9

ASSEMBLY LANGUAGE

ASSEMBLY LANGUAGE

Symbolic Coding . « & o & & & & o o o o o o o o o o o

Instruction Form) ° . . o e . . o o °

Types Of SymbO]-s . . . o o o o o o . o o ° o o o

Instruction Content e e o o o © o o e o e s o o o o e e e o

Operation Codes . o o & o o o o o o o s s o o o o o o o o
Class O Tests and Transfers

2
Class 1, Arithmetic
Class 2, Fetch, Store, Tags
Class 4, B-Registers, Lights, Special Registers, Shifts
Class 5, Logic and Fast Registers
Class 6, Input-Qutput
Class 7, Analog Input, Shifts, Delays

Summary of Operation Codes

, Pseudo=-0rdersS o 4 o o o o o o o s o s s. s o o o o o o o e
C ORG and END

EQU

BSS and BES

BCD, FLX, REM

DEC and OCT

REF

Macro=0TdersS . o« & o o o o o o o o o o o o o o o o o o & o
Application
Definition
Call
Examples

ASSembly Procedure ° . . ° . . . ° ° . e o . . ° °

Coding Examples o 4 v ¢ « o o o o « o s o o o o s o o o o o

N2

()

SYMBOLIC CODING

The absolute machine language of the Rice Computer is described

in detail in the Rice Computer Manual. 1In practice, programs are
not written in the absolute language of the computer but in a
symbolic language. A language which provides symbolic notation
for instructions, or commands, that correspond one-for-one with

absclute machine instructions is called an assembly language. The

prggram which translates assembly language into machine language

is called an assembly program.

Use of the assembly language for the Rice Computer depends on
a knowledge of the absolute machine instruction format, a familiar-
ity with the registers of the computer, and a general acquaintance
with the instruction repertoire -- all explained in the Rice
Computer Manual. Two forms of the Rice Computer assembly language
are available:

APl, for independent use

AP2, for use within Genie programs
The corresponding assembly programs have the same names:

APl, an independent assembly program

AP2, a subset of the Genie compiler

The two assembly languages are very similar, The major dis-
tinction concerns octal and decimal numerals, In APl, all
numeric constants are assumed to be octal unless immediately
preceded by the special symbol "d'", meaning decimal., In AP2, all
numeric constants are assumed to be decimal, except when octal
form is indicated by a plus sign immediately preceding the octal
number,

In the following discussions, M stands for the final number
formed in the last 15 bits of I (the instruction register) after
all specified indirect addressing and B-modification has taken
place; and if Q is any machine location, then (Q) stands for

the contents of location Q.

N

TN INSTRUCTION FORM

~—
The general form of an APl or AP2 instruction and its cor-
respondence to a machine-language instruction as explained in the
Rice Computer Manual is
bits |1 67 2122 2728 3940 54 tag bits tl t2
[_F1 F2 1 F3 F4 1 "
— T
LOCN SETU OPN ADDR+MOD, AUX TAG
lcr |1st tab |2nd ‘tab |3rd tab |4th tab
Here "cr" denotes "carriage return', and "tab'" denotes "tabulate"
on the flexowriter used for preparation of input to the assembly
programs.
LOCN gives the symbolic label (if any) on the instruction,
SETU corresponds to Field 1: bring a "“fast" register to U;
then inflect (U).
— OPN corresponds to a Field 2 operation chosen from one of
N seven classes,

AUX corresponds to Field 3: alter a B-register, send (U) or
(R) to a "fast" register, send the M portion of I to a
B-register, or clear R,

ADDR+MOD correspondé to Field 4: compute the final address/

M, sending M to the last 15 bits of I; 1load S with M

or (M); then inflect (S).

All fields may be symbolically coded., All fields but MOD and TAG
may be coded numerically.

If no TAG is to be specified, the 4th tab may be omitted. If
no AUX operation is to be specified, the preceding comma may be

omitted,

()

I

TYPES OF SYMBOLS

Precise definitions of the allowed symbols are as follows:

Register names. The following symbols are used as names of

"fast" registers:
A-series Z, U, R, S, T4, T5, T6, T7
B-series cc, Bl1, B2, B3, B4, B5, B6, PF
These may appear in SETU, ADDR+MOD, and AUX fields. The symbol I
may be used in SETU and AUX. The special register names may be

used in ADDR; these are

SL sense lights

IL indicator lights

ML mode 1lights

TL trapping lights

P2 second pathfinder

X increment register
TT “to-tape'" register
FT "from-tape'" register

These symbols may be used only as register names,

Special characters. %, a(APl) or #(AP2), d(APl), +, - -

2 J J

(,)’ "tab", "cr", and , (comma).

Operation codes, These include the mnemonic operation codes

in the assembly vocabulary, pseudo-operation codes (APl only),
macro-operations (APl only), and general symbols defined by the
user as operation codes with a LET (in Genie for AP2) or an EQU

(in AP1)., All of these areas are covered in later discussions.

General names. In AP2, a private name may be

a single lower case Roman letter
or an upper case Roman letter, followed by upper case Roman
letters, followed by lower case Roman letters,
followed by numerals,
In APl, a private name may be
an upper case Roman letter, followed by upper case Roﬁan
letters, followed by numerals.

Spaces may not appear in names., Any number of characters may form

L

TYPES OF SYMBOLS
2
a name; AP2 will retain the first four if lower case Roman letters
are used, the first five otherwise; APl will retain the first six.,
The following are general names in APl and AP2: B, M3, COMM, ZETA2,
The following are general names in AP2, but not in APl: b, Comm,

Zeta2, General names may appear only in the LOCN and ADDR fields,

®

INSTRUCTION CONTENT

Each field of the symbolic instruction has a well~-defined
form., If this form is not recognized by the assembly system, a

message is printed during assembly, The acceptable contents of

each field are as follows:

LOCN., This field may be blank or absolute or symbolic. Abso-

lute LOCN fields are permitted only when an APl program is being

assembled in absolute form (see the ORG pseudo-order discussion).

A symbolic LOCN field may contain any general name. A name may

not appear in LOCN more than once in any one program,

SETU, This field may be blank, absolute, or F, where F is

an A- or B-series register name or "I", or any of the forms -F,
lF|, or -!F[o If SETU is blank, "U" is understood and the octal
equivalent 01 is inserted into the machine instruction. I sets
U to the integer +1; -1 sets U to‘the integer -1, Note that Z
sets U to all zeroes; -Z sets U exponent to zZero and U mantissa
to minus zero, or all ones,

Examples: Bl !T4‘ -PF -lR' Z -1

If the T-flag is on. for register Ti (i=4,5,6,7), indirect

addressing through Ti will occur when Ti is addressed in the SETU

field. To denote this mode of addressing the % may be used before

the register name:

*T1 - *Ti | #T4 | - | *T4i |
This is a symbolic convenience only, and these will be translated
as:

Ti -Ti | T4 | -|Ti|

OPN. This field may be absolute or an operdtion code, In

the case of conditional transfers, a symbolic operation has the form

IF(CCC)TTT where CCC represents test conditions and TTT is a mnemonic

for a transfer order. Other symbolic operation codes consist of

AN

)

®

C

INSTRUCTION CONTENT
2

one or more 3-letter mnemonics, Special symbols such as -, +, -

2 3

",", and +i (where i is an octal integer) are sometimes permitted

(see the section on operation codes).

AUX., This field may be blank, absolute, or one of the forms
U~F, R-F, I-Bi, Bi+l, Bi-1, or Bi+X. Bi stands for one of the
B-series register names; F is any A- or B-series register name;
I refers to the last 15 bits of the instruction register; and X
is the increment register. As a special case, R-Z causes R to
be cleared to zero.

Example: U-T4 R-PF I-B1 B2+1 B3~-1 B4+X

If the T-flag is on for register Ti (i=4,5,6,7), indirect
addressing through Ti will occur when Ti is addressed in the AUX
field. To denote this mode of addressing the % may be used before
the register name:

U-%T1i R-%*T1i
This is a symbolic convenience only, and these will be trénslated
exactly as:

U-Ti R-T1

ADDR+MOD. ADDR may be blank or absolute or symbolic, or the
ADDR+MOD field may consist of an octal or decimal number to be used
as an operand. MOD is either blank or one or more of the B=-series
register names, connected to ADDR by + signs. Special inflections
control the. IM and TIA bits as follows: IM bit 1 is set to 1 (to
load S with M instead of (M)) whenever the symbol "a" (APl) or "#"
(AP2) appears, or whenever certain OPN mnemonics are used (see the

section on operation codes). IM bits 2 (absolute value) and 3

(minus) are controlled by the special forms -Q,]Q[, and -]QI,

where Q is an allowed ADDR+MOD symbol. The IA (indirect addressing)

bit is set to 1 whenever the symbol "%" appears in this field.
If ADDR is symbolic, any A-series register name, any special

register name, or any general name is acceptable. A general name

may be followed by a relative part consisting of an integer preceded

C

INSTRUCTION CONTENT
3
by a + or = sign,

If ADDR is absolute, any octal integer of not more than 5
digits, or any decimal integer of absolute value not larger than
32,767, is permissible., Any octal or decimal integer above these
limits or any floating point decimal number is treated as the name
of a location containing that number; storage space 1is reserved

for it at the end of the program, In this case, no MODs are al-

lowed, and only the absolute value and - inflections are meaningful,

A1l characters appearing within parentheses in this field are
ignored, so that an address field which is modified by the program
may be conveniently noted. For example, (FWA)+B1l4B2 is treated
as Z+B1+B2., 1If a symbol appears in ADDR but never in LOCN, a blank
location will be reserved at the end of the program. ADDR+MOD
should not be blank; the Z character may always be used to pro-
duce a zero field.

Examples of equivalent APl and AP2 ADDR+MOD fields are:
AP1L AP2

COMM+10 or COMM+dS8 COMM+8 or COMM++10

-|A+B1-d12| or -|A+B1-14]| -|A+B1-12| or -|A+Bl-+14]
a%ZETA #*ZETA

d48 48

-adl122+B1 -#1224B1

B4+B5 B4+B5

00500 +00500

d2.009027 2.009027

777700000 +777700000

30 ' 24
The only field which may be continued onto another line is
ADDR+MOD, AUX by punching a "cr'" followed immediately by three

"tab" characters, so that continuation lines will follow under

ADDR+MOD, AUX.

N

INSTRUCTION CONTENT
4

TAG. This field may be blank or symbolic. If no tag is de-
sired, the 4th tab punch may be omitted., If a tag is desired, the
TAG field must contain one of the mnemonics TGl, TG2, or TG3. The
corresponding tag will be placed on the assembled instruction,

printed on the octal listing, and punched with the instruction

in checksum format,

OPERATION CODES

The most common Field 2 operations have been given names in the
vocabulary of APl and AP2 for convenience in coding. All Field 2
operations are fully explained in the machine manual. The mnemonics
defined in this section are summarized in a chart at the end of the
section., These operation code symbols may not be used for any other
purpose. Other Field 2 operations may be given general names by
use of LET (in Genie for AP2) or EQU (APl), and such symbols are

then treated as operation codes throughout the program in which

they have been defined.

(i

I ' OPERATION CODES
\
— 2

o Class 0, Tests and Transfers

In the list below, the symbols are followed by their octal
equivalents and a brief explanation of their meanings; the
indication "a,#" means that the operation symbol automatically
causes IM bit 1 to be set to 1 (to load S with M instead of (M)),
since the operation indicated deals with M rather than with (S).

The four unconditional transfers are represented by:

octal codes

a,# HTR 00000 Halt and transfer. Halt, setting CC
to M when CONTINUE is pressed,
a,# TRA 01000 Transfer., Set CC to M,

SKP 02000 Skip. Subtract (S) from (U); then
increment CC by 1, skipping the next
order,

JMP 03000 Jump. Subtract (S) from (U); then
increment CC by (X), the increment

— register,

Conditional transfers have the form IF(CCC)TTT where TTT is
one of the above transfer mnemonics, and CCC represent one, two,
or three test conditions joined by + or X signs. Use of the +
sign indicates that the specified transfer is to occur if any of
the conditions listed is satisfied; wuse of the X sign indicates
that the specified transfer occurs only when all of the conditions
listed are satisfied simultaneously. A single order may not con-
tain both + and x signs. One condition from each of the first
three groups may be specified; or a Group IV mnemonic may be com-
bined with a Group III test as noted., If a TRA or HTR is used,
the specified test is made on (U). If a SKP or JMP is used, the
specified test is normally performed on (U)-(S). The exceptions

to this rule are noted below Group IL.

Light #5

off?

OPERATION CODES

_J 3
Group I
octal code

PSN 00100 Positive sign. Is the sign bit of U
equal to 07

MOV 00200 Mantissa overflow. 1Is Indicator Light
#4 on?

EOV 00300 Exponent overflow, 1Is Indicator Light
#5 on?

NSN 00500 Negative sign. 1Is the sign bit of U
equal to 17

NMO 00600 " No mantissa overflow. 1Is Indicator
Light #4 off?

NEO 007007< No exponent overflow. Is Indicator

“Note that indicator lights are turned off when tested.

Group IT
octal code
ZER 00010 Zero, 1Is (U) mantissa all 1's or all
0's?
EVN 00020 Even. Is bit 54 of U equal to zero?
a,# SLN 00030 " Sense light on. Are all the sense
lights corresponding to 1%s in M on?
NUL 00040 Null. Are all 54 bits of U zero?
NZE 00050 Non=-zero. Is (U) mantissa different
from zero?
ODD 00060 0dd. Is bit 54 of U equal to 17
a,# SLF 00070 Sense light off. Are all the sense

lights corresponding to 1's in M off?

7“Note that sense lights are not altered when tested. §LN¥and SLF
tests are meaningful only with SKP or JMP orders, and in these cases

no subtraction takes place.

aloal.

""If the NUL test is used with a SKP or JMP order, a logical compari-

son is made as follows: wherever a bit of R is equal to zero, the

bits in corresponding positions of U and S are compared.
is identical with (S) in each of these positions,

is null and the NUL portion of the test is satisfied.

comparison is not satisfied,

Group III
octal code

00001

OPERATION CODES
4

If (U)
the resulting (U)
If the NUL

the resulting (U) is meaningless.

TG1 Tag 1. 1Is Indicator Light #1 on?
TG2 00002* Tag 2. 1Is Indicator Light #2 on?
TG3 00003* Tag 3. 1Is Indicator Light #3 on?
NTG 00004 No tag. Are Indicator Lights #1,
#2, #3 all off?
NT1 00005* No tag 1. 1Is Indicator Light #1 off?
NT2 00006 No tag 2. 1Is Indicator Light #2 off?
NT3 00007* No tag 3 Is Indicator Light #3 off?

ol
Note that indicator lights are

turned off when tested.

Group IV
octal code
POS 00110 Positive or zero. Is
greater than or equal
NEG 00510 Negative or zero. Is

less than or equal to

(U) mantissa
to zero?

(U) mantissa
zero?

A + sign must be used when combining either of these mnemonics

with a Group IITI test.

octal code

PNZ 04150 Positive
strictly
NNZ 04550 Negative

strictly

and non-zero. Is (U) mantissa

greater than zero?

Is

and non-zero. (U) mantissa

less than zero?

A £ sign must be used when combining either of these mnemonics

with a Group III test.

(]

OPERATION CODES
5

Class 1, Arithmetic

In the list below, the symbols are followed by their octal

equivalents and a brief explanation of their meanings.

Any Class 1 mnemonic may be followed by - or +1, to cause

storing of the final (U) in the location addressed by M; by +2,

storing (U) at location (B6); or by 43, storing (U) at location

M+(B6). Octal codes may be joined by a '+' to Class 1 mnemonics

for

various special operations, If n is such an octal code, the

combination appears as

Any
3),
the
+4 3

mnemonic +n in AP1

mnemonic ++n in AP2
floating point mnemonic may be followed by +1j (j=0, 1, 2, or
causing the last bit of (U) to be set to 1 (rounded) after
operation but before storing. After floating point mnemonics

suppresses normalization of the result, +5j rounds and sup-

presses normalization. Other options are given in the machine manual.

The Class 1 mnemonics are as follows:

Fixed point

octal code

ADD 10000 Add. (U)+(S)-U.

SUB 10100 Subtract., (U)=-(S)-U.

BUS 14100 Reverse subtract. (S)-(U)-U.

MPY 10200 Multiply. (U)X(S)-U,R (double length).

IMP 10220 Integer multiply. (U)x(S)-U.

DIV 10300 Divide. Double length (U,R)+(S)-U,
247x remainder -R.

VID 16300 Reverse divide. (S)+(U)-U,
247% remainder -R.

IDV 13300 Integer divide, (U)+(S)-U,

remainder -R.

VDI 17300 Reverse integer divide. (S)+(U)-U,
remainder -~R. :

TN

Floating Point

FAD
FSB
BSF
FMP

FDV

VDF

octal code
10400
10500
14500
10600

10700

16700

OPERATION CODES
6

Floating add. (U)+(S)~U.
Floating subtract. (U)-(S)-U.
Reverse floating subtract., (S)-(U)-U.

Floating multiply. (U)x(S)-U,R
(double length).

Floating divide. Double length
(U,R)+(S)-U, 247% remainder -R.

Reverse floating divide. (S)+(U)-U,
247y remainder -R.

®

o
~——

/7

I

|
|

OPERATION CODES
;
© Class 2, Fetch, Store, Tags

In the list below, the symbols are followed by their octal
equivalents and a brief explanation of their meanings; the indication
"a,#" means that the operation symbol automatically causes IM bit 1
to be set to 1 (to load S with M instead of (M)), since the operation
indicated deals with M rather than with (S). ‘

Any Group I or Group II mnemonic may be followed by'a comma and
any Group III mnemonic. In addition, any Group I or Group III mnemonic
may be followed by - or +1, storing (U) with (ATR) at location M; or
by +2, storing (U) with (ATR) at location (B6); or any Group I, II,
or III mnemonic may be followed by +3, storing (U) with (ATR) at
location M+(B6). Note that all Group I and Group II mnemonics clear
(ATR) unless followed by a Group III mnemonic.

The Class 2 mnemonics are as follows:

Group I
octal code
CLA 21700 Clear and add. Bring (S) to U.
*
BEU 21000 Bring exponent to U. Exponent portion
of (S) replaces exponent portion of (U).
*
BMU 20700 Bring mantissa to U. Mantissa portion
of (S) replaces mantissa portion of (U).
*
BLU 21400 Bring left half to U. Left half of (S)
replaces left half of (U).
*
BRU 20300 Bring right half to U. Right half of
(8) replaces right half of (U).
*
BIU 20200 Bring inflections to U. Inflection
portion of (S) replaces inflection
portion of (U).
*
BAU 20100 Bring address to U. Address portion
of (S) replaces address portion of (U).
*
BNA 21600 Bring all except address to U. Inflec-

tion and left portions of (S) replace

inflection and left portions of (U).
*
The "bring" mnemonics may be joined by commas to fetch more than

one portion of a word.

ASSEMBLY LANGUAGE November, 1966

)

OPERATION CODES

8
Group II
octal code
ES

RPE 20701 Replace exponent. Exponent portion
of (U) replaces exponent portion of
word at location M.

RPM 21001K Replace mantissa. Mantissa portion
of (U) replaces mantissa portion of
word at location M.

RPL 20301 Replace left half, Left half of (U)
replaces left half of word at loca-
tion M,

RPR 21401 Replace right half. Right half of (U)
replaces right half of word at loca-
tion M.

RPA 21601 Replace address., Address portidn of

(U) replaces address portion of word
at location M.

RPT 21501 Replace inflections. Inflection por-
tion of (U) replaces inflection por-
tion of word at location M.

a,# STO 20001 Store. Store (U) at location M.

al.
w

The '"replace" mnemonics may not be combined with each other.

Group III
octal code
ST1 20010 Set Tag 1. Set ATR to 1.
ST2 20020 Set Tag 2. Set ATR to 2.
ST3 20030 Set Tag 3. Set ATR to 3.
WTG 20040 With Tag. Do not change ATR.
Group IV
octal code
NOP 30000 No operation. Do not alter (U) or (ATR).
FST 20041 Fetch and store. Bring contents of
location M to S; then store (U) with
(ATR) at location M.
RWT 21641 Replace address, with tag. Address

portion of (U) replaces address portion
of word at location M, without changing
the tag on the word at location M,

®

OPERATION CODES

9
Double Option

Any Class 2 operation applied to U with original F4 address
N may also be applied to R with origianl F4 address N+1 by use
of the mnemonic:

octal code

DBL 20004 Double. After operating on U with
original F4 address N, apply same
operation to R with original Fé&
address N+1.

Examples:

BAU,DBL DATA

loads the address portion of U from the location DATA and

loads the address portion of R from the location DATA +1,.

STO,DBL - *ANS

stores (U) through the codeword at location ANS and stores

(R) through the codeword at location ANS +1.

Use of the +2 store option with DBL stores (U) with (ATR) at
location (B6), stores (R) with (ATR) at location (B6+1), and
increments (B6) by 1. .The +3 store option with DBL uses (B6)
for both stores and does not increment (B6).

After a double operation, the M portion of (I) contains the

final address used with R.

OPERATION CODES
10

e Class 4, B-Registers, Lights, Special Registers, Shifts

In the list below, the symbols are followed by their octal
equivalents and a brief explanation of their meanings; the
indication "a,#" means that the operation symbol automatically
causes IM bit 1 to be set to 1 (to load S with M instead of (M)),
since the operation indicated deéls with M rather than with (S).

The Class 4 mnemonics are as follows:

B-registers

octal code

a,# TSR 40000 Transfer to subroutine. Set PF to
(cC); then set CC to M.

a,# SBi 40001 Set Bi. Set Bi to M, for i=1, 2,
cees 6.

a,# SPF 40007 Set PF. Set PF to M.

a,# ACC 41000 Add to CC. (CC)+M-CC.

a,# ABi 4100i Add to Bi. (Bi)+MoBi, for i=1, 2,
e, 6.

a,# APF 41007 Add to PF. (PF)+MoPF.

ERM 00020 Enter repeat mode. Turn on mode
' light #2.

The ERM mnemonic is meaningful only when joined by a comma

to one of the above Class 4 mnemonics,

Lights
octal code
a,# SLN 42000 Sense lights on. Turn on sense lights
corresponding to 1's in M.
a,# ILN 42001 Indicator lights on. Turn on indica-
' tor lights corresponding to 1's in M.
a,# MLN 42002 Mode 1lights on. Turn on mode lights
corresponding to 1's in M.
a,# TLN 42003 Trap lights on. Turn on trapping
lights corresponding to 1's in M.
a,# SLF 42004 Sense lights off. Turn off sense

lights corresponding to 1's in M.

a,# ILF 42005 Indicator lights off. Turn off indi-
cator lights corresponding to 1's in M.

()

a,# MLF

a,# TLF

octal code

42006

42007

OPERATION CODES
11

Mode lights off. Turn off mode lights
corresponding to 1's in M.

Trap lights off. Turn off trapping
lights corresponding to 1's in M.

Note that lights corresponding to O's in M are not affected

by the above orders,

Special registers
octal code
a,# STX 43005
a,# STT 43006
a,# SFT 43007
Shifts
octal code
a,# DMR 44000
a,# DML 44010
a,# LUR 45010
a,# LUL 45020
a,# LRR 45001
a,# LRL 45002
a,# LRS 45015
a,# LLS 45062

Set X. Set the increment register to M.
Set TT. Set the to-tape register to M.

Set FT., Set the from-tape register to M.

Double mantissa right. Arithmetic
right shift of (U,R) mantissa M places.

Double mantissa left. Arithmetic left
shift of (U,R) mantissa M places.

Logical U right. Shift (U) right M
places, shifting zeros into left end
of U.

Logical U left. Shift (U) left M
places, shifting zeros into right end
of U.

Logical R right. Shift (R) right M
places, shifting zeros into left end
of R.

Logical R left., Shift (R) left M
places, shifting zeros into right end
of R.

Long right shift. Shift (U,R) right
M places, shifting (U) into R and zeros
into left end of U.

Long left shift., Shift (U,R) left M
places, shifting (R) into U and zeros
into right end of R.

octal code
a,# CRR 45055

a,# CRL 45066

a,# BCT 46000

OPERATION CODES
12

Circle right. Shift (U,R) right M
places, shifting (U) into R and right
end of (R) into left end of U.

Circle left. Shift (U,R) left M places,
shifting (R) into U and left end of (U)
into right end of R.

Bit count. Clear U; shift R right M
places; add each 1 which spills from R
one at a time into U.

T-flags ;V@ A&ﬁﬁ&@' c@aﬂnﬁﬁﬂﬂﬂ%?

t TFU 47000

ASSEMBLY LANGUAGE November,

T-flags and ITR to U. Clear U, then
bring two ITR and four T-flag bits to
U: ITR in octal (0,1,2, or 3) - bits
49 and 50, TF4-bit 51, TF5-bit 52,
TF6-bit 53, TF7-bit 54.

1966

/A\

OPERATION CODES
13

e Class 5, Logic and Fast Registers

In the list below, the symbols are followed by their octal
equivalents and a brief explanation of their meanings,.

Any Class 5 mnemonic may be followed by - or +1, to cause
storing of the final (U) at location M; by +2, storing (U) at
location (B6); or by 43, storing (U) at location M+(B6). 1In ad-
dition, any Class 5 mnemonic may be preceded by a - sign, causing
the final result in U to be complemented (before storing). The
Class 5 mnemonics are as follows:

octal code

CPL 50100 Complement. Change all 1's in U to
0's and all 0's to 1's.

XUR 54000 Exchange (U) and (R). (U)-R as (R)-U.

LDU 50410 Load U. (S)-U.

LDR 50400 Load R, (S)~-R without disturbing (U).

LTi 50410 Load Ti. (S)-Ti without disturbing
(U) or (R), for i=4, 5, 6, 7.

STF 50540 Set T=-flag. Turn on flag bit for the

T-register being loaded to cause in-
direct addressing in F1l and F3. Mean-
ingful only if adjoined to LTi by comma.

SUR 53000 Shuffle S, U, and R. (U)~-R then (S)-U.

ORU 50010 Or to U. Logical or for each bit posi-
tion: (U)=0 and (S)=0 results in (U)=0;
otherwise, (U)=1 as result.

AND 50314 And. Logical and for each bit position:
(U)=1 and (S)=1 results in (U)=1; other-
wise, (U)=0 as result.

XTR 50020 Extract. For each bit positioni.
(Sy-U if (R)=1, (U) unchanged if (R)=0.
SYD 53220 Sjmmetric difference. For each bit

position: (U)=(S) results in (U)=0;
(U) #(S) results in (U)=1.

SYS 53120 Symmetric sum, For each bit position:
(U)=(S) results in (U)=1; (U)#(S) re-
sults in (U)=0.

OPERATION CODES
14

e Class 6, Input-Qutput

In the list below, the symbols are followed by their octal
equivalents and a brief explanation of their meanings; the
indication '"a,#" means that the operation symbol automatically
causes IM bit 1 to be set to 1 (to load S with M instead of (M)),
since the operation indicated deals with M rather than with (S).

For detailed explanations of reading, printing, punching,
plotting, and magnetic tape operation, see the Rice Computer Manual.

The Class 6 mnemonics are as follows:

Paper tape

octal code

(3

a,# RTR 60000 Read triads. Read 1 to 18 triads
from paper tape into U.
a,# RHX 60100 Read hexads. Read 1 to 9 hexads from
paper tape into U,
- PHX 60400 Punch hexads. Punch 1 to 9 hexads
N from (S) onto paper tape.
PH7 60500 Punch hexads with 7th hole. Punch 1

to 9 hexads, each with a 7th hole,
from (S) onto paper tape.

PTR 60600 Punch triads. Punch 1 to 18 triads
from (S) onto paper tape.
inther "Read" mnemonic may be followed by - or +1, storing (U)
at location M; by +2, storing (U) at location (B6); by +3, storing
(U) at location M+(B6); by +40 to turn on IL& (mantissa overflow)

if there is no tape in the reader.
Console typewriter

octal code

TYP 60700 Type. Type (S) as 18 octal digits on
. console typewriter,

Printer
octal code
a,# PRN 61110 Print numeric. Print, using first 32
B characters of print wheel, from print
g matrix beginning at location M; space

N one line after printing.

OPERATION CODES

15
octal code
a,# PRA 61210 Print alphanumeric. Print as above,
using all characters,
a,# PRO 61310 Print octal. Print as above, using
characters 0-7 only.
SPA 61010 Space. Advance printer paper one line.
SP2 61020 Space, format 2. Advance printer paper
to next 1/22 page mark,
SP3 61030 Space, format 3. Advance printer paper
to next 1/11 page mark.
SP4 61040 Space, format 4, Advance printer paper
to next 1/6 page mark.
SP5 61050 Space, format 5. Advance printer paper
to next 1/3 page mark.
SP6 61060 Space, format 6. Advance printer paper
to next 1/2 page mark.
PAG 61070 Page restore. Advance printer paper
to next new page.
DLY 61000 Printer delay. n successive executions

of DLY will delay the machine for at

least n-1 tenths of a second and not

more than n tenths of a second.)
LROOO 0l Guae a{}a:\,e,a_,.«;ffia»-‘:fz" (ﬁj““f Qoen 25 D

. . ot f - A Oty 67 KAy fat
Magnetic tape Qﬂv@m)ﬂﬁﬁd“&ﬂ'iMWﬁigék%a&W:’“~““ﬂﬂﬂ”hiwa

octal code

a,# WDi 64i00 Write data on MT unit i; i=Z(for 0),
1, 2, 3.
WMi 64120 Write marker from last 8 bits of (S)
on MT unit i; i=Z(for 0), 1, 2, 3.
a,# RDi 65i00 Read data from MT unit i; i=Z(for 0),
1, 2, 3.
SMi 66100 Search for marker in last 8 bits of
(S) on MT unit i; i=Z(for 0), 1, 2, 3.
RWi 66i01 Rewind tape on MT unit i; i=Z(for 0),
1, 2, 3. :
BCK 60040 Backward. Perform operation in back-

ward direction.

NST 65004 No store. Do not store to memory.

-

This is meaningful only for read MT

orders,

OPERATION CODES

N
16
“Search is overlapped with computer operation, but next order to
searching transport will hang until search is complete.
Oscilloscope and strip chart plot
octal code
PLT 67000 Plot on oscilloscope or strip chart.
ADV 67700 Advance movie film,
./—\\
\/"I

OPERATION CODES
17

e Class 7, Analog Input, Shifts, Delays

Any Class 7 mnemonic may be followed by - or +1, to cause
storing of the final (U) at location M; by +2, storing (U) at
location (B6); or by +3, storing (U) at M+(B6). This class deals
with various instructions used in conjunction with operation of
the analog-to-digital converter,

The Class 7 mnemonics are as follows:

octal code

WAT 71100 "Wait. Machine will wait until the next
pulse from a crystal-controlled 1 kc.
pulse generator before exiting Field 2.

LS1 72010 Special fast arithmetic shifts of

LS2 72020 douPlg—lenth (UfR), left if S expoPent

positive, right if S exponent negative.

LS4 72040 Shifts are 8 bits at a time. LSi in-
dicates i shifts of 8 bits. These
shifts are principally used in unpack-
ing converted data., The mnemonics may
by combined to get different length
shifts: LS4,LS1 would give 5 shifts
of 8 bits (total: 40 bits). These
shifgs do not pass through the expo-
nents of U or R nor through the sign
of R, but do shift into the sign of U.

MCN 72110 Manual conversion. An A-to-D conver-
sion of the channel specified by (S)
will be performed.

ACN 72364 Automatic conversion. Six conver-
sions from channels 1 through 6 will
be performed.

Conversion results will be packed into U as follows: The 8
bits (sign plus 7 bits) resulting from each conversion will be
packed into the mantissa with the bits resulting from the first
conversion farthest to the left and the bits resulting from
last conversion in the right-most 8 bits of U. The U exponent
will be set to 77. The R mantissa is used.

There are sixteen channels into the converter. The channel
to be converted is specified by the right-most 16 bits of S.
etc.

Channel 1 corresponds to Sm Channel 2 to Sm

477 467

()

OPERATION CODES
18

In addition to the formal store options, operations may be

performed with the 72xxx orders as follows:

72xxx + 400
72xxx + 200

72xxx + 4

(S) will be sent to U before per-
forming any other operation,

(S) will be cleared and a 1 sent to

S .

m&47

(s) will be logically shifted 1 to the
left each time (U,R) is shifted 8 to
the left, Notice that this feature
can be used to sample consecutively
numbered channels automatically.

9

OPERATION CODES
19

e Summary of Operation Codes

The accompanying chart summarizes the Field 2 mnemonics avail-
able in APl and AP2., 1If an operation code is followed by the symbol
"@", the corresponding mnemonic causes IM bit 1 to be set to 1.

The symbol "-" following an operation mnemonic of class 1, 2,

5, 6, 7 causes a final store of U to M.

The symbol "-" preceding a class 5 operatién mnemonic causes
a final logical complement of U,

For more than one operation mnemonic in an instruction, the
octal codes will be combined by a logical OR. 1In most cases,
mnemonics are separated by commas, In class 0, the tésts are
separated by "+" for "ANY", by "x" for "ALL", The mnemonics "POS"
and "NEG" are compound "ANY" tests and the mnemonics '"PNZ" and

"NNZ" are compound "ALL" tests.

®

OPERATION CODES

20
SUMMARY OF OPERATION CODES
CLASS 0
HTR 00000@ IF(ANY)HTR 00000@ IF(ALLYHTR 04000@
TRA 01000@ IF(ANY)TRA 01000@ IF(ALL)TRA 05000@
SKP 02000 IF(ANY)SKP 02000 IF(ALL)SKP 06000
IMP 03000 IF(ANY) JMP 03000 IF(ALL) JMP 07000
PSN 00100 ZER 00010 TGi 00001
MOV 00200 EVN 00020 NTG 00004
EOV 00300 SLN 00030@ NTi 00004+i
NSN 00500 NUL 00040 i=1,2,3
NMO 00600 NZE 00050
NEO 00700 0DD 00060 POS 00110
SLF 00070@ PNZ' 0010
NEG 00510
NNZ 00550
CLASS 1 CLASS 2
ADD 10000 FAD 10400 STO 20001@ RPL 20301
SUB 10100 FSB 10500 FST 20041 RPE 20701
MPY 10200 FMP 10600 RPM 21001
DIV 10300 FDV 10700 | gig 21288 RPR 21401
BUS 14100 BSF 14500 L 20100 RPA 21601
IMP 10220 VDF 16700 e 20300 RPI 21501
IDV 13300 RWT 21641
VID 16300 BMU.20700
yiD 20300 BIU 20200 STi 20010
CLA 21700 i-1,2,3
o rovos 26 100l
CLASS 4
TSR 40000@ SLN 42000@ DMR 44000@ _GLASS 5 .
SBi 40001@ ILN 42001@ DML 44010@ LDR 50400
SPF 40007@ MLN 42002@ LDU 50410
ACC 41000@ TLN 42003@ fgi 228;88 LTi 50410
ABi 4100i@ SLF 42004@ ThE 4a009% 1=4.,5,6,7
ERM 40020 MLF 42006@
-] T io00va LRS 45015@ SUR 53000
F=ltoees LLS 45062@ XUR 54000
BCT 46000@ STX 43005@ CRR 45055@
CPL 50100
AND 50314
SYD 53220
CLASS 6 SYS 53120
RTR 60000@ PRN 61110@ WDi 64100 XTR 50020
RHX 60100@ PRA 61210@ WMi 64120
PHX 60400 PRO 61310@ RDi 65100 CLASS 7
PH7 60500 SPA 61010 NST 65004 e
PTR 60600 SPi 61010 SMi 66100 WAT 71100
i-2 6 RWi 66i01 ACN 72364
TYP 60700 PAG 61070 BCK 60040 MCN.72110
$ O LSi 72010
PLT 67000 A La L, i=1,2,4

ADV 67700

OPERATION CODES
21

The tables on this page summarize the options available in
SETU (Field 1), AUX (Field 3), and ADDR+MOD (Field 4). In the

tables

A indicates the full length special registers Z ,U,R,5,T4,T5,T6,T7
specified in the second triad by 0,1,2,3,4,5,6,7.

B and Bi indicate the short index registers CC,B1,B2,B3 ,B4,B5,B6,
PF specified in the second triad by 0,1,2,3,4,5,6,7.

I and M indicate the number formed in the address field of the
instruction. (M) indicates the contents of the memory lo-

cation numbered M.

Exceptions are R-Z, 10 in field 3 and I or |Zl, 20 and =-I or -|Z|,
30 in field 1. R-Z has the result that R is cleared to Z. I or
]Zl has the result that an integer 1 goes to U. -1 or -|Z| has

the result that an integer -1 goes to U.

lst Triad Field 1 lst Triad Field 3
(SETU) (AUX)

A 0 B 4 u-A 0 U-Bi 4
-A 1 -B 5 R-A 1 R-Bi 5
|A] 2 |B] 6 Bi+l 2 Bi-1 6
- A 3 -|B| 7 Bi+X 3 I-Bi 7

st Triad Field 4

(ADDR+MOD)

™y o M 4

- (M) 1 -M 5

o)y | 2 M| 6

-y | 3 -|M| 7

O

—

C

PSEUDO-ORDERS

Pseudo-orders govern the process of APl assembly and facili-
tate the handling of blocks of various types of data within APl

programs, Pseudo-orders do not exist in AP2,

e ORG and END

All programs to be assembled by APl must be started by an
ORG (origin) order and terminated by an END order.

The function of ORG is to initialize the assembly process,
to identify the program which follows, and to determine whether
it is to be assembled in relative or absolute final form. The
ORG order is preceded by a "cr" and an "uc" or "1lc" punch (up-

per or lower case).

A relativized program will run anywhere in memory. If an

order in location P refers in Field 4 to location Q, it is through
a Control Counter reference of the form CC+(Q-P)-1. A relativized
program that will load under SPIREL control is generated if the
LOCN field of the ORG pseudo=-order is not blank; the ADDR field
must be blank or zero in this case., To assemble a program to
load with codeword at address N (octal) the ORG pseudo=-order
has the form

N ORG

| cr | 1st tab 2nd tab

To assemble a program to load symbolically with name S (5 or fewer
characters) the ORG pseudo-order has the form
S ORG
cr | 1st tab 2nd tab

To assemble a program to load as the Ath element of the Bth element

... 0f array K the ORG pseudo-order has the form

K,...,B,A ORG
| cr lst tab 2nd tab
Here A,B,... are octal numbers; K is the codeword address or name

(i

.) PSEUDO-0ORDERS
C:J 2

(as above) of the array to which the program belongs. As many as
five levels may be specified, All control words are provided for
the loading of the program as the designated array element,

A relativized program is also produced if the ORG pseudo-order
has zero ADDR field and blank LOCN field. This form is only
appropriate if the self-loading option is to be used during assembly.
The self-loading tape produced will load with the LOAD switch be-
ginning at the address in B6.

An absolute program will run only at the specified memory
location. Field 4 reference to location Q is made directly. An
absolute program is generated if the ADDR field is not blank or
Zero; the LOCN field must be blank or zero. To assemble a pro-

‘gram to load at address M (octal) the ORG pseudo-order has the

form
ORG M
. | cr lst tab 2nd tab | 3rd tab
The program will load with the LOAD switch if the self-loading op-
tion is used during assembly; otherwise it will load under SPIREL
control.
The END order has the form
END cr cr
cr l1st tab 2nd tab
where "END" must be immediately followed by two (or more)
carriage returns,
Neither ORG nor END cause any words to be generated in a
program,

()

)

PSEUDO-ORDERS

3
e EQU
The EQU (equivalence) order gives a numeric equivalent for
a symbol or equates one symbol to another. The order has the form
L EQU M
[cr | lst tab l 2nd tab 3rd tab

where L (in LOCN) is the symbol defined by the pseudo=-order, SETU
is blank, and M (in ADDR) is either absolute or a symbol whose
value has previously been defined through its appearance in the
LOCN field of another order., L is assigned the value M, If M
is a 5-digit octal code, the symbol L may appear in the OPN field
of any order following the EQU order; L will be treated as an

operation code and will be replaced during assembly by the octal

‘code for which it stands. No words are added to the program

being assembled due to an EQU.

-~ ' PSEUDO-ORDERS

RN 4

e BSS and BES

Either of these orders inserts a block of zero words into

the body of the program., BSS (block started by symbol) and BES
(block ended by symbol) have the form

L XXX M
| cr | 1st tab | 2nd tab 3rd tab

where L (in LOCN) is blank or symbolic, SETU is blank, and M (in
ADDR) is absolute. M is the number of zero words to be inserted.
If L is symbolic, it is assigned as if the LOCN field had been
associated with the first (BSS) or last (BES) word in the block,

PSEUDO-ORDERS
5

e BCD, FLX, REM

These orders deal with alphanumeric data and have the form

L XXX M
cr | 1st tab 2nd tab 3rd tab

where SETU is always blank, The operation mnemonic must be fol-
lowed by a "tab" character, and after that all characters (in the
ADDR field M) are retained, 9 characters per word. Any occurrence
of the '"cr tab tab tab" sequence to continue the character string
is replaced by a "space'". For BCD (binary coded decimal), each
character is converted to a corresponding printer hexad and the

words are stored into the program being assembled; if L (in LOCN)

is symbolic, it is assigned as if associated with the first word

stored., For FLX (flexowriter), all codes (including case shifts,
etc.) are preserved without conversion and the words are stored
into the program being assembled; L (in LOCN) may be symbolic as
for BCD. For REM (remarks), L (in LOCN) must be blank; this
order is used only to obtain printed comments in the program list-

ing, and no words are stored into the. program being assembled.

PSEUDO-ORDERS
6
e DEC, OCT, and HDC
The DEC (decimal), OCT (octal), and HDC (hexadecimal, i.e.

base 16) orders are used for inserting numeric data into the body
of the program. They have the form

L XXX M

lcr |1st tab 2nd tab 3rd tab
where L (in LOCN) is blank or symbolic, SETU is blank, and M
(in ADDR) consists of a list of one or more octal or decimal
numbers, If L is symbolic, it is assigned as if associated with
the first number in the list. Each number must be separated from
its successor by a comma, and each will be stored into a separate
word in the program being assembled. Continuation lines should
not be used; for long lists of numbers, several DEC or OCT pseudo-
orders in succession may be used to produce a continuous block
of data. An octal number consists of one to 18 octal digits. A
decimal integer cdnsists of one to 14 decimal digits; a floating
point decimal number, of one to 14 significant figures and a
decimal‘point. A hexadecimal number consists of one to 13 hexa-
decimal digits (0, 1,...,9, a, b, ¢, d, e, f). It may be 14
hexadecimal digits if its value is less than or equal to

3EfffffffFEELE,

.

/

7

PSEUDO-ORDERS
7

o REF

The REF (reference) order defines a single cross-reference
word in the program being assembled., All REFs for a program must
appear immediately after the ORG order, before any code for the

program., The form of a REF order is

NAME REF CONTENT
cr | 1st tab 2nd tab | 3rd tab
or
NAME REF *CONTENT
| cx lst tab 2nd tab | 3rd tab

Each REF must contain a location symbol, the name used to address
it in the code for the program. The ADDR field of the REF speci-
fies the content of the cross-reference word: a string of charac-
ters containing only upper case letters and numbers which will be
converted to printer hexads, filled to 5 with '25' hexads or
truncated to 5 as appropriate. If the cross-reference word is
to contain an indirect addressing bit (for a vector, matrix or
program), this is denoted by '*' before the hexad string, with no
intervening spaces or punches. TIf k REFs appear in a program, the
first will be at location =(k-1) of the final program, ..., the v
kth at location 77777 (-0). The punched output of the final pro-
gram will be followed by a control word to set the initial index
of the program to -(k=-1). When the program is 1oaded, execution
of the control word to set initial index to =(k-1) will cause
SPIREL to operate on each of the k cross-reference words as
follows:

1) make an entry in the Symbol Table (ST) of the 5 hexads

in the cross-reference word;
2) insert the corresponding Value Table (VT) address in
the address field of the cross-reference word,.

Indirect reference in the assembled program through the REF then
causes addressing of the item with name in ST, the value in VT for

a scalar or the codeword in VT for a vector, matrix, or program,

PSEUDO~-ORDERS
8

For a double operand, such as a complex scalar or non-
scalar, two cross-references must be used and these must appear in
the order of the parts of the operand. The name of the operand
is associated with the first part, and the second part is named
"ditto", which is printed '«eecee'! but typed '#####'. If A is

a complex scalar its cross-references might appear as

AREAL REF A
ATIMAG REF e
cr lst tab | 2nd tab 3rd tab
where '«—e—e<' is typed '#####'. It may be that one of the

cross~-references is never referred to in the code; this is the

only case where an unlabelled REF may be used, but two REFs

must be given,

MACRO-ORDERS

e Application

Macro-orders are available in the APl assembly language.

This facility allows the coder to define parameterized sequences

of code and have these substituted in his program during assembly.

Since a code pattern may thus be written only once for more than

one occurrence in the program, a number of advantages are offered:
-~ Symbolic code for the program is shorter;

-- code for the program is less prone to error because fewer
instructions are prepared;

-- the program is more easily changed because a single change
in a macro definition will take effect in all occurrences
at assembly;

-~- the program is more readable because single macro names
appear in the code for operations which actually require

sequences of machine instructions,

A macro-order is a general name which has been defined by the

programmer to represent one or more valid APl instructions, Then,

at each subsequent call of the macro-order, these instructions

are inserted into the assembled program. Any order included in

the macro-definition may contain a parameter in one or more fields;

such a field may be changed each time a macro-order is called by

specifying a different value for the parameter at each call,
Example. Suppose in an APl program there existed the follow-

ing code:

CLA ALPHA

FAD B6+1,U—Th
) STO GAMMA

CLA B6

FAD BETA ,B6+1

STO B6

CLA ALPHA

FAD BETA ,U—R

STO GAMMA

i

MACRO-ORDERS
2

O

The programmer could have saved himself the effort of writing

the repetitious sequences of instructions by defining a macro-order

called SUM with four parameters as follows:

S UM MACRO ADONE+ADTWO-TOTAL ,AUX
CLA ADONE
FAD ADTWO ,AUX
STO TOTAL
MEND

Then, having defined the macro-order SUM, the programmer

could call it in his APl code, using different parameter values
at each call:

SUM ALPHA ,B6+1, GAMMA ,U-T4
S UM B6,BETA,B6,B6+1
Y, :
L/, S UM ATLPHA ,BETA ,GAMMA ,U-R

The instructions assembled would be identical with those

originally written by the programmer, but the repetitious code

would not appear in the program.

e

MACRO-ORDERS
3

@ Definition

A macro-definition specifies a set of instructions, gives the
set a name, and determines which fields (if any) are to contain
parameters. The macro-definition consists of three parts: (1) the
MACRO pseudo-order, in which the LOCN field gives the name of the
macro-order and the ADDR field gives the list of parameters; (2)
the set of instructions to be represented by the macro-name; (3)

the MEND pseudo-order, ending the macro-definition,

(1) The MACRO pseudo-order may or may not include a list of

parameters and must be one of the following forms:

NAME MACRO PARA ,PARB,...,PARZ
| cr | 1st tab | 2nd tab | 3rd tab

NAME MACRO

| crx | 1st tab | 2nd tab

The name of the macro-order may be any valid APl general name,
This is its dnly appearance in the LOCN field; it is written in
the OPN field at each call of the macro. If the macro-order has
parameters, they are listed in the ADDR field of the MACRO pseudo-
order., A parameter name is any valid APl general name, and is
separated from the next parameter name by one of the following
special characters:

; = - + - X / ()
The last parameter is followed by a carriage return; if more than
one line is required, the 'cr tab tab tab' sequence follows (but
does not replace) the separating character at the end of the first
line, Note that if parentheses are used, they must be used in
pairs., In this way meaningful notation may be employed in the list

of parameter names; for example,

COMP MACRO RATE ,TIME ,DIST ,TOTAL

)

MACRO-ORDERS
4

could also be written

COMP MACRO RATE (TIME) -DIST ,TOTAL

or

COMP MACRO RATEXTIME=DIST-TOTAL

(2) Any reasonable number of instructions may be represented
by the macro-name; generally, a lengthy set of instructions will
best be coded in closed subroutine form rather than in the open
form generated by a macro-order. Any valid APl instructions except'
pseudo-orders may be included, Symbols which have appeared in the
ADDR field of the MACRO pseudo-order are parameters and are subject
to the special rules described below; all other symbols are treat-
ed in accordance with the usual APl conventions. Orders within a
macro-definition may conform to the rules for instruction content,
or they may include parameter names which are then subject to the

rules below,

LOCN: Symbolic LOCN fields which are not parameters may be
used within a macro-definition, but such symbois are not meaning-
ful outside the set of instructions comprising the macro-defini-
tion; they may be referenced only by other orders within the set.

A symbolic LOCN field which is a parameter name must be given a
different value at each call of the macro-order; these values

may then be addressed by orders outside the macro-definition. Note,
however, that orders within the macro-definition may reference LOCN
symbols which appear elsewhere in the program, including those

defined by pseudo-orders,

SETU: A single parameter name may appear in SETU, with or

without the minus and absolute value signs normally permitted in
this field. All values taken by this parameter at subsequent
calls of the macro must then be valid SETU symbols or octal equiv-
alents, Note that if a - or I ‘ sign is included, it is effective

regardless of whether another - or | | sign is used with a SETU

MACRO-ORDERS

5

symbol as a parameter value at a subsequent call; such inflection

signs are combined by a logical 'or', If, at a given call, a SETU
parameter value is omitted, it is replaced by the octal code '0O1'

(do not change U).

OPN: Multiple parameter names are permitted in OPN to allow
flexible coding of Class 0 tests, Class 2 tag orders, etc. These
parameter names may be combined with the special symbols such as
-, +, X, etc., normally permitted in this field. 1In the case of
multiple parameters, values need not be specified for all parameters
at every call if the resulting code is valid. ©Parameter values for
OPN may include any valid OPN symbols or octal codes; the special

symbols -, 4+, X, etc, may also be used as part of parameter values.

ADDR+MOD: This field may consist of a single parameter name,
which is to assume a value equivalent to any valid ADDR+MOD form
(e.g., *%ZETA, B1+B2+1, M+B6); or the field may include several
parameters, provided the values they assume at any given call re-~-
sult in valid code (for example, SYMB+BREG+NUMB might become
BETA+PF+3 or *ALPHA+B2+1); or one or more parameter names may be
combined with other symbols and/or numbers which are to remain the
same at each call (such as NAME+Bl+1l, which might become ABC+B1l+1
or XYZ+Bl+1l). A parameter value may be omitted entirely at a
given call if such an omission does not destroy the validity of
the remaining code. The special symbols such as %, a, -, and | |

may appear either with the parameter name or as part of the para-

meter value, and are combined by a logical 'or'.

AUX: This field may consist entirely of a single parameter
name; if so, the value assumed by this parameter must be a valid
AUX octal code or symbolic equivalent (e.g. U-T4, Bl-1, etc.).
Alternatively, either or both of the fast register symbols (and
also I and X) may be represented by parameter names, provided that
only valid combinations are used for parameter values (for example,

B1-X and I-T4 are not permitted).

O

MACRO-ORDERS
6

TAG: The customary TAG symbols (TGl, TG2, TG3) may appear
within a macro-definition, or this field may contain a parameter
name for which one of the above symbolic values will be substituted

when the macro-order is called,

(3) The MEND pseudo-order which terminates the macro-defini-

tion is as follows:

MEND
cr | 1st tab 2nd tab

More than one macro-definition may appear within a given
program, provided each is bracketed by its own MACRO and MEND
pseudo-orders., The same parameter names may be used in separate
macro-definitions without causing confusion, but they must not be
used as symbols elsewhere in the program. A macro-definition may
appear at any point in a program; it generates no code at this
point, and transfers around the macro-definition are nbt needed,
The only restriction is that a macro-order must be defined before
it is called. One macro-definition may not appear within another,
but a previously defined macro-order may be called within the

definition of another macro=-order,

O

MACRO-0ORDERS
7

® Call

After a macro-order has been defined, it may be called by
writing the name of the macro-order in the OPN field of an instruc-
tion; if the macro-order uses parameters, their values for this
particular call are listed in the ADDR field of the same instruction.
Parameter values for a macro-order are listed in the same order as
the list of parameter names in the MACRO pseudo-order of the corre-
sponding macro-definition., Parameter values are separated by
commas; the list is terminated by a cr, and the 'cr tab tab tab'
sequence following a comma may be used to continue the 1ist onto
a second line., Certain parameters may be omitted at a given call;
in this case, two adjacent commas (with or without spaces between
them) or a comma followed by a cr indicate an omitted parameter.,

A macro-order will usually be called at several different points

in a program. Any call may have a symbolic LOCN field, but

no two calls may have the same symbolic LOCN field. The LOCN
symbol is assigned to the first order of the set of instructions
represented by the macro-order, unless the LOCN field of this order
contains a parameter name for which a value is specified at the
current call; in this case, the parameter value takes precedence.
Note that several orders may replace a single macro-order; hence
relative addressing around a call must be used with care,

At each call, the sequence of parameter values must correspond
to the sequence of parameter names which appeared in the macro-
definition, but the values assumed by the parameters will usually
differ from one call to another., A parameter value may consist
of any string of characters which, when substituted into the macro-
definition at each occurence of the corresponding parameter name,
will produce valid APl code for the field in which it occurs. 1If
the call lies within another macro-definition, a parameter name
from the outer macro-definition may be used as a parameter value

for the inner macro-call,

®

e Examples
Suppose an APl
Bl

Bl

B3

B3

MACRO=-ORDERS

program contains the following code:

SB1
LT4
S?l
SB3
LTS5
SB3

B2 ,U-B2
*MATR1
B2,U-B2

B4 ,U-B4
*MATR2
B4 ,U-B4

This could be written by defining a macro-order such as

BREGS
BA

BA

MACRO
SBA
LTJ
SBA
MEND

and calling it as follows:

BREGS

BREGS

Another example of a macro-

STORE
| TKEG |
BMOD

where the call

would produce
| T4

B3

MACRO
OPN ,TAG
RPA ,WTG
MEND

STORE

STO,ST2

RPA ,WTG

BA ,BB,SBA,LTJ,MATRI
BB ,U-BB ’
*MATRI
BB ,U-BB

B1,B2,SB1,LT4,MATR1

B3 ,B4,SB3 ,LT5 ,MATR2

definition might be:

TREG ,0PN ,TAG ,SYMB ,BMOD
SYMB+BMOD ,I-BMOD
SYMB-1

T4 ,STO,ST2 ,ALPHA ,B3

ALPHA+B3 ,I-B3

ALPHA-1

8

C

MACRO-ORDERS
9

and the call

STORE -T6,FST,B6,B1
would produce
- |16 | FST B6+B1,I-B1
Bl RPA ,WTG B6-1

All of the preceding examples are crowded with parameters in
order to demonstrate the versatility and flexibility of macro-
orders., In actual practice, many instances will be found where
only one or two symbols vary at each repetition of otherwise iden-
tical blocks of code. Here the saving in programming time and in
reducing the likelihood of introducing errors when copying lengthy
sections of code will prove substantial, For example, the follow~-

ing block of code might occur repeatedly in a control program link-

ing various subroutines:

LITES MACRO SUBR
CLA SL
RWT RESET
SLF 77777
TSR *SUBR
SLF 77777

RESET SLN (Z)
MEND

Once defined, the macro-order "LITES'" could be called at
each point in the program where a transfer to a subroutine occurs.,
By specifying the particular subroutine as a parameter value of the

macro=-order, one order could be written in place of six each time.

A macro-order using no parameters at all would be useful, for

example, in reversing the indexing of a matrix:

MACRO-ORDERS
10

TRANS MACRO
B1 SB1 B2 ,U-B2
LT4 *MATR
B1 SB1 B2 ,U—B2
MEND

At each call, the macro=-order "TRANS" would cause T4 to be

loaded with the desired element of the transposed matrix MATR,

As noted above, one previously defined macro-order may be
called within the definition of another, producing a set of
"nested" macro=-orders. In the following example, such a set of
nested macro-orders is used to multiply two matrices and store
their product as a third matrix,

The outermost macro=-order MULT has as parameters the codeword
addresses and dimensions of the matrices involved; MATA has NROW
rows and L columns, MATB has L rows and MCOL columns, and the pro-
duct matrix MATC has NROW rows and MCOL columns, Within the
initialization and storage operations performed by MULT, a second
macro-order PROD is called; its definition uses two of the same
parameters used by MULT and it performs the actual arithmetic and
indexing operations required for the matrix multiplication. Both
these macro=-definitions are assumed to be embedded in a larger
program in which numerous matrices of varying dimensions must be

multiplied together.

)

230

1 PROD
| LOOP

definition
of
inner macro

i
L
MULT
OUTER
INNER
definition —>
of

outer macro

call of _J
inner macro

-

B2

B2

B1

T4

Bl
B3

T5
B2

Bl

ORG

APl instructions

o
.

MAGRO

SB2

LT4

SB2

SB1

FM P

FAD

SB1
IF(NZE) TRA
MEND

MACRO

SB1

SB2

SB3

PROD

STO
IF(NZE) TRA
SB1
IF(NZE) TRA
MEND

M?LT

.
.

APl instructions

o
.

MULT
MULT

APl instructions

o
.

END

MACRO-ORDERS
11

MATA MATB
B3 ,U-B3
SMATA

B3 ,U-B3

B3 ,U~B3
*MATB,B1-1
T5 ,U-T5

B3 ,U-B3
LOOP

MATA MATB MATC ,NROW MCOL,L
NROW

MCOL

L,U-T5

MATA MATB

*#MATC,B2-1

INNER

B1-1

OUTER

A)B :C 35’337

M1,M2,M3 , %P *Q %

G,H,J)ZJZ’A:“

ASSEMBLY PROCEDURE

An APl program is assembled by exercising option #6 in the
PLACER system.

Assembly output on the printer consists of error messages,
progfam listing, and symbol table. These are.discussed below.,
Assembly also provides a punched paper tape which contains the
assembled program to be loaded under SPIREL control or with the

LOAD switch., Assembly options are also discussed below,

Error indications., An APl error indication is produced by

apparent errors in syntax or sequencing., The type of error and
its location are given by a message:
ERROR IN [F] AT CR NO [N]
where F is the name of the field in error
and N is the placer listing carriage return number of the line
containing the error.
If a single instruction is continued onto more than one line, the

carriage return number for the last line will pertain to the entire

instruction.

Assembled program listing. Four columns are printed, giving:

(a) The symbolic location (if any exists).
(b) The location count, relative position of the word in the
v program, in octal.
(c) The instruction in octal, broken into fields, with tag.,
7 (d) The symbolic address (if any exists),
Locations not assigned by the coder are assigned by the assembly
program beyond the code for the program being assembled. These
appear with their names below a row of asterisks in the program
listing., A name may be one supplied by the coder, as 'A' in the
case
STO A
where 'A' never appears in a LOCN field. A name may also be one
supplied by the assembly program for long octal or full 1length

decimal numbers referenced in ADDR, as in the cases

ASSEMBLY LANGUAGE May, 1967

TN

()

ASSEMBLY PROCEDURE

2
AND 77777 0000 7777 00000
or . CLA d3.0
or ADD d412697

Specifically, the names assigned to numbers by the assembly pro-
gram are '<0000A', '<0000B',... in order of occurrence in the pro-

gram being assembled.

Symbol table. The table of symbols is printed out in seven

columns giving information relevant to the symbols defined in the
program:
(a) The relative position in the table.
(b) The symbol.,
(¢) A number (usually 0) which determines the type of ob-
ject for which the symbol stands.
(d) The equivalent assigned to the symbol (5 octal digits),
unless the symbol is a macro name or a macro parameter,
(ej A number (usually 1) which indicates reference din the.
program to the symbol. A number 3 denotes a symbol
which appears in a LOCN field but not in an ADDR field,
so this may be an unnecessarily defined location in the
program., A number O appears on macro names and macro
parameters and on symbols given a numeric equivalent.
(f) An 18 digit octal number, The first 5 digits indicate
the line at which an equivalent was assigned,
(g) A number which indicates how (if at all) the equivalent
was assigned:

O: by appearing in the LOCN field of an order,.

l: by appearing in the LOCN field of an EQU pseudo-order
in which the address was symbolic (see section on
pseudo-orders).,

2: by appearing in the LOCN field of an EQU pseudo-order
in which the address was numeric (see section on

pseudo-orders).

ASSEMBLY PROCEDURE
3

Assembly Options. If only option #6 of PLACER is requested,

the stop
(1) : 06 HTR CcC

occurs, In addition to sense lights 14 and 15 which are turned
on automatically, other sense lights may be turned on for special
forms of output.

SLY9 on: Print with double (instead of single) spacing.

SL11 on: Do not punch assembled program.

SL13 on: Punch self-loading tape. The tape produced will
load by using the LOAD switch on the console. An absolute program
will load to the origin specified. A relativized program will
load to the setting of B6. These program forms are discussed under

the ORG pseudo-order.

- CODING EXAMPLES

@ Storage Exchange

This program STEX handles dynamic storage allocation in
SPIREL. If Bl = codeword address of array and B2 = length of
array upon execution of STEX, space is taken, and Bl = first
word address of block upon exit. A more detailed explanation of
the use of this program may be found in the SPIREL literature.

The remarks in the program serve to explain the program's opera-

tion.

Lines Commen ts

2 This program has codeword address 154.

6 +2, store to B6 option on class 5.

13 EQU'ed name in field 4; only the first 6-hexads
of any name are retained.

25 Decimal integer constant in ADDR; 'a' bit is
generated automatically due to shift order in OPN.

37 Simple store option '-' on class 1 arithmetic
order; store is to fast register T6.

46 R is cleared to zero in AUX by R - Z, not Z - R.

60 Increment of CC in AUX causes a skip.

65 -1 in field 1 sets U to the integer -1.

100 Only AUX is used here; no operation is perform-
ed in OPN.

101 I - B3 means final address to B3 in AUX.

110 More tham two B-mods in field 4.

131 Store ATR to memory in OPN, compound mnemonic.

137 +3, store to B6 + M option in OPN.

155 Control counter is incremented by contents of
X register in AUX, causing a jump.

174 Long octal constant is used in ADDR and is stored

at bottom of program.

(i

- TN

Lines

224

227-230

231

232-240

CODING EXAMPLES
2

Comments
T7 is restored from value stored on the B6-list.
Labelled long octal constants out of code sequence.
The first will be right-adjusted, filled with lead-

ing zeroes to 18 octal places.

Binary coded decimal psuedo-order generates two
words of hexads here.

Equated symbolic names.

154

alvea

()

3Iv-3

3Iv-4

3lvk3

b/11/76¢€

T7

N

— NN N

N -

T7
F5

F3
Fa
Pi

11.32
OR3
REM

LT7+2

TRA

SAU+2

LDR

LLs

sAU

SAJ
IF(ZER)TRA
IFINUL) TRA

REM

CLA
[FINUL)TRA
CRL

LUR

LU
IFINUL) TRA
DR

1F{NUL)SKP
AB4

AB4

SAU

AU
IF(NE~)SKP
ADD~»

~PA

AND
IF(NUL)TRA
sT)

ADO

cAU+P

TRA

DR~

LLs

=AU
iF(PQe)sKP
TRA

LR3

sAY

5TO
IFINyL)TRA
RPA

]PA

3AU
IF(NZT)SKP
TRA

ADD -
[FINZF)TRA
CLA

TRA

REM

STEX FOR SFIRFL

12B6+]
a%3AVE ,UsR
X136+
STIRAG
d13,U-TE
FIRSTEX»U-TS
al1sU-Tu
REJIRGIR+Z
TAKE

IMACTTVATE SPACF ADDRESSEZD BY

BloUsT7

I VESsU+34
cd131R+33
c?41U+35
31UJ+B%
GTVER
MASK?2

T7

B3,CC+|
b3<l
a33+12U-+R
a34

1=

T4

et

Ma3KY .
GTVES3
FEYI-T-A
a33=]ry~81
a33sBé+1
GIVElsR=7
B1sR=By

Gl 32U=pPF
d34=12PF+|
TSIR=7
GTVE4
Ccl13284=)
=23TORAG, [=B
b4

Lr+]
c3,CC+]

o TJIRAC

a3zl

T4

TA<E
Ba<1,P]-]
GIVEl1R=7Z
o5=211+B%
GQIVE3sJ+31

ATTIVATE BLOCK NF LENGTH Rz+|

PAGE

NI E WY —

b/ r764
TAK® e
7
Té
7
7
TAK* | T4
TAK*-2 R5
7o
[}
TAK* 3 =
T4
PR3
REQKG Fé
REQ~G|
=6
REQ™ 32
By
1
REQ-&3
REQ~Gu
£3
REQ™3E =
REQGE 7
)
REQ~E7 Fy
7
F3

1137
IF(ZEP)TRA
BAU
IF(PQa)sSKP
TRA
woP
LOR
LL3
LF(POe)SKP
TRA
5T
LR3
IF(ZE2)TRA
5TO
RPA
IF(ZER)TRA
TRA

RE4

ML N

STX

SR3

TRA

CLA

CRL
1FINZE) TRA
5833

TRA

CLA
RPASUWTS
AND
IF(NZr)TRA
A3

RPA
AB4rIERM
CLAIWTG+3
TRA
CLASWTG+3
SURPLPOR+3
IFINUL) TRA
50114
IFINYL)TRA
LUl

UL

aM
[FIPSMXZER)TRE
ADY

RWT
IFINZE)TRA
AU
IF(NE~)SKP
ST XK
IFINZm)SKRP
TRA

D0

L3

IFINyL)TRA
HU3

TRA

ATAKE 1 R+Z
a32+ 12 J-T7
T7 .
ATAKE s =81
'd_7'U-0T6‘*'-\4.
*STORAG,1+B3
als
T7sU=R35
R=TIRG
£3,33+]
o!32R=+34
TAKE3
BI3+B2s [34
STIRAR
ATAKe 1R+7
ATAKE 2 =851

PAGE 2
74
7=
7€
77
100
101
102
103
104
10F
106
107
11e-
111
11?7
112
114

w[Te ACTIVE RLOCKS TN LQw ADDRFS<«eS

0Ll)00rJ=T7
AR -1
®TIRSTEX, I »R4
RTORG7

* 34 U35
dl32R+31

KT IRG=
E3+BI+]s] -8By
~TIRGA
a3l3+3¢

LY

MASK
REIRG2) B3+
cliB4—-
Ch+1aR |+
6|fl;l~|-uE5
D381~
~rTIRG7
EhasB4+]
chaBL4+]
KTIRGR,R -]
MASKZ20R+35
Cr+l
a3)CC+|
43,85+

G35

LT+ 1aR5+)
d33=-11y=+35
bBS=-1
RZIRG4,R3+|
a342CCH+X

T4

e JoPF
A¥LASTEX
R=JIRGR

o4

dldsU->d|
~ZIRGH
ald|+84, [«R4
KIZIJIRE7,U-B6

116
117
120
121
127
123
124
128
12¢
127
130
131
132
1373
134
13%
1 3A
“137
140
141
147
143
144
145
146
147
150
151
157
153
154
158
156
157
180
161
162
163
164
165
166

4711764 (1.3?2

REQ¥.38

REO739

REO~10

REO® |

ATA%E

MAS |
MAS~2
NOT*

2

XCW"
SAyV*-
UNSAVE
STOYAG

FIRSTEX

LASTEX

T7
T4
PF

R
T6

PF

T4
R
Pl

T7
PF

MLF
IF(NN7)SKP
ADD~
IF(SLF)sKP
TRA
CLA
BAU
SLN
TSR
SLF
LOR
CLA
wOR
IF(NZF)sKP
TRA
CLA
LUR
CLA
1F (NUL) SKP
APF
RPA
TRA
IFINZF)TR?
TRA

LR3
RPL
5TX

IF(ZF2,NTr) TRA

T7
ABs

JCT
oCT
3CD
£ QU
cQJ
£ QU
=QJ
£QuU
£ QU
=Qu
e ND

04200+U=36
T3

T4

07002
KZORG®
012024010000000000
AMOTE s J-T7
07202
*XCWD
019202

G ReB 4
Bl4sUsR5
MASKZ 1 J=PF
a4+ 134+
xTIR11,UB3
B+l
a?72U=31
C1+PF s y-pF
Lr3F =1

]

Lo+
REIR|D
TAKE]»R=7
TAKE2sU+B7

a1

STJIRAG
ad%36~1,U-T7

& <INSAVE,Ré=|
Ba=1sUaR]
a7777/5U-CC

47007000
777777777740077777
K=IRGANIZATION

133

1235

138

137

179

i1

ek

PACGE

3

167
170
171
172
172
174
175
17¢
177
200
201
20?7
203
204
20F
206
207
210
211
27
212
214
2|&
216
217
P20
221
222
223
224
22%
P2¢
227
230
231
237
233
P34
23%
23k
237
240
24
247
243

PRORRAM 154
STEY FOR SPIRFL

INACTIVATF <PACE

GIVE)

GIlvE?

GIVE=

GIVE®S

GlveEF

ACTTVATE RLMCK OF LENGTH B2+

TAKE

TAKE
TAKE?

| 07 50477
2 [EASR Kalola
3 on 20407
4 21 =0eo0
g 00 4Erg”
6 00 260"
7 20 2010n
10 41 o0
11 27 ~i1eogn
AUDRESSEDR RY B!
12 01 21700
13 01 0toge
L 4 01 4Frea
15 Q7 ALEron
16 45 LBn|r
17 01 Nlryn
20 Q1 BraQn
21 00 £2anyn
2e 01 1o
23 o1 &Lirpa
24 00 2f1or
2° 00 ~f1on
26 Q1 nPE|N
27 02 100!
30 44 P1AQN
21 07 0?2\
22 ol ~lng~
33 41 2000
34 44 1ONON
35 00 PC10”
26 o1 °~foon
27 00 S040!
40 0n LH0e?
4l oo ~010n
42 o1 021N
43 ot c120n
) 47 LBrF
45 0? ~0ilo"
4g 01 2roQ!
47 43 "1040
=0 44 Ve
51 44 PLEQ!
5¢ sIalialoRNolal
53 Q] Nengn
S4 o1 Oteor
35} 30 10N0!
&0 ot rinsgnr
7 o1 =tTor
60 a1 01ron
61 42 olegn
Y o0 2Ql1on
~3 ne6 "21Ln
A4 Qn rioon
65 Ny 20n0N
60 01 =Q40n
67 o0 LRngn
70 o1 MRLgn
71 o1 Mieor
72 o4 2CNOY
73 45 4BN|F
74 45 ringn
72 n=" 26r0!N

(o4
(o]¢]
61
10
76
4]

10

Co
4
06
73
(e]0]
45
(o]¢]
23
R4
00
74

0007
4400
2000
2000
4000
1000
4002
4001
400

0007
4001
4000
4000
400N
400!
000!
0000
4040

. 4O4N

4010
4020
anooe
J00n
2007
Q00!
4001
4100
4010
4010
4001
2007
4000
4020
J000
4001
4000
J400
4020
4001
aonic
J00C
4007
2000
4001
100
4001
J100
4001

4001
4004
nnonr
400!
4000
2400
4000
000
400!
4010
4000
400!
4014

02000
Col3a
7777%
Cn1oon
00017
Cotol
00000
00n70
co047

con0o
CN04
contz
0n030
cono3
ConN0y
Cole?
00007
ocoooe
77776
00"01
cooooe
00005
conos
CQ000
0015%
conou
00000
77774
coeon
77752
00noe
conlt7z
77776
¢conos
CQ00s
cont7
coloo
00000
€200
coooo
co100
Conoon
CaoN04
00004
77776
77737
7777%
7775%

colly
00001
00007
0ol s
00000
00100
contz
00007
0Qr07
nQooo
coot7
coN0!
0nnon

4/17/66 |5, 2/

SAVE
STNRAG
FIRSTE
RENRG

TAKL

CIVES

Clver
MacK?

R

D3
<
1

0 —

GIvel

Glvis

STNNAG

STNRAG

TAKS
Glvel
GIve3

ATAKFE

ATAKE

STORAG

PEO&G

TAKES

TAKE?

76
77
100

WRITE ACTIVF PLOCKS

REORG

REORC |

RENRC2

REQRG3
RENRCY

PEJQRCS
RE2RCGE

REOREG7

RENRCS

REOREGSY

REORIO

101
102
103
104
1095
106
107
110
111

14]
142
143
144
145
|46
147
150
151
152
153
154
155
156
|57
160
161
162
163
164
165
166
| &7
170
171
172
173
174
175
176

21~£0' 00 9000
e e 10 4001
~icon 41 400!
ADNPRFSSES

L2007 07 4000
43n0= 76 4000
LANOR 7k 4400
~non CO 400!
2170" 45 Q420
Lerge 51 4000
~lesn 00 400!
4LONOR 74 4017
~inor 00 400!
21700 00 4140
P1F41 CO J420
=C=14 00 100!
f1esn 23 400!
L1 00 64 4007
P1e0!' 21 J00!
4yn24 4% 4007
P1742 6] D040
~leogn 00 4001
21742 24 23020
=340 24 Q020
O1rgn &1 400!
E0t114 55 200!
f{ogr 00 4001
LEnp~ 20 4000
Lgnzn 65 4000
s4np"~ 00 4#00C
CE11N 25 400!
1ANON 45 4040
21441 00 Q04N
nese 23 400!
20100 30 4020
0B=|n 0G J000
L2AN0F 47 400N
NRNBC 00 4400
0ynonN 00 400!
=C40n 00 J02N
LEOED 4] 4000
O1n4gn .00 400!
010N 74 4022
~f1nor 46 400!
LAO0A 46 4000
néssn~ 00 J000
17"rO! 00 2000
rPn70 00 4000
2100”00 400!
21701 00 200!
210N 07 4001
L2nor 00 4000
4annponN 00 4400
Lznos 00 4000
FRAron B4 2000
170N 4%)o20
=eLON 47 Q00!
A20EN 24 4020
0ra0n 45 400!
21700 00 Q020
LEAIA 41 4000
2{70n 47 0207
ngngn 67 3000
L1r07 00 400N
2{£Q! 00 Q020
o1roN 00 4001

00100
00101
00100

04000
00000
00101
00035
coo000
00017
cono?
00001
00025
00000
¢o000
co072
0n00s
00000
0000}
0000}
cono0o0
0o0l7
00000
00000
00010
coné1
C0001
00011
00011
CON44
00001
77776
77776
77764
00000
00004
00002
0olo0P
co005%
co000n
00017
77735
00000
77770
G40C0
00005
00004
0Q00R
0o00s%
coN34
G003
oQ0c?
Cnles
0002
coli2s
00000
cooe?
00001
con07
00001
00033
00000
con00
00n01
00001
77764

STORAG
ATAKE
ATAKE

FIRSTE
RENRG7
PEORG2
RENKRGe

MASK |
RENRG3

RENRG7Y

RECRGS
MASK?

RENRG4

LASTEX
RENRGE
RENRSG|

RENKGY

RENRGY
«0000A
NOTE
XCWD

G
MASK?2

FEOR1]

RENRIN

REAR! |

ATAaKF

MASK 1
MARK?
NOTE

W K 0

R

(SN B |

WWWwwwwwwwww
J
CUIFWN—0ONOUF

WWwwwwww
DU Bw
OF Wwv—0

375

W
i)
~

350
341

343
3uy
343
346
347
3590
3%
372
353
354

<000CA

177
200
201
202
203
204
205
206
207
210
211
212

213

SAVE
STIRAG
FIRSTF
RFORG
TAKE
GIVF|
GIVES
GYVE2
MASK?2
MASK |
GIVER
GIVF4
ATAKE
TAKF |
TAKE2
TAKE?R
REQRG7
RFEORG!
REORG?2
REQRGE
REQRG3
REORG4
RFORGR
LASTEYX
REORGS8
RFORGY
«n00NA
NNTE
XCWD

G
REQR| O
REQR1
UNSAVE

(ole ke He oo NeNe s Nolo o o s o No Jo Rolle Jo o e No No Jo Neo NoNe o No Ro Yo Xo B

o4
00
26
0?
41
00
07
47
00
77
51
40

00

Oinsn
nynonr
LEA =
20201
43c0=
nTOLL
Stu7n
Llror
aleTaYolal
77777
Li=ge
4?:0:

0fP40

| 3¢
100
10y
Xl
A
12
SE
e
21A
an?
27
(4
2~
7?
72
7¢
142
|0nF
112
137
122
124
126
[P
181

2'1

16

00
(o]0)
07
66
41
40
00
77
14
65

[R R e ko Rl o IS S R e Yo X

4001
4001
4000
2000
4500
4400
2100
4000
4000
7400
5405
3957

J000

77677
77671
00017
00100
77776
co137
77776
77774
co000
77777
55071
£2525

00000

TAKE!
TAKE?
STORAG

UNSAVE

2430000000000000
2450000000000000
2460000000000€00
1240000000000000

770000000000000

230000000000000

660000000000000

350000000000000
2350000000000000
2330000000000000

500000€00000000

630000000000000
224n000000000000
1100000000000000
1110000000000000
1140000000000000
1650000000000090
1300000000000000
135000000C000000
162000000C000000
1460000000300000
1470000000000000
161000000C00G000
247000000000000¢
174000000¢000090
2060000C00300000
2510000000000000
2370000000000000
2420000000000000
2410000000000000C
2110000000000000
2220000000000¢00
2440000000000000

[elofsNeloNoNoNooNoNoofoJoNoNoloNoNosfoNolooRoNoloNooNoNoNoNe

CODING EXAMPLES
3

o Matrix Inverse

This program computes the inverse and determinant of a real
matrix and prints an error message if the matrix is singular,.
The method used is essentially in-place Gaussian reduction as
described in "An Introduction to Numerical Mathematics", Stiefel,
E.L., 1963, page 3. Each successive pivot element is the largest
in absolute value of all the remaining choices in a given column.
The result is a compromise between speed and accuracy. An n X n
matrix is numerically singular if the ratio of any two pivot
elements exceeds 106/n. The codeword address of the matrix to be
inverted is in T7 on entry, the inverse is stored as USTAR
(codeword address 10), and the determinant is output in T7. If

the matrix is singular, T7 = 0 on exit.
Lines 11 to 36:

The fast registers are saved, the input matrix is copied if
necessary, internal constants are computed, the row codewords are
labelled, and DET is initialized.

Lines 37 to 61:

The next column is scanned for the largest element, the
largest and smallest pivot are stored and tested.
Lines 62 to 101:

The exchange algorithm is now applied to USTAR, the non-
scalar accumulator in Genie and the pivot element is multiplied
into DET.

Lines 102 to 113:

The two appropriate row codewords and their back references
are exchanged ifvnecessary.
Lines 114 to 151:

The columns of the final inverse matrix are now sorted as
necessary due to non-diagonal pivoting.
Lines 152 to 157:

This section of code causes printing of an error message.

11

12

15-16

35

41

46

66

106

127

154

160

162-165

CODING EXAMPLES
4

Comments
This is a symbolically named program, INV.

Cross-reference words for named items referred
to by INV.

Extra carriage returns and a remark in the code
sequence.

Use of +2 store option in operation field, store
to B6.

Minus inflection in SETU, compound test in OPN,
use of EQU'ed name in address field. The 'a' bit is
not required since TRA gives this inflection auto-
matically.

EQU'ed name in address field, and REF'ed name
in address field.

Decimal constant in address field will be stored
at the bottom of the program.

Absolute value inflections in SETU and ADDR, and
indirect addressing specified by '%*' in ADDR.

'>' codes as a store to M, here MAXP; '+1' in
OPN is equivalent.

Enter repeat mode option on set or add to
B-register orders.

Use of more than one B-modifier in field 4,
Bl + PF + M (M = 0).

Reset X register from number originally stored
on B6-list.

The address part of this instruction or M was
replaced by the contents of PF at the instruction
on line 13. Anything in () is ignored in assembly.

A decimal constant is defined and is stored at
EPSLN.

'2Z'" with OCT causes zero to be stored at these
locations.

Lines
166-171

173-174

CODING EXAMPLES
5

Comments

EQU psuedo-orders assign numeric values to names .

The END pseudo-order terminates the code but
generates no instructions. It is followed by two
carriage returns.

@

br11/6€

INv

MCOFY
ERPR

ROWSTO

INVIP

SCAN

L00”1

-B4

R3
T4

T5
P4
T4
P&
Bl

16, 172

ORG

REF
REF

REM

BAU+2
IF(ZER,EQV)TRA
RPA

BAU
IF(ZER)SKP
TSR

5TQ

STO

CLA

CRL

CPL

FMP

vDF

STO

LDR

LLs

LRS

STO
IF(Ppe)SKP
TRA

LDR

STQ

STX

sB2
IF(PO<)SKP
LT6

AB1
IF{PN7)TRA
IF(ZER,EQVITRA
LTS»
IF(ZEP)TRA
IF(PN7)SKP
STJ

LT~
LF{ZER) TRA
IF(NN7)SKP
5T)

CLA

FDV

LF (NE=) SKP
TRA

LT4

LTS

oV

FMP -~
SB3sEPM
FMP =

SR2

CIF(ZER) UMP

LTS
se2

xMCOPY
*«ERRP

INVIT7) » USTAR

x236+1
a*SAVF)U=R
PF3AVE ,RsZ
T7,R-B3
a'ISTAR, I+B
a«MCOPY,yU-B?
avINP

aMAXP
E1sU-B}
ad]5sR-By4
az

TWwd4s7

ES3LN
a=RROR
p1+1sR3+]
a415sU-B5
a415
a3|+1,Bl+1
a3y

aRJIWSTI

dls OsUsPF
anzT
a7,U=Tg
arFsI1-+81

| «JSTARI

%')STAR,U-E3
a77776sU=T7
aSCAN
daSINGLR
MAXP, UsTy
aFIRST

T=

aMAXP

MINP

aSTEST

T5

aMINP

MAXP

MINP
ERIORIRZ
asINGLR
~41: 02yJ-8]
»JSTAPsR<B2
TSaUT4
DETIB2P+]
a335,U~Tk
*JSTAR,B3-1
adPFsU=B1
T7sB4~-1
®!'|3TAR

433

PAGE

1

brs11/66
L0oo*"2
T5
R2
Py
T7
B3
R3
R
B3
TEST FF
HUNT
7
B3
Pz
Bl
LAST
Rz
ouT
FF
SWAF B
EXLNOP
Fz
F
F2
F;
Bl
FIx
BS
R
FF
SINGLR b4
PFSAVE 1
7
EPSLN
TWO47
ERRUR
MIN®
MAXF
DET
USTAR

160 12

5B

FMP

sB1

FAD»
IF(PN7)TRA
IF(PN7)TRA
SB4

CLA

IFINZFE ySKP
TRA

CLA

LDR=»

5T

5T

STO
IF(PN7)TRA
6873

LDR

LS
IF(ZER)SKP
IF(PN7)TRA
iF(ZER)SKP
TRA

TRA

sB2
IF(PN7)TRA
TRA

STX

LT7

oB1

LDR

882

LDR

SB2

3TO
IF(PN7)TR
CLA

DR

LLS

CRR

STO

LDR

LLS

LR3

5TU

TRA

sBi

TSR

SPF

TRA

STO

TRA

DEC

ocT

ucT

UcCT

OCT

OCT

£QU

axT7

%1)STAR
ad4+|

% JSTAR,B2~-]
aLlorP?
al_JorP 1
axTesU+B3
USTAR»U-81
a”F
aTESTIPF-]
B1+PFay-82
B1+B3,[+33
a32sR=32

a3 |+PF,1+B3
a32,PF =]
aTNvLP
ald4s [=32
B1+B3

ad15
dR2:B3=1
AHUNT

al33+|
4SAAPIB3+1
arIxXsU-PF
32«1,]+83
aquNT

A% JUNSAVE
a%3g=-1,Bg~1
LETs2U-CC
a34s,U-PF
®!JSTAF
a33,U+83
*'JSTAR

43 3,U+B3

%)3TAR)B|~1
aTXLoopP
PF+B3
F=+B2
ad15sU=R
ad|s
aPF+83
PE+B2

ad15

adls
4°F+B7?
aLAST»U=31
aUSTAR,U-B2
axSTEX

&l Z)JU-.BI
A¥TRPRIB|+]
adeET

andT
1700020 0

052000000000000007

— NN

PAGE

2

142
L 44
L4F
14¢
147
130
131
152
133
154
135
136
157
160
161
1562
162
164
165
166

STEYX
SAVE
UNSAVE

A

o

b/1176¢ |6-|?4

£QU
£QU
EQU

£ND

PAGE

3

167
170
171
177
172
174

N

PRORAM

MCcPY
ERPR

INV

77776
77777

INVIT7) » USTAR

ROWSTO

INVLF

SCAN

FIRST

STEST

LJoP!

LooPr

Wh—C N UFWNn—

h2=6=
Lbpye

”010°
ni2yn
21601
2100
ngnin
bﬂoop
2000!
20001
21700
LEAGA
RC]OA
16600
18700
20001
Fg4on
wBng»
hFOlq

> 20001

02110
n{oon
EQuon
20n0!
Lcialel
40r0?
nELLN
RQupn
L4100
08150
a3 icila)
5Nu5|
negn
[al B N-Yal
26001
Frug!
ciegn
ressn
Iviale}l
21700
10700
Oazln
(ol Kalolal
=0h4ﬁ
ceus)
10700
17601
Lgrg=
100"
[olalel
[k IaB Kol
=0451
LOrgP
Leno!
10e00
L elale]]
10401
rE15n
08150
LrnQL
21700
rPrgn
riron

77
15

26
10

83
71
42
00
00
41
54
00
00
00
00
23
45
(o]}
2]
ol¢
00
47
00
06
71
00
43
07
o]¢]
00
04
00
00
ol¢}
00
00
00
00
00
GG
10
00
41
52
04
2e
(o]
63
41
b4
00
00
(o]¢
(o]¢
(o]0
62
00
00

41

(o]
67

J400
7400

Qoon
4400
Q001
0000
4000
4401
4001
4001
20072
4000
4000
Q00!

3001

4001

00072
4000
4000
4002
4020
4001
2001
400!
4000
4200
2400
Q40N
4000
4001

4%00!
0001
4001
Q000
4001

0001

4001

Q000
4001

Q00!

200!

J001

4001

1001

J400
2000
2001

4040
Q400
4200
q000
0400
4040
4400
J400
4020
J400
4001

400!

4400
J000
4200
400!

00000
00000

7777%
00136
00140
00007
ooolo
77767
00143
00143
00000
00017
o000
00134
00132
00133
00001
oonit7
co017
0000
00000
77771
0n130
colek
00007
Co000
ooolo
oopolo
77776
77773
00104
cotls
00002
€0N0s
cotlz
ootlo
00002
00006
00105
00105
o103
C0101
00070
00103
oonlto
00005
00N77
00000
0p0lo
00000
000G7
co0lo
00000
00007
0o0l10
00001
0p010
77777
77765
00006
00010
conoo
onnos

L/11/66 L6014

SAVE
FFSAVE

USTAR
MCOPY
MINP
MAXP

TWO47
FPSLN
ERROR

ROWSTO
~0N0NA
DET

USTAR
USTAR

SCAN
SINGLR
MAXF
FIRST

MAXP
MINP
STEST

MINF
MAYP
MINP
ERRUR
SINGLR
«0NGC0A
USTAR
PET

USTAR

USTAR

USTAR
USTAR
LonF2
[elol|
USTAR

TEST

~—

®

LAST

N — = — — —

|
!
!
Ourt l
!
1

SWaAP 121
Exi.ocP 122

SINGLR P42

PFCAVE |44

EPaLM 150

TWO47 151

ERRQF 15¢

MINP 153

MAXP 154

DET 159
2 P AN

«0NOrLA 156

MCQPY
ERPR
SAVE
PFSAVF
USTAR
MINP
MAXP
TwO47
EPSLN
ERROR
ROWSTO

W) — = =

J) Vv

LWwwwwuwww w ww

5]

CUF WU—ONOUF

o1 ='7¢en
01 SC40!
43 000!
02 F00Q!
43 2000!
47 NPFI50
a1 &40nQR
01 FO040n
00 4Eng?
01 na2no
43 0¥ 1BN
42 raelr
o1 nloor
4y 010oN
01 4000°
42 CF1Bn
o1 fleon
01 43ng=
47 EQ470
41 408001
q1 =Cupon
42 LQOQ7
0? =C401
42 4007
02 000!
41 CE15BN
Q1 1700
0l Fou4Qon
o1 48re”
o1 tEpB"
al ~tno!
.01 SQs0n
01 4Erg?
45 LE®M =
02 PCro!
47 C0logr
Q0 L0nO!
Q1 «CrQn
20 40007
o1 clegn
00 2uco!
o1 fjeor
03 ni7ze
06 ~0non
00 "trorn
foJalalolalola
00 congn
o0 ~Qron

o1 rcilor

0 77776
o 77777

D000 00000
a
E

4¢
73
5c
73
67
oG
7c
00

€3
00
00
23
47
73
00
00
66
40
47
00
43
0
43
61

00U
00
00
oc
oV
00
00
00U
00
00
4]

b
00
41

21

00
00
by
00
00
00
00
00

00

—— et e b = (D) = (O e

0207
901?
4004
4207
4004
4001
4020
Q012
4000
4004
4001
4010
4001

400!
4004
400!
4400
4500
Q001
4020
Q400
4010
J400
4010
4400
4001

J210
2204
4000
4000
4210
Q204
4000
4000
4204
4001

4000
4400
4000
4401

400!

4001

2000
0000
Qo000
000
2000
0oon

0000

00000

Co00o

00000

00000

00non

77722 INYLP

00n00

00000

conlty

00000

77772 HUNT

00001

00006 SWAP

00021 FIx

77776

777664 HUNT

o157 UNSAVE

77776

00034 PET

co000

onotn USTAR

60000

co0l10 USTAR

co000

Coclo USTAR

77771 EXLUOP

o000

Co0Go

co0l7

0p0l17

Co000

Corvo

00c17

0oCti7

0ocoo

77751 LLAST

ooclo USTAR

00135 STEX

0oeco

77631 EFRPR

0000Cé DET

77745 cuT

00000

Cn00o0

00000

00000

00Noo

0onGo

00000

20000000000020
3000000N000000

17400000097000000
152000000030 0000
1720000000000000
1650000000000000
1670000C000C0C00
1610000000000000
1570000000000000
163000000N0000000

PE0000060000000

D00 OCOLDOCOOOOO

®

3?7
330
33|
332
373
334
335
336
337
340
341
342
343
344
345
346
3u7
350

«N000A
DFT
INVLP
SCAN
STNGLR
FIRST
STEST
LNOP |
LNaP2
TFST
HUNT
SWAP
FIx
LAST
auT
UNSAVE
EXLOQP
STeX

e JoRs NoNoloReRo Ne s Jo e e oo Ne Yo Neo I

156
|=E
27
=]
162
ug
Lk
er
£y
103
175
17]
138
114
116#
127
177
128

[RN o I U U UPA S D US

1770000000000000
1710000000000000
350000000000000
370000C00000000
1500000000000000
500000000000000
S400000000G00000
660000000000000
720000000000000
1110000CCNT0Q000
1130000000000000
1270000000000000
1430000000000020
1220000000000000
1240000000000000
1750000000000000
1200000000000 00
1730000000000600

OOCOO0OO0OO0O0OO0CO0DULOUCOOO!

)

4r20/6¢

INV

L77776
L77777

Ll

Ltz

L42

L4e

L&0

L4

P3
T4
5
Fu4
Ty
Fu
Pl

75

14, 39

oR3

REM

KEF

REF

SAU+2
01310

RPA

BAU
IF(ZER)SKP
TSR

ST)

sTI

CLA

CRL

cPL

FMpP

vDF

5T)

LDR

LLS

LRS

STD
IF(PQDc)SKP
TRA

LDR

ST

STX

SBR2
IF(Po=)sKP
LTs

AB |
IF(PN7)TRA
o1310

LT5»
IF(ZER) TRA
IF(PNy7)sKP
5T

LT6¢
IFIZER)TRA
IFINN7)8KP
sTO

CLA

FDvV
IF(NEr)gKP
TRA

LT4

LTS»

FDV

FMP«

40023

FMP -

582
IF(ZER)JMP
LTS5+

sB2

5B

FMP

581

BACK=TRANSLATION
*1C0OPY

* o SRR
77775236+
a®]36*UJ+R
Ll44sHe7
T7,R-"3
a1dsl-+31
x_777765U+B?
L1353

L1354
BraUs¥]
170R+%4
az

L1351

L130

L132
Bl+lar3+
17,U*H5
17
Blelaty+]
a3y

L7
L136sliaPF
L1135
TrJ=T=
PEyI-lty
110l
*1QsU*33
77776 U=T7
L3

aL 142
L1542 Ty
L4z

1=

L1134

L133

Lad

T4

L133

L1354

L1133
L132:Ks7
L1142
-L1562U=81
| JsR+32
TSsU=T4
L155sE2+
4335,U-Té
*10s873=1
PEaU-™
T7,B4~)
%10

B3

"%

*|)

gu+l

PAGE

!

V= D2 IN NE&EYY—

Lio=
Lio®

Lire

Lite
Lo

Lia!
Lie=

L13%

L4~
Llgx
Llgs

Lis®
L15!
Lis»
L1587
Llslu
Lig®
L15=

4/20/6€
F2
R4
T7

F3

F3
PF

F3
=

P
F2
FF
Pl
P2
Fe

Bl

£S5
FF

| 4. 39

FAD~
IF(PN7)TRA
IFIPN7)TRA
SRy

CLA
IF(NZF)SKrP
TRA

CLA

LNR=

STO

STO

ST
IF{PN7)TRA
SB3

LDR

LLS

IF(ZE®R)SKP
IF(PN7)TRA
IF(ZER)SKP
TRA

TRA

SRA
IF(PN7)TRA
TRA

STX

LT?7

sB1

LOR

Sk2

LDR~

382

gTI
IF(PN7)TRA
cLa

LoR

LLs

CRR

sTD

LPR

LL3

LR3

sTQ

TRA

S8

TSR

SPF

TRA

§TO

TRA

acT

ocT

oCT

ocr

ocT

gCrT

GCT

END

®10.87=)
Loy
L&)
x5y Ue"3
172Uy
aeF
L1233,PF=
PE+BlrJe3?
B1+R3+1-+37
B2,R+H2
FE+B]+[+83
B2aPF~|
L7
B4y letp
B1+B3
7
a32,82=)
L1235
a3l 3+1
L121223+)
L1135, ePF
B2=1,T+83
L1235
®137
#35e | 136ba]
L135,"eCC
BasUerF
%1
ByU-H3
®1)
BaU=H3
¥10s8B1=]
L1122
PE+B3
PC+R2
]7.U0'—"
17
PE+B3
PF+B82
17
|7
Fr+B2
L114steBy
1712U=52
x| 35
Z» JoB1
w. 77777481+
L135
Lils
032177044000000000
0%200°000000000000
0117007°0C0N00000N00
073007000000000000
G"20070CO00000 0000
0120070C00N000N0N0O0C
0101700000000 000C

PAGE

2

74
7%
76
77
1oe
191
192
103
104
(el
106
107
110
1
12
113
114
1R
1A
117
120
121
122
123
124
| 2K
12¢
127
130
13]
137
132
134
138
136
137
140
141
142
142
4L
145
1 4¢
147
130
131
132
132
154
137
1356
157
16C
161
162
162
164
| 6%
166

	Assembly language
	Contents
	Symbolic coding
	Instruction form
	Types of symbols
	Instruction content
	Operation codes
	Pseudo-orders
	Macro-orders
	Assembly procedure
	Coding examples

