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The Use of the Genie 
System in Numerical 
Calculation 

J. K. ILIFFE 
The Rice Universiry Computer Project, Houston, Texas 

1. GENERAL INTRODUCTION 

THE set of codes designed for interpreting formal expressions on the Rice 
University computer is termed the 'Genie system', or simply 'Genie'. 
Although most of the concepts employed therein may be applied on any 
machine of the type used for a decade, it is probably true that intensive 
exploitation of a given set of orders and logical properties influences the 
code designer to a greater extent than he is aware, and it is appropriate 
to make some initial remarks on the properties of the Rice computer, and 
the circumstances in which the Genie system is used. 

Design specifications were made in 1958 at a time when no machine 
was available with a word length suitable for extended numerical 
calculations; the choice of an instruction 'code for the machine using a 
56-bit word ,has led to some features which, if not novel, at least do not 
appear to exist in such a combination on another computer. 

The machine is binary, and has main memory of 32,767 'words, 
principally in electrostatic storage which is parallel in operation. Access 
to the memory is shared by four magnetic tape units, a fast line printer 
and the central processing unit. Primary input is by punched paper tape 
prepared on an 88-character Flexowriter with 1/2-line super- and sub­
script shifts. The principal features which are relevant to the present 
discussion may be summarized as follows: 

I. A location number is 15 bits in length. It represents, in one's comple­
ment notation, a numeral in the range ( -16,383, + 16,383). 

I 
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2. The machine contains 8 conventional B-registers each oflength 15 
bits, one of which is the 'control counter' used in sequencing programs. 
Thus simple r9utines may be written in absolute code in completely 
relocatable form. 

3. An address consists of 24 bits, divided into groups Ai, As and A3 of 
1, 8 and 15 bits respectively. A location number is formed from an address 
in the following manner: 

(a) The contents of up to 8 B-registers, selected by As, are added 
to the number represented by A3• 

(b) If A1 is zero, the 15-bit number resulting from (a) is the 
required location number. If A1 is one, the result of (a) is used to 
select a word in memory from which a 24-bit address is taken, and 
the process (a) is repeated; and (b) reapplied. 

Thus indirect addressing to any depth with B-modification is permissible· 
(Fig. 1). 

8 15 

A A 

Lficotio~ocotion number 

FIG. I. An address. 

4. An instruction is. a 54-bit number containing up to three operands 
and two orders. An operand is specified either by an address or a truncated 
location number of 4 bits, which selects one of 16 special fast access 
(1 µsec) registers. Two of the pperands may undergo sign modifications 
selected by the instruction. The location number determined by the 
address may itself be used as an operand, by using an immediate addressing 
option. An order is either a 15-bit order code or a part of an auxiliary 
operation which involves certain of the fast registers. In the order code 
are about 1000 non-trivial orders with perhaps 200 of these in regular use. 
'The auxiliary operations are 64 in·number, and include such frequently 
used orders as B-register incrementing and decrementing ( thus including 
~limp' orders) and transfers between fast access registers. It is our experi­
ence that the present organization combines many advantages of single­
and three-address machines, achieving more compact programs than would 
be expected, even on the basis of the longer word length (Fig. 2). 
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5. Associated with each word in memory are two tag bits or labels 
which do not take part in its function as a number or instruction. They 
are detected separately in the arithmetic and control sections of the 
machine, and may be interrogated and set to O or 1 by conventional 
orders. Alternatively, they may be interrogated automatically when 
the machine is in the 'trapping mode' described in the next paragraph. 

6. Under normal sequencing conditions, instructions are taken from 
consecutively numbered memory cells _to the control unit for execution, 
unless a conventional 'transfer of CQntrol' takes place as a result of an 
order. In executing an instruction, two operands are brought to special 
registers in the arithmetic unit, the designated order is then obeyed, and 

6 15 

First Order 
operand code 
with sign 
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Auxiliary 
operation 
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\ 

Second operand 
(o, address) -. 

Immediate address bit 
Sign infleJCions on second 
operond:+,-.1 .•. 1,-1 •.. 1. 

Fm. 2. An instruction. 

finally the auxiliary operation is performed. When the machine is in the 
trapping mode, normal sequencing may be interrupted if certain conditions 
arise in the control or arithmetic units. The point at which interruption 
or 'trapping' occurs depends upon the intentions of the coder, but 
there seem to be three natural points at which the option should be 
provided: 

(a) Immediately an instruction enters the control unit. This is useful 
if any part of the instruction requires an interpretation not providec:P in 
the machine hardware. 

(b) Immediately an operand enters the arithmetic unit. This is 
useful again if the operand is of some 'non-normal' type, requiring 
interpretation. 

(c) Immediately after an order has been executed, m case some 
particular condition, such as an overflow, has arisen. 

All three possibilities are provided on the Rice machine. Cases (a) 
and (b) are normally controlled by tagged instructions and data. Apart 
from the obvious ability to employ these features in selective interpretive 
and tracing routines, they are of importance in the control of the Genie 
codes. In the latter respect a simulated interruption system would begin 
to lose practical value. 
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Some remarks on experiences in hand coding the machine are appro­
priate at this point, since they illustrate both the direction and purpose 
of our efforts in automatic coding. The instructions admit of a compact 
and meaningful symbolic representation which is used by almost all 
coders. Using the symbolic assembly program, correct codes can be 
written reasonably concisely and quickly if no more than a casual regard 
for optimization is taken. By 'optimization' we mean reaching an accept­
able compromise between time and space requirements in a given code, 
such that a reduction in one cannot be reached without an unacceptable 
increase in the other. It involves principally the choice of the index 
registers and fast registers which will be used, taking into account the 
ability to use truncated operands and orders, and the requirements of 
subordinated or concatenated pieces of coding in these respects. The 
detailed optimization of code is an interesting and normally rewarding 
problem. At the same time, it frequently amounts to a combinatorial 
problem of such magnitude, even for short codes of 20 or 30 instructions, 
that the coder is willing to accept a solution he believes to be near-optimal 
rather than devote time to investigating all possibilities. The point to 
make here is that we consider all coding, hand or automatic, to take part 
in four ~tages: 

(a) A description of an algorithm. 
(b) An initial equivalence transformation of the algorithm dictated 

by the properties of the machine and the translation process. 
(e) A translation from the algorithm description to a sequential 

machine code. 
( ti) A final equivalence transformation of the machine code based upon 

cet1ain optimizing criteria. 

In practice, it is rare to consider these stages separately, but since it 
is our purpose to assign the last three to a machine, and since each 
involves an amount of experimentation, it is advantageous to separate 
them. The present paper is concerned with stages (a) and (e), as far as 

· they affect the user of Genie codes. In fact, some of the descriptive forms 
permi_tted in Genie are precisely those convenient for describing experi­
ments on stages (b) and (d), which are the subject of continued investi­
gation. Whilst refined optimizing processes are of considerable technical 
interest, and probably of future importance, it remains to be seen whether, 
even.on a machine as versatile as the one we are concerned with, they will 
gain favour over crude but fast methods. However, it does seem possible 
that a good solution to the combinatorial problem can be attained at 
stage (d). 



The Use of the Genie System in Numerical Calculation 5 

In the writer's view, the task of designing an automatic coding 
'language' for a particular class of problems is for the user of the language, 
and not the designer of automatic coding systems. In the sense that he, 
too, has a class of problems that can be described formally, he is a user 
with prejudices of his own, but in the main he cannot anticipate the tastes 
of those using other formal languages beyond attempting to provide for 
as wide a choice of form as possible. Only in this way does it seem possible 
that an acceptable 'universal' language will develop in any particular 
branch of mathematics. Although the system may be anchored at one or 
two comers in safe theoretical grounds, it is supported in the main by its 
use and abuse: in the present case, the users are chemists, physicists and 
mathematicians, with a small number of large problems of an experi­
mental numerical nature. If it appears that Genie is designed for coders 
with some fluency in the symbolic representation of algorithms, then the 
circumstances of its use may provide an explanation. 

2. PARTICULAR ASPECTS OF GENIE ORGANIZATION 

Genie is concerned in general with the definition of objects belonging 
to certain computable domains, and the execution of particular operations 
between or upon these objects. Both the objects and the operations are 
under the control of the coder, but if he can find an acceptable machine 
realization for them both, then he can call upon the mechanism of Genie 
to assist in a calculation. Applications of Genie have been made to 
domains of objects which include 'numbers', 'integers', 'names', 'symbols', 
'equations', 'formulae', 'truth-values' and 'instructions';* generally, 
operations on such objects fall into closed groups so that we can talk of 
a 'language' in which operations between objects in a certain domain, 
say 'integers' or 'truth-values', take place. It is practical to give a descrip­
tion of such 'languages' in parametric terms, and although in the present 
paper particular reference is made to the conventional language forms of 
algebra, it should be understood that most of the constructions illustrated 
are operand independent in the sense that a given formal representation 
may be variously interpreted in a number of domains. 

Formal calculation proceeds by naming objects of interest, and assigning 
values to such objects either by means of equations (which use names and 
operations), or, in the case of linguistic objects, by exhibiting specific 
examples of the objects. The fact that early applications of Genie have 
been made to linguistic objects should not obscure the more general 
conception of the system. 

• Each defined in some specialized sense corresponding closely to general usage. 
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Two features are characteristic of most coding systems in active use 
at the present time and may be selected as ones which have been modified 
in Genie. They are as follows: 

(.A) The pattern of sequential coding imposed by machine conventions 
in the past decade still dominates algebraic coding languages. The 
'instruction' has become a 'statement', but the only advance towards non­
sequential description has been to permit the use of formulae and sub­
stitution-type equations. 

(B) The 'translation' process is conceived in terms separate from the 
·'execution' of a program. 

In their primitive forms, the deficiencies of both these features have 
long been recognized, and a number of attempts have been made to use 
the sequencing implicit in recursive definitions in order to derive more 
compact descriptions of algorithms. Any text on recursive functions 
supplies schemata which may form the basis of such descriptions, but an 
immediate attempt to allow descriptions of a general type falls into 
difficulties ofanother sort. Firstly, our machines are finite in both capacity 
and speed, and the type of program resulting from general recursive 
definitjons may overstrain both these quantities. Secondly, from the 
point of view of practical description of algorithms, recursive definition is 
only useful up to a point where rapid visual comprehension is possible: 
beyond that, it is self-defeating, and a survey of any text on numerical 
procedures would bear this point out. Most expressions belong to a 
relatively small class of primitive recursive functions, and complicated 
algorithms are described by reverting to a sequential presentation of these 
expressions, although the proportion of these which consist of simple 
substitutional equalities is probably quite small. 

One of the objectives of Genie, therefore, is to extend the basic 
forms of definition which can readily be understood, and simply and 
efficiently encoded. The precise form of these extensions is not of vital 
importance, but some examples of those in current use are given in the 
next Section. 

An· improvement on the second feature (B) is less easy to achieve, 
although its necessity can be demonstrated by various expedients currently 
in use to circumvent it. These include 'load-and-go' techniques, the 
'subroutine library', 'subroutine package', the 'executive system' and 
various 'monitoring' systems. To recognize the similarities of all com­
puting processes involves a unification of these ideas, and the removal of 
one of the main obstacles to efficient automatic coding, in its widest sense. 
In Genie the separation of processes of various types has been removed by 
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generalizing the concept of evaluation to include objects with values in any 
domain of interest, and by precise control of names to make evaluation an 
automatic process in cases where no ambiguity can arise. At its simplest 
level, this generalization can be illustrated by a numerical example. 
Suppose a and b have values 2·6 and -1 ·8 respectively. Then if a formula 
'a + b' is encountered in the course of constructing code, it will auto­
matically be replaced by the simpler formula '0·8'. Similarly, if TT is a 
given constant number, and sin a given constant function, the formula 
'sin (TT/6)' would automatically be replaced by the simpler formula '0·5'. 
Other consequences are: 

(i) That a program is executed automatically if it has been 
defined and all parameters have been given values. 

(ii) That an executive system of some power is included in the 
formalism of Genie; machine operation is a continuous process from 
program to program. 

(iii) That storage control for vectors and matrices is continually 
exercised, space for arrays of variable size being taken only for the 
period of time in which they are used. 

One of the most difficult problems of automatic coding, yet one to 
which a sophisticated solution is required when continuous evaluation 
techniques are used, is that of the identity of names in different parts of 
a description. A coder frequently divides his problem into segments, each 
logically independent, but referring to the same operands: in each 
segment of code, references to 'common' operands must be distinguished 
from purely internal names. He may use constant numbers and routines 
of his own definition, he may use routines from a 'library'; he may also 
use one or more of the languages of Genie; and finally his code may 
involve analytical manipulations which retain symbolic names. All these 
requirements put constraints on the way names can be handled internally. 
A solution is proposed in Genie, which is summarized in Section 4, which 
links symbol control to a hierarchy of definitions given to the machine. 
This is probably by no means a final solution, but it is feasible, and 
corresponds in an approximate way with conventional usage where the 
latter has any describable meaning. 

3. STATIC PROPERTIES OF ALGORITHM DESCRIPTIONS 

We shall now define, and illustrate by means of examples, the extensions 
which have been made in methods of making value assignments in Genie. 
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The examples will make use of three fundamental forms of expression 
which will be used with little further explanation: 

(i) Algebraic formulae 

Numbers and operation signs appear with their usual significance. 
Names stand for numbers, or sets of numbers, or for functions which 
assume numerical values. 

Example El. The five expressions which follow in quotation marks are 
algebraic formulae: 

'-a+ lb - ktl', 'A,,,+m + 3 sin 2B/, 'K , ,, .. , 
Ill 

'I A, sin Bi', '(a, b, c) - 2·535G'. ,-11 
(ii) Predicates 

Relations and Boolean connectives appear with their usual significance. 
Names stand for propositions which assume the values 'true' or 'false'. 

Example E2. The four expressions which follow in quotation marks 
are predicates: 

'a< b2 and b =I= m - l', 'x < 0 or x > l', 
'(x < 0 andy < 0) or x > O', '-a< x < a'. 

Note that in the absence of parentheses the operation and takes precedence 
over or, so that in the third example the parentheses may equally be omitted. 

(iii) Program Schemes 

These are defined basically in the same sense as those of Yu I. Yanov 
(Ref. 1).* Names stand either for elementary operators or for predicates. 

• Editorial Note: 
If A'1, Aio, . . ., A,, are operators and p is a predicate, the line 

A.,p L A,1 • • • _J A;1 • • • 

m · 111 

is read as follows: 
Execute Aii; test p; if true (P = 1), execute A;1 , etc. 

if false (p = 0), execute A;,, the operator to the immediate 
right of the right stroke _J corresponding to 

m 
the left stroke L immediately following p. 

m 
Yanov uses Oto denote the identically false predicate. 

Ill 

An alternative notation, adopted by Lyapunov, uses t and l in place ofl_ and~ 
Ill Ill Ill 

respectively and w for the identically false predicate. 
See Yu I. Yanov, 'Logical Schemes for Algorithms' (Problems of Cybernetics I, pp. 

82 el seq.)-R.G. 
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Two primitive operators are used, the 'right stroke' _J and 'left stroke' 
. i 

I_: other special signs may be defined in terms of these. The 'conditional 
i 

operator' consists of a predicate name followed by a left stroke. 

Example E3. The following three expressions in quotation marks are 
program schemes: 

'_jA0tl_BOI _ _j', '0tLPI_A_J _j', 'I _J 0t I_ADO I _ _j' 
2 1 2 1 1 2 1 2 2 1 2 1 

(The reader may v~rify that these program schemes are identical with 
those given in the 'block diagram' form of Fig. 3.) 

_JAoLeoL_J 
2 I 2 I 

ol/Lu_J 
I 2 I 2 

1 loL_Aoo L--1 
2 I 2 I 

Fm. 3. Block diagrams and program schemes. 

Effective ca kulation proceeds by assigning values in a particular 
domain to named objects. The elementary means of doing this is provided 
by an equation. 

Definition DI. An equation is an expression of the form: 

(I) 

where 0t stands for a (possibly subscripted) name, and lJ stands for a 
formula.* The sign • ~· is one of general equality, and in any particular 
instance of an equation it is replaced by a particular equality sign which 
indicates the type (i.e. domain) of object being defined. 

Example E-L The expression on the next line is an equation; 

H = 4kt2 + gt/2 

In this, the sign'=' is the particular equality sign associated with algebraic 
formulae, of which an instance appears to the right. It is inferred fr,m: 
the equation that II has, in some context, the numcriol value as,ig-nul t, 
the formula on the right-hand side. The word:l in italics an: im1 ,1 t,wt 

* For concrete e,amples, the word~ 'algebraic formula' (as illustrated abov~) should 
be understood here. 

2 
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and will be given a more precise meaning later (see D9). Another example 
of an equation is on the next line: 

M if a < 0 or b > 10 

In this case, 'if' is a particular equality sign associated with the predicate 
on the right-hand side. It is inferred that M assumes the truth value 
of the predicate in a certain context. 

Definition D2. A COJ?.ditional equation is an expression of the form: 

(2) 

where ex is a (possibly subscripted) name, and ~" i = 0, 1,. ., n stands 
for a formula, 'Pi, i = 1, 2, ... , n stands for a predicate, n being a fixed 
integer in any particular instance of a conditional equation. The con­
struction '. . .' is used here as an extra-linguistic device in a sequence, 
implying the presence of all terms up to the nth. 

Example E5. The next line contains a conditional equation: 

L = l ·O if x < 0, l ·O - x if O < x < I ·O, 0 

The interpretation of a conditional equation is that it is scanned from left 
to right until a true predicate is found. If this is ~ j, then cx is assigned the 
value of~;· If no true predicate is found, the cx is given the value of ~o· 

ti 

In case V ~, is true, ~o may be omitted; it may also be omitted in case 
i=l 

ex has previously 
ti 

V 'l, i is false. 
i-1 

been evaluated, and the value is to be unchanged if 

Definition D3. A preceding values recurrence scheme of order r consists of a 
set of not more than r + 1 equations (or conditional equations) which 
define values of a simply .iubscripted name which we shall denote by r:t.;. 

One of the equations is a recurrence relation defining r:t.; in terms of r:t.;_1, 

ex,_2, ••• , oc,-r; the remaining equations define the initial values cx0 , 

exi, ... , oc,_1• If a particular initial value is not define( i.t is assumed to 
be zero. By the term 'simple subscript' is meant a single name, standing 
for an integer. 

Example E6. The following 1s an exa,11ple of a preceding values 
recurrence scheme of order 2 : 

U; = XU;-1 + u,-2, U1 =--= 2 - 4xy 

It should be noted that the quantity which is defined in a recurrence 
s.cheme is the general term 'cxi' for an integer value of I. Each use of the 
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general term causes an iteration to be made on the recurrence relation 
until the required term is found. The index 'i' is a dummy variable and 
may be replaced throughout by any other name provided it does not 
occur in the recurrence scheme. 

The use of subscripts 

It is appropriate to point out some properties of subscripts as they 
are used in Genie. In general, a name may stand for a single object, or 
a one or two dimensional array of objects from a particular domain. 
Depending on the organization of the array it may be treated as a set,* 
a vector, or a matrix. A subscript is any algebraic formula which assumes 
positive (non-zero) integer values. No name may have more than two 
subscripts but they may, where appropriate, contain subscripted names. 
Under certain circumstances an element of an array may itself be an 
array. 

There are, however, two circumstances in which it seems profitable 
to employ a restricted subscript form. The first of these has already been 
described in the recurrence scheme. The second is connected with the 
minimalization operator used in the theory of recursive functions, t and 
has particularly strong applications in conjunction with the recurrence 
scheme. In it, if cx is the name of a one dimensional array, we shall permit 
the form 'cx1.p' where $ stands for a predicate, with the meaning 'the first 
ex in the sequence cxi, !X2, • • ., ex;, .. .' such that 'P is true. Normally, 'P 
will involve elements of ex, but we permit only those indexed by the dummy 
subscript 'i' and by constant differences 'i - l ', 'i - 2', . . ., 'i - r': 
then i is identified with the index used in generating successive terms of 
the array. 

Example E7.I. Let A be a vector. Then A..t,<O is the first negative 
element of A, and A A,;,co is the first non-zero element. 

E7.2. Let P be the predicate: lu;_1 - u;I < e. Let u be determinf'd 
by the recurrence scheme: u; = (u;_1 + H/u;_1)/2, u0 = l·O. Then the 
term Up determines to an accuracy e a square root of the number fl. 

\Ve are now in a position to complete the description of formal 
expressions in Genie. 

Definition D4. A primary definition is an equation, conditional equation, 
or recurrence scheme. 

• A set is an object of irregular structure, which is used, inter alia, for the represcnt.1-
tion of formulae. Details of its use and properties are outside the scope of the pre.,ent 
paper. 

t For example: µ[y; ~(y)] with the meaning 'the least value ofy such that ,P(y) 
is true,y assuming the values 1, 2, ... .' 
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Definition D5. A dependent variable is the name occurring to the left of 
the equality sign in a primary definition, disregarding its subscript. An 
independent variable is one of the names occurring in the formula(e) to the 
right of equality signs, or in the subscript of a dependent variable (dis­
regarding dummy subscripts). 

Example ES. The examples E4, E5 and E6 all give primary definitions. 
The dependent variables in these are H, M, L and u respectively. The 
independent variables are the sets (k, t, g), (a, b), (x) and (x,y) 
respectively. 

In general, we shall represent a primary definition by an expression of 
the form: 

ex ~ ~({J) (3) 

where ex stands for the dependent variable, ({J) for the set of independent 
variables, and ~ for the definition schema which is being used. 

Definition D6. Consider the set of N primary definitions: 

ex(il ~ ~(i>([J(i>) i = 1, 2, ... , N (4) 

The set is said to be consistent if all the ix(•>, i = I, 2, ... , N are distinct 
(taking subsripts into account). The set is cyclic if the following condition 
holds: 

N-1 

A ( ex<'+l> E [J<'>) and ( rP> E p<N>) 
i=l 

Example E9. The following set of three equations is cyclic: 

x = ~ + t, t = 3m - 1, m = cos x 

(5) 

Definition D7. A definition in Grnie is a set of M primary definitions 
such that (i) it is consistent; (ii) no cyclic subset exists; (iii) a unique 
dependent variable exists which does not occur as an independent 
variable. 

Example ElO. The following set of four equations is a definition: 

x = 2y8 + 3y -- b, J' = a - b, a = 4·52, b = 2·91 

ln a definition, the unique dependent variable is the principal variable, 
(x in ElO); the primary definition containing the principal variable is the 
principal equation. By convention, the principal equation is always 
written down first in the definition; using this fact it is possible to relax 
condition (iii) to allow the principal variable to occur elsewhere in the 
definition as an independent variable, so that in a suitable context a 
definition may be regarded as 'redefining' its principal variable in terms 
of a previously assigned value. The remaining primary definitions are 
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termed auxiliary equations, and their dependent variables (y, a and b in El 0) 
are auxiliary uariables. Let y denote the union of the sets of independent 
variables occurring in a definition, excluding the names of auxiliary 
variables; then we shall write: 

ex ~ _!j}(y) (6) 

where ex is the name of the principal variable, to indicate its dependence 
on the values assigned to names in y. (In EIO, y is null.) For many 
purposes, a definition can be regarded as a generalized form of primary 
definition, and in fact it can be replaced by an equivalent primary 
definition if none of the auxiliary equations are recurrence schemes or 
function definitions (D8). Conversely, a primary definition can be 
regarded as a special case of definition, consisting of one element. The 
identity of form between (6) and (3) is therefore appropriate. 

In the set y in (6) ( or {3 in (3) ), values are assigned in the context 
in which a definition (or primary definition) is used. In the usual way, a 
subset 1r of r may be chosen to represent parameters of a definition: 

ex(1r) ~ §J(y) (7) 

In this case ex may be used as a/unction name in formulae, with appropriate 
specification of parameter values. 

Definition DB. A function name is the principal variable of a definition 
with which has been associated a set 1T of parameter names. A function 
is the operator mapping the set of objects designated by 1r into the single 
object which is the value of the function name. If, in (7), the sets 1r and y 
are identical, the function is said to be m library form, a term closely 
corresponding with conventional usage. . 

Example EI l. Let: 

f(a, b, c, x) = ax2 + bx + c 

Then/is a function name with four parameters. Let A be a vector which 
can be written A = (a, b, c). Then the functio,, F, where 

F(A, x) = A 1x2 + A2x + A3 

has two parameters, but assumes the same values as f l\Iorc generally, 
let B be a vector of length n; then consider the function P defined by: 

P(B, x) = u,., 11; = .w;_1 + Bi 
n 

Clearly, P(B, x) asmmes th~ values of the polynomial I B,.\11-i. Both 
i-1 

f and Fare library functions, but Pis not, since it depends on the value of 
n, not listed as a parameter. One way of remedying this is to make use of 
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the special function 'dim' which, applied to a vector, assumes the integer 
value of the dimension of the vector: 

P(B, x) = u,., u, = xu,_1 + B, n = dim B 

Strictly, Pis still defined relative to .the meaning of the name 'dim', but 
it is possible, as we shall see, to write a definition within a context in which 
a set of standard function names is 'understood' without explicit definition. 

Definition D9. A definition set (ds) is a set of which each element is either 
a definition or a definition set. If there are M elements, 8 1, 8 2 ••• , 8 M 

in the se,t it will be written* as [81 ; 8 2 ; ••• ; 8M]· A definition set may 
be named for future reference, thus: · 

S[ff'i; 8 2 ; ••• ; tf,v] 

denotes ·the definition set S. 

(8) 

All definitions in Genie occur within some definition set, although at 
the simplest level of coding the programmer may be unconscious of it. 
The significance of this is that a context is automatically provided in which 
a particular definition can be said to 'hold': each principal variable which 
appears in a definition set has constant meaning throughout that set and in all 
definition sets which it contains; it has no meaning outside the given ds. 

Example El2. Consider the expression: 

S['" = 3·14159; g = -32·2; V = 1000·0 
E[Q(t) = vt + gt2/2; v = Vsin ('"/6) 

. H = Q(2·5)]] 

This consists of a definition set S containing elements 1r, g, V and E, t the 
first three being defined as numbers, and the last as a definition set with 
elements Q, v and H. Here, Q, v and Hare defined within E but not 
within S; '"• g and V are defined within S and within E. It has been 
assumed that S occi. .. s within a 'higher order' definition set in which 'sin' 
is defined. 

Some non-trivial calculations can be carried out with the help of 
definition sets, but in the main recourse must be made to description of 
algorithms by sequential definitions which are obeyed one after another, 
according to some sequencing rule. These are described by the following 

.. two constructions: 

• In all written texts, the semicolon may be dispensed with by using a line convention, 
viz. each element is distinguished from the preceding one by placing it on a new line. 
In cases where a single definition extends over several lines, the text on the second and 
succeeding lines is indented by about 30 character positions. 

f It is convenient to identify elements by their principal variables or names. 
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Definition DIO. A command sequence (cs) is an ordered set of one or 
more definitions. If there are M terms <ff 1, <ff 2, • • ., <ff M in the sequence, 
it will be written* {@"i; C2; .•. ; <ff M}· For reference purposes, a cs may 
be named, thus: 

(9) 
defines the cs L. 

Definition Dl 1. A program is an explicit representation of a program 
scheme, using command sequences to describe the elementary operators, 
and appropriate syntactic constructions to replace left strokes, right 
strokes, and derived operators. 

Example El 3. The choice of representation of a program is very much 
a matter of taste, and a large class of apparently differing representations 
can be shown to be equivalent by simple transformations. The names of 
command sequences usually play a double role in such representations: 
they identify the elementary operators, and they serve as 'program points' 
controlling transfers of control. For this reason, each occurrence of a 
given command sequence is unique, and must be identified by a different 
name. Given a sequence of right strokes _J _J . . . _I A in a ps, an 

ii .. i-r 
obvious first step in obtaining a representation is to identify the index of 
each right stroke with the name A of the cs which follows these. Then each 
conditional operator can be replaced by an appropriate conditional or 
unconditional transfer, i.e. 

''Pi L' is represented by: 'go to # A if not 'P/, for j = I, 2, ... , T ,, 
'OL' is represented by: 'go to # A' 

The iterative operators formed by compounding left and right strokes 
arc represented by a 'for . . . repeat' or 'for ... repeat until 'P' 
constructions, 'P standing for a predicate which determines the end of the 
iteration. With the addition of a 'stop' operator, this completes the list of 
elementary control representations. The use of the special sign '#' has 
several important applications: it is employed in '# A' to denote the 
machine address of the quantity A rather than the value of A. It is then 
possible to define a vector such as ( # A, # B, # C) = K and select a 
branch of control by an index i as in 'go to K;'. Another multiple branch 
is made with the help of a conditional equation: 

go to # A if P, # B if Q, # C 

• As in definition sets, the semicolon can be dispensed with by using the line con­
vention. It is customary to place the name of the cs in the left-hand margin of the 
text, alongside the first definition. 
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The analysis of programs follows conventional lines. The set of all 
principal variables occurring in command sequences is the analogue of the 
principal variable of a definition; a subset of these, termed the output 
parameters, is named to denote a particular group of computed quantities 
of interest. Similarly, of all the independent variables occurring in a 
program,. a particular group of interest, named the input parameters, may 
be selected, and these play a role analogous to the parameters of a function 
definition. By selecting a single output parameter, and storing it in a 
fixed machine location, a program name may be used in the same way 
as a function name, to stand for its value in formulae. More generally, a 
program is conceived as an operator transforming a given set of input 
parameters, 1ri, to the values of a set of output parameters, 1r0• It may 
be used, with appropriately assigned parameters, in place of a cs in a 
program. 

Example El 4. The following is an example of a program. 

K(F, a, b, c, V, # H) . = SEQ 
S function F 

l=V(b-a); n=l; h=(b-a)/2; J=h(F(a)+F(b)) 
n 

A M = J + 4h !, F(a + (2i - l)h) ,-1 
go to # B if IM - II < c 
I= M; J = (M + J)/4; n = 2n; h = h/2 
go to #A 

B H= M/3 
END 

Here K is a program with input parameters F, a, b, c and V, and a single 
output parameter H. One of the parameters is a function (F) and is 
declared to be so. The complete representation of the program scheme 
is parenthesized by the words SEQ. and END. The symbol '. =' is the special 
equality sign associated with program schemes. It can easily be shown 
that this is a representation of a program scheme which can be written: 

K(F, a, b, c, V, H). =S_JApLUOI _ _JB 
2 1 2 1 

where p stands for the predicate 'not IM - II < c' and U for the un­
named cs on the fifth line of the program. The use of the summation 
operation '~' in the cs A should be noted: since it is encoded in a very 
direct fashion it would normally lead to inefficient coding, but in this 
particular case no more efficient algorithm can be deduced in the absen...:e 
of information about F. K is a library program in the sense defined above. 
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It could equally be put into the form of a function, since it has a single 
output parameter. 

The range of definition of names occurring in a program raises some 
complicated problems concerning the habits of programmers, and it has 
been settled in Genie by reference to the context in which a program 
appears. This is essentially a dynamic problem, discussed more fully in 
the next Section, but in general terms the assumption is made that all 
names occurring in a program are internal to it, i.e. they have no meaning 
outside the limits of the program unless they have occurred earlier in the 
context in which the program is defined. Accordingly, D9 is modified as 
follows: 

Definition D9.* A definition set (ds) is a set of which each clement is 
either a definition or a definition set or a program. 

In this way a set of programs can be written, sharing some common 
data (in a general sense, meaning any definable quantity, object or func­
tion or program) but otherwise being independent. Whether long 
parameter lists are used in communicating information between programs, 
or whether use is made of the 'common' region as defined by the context 
of a program is a matter which the programmer can decide. It should be 
noted that by naming the arithmetic and control registers as part of the 
context some optimization may be atten:ptcd by the coder, and com­
patibility with the symbolic assembly program is achieved. 

4. DYNAMIC PROPERTIES OF ALGORITHM DESCRIPTIONS 

At the highest organizational level, Genie is concerned with the 
interaction of LWO definition sets: one initially in the machine and one 
written by the coder. The result of the interaction is a new definition set 
in the machine and (possibly) some printed output information of interest 
to the coder. Logically, output control has a subordinate position in the 
system: it can be effected in a variety of ways of differing elaboration, 
subject to manual control or not, but the occurrence of an output com­
mand or subroutine has no effect on the process of evaluation, other than 
to delay it. On the other hand, the system can be regarded from one 
point of view .:mply as an input routine whose function is to read defini­
tions from papa tape, realize them internally in preassigned binary form, 
and keep a : ord of the nominal interdependence of named objects in 
each contcxL New information is read from the input t;'Lpc in 'units' of 
one definition, and each of these is analysed before proceecling to the 
next. The complete behaviour of the machine a5 an information processor 
is determined if its interaction with a definition in a given context, and its 
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interaction with the boundaries of programs and definition sets, is given, 
and we shall first summarize this behaviour. 

A definition set may be regarded as a 'tree' (Fig. 4), the 'branch 
points' of which (A, B, E, G, L) are named definition sets and programs, 
the 'terminal' points (C, D, F, H, K, W, X, Y and Z) corresponding to 
definitions or command sequences. Given any named quantity (say H) 
in a tree, it can refer by name to any quantity on the same branch, or 
connected to it by a downward or sideways movement on the tree; (H 
may refer to K, L,-F, G, B, C, D, E and A). The set of points so named is 
the context of the given quantity, in the sense defined in the last Section. 
(Clearly, the contexts of H, Kand Lare identical.) It is necessary for the 

r io l: 1s rr· 
Coder) 

Fm. 4. Definition sets. 

coder to describe the context in which his definition set ( N) is to be 
interpteted. This is done by a special expression which precedes the ds 
when it is introduced to the machine. Suppose it is required to interpret 
N in the same context as H; then the correct expression would be: 

Context A/B/G (10) 

This statement can be regarded as 'activating' a set of names in the 
machine ds, all other names being disregarded. The set thus activated 
constitutes the symbol table, St, which contains not only representations of 
symbolic names but also all pertinent information concerning the symbol. 
The following is a partial list of information retained in each entry of the 
St: 

(i) A symbolic name. 
(ii) Syntactic properties of the symbol, i.e. whether it is a parameter, 

fixed name (with a fixed location number), or name of general type. 
· (iii) The type of object for which the name stands: integer, program 

scheme, floating point number, truth-value, character, command sequence, 
etc. 

(iv) Whether the name represents a scalar, vector, matrix or set. 
(v) Whether the name stands for a function or not. 

(vi) Whether the name is defined in a command sequence or defini­
tion set. 
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(vii) If defined in a cs, the address assigned to the object is retained. 
If defined in a definition set, either its formal definition or its actual value 
is retained. 

In processing a definition set or program, St expands as new symbols 
are used: it is always assumed that a new symbol will be defined in the 
context in which it first appears; occasionally this leads to slightly 
artificial constructions when it is desired to place a name in a 'higher level' 
definition set than the one in which it first occurs. 

Example El 5. A common example of the need for giving meaning to 
a name outside the context in which it first appears is in writing a program 
to operate on some unspecified data, whose value will be given immedi..: 
ately prior to or during the execution of the program, where for some 
reason it is required not to place the name of the data on the input 
parameter list. In the absence of a detailed flow analysis, it is assumed in 
constructing a program that all newly named quantities have meaning 
inside the program only. Thus, suppose we redefine the program of E14 
as a function with parameters a, b and c, taking the values of V and F 
from the definition set in which K is defined. A correct way of writing 
this is: 

{Function F 
Number V 
K(a, b, c). = s_~_IApLUOL _JB} 

2 1 2 l 

-where all symbols have the same meaning as before, with the excep.tion 
of the cs B which causes the value of the function K to be stored in a fixed 
machine location instead of at H. At a later time, appropriate definitions 
of F and V may be given, and then K can be used in a formula in the 
usual way. An interesting application of trap transfers on data arises in 
situations of this sort, for we may use one of the tag conditions to indicate 
that a named object has not been given a value; if an attempt is made to 
use it in a calculation, automatic trapping will occur to a routine in which 
corrective action is taken. 

Figure 5 shows schematically the machine definition set after the 
interaction of the dss of Fig. 4, in the context (10). Were this all the 
action of the machine, nothing more than a binary representation of the 
formal definitions would have been achieved, but it is in fact accompanied 
by continuous application of the evaluation principle illustrated in Section 
2. We shall now indicate briefly what is meant by this. · 

The process of assigning a value to a name, which is the basis of all 
calculation, falls into two parts: firstly, determining in which domain 
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it takes its values; secondly, determining a representation of its value in 
that domain. One of the restrictions of the present codes is that there is 
a unique solution to each of these problems. One of the simplifications 
imposed is that the first problem is solved for each name by a process 
of type evaluation which is applied at the first occurrence of the name in a 
given context. Type can be determined in one of three ways: 

(i) By declaration. This simply asserts that a name stands for an 
object in a partic1.1:lar domain. A declaration, if used, must always precede 
the first occurrence of a name in a definition or program. 

(ii) By assumption. If the first occurrence of a name is in a formula, 
then in the absence of further information it is assumed to be of a type 
associated with that particular class of formulae. 

(iii) By implication. If the first occurrence is as a dependent variable, 
its type can be inferred from the nature of the formula constituting the 
right-hand side of the equation. 

FIG. 5. 

Example El6.l. 'rwo examples of declarations follow: 

Matrix P 
Function/ 

El6.2. Referring to the elementary expressions whose existence 
was assumed at the beginning of Section 3 : the value of a name in an 
algebraic formula is assumed to be a single precision floating point number; 
in a predicate it is assumed to be a truth value; in a program scheme it is 
assumed to be a command sequence, unless it immediately precedes a left 
stroke; in which case it is a truth-value. The value of a name occurring 
in· a subscript in any formula is assumed to be an integer. 

El6.3. Given an algebraic formula, it is possible to deduce the type 
of object it defines in a straightforward way from a knowledge of the type 
of each name in it and the properties of its unary and binary connectives. 
The latter are given in the so-called Type Reduction Table, an example of 
which, for the binary connective '+ ', is given in Fig. 6. Type deriva­
tions for other classes of formulae are similarly described. Note that 
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dimensionality is ignored in matrix and vector operations ( any inconsis­
tencies are detected during 'execution'), and also that in place of the 
'invalid' combinations (A) it is a simple matter to substitute a program 
which gives diagnostic information. 

The second stage of value assignment is analogous to type evaluation, 
although possibly more complex in application. Consider the following 
expression, which represents a definition of an object ct by a schema !», 
dependent on the values of a set of objects whose names are represented 
by,,: 

ct All !»(,,) (11) 

We shall say that ( 11) constitutes a formal definition of ct. By the methods 
of El 6 the type of each member of ,, can be determined. In order to 

Type of b 

Integer Number Vector Matrix 

)lteger Integer ~mber .A. ..A 
Type ti a Number ~mber Number A A 

*tar .A. A- Vector ..J\._ 

Matrix· .A A .A.. Matrix 

F10. 6. Type reduction table for the connective '+' in the 
algebraic formula 'a+ b'. 

determine the value of ct it. is necessary that values be assigned to each 
member of,,, that algorithms be given for reducing !» to a sequence of 
steps each involving only formula evaluation, and that the properties of 
each unary and binary connective in a formula be given. The algorithms 
operate in an obvious manner, arranging the equations of a definition in 
the correct order for evaluation, and encoding conditional equations and 
recurrence schemes. The evaluation of a formula is controlled by a 
Value Reduction Table which gives, for each unary and binary connective, 
and each possible operand or operands, a Rule by which the result of 
application of the operation can be determined. Frequently, this Rule 
will be given in the form of a function defined by other languages, but 

• ultimately, by oontinued application of the evaluation process, it will be 
expressed in the form of code executable by the machine. 

Example El 7. Consider a restricted class of algebraic formulae con­
sisting simply of names and the two binary operations '+' and 'x '. It 
is easy to derive, for any. formula, and using conventional rules of pre­
cedence, an expression involving simply two functions P(a, b) and 
M(a, b) which, applied to any two objects of a suitable type, determine 
the values of the expressions 'a + b' and 'a X b' respectively. These are 



.. 

22 J. K. Iliffe 

the value reduction tables. Thus, the formula a + b x c x d + e 
reduces to P(a, P(M(b, M(c,d)), e)), i.e. the formula is reduced to a 
prefix notation. We shall evaluate the formula in a domain f!J whose 
elements are sequences of single address machine instructions expressed 
in symbolic form, and a domain .9Jf whose elements are machine addresses. 
In 91, instructions are written (OPN, addr) where OPN is one of the four 
mnemonics CLA, ADD, MPY . and STO, and addr is an address. A code 

. sequence is written as, e.g. {(cLA, a); (ADD, c); (ADD, d)}. Let t1, t2, ••• 
denote an 'inexhaustible' sequence of working stores. We shall construct 
clements of f!J which use working stores in sequence during a calculation, 
always 'vacating' them at the end of the code. The address T will be 
used for the 'next available t/ · in the instruction (sTo, 7'), and for the 
'last used t/ in (ADD, T) or (MPY, T). The predicates Code (X) and 
Name (X) are respectively true if Xis in f!J, d. To each name ex in a 
formula corresponds a unique a.', its value in d. Let µ, 11 be elements 
either of .9Jf or f!J. Then P is defined by: 

P(p, 11) = {µ; (sTo, T); 11; (ADD, T)} if Code (µ) and Code M, 
{µ; (ADD, 11)} if Code (µ), 
{(11; (ADD, µ)} if Code M, 
{(OLA,µ); (ADD, 11)} 

M(µ, 11) is similar, with ADD replaced by MPY. Then we have, after 
replacing each name in the formula by its value ind: 

P(a', P(M(b', M(c', d')), e')) 
= P(a', P(M(b', {(cLA, c'); (MPY, d')}), e')) 
= P(a', P{{(cLA, c'); (MPY, d'); (MPY, b')},e')) 
= P(a', {(CLA, c'); (MPY, d'); (MPY, b'); (ADD, e')}) 

. = {(OLA, c'); (MPY, d'); (MPY, b'); (ADD, e'); (ADD, a')} 

The result is a code for evaluating the formula a + b X c X d + e. 
The preceding example illustrates the method which is applied in all 

code constructing and evaluating procedures in Genie. Formalizing code 
, construction as an evaluation process makes the contemplation of processes 

in which code construction and numerical evaluation are intermingled a 
relatively simple thing, and this is the usual mode of operation. In the 
above example, if a, b, c and d were numerically defined quantities, the 
construction of code would be followed immediately by its execution. 
The same principle can be formulated in another way which more 
accurately describes the realization of command sequences: if an operation 
can be performed, perform it; otherwise construct code which will perform it at a 
later date. A. succession of 'scans' of a piece of code can be envisaged, 
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ultimately reducing it to a single order, but at the present time only two 
are attempted: one during code construction and the second one when it 
is known that all independent variables have been defined. 

Example El 8. The realization of the expression in EI 2 is equivalent to 
the following definition set: 

S[1r = 3·14159; g = -32·2; V = 1000·0 
E[Q(t) = vt + gt2/2; v = 500·0; H = 1149·375]] 

The obvious example of numerically defined quantities has a parallel 
in the case of"programs, which resolves into the problem of whether to 
include a particular function in another program in the form of an open 
or closed subroutine. The problem is one of optimization and a serious 
attempt at solving it can only be made when all the information about a 
given program or programs is known. This is not generally the case, but 
in the special class of very short programs, a simpler criterion can be used: 
whether or not the program itself is shorter than the sequence of in­
structions necessary to set up its parameters, save index registers, and 
so on. If this is the case, it is included as an open subroutine.* 

5. SOME ASPECTS OF THE EVALUATION PROCESS 

In most respects, the evaluation programs associated with code 
construction act in a way which is a direct solution to the problem on 
hand, without recourse to detailed optimizing procedures. This is a 
temporary phase in constructing an automatic coding system of this type, 
resulting from the intention of using symbolic techniques to examine a 
variety of optimizing procedures and the practical necessity of getting the 
system, which is experimental in some ways, to work with minimum 
delay. In other respects, some of the traditional problems of coding have 
been avoided by the formalism of Genie, or may be avoided by asking a 
small degree of cooperation from the programmer. We shall first discuss 
these, and then describe the methods of array representation which are 
used. 

Optimizing processes 

(i) Recognition of equivalent sub-expressions. This matter is delegated 
without hesitation to the coder, who is better equipped for it than the 
machine. The use of a definition in place of a single equation is sufficient 
to collect equivalent terms together, and often has the distinct advantage 
of shortening the amount of code to be written. 

• Or macro-order, to use the current term. 
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Example El 9. By recognizing equivalent sub-expressions m the 
following equation: 

y = exp (a+ h) - 3(a -- c + h) + 2x(a + h) 2 

the equivalent definition may be formed: 

y = exp (t) - 3(t - c) + 2xt2, t = a + h 

(ii) Optimal use of fast access registers. As mentioned in Section 1, 
this problem _can be formulated in precise terms, and it is probable that 
given any complete set of codes, a solution could be found in a reaJistic 
amount of time. One of the difficulties of continuous evaluation is that, 
without being specially told, it is impossible for the machine to decide 
when a set of codes (a definition set, for example) is complete, and the 
addition of a further program may invalidate the optimization. For the 
time being, therefore, the matter is again left to the coder, who may use 
the names of fast registers to stand for numbers in any formula. The result 
of using a fast register name for 't' in El 9, for example, is to save four 
orders and about 100 µsec of calculation time. 

(iii) Optimal use of index registers. A serious problem in code construc­
tion is that whereas a B-register may be used to contain the value of a 
named index controlling an iterative loop, it is possible that a transfer of 
control outside the loop may leave the index undefined in memory. 
Unless a flow analysis is made as in Fortran, one is left with the pre­
cautionary alternative of keeping the index 'updated' in memory as well 
as in the B-register. In the present formalism there are three important 
occasions in which an iteration is performed without the possibility of a 
transfer taking place: the use of the '!:' operator in formulae; the use of 
recurrence schemes; and the use of a postfix 'for . . .' construction 
which is permitted to follow a single definition with subscripted principal 
variable, e.g: 

Yt = A, - xh0 for i = I, 2, ... , n 

These three instances form a significant proportion of the commonly con­
structed iterative loops, and in em;:oding them more efficient methods can 
be used than the single 'for . . . ; . . . ; repeat' construction. (It can easily 
be seen that they correspond to the cases where a dummy index is in use.) 

(iv) Optimization of working storage. Given any definition or program 
the named auxiliary variables are distinguished from the 'unnamed' 
quantities developed in the course of formula evaluation, and they receive 
different address allocations. The space required for auxiliary quantities is 
taken immediately prior to program execution from a 'free storage region' 
controlled by an independent routine, and returned after the end of the 
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program. Thus if a program is not in use it does not take up memory 
space for its data. The cells required for temporary storage during 
formula evaluation are similarly placed external to all programs, and are 
shared as successive programs are evaluated. This treatment fulfils, 
incidentally, the requirements to be met on the few occasions when it is 
useful to execute programs recursively. 

The actual minimization of the number of cells used is considered to 
be unimportant in this system, unless a number of large arrays are being 
handled, since the total effect over a number of formulae and programs is 
not cumulative~ 

_1113 .SltS I 
Principal codeword 

. Auxilicl'y 
codewords 

t+I M1 1 u+I _M2 1 vtl M. 

Mz,z M3,z 

Mz 3 M3 3 

MZ,4. M3,4 

ut5 112, 5 v+S M3, 5 

Row I Alw2 Row3 

FIG: 7. Codewords for a 3 x 5 matrix. 

The control of arrays ·' · -·· 

It is undesirable that the construction of code for handling a~~ys 
should depend on their size. This is avoided in Genie, as in other systems 
(Ref. 2), by the device of constructing one or more additional words to 
control selection of elements in the array. These so-called codewords are 
automatically generated when an array is defined. ;For a vector oflength 
n, which is stored in n consecutive memory cells, a . single codeword is 
required. For a matrix of m rows and n columns, (m + I) codewords ar~ 
required, the first referring to a vector of m codewords, each· of these 
referring to a vector of n elements which is a row of the · matrix. The 
vector codeword, or the first matrix codeword, is termed. the principal 
codeword of the array; its address plays a part in "code construction 
analogous to that of the address of a simple numerical object. · 

Example E20. The main property of the codeword representation is 
illustrated with the help of Fig . .7, in which. the codewords for a 3 x 5 
matrix Mare drawn. In order to address any particular element M,.,:it 
is necessary to place i in B-register BI, andj in B-register B2. Then· if 
N is the location number of the principal codeword, M,., is obtained 
from the address * N, the asterisk denoting indirect addressing. 

The codeword representation has several important c~risequenc~s ::. ·: ·. 

\ •. _ (i) All 'address cakulation' at the time of executio_~ _i.s ~~oided:. ~t 
, lS done.once for all when.the codewords are generated .. · , ........ ·:: ...... : .. 

1 
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(ii) The space reserved for any array is precisely that which it 
occupies at a given time, and not a 'maximum size' specified by a dimen­
sion statement. 

{iii) Elements of a vector may be moved to any part of storage, 
provided the codeword address is changed. As a particular case, pro­
grams in binary relativized form are instances of such vectors. 

{iv} It is not required that matrices be stored in single blocks, only 
that their rows be in vector form. 

(v) It permits certain 'virtual' operations, e.g. row interchange and 
transposition, without altering the position of any element in storage. 

(vi) It does not require that the matrix rows be of equal length, and 
it can be adapted to the realization of symmetric and triangular matrices. , 

(vii) Only the address portion (24 bits) of each codeword is used in 
the indirect addressing sequence, and the remaining 30 bits and two tags 

· can be used for storing other information, notably: (a) the size of the 
vector which is being referred to, and (b) the type of object it represents, 
such as Euclidean vector, polynomial, multilength number, etc. 

Example E2l. The special function 'dim' may be used in two ways 
with a vector argument: 

· n = dim V, asserts that n assumes the integer value of the number 
of elements in the (previously defined) vector V. 

dim V = 11, asserts that V is a vector of n elements, and as a result 
appropriate space reservation is made. 

The main drawbacks to the codeword representation are the space 
occupied by the codewords, which is usually small, and the additional 
time taken by indirect addressing sequences. The latter can be reduced 
by placing codewords in the fast registers, and this is done in the manually 
constructed programs for basic operations on vectors and matrices; the 
problem of automatically doing this aw~~s_tigation. 

Implicit arrays 
In any definition the principal variable may be simply subscripted, 

and the definition schema made to depend on the value of the subscript. 
Thus: 

f,(x) = x if Even (i), -x 

defines a vector function, f, of unspecified size : 

a,.,= A,., if i <j, -A,., 
defines a matrix a in terms of a second matrix A. At present, such array 
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definitions are confined to those occurring in definition sets,* and they are 
logically equivalent to functions. However, this is a powerful syntactic 
device, closely resembling mathematical notation, and it seems convenient 
for that reason to retain the distinct form. In code construction, no 
distinction is drawn between implicitly and explicitly defined arrays. In 
program execution, the indirect addressing sequence is interrupted by a 
tag trap on the principal codeword of an implicit array, which sends 
control to the appropriate routine for calculating the value of the element. 
Thus algorithms operating on explicit arrays may be applied without/ 
change to implicit .arrays. 

6. CONCLUSION 

It is difficult to compare one system of automatic coding with another: 
in most instances they differ sufficiently in purpose and economic circum­
stance to invalidate any possible criteria of comparison. At the same time, 
the power of symbol manipulative languages (instances of which appear 
in the present system) supports the view that most apparent differences 
of form in an algebraic language can almost trivially be rectified and those 
that remain are accounted for by the tastes of the code designer. 

Differences of evaluation technique are not of first importance to the 
user of a system. t Indirectly, however, they will affect him to the extent 
that he requires :flexibility and speed in problem solution. In this respect, 
the use of a hierarchy of definition sets in Genie is its key feature, leading 
to the application of the continuous evaluation principle, to the definition 
of context, and the formalization of automatic operating, debugging and 
symbolic correction schemes. 

One of the main objectives in writing Genie is to permit the description 
of both numerical and analytical processes in the same formal system. It 
will be recalled that from a formal definition ( 11) the principal variable 
can only be evaluated if value assignments have been made to each 
independent variable. If, by some syntactic device, an evaluation is 
called for by the coder, the occurrence of a name with unassigned value 
will result in a failure of the evaluation process at that point (by a 'trap 
transfer'). This is not necessary, however, if provision is made for the 

• The implication of our remarks is that for all values of the subscripts, the subscripted 
definition holds true; were this the case for definitions appearing in command sequences, 
an ambiguity of meaning would result, since the more natural meaning is that for the 
subscript values currently defined, the array element has a particular value. Thus implicit 
arrays may be used, but not defined, in programs. 

t Although, on a machine of 12 digit accuracy, it becomes irksome to have to 
replace constants such as '3·9 sin {1r - 2·5)' by their numerical values, and it is con­
venient to have them evaluated automatically during code construction. 
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fonnal manipulation of names within formulae, and there is no theoretical 
limit to the complexity of such processes which can be accommodated. 
A more difficult problem is that of placing formal manipulations within 
an unambiguous context, and our present investigations, although incom­
plete,_ indicate that again definition sets may be more suitable tools than 
programs. 
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