
•

.
l
~

..
~

Annual Review
• In

Automatic Programming
2

Edited by

RICHARD GOODMAN
Automatic Programming Information Centre,

Brighton College of Technology

The Use ·of the Genie
System in Numerical·
Calculation

· J. K. ILIFFE
TM Riu Uni111Tsi(y Computer Project, Houston, Texas

SYMPOSIUM PUBLICATIONS DIVISION

PERGAMON PRESS
NEW YORK· OXFORD· LONDON. PARIS

1961

The Use of the Genie
System in Numerical
Calculation

J. K. ILIFFE
The Rice Universiry Computer Project, Houston, Texas

1. GENERAL INTRODUCTION

THE set of codes designed for interpreting formal expressions on the Rice
University computer is termed the 'Genie system', or simply 'Genie'.
Although most of the concepts employed therein may be applied on any
machine of the type used for a decade, it is probably true that intensive
exploitation of a given set of orders and logical properties influences the
code designer to a greater extent than he is aware, and it is appropriate
to make some initial remarks on the properties of the Rice computer, and
the circumstances in which the Genie system is used.

Design specifications were made in 1958 at a time when no machine
was available with a word length suitable for extended numerical
calculations; the choice of an instruction 'code for the machine using a
56-bit word ,has led to some features which, if not novel, at least do not
appear to exist in such a combination on another computer.

The machine is binary, and has main memory of 32,767 'words,
principally in electrostatic storage which is parallel in operation. Access
to the memory is shared by four magnetic tape units, a fast line printer
and the central processing unit. Primary input is by punched paper tape
prepared on an 88-character Flexowriter with 1/2-line super- and sub­
script shifts. The principal features which are relevant to the present
discussion may be summarized as follows:

I. A location number is 15 bits in length. It represents, in one's comple­
ment notation, a numeral in the range (-16,383, + 16,383).

I

'

...

2 J. K. Iliffe

2. The machine contains 8 conventional B-registers each oflength 15
bits, one of which is the 'control counter' used in sequencing programs.
Thus simple r9utines may be written in absolute code in completely
relocatable form.

3. An address consists of 24 bits, divided into groups Ai, As and A3 of
1, 8 and 15 bits respectively. A location number is formed from an address
in the following manner:

(a) The contents of up to 8 B-registers, selected by As, are added
to the number represented by A3•

(b) If A1 is zero, the 15-bit number resulting from (a) is the
required location number. If A1 is one, the result of (a) is used to
select a word in memory from which a 24-bit address is taken, and
the process (a) is repeated; and (b) reapplied.

Thus indirect addressing to any depth with B-modification is permissible·
(Fig. 1).

8 15

A A

Lficotio~ocotion number

FIG. I. An address.

4. An instruction is. a 54-bit number containing up to three operands
and two orders. An operand is specified either by an address or a truncated
location number of 4 bits, which selects one of 16 special fast access
(1 µsec) registers. Two of the pperands may undergo sign modifications
selected by the instruction. The location number determined by the
address may itself be used as an operand, by using an immediate addressing
option. An order is either a 15-bit order code or a part of an auxiliary
operation which involves certain of the fast registers. In the order code
are about 1000 non-trivial orders with perhaps 200 of these in regular use.
'The auxiliary operations are 64 in·number, and include such frequently
used orders as B-register incrementing and decrementing (thus including
~limp' orders) and transfers between fast access registers. It is our experi­
ence that the present organization combines many advantages of single­
and three-address machines, achieving more compact programs than would
be expected, even on the basis of the longer word length (Fig. 2).

The Use of the Genie System in Numerical Calculation 3

5. Associated with each word in memory are two tag bits or labels
which do not take part in its function as a number or instruction. They
are detected separately in the arithmetic and control sections of the
machine, and may be interrogated and set to O or 1 by conventional
orders. Alternatively, they may be interrogated automatically when
the machine is in the 'trapping mode' described in the next paragraph.

6. Under normal sequencing conditions, instructions are taken from
consecutively numbered memory cells _to the control unit for execution,
unless a conventional 'transfer of CQntrol' takes place as a result of an
order. In executing an instruction, two operands are brought to special
registers in the arithmetic unit, the designated order is then obeyed, and

6 15

First Order
operand code
with sign

. inflellions
•.-.1...1,-1 .. .1.

6

Auxiliary
operation

24

\

Second operand
(o, address) -.

Immediate address bit
Sign infleJCions on second
operond:+,-.1 .•. 1,-1 •.. 1.

Fm. 2. An instruction.

finally the auxiliary operation is performed. When the machine is in the
trapping mode, normal sequencing may be interrupted if certain conditions
arise in the control or arithmetic units. The point at which interruption
or 'trapping' occurs depends upon the intentions of the coder, but
there seem to be three natural points at which the option should be
provided:

(a) Immediately an instruction enters the control unit. This is useful
if any part of the instruction requires an interpretation not providec:P in
the machine hardware.

(b) Immediately an operand enters the arithmetic unit. This is
useful again if the operand is of some 'non-normal' type, requiring
interpretation.

(c) Immediately after an order has been executed, m case some
particular condition, such as an overflow, has arisen.

All three possibilities are provided on the Rice machine. Cases (a)
and (b) are normally controlled by tagged instructions and data. Apart
from the obvious ability to employ these features in selective interpretive
and tracing routines, they are of importance in the control of the Genie
codes. In the latter respect a simulated interruption system would begin
to lose practical value.

4 J. K. Iliffe

Some remarks on experiences in hand coding the machine are appro­
priate at this point, since they illustrate both the direction and purpose
of our efforts in automatic coding. The instructions admit of a compact
and meaningful symbolic representation which is used by almost all
coders. Using the symbolic assembly program, correct codes can be
written reasonably concisely and quickly if no more than a casual regard
for optimization is taken. By 'optimization' we mean reaching an accept­
able compromise between time and space requirements in a given code,
such that a reduction in one cannot be reached without an unacceptable
increase in the other. It involves principally the choice of the index
registers and fast registers which will be used, taking into account the
ability to use truncated operands and orders, and the requirements of
subordinated or concatenated pieces of coding in these respects. The
detailed optimization of code is an interesting and normally rewarding
problem. At the same time, it frequently amounts to a combinatorial
problem of such magnitude, even for short codes of 20 or 30 instructions,
that the coder is willing to accept a solution he believes to be near-optimal
rather than devote time to investigating all possibilities. The point to
make here is that we consider all coding, hand or automatic, to take part
in four ~tages:

(a) A description of an algorithm.
(b) An initial equivalence transformation of the algorithm dictated

by the properties of the machine and the translation process.
(e) A translation from the algorithm description to a sequential

machine code.
(ti) A final equivalence transformation of the machine code based upon

cet1ain optimizing criteria.

In practice, it is rare to consider these stages separately, but since it
is our purpose to assign the last three to a machine, and since each
involves an amount of experimentation, it is advantageous to separate
them. The present paper is concerned with stages (a) and (e), as far as

· they affect the user of Genie codes. In fact, some of the descriptive forms
permi_tted in Genie are precisely those convenient for describing experi­
ments on stages (b) and (d), which are the subject of continued investi­
gation. Whilst refined optimizing processes are of considerable technical
interest, and probably of future importance, it remains to be seen whether,
even.on a machine as versatile as the one we are concerned with, they will
gain favour over crude but fast methods. However, it does seem possible
that a good solution to the combinatorial problem can be attained at
stage (d).

The Use of the Genie System in Numerical Calculation 5

In the writer's view, the task of designing an automatic coding
'language' for a particular class of problems is for the user of the language,
and not the designer of automatic coding systems. In the sense that he,
too, has a class of problems that can be described formally, he is a user
with prejudices of his own, but in the main he cannot anticipate the tastes
of those using other formal languages beyond attempting to provide for
as wide a choice of form as possible. Only in this way does it seem possible
that an acceptable 'universal' language will develop in any particular
branch of mathematics. Although the system may be anchored at one or
two comers in safe theoretical grounds, it is supported in the main by its
use and abuse: in the present case, the users are chemists, physicists and
mathematicians, with a small number of large problems of an experi­
mental numerical nature. If it appears that Genie is designed for coders
with some fluency in the symbolic representation of algorithms, then the
circumstances of its use may provide an explanation.

2. PARTICULAR ASPECTS OF GENIE ORGANIZATION

Genie is concerned in general with the definition of objects belonging
to certain computable domains, and the execution of particular operations
between or upon these objects. Both the objects and the operations are
under the control of the coder, but if he can find an acceptable machine
realization for them both, then he can call upon the mechanism of Genie
to assist in a calculation. Applications of Genie have been made to
domains of objects which include 'numbers', 'integers', 'names', 'symbols',
'equations', 'formulae', 'truth-values' and 'instructions';* generally,
operations on such objects fall into closed groups so that we can talk of
a 'language' in which operations between objects in a certain domain,
say 'integers' or 'truth-values', take place. It is practical to give a descrip­
tion of such 'languages' in parametric terms, and although in the present
paper particular reference is made to the conventional language forms of
algebra, it should be understood that most of the constructions illustrated
are operand independent in the sense that a given formal representation
may be variously interpreted in a number of domains.

Formal calculation proceeds by naming objects of interest, and assigning
values to such objects either by means of equations (which use names and
operations), or, in the case of linguistic objects, by exhibiting specific
examples of the objects. The fact that early applications of Genie have
been made to linguistic objects should not obscure the more general
conception of the system.

• Each defined in some specialized sense corresponding closely to general usage.

6 J. K. Rijfe

Two features are characteristic of most coding systems in active use
at the present time and may be selected as ones which have been modified
in Genie. They are as follows:

(.A) The pattern of sequential coding imposed by machine conventions
in the past decade still dominates algebraic coding languages. The
'instruction' has become a 'statement', but the only advance towards non­
sequential description has been to permit the use of formulae and sub­
stitution-type equations.

(B) The 'translation' process is conceived in terms separate from the
·'execution' of a program.

In their primitive forms, the deficiencies of both these features have
long been recognized, and a number of attempts have been made to use
the sequencing implicit in recursive definitions in order to derive more
compact descriptions of algorithms. Any text on recursive functions
supplies schemata which may form the basis of such descriptions, but an
immediate attempt to allow descriptions of a general type falls into
difficulties ofanother sort. Firstly, our machines are finite in both capacity
and speed, and the type of program resulting from general recursive
definitjons may overstrain both these quantities. Secondly, from the
point of view of practical description of algorithms, recursive definition is
only useful up to a point where rapid visual comprehension is possible:
beyond that, it is self-defeating, and a survey of any text on numerical
procedures would bear this point out. Most expressions belong to a
relatively small class of primitive recursive functions, and complicated
algorithms are described by reverting to a sequential presentation of these
expressions, although the proportion of these which consist of simple
substitutional equalities is probably quite small.

One of the objectives of Genie, therefore, is to extend the basic
forms of definition which can readily be understood, and simply and
efficiently encoded. The precise form of these extensions is not of vital
importance, but some examples of those in current use are given in the
next Section.

An· improvement on the second feature (B) is less easy to achieve,
although its necessity can be demonstrated by various expedients currently
in use to circumvent it. These include 'load-and-go' techniques, the
'subroutine library', 'subroutine package', the 'executive system' and
various 'monitoring' systems. To recognize the similarities of all com­
puting processes involves a unification of these ideas, and the removal of
one of the main obstacles to efficient automatic coding, in its widest sense.
In Genie the separation of processes of various types has been removed by

Tke Use of the Genie System in Numerical Calculation 7

generalizing the concept of evaluation to include objects with values in any
domain of interest, and by precise control of names to make evaluation an
automatic process in cases where no ambiguity can arise. At its simplest
level, this generalization can be illustrated by a numerical example.
Suppose a and b have values 2·6 and -1 ·8 respectively. Then if a formula
'a + b' is encountered in the course of constructing code, it will auto­
matically be replaced by the simpler formula '0·8'. Similarly, if TT is a
given constant number, and sin a given constant function, the formula
'sin (TT/6)' would automatically be replaced by the simpler formula '0·5'.
Other consequences are:

(i) That a program is executed automatically if it has been
defined and all parameters have been given values.

(ii) That an executive system of some power is included in the
formalism of Genie; machine operation is a continuous process from
program to program.

(iii) That storage control for vectors and matrices is continually
exercised, space for arrays of variable size being taken only for the
period of time in which they are used.

One of the most difficult problems of automatic coding, yet one to
which a sophisticated solution is required when continuous evaluation
techniques are used, is that of the identity of names in different parts of
a description. A coder frequently divides his problem into segments, each
logically independent, but referring to the same operands: in each
segment of code, references to 'common' operands must be distinguished
from purely internal names. He may use constant numbers and routines
of his own definition, he may use routines from a 'library'; he may also
use one or more of the languages of Genie; and finally his code may
involve analytical manipulations which retain symbolic names. All these
requirements put constraints on the way names can be handled internally.
A solution is proposed in Genie, which is summarized in Section 4, which
links symbol control to a hierarchy of definitions given to the machine.
This is probably by no means a final solution, but it is feasible, and
corresponds in an approximate way with conventional usage where the
latter has any describable meaning.

3. STATIC PROPERTIES OF ALGORITHM DESCRIPTIONS

We shall now define, and illustrate by means of examples, the extensions
which have been made in methods of making value assignments in Genie.

8 J. K. Riffe

The examples will make use of three fundamental forms of expression
which will be used with little further explanation:

(i) Algebraic formulae

Numbers and operation signs appear with their usual significance.
Names stand for numbers, or sets of numbers, or for functions which
assume numerical values.

Example El. The five expressions which follow in quotation marks are
algebraic formulae:

'-a+ lb - ktl', 'A,,,+m + 3 sin 2B/, 'K , ,, .. ,
Ill

'I A, sin Bi', '(a, b, c) - 2·535G'. ,-11
(ii) Predicates

Relations and Boolean connectives appear with their usual significance.
Names stand for propositions which assume the values 'true' or 'false'.

Example E2. The four expressions which follow in quotation marks
are predicates:

'a< b2 and b =I= m - l', 'x < 0 or x > l',
'(x < 0 andy < 0) or x > O', '-a< x < a'.

Note that in the absence of parentheses the operation and takes precedence
over or, so that in the third example the parentheses may equally be omitted.

(iii) Program Schemes

These are defined basically in the same sense as those of Yu I. Yanov
(Ref. 1).* Names stand either for elementary operators or for predicates.

• Editorial Note:
If A'1, Aio, . . ., A,, are operators and p is a predicate, the line

A.,p L A,1 • • • _J A;1 • • •

m · 111

is read as follows:
Execute Aii; test p; if true (P = 1), execute A;1 , etc.

if false (p = 0), execute A;,, the operator to the immediate
right of the right stroke _J corresponding to

m
the left stroke L immediately following p.

m
Yanov uses Oto denote the identically false predicate.

Ill

An alternative notation, adopted by Lyapunov, uses t and l in place ofl_ and~
Ill Ill Ill

respectively and w for the identically false predicate.
See Yu I. Yanov, 'Logical Schemes for Algorithms' (Problems of Cybernetics I, pp.

82 el seq.)-R.G.

The Use of the Genie System in Numerical Calculation 9

Two primitive operators are used, the 'right stroke' _J and 'left stroke'
. i

I_: other special signs may be defined in terms of these. The 'conditional
i

operator' consists of a predicate name followed by a left stroke.

Example E3. The following three expressions in quotation marks are
program schemes:

'_jA0tl_BOI _ _j', '0tLPI_A_J _j', 'I _J 0t I_ADO I _ _j'
2 1 2 1 1 2 1 2 2 1 2 1

(The reader may v~rify that these program schemes are identical with
those given in the 'block diagram' form of Fig. 3.)

_JAoLeoL_J
2 I 2 I

ol/Lu_J
I 2 I 2

1 loL_Aoo L--1
2 I 2 I

Fm. 3. Block diagrams and program schemes.

Effective ca kulation proceeds by assigning values in a particular
domain to named objects. The elementary means of doing this is provided
by an equation.

Definition DI. An equation is an expression of the form:

(I)

where 0t stands for a (possibly subscripted) name, and lJ stands for a
formula.* The sign • ~· is one of general equality, and in any particular
instance of an equation it is replaced by a particular equality sign which
indicates the type (i.e. domain) of object being defined.

Example E-L The expression on the next line is an equation;

H = 4kt2 + gt/2

In this, the sign'=' is the particular equality sign associated with algebraic
formulae, of which an instance appears to the right. It is inferred fr,m:
the equation that II has, in some context, the numcriol value as,ig-nul t,
the formula on the right-hand side. The word:l in italics an: im1 ,1 t,wt

* For concrete e,amples, the word~ 'algebraic formula' (as illustrated abov~) should
be understood here.

2

10 J. K. Iliffe

and will be given a more precise meaning later (see D9). Another example
of an equation is on the next line:

M if a < 0 or b > 10

In this case, 'if' is a particular equality sign associated with the predicate
on the right-hand side. It is inferred that M assumes the truth value
of the predicate in a certain context.

Definition D2. A COJ?.ditional equation is an expression of the form:

(2)

where ex is a (possibly subscripted) name, and ~" i = 0, 1,. ., n stands
for a formula, 'Pi, i = 1, 2, ... , n stands for a predicate, n being a fixed
integer in any particular instance of a conditional equation. The con­
struction '. . .' is used here as an extra-linguistic device in a sequence,
implying the presence of all terms up to the nth.

Example E5. The next line contains a conditional equation:

L = l ·O if x < 0, l ·O - x if O < x < I ·O, 0

The interpretation of a conditional equation is that it is scanned from left
to right until a true predicate is found. If this is ~ j, then cx is assigned the
value of~;· If no true predicate is found, the cx is given the value of ~o·

ti

In case V ~, is true, ~o may be omitted; it may also be omitted in case
i=l

ex has previously
ti

V 'l, i is false.
i-1

been evaluated, and the value is to be unchanged if

Definition D3. A preceding values recurrence scheme of order r consists of a
set of not more than r + 1 equations (or conditional equations) which
define values of a simply .iubscripted name which we shall denote by r:t.;.

One of the equations is a recurrence relation defining r:t.; in terms of r:t.;_1,

ex,_2, ••• , oc,-r; the remaining equations define the initial values cx0 ,

exi, ... , oc,_1• If a particular initial value is not define(i.t is assumed to
be zero. By the term 'simple subscript' is meant a single name, standing
for an integer.

Example E6. The following 1s an exa,11ple of a preceding values
recurrence scheme of order 2 :

U; = XU;-1 + u,-2, U1 =--= 2 - 4xy

It should be noted that the quantity which is defined in a recurrence
s.cheme is the general term 'cxi' for an integer value of I. Each use of the

The Use of the Genie System in Numerical Calculation 11

general term causes an iteration to be made on the recurrence relation
until the required term is found. The index 'i' is a dummy variable and
may be replaced throughout by any other name provided it does not
occur in the recurrence scheme.

The use of subscripts

It is appropriate to point out some properties of subscripts as they
are used in Genie. In general, a name may stand for a single object, or
a one or two dimensional array of objects from a particular domain.
Depending on the organization of the array it may be treated as a set,*
a vector, or a matrix. A subscript is any algebraic formula which assumes
positive (non-zero) integer values. No name may have more than two
subscripts but they may, where appropriate, contain subscripted names.
Under certain circumstances an element of an array may itself be an
array.

There are, however, two circumstances in which it seems profitable
to employ a restricted subscript form. The first of these has already been
described in the recurrence scheme. The second is connected with the
minimalization operator used in the theory of recursive functions, t and
has particularly strong applications in conjunction with the recurrence
scheme. In it, if cx is the name of a one dimensional array, we shall permit
the form 'cx1.p' where $ stands for a predicate, with the meaning 'the first
ex in the sequence cxi, !X2, • • ., ex;, .. .' such that 'P is true. Normally, 'P
will involve elements of ex, but we permit only those indexed by the dummy
subscript 'i' and by constant differences 'i - l ', 'i - 2', . . ., 'i - r':
then i is identified with the index used in generating successive terms of
the array.

Example E7.I. Let A be a vector. Then A..t,<O is the first negative
element of A, and A A,;,co is the first non-zero element.

E7.2. Let P be the predicate: lu;_1 - u;I < e. Let u be determinf'd
by the recurrence scheme: u; = (u;_1 + H/u;_1)/2, u0 = l·O. Then the
term Up determines to an accuracy e a square root of the number fl.

\Ve are now in a position to complete the description of formal
expressions in Genie.

Definition D4. A primary definition is an equation, conditional equation,
or recurrence scheme.

• A set is an object of irregular structure, which is used, inter alia, for the represcnt.1-
tion of formulae. Details of its use and properties are outside the scope of the pre.,ent
paper.

t For example: µ[y; ~(y)] with the meaning 'the least value ofy such that ,P(y)
is true,y assuming the values 1, 2,'

~---~ ~-~----

12 J. K. Iliffe

Definition D5. A dependent variable is the name occurring to the left of
the equality sign in a primary definition, disregarding its subscript. An
independent variable is one of the names occurring in the formula(e) to the
right of equality signs, or in the subscript of a dependent variable (dis­
regarding dummy subscripts).

Example ES. The examples E4, E5 and E6 all give primary definitions.
The dependent variables in these are H, M, L and u respectively. The
independent variables are the sets (k, t, g), (a, b), (x) and (x,y)
respectively.

In general, we shall represent a primary definition by an expression of
the form:

ex ~ ~({J) (3)

where ex stands for the dependent variable, ({J) for the set of independent
variables, and ~ for the definition schema which is being used.

Definition D6. Consider the set of N primary definitions:

ex(il ~ ~(i>([J(i>) i = 1, 2, ... , N (4)

The set is said to be consistent if all the ix(•>, i = I, 2, ... , N are distinct
(taking subsripts into account). The set is cyclic if the following condition
holds:

N-1

A (ex<'+l> E [J<'>) and (rP> E p<N>)
i=l

Example E9. The following set of three equations is cyclic:

x = ~ + t, t = 3m - 1, m = cos x

(5)

Definition D7. A definition in Grnie is a set of M primary definitions
such that (i) it is consistent; (ii) no cyclic subset exists; (iii) a unique
dependent variable exists which does not occur as an independent
variable.

Example ElO. The following set of four equations is a definition:

x = 2y8 + 3y -- b, J' = a - b, a = 4·52, b = 2·91

ln a definition, the unique dependent variable is the principal variable,
(x in ElO); the primary definition containing the principal variable is the
principal equation. By convention, the principal equation is always
written down first in the definition; using this fact it is possible to relax
condition (iii) to allow the principal variable to occur elsewhere in the
definition as an independent variable, so that in a suitable context a
definition may be regarded as 'redefining' its principal variable in terms
of a previously assigned value. The remaining primary definitions are

71,,e Use of the Genie .System in Numerical Calculation 13

termed auxiliary equations, and their dependent variables (y, a and b in El 0)
are auxiliary uariables. Let y denote the union of the sets of independent
variables occurring in a definition, excluding the names of auxiliary
variables; then we shall write:

ex ~ _!j}(y) (6)

where ex is the name of the principal variable, to indicate its dependence
on the values assigned to names in y. (In EIO, y is null.) For many
purposes, a definition can be regarded as a generalized form of primary
definition, and in fact it can be replaced by an equivalent primary
definition if none of the auxiliary equations are recurrence schemes or
function definitions (D8). Conversely, a primary definition can be
regarded as a special case of definition, consisting of one element. The
identity of form between (6) and (3) is therefore appropriate.

In the set y in (6) (or {3 in (3)), values are assigned in the context
in which a definition (or primary definition) is used. In the usual way, a
subset 1r of r may be chosen to represent parameters of a definition:

ex(1r) ~ §J(y) (7)

In this case ex may be used as a/unction name in formulae, with appropriate
specification of parameter values.

Definition DB. A function name is the principal variable of a definition
with which has been associated a set 1T of parameter names. A function
is the operator mapping the set of objects designated by 1r into the single
object which is the value of the function name. If, in (7), the sets 1r and y
are identical, the function is said to be m library form, a term closely
corresponding with conventional usage. .

Example EI l. Let:

f(a, b, c, x) = ax2 + bx + c

Then/is a function name with four parameters. Let A be a vector which
can be written A = (a, b, c). Then the functio,, F, where

F(A, x) = A 1x2 + A2x + A3

has two parameters, but assumes the same values as f l\Iorc generally,
let B be a vector of length n; then consider the function P defined by:

P(B, x) = u,., 11; = .w;_1 + Bi
n

Clearly, P(B, x) asmmes th~ values of the polynomial I B,.\11-i. Both
i-1

f and Fare library functions, but Pis not, since it depends on the value of
n, not listed as a parameter. One way of remedying this is to make use of

14 J. K. Ilijfe

the special function 'dim' which, applied to a vector, assumes the integer
value of the dimension of the vector:

P(B, x) = u,., u, = xu,_1 + B, n = dim B

Strictly, Pis still defined relative to .the meaning of the name 'dim', but
it is possible, as we shall see, to write a definition within a context in which
a set of standard function names is 'understood' without explicit definition.

Definition D9. A definition set (ds) is a set of which each element is either
a definition or a definition set. If there are M elements, 8 1, 8 2 ••• , 8 M

in the se,t it will be written* as [81 ; 8 2 ; ••• ; 8M]· A definition set may
be named for future reference, thus: ·

S[ff'i; 8 2 ; ••• ; tf,v]

denotes ·the definition set S.

(8)

All definitions in Genie occur within some definition set, although at
the simplest level of coding the programmer may be unconscious of it.
The significance of this is that a context is automatically provided in which
a particular definition can be said to 'hold': each principal variable which
appears in a definition set has constant meaning throughout that set and in all
definition sets which it contains; it has no meaning outside the given ds.

Example El2. Consider the expression:

S['" = 3·14159; g = -32·2; V = 1000·0
E[Q(t) = vt + gt2/2; v = Vsin ('"/6)

. H = Q(2·5)]]

This consists of a definition set S containing elements 1r, g, V and E, t the
first three being defined as numbers, and the last as a definition set with
elements Q, v and H. Here, Q, v and Hare defined within E but not
within S; '"• g and V are defined within S and within E. It has been
assumed that S occi. .. s within a 'higher order' definition set in which 'sin'
is defined.

Some non-trivial calculations can be carried out with the help of
definition sets, but in the main recourse must be made to description of
algorithms by sequential definitions which are obeyed one after another,
according to some sequencing rule. These are described by the following

.. two constructions:

• In all written texts, the semicolon may be dispensed with by using a line convention,
viz. each element is distinguished from the preceding one by placing it on a new line.
In cases where a single definition extends over several lines, the text on the second and
succeeding lines is indented by about 30 character positions.

f It is convenient to identify elements by their principal variables or names.

The Use of the Genie System in Numerical Calculation 15

Definition DIO. A command sequence (cs) is an ordered set of one or
more definitions. If there are M terms <ff 1, <ff 2, • • ., <ff M in the sequence,
it will be written* {@"i; C2; .•. ; <ff M}· For reference purposes, a cs may
be named, thus:

(9)
defines the cs L.

Definition Dl 1. A program is an explicit representation of a program
scheme, using command sequences to describe the elementary operators,
and appropriate syntactic constructions to replace left strokes, right
strokes, and derived operators.

Example El 3. The choice of representation of a program is very much
a matter of taste, and a large class of apparently differing representations
can be shown to be equivalent by simple transformations. The names of
command sequences usually play a double role in such representations:
they identify the elementary operators, and they serve as 'program points'
controlling transfers of control. For this reason, each occurrence of a
given command sequence is unique, and must be identified by a different
name. Given a sequence of right strokes _J _J . . . _I A in a ps, an

ii .. i-r
obvious first step in obtaining a representation is to identify the index of
each right stroke with the name A of the cs which follows these. Then each
conditional operator can be replaced by an appropriate conditional or
unconditional transfer, i.e.

''Pi L' is represented by: 'go to # A if not 'P/, for j = I, 2, ... , T ,,
'OL' is represented by: 'go to # A'

The iterative operators formed by compounding left and right strokes
arc represented by a 'for . . . repeat' or 'for ... repeat until 'P'
constructions, 'P standing for a predicate which determines the end of the
iteration. With the addition of a 'stop' operator, this completes the list of
elementary control representations. The use of the special sign '#' has
several important applications: it is employed in '# A' to denote the
machine address of the quantity A rather than the value of A. It is then
possible to define a vector such as (# A, # B, # C) = K and select a
branch of control by an index i as in 'go to K;'. Another multiple branch
is made with the help of a conditional equation:

go to # A if P, # B if Q, # C

• As in definition sets, the semicolon can be dispensed with by using the line con­
vention. It is customary to place the name of the cs in the left-hand margin of the
text, alongside the first definition.

16 J. K. Iliffe

The analysis of programs follows conventional lines. The set of all
principal variables occurring in command sequences is the analogue of the
principal variable of a definition; a subset of these, termed the output
parameters, is named to denote a particular group of computed quantities
of interest. Similarly, of all the independent variables occurring in a
program,. a particular group of interest, named the input parameters, may
be selected, and these play a role analogous to the parameters of a function
definition. By selecting a single output parameter, and storing it in a
fixed machine location, a program name may be used in the same way
as a function name, to stand for its value in formulae. More generally, a
program is conceived as an operator transforming a given set of input
parameters, 1ri, to the values of a set of output parameters, 1r0• It may
be used, with appropriately assigned parameters, in place of a cs in a
program.

Example El 4. The following is an example of a program.

K(F, a, b, c, V, # H) . = SEQ
S function F

l=V(b-a); n=l; h=(b-a)/2; J=h(F(a)+F(b))
n

A M = J + 4h !, F(a + (2i - l)h) ,-1
go to # B if IM - II < c
I= M; J = (M + J)/4; n = 2n; h = h/2
go to #A

B H= M/3
END

Here K is a program with input parameters F, a, b, c and V, and a single
output parameter H. One of the parameters is a function (F) and is
declared to be so. The complete representation of the program scheme
is parenthesized by the words SEQ. and END. The symbol '. =' is the special
equality sign associated with program schemes. It can easily be shown
that this is a representation of a program scheme which can be written:

K(F, a, b, c, V, H). =S_JApLUOI _ _JB
2 1 2 1

where p stands for the predicate 'not IM - II < c' and U for the un­
named cs on the fifth line of the program. The use of the summation
operation '~' in the cs A should be noted: since it is encoded in a very
direct fashion it would normally lead to inefficient coding, but in this
particular case no more efficient algorithm can be deduced in the absen...:e
of information about F. K is a library program in the sense defined above.

The Use of the Genie System in Numerical Calculation 17

It could equally be put into the form of a function, since it has a single
output parameter.

The range of definition of names occurring in a program raises some
complicated problems concerning the habits of programmers, and it has
been settled in Genie by reference to the context in which a program
appears. This is essentially a dynamic problem, discussed more fully in
the next Section, but in general terms the assumption is made that all
names occurring in a program are internal to it, i.e. they have no meaning
outside the limits of the program unless they have occurred earlier in the
context in which the program is defined. Accordingly, D9 is modified as
follows:

Definition D9.* A definition set (ds) is a set of which each clement is
either a definition or a definition set or a program.

In this way a set of programs can be written, sharing some common
data (in a general sense, meaning any definable quantity, object or func­
tion or program) but otherwise being independent. Whether long
parameter lists are used in communicating information between programs,
or whether use is made of the 'common' region as defined by the context
of a program is a matter which the programmer can decide. It should be
noted that by naming the arithmetic and control registers as part of the
context some optimization may be atten:ptcd by the coder, and com­
patibility with the symbolic assembly program is achieved.

4. DYNAMIC PROPERTIES OF ALGORITHM DESCRIPTIONS

At the highest organizational level, Genie is concerned with the
interaction of LWO definition sets: one initially in the machine and one
written by the coder. The result of the interaction is a new definition set
in the machine and (possibly) some printed output information of interest
to the coder. Logically, output control has a subordinate position in the
system: it can be effected in a variety of ways of differing elaboration,
subject to manual control or not, but the occurrence of an output com­
mand or subroutine has no effect on the process of evaluation, other than
to delay it. On the other hand, the system can be regarded from one
point of view .:mply as an input routine whose function is to read defini­
tions from papa tape, realize them internally in preassigned binary form,
and keep a : ord of the nominal interdependence of named objects in
each contcxL New information is read from the input t;'Lpc in 'units' of
one definition, and each of these is analysed before proceecling to the
next. The complete behaviour of the machine a5 an information processor
is determined if its interaction with a definition in a given context, and its

18 J. K. Iliffe

interaction with the boundaries of programs and definition sets, is given,
and we shall first summarize this behaviour.

A definition set may be regarded as a 'tree' (Fig. 4), the 'branch
points' of which (A, B, E, G, L) are named definition sets and programs,
the 'terminal' points (C, D, F, H, K, W, X, Y and Z) corresponding to
definitions or command sequences. Given any named quantity (say H)
in a tree, it can refer by name to any quantity on the same branch, or
connected to it by a downward or sideways movement on the tree; (H
may refer to K, L,-F, G, B, C, D, E and A). The set of points so named is
the context of the given quantity, in the sense defined in the last Section.
(Clearly, the contexts of H, Kand Lare identical.) It is necessary for the

r io l: 1s rr·
Coder)

Fm. 4. Definition sets.

coder to describe the context in which his definition set (N) is to be
interpteted. This is done by a special expression which precedes the ds
when it is introduced to the machine. Suppose it is required to interpret
N in the same context as H; then the correct expression would be:

Context A/B/G (10)

This statement can be regarded as 'activating' a set of names in the
machine ds, all other names being disregarded. The set thus activated
constitutes the symbol table, St, which contains not only representations of
symbolic names but also all pertinent information concerning the symbol.
The following is a partial list of information retained in each entry of the
St:

(i) A symbolic name.
(ii) Syntactic properties of the symbol, i.e. whether it is a parameter,

fixed name (with a fixed location number), or name of general type.
· (iii) The type of object for which the name stands: integer, program

scheme, floating point number, truth-value, character, command sequence,
etc.

(iv) Whether the name represents a scalar, vector, matrix or set.
(v) Whether the name stands for a function or not.

(vi) Whether the name is defined in a command sequence or defini­
tion set.

The Use of the Genie System in Numerical Calculation 19

(vii) If defined in a cs, the address assigned to the object is retained.
If defined in a definition set, either its formal definition or its actual value
is retained.

In processing a definition set or program, St expands as new symbols
are used: it is always assumed that a new symbol will be defined in the
context in which it first appears; occasionally this leads to slightly
artificial constructions when it is desired to place a name in a 'higher level'
definition set than the one in which it first occurs.

Example El 5. A common example of the need for giving meaning to
a name outside the context in which it first appears is in writing a program
to operate on some unspecified data, whose value will be given immedi..:
ately prior to or during the execution of the program, where for some
reason it is required not to place the name of the data on the input
parameter list. In the absence of a detailed flow analysis, it is assumed in
constructing a program that all newly named quantities have meaning
inside the program only. Thus, suppose we redefine the program of E14
as a function with parameters a, b and c, taking the values of V and F
from the definition set in which K is defined. A correct way of writing
this is:

{Function F
Number V
K(a, b, c). = s_~_IApLUOL _JB}

2 1 2 l

-where all symbols have the same meaning as before, with the excep.tion
of the cs B which causes the value of the function K to be stored in a fixed
machine location instead of at H. At a later time, appropriate definitions
of F and V may be given, and then K can be used in a formula in the
usual way. An interesting application of trap transfers on data arises in
situations of this sort, for we may use one of the tag conditions to indicate
that a named object has not been given a value; if an attempt is made to
use it in a calculation, automatic trapping will occur to a routine in which
corrective action is taken.

Figure 5 shows schematically the machine definition set after the
interaction of the dss of Fig. 4, in the context (10). Were this all the
action of the machine, nothing more than a binary representation of the
formal definitions would have been achieved, but it is in fact accompanied
by continuous application of the evaluation principle illustrated in Section
2. We shall now indicate briefly what is meant by this. ·

The process of assigning a value to a name, which is the basis of all
calculation, falls into two parts: firstly, determining in which domain

20 J. K. Iliffe

it takes its values; secondly, determining a representation of its value in
that domain. One of the restrictions of the present codes is that there is
a unique solution to each of these problems. One of the simplifications
imposed is that the first problem is solved for each name by a process
of type evaluation which is applied at the first occurrence of the name in a
given context. Type can be determined in one of three ways:

(i) By declaration. This simply asserts that a name stands for an
object in a partic1.1:lar domain. A declaration, if used, must always precede
the first occurrence of a name in a definition or program.

(ii) By assumption. If the first occurrence of a name is in a formula,
then in the absence of further information it is assumed to be of a type
associated with that particular class of formulae.

(iii) By implication. If the first occurrence is as a dependent variable,
its type can be inferred from the nature of the formula constituting the
right-hand side of the equation.

FIG. 5.

Example El6.l. 'rwo examples of declarations follow:

Matrix P
Function/

El6.2. Referring to the elementary expressions whose existence
was assumed at the beginning of Section 3 : the value of a name in an
algebraic formula is assumed to be a single precision floating point number;
in a predicate it is assumed to be a truth value; in a program scheme it is
assumed to be a command sequence, unless it immediately precedes a left
stroke; in which case it is a truth-value. The value of a name occurring
in· a subscript in any formula is assumed to be an integer.

El6.3. Given an algebraic formula, it is possible to deduce the type
of object it defines in a straightforward way from a knowledge of the type
of each name in it and the properties of its unary and binary connectives.
The latter are given in the so-called Type Reduction Table, an example of
which, for the binary connective '+ ', is given in Fig. 6. Type deriva­
tions for other classes of formulae are similarly described. Note that

17w Use of the Genie System in Numerical Calculation 21

dimensionality is ignored in matrix and vector operations (any inconsis­
tencies are detected during 'execution'), and also that in place of the
'invalid' combinations (A) it is a simple matter to substitute a program
which gives diagnostic information.

The second stage of value assignment is analogous to type evaluation,
although possibly more complex in application. Consider the following
expression, which represents a definition of an object ct by a schema !»,
dependent on the values of a set of objects whose names are represented
by,,:

ct All !»(,,) (11)

We shall say that (11) constitutes a formal definition of ct. By the methods
of El 6 the type of each member of ,, can be determined. In order to

Type of b

Integer Number Vector Matrix

)lteger Integer ~mber .A. ..A
Type ti a Number ~mber Number A A

*tar .A. A- Vector ..J\._

Matrix· .A A .A.. Matrix

F10. 6. Type reduction table for the connective '+' in the
algebraic formula 'a+ b'.

determine the value of ct it. is necessary that values be assigned to each
member of,,, that algorithms be given for reducing !» to a sequence of
steps each involving only formula evaluation, and that the properties of
each unary and binary connective in a formula be given. The algorithms
operate in an obvious manner, arranging the equations of a definition in
the correct order for evaluation, and encoding conditional equations and
recurrence schemes. The evaluation of a formula is controlled by a
Value Reduction Table which gives, for each unary and binary connective,
and each possible operand or operands, a Rule by which the result of
application of the operation can be determined. Frequently, this Rule
will be given in the form of a function defined by other languages, but

• ultimately, by oontinued application of the evaluation process, it will be
expressed in the form of code executable by the machine.

Example El 7. Consider a restricted class of algebraic formulae con­
sisting simply of names and the two binary operations '+' and 'x '. It
is easy to derive, for any. formula, and using conventional rules of pre­
cedence, an expression involving simply two functions P(a, b) and
M(a, b) which, applied to any two objects of a suitable type, determine
the values of the expressions 'a + b' and 'a X b' respectively. These are

..

22 J. K. Iliffe

the value reduction tables. Thus, the formula a + b x c x d + e
reduces to P(a, P(M(b, M(c,d)), e)), i.e. the formula is reduced to a
prefix notation. We shall evaluate the formula in a domain f!J whose
elements are sequences of single address machine instructions expressed
in symbolic form, and a domain .9Jf whose elements are machine addresses.
In 91, instructions are written (OPN, addr) where OPN is one of the four
mnemonics CLA, ADD, MPY . and STO, and addr is an address. A code

. sequence is written as, e.g. {(cLA, a); (ADD, c); (ADD, d)}. Let t1, t2, •••
denote an 'inexhaustible' sequence of working stores. We shall construct
clements of f!J which use working stores in sequence during a calculation,
always 'vacating' them at the end of the code. The address T will be
used for the 'next available t/ · in the instruction (sTo, 7'), and for the
'last used t/ in (ADD, T) or (MPY, T). The predicates Code (X) and
Name (X) are respectively true if Xis in f!J, d. To each name ex in a
formula corresponds a unique a.', its value in d. Let µ, 11 be elements
either of .9Jf or f!J. Then P is defined by:

P(p, 11) = {µ; (sTo, T); 11; (ADD, T)} if Code (µ) and Code M,
{µ; (ADD, 11)} if Code (µ),
{(11; (ADD, µ)} if Code M,
{(OLA,µ); (ADD, 11)}

M(µ, 11) is similar, with ADD replaced by MPY. Then we have, after
replacing each name in the formula by its value ind:

P(a', P(M(b', M(c', d')), e'))
= P(a', P(M(b', {(cLA, c'); (MPY, d')}), e'))
= P(a', P{{(cLA, c'); (MPY, d'); (MPY, b')},e'))
= P(a', {(CLA, c'); (MPY, d'); (MPY, b'); (ADD, e')})

. = {(OLA, c'); (MPY, d'); (MPY, b'); (ADD, e'); (ADD, a')}

The result is a code for evaluating the formula a + b X c X d + e.
The preceding example illustrates the method which is applied in all

code constructing and evaluating procedures in Genie. Formalizing code
, construction as an evaluation process makes the contemplation of processes

in which code construction and numerical evaluation are intermingled a
relatively simple thing, and this is the usual mode of operation. In the
above example, if a, b, c and d were numerically defined quantities, the
construction of code would be followed immediately by its execution.
The same principle can be formulated in another way which more
accurately describes the realization of command sequences: if an operation
can be performed, perform it; otherwise construct code which will perform it at a
later date. A. succession of 'scans' of a piece of code can be envisaged,

The Use of the Genie System in Numerical Calculation 23

ultimately reducing it to a single order, but at the present time only two
are attempted: one during code construction and the second one when it
is known that all independent variables have been defined.

Example El 8. The realization of the expression in EI 2 is equivalent to
the following definition set:

S[1r = 3·14159; g = -32·2; V = 1000·0
E[Q(t) = vt + gt2/2; v = 500·0; H = 1149·375]]

The obvious example of numerically defined quantities has a parallel
in the case of"programs, which resolves into the problem of whether to
include a particular function in another program in the form of an open
or closed subroutine. The problem is one of optimization and a serious
attempt at solving it can only be made when all the information about a
given program or programs is known. This is not generally the case, but
in the special class of very short programs, a simpler criterion can be used:
whether or not the program itself is shorter than the sequence of in­
structions necessary to set up its parameters, save index registers, and
so on. If this is the case, it is included as an open subroutine.*

5. SOME ASPECTS OF THE EVALUATION PROCESS

In most respects, the evaluation programs associated with code
construction act in a way which is a direct solution to the problem on
hand, without recourse to detailed optimizing procedures. This is a
temporary phase in constructing an automatic coding system of this type,
resulting from the intention of using symbolic techniques to examine a
variety of optimizing procedures and the practical necessity of getting the
system, which is experimental in some ways, to work with minimum
delay. In other respects, some of the traditional problems of coding have
been avoided by the formalism of Genie, or may be avoided by asking a
small degree of cooperation from the programmer. We shall first discuss
these, and then describe the methods of array representation which are
used.

Optimizing processes

(i) Recognition of equivalent sub-expressions. This matter is delegated
without hesitation to the coder, who is better equipped for it than the
machine. The use of a definition in place of a single equation is sufficient
to collect equivalent terms together, and often has the distinct advantage
of shortening the amount of code to be written.

• Or macro-order, to use the current term.

-
;

24 J. K. Iliffe

Example El 9. By recognizing equivalent sub-expressions m the
following equation:

y = exp (a+ h) - 3(a -- c + h) + 2x(a + h) 2

the equivalent definition may be formed:

y = exp (t) - 3(t - c) + 2xt2, t = a + h

(ii) Optimal use of fast access registers. As mentioned in Section 1,
this problem _can be formulated in precise terms, and it is probable that
given any complete set of codes, a solution could be found in a reaJistic
amount of time. One of the difficulties of continuous evaluation is that,
without being specially told, it is impossible for the machine to decide
when a set of codes (a definition set, for example) is complete, and the
addition of a further program may invalidate the optimization. For the
time being, therefore, the matter is again left to the coder, who may use
the names of fast registers to stand for numbers in any formula. The result
of using a fast register name for 't' in El 9, for example, is to save four
orders and about 100 µsec of calculation time.

(iii) Optimal use of index registers. A serious problem in code construc­
tion is that whereas a B-register may be used to contain the value of a
named index controlling an iterative loop, it is possible that a transfer of
control outside the loop may leave the index undefined in memory.
Unless a flow analysis is made as in Fortran, one is left with the pre­
cautionary alternative of keeping the index 'updated' in memory as well
as in the B-register. In the present formalism there are three important
occasions in which an iteration is performed without the possibility of a
transfer taking place: the use of the '!:' operator in formulae; the use of
recurrence schemes; and the use of a postfix 'for . . .' construction
which is permitted to follow a single definition with subscripted principal
variable, e.g:

Yt = A, - xh0 for i = I, 2, ... , n

These three instances form a significant proportion of the commonly con­
structed iterative loops, and in em;:oding them more efficient methods can
be used than the single 'for . . . ; . . . ; repeat' construction. (It can easily
be seen that they correspond to the cases where a dummy index is in use.)

(iv) Optimization of working storage. Given any definition or program
the named auxiliary variables are distinguished from the 'unnamed'
quantities developed in the course of formula evaluation, and they receive
different address allocations. The space required for auxiliary quantities is
taken immediately prior to program execution from a 'free storage region'
controlled by an independent routine, and returned after the end of the

The Use of tlie Genie System in Numerical Calculation 25

program. Thus if a program is not in use it does not take up memory
space for its data. The cells required for temporary storage during
formula evaluation are similarly placed external to all programs, and are
shared as successive programs are evaluated. This treatment fulfils,
incidentally, the requirements to be met on the few occasions when it is
useful to execute programs recursively.

The actual minimization of the number of cells used is considered to
be unimportant in this system, unless a number of large arrays are being
handled, since the total effect over a number of formulae and programs is
not cumulative~

_1113 .SltS I
Principal codeword

. Auxilicl'y
codewords

t+I M1 1 u+I _M2 1 vtl M.

Mz,z M3,z

Mz 3 M3 3

MZ,4. M3,4

ut5 112, 5 v+S M3, 5

Row I Alw2 Row3

FIG: 7. Codewords for a 3 x 5 matrix.

The control of arrays ·' · -··

It is undesirable that the construction of code for handling a~~ys
should depend on their size. This is avoided in Genie, as in other systems
(Ref. 2), by the device of constructing one or more additional words to
control selection of elements in the array. These so-called codewords are
automatically generated when an array is defined. ;For a vector oflength
n, which is stored in n consecutive memory cells, a . single codeword is
required. For a matrix of m rows and n columns, (m + I) codewords ar~
required, the first referring to a vector of m codewords, each· of these
referring to a vector of n elements which is a row of the · matrix. The
vector codeword, or the first matrix codeword, is termed. the principal
codeword of the array; its address plays a part in "code construction
analogous to that of the address of a simple numerical object. ·

Example E20. The main property of the codeword representation is
illustrated with the help of Fig . .7, in which. the codewords for a 3 x 5
matrix Mare drawn. In order to address any particular element M,.,:it
is necessary to place i in B-register BI, andj in B-register B2. Then· if
N is the location number of the principal codeword, M,., is obtained
from the address * N, the asterisk denoting indirect addressing.

The codeword representation has several important c~risequenc~s ::. ·: ·.

\ •. _ (i) All 'address cakulation' at the time of executio_~ _i.s ~~oided:. ~t
, lS done.once for all when.the codewords are generated .. · , ·:: : ..

1

..

26 J. K. Iliffe

(ii) The space reserved for any array is precisely that which it
occupies at a given time, and not a 'maximum size' specified by a dimen­
sion statement.

{iii) Elements of a vector may be moved to any part of storage,
provided the codeword address is changed. As a particular case, pro­
grams in binary relativized form are instances of such vectors.

{iv} It is not required that matrices be stored in single blocks, only
that their rows be in vector form.

(v) It permits certain 'virtual' operations, e.g. row interchange and
transposition, without altering the position of any element in storage.

(vi) It does not require that the matrix rows be of equal length, and
it can be adapted to the realization of symmetric and triangular matrices. ,

(vii) Only the address portion (24 bits) of each codeword is used in
the indirect addressing sequence, and the remaining 30 bits and two tags

· can be used for storing other information, notably: (a) the size of the
vector which is being referred to, and (b) the type of object it represents,
such as Euclidean vector, polynomial, multilength number, etc.

Example E2l. The special function 'dim' may be used in two ways
with a vector argument:

· n = dim V, asserts that n assumes the integer value of the number
of elements in the (previously defined) vector V.

dim V = 11, asserts that V is a vector of n elements, and as a result
appropriate space reservation is made.

The main drawbacks to the codeword representation are the space
occupied by the codewords, which is usually small, and the additional
time taken by indirect addressing sequences. The latter can be reduced
by placing codewords in the fast registers, and this is done in the manually
constructed programs for basic operations on vectors and matrices; the
problem of automatically doing this aw~~s_tigation.

Implicit arrays
In any definition the principal variable may be simply subscripted,

and the definition schema made to depend on the value of the subscript.
Thus:

f,(x) = x if Even (i), -x

defines a vector function, f, of unspecified size :

a,.,= A,., if i <j, -A,.,
defines a matrix a in terms of a second matrix A. At present, such array

The Use of the Genie System in Numerical Calculation 27

definitions are confined to those occurring in definition sets,* and they are
logically equivalent to functions. However, this is a powerful syntactic
device, closely resembling mathematical notation, and it seems convenient
for that reason to retain the distinct form. In code construction, no
distinction is drawn between implicitly and explicitly defined arrays. In
program execution, the indirect addressing sequence is interrupted by a
tag trap on the principal codeword of an implicit array, which sends
control to the appropriate routine for calculating the value of the element.
Thus algorithms operating on explicit arrays may be applied without/
change to implicit .arrays.

6. CONCLUSION

It is difficult to compare one system of automatic coding with another:
in most instances they differ sufficiently in purpose and economic circum­
stance to invalidate any possible criteria of comparison. At the same time,
the power of symbol manipulative languages (instances of which appear
in the present system) supports the view that most apparent differences
of form in an algebraic language can almost trivially be rectified and those
that remain are accounted for by the tastes of the code designer.

Differences of evaluation technique are not of first importance to the
user of a system. t Indirectly, however, they will affect him to the extent
that he requires :flexibility and speed in problem solution. In this respect,
the use of a hierarchy of definition sets in Genie is its key feature, leading
to the application of the continuous evaluation principle, to the definition
of context, and the formalization of automatic operating, debugging and
symbolic correction schemes.

One of the main objectives in writing Genie is to permit the description
of both numerical and analytical processes in the same formal system. It
will be recalled that from a formal definition (11) the principal variable
can only be evaluated if value assignments have been made to each
independent variable. If, by some syntactic device, an evaluation is
called for by the coder, the occurrence of a name with unassigned value
will result in a failure of the evaluation process at that point (by a 'trap
transfer'). This is not necessary, however, if provision is made for the

• The implication of our remarks is that for all values of the subscripts, the subscripted
definition holds true; were this the case for definitions appearing in command sequences,
an ambiguity of meaning would result, since the more natural meaning is that for the
subscript values currently defined, the array element has a particular value. Thus implicit
arrays may be used, but not defined, in programs.

t Although, on a machine of 12 digit accuracy, it becomes irksome to have to
replace constants such as '3·9 sin {1r - 2·5)' by their numerical values, and it is con­
venient to have them evaluated automatically during code construction.

,-

..

...

28 J. K. Iliffe

fonnal manipulation of names within formulae, and there is no theoretical
limit to the complexity of such processes which can be accommodated.
A more difficult problem is that of placing formal manipulations within
an unambiguous context, and our present investigations, although incom­
plete,_ indicate that again definition sets may be more suitable tools than
programs.

7. ACKNOWLEDGEMENT

The work described in this paper was supported in part by funds
supplied under National Science Foundation Grant G-7648.

8. REFERENCES

l. YANov, Yu. I., 'On Equivalence and Transformation of Program Schemes', Dokl .
. . Akad. Nauk; SSSR, 113, No. 1 (1957).
· 2; .WELLS, M. et al., MADCAP (A programming system for MANIAC II). See p. 115,

this volume .

	102726217-05-001
	102726217-05-002
	102726217-05-003
	102726217-05-004
	102726217-05-005
	102726217-05-006
	102726217-05-007
	102726217-05-008
	102726217-05-009
	102726217-05-010
	102726217-05-011
	102726217-05-012
	102726217-05-013
	102726217-05-014
	102726217-05-015
	102726217-05-016
	102726217-05-017
	102726217-05-018
	102726217-05-019
	102726217-05-020
	102726217-05-021
	102726217-05-022
	102726217-05-023
	102726217-05-024
	102726217-05-025
	102726217-05-026
	102726217-05-027
	102726217-05-028
	102726217-05-029
	102726217-05-030

