permit formulae to contain function names (e.g. 'f' in (3.2)) with 
actual parameters in the usual way. We shall also extend formubc to include 
predicates defined by the elementary arithmetic relations ond Boolean opera­
tions 'and', 'or', anct 'not', used in conditional equations, thus: 

y = x -- I if A, x if x<O, I - x (3.3) 

Finally, we shall permit function definitions obtained from the following 
schema, which we shall call a 'routine': 

(3.4) 

by substitu!ing distinct variable names for ¢, and rr, and an equation for 
Gj,} 0 ~, I, 2, ... , n, where at least one equation has a formula invohing 1r in 
the right-hand sicle, and a! lt:ast one equation has the name ef, on the Jcft-h:rnd 
side. The form (3.4) is obviously an elementary species of problem-oriented 
program. From ano!hcr point of view, the right hand side of(3.4) is a formula 
with rather involved precedence rules which are used to determine the order 
in which the equations are applied, for we assume that the application of an 
equation Gj determines also the index j' of the next equation to be applied, 
or else stops the calculation. The fonction (3.2) can be represented as a pro­
gram in the following way: 

f(x) =-={~=xx y; !:: = !!. x z;f = x +~;STOP} (3.5) 

The use of programs in definitions introduces complications in naming 
which in practice arc extremely complex. Here we shall distinguish names 
local to a program (and hence meaningless outside that definition) from other 
names in the definition set by underlining, as in (3.5). \Ve shall clisalh,v side 
effects: i.e. the left hand side of any Gj, j = I, 2, ... , 11, must either be the 
function name(¢,) or an internal name of the definition. A sufficient condition 
for the applicability of a program is that its parameter and all non-internal 
names which occur in it should be numerically ,defined. 

We are now in a position to consider the reduction of an elementary 
definition set by hand. Given a priori the integers, denoted by' I', '2', ... etc. 
and the truth values 'TRUE', 'FALSE', consider the following set D of 
definitions: 

I. v(t) == 0 if t< 0, t x (u + ax t) (3.6) 
2. a= 15 
3. U CCC 50 
4. II' =, r(IO) + 2 X a 

for case ofrefrrcncc, we ha\e numbered the four definitions. The information 
available in this set is summarized in Table I. Definitions 2 and 3 consist of 
value assignments to the variables a and u respectively. Definition I is of the 
function v, and II' is formally defined in 4. In the table we list numerical values 



280 

Def. 

1 
2 
3 
4 

v 

v 
a 
u 
w 

a(v) 

2 
4 
4 
3 

J. K. ILIFFE 

TA!lLE I 

F 

Oift<:O,t x (11 +ax t) 
15 
50 
v (10) + 2 x a 

Dependent on: 

!(parameter), 11, a 

V, a. 

where they are known, otherwise listing the defining formula F and the names 
appearing in each definition. Our intuitive evaluation of the definition set 
then proceeds as follows: 

(i) v depends only on u and a and is therefore a known function; 
(ii) w, depending on v and a, can therefore be evaluated to give the value 

2030; 
(iii) Since the function v cannot be further reduced, this completes the 

reduction of the definition set. 
Obviously this trivial example in a simplified language can do no more 

than illustrate a method of argument. It is a method, however, which can be 
carried over into much richer languages, with powerful results. What is 
particularly needed, apart from a larger set of elementary operations., is a 
type of operation leading to the cyclic or iterative behaviour observed in 
sequent-ially written programs. The mathematical expression of iterative 
-calculation is contained in recurrence relations, and we may, for example, 
consider the following as a definition of the variable r, where i is an integer 
greater than 1: 

Evidently this is a. special case of a, function r with parameter i, and the 
appearance of say 'r10' in a formula would receive essentially the same 
treatment as 'i:(10)' in (3.6) above. This and other extensions to the definition 
set, and their efficient encoding, are beyond the scope of the present discussion. 

4. Definit-ion Set Processing 

A definition set is presented to a machine, or, for that matter, read by a 
· human being, as a linear string of symbols. Consequently, if only part of the 
machine's computing capacity is absorbed by the reading process, some 
attention can be given to a parallel transformation of the definitions. In 
practice, as applied experimentally on the Rice University machine (Ref. 1), 
this transformation amounts to: 

(i) Recognizing numerically defined operands, and where possible, 
applying operations between them. 

(ii) Transforming all function definitions (including programs) into 
sequential machine code. 

(iii) Forming a table, similar to Table I, to assist subsequent processing. 

Some of these effects are illustrated in the example given by the definition 



19. CONTINUOUS EVALUATION 281 

set in Table 2, containing a program P written out with the usual line con-

TABLE 2 

1. ; == 1 
2. j= 2 
3. A= TRUE 
4. B= FALSE. 
5. P(C) = { 

X=i-fj-t-k 
y = j if A, i if B, 0 
; = iif B and C, j X k 
P = x + y + z if B, x x y if A and C, 0 
STOP} - - - -

vention. As the set is read in, P can be transformed to an internal representa­
tion of the program P' given in Table 3. This form of processing is obviously 

TABLE 3 

Def. v F Dependent on: 

1 4 1 
2 j 4 2 
3 A 4 TRUE 
4 B 4 FALSE 
5 p 2 k, C (parameter) 

{x = 3 + k 
y=2 
z=2 xk 
P =xx y if C, 0 
STOP} -

6 k 

dependent on the sequence of definitions iri the set, since if P preceded the 
definitions of i,j, A and Ba similar reduction would not be possible. Clearly 
the result of applying Pin either case would be the same, and what is achieved 
is merely a degree of optimization. The above example typifies a situation 
which arises frequently in the design of systems of programs where a very 
general program is written initially (e.g. P), leaving as variables parameters 
which are ultimately to be fixed. As the design proceeds P becomes more 
refined, and by recompiling ratht'r than rewriting (and introducing new 
errors) it is brought to its final form. A particular example is provided by 
optional print-outs which are inserted in a program for debugging purposes, 
finally to be eliminated. 



282 J. K. ILIFFE 

The definition set constitutes a very satisfactory unit of information for an 
operating system to handle. Indeed, the set we have described bears a strong 
resemblance to the collection of dornments needed to define a job in the Atlas 
operating system, and both, of course, rest on the fundamental idea of a 
calculation as a procedure supplemented by suflicient numerical definitions 
to make it applicable. Further developments of similar systems will un­
doubtedly be rewarding; methods of building up new sets from old; of 
cross-referencing between sets; and (for mathematicians) of nesting one set of 
definitions inside another must be established: We note that the data-oriented 
storage control systems mentioned in Chapter 18 are ideally suited to the 
control of data sets by extending the interpretion of lock-out bits to include 
an indication of the definition state of each variable: in fact, a data region 
which is locked out in the conventional sense is effectively unddined at that 
time (a cc-c 1), in the sense we have been discussing. Compare particularly the 
Index Region (Fig. 4, Chapter 18) with our tabular presentation of the 
definition set. · 

By analogy with the behaviour of a time-sharing machine, we can therefore 
envisage the reduction of a definition set proceeding in several definitions at 
once. When an undefined variable is encountered in one definition, control 
switches to another, and so on, until by a continuous scanning process the 
set is reduced to its simplest form. The application of several scanning and 
computing devices to the same set is theoretically possible. 

5. Conclusion 

In this very brief introduction to the idea of continuous evaluation, it was 
hoped to illustrate the advantage of basing a problem solution on a set of 
definitions rather than a sequential procedure description. This has already 
been recognized to some extent in the design of operating systems and of 
commercial compilers; it is believed to be equally advantageous for descrip­
tions of mathematical procedures, which have become too closely enslaved 
to the early sequential forms of computer language. It is strongly felt that 
machines of the future will require to break away from sequential activity, 
and we must beware of having to face the task. of automatically breaking up 
a sequential code into parallel activities: it seems easier to start from a 
'parallel' code, and make it sequential when necessary. 

The potentiality of definition sets remain to be fully realized. We have a 
great deal to learn about their properties and interpretation, but they appear 
to be capable of influencing appreciably both language and machine design 
in the future. 

REFERENCE 

1. J. K. ILIFFE (1961). The Use of the Genie System in Numerical Calculation. 
A1111u. Rev. Automat. Progr. 2, I. 




