
() I

I

,~ ASSEMBLY LANGUAGE

~I

J

.-. -....,

-..._. ... •

·-..

ASSEMBLY LANGUAGE

Symbolic Coding

Instruction Form

Types of Symbols

Instruction Content

Operation Codes
Class 0 ' Tests and Transfers
Class 1 ' Arithmetic
Class 2 ' Fetch, Store, Tags
Class 4' B-Registers, Lights

'
Special

Class 5 ' Logic and Fast Registers
Class 6' Input-Output
Class 7 ' Analog Input, Shifts
Summary of Operation Codes

Pseudo-Orders
ORG and END
EQU
BSS and BES
BCD, FLX, REM
DEC and OCT
REF

Macro-Orders
Application
Definition
Call
Examples

Assembly Procedure

Coding Examples

Delays

Registers, Shifts

/
I

/
.i

,,/~

____ , _____ s

SYMBOLIC CODING

The absolute machine language of the Rice Computer is described

in detail in the Rice Computer Manual. In practice, programs are

not written in the absolute language of the computer but in a

symbolic language. A language which provides symbolic notation

for instructions, or commands, that correspond one-for-one with

absolute machine instructions is called an assembly language. The

prQgram which translates assembly language into machine language

is called an assembly program.

Use of the assembly language for the Rice Computer depends on

a knowledge of the absolute machine instruction format, a familiar­

ity with the registers of the computer, and a general acquaintance

with the instruction repertoire -- all explained in the Rice

Computer Manual.

are available:

Two forms of the Rice Computer assembly language

A Pl,

A P2,

for independent use

for use within Genie programs

The corresponding assembly programs have the same names:

A Pl,

A P2,

an independent assembly program

a subset of the Genie compiler

The two assembly languages are very similar. The major dis­

tinction concerns octal and decimal numerals. In APl, all

numeric constants are assumed to be octal unless immediately

preceded by the special symbol "d", meaning decimal. In AP2, all

numeric constants are assumed to be decimal, except when octal

form is indicated by a plus sign immediately preceding the octal

number,

In the following discussions, M stands for the final number

formed in the last 15 bits of I (the instruction register) after

all specified indirect addressing and B-modification has taken

place; and if Q is any machine location, then (Q) stands for

the contents of location Q.

i

i

I

INSTRUCTION FORM

The general form of an APl or AP2 instruction and its cor­

respondence to a machine-language instruction as explained in the

Rice Computer Manual is

LOCN
\er

SETU
\1st tab

OPN
\2nd·tab

ADDR+MOD, AUX
\3rd tab

tl t2

~
TAG

\4th tab

Here "er" denotes "carriage return!t', and 11 tab" denotes "tabulate 11

on the flexowriter Jsed for preparation of input to the assembly

programs.

LOCN gives the symbolic label (if any) on the instruction.

SETU corresponds to Field 1:

then inflect (U).

bring a Hfast 11 register to U;

OPN corresponds to a Field 2 operation chos.en from one of

seven classes.

AUX corresponds to Field 3: alter a B-register, send (U) or

(R) to a "fast 11 register, send the M portion of I to a

B-register, or clear R.

ADDR+MOD corresponds to Field 4: compute the final address

M, sending M to the last 15 bits of I; load S with M

or (M) ; then inflect (S).

All fields may be symbolically coded. All fields but MOD and TAG

may be coded numerically.

If no TAG is to be specified, the 4th tab may be omitted. If

no AUX operation is to be specified, the preceding comma may be

omitted.

-
-

\J

TYPES OF SYMBOLS

Precise definitions of the allowed symbols are as follows:

Register names.

"fast'' registers:

The following symbols are used as names of

A-series Z, U, R, S, T4, TS, T6, T7

B-series CC, Bl, B2, B3, B4, BS, B6, PF

These may appear in SETU, ADDR+MOD, and AUX fields. The symbol I

may be used in SETU and AUX. The special register names may be

used

These

(')
'

in ADDR;

SL

IL

ML

TL

P2

x
TT

FT

symbols

Special

"tab",

these are

sense lights

indicator lights

mode lights

trapping lights

second pathfinder

increment register

ti t o - t a p e 11 r e g i s t e r

"from-tape" register

may be used~ as register names.

characters.

"er", and

~'-, a(APl) or f/:(AP2), d(APl), +,

(comma).

\ ' _,'

Operation codes. These include the mnemonic operation codes

in the assembly vocabulary, pseudo-operation codes (APl only),

macro-operations (APl only), and general symbols defined by the

user as operation codes with a LET (in Genie for AP2) or an EQU

(in APl). All of these areas are covered in later discussions,

General names. In AP2, a private name may be

a single lower case Roman letter

or an upper case Roman letter, followed by upper case Roman

letters, followed by lower case Roman letters,

followed by numerals.

In APl, a private name may be

an upper case Roman letter, followed by upper case Roman

letters, followed by numerals,

Spaces may not appear in names. Any number of characters may form

=

'~ I ',
"------)

(I

~

a name;

TYPES OF SYMBOLS

2

AP2 will retain the first four if lower case Roman letters

are used, the first five otherwise; APl will retain the first sixo

The following are general names in APl and AP2: B, M3, COMM, ZETA2.

The following are general names in AP2, but not in APl: b, Comm,

Zeta2. General names may appear only in the LOCN and ADDR fieldso

c

c

INSTRUCTION CONTENT

Each field of the symbolic instruction has a well-defined

form. If this form is not recognized by the assembly system, a

message is printed during assembly.

each field are as follows:

The acceptable contents of

LOCN. This field may be blank or absolute or symbolico Abso-

lute LOCN fields are permitted only when an APl program is being

assembled in absolute form (see the ORG pseudo-order discussion)

A symbolic LOCN field may contain any general name. A name may

not appear in LOCN more than once in any one program.

SETU. This field may be blank, absolute, or F, where Fis

an A- or B-series register name or "I", or any of the forms -F,

IF\, or -\F\o If SETU is blank, "U" is understood and the octal

equivalent 01 is inserted into the machine instruction. I sets

U to the integer +l;

sets U to all zeroes;

to minus zero , or a 11

Examples: Bl

If the T- flag is

addressing through Ti

-I sets U to the integer -lo Note that Z

-z sets U exponent to zero and U mantissa

ones.

\T4\ -PF -\R\ z -I

on for register Ti (i :::4 , 5 , 6 , 7) , indirect

will occur when Ti is addressed in the SETU

field. To denote this mode of addressing the *maybe used before

the register name:

I ~~Ti I - I '~Ti I
This is a symbolic convenience only, and these will be translated

as:

Ti -Ti -\Ti\

OPN. This field may be absolute or an operation codeo In

the case of conditional transfers, a symbolic operation has the form

IF(CCC)TTT where CCC represents test conditions and TTT is a mnemonic

for a transfer order. Other symbolic operation codes consist of

•A ---

i~
"--._..)

INSTRUCTION CONTENT

2

one or more 3-letter mnemonics. Special symbols such as -, +,

" ti and +i (where i is an octal integer) are sometimes permitted

(see the section on operation codes).

AUX. This field may be blank, absolute, or one of the forms

U-F, R-F, I-Bi, Bi+l, Bi-1, or Bi+X. Bi stands for one of the

B-series register names; Fis any A- or B-series register name;

I refers to the last 15 bits of the instruction register; and X

is the increment register.

be cleared to zero.

As a special case, R-Z causes R to

Example: B2+1 B3 -1 B4+X

If the T-flag is on for register Ti (i=4,5,6,7) indirect

addressing through Ti will occur when Ti is addressed in the AUX

field. To denote this mode of addressing the *maybe used before

the register name:

This is a symbolic convenience only, and these will be translated

exactly as:

ADDR+MOD. ADDR may be blank or absolute or symbolic, or the

ADDR+MOD field may consist of an octal or decimal number to be used

as an operand. MOD is either blank or one or more of the B-series

register names, connected to ADDR by+ signs. Special inflections

control the IM and IA bits as follows: IM bit 1 is set to 1 (to

1 o ad S w i th M ins tea d of (M)) whenever the s ym b o 1 "a 11 (AP 1) or "1/= ''

(AP2) appears, or whenever certain OPN mnemonics are used (see the

section on operation codes). IM bits 2 (absolute value) and 3

(minus) are controlled by the special forms -Q, \Q\, and -\q\,
where Q is an allowed ADDR+MOD symbol. The IA (indirect addressing)

bit is set to 1 whenever the symbol 11 ~~ 11 appears in this field.

If ADDR is symbolic, any A-series register name, any special

register name, or any general name is acceptable. A general name

may be followed by a relative part consisting of an integer preceded

I··~

'~

by a + or - sign.

INSTRUCTION CONTENT

3

If ADDR is absolute, any octal integer of not more than 5

digits, or any decimal integer of absolute value not larger than

32,767, is permissible. Any octal or decimal integer above these

limits or any floating point decimal number is treated as the name

of a location containing that number; storage space is reserved

for it at the end of the program. In this case, no MODs are al­

lowed, and only the absolute value and - inflections are meaningful.

All characters appearing within parentheses in this field are

ignored, so that an address field which is modified by the program

may be conveniently noted. For example, (FWA)+Bl+B2 is treated

as Z+Bl+B2. If a symbol appears in ADDR but never in LOCN, a blank

location will be reserved at the end of the program. ADDR+MOD

should not be blank;

duce a zero field.

the Z character may always be used to pro-

Examples of equivalent APl and AP2 ADDR+MOD fields are:

A Pl

COMM+lO or COMM+d8

-\A+Bl-dl2\ or -\A+Bl-14\

a ~·,z ETA

d48

-adl22+Bl

B4+B5

00500

d2.009027

777700000

30

AP2

COMM+S or COMM++lO

-\A+Bl-12\ or -\A+Bl-+141

I/: ~·,z ETA

48

-I/: 12 2 +B 1

B4+B5

+00500

2.009027

+777700000

24

The only field which may be continued onto another line is

ADDR+MOD, AUX by punching a 11 cr 11 followed immediately by three

"tabtt characters, so that continuation lines will follow under

ADDR+MOD, AUX.

/\
('
·'----!

c .. :J

INSTRUCTION CONTENT

4

TAG. This field may be blank or symbolic. If no tag is de-

sired, the 4th tab punch may be omitted. If a tag is desired, the

TAG field must contain one of the mnemonics TGl, TG2, or TG3. The

corresponding tag will be placed on the assembled instruction,

printed on the octal listing, and punched with the instruction

in checksum format.

(,,

,,,..--·.'
! \

' \ __ , ·-·

OPERATION CODES

The most common Field 2 operations have been given names in the

vocabulary of APl and AP2 for convenience in coding.

operations are fully explained in the machine manual.

All Field 2

The mnemonics

defined in this section are summarized in a chart at the end of the

section.

purpose.

These operation code symbols may not be used for any other

Other Field 2 operations may be given general names by

use of LET (in Genie for AP2) or EQU (APl), and such symbols are

then treated as operation codes throughout the program in which

they have been defined,

----- '

-

(.-..

\...__ ______ -,,I

Ii) Class O, Tests and Transfers

OPERATION CODES

2

In the list below, the symbols are followed by their octal

equivalents and a brief explanation of their meanings; the

indication 11 a,il 11 means that the operation symbol automatically

causes IM bit 1 to be set to 1 (to load S with M instead of (M)),

since the operation indicated deals with M rather than with (S).

The four unconditional transfers are represented by:

octal codes

a , it HTR 00000 Halt and transfer. Halt, setting
to M when CONTINUE is pressedo

a , it TRA 01000 Transfer. Set cc to Mo

cc

SKP 02000 Skip. Subtract (S) from (U) ; then
increment cc by 1' skipping the next
order.

JMP 03000 Jump. Subtract
increment CC by
register.

(S) from
(X) , the

(U) ; then
increment

Conditional transfers have the form IF(CCC)TTT where TTT is

one of the above transfer mnemonics, and CCC represent one, two,

or three test conditions joined by+ or X signs. Use of the +

sign indicates that the specified transfer is to occur if~ of

the conditions listed is satisfied; use of the X sign indicates

that the specified transfer occurs only when all of the conditions

listed are satisfied simultaneously. A single order may not con-

tain both+ and x signs. One condition from each of the first

three groups may be specified; or a Group IV mnemonic may be com-

bined with a Group III test as noted. If a TRA or HTR is used,

the s p e c i f i e d t es t i s ma de on (U) • I f a S KP o r JM P i s u s e d , the

specified test is normally performed on (U)-(S).

to this rule are noted below Group II.

The exceptions

' \ 1 _____;

.. ___./

Group I

oc tp 1 code

PSN 00100

-;,';
MOV 00200

EOV 00300
j'\

NSN 00500

NMO 00600
-;,~

•k
NEO 00700

-;,'(

Note that indicator lights

Graue II

o c ta 1 code

ZER 00010

EVN 00020

a , 11 SLN 00030
•l(

-;,'(•k
NUL 00040

NZE 00050

ODD 000 60

a , 11
-;,'(

S LF 00070

Positive sign. Is the
equal to O?

Mantissa overflow. Is
114 on?

Exponent overflow. Is
1/=5 on?

Negative sign. Is the
equa 1 to 1?

No mantissa overflow.
Light 114 off?

No exponent overflow.
Light 115 Off?

OPERATION CODES

3

sign bit of u

Indicator Light

Indicator Light

sign bit of u

Is Indicator

Is Indicator

are turned off when tested.

Zero. Is (U) mantissa a 11 1 IS or all
O IS ?

Even. Is bit 54 of u equal to zero?

Sense light on. Are all the sense
lights corresponding to 1 1·s in M on?

Null. Are a 11 54 bi ts of u zero?

Non-zero. Is (U) mantissa different
from zero?

Odd. Is bit 54 of u eq ua 1 to l?

Sense light off. Are all the sense
1 i gh ts corresponding to 1 1 s in M off?

*Note that sense lights are not altered when tested. SLN and S LF

tests are meaningful only with SKP or JMP orders, and in these cases

no subtraction takes place.

"';~"';~

If the NUL test is used with a SKF or JMP order, a logical compari-

son is made as follows: wherever a bit of R is equal to zero, the

."-.../

OPERATION CODES

4

bits in corresponding positions of U and Sare compared, If (U)

is identical with (S) in each of these positions, the resulting (U)

is null and the NUL portion of the test is satisfied, If the NUL

comparison is not satisfied, the resulting (U) is meaningless.

Group III

o c ta 1 code
"'k

TGl 0000 1
•:k

TG2 00002
";'\

TG3 00003
.,.

NTG 00004"

";'\

NTl 00005
";'(

NT2 0000 6
";':

NT3 00007

•k
Note that indicator 1i gh ts

Group IV

o c ta 1 code

POS 00110

NEG 00510

A + sign must be used

with a Group III test .

o c ta 1 code

PNZ 04150

NNZ 04550

Tag 1. Is Indicator Light :fl: 1 on?

Tag 2 . Is Indicator Light ://:2 on?

Tag 3 . Is Indicator Light ://:3 on?

No tag. Are Indicator Lights 1Fl,
1f2' ://:3 a 11 off?

No tag 1. Is Indicator Light 1Fl off?

No tag 2 . Is Indicator Light ://:2 Off?

No tag 3. Is Indicator Light ://:3 Off?

are turned off when tested.

Positive or zero. Is
greater than or equal

(U) mantissa
to zero?

Negative_£.£ zero. Is
less than or equal to

(U) mantissa
zero?

when combining either of these mnemonics

Positive and non-zero. Is (U) mantissa
strictly greater than zero?

Negative and non-zero. Is (U) mantissa
strictly less than zero?

A/ sign must be used when combining either of these mnemonics

with a Group III test.

C_)

C1

0 Class 1, Arithmetic

OPERATION CODES

5

In the list below, the symbols are followed by their octal

equivalents and a brief explanation of their meanings.

Any Class 1 mnemonic may be followed by__, or +l, to cause

storing of the final (U) in the location addressed by M; by +2,

staring (U) at location (B6); or by +3, storing (U) at location

M+(B6). Octal codes may be joined by a '+' to Class 1 mnemonics

for various special operations.

combination appears as

If n is such an octal code, the

mnemonic +n

mnemonic ++n

in APl

in AP2

Any floating point mnemonic may be followed by +lj (j=O, 1, 2, or

3), causing the last bit of (U) to be set to 1 (rounded) after

the operation but before storing. After floating point mnemonics

+4j suppresses normalization of the result, +Sj rounds and sup-

presses normalization. Other options are given in the machine manual.

The Class 1 mnemonics are as follows:

Fixed point

ADD

SUB

BUS

octal code

10000

10100

14100

MPY 10200

IMP 10220

DIV 10300

VID 16300

IDV 13300

VDI 17300

Add. (u)+(s)-u.

Subtract. (U)-(s)-u.

Reverse subtract. (S) - (U) -->U.

Multiply. (U)X(S)-U,R (double length).

Integer multiply. (U)x(s)-u.

Divide. Double length (U,R)7(s)-u,
247x remainder -R.

Reverse divide. (S)7(U)-u,
247x remainder ~R.

Integer divide.
remainder -R.

(U)7(S)--,U,

Reverse integer divide.
remainder ..-.R.

(S) 7 (U) -->U ,

i.
"------

Floating Point

o c ta 1

FAD 10400

FSB 10500

BSF 14500

FMP 10 600

FDV 10700

VDF 16700

code

OPERATION CODES

6

Floating add. (U) +(S) .-.u.
Floating subtract. (U)-(S)-u.

Reverse floating subtract. (S)-(U)--+U,

Floating multiply.
(double length),

(U)x(S)-•U,R

Floating divide. Double length
(U,R)7(S)-u, z47x remainder -R.

Reverse floating divide.
z47x remainder ->R.

(S) 7 (U) --+U ,

,,,----,,
\
"-----''

OPERATION CODES

7

~ Class 2, Fetch, Store, Tags

In the list below, the symbols are followed by their octal

equivalents and a brief explanation of their meanings; the indication

"a,#" means that the operation symbol automatically causes IM bit 1

to be set to 1 (to load S with M instead of (M)), since the operation

indicated deals with M rather than with (S).

Any Group I or Group II mnemonic may be followed by a comma and

any Group III mnemonic. In addition, any Group I or Group III mnemonic

may be followed by - or +l, storing (U) with (ATR) at location M; or

by +2, storing (U) with (ATR) at location (B6); or any Group I, II,

or III mnemonic may be followed by +3, storing (U) with (ATR) at

location M+(B6). Note that all Group I and Group II mnemonics clear

(ATR) unless followed by a Group III mnemonic.

The Class 2 mnemonics

Grou2 I

octal code

CLA 21700
* BEU 21000

* BMU 20700

* BLU 21400

* BRU 20300

* BIU 20200

* BAU 20100

* BNA 21600

* The "bring" mnemonics may
one portion of a word.

are as follows:

Clear and add. Bring (S) to U.

Bring exponent to u. Exponent portion
of (S) replaces exponent portion of (U).

Bring mantissa to U. Mantissa portion
of (S) replaces mantissa portion of (U).

Bring left half to U. Left half of (S)
replaces left half of (U).

Bring right half to U. Right half of
(S) replaces right half· of (U).

Bring inflections to u. Inflection
portion of (S) replaces inflection
portion of (U).

Bring address to u. Address portion
of (S) replaces address portion of (U).

Bring all except address to u. Inflec­
tion and left portions of (S) replace
inflection and left portions of (U).

be joined by commas to fetch more than

ASSEMBLY LANGUAGE November, 1966

/,,,... ,. \

'---~·

•k

Group II

a , 11

octal code
~" RPE 20701

* RPM 21001

~" RPL 20301

RPR 21401 *

* RPA 21601

RPI * 21501

STO 20001
'

OPERATION CODES

8

Replace exponent. Exponent portion
of (U) replaces exponent portion of
word at location M.

Replace mantissa. Mantissa portion
of (U) replaces mantissa portion of
word at location M.

Replace left half. Left half of (U)
replaces left half of word at loca­
tion M.

Replace right half. Right half of (U)
replaces right half of word at loca­
tion M.

Replace address. Address portion of
(U) replaces address portion of word
at location M.

Replace inflections. Inflection por­
tion of (U) replaces inflection por­
tion of word at location M.

Store. Store (U) at location M.

The "replace" mnemonics may not be combined with each other.

Group III

oc ta 1 code

STl 20010

S T2 20020

S T3 20030

WTG 20040

Groue IV

oc ta 1 code

NOP 30000

FST 20041

RWT 21641

Set Tag 1. Set ATR to 1.

Set Tag 2. Set ATR to 2 •

Set Tag 3 • Set ATR to 3 •

With Tag. Do not change ATR.

No operation. Do not alter (U) or (ATR).

Fetch and store. Bring contents of
location M to-S; thep. store (U) with
(ATR) at location M.

Replace address, with tag. Address
portion of (U) replaces address portion
of word at location M, without changing
the tag on the word at location M.

Double Option

OPERATION CODES

9

Any Class 2 operation applied to U with original F4 address

N may also be applied to R with origianl F4 address N+l by use

of the mnemonic:

octal code

DBL 20004

Examples:

BAU ,DBL

loads the address

loads the address

STO,DBL

stores (U) through

Double. After operating on U with
original F4 address N, apply same
operation to R with original F4
address N+l.

DATA

portion of u from the location DATA and

portion of R from the location DATA +l.

-!:ANS

the codeword at location ANS and stores

(R) through the codeword at location ANS +l.

Use of the +2 store option with DBL stores (U) with (ATR) at

location (B6), stores (R) with (ATR) at location (B6+1), and

increments (B6) by 1. The +3 store option with DBL uses (B6)

for both stores and does not increment (B6).

After a double operation, the M portion of (I) contains the

final address used with R.

..•. ---

(>

OPERATION CODES

10

Class 4, B-Registers, Lights, Special Registers, Shifts

In the list below, the symbols are followed by their octal

equivalents and a brief explanation of their meanings; the

indication 11 a,lfa" means that the operation symbol automatically

causes IM bit 1 to be set to 1 (to load S with M instead of (M)),

since the operation indicated deals with M rather than with (S).

The Class 4 mnemonics are as follows:

B-registers

octal code

a , lfa TS R 4 0 0 0 0

a , lfa S B i 4 0 0 0 i

a ,lfa SPF 40007

a ,lfa ACC 41000

a , lfa AB i 4 10 0 i

a,lfa APF 41007

ERM 00020

Transfer to subroutine, Set PF to
(CC); then set CC to M.

Set Bi. Set Bi to M, for i=l, 2,
0 •• ' 6 .

Set PF. Set PF to M.

Add to CC • (C C) +M ->C C •

Add to Bi. (Bi) +M ->Bi , for i = 1 , 2 ,
••• ' 6 •

Add to PF. (PF) +M-,PF,

Enter repeat mode.
light lfa2.

Turn on mode

The ERM mnemonic is meaningful only when joined by a comma

to one of the above Class 4 mnemonics.

Lights

octal code

a , If SLN 42000

a , lfa I LN 4 2 0 0 1

a ,lfa MLN 42002

a, lfa TLN 42003

a , It S LF 42004

a , It I LF 42005

Sense lights on.
corresponding to

Turn on sense lights
l's in M.

Indicator lights on. Turn on indica­
tor lights corresponding to l's in M.

Mode lights on. Turn on mode lights
corresponding to l 1 s in M.

Trap lights on. Turn on trapping
lights corresponding to l's in M.

Sense lights off. Turn off sense
lights corresponding to l's in M,

Indicator lights off. Turn off indi­
cator lights corresponding to l's in M.

(~

__ ... /

,,---
(·. ,....__.....,.

octal code

a , tfa M L F 4 2 0 0 6

a , ffa TL F 4 2 0 0 7

OPERATION CODES

11

Mode lights off. Turn off mode lights
corresponding to l's in M.

Trap lights off. Turn off trapping
lights corresponding to l's in M.

Note that lights corresponding to O's in Mare not affected

by the above orders.

Special registers

octal code

a , tfa STX 43005

a , tfa STT 4300 6

a , tfa SFT 43007

Shifts

octal code

a , 1fa DMR 44000

a , tfa DML 44010

a , tfa LUR 45010

a , :/fa LU L 4 5 0 2 0

a , ffa LR R 4 5 0 0 1

a , ifa LR L 45 0 0 2

a,ffa LRS 45015

a , /fa L LS 4 5 0 6 2

Set X. Set the increment register to M.

Set TT. Set the to-tape register to M.

Set FT. Set the from-tape register to M.

Double mantissa right. Arithmetic
right shift of (U,R) mantissa M places.

Double man~issa left. Arithmetic left
shift of (U,R) mantissa M places.

Logical U right.
places, shifting
of U.

Lo gica 1 u left.
places, shifting
of u.
Logica 1 R right.
places, shifting
of R.

Lo gi ca 1 R left.
places, shifting
of R.

Shift (U) right M
zeros into left end

Shift (U) left M
zeros into right end

Shift (R) right M
zeros in to left end

Shift (R) left M
zeros into right end

Long right shift. Shift (U,R) right
M places, shifting (U) into R and zeros
into left end of U.

Long left shift. Shift (U,R) left M
places, shifting (R) into U and zeros
into right end of R.

.-...--·· ...

\

octal code

a,# CRR 45055

a,# CRL 45066

a,# BCT 46000

T-f lags /fl I)

TFU 47000

OPERATION CODES

12

Circle right. Shift (U,R) right M
places, shifting (U) into Rand right
end of (R) into left end of U.

Circle left. Shift (U,R) left M places,
shifting (R) into U and left end of (U)
into right end of R.

Bit count. Clear U; shift R right M
places; add each 1 which spills from R
one at a time into u.

I fnlfH f)~V,J/it 'o I/ J,
T-flags and ITR to U. Clear U, then
bring two ITR and four T-flag bits to
U: ITR in octal (0,1,2, or 3) - bits
49 and 50, TF4-bit 51, TF5-+bit 52,
TF6-+bi t 53, TF7-+bi t 54 .

ASSEMBLY LANGUAGE November, 1966

.,;·-'-·.
'\., .. ,..)

. :C~ I

..

·1 (]

OPERATION CODES

13

• Class 5, Logic and Fast Registers

In the list below, the symbols are followed by their octal

equivalents and a brief explanation of their meanings.

Any Class 5 mnemonic may be followed by_, or +l, to cause

storing of the final (U) at location M; by +2, storing (U) at

location (B6); or by +3, storing (U) at location M+(B6). In ad­

dition, any Class 5 mnemonic may be preceded by a - aign, causing

the final result in U to be complemented (before storing). The

Class 5 mnemonics are as follows:

octal code

CPL 50100

XUR 5 4000

LDU 50410

LDR 50400

LTi 504i0

STF 50540

SUR 53000

ORU 50010

AND 5 03 14

XTR 50020

SYD 53 220

SYS 53120

Complement. Change all l's in U to
O's and all O's to l's.

Exchange (U) and (R).

Load U. (S)-,U.

(U) _.R as (R) ->U.

Load R. (S)-,R without disturbing (U).

Load Ti. (S)-,Ti without disturbing
(U) or (R), for i=4, 5, 6, 7.

Set T-flag. Turn on flag bit for the
T-register being loaded to cause in­
direct addressing in Fl and F3. Mean­
ingful only if adjoined to LTi by comma.

Shuffle S, U, and R. (u) '.R then (s).-,u.

Or to U. Logical or for each bit posi­
tion: (U)=O and (S)=O results in (U)=O;
otherwise, (U)=l as result.

And. Logical and for each bit position:
(U)=l and (S)=l results in (U)=l; other­
wise , (U) =0 as res u 1 t •

Extract. For each bit position·:,
(S)->U if (R)=l, (U) unchanged if (R)=O-.

• J

simmetric diffe~ence. For each bit
position: (U)=(~)- results in (U)~O;
(U) 1 (S) res u 1 ts in (U) ""1 •

Symmetric sum. For each bit position:
(U) = (S) res u 1 ts in (U) = 1 ; (U) i (S) re -
s u 1 ts in (U) =0 •

\
\ \I

---·,,,

,,,•··-,

'.,, _______.,,,

I

J

Class 6, Input-Output

OPERATION CODES

14

In the list below, the symbols are followed by their octal

equivalents and a brief explanation of their meanings; the

indication 11 a , fl=" means that the opera ti on s ym b o 1 au to ma tic a 11 y

causes IM bit 1 to be set to 1 (to load S with M instead of (M)),

since the operation indicated deals with M rather than with (S).

For detailed explanations of reading, printing, punching,

plotting, and magnetic tape operation, see the Rice Computer Manual.

The Class 6 mnemonics are as follows:

Pa per tape

oc ta 1

a , 11= RTR 60000

a , ffa RHX 60100
I

PHX 60 400

PH7 60500

PTR 60 600

. ,.

code
~'~

~'>

Read triads. Read 1 to 18 triads
from paper tape into U.

Read hexads. Read 1 to 9 hexads from
paper tape into U.

Punch hexads. Punch 1 to 9 hexads
from (S) onto paper tape.

Punch hexads with 7th hole. Punch 1
to 9 hexads, each with a 7th hole,
from (S) onto paper tape.

Punch triads • Punch 1 to 1 8 triads
from (S) onto paper tape •

"Either "Read" mnemonic may be followed by _, or +,l, storing (U)

at location }1; by +2, staring (U) at location (B6); by +3 , s to r in g

(U) at location M+(B6); by +40 to turn on IL4 (mantissa overflow)

if there is no tape in the reader.
Console typewriter

octal code

TYP 60700

Printer

octal code

a , ft PRN 61110

Type. Type (S) as 18 octal digits on
console typewriter.

Print numeric. Print, using first 32
characters of print wheel, from print
matrix beginning at location M; space
one line after printing.

t-J ,.,

oc ta 1 code

a , 1/: PRA 61210

a , 1/: PRO 61310

SPA 61010

S P2 61020

S P3 61030

S P4 61040

S PS 61050

S P6 610 60

PAG 61070

[. -----\
,, ,1

DLY 61000

{.p;)JJ oo 01,l.,
Magnetic tape

oc ta 1 code

a , I/: WDi 64i00

WMi 64i20

a ,it RDi 65 iOO

~'(

SMi 66i00

RWi 66i01

BCK 60040

NST 65004
,/''

.. ,_,)

OPERATION CODES

15

Print alphanumeric. Print as above,
using all characters.

Print octal. Print as above, using
characters 0-7 only.

Space. Advance printer paper one line.

Space, format 2. Advance printer paper
to next 1/22 page mark.

Space, format 3 • Advance printer paper
to next 1/11 page mark.

Space, format 4. Advance printer paper
to next 1/6 page mark.

Space, format 5 • Advance printer pa per
to next 1/3 page mark.

Space, format 6 • Advance printer paper
to next 1/2 page mark.

Page restore. Advance printer paper
to next new page.

Printer delay. n successive executions
of DLY will delay the machine for at
least n-1 tenths of a second and not
more than n tenths of a second.

- c::ttA,-U c ,,,-;y·,,/,r,'.,~c,,

()}, If\ -1,) r"' t,1,/,C· •. t...~~.,,1 . \.,:"

Write data on MT unit i;
1, 2, 3.

i =Z (for O) ,

Write marker from last 8 bits of (S)
on MT uni t i ; i =Z (for O) , 1 , 2 , 3 •

Read data from MT unit i; i=Z(for O)
1, 2, 3.

Search for marker in last 8 bits of
(S) on MT unit i; i=Z(for O), 1, 2, 3.

Rewind tape on MT unit i; i=Z(for 0),
1, 2, 3.

Backward. Perform operation in back-
ward direction.

No store. Do not store to memory.
This is meaningful only for read MT
orders.

~~

OPERATION CODES

16

Search is overlapped with computer operation, but next order to

searching transport will hang until search is complete.

Oscilloscope and strip chart plot

octal code

PLT 67000

ADV 67700

Plot on oscilloscope or strip chart.

Advance movie film.

L

,,..--,,
r)
G

OPERATION CODES

17

e Class 7 1 Analog Input, Shifts, Delays

Any Class 7 mnemonic may be followed by - or +l, to cause

storing of the final (U) at location M; by +2, storing (U) at

location (B6); or by +3, storing (U) at M+(B6). This class deals

with various instructions used in conjunction with operation of

the analog-to-digital converter.

The Class 7 mnemonics are as follows:

octal code

WAT 71100

LSl 72010

LS2 72020

LS4 72040

MCN 72110

ACN 72364

Wait. Machine will wait until the next
pulse from a crystal-controlled 1 kc.
pulse generator before exiting Field 2.

Special fast arithmetic shifts of
double-length (U,R), left if S exponent
positive, right if S exponent negative.
Shifts are 8 bits at a time. LSi in­
dicates i shifts of 8 bits. These
shifts are principally used in unpack­
ing converted data. The mnemonics may
by combined to get different length
shifts : LS 4 , LS 1 w o u 1 d give 5 sh i ft s
of 8 bits (total: 40 bits). These
shiffs do not pass through the expo­
nents of U or R nor through the sign
of R, but do shift into the sign of U.

Manual conversion. An A-to-D conver­
sion of the channel specified by (S)
will be performed.

Automatic conversion. Six conver­
sions from channels 1 through 6 will
be performed.

Conversion results will be packed into U as follows: The 8

bits (sign plus 7 bits) resulting from each conversion will be

packed into the mantissa with the bits resulting from the first

conversion farthest to the left and the bits resulting from

last conversion in the right-most 8 bits of U. The U exponent

will be set to 77. The R mantissa is used.

There are sixteen channels into the converter. The channel

to be converted is specified by the right-most 16 bits of S.

Channel 1 corresponds to sm 47 , Channel 2 to sm 46 , etc.

~\
1. •

·"-----..,

c)

OPERATION CODES

18

In addition to the formal store options,

performed with the 72xxx orders as follows:

operations may be

72xxx + 400

72xxx + 200

72xxx + 4

(S) will be sent to u before per-
forming any other operation.

(S) will be cleared and a 1 sent to
s

m4 7 •
(S) will be logically shifted 1 to the
left each time (U, R) is shifted 8 to
the left. Notice that this feature
can be used to sample consecutively
numbered channels automatically.

I

·~'

• Summary of Operation Codes

OPERATION CODES

19

The accompanying chart summarizes the Field 2 mnemonics avail­

able in APl and AP2. If an operation code is followed by the symbol

"@", the corresponding mnemonic causes IM bit 1 to be set to 1.

The symbol 11 --, 11 following an opel;'ation mnemonic of class 1, 2,

5, 6, 7 causes a final store of U to M.

The symbol 11-" preceding a class 5 operation mnemonic causes

a final logical complement of U.

For more than one operation mnemonic in an instruction, the

octal codes will be combined by a logical OR. In most cases~

mnemonics are separated by commas, In class O, the tests are

separated by"+" for "ANY", by "x" for "ALL". The mnemonics "POS"

and "NEG" are compound "ANY" tests and the mnemonics IIPNZ'' and

"NNZ" are compound "ALL" tests,

: !
"--.,/

SUMMARY OF OPERATION CODES

CLASS O

OPE RA TI ON CODES

20

--------------------- ------·----··--····----
HTR 00000@
TRA 01000@
SKP 02000
JMP 03000

PSN 00100
MOV 00200
EOV 00300
NSN 00500
NMO 00600
NEO 00700

IF (ANY) HTR 00000@
IF(ANY)TRA 01000@
IF(ANY)SKP 02000
IF(ANY)JMP 03000

ZER 00010
EVN 00020
SLN 00030@
NUL 00040
NZE 00050
ODD 00060
SLF 00070@

IF(ALL)HTR 04000@
IF(ALL)TRA 05000@
IF(ALL)SKP 06000
IF(ALL)JMP 07000

TGi OOOOi
NTG 00004
NTi 00004+i

i=l,2,3

POS 00110
PNZ 00150
NEG 005 10
NNZ 00550

CLASS 1 CLASS 2

ADD 10000
SUB 10100
MPY 10200
DIV 10300
BUS 14100
IMP 10220
IDV 13300
VID 16300
VDI 17300

FAD 10400
FSB 10500
FMP 10 600
FDV 10700
BSF 14500
VDF 16700

CLASS 4

STO 20001@
FST 20041

BEU 21000
BLU 21400
BAU 20100
BRU 20300
EMU 20700
BIU 20200
CLA 21700

DBL 20004

-----·----------·---------
TSR 40000@
SBi 4000i@
SPF 40007@
ACC 41000@
ABi 4100i@
APF 41007@
ERM 40020

i=l, •.. 6

BCT 46000@

TFU 47000

RTR 60000@
RHX 60100@
PHX 60400
PH7 60500
PTR 60600

TYP 60700

s LN 42000@
ILN 42001@
MLN 42002@
TLN 42003@
SLF 42004@
I LF 42005@
MLF 4200 6@
TLF 42007@

STX 43005@
STT 43006@
SFT 43007@

CLASS 6

PRN 61110@
PRA 61210@
PRO 613 10@
SPA 61010
SPi 610i0

i=2, .•. ,6
PAG 61070

PLT 67000
ADV 67700

DMR 44000@
DML 44010@

LUR 45010@
LUL 45020@
LRR 45001@
LRL 45002@
LRS 45015@
LLS 45062@
CRR 45055@
CRL 45066@

WDi 64i00
WMi 64i20
RDi 65i00
NST 65004
SMi 66i00
RWi 66i01
ECK 60040

i =Z , 1, 2 , 3

RPL 20301
RPE 20701
RPM 21001
RPR 21401
RPA 21601
RPI 21501
RWT 21641

STi 200i0
i=l,2,3

WTG 20040
NOP 30000

CLASS 5

LDR 50400
LDU 50410
LTi 504i0

i ::::4, 5 , 6, 7

STF 505 40
SUR 53 000
XUR 54000

CPL 50100
ORU 50010
AND 50314
SYD 5 3 2 20
SYS 53120
XTR 50020

CLASS 7

WAT 71100
ACN 72364
MCN 72110
LSi 720i0

i=l,2,4

(J
OPERATION CODES

21

The tables on this page summarize the options available in

SETU (Field 1), AUX (Field 3), and ADDR+MOD (Field Lf). In the

tables

A indicates the full length special registers Z ,U ,R,S ,T4,T5 ,T6,T7

specified in the second triad by 0,1,2,3,4,5,6,7.

Band Bi indicate the short index registers CC,Bl,B2,B3,B4,B5 ,B6,

PF specified in the second triad by 0,1,2,3 ,4,5,6,7.

I and M indicate the number formed in the address field of the

instruction. (M) indicates the contents of the memory lo-

cation numbered M.

Ex c e p t i on s a re R _,z , 10 in f i e 1 d 3 an d I or I Z \ , 2 0 an d - I o r - I Z I ,

30 in field 1. R-+Z has the result that R is cleared to Z. I or

lzl has the result that an integer 1 goes to U.

the result that an integer -1 goes to U.

1st Triad Field 1 ls t Triad

(SE TU)

-I or -lz\ has

Field 3

(AUX)
-...... .. ,,.,..._ .. ,._ . ..,_ -- -.-., ... ~.,..,.......,, ,,st;, ..• "'"..,.,,.-~,,,...,....,,...,.,.....,.......,,_ _ ... _,,;,,,,-.--

A 0

-A 1

IA I 2

- \A I 3

B 4 U-+A

-B 5 R-+A

I BI 6 Bi+l

-IBI 7 Bi+X

ls t Triad Field 4

(ADDR+MOD)

(M) 0

- (M) 1

I (M) \ 2

-1 (M) I 3

M 4

-M 5

IMI 6

- IM I 7

0 U-+Bi 4

1 R-,Bi 5

2 Bi-1 6

3 I->Bi 7

~
I \

0'

PSEUDO-ORDERS

Pseudo-orders govern the process of APl assembly and facili­

tate the handling of blocks of various types of data within APl

programs. Pseudo-orders do not exist in AP2.

• ORG and END

All programs to be assembled by APl must be started by an

ORG (origin) order and terminated by an END order.

The function of ORG is to initialize the assembly process,

to identify the program which follows, and to determine whether

it is to be assembled in relative or absolute final form. The

ORG order is preceded by a 11 cr'' and an "uc" or "le" punch (up­

per or lower case).

A relativized program will run anywhere in memory. If an

order in location Prefers in Field 4 to location Q, it is through

a Control Counter reference of the form CC+(Q-P)-1. A relativized

program that will load under SPIREL control is generated if the

LOCN field of the ORG pseudo-order is not blank; the ADDR field

must be blank or zero in this case. To assemble a program to

load with codeword at address N (octal) the ORG pseudo-order

has the form

N ORG

er 1st tab 2nd tab

To assemble a program to load symbolically with name S (5 or fewer

characters) the ORG pseudo-order has the form

S ORG

er 1st tab 2nd tab

To assemble a program to load as the Ath element of the Bth element

of array K the ORG pseudo-order has the form

K, ••• ,B,A ORG

er 1st tab 2nd tab

Here A,B, •.• are octal numbers; K is the codeword address or name

c ...

PSEUDO-ORDERS

2

(as above) of the array to which the program belongs. As many as

five levels may be specifiedo All control words are provided for

the loading of the program as the designated array element.

A relativized program is also produced if the ORG pseudo-order

has zero ADDR field and blank LOCN field. This form is only

appropriate if the self-loading option is to be used during assembly.

The self-loading tape produced will load with the LOAD switch be­

ginning at the address in B6.

An absolute program will run only at the specified memory

location. Field 4 reference to location Q is made directly. An

absolute program is generated if the ADDR field is not blank or

zero; the LOCN field must be blank or zero. To assemble a pro-

gram to load at address M (octal) the ORG pseudo-order has the

form

ORG M

er 1st tab 2nd tab 3rd tab

The program will load with the LOAD switch if the self-loading op-

tion is used during assembly;

control.

The END order has the form

END

otherwise it will load under SPIREL

er er

er 1st tab 2nd tab

where "END 11 must be immediately followed by two (or more)

carriage returns.

Neither ORG nor END cause any words to be generated in a

program.

.,~
I I

'---.,/'.

C:

,/-...._,
/ I

~

• EQU

PSEUDO-ORDERS

3

The EQU (equivalence) order gives a numeric equivalent for

a symbol or equates one symbol to another. The order has the form

L EQU M

er 1st tab 2nd tab 3rd tab

where L (in LOCN) is the symbol defined by the pseudo-order, SETU

is blank, and M (in ADDR) is either absolute or a symbol whose

value has previously been defined through its appearance in the

LOCN field of another order. Lis assigned the value M. If M

is a 5-digit octal code, the symbol L may appear in the OPN field

of any order following the EQU order; L will be treated as an

operation code and will be replaced during assembly by the octal

code for which it stands. No words are added to the program

being assembled due to an EQU.

,-··~
L

• BSS and BES

PSEUDO-ORDERS

4

Either of these orders inserts a block of zero words into

the body of the program. BSS (block started by symbol) and BES

(block ended by symbol) have the form

L XXX M

er 1st tab 2nd tab 3rd tab

where L (in LOCN) is blank or symbolic, SETU is blank, and M (in

ADDR) is absolute. Mis the number of zero words to be inserted.

If Lis symbolic, it is assigned as if the LOCN field had been

associated with the first (BSS) or last (BES) word in the block.

/~,

(
"------- I

c)

BCD, FLX, REM

PS E UD 0-0RDE RS

5

These orders deal with alphanumeric data and have the form

L xxx M

er 1st tab 2nd tab 3rd tab

where SETU is always blank. The operation mnemonic must be fol-

lowed by a "tab" character, and after that all characters (in the

ADDR field M) are retained, 9 characters per word. Any occurrence

of the 11 cr tab tab tab" sequence to continue the character string

is replaced by a "space". For BCD (binary coded decima 1), each

character is converted to a corresponding printer hexad and the

words are stored into the program being assembled; if L (in LOCN)

.is symbolic, it is assigned as if associated with the first word

stored. For FLX (flexowriter), all codes (including case shifts,

etc.) are preserved without conversion and the words are stored

into the program being assembled; L (in LOCN) may be symbolic as

for BCD. For REM (remarks), L (in LOCN) must be blank; this

order is used only to obtain printed comments in the program list -

ing, and no words are stored into the program being assembled.

. 1

C.>

• DEC I OCT, and HDC

PSEUDO-ORDERS

6

The DEC (decimal), OCT (octal), and HDC (hexadecimal, i.e.

base 16) orders are used for inserting numeric data into the body

of the program. They have the form

L xxx M

l Cl;' I 1st tab l2nd tab l3rd tab

where L (in LOCN) is blank or symbolic, SETU is blank, and M

(in ADDR) consists of a list of one or more octal or decimal

numbers. If Lis symbolic, it is assigned as if associated with

the first number in the list. Each number must be separated from

its successor by a comma, and eacb will be stored into a separate

word in the program being assembled. Continuation lines should

not be used; for long lists of numbers, several DEC or OCT pseudo­

orders in succession may be used to produce a continuous block

of data. An octal number consists of one to 18 octal digits. A

decimal integer consists of one to 14 decimal digits; a floating

point decimal number, of 6ne to 14 significant figures and a

de c i ma 1 po in t . A hexadecimal number consists of one to 13 hexa-

de c i ma 1 d i g i t s (0 , 1 , . . • , 9 , a , b , c , d , e , f) . It may be 14

hexadecimal digits if its value is less than or equal to

3fffffffffffff .

,,,----
,,~'

~ REF

PSEUDO-ORDERS

7

The REF (reference) order defines a single cross-reference

word in the program being assembledo All REFs for a program must

appear immediately after the ORG order, before any code for the

program. The form of a REF order is

NAME REF CONT~NT

er 1st tab 2nd tab I 3rd tab

or

NAME REF ~'-CONTENT

er 1st tab 2nd tab \ 3rd tab

Each REF must contain a location symbol, the name used to address

it in the code for the program. The ADDR field of the REF speci-

fies the content of the cross-reference word: a string of charac-

ters containing £EJ:.y_ upper case letters and numbers which will be

c=- converted to printer hexads, filled to 5 with '25 1 hexads or

truncated to 5 as appropriate. If the cross-reference word is

to contain an indirect addressing bit (for a vector, matrix or

program), this is denoted by '*' before the hexad string, with no

intervening spaces or punches. If k REFs appear in a program, the

first will be at location -(k-1) of the final program, ••. , the

kth at location 77777 (-0). The punched output of the final pro­

gram will be followed by a control word to set the initial index

of the program to -(k-1). When the program is loaded, execution

of the control word to set initial index to -(k-1) will cause

SPIREL to operate on each of the k cross-reference words as

follows:

1) make an entry in the Symbol Table (ST) of the 5 hexads

in the cross-reference word;

2) insert the corresponding Value Table (VT) address in

the address field of the cross-reference word.

Indirect reference in the assembled program through the REF then
(~-'

___ causes addressing of the item with name in ST, the value in VT for

a scalar or the codeword in VT for a vector, matrix, or program.

; .. '----./

For a double operand, such as a complex scalar

PSEUDO-ORDERS

8

or non-

scalar, two cross-references must be used and these must appear in

the order of the parts of the operand. The name of the operand

is associated with the first part, and the second part is named

"di t to" , which is printed ' ,_._,_ 1 but typed '1NNNNfa 1 •

a complex scalar its cross-references might appear as

AREAL

AIMAG

er ls t tab

REF

REF

A

2nd tab I 3rd tab

If A is

where ,,_,_,_,_,_, is typed '#####'. It may be that one of the

cross-references is never referred to in the code; this is the

only case where an unlabelled REF may be used, but two REFs

must be given.

(J

~-'

G

MACRO-ORDERS

" Application

Macro-orders are available in the APl assembly language.

This facility allows the coder to define parameterized sequences

of code and have these substituted in his program during assembly.

Since a code pattern may thus be written only once for more than

one occurrence in the program, a number of advantages are offered:

Symbolic code for the program is shorter;

code for the program is less prone to error because fewer

instructions are prepared;

the program is more easily changed because a single change

in a macro definition will take effect in all occurrences

at assembly;

the program is more readable because single macro names

appear in the code for operations which actually require

sequences of machine instructions.

A macro-order is a general name which has been defined by the

programmer to represent one or more valid APl instructions. Then,

at each subsequent call of the macro-order, these instructions

are inserted into the assembled program. Any order included in

the macro-definition may contain a parameter in one or more fields;

such a field may be changed each time a macro-order is called by

specifying a different value for the parameter at each call.

Example;

ing code:

Suppose in an APl program there existed the follow-

CLA

FAD

STO

CLA

FAD

STO

CLA

FAD

STO

ALPHA

B6+1,U-T4

GAMMA

B6

BETA,B6+1

B6·

ALPHA

BETA,U--+R

GAMMA

-~

1"-__)

MACRO-ORDERS

2

The programmer could have saved himself the effort of writing

the repetitious sequences of instructions by defining a macro-order

called SUM with four parameters as follows;

SUM MACRO ADONE+ADTWO-'TOTAL,AUX

CLA AD ONE

FAD

STO

MEND

ADTWO,AUX

TOTAL

Then, having defined the macro-order SUM, the programmer

could call it in his APl code, using different parameter values

at each call:

SUM ALPHA,B6+1, GAMMA,U~T4
•. °'

SUM B6,BETA,B6,B6+1

SUM ALPHA,BETA,GAMMA,U~R

The instructions assembled would be identical with those

originally written by the programmer, but the repetitious code

would not appear in the program.

c.,.

o Definition

MACRO-ORDERS

3

A macro-definition specifies a set of instructions, gives the

set a name, and determines which fields (if any) are to contain

parameters. The macro-definition consists of three parts: (1) the

MACRO pseudo-order, in which the LOCN field gives the name of the

macro-order and the ADDR field gives the list of parameters; (2)

the set of instructions to be represented by the macro-name; (3)

the MEND pseudo-order, ending the macro-definition.

(1) The MACRO pseudo-order may or may not include a list of

parameters and must be one of the following forms:

NAME

er

NAME

er

MACRO

1st tab 2nd tab

MACRO

1st tab 2nd tab

PARA , PARE , ••• , PARZ

\ 3rd tab

The name of the macro-order may be any valid APl general name.

This is its only appearance in the LOCN field; it is written in

the OPN field at each call of the macro. If the macro-order has

parameters, they are listed in the ADDR field of the MACRO pseudo-

order. A parameter name is any valid APl general name, and is

separated from the next parameter name by one of the following

special characters:

== + x I ()

Th e 1 a s t pa ram e t e r i s f o 1 1 ow e d b y a c a r r i a g e r e t t1,r: n ; if more than

one line is required, the 'er tab tab tab' sequence follows (but

does not replace) the separating character at the end of the first

line. Note that if parentheses are used, they must be used in

pairs. In this way meaningful notation may be employed in the list

of parameter names; for example,

COMP MACRO RATE ,TIME ,DIST,TOTAL

---------~

Ci

MACRO-ORDERS

4

could also be written

COMP MACRO RATE(TIME)~DIST ,TOTAL

or

COMP MACRO RATEXTIME=DIST-TOTAL

(2) Any reasonable number of instructions may be represented

by the macro-name; generally, a lengthy set of instructions will

best be coded in closed subroutine form rather than in the open

form generated by a macro-order. Any valid APl instructions except

pseudo-orders may be includedo Symbols which have appeared in the

ADDR field of the MACRO pseudo-order are parameters and are subject

to the special rules described below; all other symbols are treat-

ed in accordance with the usual APl conventions. Orders within a

macro-definition may conform to the rules for instruction content,

or they may include parameter names which are then subject to the

rules below.

LOCN: Symbolic LOCN fields which are not parameters may be

used within a macro-definition, but such symbols are not meaning­

ful outside the set of instructions comprising the macro-defini-

tion; they may be referenced only by other orders within the set.

A symbolic LOCN field which is a parameter name must be given a

different value at each call of the macro-order; these values

may then be addressed by orders outside the macro-definition. Note,

however, that orders within the macro-definition may reference LOCN

symbols which appear elsewhere in the program, including those

defined by pseudo-orders.

SETU: A single parameter name may appear in SETU, with or

without the minus and absolute value signs normally permitted in

this field. All values taken by this parameter at subsequent

calls of the macro must then be valid SETU symbols oTI octal equiv-

alents. Note that if a - or sign is included, it is effective

regardless of whether another - or sign is u~ed with a SETU

MACRO-ORDERS

5

symbol as a parameter value at a subsequent call; such inflection

signs are combined by a logical 'or', If, at a given call, a SETU

parameter value is omitted, it is replaced by the octal code 1 01 1

(do not change U),

OPN: Multiple parameter names are

flexible coding of Class O tests, Class

permitted in OPN to allow

2 tag orders, etc, These

parameter names may be combined with the special symbols such as

-, +, X, etc,, normally permitted in this field, In the case of

multiple parameters, values need not be specified for all parameters

at every call if the resulting code is valid, Parameter values for

OPN may include any valid OPN symbols or octal codes; the special

symbols -, +, x, etc. may also be used as part of parameter values,

ADDR+MOD: This field may consist of a single parameter name,

which is to assume a value equivalent to any valid ADDR+MOD form

(e.g., ~'>ZETA, Bl+B2+1, M+B6); or the field may include several

parameters, provided the values they assume at any given call re­

sult in valid code (for example, SYMB+BREG+NUMB might become

BETA+PF+3 or ~'(ALPHA+B2+1); or one or more parameter names may be

combined with other symbols and/or numbers which are to remain the

same at each call (such as NAME+Bl+l, which might become ABC+Bl+l

or XYZ+Bl+l), A parameter value may be omitted entirely at a

given call if such an omission does not destroy the validity of

the remaining code, The special symbols such as ~·(a, -, and

may appear either with the parameter name or as part of the para­

meter value, and are combined by a logical 'or'.

AUX: This field may consist entirely of a single parameter

name; if so, the value assumed by this parameter must be a valid

AUX octal code or symbolic equivalent (e.g. u-T4, Bl-1, etc.).

Alternatively, either or both of the fast register symbols (and

also I and X) may be represented by parameter names, provided that

only valid combinations are used for parameter values (for example, c:) Bl-X and I-T4 are not permitted),

C:

MACRO-ORDERS

6

TAG: The customary TAG symbols (TGl, TG2, TG3) may appear

within a macro-definition, or this field may contain a parameter

name for which one of the above symbolic values will be substituted

when the macro-order is called,

(3) The MEND pseudo-order which terminates the macro-defini­

tion is as follows:

MEND

er 1st tab 2nd tab

More than one macro-definition may appear wtthin a given

program, provided each is bracketed by its own MACRO and MEND

pseudo-orders, The same parameter names may be used in separate

macro-definitions without causing confusion, but they must not be

used as symbols elsewhere in the program, A macro-definition may

appear at any point in a program; it generates no code at this

point, and transfers around the macro-definition are not needed,

The only restriction is that a macro-order must be defined before

it is called, One macro-definition may not appear within another,

but a previously defined macro-order may be called within the

definition of another macro-order,

0

0

Call

MACRO-ORDERS

7

After a macro-order has been defined, it may be called by

writing the name of the macro-order in the OPN field of an instruc­

tion; if the macro-order uses parameters, their values for this

particular call are listed in the ADDR field of the same .instruction.

Parameter values for a macro-order are listed in the same order as

the list of parameter names in the MACRO pseudo-order of the corre­

sponding macro-definition, Parameter values are separated by

commas; the list is terminated by a er, and the 'er tab tab tab'

sequence following a comma may be used to continue the list onto

a second line, Certain parameters may be omitted at a given call;

in this case, two adjacent commas (with or without spaces between

them) or a comma followed by a er indicate an omitted parameter.

A macro-order will usually be called at several different points

in a program. Any call may have a symbolic LOCN field, but

no two calls may have the same symbolic LOCN field. The LOCN

symbol is assigned to the first order of the set of instructions

represented by the macro-order, unless the LOCN field of this order

contains a parameter name for which a value is specified at the

current call; in this case, the parameter value takes precedence.

Note that several orders may replace a single macro-order; hence

relative addressing around a call must be used with care.

At each call, the sequence of parameter values must correspond

to the sequence of parameter names which appeared in the macro­

definition, but the values assumed by the parameters will usually

differ from one call to another. A parameter value ~ay consist

of any string of characters which, when substituted into the macro­

definition at each occurence of the corresponding parameter name,

will produce valid APl code for the field in which it occurs. If

the call lies within another macro-definition, a parameter name

from the outer macro-definition may be used as a parameter value

for the inner macro-call.

c

(_)

0 Examples

Suppose an A Pl program

Bl SBl

LT4

Bl SBl

BJ SB3

LTS

B3 SB3

This could be written

BREGS MACRO

BA SBA

LTJ

BA SBA

MEND

and calling it as follows:

BREGS

BREGS

contains the

B2, U->B2

?'rMATRl

B2, U->B2

B4, U --,B 4

'l'cMA TR2

B4,U B4

following

MACRO-ORDERS

8

code:

by defining a macro-order such as

BA,BB,SBA,LTJ,MATRI

BB, U->BB

,'>MA TRI

BB, U ->BB

Bl,B2,SB1,LT4,MATR1

B3,B4,SB3,LT5,MATR2

Another example of a macro-definition might be:

STORE

\TREG\

BMOD

where the call

would produce

JT4\

BJ

MACRO

OPN ,TAG

RPA,WTG

MEND

STORE

STO,ST2

RPA,WTG

TREG,OPN,TAG ,SYMB ,BMOD

S YMB +BMOD , I ->BMOD

SYMB-1

T4,STO,ST2,ALPHA,B3

A LPHA+B3 , I ->BJ

ALPHA-1

i.
I

C,'

and the call

STORE

would produce

-\T6\ FST

Bl RPA ,WTG

-T6,FST,B6,Bl

B 6 + B 1 , I ->B 1

B6-l

MACRO-ORDERS

9

All of the preceding examples are crowded with parameters in

order to demonstrate the versatility and flexibility of macro-

orders. In actual practice, many instances will be found where

only one or two symbols vary at each repetition of otherwise iden-

tical blocks of code. Here the saving in programming time and in

reducing the likelihood of introducing errors when copying lengthy

sections of code will prove substantial. For example, the follow-

ing block of code might occur repeatedly in a control program link­

ing various subroutines:

LITES MACRO SUBR

CLA SL

RWT RESET

S LF 77777

TSR i(SUBR

SLF 7 7 7 7.7

RESET SLN (Z)

MEND

Once defined, the macro-order "LITES" could be called at

each point in the program where a transfer to a subroutine occurs.

By specifying the particular subroutine as a parameter value of the

macro-order, one order could be written in place of six each time.

A macro-order using no parameters at all would be useful, for

example, in reversing the indexing of a matrix:

' '-_____.!

TRANS

Bl

Bl

MACRO

SBl

LT4

SBl

MEND

B2, U-,B2

~··MATR

B2, U-->B2

MACRO-ORDERS

10

At each call, the macro-order "TRANS" would cause 14 to be

loaded with the desired element of the transposed matrix MATR.

As noted above, one previously defined macro-order may be

called within the definition of another, producing a set of

"nested" macro-orders. In the following example, such a set of

nested macro-orders is used to multiply two matrices and store

their product as a third matrix.

The outermost macro-order MULT has as parameters the codeword

addresses and dimensions of the matrices involved; MATA has NROW

rows and L columns, MATE has L rows and MCOL columns, and the pro-

duct matrix MATC has NROW rows and MCOL columns. Within the

initialization and storage operations performed by MULT, a second

macro-order PROD is called; its definition uses two of the same

parameters used by MULT and it performs the actual arithmetic and

indexing operations required for the matrix multiplication. Both

these macro-definitions are assumed to be embedded in a larger

program in which numerous matrices of varying dimensions must be

multiplied together.

,r-- MACRO-ORDERS
\ "--· _J 11

230 ORG

A Pl instructions

PROD MACRO MATA,MATB

LOOP B2 SB2 B3 , U--+B3

LT4 ~~MATA

B2 SB2 B3, U->B3

definition Bl SBl B3 , U-B3
of

T4 FMP ~ATB ,B 1-1 inner macro
FAD TS , U-+TS

Bl SBl B3 , U->B3

B3 IF(NZE)TRA LOOP

\ MEND ...__
MULT MACRO MATA,MATB,MATC ,NROW ,MCOL,L

C>
SBl NROW

OUTER SB2 MCOL

INNER z SB3 L, U-+TS

definition -+ PROD MATA,MATB
of

outer macro TS STO *MATC, B2-1

B2 IF(NZE)TRA INNER

ca 11 of _J SBl Bl-1
inner macro Bl IF(NZE)TRA OUTER

MEND

MULT A,B,C,S,3,7

A Pl instructions

MULT M 1 ,M2 ,M3 , *P , *Q ., *V

MULT G , H , J , 2 , 2 , *N

A Pl instructions

C/ END

ASSEMBLY PROCEDURE

An APl program is assembled by exercising option #6 in the

P LA CE R s y s t em •

Assembly output on the printer consists of error messages,

program listing, and symbol table. These are discvssed below.

Assembly also provides a punched paper tape which contains the

assembled program'to be loaded under SPIREL control or with the

LOAD switch. Assembly options are also discussed below.

Error indications, An APl error indication is produced by

apparent errors in syntax or sequencing,

its location are given by a message:

ERROR IN [F] AT CR NO fN]

where Fis the name of the field in error

The type of error and

and N is the placer listing carriage return number of the line

containing the error,

If a single instruction is continued onto more than one line, the

carriage return number for the last line will pertain to the entire

instruction,

Assembled erogram listing, Four columns are printed, giving:

(a) The symbolic location (if any exists),

(b) The location count, relative position of the word in the

program, in octal.

(c) The instruction in octal, broken into fields, with tago

(d) The symbolic address (if any exists),

Locations not assigned by the coder are assigned by the assembly

program beyond the code for the program being assembled, These

appear with their names below a row df asterisks in the program

listing, A name ~ay be one supplied by the coder, as 'A' in the

case

STO A

where 'A' never appears in a LOCN field, A name may also be one

supplied by the assembly program for long octal or full length

,,_j d e c i ma 1 n um b e r s re f e r enc e d i n ADD R , a s in the c a s e s

ASSEMBLY LANGUAGE May, 1967

,-~.

I

'v

or

or

AND

CLA

ADD

ASSEMBLY PROCEDURE

2

77777 0000 7777 00000

d3 • 0

d412697

Specifically, the names assigned to numbers by the assembly pro­

gram are '-OOOOA', 1 <-00008 1 ,, •• in order of occurrence in the pro­

gram being assembled.

Symbol table. The table of symbols is printed out in seven

columns giving information relevant to the symbols defined in the

program:

(a) The relative position in the table.

(b) The symbol.

(c) A number (usually O) which determines the type of ob­

ject for which the symbol stands.

(d) The equivalent assigned to the symbol (5 octal digits),

(e)

unless the symbol is a macro name or a mac~o parameter.

A number (usually 1) which indicates reference in the

program to the symbol. A number 3 denotes a symbol

which appears in a LOCN field but not in an ADDR field,

so this may be an unnecessarily defined location in the

program. A number O appears on macro names and macro

parameters and on symbols given a numeric equivalent.

(f) An 18 digit octal number. The first 5 digits indicate

the line at which an equivalent was assigned.

(g) A number which indicates how (if at all) the equivalent

was assigned:

0: by appearing in the LOCN field of an order.

1: by appearing in the LOCN field of an EQU pseudo-order

in which the address was symbolic (see section on

pseudo-orders).

2: by appearing in the LOCN field of an EQU pseudo-order

in which the address was numeric (see section on

pseudo-orders).

(:_:

ASSEMBLY PROCEDURE

3

Assembly Options,

the stop

If only option #6 of PLACER is requested,

(I) : 06 HTR cc

occurs. In addition to sense lights 14 and 15 which are turned

on automatically, other sense lights may be turned on for special

forms of output.

S 19 on:

8111 on:

8113 on:

Print with double (instead of single) spacing.

Do not punch assembled program.

Punch self-loading tape. The tape produced will

load by using the LOAD switch on the console. An absolute program

will load to the origin specified. A relativized program will

load to the setting of B6.

the ORG pseudo-order.

These program forms are discussed under

,,,,..,....·

(

.,,.
' .,l I

,-·v----
I

CODING EXAMPLES

Storage Exchange

This program STEX handles dynamic storage allocation in

SPIRE L. If Bl= codeword address of array and B2 = length of

array upon execution of STEX, space is taken, and Bl= first

word address of block upon exit. A more detailed explanation of

the use of this program may be found in the SPIREL literature.

The remarks in the program serve to ~xplain the program's opera-

tion.

Lines

2

6

13

25

37

46

60

65

100

10 1

110

13 1

l3 7

15 5

I 7 4

Comments

This program has codeword address 154.

+2, store to B6 option on class 5.

EQU'ed name in field 4;
of any name are retained.

only the first 6-hexads

Decimal integer constant in ADDR; 'a' bit is
generated automatically due to shift order in OPN.

Simple store option _,, on class 1 arithmetic
order; store is to fast register T6.

R is cleared to zero in AUX by R _, Z, not Z - R.

Increment of CC in AUX causes a skip.

-I in field 1 sets U to the integer -1.

Only AUX is used here;
ed in OPN.

no operation is perform-

I - B3 means final address to B3 in AUX.

More than two B-mods in field 4.

Store ATR to memory in OPN, compound mnemonic.

+3, store to B6 + M option in OPN.

Control counter is incremented by contents of
X register in AUX, causing a jump.

Long octal constant is used in ADDR and is stored
at bottom of program.

Line.s

224

227-230

231

232-240

CJ

Comments

CODING EXAMPLES

2

T7 is restored from value stored on the B6-list,

Labelled long octal constants out of code sequence,
The first will be right-adjusted, filled with lead­
ing zeroes to 18 octal places.

Binary coded decimal psuedo-order generates two
words of hexads here.

Equated symbolic names.

, -------,
-, 4/ l l /6f- I I• 32 PAGE ''-------,,

I
l '54 oR3 ?

3
REf1 5TEX FO~ SPIRFL 4

c::

T7 1... T7+2 b 1, R6+ l .,
-z TRA d"'SAVhU•R 7
7 dAU+2 X•:36+! l (')

1...D~ ~TJRA('; 11
7 1...LS d1S,U•T6 I?
7 L)AU FT ~srrx, U•T"i 13
7 oAJ aq1,u·T4 14
p I IF(ZE~lTRA R~J~G,~·Z 1 "i
T7 IF(NUL)Tr<A 1 ·\,<E l .,

17
REM I 'IACTT 1/.A ff SP ACF ADf)~ESSED RY di

21
3 IV''. I CLA bl,IJ•T7 2?

IFINUL)TRA i.JTVE5•U•g4 2?
CR1... d13,R•d3 24

T7 1..Uel d:,4• U•d5 ~t::; I

P5 1...U~ j, J.13i::; 26
IFINUl.lT~A GT VE2 27
1..[)el M>\SK2 3C

7 lF(NUL)Sr(P T7 3 I
AB'+ EFi,CC+I 3?
AR;,. b 'i ... I 3'.?

GI vr.·2 7 dAU a~3+!•U•R 34
7 oAU o"l4 3c::

IF(NEr,)SKP T"i 3~
~ F- ADD• T,; 37

L> F '+ r<PA bl 40
T7 AND M ll.3K I '+ I

IF(NUL_)TRA i.:i T VE3 lj.2
pl sTJ cl<;,E%+1 4?
P4 f\DJ a 0Hm J, U•B I 1,,4

7 cAU+2 a=>.3,1:31',+i It c::
TRA i.J1VEl,~·z 4f-

:..JI V" 3 7. 1...DK• 6!,R•84 47
7 L..L3 o I :5, U•PF ::iO
7 cAJ a=>.o+=-!,PF+l :::i I

i F (PQc_ I s:<P TS,R-7 5?
TRA GT VE i+ :53

FF 1...R.::i 01,;, ::lh-J :5 4
p ,jAU .c'-,TQr<A~, I •B':J 5::;

STO t:, t+ 51'-
F3 lF(NLJL 1n1> er+ I :5 7
P4 t<PA i::1,cc+1 60·,
p 't RPA ;;iT JRAC: 61

JI V" ij. 7 ::iAU a~I 6?
IF(Nzi:-1~,<P T '• 6?
TRA TA<E 64

3I V' 5 -I ADJ• bt,..,!1P1-1 6"'
IF(NZ,)TRA GTVEl•,~·z 6€-
CLA i:,,;~2, J ·86 67
TRA GTV'::3,J•BI 7 (',

71
RE;'! A"'.TIVATE 8LOCV. i"JF Ll=:'~(:T~ f ~+ I

l?

4/1116~ 11, 3? PAGE 2
TAK• r- c;; !FIZED)T~A ATAKE,~·Z 74

-·~ 7 BALI a~2+1,J•T7 7c::. . I
\....._./ T6 IFIPQ~)Si(P T7 7f-

7 TRA AT AKl:.I J•B I 77
,~op c171U•T6'""'· I or·
LD~ ill<STORAG,I•B:! I JI

7 LL.3 Cl,::; IO?
!F(PQ<:-JS:<P T~,U•l-:'5 103
TRA RC::JRG 104

TAK~ I Tit STJ i:1,83+! 1oi=
TAK~ 2 P5 t..R3 ol5,R•d4 !Of-

.:>::, IFIZEoJnA Tll<E3 107
,:;, STO o H82, I •o4 I Ir. ·

TAK• 3 1::4 RPA ::iTJRAJi 111
T4 IFIZERJTRA ATA.Kc:.r~•z 11?
i•3 TRI\ Ar A.Kt, ,J•8 I 11?

I 14
RE 1 v. ~ITC: ACT! VE RLnC1<S Fl LJ\A/ ADDRFS-::C:S

I I l-
REQRG F6 ML'-J Q4.JOO•J•T7 117

STX Z, I •t:16 12r
SF3 3 ;i,,'="IRSTEX, I•Rli- 121
TRA k':'.QRl:i7 12?

~EO"'GI CLA ·~4,CJ .. a:= 123
CRL o 151 R•a I 124

r::6 rFINzC')TRA k::: JRG~ 121:i
583 6 'HB I+ I I I •8lj. 126
TRA ri':JRG-.:. 127

~EQ?32 CLA a'l:i+c3'- I :;o
RPA, W,,3 •"'14 '131
ANJ [·I~ :iK I 132
lF(I\JZc-JnA l'li:'.JRG'::i, 83+ I I 3:?

c/ AA'3 c 1,Bli--1 134
Pl!- RPA cr:+t,P(+! 13i=
T AA4,ED:1 a1+1,1.1.e5 13~

CLA,WTG+'3 o'i,B 1-1 '· 137
rRA K':,JRG7 I 4.,

REQ'-''33 CLA, \AJTG+3 C)!U B4+ I ll!-1
REO"'G4 sU:-~, Lr'1R+'3 c4,84+i 14;::

JF I NU!.. IT-<A l'l'::JRGt::.181- I 14?
50114 Ml\'3K2.,-'~•d5 144
IFINULITRA cr:+1 I lt,ri

::, t..UL o-=i, CC+ I I It l-
.:. L-UL c-=i,as-1 llt-7

:)M~ o'36 15('
1F(Ps~1,czC:R)TRA (.".'.'+!,R5+) !::ii
ADJ a ~s-1, u·ai:; 152

P3 RWT b'-i-1 153
~EQ'<,J~ I? I 1Ft;>Jzr.-,nA k'::JRG4,83+1 I oi.
~EQ·<,3f l oALI a ·H, cr+x ,1 s~

IF(NE~JSl(P p. I ::,f
Po STX c., J•PF 157

'"<EO'"'·.i7 P4 IF!Nzr.-1s-<" d"LASTEX 16('
TRA RO::JRG~ 16 I
i..D--< o4 162

7 ;..LS d 1 ;,u .. o I 163
IF I Nu1_ ,nA ~=:,JRG I 164

r-3 ;:,;Ud o.>,l+t:l4, I.Bl!- I 6t:;
TRA t'(=:JRG7,U.t>,6 16f

4/ll/6f I I• 3? PAl?E 3
~EQ..,,..38 Tl MLF 04-JOO•U•al'i 167

T4 IFINN?JSKP Vi I 7('1

c PF ADO .. T4 I 71
rF(SLrJt;i(O Ji)02 172
TRA riC:::JRG 0 1 73
(.LA 0~0024QlQ00000QOQn 174
BAU cl.'10TE•U•T7 1 75
6L,\I Oi)02 176
TSR • i<CWD 177
SLF u,002 ?0('

RE.O ,..39 LD,'< G,~•t:l·+ 201
CLA b4, U•P5 ?Q?

z .. o ~ r·1 l..3K2 • U•PF ?.Q3
RE0;:-10 ~5 IFl'lZrJSi< 0 a''l4+ 1 • 134+ 1 ?Q4

T6 TRA k ='.JR 11, L .. 135 20"'
CLA t::.4+ 1 ?Of-,
LU~ a-:i7,U•o1 ?.07
CLA ct+PF•U•pF 21n
JFINUL)Si<P L, .:>F: I 211
APF I :::, I;:

PF RPA bll.+ I 212
TRA "C::JRIC\ 214

RE:.Q'"< 11 T4 IFIN;,rir~~ 1'\i<El,R•z ?)5
7 TRA Tt.,<E2,LJ•t3? 21 f

I T t, I 2i7
ATA"'t.: LR::i O 1 :i ?2(',

p RPL ~""JRAG 221
p I ::;TX a~36-l,U•T7 22?
? IF(Zro,NTr)TRA a~JNSAVE,86-1 223
T7 ._r7 ti ;-1, u ... e I 22J+
PF AB6 a 7777f-, U•CC 22"'

22f
i1AS" 1 JCT Lf,JQQr'QOO 227
,'1AS·'2 GCT 777777777740077777 ? 3C"

c :~OP ii CJ kr. J%A ,\I I zA TIO~· 2 31
3 i;_Qi.J I :i5 ?3~
l(CW'' ,_QJ I :>£i ?31
SAV" c:ou i16 23i.
uNs~vE t.QJ 117 ;:,3t::
STO"AG i:_QU i1J ?3f-
FIR'>TE"X t.ou i 11 237
LASTE)(c;:QJ i ,:: ?4(1

t .. NO 241
2'1'?
?Lf1

PRQ 1~R.&M 154 4/1?/~6 I !'i, 27

0 STE" FOR ~PIRl:L
I 07 r:;047-;, 26 000? O·JOOn
2 11"1 rtr'lon 02 440('1 COl3i:, ~AVf:..
3 on ?010"' 26 .)000 7777r:;
4 01 ""C°'IJ.Q('I 00 ooor ca1on srnRAG
,:, 00 bll!('l6" 06 i+oor 00017
6 00 ?~IO"' 05)000. 00101 FiqSTE
7 on .,r, I or 04 400?. 00000

10 i+ I (', (' 11'1 10 4001 oon7o Rl:.rJRG
I I 07 "I r41"1 00 '+00! 00047 TAK~

Il\iACTIVATF SPACE. AJDRESc:;ED PV Bl
GIVE! 12 01 ., I 7on o·, 000::> 001"100

13 01 ('I I !"41" 4'+ 4001 0004j r:::IVE..~
I 4 01 4F('l6~ 53 '+000 oon17
I::> 07 4S'r I'"' 4!:, '+000 0Q03CJ
16 45 115rqr la.!:) i+oon oono3
17 01 rlr4" 00 1+001 00004 GI Vi:.?
20 01 C::""11 or OG 000! C0167 MA<:;I<.?
21 00 r?04'"' 00 0000 00007
?.2 01 u ! "O'J 20 l+Q4(1 oonor.
?3 01 u ! ('IQ4 cc 404r. 77776

GIVEt ?4 00 .,~, 0" 02 401 r 0Ql"l01
20 00 "; 10'"' 00 4-02(' 00000
?6 01 1'1:,c:: I" 00 ooor 00005
27 02 1oro1 QC; Joor 0Qfl0n
30 '+4 ;:, I i=-o, 00 JOO:::' 00000
31 07 "'0'.=ll 4 00 0001 0015r:; i"'ASt< 1
32 QI rtl"4"' 00 4001 COCi04 r, I Vi:. 3
33 4! ::>nno1 26 '+!Or" 00000
34 44 ,ono"' 41 40 I C'I 7777{,
::is 00 ?C10::i 26 4010 00000

0
36 01 !" I C'IO" 10 4001 7775? c; I Ve. I

GIVE:= 37 or. c::n401 54 0()0? oonor
40 00 4!:)06" 47 4000 00017
ll.j 00 ':)O!Or" 27 1+02r 77776
42 01 N 1 11" 10 ooor con or:;
1,.3 01 r I '."10'"' 00 4001 00006 GI VC:4
IJ.q. 47 uE,1" I c:: 64 4()0(' CQC'l7
1,.5 02 ?Qt 0"' 73 0400 00100 STOKAG
46 01 ~'"'!"'O I 00 4020 OQMO
IJ.7 41 "I r,4r ()() 4001 00001
C::Q 44 '='! ~o, 20 001r. 00000
'5 I 44 -:, , i=-Q I 00 JOOO 00100 sro,:.u,G

Gii/EA c:; ., c: on ..,c,, O'"' OG 400':) oonoo
53 01 ,..,,,.,5"' 00 JOOO CJIJ04
54 01 0, ror 00 1+001 00004 TAK~

GIVE:!"" 155 3n I 0r'IQI 61 J ton 77776
c:;6 01 l"lr5,-. 10 4001 7773'? Giiii I
'f7 QI ..,, .. o,., 76 JI on 17771:f,
60 01 01 ~or 41 4001 7775c; GIVc.3

ACTTOTE BLrCK OF L.E\lGT~ B2+'
TAl<'E 61 42 ('\tr!("\ 10 4001 00117 ATAI\!="

62 00 .,0 IO"' 07 4004 oonot
i:-3 01'- "211r. co 1)001' 00007
64 00 r I no" 41 4001 oo I 14 ATAi<E"
65 01 -:>QnQf"I 06 '+000 00000
66 01 .,.0401" 7:J 040!"1 00100 STOKAG
67 oo 111;'1"\6" co 400(1 oont7
70 QI '"''.'!' I i " 45 '.)QO("I 00007
71 01 1'1('01' 00 4- 00 I OQ007 REr,r<r.

TAKE! 72 04 ~r.r,o, 23 '+010. IJQOOO
T~'<Er 73 4,5 1q~(1 t"' c:;4 4000 cor11

H 4c:; r1rt" 00 4001 0Q'i01 TAK't:.:i
7o n::- "'r, Nl 1 74 4() I 4 OMOO

u

··-·---··-- _____ ---~

0 -TAKE? 76 44 r'!t.O• 00 :JOOO 0Cll 00 RTORAG
77 Q4 r'l\rqr 10 4001 00101 A TAKE

I 00 43 r1rori 41 4001 Ooton A TAKE
WRITE ACTI VF a.LOCKS TO LOW iorRFSS~S

REriRG I 01 4f ,, 2rio~ 07 '+00(1 04000
102 01 11iro"' 76 4001"' 00000
103 01 IJ.~('1Q':> 74 4400 00101 FIPSTE
104 01 rt nor 00 4001 00035 REr:JRG7

REnRr-1 105 01 "'170" 4!:, 0420 00000
106 01 11r::r6t. 51 1+000 00017
107 46 r1('5r 00 '+001 cono? PEORG2
II o 01 4('\('Q"'I 7 '+ 40 l;, 00001
111 QI rt 1'1Qr 00 4001 00025 RE.nRG6

REnRC::2 112 01 "'f7or 00 4140 00000
113 01 ~1!41 co 042!"1 00000
I I '+ 01 "'C..,, 14 00)00 I coon MASKI
115 01 rt r5r ?3 4001 00005 RErJRG3
t 16 01 JJ I ro-:i 64 i+OO? 00000
t 17 44 '? 1 f-0 I 21 J001 OQOOj
120 20 4\024 45 400? 00001
Ir' 1 01 ?\ 74"' 61 004(' conoo
I i?2 QI r I r,or 00 i+OO 1 oont 7 REORG7

REORC::3 1?3 01 ,:, I 7 4-:i 24 0020 oooon
RE!"'RC'4 I ?i+ 01 "340"'1 2'+ 0020 00000

!?5 Ql ('I I r,4" 61 4001 OO(')lO RErRG5
126 OI "'(') I 14 55 0001 oon61 MA~K?
1?7 01 r I i'4r 00 4001 00001
!30 O? L;~l"\21' 20 400r 00011
t 31 02 4~02" 65 .:+ooo 00011
I :'12 01 ll41'1QI' 00 400(' 00044

c\ l :13 QI C'S! Ir 25 '+001 00001
I 34- 01 , e00" 45 404("' 77776
135 43 '? t .:..41 00 004(") 7777f.,

PEcJRr-5 136 41 r1r5r 23 '+001 77764 RE0RG4
RE'.:IRC:6 \37 00 '-'Ctor 30 4020 OOMO

140 01 o~c:: 1r 00 JOOr oono4
t 41 46 41noi:.- 47 4QQ('1 0000?

REORC::7 !42 44 r;:,r5r OG +400 OQIO? LAc;TEX
143 01 C" ! 0or 00 i+OO I CQ005 REr"1KG8
144 01 i:;r,4or 00)02!"1 cooon
145 00 4•("16'-' 41 +oor 00017
!46 01 ("\lf'14r 00 4001 77735 REORGl
147 43 1r1or 74 402? 00000
150 QI rt nor 46 i+OO I 7777(1 REnr-<G7

REC1RG8 151 07 1.c:,00.:.. 46 4000 04(")00
152 04 ('16C::5!" 00)00(' ooooes
153 47 I '"'1"01 00 JOOO 00004
154 01 (",~r,7r, 00 4000 0000?
155 QI 01 ('\Qr 00 '+00 I 00C'l05 REORG9
t% 01 >'!7or 00)001 0Q(")34 •OOOOA
I i::;7 Ol ?r" 1 or 07 '+001 0003! I\IOTE
!60 01 k2ror 00 '+OOn OQOO?
I Ii I 01 4~!"1Qr 00 i+40(1 cot26 XCWD
1 li2 OI 41:ro1i 00 i+oor 00002

RE8RG9 I i:,3 01 "'"' I• Qf' 54 0000 0012c:; G
I 64 01 "'1 ·1or 45)020 00000
165 00 <=:('If Qr 47 0001 CQ02? MASK2

RECJRIO !66 45 J"\~("151'1 24 '+020 00001
1 i:, 7 06 ('' •"'or ll5 i+OO I ('Q007 PEOr-<1 t
170 01 "I 701'1 00 J020 00001
171 01 411' ".) t I' 41 '+000 00033
172 01 "'1701"1 47 020? 00000 c) 173 () I 02n4r 67 J00('1 conoo
I 7 4- 01 IL I ('107 00 400!"1 00")0 I
175 4 '7 ?!i'-01 00 0020 00001
176 1")1 r1r,or 00 4001 7776(., REn~1n

C·
RE,iR 11 177 04 ('\' ('5(", 10 4001 7U,7"j TAKE::t

200 00 r>l /"\QI" 42 4001 77671 TAK..:?
AT4KF 2n1 26 41:'f'I 1 c: 00 400('1 00017

202 O? ~r'·30t 00)000 00100 PTO•~AC:i
203 41 4 3roc: 07 4500 77776
204 00 r1Jnt4 66 440(') 00137 UN SAVE
205 07 c:~47r, 41 0100 77776
206 47 /J. I ro1- 40 4000 7777f...

MASKI 207 O('I C'lr'lr"Qr 00 4000 coooo
MA:;K? 210 77 7?7T' 77 7400 77777
NOTE 211 61 44=6!- 14 640"' 55071

212 40 '-~"'O" 6:i 3?5? !:-2525
•o,,orA 213 00 0~?4r 10)00(1 00000

3!4 511,VE 0 1 '.=!~ 0 243nooooono0oro0 0
3'5 STOR.i.G 0 I re 0 245C10G0000000C"00 0
3'6 F IF<ST!: 0 1 r1 0 246000QC'I0000QCOO 0
3'7 RFORG 0 Ir t I 124oooooonoooooo a
3"0 TAKE 0 bl 1 77nooorooo0oroo 0
3"' 1 GTVF! 0 , r' I ?300000000noooo 0

C> 3"'2 GI Vf.:5 0 c:;5 I 66000Q000000000 0
3:-03 G~VF2 0 ~4 I 35oonoron.000000 0
3~4 MASK2 0 211'1 1 235nooocoooooooo 0
3"5 MASK! 0 21"1"! I 233000000()000000 0
3::i6 GTVF3 0 -:J7 I ~00000000000000 0
3"7 GI V'i:.4 0 i= ..

. " I r.. 3ooooron ono 0. oo 0
3 =~o A TAKE 0 2"', I 2?41'10'1000000000(') 0
3'1 TAKFl 0 7? 1 110000000000.0000. 0
3"2 TAKE2 0 7" I 1110000000000000 0
3?3 TAKE:.:1 0 7~ I 114(')000000000('00 0
3<4 REORG7 (') I 4,, I 165nooooooo0.0006 0
3'"15 RC::URG! 0 I n !' I l30Q000000000C"OO 0
3'"16 RC:0RG2 0 112 I ,~soooooocuooooo 0
3.,,7 R'::ORGf r") 137 I l62(')00000C000000 0
3~0 REORG3 0 I::-::! I 146000000CJ(')OC"OO 0
3 4 1 RC::0RG4 0 1 ,:, II I l470000000000000 0
3 4 2 Rl="ORGc; 0 I .,, I- I 16I000000CI.J0QOOO 0
34 3 LASTEX 0 Ir? 0 24 7("100000000()(1(')(", 0
31i4 REORGP. ('\ 151 1 174000000COnooor 0
3 4 5 RF0RG9 0 If !!l I 206000000000QOOO •J
34 6 •!'lOnoA 0 21"' I 2i:;10000000000000 0
3 4 7 Nl"JTE 0 2 1 I I 237(')Q00000000('100 0
3'iQ xcwD 0 1 ::, ,- 0 242noooooooooooo a
3<; 1 G 0 I ~!5 0 24!00000.00000000 0
3"'2 REORIO 0 16f I 2110onooooonoooo 0
3"13 R"'.ORI I 0 177 I 222Cl00Q000000C00 0
3c: '+ U~SAI/E 0 I ".17 0 2440000000000000 0

c·

(J

0

Matrix Inverse

CODING EXAMPLES

3

This program computes the inverse and determinant of a real

matrix and prints an error message if the matrix is singular.

The method used is essentially in-place Gaussian reduction as

described in "An Introduction to Numerical Mathematics", Stiefel,

E.L., 1963, page 3. Each successive pivot element is the largest

in absolute value of all the remaining choices in a given column.

The result is a compromise between speed and accuracy. Ann X n

matrix is numerically singular if the ratio of any two pivot

elements exceeds 10 6 /n. The codeword address of the matrix to be

inverted is in T7 on entry, the inverse is stored as USTAR

(codeword address 10), and the determinant is output in T7. If

the matrix is singular, T7 = 0 on exit.

Lines 11 to 36:

The fast registers are saved, the input matrix is copied if

necessary, internal constants are computed, the row codewords are

labelled, and DET is initialized.

Lines 37 to 61:

The next column is scanned for the largest element, the

largest and smallest pivot are stored and tested.

Lines 62 to 101:

The exchange algorithm is no~ applied to USTAR, the non­

scalar actumulator in Genie and the pivot element is multiplied

into DET.

Lines 102 to 113:

The two appropriate row codewords and their back references

are exchanged if necessary.

Lines 114 to 151:

The columns of the final inverse matrix are now sorted as

necessary due to non-diagonal pivoting.

(_) Lines 152 to 157:

This section of code causes printing of an error message.

~-·------·· .. ----·

0
Lines

2

4-5

7

11

12

15 -16

35

0
41

46

66

10 6

127

154

160

162-165

0

CODING EXAMPLES

4

Comments

This is a symbolically named program, INV.

Cross-reference words for named items referred
to by INV.

Extra carriage returns and a remark in the code
sequence.

Use of +2 store option in operation field, store
to B6.

Minus inflection in SETU, compound test in OPN,
use of EQU'ed name in address field. The 'a' bit is
not required since TRA gives this inflection auto­
ma tica 1 ly.

EQU'ed name in address field, and REF:ed name
in address field.

Decimal constant in address field will be stored
at the bottom of the program.

Absolute value inflections in SETU and ADDR, and
indirect addressing specified by '*' in ADDR.

1 - 1 codes as a store to M, here MAXP;
OPN is equivalent.

I +1 1 in

Enter repeat mode option on set or add to
B-register orders.

Use of more than one B-modifier in field 4,
Bl+ PF+ M (M = O).

Reset X register from number originally stored
on B6-list.

The address part of this instruction or M was
replaced by the contents of PF at the instruction
on line 13. Anything in () is ignored in assembly.

A decimal constant is defined and is stored at
E PS LN.

'Z' with OCT causes zero to be stored at these
locations.

u
Lines

166-171

173-174

0

Comments

CODING EXAMPLES

5

EQU psuedo-orders assign numeric values to names.

The END pseudo-order terminates the code but
generates no instructions. It is followed by two
carriage returns.

'~ '___j

4/l 1/6l- t6, 12 PAGE
I

INV ORG '?
:.;

MCQl"Y REF •'1COPY b.

ERP~ REF ••ERRP ~
6

REM I\JVI T7 I • UST AR 7
j('I

z i::lAU+2 x, d6+ 1 11
-z lFIZEP,EOV)TRA dlilSA\!F,U·R I '?
PF RPA pi:-:3AVF I R·Z. I ::i
7 BAU T7,R•~.3 14

lFIZE'~)SKP a11sTAR1I·BI 15
T7 TS~ a *•'1COPY, U•B? !€-,
7 sra d'1!NP 17

STO il.'1AX~ 20
CLA b, I U•B I· 21
CRL arl 1 s, R•Blf. 22

•B4 CPL a~ 23
FMP T1,JJ47 21!
VOF E. 0 SLN 2:'
STO a'::~ROR i:. f,

~owc::ro L.DR bl+l,R3+J 27
L.LS il.~t5,U•B5 30

P3 L.R::i arlt5 31
F i:iTO d',!+t,Bl+I 32
P3 lF(Poc-,sKP a 3lf. 33

C· TRA a~:JWSTO 34
p '+ LDR d I, O, Li•PF 3!'=
F STO il.'"lS:T 36

INVI P 7 STX a7,U•T6 37
SB2 ai:iF,I•Bt lf.C'

SCA"J I Ti; I IF(PQC::)SKP l-<1JSTA~I lf.l
PI L.T6 loii'JSTAR, U·B3 '+2
P3 AB! a 7777fi, U• T7 lf,3
PI lF(PN71TR.A a.SCAN lf.4
IT f, I IF(ZEl'.:' 1 EOV)TRA dSINGLR lf.5

L. T5• MAXP1U•Tlt, lf,6
T5 IFIZEO)TR.A ai:-IRST lf,7
Tlf. lF(PN7 l~Kc, T"- 50
:5 STJ d"IAXP 51

FIRc::T T4 L.T6• MI.-.JP 5?
T6 lF(ZEP)TR.A a STE ST -".:l 0,

T4 !F(NN?)SKP T ', 54
T6 bTJ d"IINP 55

STE'-"T CLA MAXP 56
FDV M!NP 57
!F(NE'r,)SKP E.~~OR,R•Z 60
TRA asINGLR 61

P3 L.Tlf. --11, o,u•Bt 6?
T4 L.T5• 111IJSTAP, R.82 63

F'DV T,,U•T4 64
T5 FMP• on,02+1 6!'-
Plf. SB31Er.,M a35,U•T6 6€--
T '+ FMP• •'JSTAR,63-I 67

L.00"' I p 't SB2 ci°F,U•BI 70
FI !F(ZED)J'."IP P,Bi+-1 71
z L.T5• ia!J3TAP 72

SB2 il.~5 73

0

-----------. ------

c,
4/J J/6f. J 6, J 2 PAGE 2

L00'"'2 SAJ d>IIT7 74
T5 FMP il<IJSTAR 7~

SBJ a94+J 7 f.
FAiJ• lli 1JSTAR, 82-1 77

P2 IF(PN7)TRA ciLOOP? IOC'l
P4 IF(PN7)TRA aLJOPJ J .JI
T7 884 alllT6, u.s3 10?

CLA USTAR1U•i31 IO?
P3 lF(NzF.)SKP a;:)F I 04

TRA aTESTiPF-t I 05
CLA bt+PF1i.J•82 106
LD~· b!+B3,I•a3 107

P3 ~TO a=i2, R•62 I IC'l
R STD a"3J+PF1I•B3 111
e::i STO a;,2,PF•J 112

TEST FF IF(PN7)TRA at ,'-JVLP 11'..=I
~t33 a"34,I•62 114

HUNf LDR b!+B3 11~
7 LLS d-115 I le

IF(ZEP)SKP e.',2.183:ol 117
P3 IF(PN7)TRA aYJNT 120
P2 lF(ZEr:>)SKP a::i.3+1 121

TRA c1St1AP1i33+1 122
p I TRA ar:- I)(.1 ll•PF 12:.

LAST SB2 ag2-1, I •83 124
P2 lF(PN?)TRA a YUNT 121.

0 our TRA a>11JNSAVE 126
STX d•·:16-1,86-1 127

FF LT7 ui::r, u•cc 130
SWAP PI ::,BJ al:!4,U•PF 131
EXLnOP L.DR 111,IJSTAR 132

F2 SB2 a=u, u•a3 133
p LD1~• lli1JSTAR 134
F2 SB2 a~3,U•83 J 31.
p STO llilJST AR, BJ -1 136
E' I IF(PN7)TRi a~XLOOP 137

CLA f,lr:'+83 I i+O
L.DR pi::-+82 Ii+ I
LLS a-! J 5, U•R I i+i?
c.;R~ a, 15 14?
STO (iPF'+t:33 I 1+4

FIX LD~ pr:-+82 I I+~
LL::l a-115 Ii+~

P5 L.R3 d-115 Ii+ 7
R ~Tu e1PF'+B? I :50
PF TRA e1LAST,i.J•31 151

SI Nr;LR z SB! aUSTAR1U•B2 1~?
TS~ a•STEX 151

?FSA.VF SPF al z l, ll•B J 154
TRA a>11C:~PP18J+I 1 -i:: :),

7 STO aiJC:T I 3f.
TRA a!'JJT 157

EPSLN UEC 1100000,0 I or
TW0~7 OCT 0~2oooooooooooooon 161
ERRU~ UCT z. 16?
MINI-> uCT z. 16?
,"!AX~ uCT L 164
DET OCT l 16~

0
UST 4 R c.QU I~ 16/S

()

0

(J

4/ll/6f 16, 1?.
t::QLJ STE"

SAV!c
UNSAVE

C::QLJ
mu

i:.ND

--·-----~----··- - ---

PAGE 3
167
170
1 71
17?
17'.?
17"

/\
l,_)

PRQl.:iRAM TNV Vt 1/t,6 I f., I ""

MCcPY 7777b 54 "2i=6i= 77 J4QI') 00000
E~PR 77777 75 "-4i:. ti:. 15 740('\ 00000

INVIT71 • U~TAf~
I 00 ?Oto~ 26 0001"1 7777r::,
2 I o fll ':)l("I Oi:: 440("1 OQl3(, SAVE
3 47 -::>If O! 10 JOO! 0014+0 PF SAVE
4 00 ::ic,or, 53 000(') 00007
5 01 r201n 71 400() 00010 UST AR
6 07 .111.,ror 42 i+40I 77767 MCOPY
7 00 -::>tJno 1 00 i+OOI 0014:l MIN~

10 01 -::>Ono, 00 lt,001 00 I '1-:l MAXP
11 01 ? I 7or, 41 J002 00000
12 01 41r('\6~ 54 lt,QQ(' 00017
13 54 c;r I 0" OU .. oon 00000
I If. 01 1o~or 00 0001 00134 TW047
15 01 10701" 00 JOO! 00132 fPSLN
16 01 ::ioro1 00 4001 00133 ERR OP

RQi,,STO 17 01 r=c;4Q" 23 000?. OQOC.11
c'O 01 4!5f'l6i' 45 4000 oont7
21 43 "-!''"' I c; 00 4000 00017
22 O? ::ioro1 c' I 4002 00001
23 43 l'l21 !I" OG 4021') oonoo
21t 01 01nor 00 4001 77771 ROWSTQ
2~ 44 C:Q4Qfl 47 <JOO! 01)130 •Ol"OOA
26 02 ,:,onot 00 4001 0012{, DET

INVLP 27 00 4!;1"Qi::' 06 4000 00007
30 01 4C,l"Q~ 71 42on 00000

SCAN 31 26 1"?1 !"I 00 2400 oootn USTM

(J 32 41 i::'Q461"' 43 Q4Qn 00010 UST AR
', 33 Jt.3 "-11"101 07 400('1 77776

31f. 41 05! Sl'l 00 4001 7777?- SCA.N
3!:) 26 f" I~ 11"1 00 <+001 00104 SINi.iLR
36 QI r::,..,1,51 04+ 0001 0011i:; MAl(P
37 as l'l Ir 1" 00 lf.001 00002 FIRST
40 04 r,,- I 5('1 00 0000 001"10'3
41 ai:_; -::>ij(IO 1 00 Jt-001 0011? MA)(P

FIRST 42 04 i=r461 00 0001 OQl 10 nNP
43 06 r 1 r 1 I" 00 4+001 0000? STF.ciT
lf.4 04 f"ti=s('l 00 000('1 00006
If.!:, 06 ?uf"O 1 00 4001 00105 1-'INP

STE'ST 46 QI ?1701"1 00 0001 00105 ~A:<P
47 01 1 C,7QI"\ 00 0001 COl03 ~!NP
Su 01 02i= I" 10 0001 00101 ERROR
c; 1 01 rtrOl"I 0() 4001 00070 S!NlH.R
c; .,
•. i;. '+3 "'04 4" 41 1001 00103 •on GOA
53 04 i=eu51 152 0400. canto UST AR
!'ii+ 01 1070" 04 OOOC'l ooooc;
c; -~ ::> 05 , ..,f01 22 JOO! oonn DET
5b 44 "-0f"2~ 06 404(' 00000
57 Q4 !QAO' 6.:s J40r' 0001n US TAR

LJC1PI 60 '+4 jJ C°'l":Oi' 41 lt,200 00000
61 41 l"'.il!" Ir, 6't- ooon oono7
62 00 e::r>451 00 0400 00010 us·•AR
63 01 4('\flQr' 00 '+041'.'i 00000

L;JOPr.' 64 01 "~rQI 00 440('1 0Ql'l07
6::i oc; 10f0f" QC, J40(") 00010 UST AR
66 01 "-01"01 00 402('1 00001
67 01 10401 62 J401" 00010 US TAR
70 '+2 ,..~ 151"\ 00 4001 7777? LOOP2
71 44 ('1!'5151" 00 i+OOI 777,:,c; LOnrll

0
72 tJ7 4'.'1"04 43 HOO 00006
73 01 ?1701" 41 0001'.'i 00010 UST AP
7 '+ '+3 r,..,"5'"' OU 42or 00000
7::, 01 ,.. I l":0'"' 67 4001 OM05 TE•n

---·· ·-·----

76 QI ., '7Qr'I 42 020? 00000
77 01 C::0401 73 001? GQOOO

100 43 ?Or.Qt c;, 4004 00000
101 02 ?0('101 73 420? OOr'IOO

(~ 102 41 ';:10(10' 6 'l 4004 001'100
,....___) TEST 103 it,7 (Ill' 15('1 00 4001 7772? I N11L.P

10'+ 01 Li Ono~ 72 4020 oonoo
HUNT 106 01 "'040r'I 00 001? oonoo

106 00 "~1'16? 00 4000 CQl'\17
l Cl7 01 r'l21"1 t(1 63 1+004 oocoo
110 4~ rs15r"I 00 '+001 77773 f-lUNT
111 42 r2r 1,.. 00 '+Din 001'101
112 01 rtflor ?3 '+001 OQt".106 SWAP
113 '+ I fl Il"lon 47 '+001 00021 FIX

LAc:T I lit 01 4!"!('\0" 73 4004 77776
I lo '+2 r~ 15r'I 00 '+001 77766 HUrH

OUT 116 01 f' I flQl"I 00 '+4Qrl COl~7 U~SAVE.
117 01 li.~('IQC:: 66 '+500 77776
t 21.) '+ 7 C::0471"1 40 0001 0003'+ l~ET

S;,JAP 121 4 I 40fl01 47 '+020 00000
Exi_orP 122 01 ""C'"Ol"I 0() 040(1 0001() LISTAR

1 i?3 4? li.Ono::- 43 '+0 IO 00000
lN O? c:-r40, OG J40('1 00010 LISTAR
12~ '+2 i,~(10? 43 '+O 1 ('\ 00000
126 o~ "r"r'IO I 61 '+400 00010 IJSTAR
127 41 C"5151" 00 '+001 77771 EXLUOP
130 01 "l 70r"I 00 021 I'." 00000
131 01 t:"~li.Ot"I 00 J204 coooo
132 01 "!r6" Oc '+000 00017
133 01 4 !!' r5"' OU '+000 00017
13'+ 01 :,r,r,o' 00 4210 coroo

FI)(135 01 i:;(;40!'1 00 0204 OQC'uO
136 01 4~('·6:, OCi 4000 OOC'l7
137 '+"i utrr 1 c:: 00 400(') OOC17
140 02 ?Oro, 00 4204 oocoo
141 i+7 r I no"" 41 '+001 77751 LAST

(SINGLR 142 00 40flQI 4c '+000 00010 UST AR
"----" 143 01 uoron 00 '+'+00 00135 STEX

PF'c:AVE 144 20 4Q(',07 41 4000 oooco
14~ 01 l"lf'IOr'I 21 '+40 I 776:; I E'RPR
146 00 :,oro, 00 '+001 00006 DET
147 01 r, i (\QI" 00 i+OOI 777'+5 our

EPc:;L~ 150 03 1"!721"' 44 ·)OOC'l oonoo
T..J047 151 Of> :,rirol"I 00 OOOCl 00000
ERRO~ 152 00 ('lnrol"I 00 OOOC"I oonoo
MINP 1 s:, 00 1"1000'"' 00 0000 00000
MAXP 1 5<+ 00 ronor, 00 0000 01)000
DET 15:i 00 1"'01"01'1 00 ooon 00000

IIOltlll"'lllWll(llHII

•onorA 156 01 rc101"1 00 0000 00000

31 4+ MCOPY 0 77776 I 20000000000000 0
315 ERPR 0 77777 I 3nooooo,,ooocoo 0
316 SAVE 0 1-:i,. 0 174000000ii000000 0
317 PFSAVF 0 14~ 1 l520000001i000000 0
3..,0 USTA~ 0 IO 0 172nooooonoooooo 0
3=>1 MINP 0 1 "'i I 165noooooooooooo 0
3?2 MA.XP 0 1 ,..~ 1 l670000C00000COO 0
3~3 TWU47 0 1i:::1 I l6lnooooonoooooo 0
3..,i+ t:PSLN 0 i~e 1 l57nooooonunoooo 0
3 ":3 t::RfWR 0 1 c::2 I 163000000"1000('00 0
3"'6 KO~STiJ (') '' I ?!'inOOOOGnOOON'li"' J

Ci

C· 3:,7 •nonoA 0 1~6 I 177000000000QOOO 0 .,
3·~0 DFT 0 Ii:;!" I 17JnOOOC\0000QOOC\ 0
31 1 INVLP 0 ?7 I 350000001')000000 0
3,2 SC:AN 0 ")I I 37r,onocoouooooo 0
3-:i3 ~y:-.iGLR 0 11i2 I tsonooof\00000000 0
3,4 FI t<ST 0 t,~ I 5onooooononoo:)C\ 0
3-:.5 STtsr 0 ll6 I i:;4n.ooooooonoooo Q

316 LOLlPl 0 (.r I 66nooooonoooooo 0
317 LnOP2 0 "4 I 7 2t'l000f\Q0000C\OC'l 0
31.0 TFST 0 I r,3 I 111nooooonoooooC1 0
3'+J HUNT 0 1"5 I 1!3000000000Q('\Q(i 0
34 2 bWAP () P' I I 1?7000000000QOOO 0
311.3 FTX 0 I ~!5 I 143000000001'.1Q(',J('l 0
34lj, UST 0 114 I 122rooooooonoooo 0
:::!45 iJUT 0 11 ~ I 1?4C'lOOooonoooooo 0
311.6 uN::iAVE 0 1?7 0 17S!'lOOOCOnOOQC"OO 0
311.7 EXLOQP 0 I?~ I 130f'IOOoooooooroo 0
3'30 STC:X 0 I ")5 0 173n00000000000Ci 0

_,--.
l '
_)

~

~' _)

4/20/6£- t 4, 3q PME:
I

INV QR3 ?
REM b~CK-TRANSLATIO~ ?

L7F76 1-<F:F lll'-tCOPV 4
L77777 RE~· • ·ERR•' i::

LI z oAU+2 77775•ae+1 t.

-z 01310 a,jt36•U .. R 7
PF t<PA L 1441 ,;• •7 tr
z bAU T71R•H3 I I

IFIZEPISKP a.1J,I ... a1 I?
T7 TSR 11tl_ 777"7 61 U•Bi? I?
z STJ Lt.53 111

STJ L! 54 le:;
CLA 81, U•!-< I If
CRL 171R•'>-4 17

-1:)4 CPL a~ ?.r.
FMP L!31 2!
VDF L!:30 2?
STJ LIS?. 23

Ll7 LDR b I+ I," 3+ I 24
LLS l'•U•\15 213

p_;; L.RS 17 26
R STJ b 1 + 11 ''I+ I 27
F3 IF! POc::)SKi:i ac:i4 3r.

TRA LI 7 3!
P4 L.OR Lt56,U•PF 3?

('· i:: STJ L 1 55 3?
l.....__j L27 z ST>< 7,:J•Tr· 34

SB2 Pc:"1I•"I 3c:::
L31 I Tl, I IFIPQS)SKP I >!E(QI :3~

r 1 LT6 • 1 J• u··a3 37
p 3 AB! 77776•U•T7 If,()

E' 1 IF(PN?)TRA L'il If.I
IHI 01310 au 42 4?

LT5• LI :541 1-'•T4 43
T5 IF(ZEP)TRA L '•?. 44
T4 1r:-(PN7)SKP T'i 4i::
TS STJ L154 4!-

i.42 T 4 LT6• Lt53 47
T6 IFIZER)nA L46 50
T4 !FINN7)SKP T,; 51
T6 STO Lt:53 --,

::, '
L46 CLA Lt54 5?

FDV LI ·5-:'! 511
IFINE"')Sr< 0 L, 521 1<•Z -c:; ::, ..
TR>\ L, .i+2 5~

P3 L.T4 -L!56•U•BI . .,
::, '

T4 LT5• • I .J, R•d?. 6C'
FDv' T"i, u··r 4 61

T5 FMP• L!55,H2+t 6?
P4 40023 a=15,U•T6 6'.=l
T4 FMP• IIIJJ,B]=I 61:

L60 F4 SA2 Pt:", U•" I 6!"
p 1 !F(ZEC.)JMP P,84-1 66
7 LT5• III I J 67

S8?. b~ 7r,
L6'+ ::>Bl 1117 71

T5 FM? Ii 1) 7?
, .. .--.- SB! b4+1 7?

I I
_. ,

·-··---·- ·-----

--.(

\'----· ~:

4/20/6£- 1 lf., 3q PAGE 2
FAi)• 11ttQ,l:P=il 74

F2 IF(PN7)TR.A L'il+ 7~
p lf, IF(PN7)nA L'>(J 7f:.
T7 SSlf, •'i,U•".3 77

CLA I,., U•" I tor
F3 ll='(t-.JZc-1sKc- c3.0F IJI

TRA L1J3,,'F'-! IJ2
CLA pc-+Bl•U•B? IQ?
Lr.,~ .. B\+A3•l•d~ \04

F3 STO b'=>, R•f-i2 1 oi::
F STO pr.+s I • I •t.33 106
r3 STO 8':>1PF-! 1.07

LIO,: PF !F(PN7)TRA L~7 II n
SB3 64.1 I .. ff2 ! 11

LIO.:; LD·~ B1+B3 11?
7 LLS 11 113

IF(ZEQ)SK" a~2,B?.,.l 1. 14
P3 !1='(PN7)T~A L!J5 I I c:

P2 Ii:- (ZE~) 5,<P a=u+1 II~
TRA L121,~3+! 117

PI TRA LI 35, 1.J•PF' \ 2Cl
LI l 11 Sl32 b'.3-11 T .. 93 !21

F2 ll='IPN,)TRA L 1 J'5 12?
LI I' TRA ••37 12?
LI I"' STX ·~6-1•86 .. l 124

_,i,,,.. PF LT7 L 1.ss, 11 .. cc 12'-
';(,. Ll2 1 PI SRI 81~, U•µF 12f.· •\:-.... .. ~:· u2-= LDR IE 1 ,J 127

P2 S92 e~,u .. H3 \ 3r,
F LIJ~• • 1.) 131
Pc ~R2 En, U•tj3 !3?
~ ST•J IIE 1 :J.1B I .o(\3?
PI IF(PN7)TRA L!22 134

CLA Pt:'+83 13~
L!J,~ pt:'+~2 136
LLS , u, 137
CRR 17 llf,(l
S T,J pt:'+83 141

L 13'~ Lr1~ P""+82 , 4i?
LLS 17 14?

F'5 LRS I 7 llf,4
,;, STO pr.-+s2 llf.!'-
rF TRA L ! 14.1 u .. s I 1. 4f

L 14" 7 SS I 1,,u.r.>.2 147
TSR • 1-~5 15("1

L 14" :,PF l, J•B I ' :51
TRA •L 77777,B I+ I \3?

LI 4'- 7 ST!J LISS I-':) :) .
TRA L 1 It, 154

L 15"' OCT 01J17?044oooonoooo 15'-
LJ5! OCT ue.~oo~ooonononooor \56
LI 5'-' OCT 011oo"oconononooor !57
L.15.J ocr 00Joonoconooooonoo !6r
Ll5''· OCT 01Joonoconoooronon 16!
L 15°~ ucr 01JOO"OCQ(l000!'l0nor 16?
LI 5t. uCT 01Jo1~aoooooorooor 163

t.NJ !64
161':

\ '6!-
' -"'-._...-

	Assembly language
	Contents
	Symbolic coding
	Instruction form
	Types of symbols
	Instruction content
	Operation codes
	Pseudo-orders
	Macro-orders
	Assembly procedure
	Coding examples

