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1. Introduction 

One of the most important aspects of computing activity is that of ensuring 
that the operands of a routine are correctly situated for its use ::it the time it 
requires them. Failure in this respect is, of course, one of the main sources of 
programming errors. Here, as in other aspects of programming, the correct 
procedure to adopt is to follow a well-defined set of rules designed to mini­
mize such errors. The rules may form part of the programming system, or 
they may be built into the hardware of a machine. In either case, in what 
follows they will be termed addressing rules. 

A simple addressing rule, for example, would be to as.:;ign a fixed location 
number L(x) to each variable x occurring in a routine. Whenever the value 
of x was required as an operand, use of location number L(x) would be 
sufficient to call it out of storage. Whilst this rule is satisfactory for elementary 
routines and simple operating systems, it is well known that it fails to meet 
present-day requirements for a number of reasons. Amongst these arc the 
fact that a routine may be written to operate on blocks of data of varying 
size, in which case an efficient assignment of location numbers may become 
difficult; another problem is that most routines are written to be run in 
conjunction with a set of independently written routines, where a feasible 
assignment of location numbers for one routine may conflict with one or 
more of the others. 

Independence of location number assignment in programming is achieved 
to a greater or lesser extent by the use of symbolic references to operands. 
In its simplest application, this is no more than a means of delaying the actual 
assignment of location numbers until the routine is read into the machine for 
execution. More generally, the assignment may be delayed even up to the 
point in time immediately prior to the use of the specific operand. 

In discussing addressing, therefore, a problem of translation may be 
involved, and care must be taken to distinguish the form taken by a reference 
at various stages of the translation. We shall term a symbolic reference as 
used by the progrnmmer a name; a reference as it appears in a routine held in 
store and awaiting execution will be called a routine address; the actual 
information sent to a memory bank to enable it to read out a particular 
operand is the location number. 

The class of addressing rules we seek defines a translation from a name to 
an operand. In the following section on Symbolic Addressing, the dcsirabk 
properties of names are discussed. In Section 3 a variety of devices for 
passing from a routine address to' an operand is examined: these, of cour~t\ 
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are generally understood to be part of the 'hardware' addressing facilities of 
a machine. Given the general requirements of naming systems, and a range 
of possible tools, we then proceed to discuss in Section 4 a variety of addressing 
rules which have been, or might be, exploited. 

2. Symbolic Addressing 

I. ProgJ"am Structures 

The use of a name for an operand has two distinct interpretations. It may 
denote a location number by immediate substitution, as in fact we might 
imply in our previous example by writing down the symbolic addresses 
'L(x)', 'L(y)', etc., wherever reference to x or y was implied. In this context, 
it becomes meaningful to use a variant of the symbol, e.g. • #L(x)', meaning 
the integer location number associated with x, and to use this in arithmetic 
operations, e.g. '#L(x) + 2', to derive in effect further location numbers of 
data. More generally, however, immediate substitution is impossible since 
#L(x) may in fact vary without the knowledge of the programmer, and 
consequently only restricted forms of address arithmetic are possible. The 
second interpretation ~fa name is independent of the location number con­
cept, and here it is used merely to denote an operand whose value is to be 
substituted for the name upon execution of the expression in which the name 
appears. 

Unless stated otherwise, we shall consider names from the second point of 
view. This is obviously more satisfactory when the needs of problem-oriented 
languages arc taken into account, since it avoids the introduction of a concept 
foreign to the problem. Only when the problem-oriented language falls short 
of the ideal is it necessary t-0 introduce the idea of a location numbel'. 

In a program written in symbolic code, the obvious intent in using a name 
'A' is to denote the current value of the same operand A upon executing 
various parts of the program. This apparently simple requirement has, 
however, been found to fail in only moderately complex programming 
situations. One common cause of failure, for example, is that a program may 
be written by several individual coders, who must be protected from using 
the same name for different oper.ands. Another, less serious, difficulty is that 
different names may be used, on occasion, for the same operand. In fact, we 
are quite short of names, and want to use them as efficiently as possible. 

It has therefore become necessary to look at the program as a whole, and 
give rules for determining the extent of text over which a name may be 
assumed to refer to the same operand: such text is called the 'scope' of the 
name of ALGOL terminology. Clearly the rules which are given must introduce 
as few arbitrary boundaries in the text as possible, and one looks to see 
what natural divisions of the text can be used for this purpose. 

The most natural boundaries to choose are those of the routines which 
may he embedded in the program text: natural because they arc usually very 
clearly marked, because they define logical units at least partly independent 
of the rest of the text, and because they depart from the sequential ordering 
of execution which is normally implicit in the text as written. The routine 
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boundaries arc indeed chosen as scope delimiters in most programmin~ 
systems; in ALGOL a finer scope structure is chosen, down to the level of 
blocks within routines (procedures). The latter extension has few advantages, 
and will not be discussed further here since it has no new implications in the 
problem of addressing. 

A peculiar property of many logical units of a program text, however, is 
that they themselves may contain instances of similar logical units, and so on 
ad infinitum. This is true of routines, which may contain subroutines, etc. 
Having decided on using routine boundaries as scope delimiters, the problem 
arises: should the scopes of names be nested one within another in the same 
way as routines, or should we accept only the highest level routines for the 
purpose of defining scope? For practical purposes, it should be rerr.cmberecl 
that we rarely want to go to a depth beyond one or two routines, so the choice 
is not of major imporL.111ce. One would be tempted, therefore, to choose the 
ruling with the greater mathematical nicety, and this in fact is what has been 
done in ALGOL. In FORTRAN 11, on the other hand, 011 ly a single depth of 
routines is allowed and hence scopes arc not nested. 

Obviously, it is not sensible to cut through all scop·:s at every routine 
boundary since the continuity in meaning of names is necessary to gi\'e 
coherence to the program as a whole. One must distinguish, therefore, at 
(say) the entry to a routine, just those names \vhosc scopes arc bounded at 
that point and, by impli;,;ation, at the corre5ponding exit point of the routi.ie: 
the remaining names have continuity of meaning . through the routine 
boundary. Such distinctions nwy be made by implication in a particular 
programming system, often supplemented by declarations at the beginning of 
the routines. We shall not detail here any particular methods of giving this 
information: once aware that they exist,.it is usually easy to spot them. 

Again adopting ALGOL terminology, we shall say that if the scope of a 
name A extends to the boundaries of routine R but not beyond them, then 
A is local to R. Within the text of R there may be a subroutine Q: if A 
occurs in Q and the scope of A extends from R into Q, then A is non-local 
to Q; on the other hand, A may not occur in Q, or it may be defined as local 
to Q, and hence distinct in meaning from the name A .local to R. 

Once the extent of text over which a name has a consistent meaning has 
been defined, there is usually no need to retain the program text in its original 
form. For further discussion it will be convenient to detach it into its separate 
routines, and consider the properties of a typical one of these, R. From what 
bas been said already, it should be clear that any name appearing in th.: 
program text is local to one and only one routine. 

Let R contain the local names R1, R2, ••• , Rn. Any of these, say Q, may 
stand for a routine with local names, Q1, Q2, ••• , Qm. Let us suppose. 
moreover, that the name of a routine is always local to the routine in which 
it is immediately enclosed. In this case, the name relationships in a progr:1m 
can be represented in the form of a tree (fig. I) in which each routine name 
represents a node from which grow branches corresponding to its loc:d 
names. The value of this Figure is that it indicates exactly those operand, 
which may be referred to in a given routine: namely those local to the routine. 
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or accessible to it in the tree by downward and horizontal paths only, with 
the proviso that if any name is encountered two or more times in this process, 
then the first occurrence is always taken to define the name. In the Figure, 
reference in Q may be· made only to operands named in the following set: 

(2.1) 

e.g. not to U1 or U2• The set of names which have meaning within a routine 
will be termed its context. 

Our discussion so far has been based on the 'static' program description. 
It is well known that certain local names in a routine are not used to denote 
the same operands at all times, but are destined to be given meaning each 
time the routine is activated: these are the parameter names. In general they 
are defined by the calling routine, which gives an expression to be evaluated 
each time the parameter value is -required-some important subclasses of 
definition exist ('call by value', 'call by simple name'), but in the interest of 
generality we shall consider only parameters defined by expressions in the 
context of the calling routine. Other names denote not operands but/unctions 
which are to be used in obtaining the value of an operand. The representation 
of a function is a routine either in the same program or in an assumed 
'library' of common routines. A function name may also be a parameter name. 

The difficulties raised by parameters and functions are, of course, aspects 
of the same problem: the dynamic sequencing of program execution. Only 
rarely does the static program description bear any similarity to the hierarchy 
of routines which is built up during the process of applying a program. 

-(Q)~, _QL_ __________ ~ 
. 
I 
I 
I 

» I R1~' ~~~R~2 j.__~-.---R_3~l~-
(R)I -------~ 

(P) 

Fig. 1 
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Consider, for example, a situation in which Q is active (Fig. I). The context 
(2.1) is defined, and we may envisage a situation in which from within 
Q the routine T1 is activated, its parameters being defined by means of 
expressions in context (2.1), and control passes to to T1. At this point, the 
context becomes: 

(2.2) 

Thus execution of T1, whilst normally based on (2.2), may involve reference 
to (2.1) whenever a parameter is called for. Clearly, one of the Q;, i =, 0, 
1, ... , m may itself be a parameter of Q, so a further change of context may 
be required when evaluating a parameter expression, and so on. 

The situation is still further complicated by the fact that Q may directly 
or indirectly activate itself. In our example, T1 may activate T2 , and thence 
R and Q. One might ask, on entering Q for the second time although the 
first activation of Q is not completed: are the variables local to Q to retain 
their values from the first activation, or should they be defined anew? A case 
may be made for either ruling, depending on the intentions of the pro­
grammer, and the greatest generality is achieved by partitioning the local 
variables into two groups: those whose identity is preserved through all 
activations of the routine (the own variables of ALGOL), and those which are 
redefined on each activation. 

It remains to be said, when working in a given context, which activation 
of the routines defining the context should determine the vari:iblcs referenced 
at a given time. When a routine R is activated from a context C, it should be 
clear from our previous remarks that a new context CR is determined, 
comprising a subset C of C plus the local variables of R. The activation:, 
referred to in C are by definition the same as those referred to in the corres­
ponding portion of C; this activation of R creates a new set of non-own 
variables, which is destroyed when the corresponding termination of R is 
encountered. With this information, and an initial context C0 which is supplied 
by the programming system, it is possible to follow through a program and 
determine without ambiguity the correct context at any point in time. 

2. Data Structures 

A brief note should be made of the logical structure of data which is used 
in a programming system. Whereas the complexities of program structure 
generally derive from the requirements of scientific systems, complications 
in data structure derive from commercial demands or, quite often, from 
system programmers themselves. 

Elementary operands are defined as numbers, words, character fields, etc. 
These may be grouped together to form records. Records may also include 
other records. Thus a name A within a routine may denote a single elementary 
operand, or a set of elementary operands and records. Some operations may 
be performed on A as a whole. Others require access to individual items within 
A; this may be achieved either by naming them and using an appropriak 
compound name in the routine ('AGE OF E.MPLO YEE' etc.), or by using a 
suitable numerical index system ('A/ etc.). The first method involves some 
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elaboration of the idea of a context as developed above. Either can be con­
sidered as extensions of the tree referencing system (Fig. 1) allowing restricted 
paths to be taken up the branches as well as down. 

Unlike routines, data structures may vary quite freely during the execution 
of a program. Records of various sizes may, for example, be read from a file 
on magnetic tape, and some means must be provided for detecting whether 
or not the last item in a record has been processed or not. This leads us to 
note, in passing, that actually naming an operand is not the only way of 
referring to it, for when the data possesses a certain structure one may obtain 
an operand by specifying its position in the structure relative to that of another 
item: indexing may be taken as an example of such referencing, and the 
various operations of list processing yield further examples. One must dis­
tinguish rather carefully, however, between referencing based on the logical 
data structure, and that based on the memory structure on which a program 
is realized. For obvious reasons, the first has a certain invariance, or is under 
control of the programmer, whilst the second is under control of the operating 
system and may vary arbitrarily during the course of a program. 

Much of data processing is concerned with transmitting data from one 
medium to another, often with a change in structure. The programming 
system may require this to be done entirely by writing the appropriate 
routines, or by allowing the use of data descriptions which are used by the 
compiler and possibly by the operating system whilst a program is running. 
The latter possibility seems to be generally more satisfactory, since data 
structures are often the most fluctuating parts of the problem. 

3. The Operating System 
A complete problem description generally consists of a program, a set of 

data descriptions, and a set of data. The regime under which these three items 
are processed constitutes the operating system of a machine. Fig. 2a 
illustrates the flow of information we have in mind, when the operating system 
is conceived as one with the machine. This simple picture, however, is the 
source of many troublesome requirements of an addressing system. 

For in most programming languages the degree of complication is such 
that an initial phase of program translation is necessary: certainly the names 
must be translated into routine addresses. The translation may or may not 
involve the data descriptions. This scheme is represented by Fig. 2b, in 
which 'translation' and 'execution' are two separate processes, probably on 
the same machine. Typically, program text is supplied to the translator, data 
is supplied to the executive machine, and data descriptions may be supplied 
to both. It now becomes an objective of system design to minimize the total 
time spent in the translation phase of any one-program, including reruns due 
to program errors, changes in the problem requirements, and so on. The 
horns of this diicmma are quite well known: a fast compiler produces a slow­
running object program, and vice versa. One way towards a more efficient 
operating system is to segment the translator into a number of separate 
stages which follow one another, such that those parts of the problem 
description most likely to be subject to variation are only taken into account 
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at the later stages of transbtion. In this way, a minor change in the problcrn 
may involve only repeating part of the translation, or repeating the translation 
for only part of the problem. 

This is the situation in the scheme based on a loading routine (Fig. 2c). 
Here the program is segmented into routines which are translated separately, 

Program 

~

Opcra~i1~1~ .-- _ ... Results 
System 

·-··----

(a) Data Description 

Data 

Translated Routin,'s ---.... --~aG _______ \ 

Program-~~· ·---J \__E- ·-J \.1---:l 
D~t~ \-->-L.l.'ar.tial · --~, Loa.di·1·lf', --···-·> Fxccu.tion ___ ,.. (c) Descnpt1011 \ 

\J~r.1nsl<1tion_ __[ ___ --- -- _/ > ----

Fig. 2. Elementary operating systems. 

but combined together by a loading routine immediately prior to execution. 
One of the main tasks of the loader is to establish the correct context, in th: 
sense discussed above, for each routine as it is loaded. We shall return to this 
problem in Section 4. 

To summarize our findings up to this point, we may say that the use of a 
name in a program text has been found to involve following certain rules 
which determine its scope. Conversely, within any routine of the program a 
certain set or context of meaningful names is defined. When a routine is 
obeyed, one must be sure to establish the correct context for each routine, 
which means, when recursive use of routines is involved, establishing reference 
to the correct variables in each activation of each routine. Use of a name may 
involve not only direct reference to an operand, but also reference through a 
data structure along a path chosen by one or more modifiers of the name 
(which may themselves be named); or reference to an expression (parameter) 
which is to be evaluated in another context, or again, reference to a procedure 
(function) whose evaluation will eventually lead to the value of the desired 
operand. Finally, any chosen realization of names must allow for the type, 
of modification which are most frequently made in programs or data descrip­
tions. Before examining possible solutions to these problems, we must 
examine the techniques at our disposal. 
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3. Routine Addresses 

Some years ago, in order to refer to a certain item of data in memory it was 
considered sufficient to allow the programmer to place a location number in 
the instruction word of his program. In our sense, the routine address was 
identical with the location number. That these days are past is not so much 
due to the demands of symbolic addressing outlined in the last Section as to 
the observed patterns of access to storage in a large selection of programs 
during execution. A major question, which remains largely unanswered at 
present, is the extent to which patterns of access to storage have changed as 
the result of the growth of symbolic programming techniques, either because 
of the change in style of translated programs, or because of the demands of 
the translators themselves. In spite of changes in demand, however, the basic 
economics of storage which have dominated computer design in the past seem 
likely to do so in the future, so we shall continue to be faced with realizing a 
problem description on a hardware configuration which is a~ first sight ill­
adapted for this purpose. 

Let us list, first of all, some of the forms which a routine address may have. 

J. Implicit Address 

Certain functions of the machine involve registers which are not explicitly 
given in an instruction. For example, the Accumulator in a single address 
machine, or certain Indicator registers. 

2. Truncated Address 

The full range of location numbers may demand a field length of 15 or 
more bits to specify an operand. Part of the store can be addressed by a 
shorter field if an assumption is made concerning the value of the missing 
bits. Locations 0-31 of the store may be addressed through 5 bits, for 
example, if the remaining bits are always assumed to be zero. 

3. Relatfre Address 

A routine address may be added to a pre-ass.igned 'base address' in 
order to determine a location number. This technique is often combined with 
method 2. 

4. Modified Address 

This is similar to the relative address, except that the base address is 
contained in a modifier register (B-register, index register) selected by part 
of the routine address. A variant of this technique places the base address in 
the instruction and the relative part in the modifier register. 

5. Block Address 

This is similar to truncated addressing, but the high order bits of the 
location are obtained from a register selected by a block number, which is 
given as part of the routine address. 
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6. Detached or Indirect Address 

A routine address may be used to indicate a register whose content is to 
be used as a routine address. A B-modifier used alone is a special instance 
of a detached address. The facility may be extended to any register in the 
machine. 

7. Immediate Address 

The routine address, or part of it, may be used 'immediately' as an operand. 

8. Associative Address 

This is the only instance in which the location selected depends on the 
value of its content. J n an associative memory, input of cl bit pattern and a 
mask results in the selection of one or more locations in which the stored 
information coincides with the given pattern in the positions determined by 
the mask. Such a memory is potentially very useful in certain applications, 
but it has not yd reached the point of lar?,: scale econo1nic use. The J\tbs 
page-address registers may be regarded as a very specia; form of associati1·c 
memory, althouzh in this case the output is a selected luc:ttion number. 

* * * 
Thus the object of machine addressing, which is to dekrmil1l'. an operand 

from a routine address, is pursued in a variety c•f cornbiriations of addition 
and suhstill!tion operations; th.:: scqurncc of opeutions may be fi:-;ed rigidly 
in the h:udwMe of a computer, or it may be allowed to vary according to 
information found in routine addresses. In the latter case, this information 
must indicate whether the present routim; address gives the opcrarrd, or the 
location number of the operand, or whether it is to be used to give a new 
routine address. J\s usual, the penztlty of increased flexibility is the provision 
of selection bits in the routine address, but this is a cost which it has been 
found increasingly worthwhile to pay. On the other h,111d, machine addrc,sin; 
systems which require aprrcciably more time than a single main memory cycle 
to obtain an operand require careful justification. 

We may distinguish trends in machine addressing systems towards fom 
main objectives, to which we shall return in Section 4 when we examine 
overall system requirements. These trends arc as follows. 

1. To increase the 'information content' of an address, and hence the 
efficiency of instructions. 

2. To increase the mobility of programs, so that storage allocation is 
simplified. 

3. To allow efficient use to be made of the more expensive (i.e. high speed) 
parts of the store. 

4. To permit flexible communication links to be set up between routines 
and data. 

Problems of economy in storage have led to many further complications in 
machine addressing. We have already noted that a given range of location 
numbers may cover different levels of store of varying access speeds. There 
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may in addition be different location numbering systems associated with 
different categories of storage (e.g. B-register number 3 and location number 3 
may mean different registers in the same machine). One of the greatest 
probkms is that part of the storage system may not be directly addressable, 
and the efficiency of a problem realization which exceeds the capacity of 
addressable store then depends critically on the way transfers of information 
to and from the 'backing store' are organized. Such transfers are generally 
restricted to blocks of words: the longer the block length the Jess time, per 
word, is spent in the mechanics of arranging for data transfers to take place, 
but the more difficult becomes the problem of efficient use of store. 

In contemporary machines, the addressing system must also permit the 
addressable store to be shared by several activities (programs, backing store 
transfers, peripheral transfers, etc.) at once, and prevent one activity from 
interfering with another. This can be achieved either by 'locking in' each 
activity to its own region of store or 'locking out' each activity from all others 
-a combination of the two methods may be used. In practice, therefore, any 
location number obtained during machine addressing may be subject to one 
or more comparisons with boundary markers before it can be used, and a 
number of high-speed registers must be deployed to contain the location 
numbers limiting the regions into which the store is divided. 

To summarize the present position in machine addressing, we have noted 
that a series of memory devices of increasing size but decreasing speed is 
likely to remain the most efficient basis for a computer store. In the past, order 
codes have been arranged so that the hand coder could take maximum 
advantage of the different levels of store. More recently some of the high 
speed registers have been used for specialized purposes such ,as lack-out 
registers, block or page-address registers, and so on. As computer programs 
increase in size and complexity more and more of the storage allocation 
problem will have to be handed over to the programming system. The 
problems which will have to be solved automatically relate to the use of high­
speed registers, the presentation of a core store and one or more levels of 
backing store as an effective 'single level store', and the mutual protection of 
several activities using the store simultaneously. 

4. Translation Processes 

Let us formalize the system of names used in a program P in the following 
way. Let R be a routine in P. Denote by R its set of local names, i.e. Ri, R2, 

... , Rm where n is a number dependent on R. Let the first /(0< /<. n) of these 
names stand for parameters, and let the next m(O< I+ m < n) stand for non­
own variables; the remainder (if any) stand for own variables. 

Let R be local to the routine AR, i.e. R is a name in the set AR; more 
strongly, assume that R is an own variable name in >..R. Further assume the 
name AR is local to >..(AR)= A2R, and so on. Then the context of names 
defined in R consists of the union of sets: 

R, AR, A2R, .•. , >..kR 

where >..kR is the highest level routine in P. 

(4.1) 
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In general, correspc,nding to each routine R and set R of local names 
there will at any time be defined a series of sets of operands, each correspond­
ing to one of the current activations of R. The number, h, of such sets depends 
not only on R but also on the time at which this observation is made. These 
sets of operands will be denoted by w<OR, w 12>R, ... , c,}hlR. Each set has 
the same number of elements, and we know (by definition), that the operands 
corresponding to the subsets of own variables are identical between any two 
sets in the series. Since similarly defined sets exist corresponding to each 
activated routine, the actual operands corresponding to the context (4.1) of a 
particular activation of R can be described as the union of the following sets: 

(4.2) 

where the index j; selects the particular set of operands corresponding to 
,\iR at this time. 

When R calls a new routine, it must be a member of one of the sets in 
(4.1), say Tin ,\iR, 0< i < k. When control is transferred to T the new context 
of names will be 

(4.3) 

Corresponding to these are the operands 

wCh'lT, w(i;),\iR, w(i; + 1) ,\i + 1R, ••. , w(ik)).kR (4.4) 

i.e. a new set of operands w(h'lT is activated for T, and the operands common 
to the contexts of T and R are retained. 

When T calls for parameters defined by R, reference is made to an expres­
sion using terms in the sets (4.2). When T terminates, the context (4.1) of R. 
is re-assumed, with the operands (4.2). It should be noted that although T 
cannot change directly any operand named in the sets R, All, ... , N- 1n, 
(since it has no name for them), it may change the values of operands named 
by ,\iR, ,\i + 1R, ... , ,\kR, an effect which may or may not be considered 
desirable ('side-effect' in ALGOL). 

The discussion in Section 2 showed that each defined operand may be an 
'elementary' item of data, or a structured piece of information with named 
sub-items or numerically indexed lists of sub-clements. With regard to the 
'fine structure' of elementary operands, we remark that once a word has been 
read from memory, an item of data may be retrieved from this by further 
manipulation. Some machines include special functions in the order code for 
packing and unpacking data and addressing sub-clements of words. Analysis 
of such operations is beyond the scope of this discussion, which is primarily 
aimed at giving rules for deriving, from a name, single word units of informa­
tion from storage. We have to take some account, however, of the extent to 
which data structures may vary during the course of a calculation. 

The foregoing paragraphs set out the broad requirements of a naming 
system. We shall now discuss various aspects of its realization on the machine 
configurations of Section 3, and consider what modifications to our general 
requirements are necessary to attain efficient program execution. 



18. THE ROLE OF ADDRESSING .IN PROGRAMMING SYSTEMS 267 

1. Mapping onto Addressable Store 

Consider the execution of routine R, with defined operands (4.2). Suppose 
that the addressable store is sufficient to contain reprcsrntations of most, if 
not all, of the operands in the context of R. If the store is composed of several 
units of differing access times, the problem arises of l1ow to dispose the 
operands of R in the best possible way in the store. More exactly, we may 
state this requirement as that of minimizing the contribution to program 
running time in a certain time interval, arising from accesses to the store in 
the same interval. Efforts to solve this problem depend very much on the 
chosen time interval; it may be a fixed period in the activity of a machine, or 
the time devoted to executing R, or the total time of program execution for a 
given set of data, or the time accumulated in translating R and running it for 
many sets of data with certain characteristics. The basic information necessary 
to formulate a solution is the sequence of access to operands over the chosen 
time interval. 

In FORTRAN, for example, much effort might be spent in optimizing the 
use of B-registers over the execution time of a given program. The necessary 
basic information is derived in part from an analysis of the program and 
partly from extra statements which may be made by the programmer; 
assuming the accuracy of this information, effectively optimized programs 
may be generated. On enlarging the time interval of optimization to cover the 
compilation time as well, it has often been found that gains in execution time 
have been more than offset by the increased time of compilation. 

Another device which has been used when a small number of fast registers 
is involved is to name these and include them as own variables local to the 
highest level routine in the program (Ref. I). This technique applies only to 
single word operands. In this way the task of optimizing is left in the hands of 
the programmer, though he is still free to use problem-oriented input languages. 
The difficulty of introducing fast-register names local to any but the highest 
level routine is that the task of saving and restoring them when control is 
switched from one routine to another can easily annul any speed advantage 
gained from their use. 

One is frequently asked: given a machine with a main core memory but 
with an additional memory of, say, l 75 the access time, how much fast 
memory should be at the disposal of a compiler? It is probably fair to say 
that without outside help the number of fast registers a compiler can use 
efficiently for named operands is quite small. Allocation within a short series 
of statements is comparatively easy and pays good returns with up to four 
or five words of fast store; allocation over loops and between different 
routines requires much more work and often involves placing undesirable 
restrictions on the source language. An average compiler would find six to 
ten fast registers all it could cope with. The fact remains that a good pro­
grammer can make effective use of many more fast registers in certain classes 
of problem, and if a machine has them he should not be prevented by the 
source language from using them. The technique of including them in the 
local names of the highest level routine is to be recommended. 
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One aspect of machine addressing systems that is not desirable from the 
point of view of translation is the possibility of two or more different ranges 
of location numbers. We have already noted three distinct classes of local 
variables: if each of these can be translated into several classes of storage, 
compilation quickly becomes intolerably complicated. The ideal addressable 
store is given by a single unbroken range of location numbers, a part of which, 
at least, may correspond to a series of fast access registers. 

1. A,fapping onto an 'Apparent' Single Level Store 

If addressable store is insutlicient for a complete problem representation 
use must be made of a suitably sized backing store of drums, discs, etc. As in 
the case of optimization of high speed store, there are three main lines of 
attack on the problem associated with a backing store. 

(i) Structural, i.e. by building into the source language commands to be 
used by the programmer for transferring data to the addressable store. 

(ii) Analytical, i.e. by allowing the translator to examine the flow of the 
program and make the decisions on where transfers should be made. As with 
other analytical methods, this demands for success either complete and 
accurate information on a problem or a series of lucky guesses, neither of 
which can be guaranteed to a programmer. 

(iii) Dynamic, i.t:. the .assignment of transfers as they are required dpring 
the running of a program. This may hold up the program, but if another can 
be run until the transfer is completed the actual time wasted may be negligible. 

Most first generation programming systems make structural provision for 
organizing transfers of information to and from backing stores. Present 
trends of la'rge rtiachine systems indicate that even if a programmer can con­
fidently predict the storage demands of his own program, it will be executed 
in conjunction with others of which his knowledge is zero. Clearly, if efficient 
storage control is to 'be attained over a mixture of programs sharing a 
machine, the only possible source of control is the supervisor prograni. The 
philosophy of dynamic storage allocation has been adopted on many machines 
of the present generation, an example being the Ferranti Atlas, ·where the 
page-addressing system is specifically designed to allow flexible allocation 
of space over drum and core stores (Ref. 2). 

There are two primary requirements of dynamic storage allocation 
schemes: (a) that from a routine address it should be quickly deducible 
whether an operand is in (say) core or drum store; (b) that the information 
representing a program should be partitioned into sections which can easily 
be relocated individually to any part of the store, without causing major 
re-addressing operations to take place. Requirement (b) finally removes the 
possibility of !,,cation numbers being used as routine addresses: at least one 
stage of addition or replacement is essential, and at the same time a check 
can be made in the presence of the operand in core store. If it is present, the 
program should proceed with no appreciable loss of time; if it is not, a 
transfer of the data from backing store must be arranged. 

We noted earlier that the time taken by a backing store transfer can bc 
reclaimed by switching control to another program or another part of the 
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same program. The time taken to organize the transfer, i.e. finding vacant 
space in the core store, which may involve reorganizing data in the core or 
traQsferring data from core to drum, represents a positive Joss in computation 
time which must be balanced against overall system efficiency. A division of 
the store into blocks of fixed length seems to offer the best possibility for 
organizing inter-level transfers efficiently. 

An alternative division of the store, based on the natural lengths of blocks 
into which representations of routines and data fall, has been implemented 
(Ref. 4). The advantage of this technique is that it makes for efficient packing 
of core store, and it solves at the same time some of the problems associated 
with storage maps (sec (4.4), below). 

3. Reservation and Lock-out 

It was noted above (4.2) that between a routine address and the corres­
ponding location number at least one substitution or addition must take 
place if a routine is relativized, and at the same time a check may be made 
on the presence of the operand in addressable store. It is possible to make 
further tests at this point to ascertain that protected regions of store are not 
being violated. 

Storage protection schemes fall into two main groups: 'block reservation' 
and 'limit register'. In a store organized for coping with dynamic storage 
allocation problems, the blocks into which the store is divided may be 
individually protected at the expense of one bit in the word through which 
the block is addressed, and sull1cicnt hardware to detect its status. In the case 
of fixed length blocks, choice of a length which is some po\ver of 2 automatic­
ally (in a binary address) avoids the possibility of exceeding the limits of the 
block. In the case of variable block sizes, having selected a block and checked 
that its use is permitted, a further check must be made to ensure that the 
element selected lies within the block: comparison of an index value with a 
given block length is implied. 

In the absence of a given storage block structure, limit registers may be 
used to indicate which storage areas arc within bounds. These are pieces of 
hardware which are liable to be expensive, and once again complete gener­
ality must be relaxed in order to get an economical system. Ideally, one would 
like to have arnilable to a routine those parts of store occupied by its operands 
(e.g. corresponding to (4.2)), less those regions engaged at any time in other 
activities with higher priority, e.g. drum and peripheral transfers. In practice, 
a routine may only have a single reserved region available (into which (4.2) 
must be mapped), and a fixed number of limit registers which can be used to 
lock out subsidiary regions involved in other activities. If the latter are 
insull1cient, either the routine must be held up, or the activity can proceed at 
the programmer's risk, or the supervisor may be able to allocate space to the 
activity outside the reserved region. 

Obviously there arc various degrees of protection which can be offered by 
the programming system. The minimal practical requirement is that a routine 
should not interfere with the supervisor itself. Beyond that, it should not be 
able to refer to any operands outside the program in which it is used. More 
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strongly, it should not be able to refer outside the operands (4.2) defined by 
its context. 

There is, however, an even stronger possible degree of protection. For 
within (4.1) we can list (at translation time) all operands which are actually 
referred to by R (this is normally a proper subset of the context of R) and 
arrange that reference to any other operand is impossible. This strong form 
of protection is in some respects the easiest to effect, for one can guarantee 
during translation that certain routine addresses refer during execution to 
operands known to be present (i.e. guaranteed by the supervisor) in specific 
parts of the store. This is particularly true of simple operands and known 
elements in arrays of known structure (e.g. A3,4 in a 10 x 20 matrix A): it is 
not possible when unknown data structures are involved, or when named 
subscripts are used (e.g. A;,j). Similarly, the assembly of a routine generally 
ensures that control cannot pass accidentally outside the routine area and 
further hardware checks on the content of the control register are superfluous 
(except in the case of transfer through a 'switch vector'). This type of protec­
tion has long been an implicit benefit from symbolic assembly systems: its 
potential application in overall system design has perhaps been neglected 
when considering protection problems in time-sharing machines. 

4. Storage Maps 

We return to the problem of representing the operands of a routine R in 
what appears, at least, to be a homogeneous, random access, store. Let ll 
denote at a given time the totality of operands defined in a program. Of n, 
the sets; 

h 
a = u w<i)R where h = h{R) 

1-1 

k 
and fJ = u w(i;) )..i R, 

1-0 

constitute subsets. Here a denotes the union of local operands of each current 
activation of R, and f3 denotes, as in (4.2), the context of operands defined in 
a given activation of R. 

Our discussions have shown that when control passes from R to a new 
routine T, a new set of operands local to Tis defined. Hence, from (4.4): 

ll' = Ilu w<h1]' (4.5) 

When Tterminates, we have: 

(4.6) 

Clearly, therefore, II can be represented as an expanding and contracting 
'list of operands in which items are only added and deleted from one end. 
Provided, once defined, operands do not vary in structure, it is then possible 
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Fig. 3. Stack organization. 

to represent ll in store by the familiar 'push-down' list or 'stack' (Fig. 3). 
We note that own variables local to R are common to all the sets w(i>R, 

and hence may be stored more efficiently in a permanent section (ab) at the 
head of the list. In the same section ab, representations of the routines 
themselves can be stored. If the limit e of used store exceeds the limit d of 
available store, this storage mapping fails, but this happens sufficiently 
infrequently to allow the stack to have been applied successfully and elegantly 
by many dcsi,eners (Ref. 3). 

Several programs can share a store if it is divided appropriately into regions 
of the type ad. In terms of routine addresses, it is clear that own variables can 
be referenced relative to the base a ( or b); other variables must be addressed 
relative to an appropriate base in the region be. For, let 1r(h) ,\iR denote 
the subset of w(ii) ,\iR consisting of its parameters and non-own variables, 
which is therefore represented in a section of the region be. Let r.i1 denote the 
starting location of this section. Then to refer to the nth word in this region 
the pair (r.iP n) must be given. But 1ri1 is unknown to the translator, which 
must give the pair (i, n), the actual value of 1ri1 being derived at execution 
time by reference to a table (the 'display' if Dijkstra) which is maintained by 
the supervisor program. Evidently, a change of context ((4.2) - (4.4)) can be 
achieved simply by changing this tabular information. 

The stack concept is not incompatible with a two-level store organized on 
a page-addressing system: after the address corresponding to (i, n) has been 
derived, the page-address comparisons can be made. There are, however, a 
number of defects to the 'pure' stack. 

I. It is diflicult to share two or more activities within the same program, 
since one may get out of phase with another and wish to overwrite a part of 
the list n which is still in use. 

2. Data structures cannot easily vary in size, once defined. 
3. Rather more information than is strictly necessary is kept in the address­

able part of the store. 
None of these difficulties makes use of a stack intolerable, but their removal 

is of more than academic interest in large machines. 
Some progress is made by maintaining an 'index' with one entry for each 

distinct operand used in the program. At a given time, the index entry will 
give the location number (or its equivalent) of the current representation of 
each operand (Fig. 4). When a new routine is entered, new blocks are activated 
·s 
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for its non-own variables, the previous representation being chained on to the 
new one; when a routine terminates, its last set of non-own variables is di~­
carded, and the set before that (if any) becomes accessible through the index. 
The use of a push-down list -::an now be restricted to parameters, link data, 
and working stores, although it is sometimes also convenient to use this area 
to contain scalar non-own variables, which can then be referred to relative to 
a local pointer. All non-scalar items are referenced through the index region 
and are represented by independent blocks of storage; not only may they vary 
in size dynamically to suit the programmer, but they may vary in position to 
suit the requirements of the storage allocation system, provided the index is 
kept up-to-date. 

Index 

Region 

Routine 

Non-own Variable 

Current 

Activation 

Previous 

Activation 

Fig. 4. Addressing through an index region. 

Own 
Variabk 

--········· etc 

It is not difficult to see the similarity between the index region proposed for 
storage mapping and the set of storage control registers required by a block­
addressed reservation scheme. The combination of both functions can be 
performed by one set of registers in a storage system based on variable block 
lengths (Ref. 4). 

Control of storage through an index removes most of the difficulties Ide 
by the stack. Storage areas can be handed over to peripherals for action 
without interrupting the program activity; data structures can be allowed to 
vary; and at any given time the only essential items in the addressable store 
are the current routine, the index region, and the stack. The above representa­
tion has to be elaborated slightly to deal with time-sharing branches of the 
same program, but it can in principle deal also with that situation. 
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5. Communication 

One of the ideals of system clc5ign is to be able to add to, delete and modify 
parts of a program without taking undue time in retranslating the prn~;ram. 
We have noted that this is assisted by segmenting the translation proc,',s into 
distinct phases. One of the last phases is concerned with establishing appro­
priate channels of communication between independently compiled routines 
and the data on which they operate. lf information is relocated dynamically, 
this phase must link up to the system used in the supervisor. 

The most flexible solution to this probkm is provided by the index region 
of (4.4). For to any named operand corresponds a unique item in the incl ex, 
and a routine can be translated (and hence re-translated) independently 
provided the positions in the index corresponding to its context (4.1) arc 
known. It is rather obvious that if R is re-translated, then any routine local 
to R must also be re-translated. 

Quite often, th,: act11al index positions cannot be supplied at tran~lation 
time. Jn this case, a rnrrnnunication region may be set aside at the end of a 
routine, with an entry for cc1ch non-local n:1rrn: used in the routine. It is the 
function of the loading routine to insert correct references to the index in the 
communiG,ttion regions of each routine in a program being set up for 
execution. 

At first sight, FORTRAN po,sesses a lkxibility in communication not given 
to A LG o L. In fact, independent trans lat ion is generally more difficult in 
ALGOL, but not impossible, and if restrictions arc placed on the nesting of 
procedures at least as powerful and flexible a system can be ckri,·ed. One can 
anticipate such re:;.trictions being necessary should a large scale user build 
ALGOL into a programming system. 

6. Pointers 

The routine address, as we have described it, 'points' to an operand in a 
language which can be interpreted by a machine addressing system. It may 
point to another 'pointer' which is defined at the last stage of translation, or 
placed in a modifier re2:?,istcr by the routine. A list structure, based on the 
use of pointers, is the ultimate in variability and indirectness. Since at each 
stage of an indin.:ct addressing chain a location number h::is to be derived, it 
is tempting, having reached the encl of the chain, to keep the last location 
number formed (that of the opera Gel) and derive from it the location number 
of the next operand (e.g. by addition). Such action is dangerous unless the 
block which is being operated on is somehow 'locked down' into fixed loca­
tions by the supervisor program. 

In general, therefore, a pointer held in an index register, or in a list element, 
should have the same form as a routine address; in particular, it must be 
independent of location numbers. 

5. Summary aml Conclusions 

The conflicts of addressing arising in progran1ming system dcsign derive in 
the main from the following: (i) the name structure imposed by source 
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languages; (ii) the requirement to use two or moie levels of addressable 
store; (iii) the desirability of using automatically a backing store as an 
extension of the addressable store; (iv) the need to share the store amongst 
several activities; (v) the need to retain programs in a flexible form throughout 
most of their working lives. 

Mere statement of the problems involved is incomplete without some 
assessment of their relative importance. This is perhaps most easily seen by 
considering the consequences of dispensing with some generality. In name 
structure, for example, little is lost by removing the possibility of recursion, 
and corresponding to the context (4.1) we then have the sets of operands: 

(5.1) 

More simplicity is gained by limiting the degree of nesting of scopes to two 
levels only. The variables ofR are then either local (wR) or non-local (w,\R): 
this, in effect, is all that is provided in FORTRAN. 

We may also restrict array structures to be invariant during execution of a 
program, and limit parameter specifications to simple names or values, and 
once again the majority of source languages in regular use would be within 
our scope. 

Hence the generalization we have attempted serves mainly to signpost land 
beyond the practically useful territory available to today's programmers, and 
to classify a few lone trails. Academic programmers may enjoy questioning 
some of the assumptions we have made: Should the partition oflocal variables 
into own/non-own/parameter classes be identical at each activation of a 
routine? Should the routine itself have the ability to 'generate' names dynam­
ically? Is the 'tree' hierarachy of names adequate for all programming 
problems? How might it be generalized? The answers to some of these 
questions have been anticipated by list processing systems, but it should be 
obvious that in spite of advances in traditional programming methods, we 
still face list processing across a considerable gap in addressing technique. 
Ideally, one would like to buy the full flexibility of list processing only when 
it is essential; future translators should recognize the degree of generality 
called for in a particular situation. Far too often the steam hammer has to be 
used on every nut. 

The most significant trend in machine addressing is to impose at least one 
stage of substitution or addition between a routine address and the corres­
ponding location number. To maintain speed, this is done by placing the 
most frequently used substitutes or addenda in special fast access registers. 
Besides giving in effect location numbers, these registers may also be used to 
select a modifier, to indicate the presence or absence of an operand from the 
addressable store, and to provide reservation facilities. In a data oriented 
system, i.e. one in which the block sizes in store are chosen to correspond to 
individual pieces of data, substitution provides further power in the ability 
to monitor selected operands, and to provide for alternative modes of defini­
tion, which is important, for example, when general parameter specifications 
are considered. Control of storage through an index region seems to offer 
much of the graded flexibility that efficient programming demands. 
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