ASSEMBLY LANGUAGE

 $\left(\right)$

ASSEMBLY LANGUAGE

Symbolic Coding ,	
Instruction Form	
Types of Symbols	
Instruction Content	
Operation Codes Class 0, Tests and Transfers Class 1, Arithmetic Class 2, Fetch, Store, Tags Class 4, B-Registers, Lights, Special Registers, Shifts Class 5, Logic and Fast Registers Class 6, Input-Output	
Class 7, Analog Input, Shifts, Delays Summary of Operation Codes	
Pseudo-Orders	
Macro-Orders	
Assembly Procedure	
Coding Examples	

SYMBOLIC CODING

The absolute machine language of the Rice Computer is described in detail in the Rice Computer Manual. In practice, programs are not written in the absolute language of the computer but in a symbolic language. A language which provides symbolic notation for instructions, or commands, that correspond one-for-one with absolute machine instructions is called an <u>assembly language</u>. The program which translates assembly language into machine language is called an assembly program.

Use of the assembly language for the Rice Computer depends on a knowledge of the absolute machine instruction format, a familiarity with the registers of the computer, and a general acquaintance with the instruction repertoire -- all explained in the Rice Computer Manual. Two forms of the Rice Computer assembly language are available:

AP1, for independent use

AP2, for use within Genie programs The corresponding assembly programs have the same names:

AP1, an independent assembly program

AP2, a subset of the Genie compiler

The two assembly languages are very similar. The major distinction concerns octal and decimal numerals. In AP1, all numeric constants are assumed to be octal unless immediately preceded by the special symbol "d", meaning decimal. In AP2, all numeric constants are assumed to be decimal, except when octal form is indicated by a plus sign immediately preceding the octal number.

In the following discussions, M stands for the final number formed in the last 15 bits of I (the instruction register) after all specified indirect addressing and B-modification has taken place; and if Q is any machine location, then (Q) stands for the contents of location Q.

INSTRUCTION FORM

The general form of an AP1 or AP2 instruction and its correspondence to a machine-language instruction as explained in the Rice Computer Manual is

Here "cr" denotes "carriage return", and "tab" denotes "tabulate" on the flexowriter used for preparation of input to the assembly programs.

- LOCN gives the symbolic label (if any) on the instruction. SETU corresponds to Field 1: bring a "fast" register to U; then inflect (U).
- OPN corresponds to a Field 2 operation chosen from one of seven classes.
- AUX corresponds to Field 3: alter a B-register, send (U) or (R) to a "fast" register, send the M portion of I to a B-register, or clear R.

ADDR+MOD corresponds to Field 4: compute the final address M, sending M to the last 15 bits of I; load S with M or (M); then inflect (S).

All fields may be symbolically coded. All fields but MOD and TAG may be coded numerically.

If no TAG is to be specified, the 4th tab may be omitted. If no AUX operation is to be specified, the preceding comma may be omitted.

TYPES OF SYMBOLS

Precise definitions of the allowed symbols are as follows: <u>Register names</u>. The following symbols are used as names of "fast" registers:

A-series Z, U, R, S, T4, T5, T6, T7

B-series CC, B1, B2, B3, B4, B5, B6, PF These may appear in SETU, ADDR+MOD, and AUX fields. The symbol I may be used in SETU and AUX. The special register names may be used in ADDR; these are

SL	sense lights
IL	indicator lights
ML	mode lights
TL	trapping lights
P2	second pathfinder
X	increment register
ΤT	"to-tape" register
FΤ	"from-tape" register

These symbols may be used <u>only</u> as register names.

Special characters. *, a(AP1) or #(AP2), d(AP1), +, -, |, \rightarrow , (,), "tab", "cr", and , (comma).

<u>Operation codes</u>. These include the mnemonic operation codes in the assembly vocabulary, pseudo-operation codes (AP1 only), macro-operations (AP1 only), and general symbols defined by the user as operation codes with a LET (in Genie for AP2) or an EQU (in AP1). All of these areas are covered in later discussions.

General names. In AP2, a private name may be

a single lower case Roman letter

or an upper case Roman letter, followed by upper case Roman letters, followed by lower case Roman letters, followed by numerals.

In AP1, a private name may be

an upper case Roman letter, followed by upper case Roman letters, followed by numerals.

Spaces may not appear in names. Any number of characters may form

TYPES OF SYMBOLS

2

a name; AP2 will retain the first four if lower case Roman letters are used, the first five otherwise; AP1 will retain the first six. The following are general names in AP1 and AP2: B, M3, COMM, ZETA2. The following are general names in AP2, but not in AP1: b, Comm, Zeta2. General names may appear only in the LOCN and ADDR fields.

Each field of the symbolic instruction has a well-defined form. If this form is not recognized by the assembly system, a message is printed during assembly. The acceptable contents of each field are as follows:

LOCN. This field may be blank or absolute or symbolic. Absolute LOCN fields are permitted only when an AP1 program is being assembled in absolute form (see the ORG pseudo-order discussion). A symbolic LOCN field may contain any general name. A name may not appear in LOCN more than once in any one program.

SETU. This field may be blank, absolute, or F, where F is an A- or B-series register name or "I", or any of the forms -F, |F|, or -|F|. If SETU is blank, "U" is understood and the octal equivalent Ol is inserted into the machine instruction. I sets U to the integer +1; -I sets U to the integer -1. Note that Z sets U to all zeroes; -Z sets U exponent to zero and U mantissa to minus zero, or all ones.

Examples: B1 | T4 | -PF - | R | Z -I

If the T-flag is on for register Ti (i=4,5,6,7), indirect addressing through Ti will occur when Ti is addressed in the SETU field. To denote this mode of addressing the * may be used before the register name:

*Ti -*Ti |*Ti| -|*Ti|
This is a symbolic convenience only, and these will be translated
as:

Ti -Ti |Ti| - |Ti|

<u>OPN</u>. This field may be absolute or an operation code. In the case of conditional transfers, a symbolic operation has the form IF(CCC)TTT where CCC represents test conditions and TTT is a mnemonic for a transfer order. Other symbolic operation codes consist of

2

one or more 3-letter mnemonics. Special symbols such as \rightarrow , +, -, ",", and +i (where i is an octal integer) are sometimes permitted (see the section on operation codes).

<u>AUX</u>. This field may be blank, absolute, or one of the forms $U \rightarrow F$, $R \rightarrow F$, $I \rightarrow Bi$, Bi+1, Bi-1, or Bi+X. Bi stands for one of the B-series register names; F is any A- or B-series register name; I refers to the last 15 bits of the instruction register; and X is the increment register. As a special case, $R \rightarrow Z$ causes R to be cleared to zero.

Example: $U \rightarrow T4$ $R \rightarrow PF$ $I \rightarrow B1$ B2+1 B3-1 B4+X

If the T-flag is on for register Ti (i=4,5,6,7), indirect addressing through Ti will occur when Ti is addressed in the AUX field. To denote this mode of addressing the * may be used before the register name:

U→*Ti R→*Ti

This is a symbolic convenience only, and these will be translated exactly as:

 $U \rightarrow Ti$ $R \rightarrow Ti$

<u>ADDR+MOD</u>. ADDR may be blank or absolute or symbolic, or the ADDR+MOD field may consist of an octal or decimal number to be used as an operand. MOD is either blank or one or more of the B-series register names, connected to ADDR by + signs. Special inflections control the IM and IA bits as follows: IM bit 1 is set to 1 (to load S with M instead of (M)) whenever the symbol "a" (AP1) or "#" (AP2) appears, or whenever certain OPN mnemonics are used (see the section on operation codes). IM bits 2 (absolute value) and 3 (minus) are controlled by the special forms -Q, |Q|, and -|Q|, where Q is an allowed ADDR+MOD symbol. The IA (indirect addressing) bit is set to 1 whenever the symbol "*" appears in this field.

If ADDR is symbolic, any A-series register name, any special register name, or any general name is acceptable. A general name may be followed by a relative part consisting of an integer preceded

by a + or - sign.

If ADDR is absolute, any octal integer of not more than 5 digits, or any decimal integer of absolute value not larger than 32,767, is permissible. Any octal or decimal integer above these limits or any floating point decimal number is treated as the name of a location containing that number; storage space is reserved for it at the end of the program. In this case, no MODs are allowed, and only the absolute value and - inflections are meaningful.

All characters appearing within parentheses in this field are ignored, so that an address field which is modified by the program may be conveniently noted. For example, (FWA)+B1+B2 is treated as Z+B1+B2. If a symbol appears in ADDR but never in LOCN, a blank location will be reserved at the end of the program. ADDR+MOD should not be blank; the Z character may always be used to produce a zero field.

Examples of equivalent AP1 and AP2 ADDR+MOD fields are:

AP1

AP2

COMM+10 or COMM+d8	COMM+8 or COMM++10
- A+B1-d12 or - A+B1-14	- A + B 1 - 1 2 or - A + B 1 - + 1 4
a *ZETA	# *Z E T A
d 4 8	48
-adl22+B1	- #122+B1
B 4 + B 5	B4+B5
00500	+00500
d2.009027	2.009027
77770000ò	+777700000
30	24

The only field which may be continued onto another line is ADDR+MOD, AUX by punching a "cr" followed immediately by three "tab" characters, so that continuation lines will follow under ADDR+MOD, AUX.

3

TAG. This field may be blank or symbolic. If no tag is desired, the 4th tab punch may be omitted. If a tag is desired, the TAG field must contain one of the mnemonics TGl, TG2, or TG3. The corresponding tag will be placed on the assembled instruction, printed on the octal listing, and punched with the instruction in checksum format.

4

The most common Field 2 operations have been given names in the vocabulary of AP1 and AP2 for convenience in coding. All Field 2 operations are fully explained in the machine manual. The mnemonics defined in this section are summarized in a chart at the end of the section. These operation code symbols may not be used for any other purpose. Other Field 2 operations may be given general names by use of LET (in Genie for AP2) or EQU (AP1), and such symbols are then treated as operation codes throughout the program in which they have been defined.

• Class 0, Tests and Transfers

In the list below, the symbols are followed by their octal equivalents and a brief explanation of their meanings; the indication "a,#" means that the operation symbol automatically causes IM bit 1 to be set to 1 (to load S with M instead of (M)), since the operation indicated deals with M rather than with (S).

The four unconditional transfers are represented by:

		octal codes	
a , #	HTR	00000	Halt and transfer. Halt, setting CC to M when CONTINUE is pressed.
a,#	TRA	01000	Transfer. Set CC to M.
	SKP	02000	Skip. Subtract (S) from (U); then increment CC by 1, skipping the next order.
	JMP	03000	Jump. Subtract (S) from (U); then increment CC by (X), the increment register.

Conditional transfers have the form IF(CCC)TTT where TTT is one of the above transfer mnemonics, and CCC represent one, two, or three test conditions joined by + or X signs. Use of the + sign indicates that the specified transfer is to occur if <u>any</u> of the conditions listed is satisfied; use of the X sign indicates that the specified transfer occurs only when <u>all</u> of the conditions listed are satisfied simultaneously. A single order may not contain both + and X signs. One condition from each of the first three groups may be specified; or a Group IV mnemonic may be combined with a Group III test as noted. If a TRA or HTR is used, the specified test is made on (U). If a SKP or JMP is used, the specified test is normally performed on (U)-(S). The exceptions to this rule are noted below Group II.

G	r	0	u	р	Ι
-					

	octal code		
PSN	00100	Positive sign. Is the equal to 0?	sign bit of U
MOV	00200*	Mantissa overflow. Is #4 on?	Indicator Light
EOV	00300*	Exponent overflow. Is #5 on?	Indicator Light
NSN	00500	Negative sign. Is the equal to 1?	sign bit of U
NMO	00600*	No mantissa overflow. Light #4 off?	Is Indicator
N E O	00700*	No exponent overflow. Light #5 off?	Is Indicator

*Note that indicator lights are turned off when tested.

Group II

		octal code	
•	ZER	00010	Zero. Is (U) mantissa all l's or all O's?
	ΕVΝ	00020	Even. Is bit 54 of U equal to zero?
a , #	SLN	00030*	Sense light on. Are all the sense lights corresponding to 1's in M on?
	NUL	00040 **	Null. Are all 54 bits of U zero?
	ΝΖΕ	00050	Non-zero. Is (U) mantissa different from zero?
	ODD	00060	Odd. Is bit 54 of U equal to 1?
a , #	SLF	00070*	Sense light off. Are all the sense lights corresponding to 1's in M off?

*Note that sense lights are not altered when tested. SLN and SLF tests are meaningful only with SKP or JMP orders, and in these cases no subtraction takes place.

** If the NUL test is used with a SKP or JMP order, a logical comparison is made as follows: wherever a bit of R is equal to zero, the

4

bits in corresponding positions of U and S are compared. If (U) is identical with (S) in each of these positions, the resulting (U) is null and the NUL portion of the test is satisfied. If the NUL comparison is not satisfied, the resulting (U) is meaningless.

Group III

	octal code	
TG1	00001*	Tag l. Is Indicator Light #1 on?
TG2	00002*	Tag 2. Is Indicator Light #2 on?
TG3	00003*	Tag 3. Is Indicator Light #3 on?
NTG	00004*	No tag. Are Indicator Lights #1, #2, #3 all off?
NT1	00005*	No tag l. Is Indicator Light #1 off?
NT2	00006	No tag 2. Is Indicator Light #2 off?
NT3	00007	No tag 3. Is Indicator Light #3 off?

 $*_{
m Note}$ that indicator lights are turned off when tested.

Group IV

	octal code	
POS	00110	Positive <u>or</u> zero. Is (U) mantissa greater than or equal to zero?
N E G	00510	Negative <u>or</u> zero. Is (U) mantissa less than or equal to zero?

A + sign must be used when combining either of these mnemonics with a Group III test.

	octal code	
PNZ	04150	Positive and non-zero. Is (U) mantissa strictly greater than zero?
ΝNΖ	04550	Negative <u>and</u> non-zero. Is (U) mantissa strictly less than zero?

A \times sign must be used when combining either of these mnemonics with a Group III test.

• Class 1, Arithmetic

In the list below, the symbols are followed by their octal equivalents and a brief explanation of their meanings.

Any Class 1 mnemonic may be followed by \rightarrow or +1, to cause storing of the final (U) in the location addressed by M; by +2, storing (U) at location (B6); or by +3, storing (U) at location M+(B6). Octal codes may be joined by a '+' to Class 1 mnemonics for various special operations. If n is such an octal code, the combination appears as

mnemonic	+n	in	AP1
mnemonic	++n	in	AP2

Any floating point mnemonic may be followed by +1j (j=0, 1, 2, or 3), causing the last bit of (U) to be set to 1 (rounded) after the operation but before storing. After floating point mnemonics +4j suppresses normalization of the result, +5j rounds and suppresses normalization. Other options are given in the machine manual.

The Class 1 mnemonics are as follows:

Fixed point

	octal code	
ADD	10000	Add. $(U) + (S) \rightarrow U$.
SUB	10100	Subtract. $(U) - (S) \rightarrow U$.
BUS	14100	Reverse subtract. (S) - (U) \rightarrow U.
MPY	10200	Multiply. (U) \times (S) \rightarrow U, R (double length).
IMP	10220	Integer multiply. (U) \times (S) \rightarrow U.
DIV	10300	Divide. Double length (U,R)÷(S)→Ú, 2 ⁴⁷ × remainder →R.
VID	16300	Reverse divide. (S)÷(U)→U, 2 ⁴⁷ × remainder →R.
IDV	13300	Integer divide. (U)÷(S)→U, remainder →R.
VDI	17300	Reverse integer divide. (S)÷(U)→U, remainder →R.

5

-

Floati	ng Point	
	octal code	
FAI	0 10400	Floating add. $(U) + (S) \rightarrow U$.
FSE	3 10500	Floating subtract. (U)-(S)→U.
BSE	14500	Reverse floating subtract. (S)-(U) \rightarrow U.
FM I	2 10600	Floating multiply. (U)×(S)→U,R (double length).
FDΥ	10700	Floating divide. Double length (U,R)÷(S)→U, 2 ⁴⁷ × remainder →R.
VD F	16700	Reverse floating divide. (S)÷(U)→U, 2 ⁴⁷ × remainder →R.

ر بر

.....

Class 2, Fetch, Store, Tags

In the list below, the symbols are followed by their octal equivalents and a brief explanation of their meanings; the indication "a,#" means that the operation symbol automatically causes IM bit 1 to be set to 1 (to load S with M instead of (M)), since the operation indicated deals with M rather than with (S).

Any Group I or Group II mnemonic may be followed by a comma and any Group III mnemonic. In addition, any Group I or Group III mnemonic may be followed by \rightarrow or +1, storing (U) with (ATR) at location M; or by +2, storing (U) with (ATR) at location (B6); or any Group I, II, or III mnemonic may be followed by +3, storing (U) with (ATR) at location M+(B6). Note that all Group I and Group II mnemonics clear (ATR) unless followed by a Group III mnemonic.

The Class 2 mnemonics are as follows:

Group I

	octal code	
CLA	21700	Clear and add. Bring (S) to U.
BEU	21000*	Bring exponent to U. Exponent portion of (S) replaces exponent portion of (U).
BMU	20700*	Bring mantissa to U. Mantissa portion of (S) replaces mantissa portion of (U).
BLU	21400*	Bring left half to U. Left half of (S) replaces left half of (U).
BRU	20300*	Bring right half to U. Right half of (S) replaces right half of (U).
BIU	20200*	Bring inflections to U. Inflection portion of (S) replaces inflection portion of (U).
BAU	20100*	Bring address to U. Address portion of (S) replaces address portion of (U).
BNA	21600*	Bring all except address to U. Inflec- tion and left portions of (S) replace inflection and left portions of (U).

The "bring" mnemonics may be joined by commas to fetch more than one portion of a word.

ASSEMBLY LANGUAGE November, 1966

8

G	r	ი	11	D	ΤT
С.	-	v	u		

		octal code	
	R PE	20701*	Replace exponent. Exponent portion of (U) replaces exponent portion of word at location M.
	R PM	21001*	Replace mantissa. Mantissa portion of (U) replaces mantissa portion of word at location M.
	RPL	20301*	Replace left half. Left half of (U) replaces left half of word at loca- tion M.
	R PR	21401*	Replace right half. Right half of (U) replaces right half of word at loca- tion M.
	R PA	21601*	Replace address. Address portion of (U) replaces address portion of word at location M.
	RPI	21501*	Replace inflections. Inflection por- tion of (U) replaces inflection por- tion of word at location M.
a ,#	STO	20001	Store. Store (U) at location M.

 * The "replace" mnemonics may not be combined with each other.

Group III

	octal code			
ST1	20010	Set Tag 1.	Set ATR t	o 1.
ST2	20020	Set Tag 2.	Set ATR t	o 2.
st3	20030	Set Tag 3.	Set ATR t	o 3.
WTG	20040	With Tag.	Do not cha	nge ATR.

<u>Group IV</u>

	octal	code	
N O P	30000		No operation. Do not alter (U) or (ATR).
FSΤ	20041		Fetch and store. Bring contents of location M to S; then store (U) with (ATR) at location M.
RWT	21641		Replace address, with tag. Address portion of (U) replaces address portion of word at location M, without changing the tag on the word at location M.

Double Option

Any Class 2 operation applied to U with <u>original</u> F4 address N may also be applied to R with origianl F4 address N+1 by use of the mnemonic:

octal code

DBL 20004

Double. After operating on U with original F4 address N, apply same operation to R with original F4 address N+1.

Examples:

BAU, DBL DATA

loads the address portion of U from the location DATA and loads the address portion of R from the location DATA +1.

STO,DBL *ANS

stores (U) through the codeword at location ANS and stores (R) through the codeword at location ANS +1.

Use of the +2 store option with DBL stores (U) with (ATR) at location (B6), stores (R) with (ATR) at location (B6+1), <u>and</u> increments (B6) by 1. The +3 store option with DBL uses (B6) for both stores and does not increment (B6).

After a double operation, the M portion of (I) contains the final address used with R.

9

10

 <u>Class 4</u>, <u>B-Registers</u>, <u>Lights</u>, <u>Special Registers</u>, <u>Shifts</u> In the list below, the symbols are followed by their octal equivalents and a brief explanation of their meanings; the indication "a,#" means that the operation symbol automatically causes IM bit 1 to be set to 1 (to load S with M instead of (M)), since the operation indicated deals with M rather than with (S).

The Class 4 mnemonics are as follows:

B-registers

			7			1
0	C.	rа	1	. C	0	de

a , #	T S R	40000	Transfer to subroutine. Set PF to (CC); then set CC to M.
a , #	SBi	4000i	Set Bi. Set Bi to M, for i=1, 2, , 6.
a , #	SPF	40007	Set PF. Set PF to M.
a , #	ACC	41000	Add to CC. (CC) $+M \rightarrow CC$.
a ,#	ABi	4100i	Add to Bi. (Bi)+ $M \rightarrow Bi$, for i=1, 2,, 6.
a , #	APF	41007	Add to PF. (PF) $+M \rightarrow PF$.
	ERM	00020	Enter repeat mode. Turn on mode light #2.

The ERM mnemonic is meaningful only when joined by a comma to one of the above Class 4 mnemonics.

Lights

	octal code	
a,# SLN	42000	Sense lights on. Turn on sense lights corresponding to l's in M.
a,# ILN	42001	Indicator lights on. Turn on indica- tor lights corresponding to l's in M.
a,# MLN	42002	Mode lights on. Turn on mode lights corresponding to l's in M.
a,# TLN	42003	Trap lights on. Turn on trapping lights corresponding to l's in M.
a, # SLF	42004	Sense lights off. Turn off sense lights corresponding to 1's in M.
a,# ILF	42005	Indicator lights off. Turn off indi- cator lights corresponding to 1's in M

11

		octal code	
a,#	MLF	42006	Mode lights off. Turn off mode lights corresponding to 1's in M.
a,#	TLF	42007	Trap lights off. Turn off trapping lights corresponding to l's in M.

Note that lights corresponding to $0\,{}^{\prime}{\rm s}$ in M are not affected by the above orders.

Special registers

		octal code	
a,#	STX	43005	Set X. Set the increment register to M.
a , #	STT	43006	Set TT. Set the to-tape register to M.
a,#	SFT	43007	Set FT. Set the from-tape register to M.

Shifts

		octal code	
a ,#	DMR	44000	Double mantissa right. Arithmetic right shift of (U,R) mantissa M places.
a,#	DML	44010	Double man'tissa left. Arithmetic left shift of (U,R) mantissa M places.
a,#	LUR	45010	Logical U right. Shift (U) right M places, shifting zeros into left end of U.
a,#	LUL	45020	Logical U left. Shift (U) left M places, shifting zeros into right end of U.
a,#	LRR	45001	Logical R right. Shift (R) right M places, shifting zeros into left end of R.
a,#	LRL	45002	Logical R left. Shift (R) left M places, shifting zeros into right end of R.
a,#	LRS	45015	Long right shift. Shift (U,R) right M places, shifting (U) into R and zeros into left end of U.
a,#	LLS	45062	Long left shift. Shift (U,R) left M places, shifting (R) into U and zeros into right end of R.

12

		octal code	
a,#	CRR	45055	Circle right. Shift (U,R) right M places, shifting (U) into R and right end of (R) into left end of U.
a,#	CRL	45066	Circle left. Shift (U,R) left M place

Circle left. Shift (U,R) left M places, shifting (R) into U and left end of (U) into right end of R.

a,# BCT 46000 Bit count. Clear U; shift R right M places; add each l which spills from R one at a time into U.

T-flags

TFU 47000

No longer operational

T-flags and ITR to U. Clear U, then bring two ITR and four T-flag bits to U: ITR in octal $(0,1,2, \text{ or } 3) \rightarrow \text{bits}$ 49 and 50, TF4 \rightarrow bit 51, TF5 \rightarrow bit 52, TF6 \rightarrow bit 53, TF7 \rightarrow bit 54.

ASSEMBLY LANGUAGE November, 1966

• Class 5, Logic and Fast Registers

In the list below, the symbols are followed by their octal equivalents and a brief explanation of their meanings.

Any Class 5 mnemonic may be followed by \rightarrow or +1, to cause storing of the final (U) at location M; by +2, storing (U) at location (B6); or by +3, storing (U) at location M+(B6). In addition, any Class 5 mnemonic may be preceded by a - sign, causing the final result in U to be complemented (before storing). The Class 5 mnemonics are as follows:

octal code

CPL	50100	Complement. Change all l's in U to O's and all O's to l's.
XUR	54000	Exchange (U) and (R). (U) \rightarrow R as (R) \rightarrow U.
LDU	50410	Load U. $(S) \rightarrow U$.
LDR	50400	Load R. (S) \rightarrow R without disturbing (U).
LTi	504i0	Load Ti. (S)→Ti without disturbing (U) or (R), for i=4, 5, 6, 7.
STF	50540	Set T-flag. Turn on flag bit for the T-register being loaded to cause in- direct addressing in Fl and F3. Mean- ingful only if adjoined to LTi by comma.
SUR	53000	Shuffle S, U, and R. (U) \rightarrow R then (S) \rightarrow U.
ORU	50010	Or to U. Logical or for each bit posi- tion: (U)=0 and (S)=0 results in (U)=0; otherwise, (U)=1 as result.
AND	50314	And. Logical and for each bit position: (U)=1 and (S)=1 results in (U)=1; other- wise, (U)=0 as result.
ΧTR	50020	Extract. For each bit position: $(S) \rightarrow U$ if $(R) = 1$, (U) unchanged if $(R) = 0$.
SYD	53220	Symmetric difference. For each bit position: (U)=(S) results in (U)=0; (U)≠(S) results in (U)=1.
SYS	53120	Symmetric sum. For each bit position: (U)=(S) results in (U)=1; (U) \neq (S) re- sults in (U)=0.
		IN BE only to when M=1 when The

e Class 6, Input-Output

In the list below, the symbols are followed by their octal equivalents and a brief explanation of their meanings; the indication "a,#" means that the operation symbol automatically causes IM bit 1 to be set to 1 (to load S with M instead of (M)), since the operation indicated deals with M rather than with (S).

For detailed explanations of reading, printing, punching, plotting, and magnetic tape operation, see the Rice Computer Manual.

The Class 6 mnemonics are as follows:

Paper tape

		octal code	
a , #	RTR	60000*	Read triads. Read l to l8 triads from paper tape into U.
a ,#	RHX	60100 [*]	Read hexads. Read 1 to 9 hexads from paper tape into U.
	PHX	60400	Punch hexads. Punch 1 to 9 hexads from (S) onto paper tape.
	РН7	60500	Punch hexads with 7th hole. Punch l to 9 hexads, each with a 7th hole, from (S) onto paper tape.
	PTR	60600	Punch triads. Punch 1 to 18 triads from (S) onto paper tape.

*Either "Read" mnemonic may be followed by \rightarrow or +1, storing (U) at location M; by +2, storing (U) at location (B6); by +3, storing (U) at location M+(B6); by +40 to turn on IL4 (mantissa overflow) if there is no tape in the reader.

Console typewriter

octal code TYP 60700

Type. Type (S) as 18 octal digits on console typewriter.

Printer

octal code a,# PRN 61110

Print numeric. Print, using first 32 characters of print wheel, from print matrix beginning at location M; space one line after printing.

15

		octal code	
a ,#	PRA	61210	Print alphanumeric. Print as above, using all characters.
a , #	PRO	61310	Print octal. Print as above, using characters 0-7 only.
	S PA	61010	Space. Advance printer paper one line.
	SP2	61020	Space, format 2. Advance printer paper to next 1/22 page mark.
	S P3	61030	Space, format 3. Advance printer paper to next 1/11 page mark.
	SP4	61040	Space, format 4. Advance printer paper to next 1/6 page mark.
	SP5	61050	Space, format 5. Advance printer paper to next 1/3 page mark.
	S P6	61060	Space, format 6. Advance printer paper to next 1/2 page mark.
	PAG	61070	Page restore. Advance printer paper to next new page.
	DLY	61000	Printer delay. n successive executions of DLY will delay the machine for at least n-l tenths of a second and not more than n tenths of a second.
		62000 a2	- disc operation (preset love 25 to
Ma	gneti	c tape	show reason write, discormen addresses)
		octal code	
a ,#	WDi	64i00	Write data on MT unit i; i=Z(for 0), 1, 2, 3.
	WMi	64i20	Write marker from last 8 bits of (S) on MT unit i; i=Z(for 0), 1, 2, 3.
a , #	RDi	65i00	Read data from MT unit i; i=Z(for 0), 1, 2, 3.
	SMi	66i00 [*]	Search for marker in last 8 bits of (S) on MT unit i; i=Z(for 0), 1, 2, 3.
	RWi	66i01	Rewind tape on MT unit i; i=Z(for 0), 1, 2, 3.
	BCK	60040	Backward. Perform operation in back- ward direction.
	NST	65004	No store. Do not store to memory. This is meaningful only for read MT orders.

16

*Search is overlapped with computer operation, but next order to searching transport will hang until search is complete.

Oscilloscope and strip chart plot

	octal code					
PLT	67000	Plot on	oscilloscope	or	strip	chart.
ADV	67700	Advance	movie film.			

Class 7, Analog Input, Shifts, Delays

Any Class 7 mnemonic may be followed by \rightarrow or +1, to cause storing of the final (U) at location M; by +2, storing (U) at location (B6); or by +3, storing (U) at M+(B6). This class deals with various instructions used in conjunction with operation of the analog-to-digital converter.

The Class 7 mnemonics are as follows:

octa	l code	
WAT 7110	0	Wait. Machine will wait until the next pulse from a crystal-controlled 1 kc. pulse generator before exiting Field 2.
LS1 7201 LS2 7202 LS4 7204	0 0	Special fast arithmetic shifts of double-length (U,R), left if S exponent positive, right if S exponent negative. Shifts are 8 bits at a time. LSi in- dicates i shifts of 8 bits. These shifts are principally used in unpack- ing converted data. The mnemonics may by combined to get different length shifts: LS4,LS1 would give 5 shifts of 8 bits (total: 40 bits). These shifts do not pass through the expo- nents of U or R nor through the sign of R, but do shift into the sign of U.
MCN 7211	0	Manual conversion. An A-to-D conver- sion of the channel specified by (S) will be performed.
ACN 7236	4	Automatic conversion. Six conver- sions from channels 1 through 6 will be performed.

Conversion results will be packed into U as follows: The 8 bits (sign plus 7 bits) resulting from each conversion will be packed into the mantissa with the bits resulting from the first conversion farthest to the left and the bits resulting from last conversion in the right-most 8 bits of U. The U exponent will be set to 77. The R mantissa is used.

There are sixteen channels into the converter. The channel to be converted is specified by the right-most 16 bits of S. Channel 1 corresponds to S_{m47} , Channel 2 to S_{m46} , etc.

17

18

In addition to the formal store options, operations may be performed with the 72xxx orders as follows:

72xxx + 400	(S) will be sent to U before per- forming any other operation.
72xxx + 200	(S) will be cleared and a 1 sent to S m47•
72xxx + 4	(S) will be logically shifted 1 to the left each time (U,R) is shifted 8 to the left. Notice that this feature can be used to sample consecutively numbered channels automatically.

19

• Summary of Operation Codes

The accompanying chart summarizes the Field 2 mnemonics available in AP1 and AP2. If an operation code is followed by the symbol "@", the corresponding mnemonic causes IM bit 1 to be set to 1.

The symbol " \rightarrow " following an operation mnemonic of class 1, 2, 5, 6, 7 causes a final store of U to M.

The symbol "-" preceding a class 5 operation mnemonic causes a final logical complement of U.

For more than one operation mnemonic in an instruction, the octal codes will be combined by a logical OR. In most cases, mnemonics are separated by commas. In class 0, the tests are separated by "+" for "ANY", by "x" for "ALL". The mnemonics "POS" and "NEG" are compound "ANY" tests and the mnemonics "PNZ" and "NNZ" are compound "ALL" tests.

SUMMARY OF OPERATION CODES

		CLASS 0	
HTR	900000	IF (ANY) HTR 00000@ IF	(ALL)HTR 04000@
TRA	01000@	$\frac{1F(ANY)TRA}{TRA} = 0.0000 G = 1F$	(ALL) TRA 05000@
JMP	02000	$\frac{1F(ANY)SKP}{TF(ANY)} \frac{1}{MP} \frac{0}{000} \frac{1}{TF}$	(ALL) SKP 00000
JIII	05000	IF (ANI) SMF 05000 IF	(ALL) JMF 0/000
PSN	00100	ZER 00010	TGi 0000i
MOV	00200	EVN 00020	NTG 00004
EOV	00300	SLN 00030@	NTI 00004+1
NMO	00500	NUL 00040 NZF 00050	1=1,2,5
NEO	00700		POS 00110
1110	00,00	SLF 00070@	PNZ 00150
			NEG 00510
			NNZ 00550
	CLASS	1CL	ASS 2
ADD	10000	FAD 10400 STO 20001@	RPL 20301
SUB	10100	FSB 10500 FST 20041	RPE 20701
МРҮ	10200	FMP 10600 BEU 21000	RPM 21001
DIV	10300	FDV 10700 BLU 21400	RPR 21401
BUS	14100	BSF 14500 BAU 20100	RPA 21601
	10220	VDF 16700 BRU 20300	RPL 21501
	16300	BMU 20700	RW1 21641
VID	17300	BIU 20200	STI 20010
VD T	1,300	CLA 21700	i=1,2,3
		DBL 20004	WTG 20040
		CLASS 4	NOP 30000
TSR	40000@	SLN 42000@ DMR 44000@	CLASS 5
SBi	4000i@	ILN 42001@ DML 44010@	LDR 50400
SPF	40007@	MLN 42002@ LUR 45010@	LDU 50410
ACC	41000@	TLN 42003@ LUL 45020@	LTI 50410
AB1	41001@	SLF 42004@ LRR 45001@	1=4,5,6,7
A P F F D M	41007@	LRL 45002@	STF 50540
L KM	-1 6	TIF 42007@ LRS 45015@	SUR 53000
		LLS 45062@	XUR 54000
BCT	46000@	STX 43005@ CRR 45055@	CPL 50100
ΤFU	47000	STT 43006@ CRL 45066@	ORU 50010
		SFI 43007@	AND 50314
		CLASS 6	SYD 53220
	(SYS 53120
RTR	60000@	PRN 61110@ WDi 64100	XTR 50020
KHX	60400 60100@	PRA 61210@ WMi 64120	
РНА рил	60400	PRU 61310@ RD1 65100 RDA 61010 NGT 65004	CLASS /
гп/ РТР	60600	SPi 610i0 SMi 66i00	WAT 71100
		i=26 RWi 66101	ACN 72364
ТҮР	60700	PAG 61070 BCK 60040	MCN 72110
		i = Z, 1, 2, 3	LS1 /2010
			L=1,2,4

The tables on this page summarize the options available in SETU (Field 1), AUX (Field 3), and ADDR+MOD (Field 4). In the tables

A indicates the full length special registers Z ,U,R,S,T4,T5,T6,T7 specified in the second triad by 0,1,2,3,4,5,6,7.

B and Bi indicate the short index registers CC,B1,B2,B3,B4,B5,B6, PF specified in the second triad by 0,1,2,3,4,5,6,7.

I and M indicate the number formed in the address field of the instruction. (M) indicates the contents of the memory lo-

cation numbered M.

Exceptions are $R \rightarrow Z$, 10 in field 3 and I or |Z|, 20 and -I or -|Z|, 30 in field 1. $R \rightarrow Z$ has the result that R is cleared to Z. I or |Z| has the result that an integer 1 goes to U. -I or -|Z| has the result that an integer -1 goes to U.

lst Tr	iad	Field	1	lst Tr	iad	Field	3
- - -	(SET	U)			(AU	JX)	
A	0	В	4	U →A	0	U→Bi	4
- A	1	- B	5	R→A	1	R→Bi	5
A	2	В	6	Bi+1	2	Bi-1	6
- A	3	- B	7	Bi+X	3	I→Bi	7

lst Tri	ad	Field	4
	(AD	DR+MOD)	÷.,
(M)	0	М	4
-(M)	1	- M	5
(M)	2	M	6
- (M)	3	- M	7

21

PSEUDO-ORDERS

Pseudo-orders govern the process of AP1 assembly and facilitate the handling of blocks of various types of data within AP1 programs. Pseudo-orders do not exist in AP2.

• ORG and END

All programs to be assembled by APl must be started by an ORG (origin) order and terminated by an END order.

The function of ORG is to initialize the assembly process, to identify the program which follows, and to determine whether it is to be assembled in relative or absolute final form. The ORG order is preceded by a "cr" and an "uc" or "1c" punch (upper or lower case).

A <u>relativized</u> program will run anywhere in memory. If an order in location P refers in Field 4 to location Q, it is through a Control Counter reference of the form CC+(Q-P)-1. A relativized program that will load under SPIREL control is generated if the LOCN field of the ORG pseudo-order is not blank; the ADDR field must be blank or zero in this case. To assemble a program to load with codeword at address N (octal) the ORG pseudo-order has the form

Ν

S

ORG

cr lst tab 2nd tab

To assemble a program to load symbolically with name S (5 or fewer characters) the ORG pseudo-order has the form

ORG

cr lst tab 2nd tab

To assemble a program to load as the Ath element of the Bth element ... of array K the ORG pseudo-order has the form

K,...,B,A ORG

cr lst tab 2nd tab

Here A, B,... are octal numbers; K is the codeword address or name

PSEUDO-ORDERS

2

(as above) of the array to which the program belongs. As many as five levels may be specified. All control words are provided for the loading of the program as the designated array element.

A relativized program is also produced if the ORG pseudo-order has zero ADDR field and blank LOCN field. This form is only appropriate if the self-loading option is to be used during assembly. The self-loading tape produced will load with the LOAD switch beginning at the address in B6.

An <u>absolute</u> program will run only at the specified memory location. Field 4 reference to location Q is made directly. An absolute program is generated if the ADDR field is not blank or zero; the LOCN field must be blank or zero. To assemble a program to load at address M (octal) the ORG pseudo-order has the form

ORG

cr | 1st tab | 2nd tab | 3rd tab

The program will load with the LOAD switch if the self-loading option is used during assembly; otherwise it will load under SPIREL control.

Μ

cr

cr

The END order has the form

END

cr | 1st tab | 2nd tab

where "END" must be immediately followed by two (or more) carriage returns.

Neither ORG nor END cause any words to be generated in a program.

• EQU

The EQU (equivalence) order gives a numeric equivalent for a symbol or equates one symbol to another. The order has the form

L		EQU	M	
cr	lst tab	2nd tab	31	d tab

where L (in LOCN) is the symbol defined by the pseudo-order, SETU is blank, and M (in ADDR) is either absolute or a symbol whose value has previously been defined through its appearance in the LOCN field of another order. L is assigned the value M. If M is a 5-digit octal code, the symbol L may appear in the OPN field of any order following the EQU order; L will be treated as an operation code and will be replaced during assembly by the octal code for which it stands. No words are added to the program being assembled due to an EQU.

BSS and BES

Either of these orders inserts a block of zero words into the body of the program. BSS (block started by symbol) and BES (block ended by symbol) have the form

L XXX M | cr | 1st tab | 2nd tab | 3rd tab

where L (in LOCN) is blank or symbolic, SETU is blank, and M (in ADDR) is absolute. M is the number of zero words to be inserted. If L is symbolic, it is assigned as if the LOCN field had been associated with the first (BSS) or last (BES) word in the block.

BCD, FLX, REM

These orders deal with alphanumeric data and have the form

L XXX M | cr | 1st tab | 2nd tab | 3rd tab

where SETU is always blank. The operation mnemonic must be followed by a "tab" character, and after that all characters (in the ADDR field M) are retained, 9 characters per word. Any occurrence of the "cr tab tab tab" sequence to continue the character string is replaced by a "space". For BCD (binary coded decimal), each character is converted to a corresponding printer hexad and the words are stored into the program being assembled; if L (in LOCN) is symbolic, it is assigned as if associated with the first word stored. For FLX (flexowriter), all codes (including case shifts, etc.) are preserved without conversion and the words are stored into the program being assembled; L (in LOCN) may be symbolic as for BCD. For REM (remarks), L (in LOCN) must be blank; this order is used only to obtain printed comments in the program listing, and no words are stored into the program being assembled.
• DEC, OCT, and HDC

The DEC (decimal), OCT (octal), and HDC (hexadecimal, i.e. base 16) orders are used for inserting numeric data into the body of the program. They have the form

 \mathbf{L} XXX Μ 2nd tab | cr lst tab 3rd tab where L (in LOCN) is blank or symbolic, SETU is blank, and M (in ADDR) consists of a list of one or more octal or decimal numbers. If L is symbolic, it is assigned as if associated with the first number in the list. Each number must be separated from its successor by a comma, and each will be stored into a separate word in the program being assembled. Continuation lines should not be used; for long lists of numbers, several DEC or OCT pseudoorders in succession may be used to produce a continuous block of data. An octal number consists of one to 18 octal digits. A decimal integer consists of one to 14 decimal digits; a floating point decimal number, of one to 14 significant figures and a decimal point. A hexadecimal number consists of one to 13 hexadecimal digits (0, 1,...,9, a, b, c, d, e, f). It may be 14 hexadecimal digits if its value is less than or equal to 3fffffffffff.

B REF

The REF (reference) order defines a single cross-reference word in the program being assembled. All REFs for a program must appear immediately after the ORG order, before any code for the program. The form of a REF order is

NAME		F	RE F		CONTEN	ΙT
cr	lst -	tab	2nd	tab	3rd	tab

οr

NAME REF *CONTENT

Each REF must contain a location symbol, the name used to address it in the code for the program. The ADDR field of the REF specifies the content of the cross-reference word: a string of characters containing only upper case letters and numbers which will be converted to printer hexads, filled to 5 with '25' hexads or truncated to 5 as appropriate. If the cross-reference word is to contain an indirect addressing bit (for a vector, matrix or program), this is denoted by '*' before the hexad string, with no intervening spaces or punches. If k REFs appear in a program, the first will be at location -(k-1) of the final program, ..., the k^{th} at location 77777 (-0). The punched output of the final program will be followed by a control word to set the initial index of the program to -(k-1). When the program is loaded, execution of the control word to set initial index to -(k-1) will cause SPIREL to operate on each of the k cross-reference words as follows:

- make an entry in the Symbol Table (ST) of the 5 hexads in the cross-reference word;
- 2) insert the corresponding Value Table (VT) address in the address field of the cross-reference word.

Indirect reference in the assembled program through the REF then causes addressing of the item with name in ST, the value in VT for a scalar or the codeword in VT for a vector, matrix, or program.

PSE UDO - ORDERS

For a double operand, such as a complex scalar or nonscalar, two cross-references must be used and these must appear in the order of the parts of the operand. The name of the operand is associated with the first part, and the second part is named "ditto", which is printed ' $\leftarrow\leftarrow\leftarrow\leftarrow$ ' but typed '#####'. If A is a complex scalar its cross-references might appear as

AREAL			REF		А	
AIMAG			REF		\$ \$ \$ \$	
cr	lst	tab	2nd	tab	3rd	tab

where ' $\leftarrow\leftarrow\leftarrow$ ' is typed '######'. It may be that one of the cross-references is never referred to in the code; this is the only case where an unlabelled REF may be used, but two REFs must be given.

Application

Macro-orders are available in the API assembly language. This facility allows the coder to define parameterized sequences of code and have these substituted in his program during assembly. Since a code pattern may thus be written only once for more than one occurrence in the program, a number of advantages are offered:

- -- Symbolic code for the program is shorter;
- -- code for the program is less prone to error because fewer instructions are prepared;
- -- the program is more easily changed because a single change in a macro definition will take effect in all occurrences at assembly;
- -- the program is more readable because single macro names appear in the code for operations which actually require sequences of machine instructions.

A <u>macro-order</u> is a general name which has been <u>defined</u> by the programmer to represent one or more valid AP1 instructions. Then, at each subsequent <u>call</u> of the macro-order, these instructions are inserted into the assembled program. Any order included in the macro-definition may contain a <u>parameter</u> in one or more fields; such a field may be changed each time a macro-order is called by specifying a different value for the parameter at each call.

Example. Suppose in an AP1 program there existed the following code:

CLA	ALPHA
FAD	B6+1,U→T4
STO	GAMMA
CLA	Вб
FAD	BETA, B6+1
STO	В 6
CLA	ALPHA
FAD	BETA,U→R
STO	GAMMA

The programmer could have saved himself the effort of writing the repetitious sequences of instructions by defining a macro-order called SUM with four parameters as follows:

S UM

MACRO	ADONE+ADTWO→TOTAL,AUX
CLA	ADONE
FAD	ADTWO,AUX
STO	TOTAL
MEND	

Then, having <u>defined</u> the macro-order SUM, the programmer could <u>call</u> it in his AP1 code, using different parameter <u>values</u> at each call:

SUM	ALPHA,B6+1, GAMMA,U→T4
•	
SUM	B6,BETA,B6,B6+1
•	
S UM	ALPHA ,BETA ,GAMMA ,U→R

The instructions assembled would be identical with those originally written by the programmer, but the repetitious code would not appear in the program.

Definition

A macro-definition specifies a set of instructions, gives the set a name, and determines which fields (if any) are to contain parameters. The macro-definition consists of three parts: (1) the MACRO pseudo-order, in which the LOCN field gives the name of the macro-order and the ADDR field gives the list of parameters; (2)the set of instructions to be represented by the macro-name; (3)the MEND pseudo-order, ending the macro-definition.

The MACRO pseudo-order may or may not include a list of (1)parameters and must be one of the following forms:

NAME		MACRO	PARA, PARB,, PARZ
cr	lst tab	2nd tab	3rd tab
NAME		MACRO	
cr	lst tab	2nd tab	

The name of the macro-order may be any valid AP1 general name. This is its only appearance in the LOCN field; it is written in the OPN field at each call of the macro. If the macro-order has parameters, they are listed in the ADDR field of the MACRO pseudoorder. A parameter name is any valid AP1 general name, and is separated from the next parameter name by one of the following special characters:

1 () The last parameter is followed by a carriage return; if more than one line is required, the 'cr tab tab tab' sequence follows (but does not replace) the separating character at the end of the first line. Note that if parentheses are used, they must be used in pairs. In this way meaningful notation may be employed in the list of parameter names; for example,

X

C OM P

MACRO

RATE ,TIME ,DIST ,TOTAL

4

could also be written

C OM P	MACRO	RATE(TIME)→DIST,TOTAL
or		
C OM P	MACRO	$RATE \times TIME = DIST \rightarrow TOTAL$

(2) Any reasonable number of instructions may be represented by the macro-name; generally, a lengthy set of instructions will best be coded in closed subroutine form rather than in the open form generated by a macro-order. Any valid AP1 instructions except pseudo-orders may be included. Symbols which have appeared in the ADDR field of the MACRO pseudo-order are parameters and are subject to the special rules described below; all other symbols are treated in accordance with the usual AP1 conventions. Orders within a macro-definition may conform to the rules for instruction content, or they may include parameter names which are then subject to the rules below.

LOCN: Symbolic LOCN fields which are not parameters may be used within a macro-definition, but such symbols are not meaningful outside the set of instructions comprising the macro-definition; they may be referenced only by other orders within the set. A symbolic LOCN field which is a parameter name must be given a different value at each call of the macro-order; these values may then be addressed by orders outside the macro-definition. Note, however, that orders within the macro-definition may reference LOCN symbols which appear elsewhere in the program, including those defined by pseudo-orders.

SETU: A single parameter name may appear in SETU, with or without the minus and absolute value signs normally permitted in this field. All values taken by this parameter at subsequent calls of the macro must then be valid SETU symbols or octal equivalents. Note that if a - or $| \ |$ sign is included, it is effective regardless of whether another - or $| \ |$ sign is used with a SETU

symbol as a parameter value at a subsequent call; such inflection signs are combined by a logical 'or'. If, at a given call, a SETU parameter value is omitted, it is replaced by the octal code '01' (do not change U).

<u>OPN</u>: Multiple parameter names are permitted in OPN to allow flexible coding of Class O tests, Class 2 tag orders, etc. These parameter names may be combined with the special symbols such as \rightarrow , +, X, etc., normally permitted in this field. In the case of multiple parameters, values need not be specified for all parameters at every call if the resulting code is valid. Parameter values for OPN may include any valid OPN symbols or octal codes; the special symbols \rightarrow , +, X, etc. may also be used as part of parameter values.

<u>ADDR+MOD</u>: This field may consist of a single parameter name, which is to assume a value equivalent to any valid ADDR+MOD form (e.g., *ZETA, B1+B2+1, M+B6); or the field may include several parameters, provided the values they assume at any given call result in valid code (for example, SYMB+BREG+NUMB might become BETA+PF+3 or *ALPHA+B2+1); or one or more parameter names may be combined with other symbols and/or numbers which are to remain the same at each call (such as NAME+B1+1, which might become ABC+B1+1 or XYZ+B1+1). A parameter value may be omitted entirely at a given call if such an omission does not destroy the validity of the remaining code. The special symbols such as *, a, -, and | | may appear either with the parameter name or as part of the parameter value, and are combined by a logical 'or'.

<u>AUX</u>: This field may consist entirely of a single parameter name; if so, the value assumed by this parameter must be a valid AUX octal code or symbolic equivalent (e.g. U \rightarrow T4, Bl-1, etc.). Alternatively, either or both of the fast register symbols (and also I and X) may be represented by parameter names, provided that only valid combinations are used for parameter values (for example, Bl-X and I \rightarrow T4 are not permitted).

6

TAG: The customary TAG symbols (TG1, TG2, TG3) may appear within a macro-definition, or this field may contain a parameter name for which one of the above symbolic values will be substituted when the macro-order is called.

(3) The MEND pseudo-order which terminates the macro-definition is as follows:

MEND

cr lst tab 2nd tab

More than one macro-definition may appear within a given program, provided each is bracketed by its own MACRO and MEND pseudo-orders. The same parameter names may be used in separate macro-definitions without causing confusion, but they must not be used as symbols elsewhere in the program. A macro-definition may appear at any point in a program; it generates no code at this point, and transfers around the macro-definition are not needed. The only restriction is that a macro-order must be <u>defined</u> before it is <u>called</u>. One macro-definition may not appear within another, but a previously defined macro-order may be called within the definition of another macro-order.

Call

After a macro-order has been defined, it may be called by writing the name of the macro-order in the OPN field of an instruction; if the macro-order uses parameters, their values for this particular call are listed in the ADDR field of the same instruction. Parameter values for a macro-order are listed in the same order as the list of parameter names in the MACRO pseudo-order of the corresponding macro-definition. Parameter values are separated by commas; the list is terminated by a cr, and the 'cr tab tab tab' sequence following a comma may be used to continue the list onto a second line. Certain parameters may be omitted at a given call; in this case, two adjacent commas (with or without spaces between them) or a comma followed by a cr indicate an omitted parameter. A macro-order will usually be called at several different points in a program. Any call may have a symbolic LOCN field, but no two calls may have the same symbolic LOCN field. The LOCN symbol is assigned to the first order of the set of instructions represented by the macro-order, unless the LOCN field of this order contains a parameter name for which a value is specified at the current call; in this case, the parameter value takes precedence. Note that several orders may replace a single macro-order; hence relative addressing around a call must be used with care.

At each call, the sequence of parameter values must correspond to the sequence of parameter names which appeared in the macrodefinition, but the values assumed by the parameters will usually differ from one call to another. A parameter value may consist of any string of characters which, when substituted into the macrodefinition at each occurence of the corresponding parameter name, will produce valid AP1 code for the field in which it occurs. If the call lies within another macro-definition, a parameter name from the outer macro-definition may be used as a parameter value for the inner macro-call.

Supp	ose an API	l program co	ntains the following code:
	B 1	SB1	B2,U→B2
		LT4	MATR1
	B 1	SB1	B2,U→B2
	в3	s b 3	B4,U→B4
		LT5	*MATR2
	В3	SB3	B4,U→B4
This	could be	written by	defining a macro-order such as
BREGS	5	MACRO	BA, BB, SBA, LTJ, MATRI
	BA	SBA	BB,U→BB
		LTJ	*MATRI
	ВА	SBA	BB,U→BB
		MEND	
		IILIND	
and <u>calli</u>	ng it as i	follows:	
and <u>calli</u>	.ng it as f	follows: BREGS	B1,B2,SB1,LT4,MATR1
and <u>calli</u>	.ng it as i	Eollows: BREGS BREGS	B1,B2,SB1,LT4,MATR1 B3,B4,SB3,LT5,MATR2
and <u>calli</u> Anot	<u>.ng</u> it as f ther examp:	follows: BREGS BREGS BREGS le of a macr	B1,B2,SB1,LT4,MATR1 B3,B4,SB3,LT5,MATR2 ro- <u>definition</u> might be:
and <u>calli</u> Anot STORE	<u>.ng</u> it as f ther examp:	Eollows: BREGS BREGS le of a macr MACRO	B1,B2,SB1,LT4,MATR1 B3,B4,SB3,LT5,MATR2 ro- <u>definition</u> might be: TREG,OPN,TAG,SYMB,BMOD
and <u>calli</u> Anot STORE	<u>ng</u> it as f her examp: TREG	Follows: BREGS BREGS le of a macr MACRO OPN,TAG	B1,B2,SB1,LT4,MATR1 B3,B4,SB3,LT5,MATR2 o- <u>definition</u> might be: TREG,OPN,TAG,SYMB,BMOD SYMB+BMOD,I→BMOD
and <u>calli</u> Anot STORE	<u>ng</u> it as f her examp: TREG BMOD	follows: BREGS BREGS le of a macr MACRO OPN,TAG RPA,WTG	B1,B2,SB1,LT4,MATR1 B3,B4,SB3,LT5,MATR2 TO- <u>definition</u> might be: TREG,OPN,TAG,SYMB,BMOD SYMB+BMOD,I→BMOD SYMB-1
and <u>calli</u> Anot STORE	<u>.ng</u> it as f ther examp: TREG BMOD	follows: BREGS BREGS le of a macr MACRO OPN,TAG RPA,WTG MEND	B1,B2,SB1,LT4,MATR1 B3,B4,SB3,LT5,MATR2 TO- <u>definition</u> might be: TREG,OPN,TAG,SYMB,BMOD SYMB+BMOD,I→BMOD SYMB-1
and <u>calli</u> Anot STORE ₩here the	<u>.ng</u> it as f ther examp: TREG BMOD	follows: BREGS BREGS le of a macr MACRO OPN,TAG RPA,WTG MEND	B1,B2,SB1,LT4,MATR1 B3,B4,SB3,LT5,MATR2 ro- <u>definition</u> might be: TREG,OPN,TAG,SYMB,BMOD SYMB+BMOD,I→BMOD SYMB-1
and <u>calli</u> Anot STORE ₩here the	<u>.ng</u> it as f ther examp: TREG BMOD <u>call</u>	follows: BREGS BREGS le of a macr MACRO OPN,TAG RPA,WTG MEND STORE	B1,B2,SB1,LT4,MATR1 B3,B4,SB3,LT5,MATR2 TO- <u>definition</u> might be: TREG,OPN,TAG,SYMB,BMOD SYMB+BMOD,I→BMOD SYMB-1 T4,ST0,ST2,ALPHA,B3
and <u>calli</u> Anot STORE Where the √ould pro	<u>.ng</u> it as f ther examp: TREG BMOD <u>call</u>	follows: BREGS BREGS le of a macr MACRO OPN,TAG RPA,WTG MEND STORE	B1, B2, SB1, LT4, MATR1 B3, B4, SB3, LT5, MATR2 ro- <u>definition</u> might be: TREG, OPN, TAG, SYMB, BMOD SYMB+BMOD, I→BMOD SYMB-1 T4, ST0, ST2, ALPHA, B3
and <u>calli</u> Anot STORE Where the ∦ould pro	<u>.ng</u> it as f ther examp: TREG BMOD <u>call</u> oduce T4	follows: BREGS BREGS le of a macr MACRO OPN,TAG RPA,WTG MEND STORE STO,ST2	<pre>B1,B2,SB1,LT4,MATR1 B3,B4,SB3,LT5,MATR2 ro-definition might be: TREG,OPN,TAG,SYMB,BMOD SYMB+BMOD,I→BMOD SYMB-1 T4,ST0,ST2,ALPHA,B3 ALPHA+B3,I→B3</pre>

and the call

		STORE	-T6,FST,B6,B1
would	produce		
	- T 6	FST	$B6+B1, I \rightarrow B1$
	в1	RPA,WTG	В6 - 1

All of the preceding examples are crowded with parameters in order to demonstrate the versatility and flexibility of macroorders. In actual practice, many instances will be found where only one or two symbols vary at each repetition of otherwise identical blocks of code. Here the saving in programming time and in reducing the likelihood of introducing errors when copying lengthy sections of code will prove substantial. For example, the following block of code might occur repeatedly in a control program linking various subroutines:

LITES	MACRO	SUBR
	CLA	SL
	RWT	RESET
	SLF	77777
	TSR	*SUBR
	SLF	77777
RESET	SLN	(Z)
	MEND	

Once defined, the macro-order "LITES" could be called at each point in the program where a transfer to a subroutine occurs. By specifying the particular subroutine as a parameter value of the macro-order, one order could be written in place of six each time.

A macro-order using no parameters at all would be useful, for example, in reversing the indexing of a matrix:

TRANSMACROB1SB1B2,U→B2LT4*MATRB1SB1B2,U→B2MEND

At each call, the macro-order "TRANS" would cause T4 to be loaded with the desired element of the transposed matrix MATR.

As noted above, one previously defined macro-order may be called within the definition of another, producing a set of "nested" macro-orders. In the following example, such a set of nested macro-orders is used to multiply two matrices and store their product as a third matrix.

The outermost macro-order MULT has as parameters the codeword addresses and dimensions of the matrices involved; MATA has NROW rows and L columns, MATB has L rows and MCOL columns, and the product matrix MATC has NROW rows and MCOL columns. Within the initialization and storage operations performed by MULT, a second macro-order PROD is called; its definition uses two of the same parameters used by MULT and it performs the actual arithmetic and indexing operations required for the matrix multiplication. Both these macro-definitions are assumed to be embedded in a larger program in which numerous matrices of varying dimensions must be multiplied together.

230

ORG AP1 instructions

В2

В2

В1

Т4

В1 BЗ

Ζ

Т5

В2

В1

MACRO

PROD LOOP

definition οf

inner macro

MULT

INNER definition οf outer macro

> call of inner macro

OUTER

S B 2	B3,U→B3
LT4	*MATA
S B 2	B3,U→B3
S B 1	B3,U→B3
FM P	*MATB, B1-1
FAD	T5,U→T5
S B 1	B3,U→B3
IF(NZE)TRA	LOOP
MEND	
MACRO	MATA ,MATB ,MATC ,NROW ,MCOL, L
S B 1	NROW
S B 2	MCOL
SB3	L,U→T5
PROD	MATA,MATB
STO	*MATC, B2-1
IF(NZE)TRA	INNER
S B 1	B1-1
IF(NZE)TRA	OUTER
MEND	
MULT	A,B,C,5,3,7

МАТА ,МАТВ

AP1 instructions

•	
MULT	M1,M2,M3,*P,*O,*V
0	
•	
0	
MULT	G,H,J,2,2,*N
•	
•	

AP1 instructions

END

ASSEMBLY PROCEDURE

An APl program is assembled by exercising option #6 in **the** PLACER system.

Assembly output on the printer consists of error messages, program listing, and symbol table. These are discussed below. Assembly also provides a punched paper tape which contains the assembled program to be loaded under SPIREL control or with the LOAD switch. Assembly options are also discussed below.

<u>Error indications</u>. An AP1 error indication is produced by apparent errors in syntax or sequencing. The type of error and its location are given by a message:

ERROR IN [F] AT CR NO [N]

where F is the name of the field in error

and N is the placer listing carriage return number of the line containing the error.

If a single instruction is continued onto more than one line, the carriage return number for the last line will pertain to the entire instruction.

Assembled program listing. Four columns are printed, giving: (a) The symbolic location (if any exists).

- (b) The location count, relative position of the word in the program, in octal.
- (c) The instruction in octal, broken into fields, with tag.
- (d) The symbolic address (if any exists).

Locations not assigned by the coder are assigned by the assembly program beyond the code for the program being assembled. These appear with their names below a row of asterisks in the program listing. A name may be one supplied by the coder, as 'A' in the case

STO

Α

where 'A' never appears in a LOCN field. A name may also be one supplied by the assembly program for long octal or full length decimal numbers referenced in ADDR, as in the cases

ASSEMBLY LANGUAGE May, 1967

ASSEMBLY PROCEDURE

2

AND	77777	0000	7777	00000
C LA	d3.0			
ADD	d41269	97		

Specifically, the names assigned to numbers by the assembly program are '-0000A', '-0000B',... in order of occurrence in the program being assembled.

<u>Symbol table</u>. The table of symbols is printed out in seven columns giving information relevant to the symbols defined in the program:

- (a) The relative position in the table.
- (b) The symbol.

or or

- (c) A number (usually 0) which determines the type of object for which the symbol stands.
- (d) The equivalent assigned to the symbol (5 octal digits), unless the symbol is a macro name or a macro parameter.
- (e) A number (usually 1) which indicates reference in the program to the symbol. A number 3 denotes a symbol which appears in a LOCN field but not in an ADDR field, so this may be an unnecessarily defined location in the program. A number 0 appears on macro names and macro parameters and on symbols given a numeric equivalent.
- (f) An 18 digit octal number. The first 5 digits indicate the line at which an equivalent was assigned.
- (g) A number which indicates how (if at all) the equivalent was assigned:
 - 0: by appearing in the LOCN field of an order.
 - 1: by appearing in the LOCN field of an EQU pseudo-order in which the address was symbolic (see section on pseudo-orders).
 - 2: by appearing in the LOCN field of an EQU pseudo-order in which the address was numeric (see section on pseudo-orders).

ASSEMBLY PROCEDURE

Assembly Options. If only option #6 of PLACER is requested, the stop

(I): 06 HTR CC

occurs. In addition to sense lights 14 and 15 which are turned on automatically, other sense lights may be turned on for special forms of output.

SL9 on: Print with double (instead of single) spacing. SL11 on: Do not punch assembled program.

SL13 on: Punch self-loading tape. The tape produced will load by using the LOAD switch on the console. An absolute program will load to the origin specified. A relativized program will load to the setting of B6. These program forms are discussed under the ORG pseudo-order.

CODING EXAMPLES

Storage Exchange Ø

This program STEX handles dynamic storage allocation in SPIREL. If B1 = codeword address of array and <math>B2 = length ofarray upon execution of STEX, space is taken, and B1 = first word address of block upon exit. A more detailed explanation of the use of this program may be found in the SPIREL literature. The remarks in the program serve to explain the program's operation.

Lines	Comments
2	This program has codeword address 154.
6	+2, store to B6 option on class 5.
13	EQU'ed name in field 4; only the first 6-hexads of any name are retained.
2 5	Decimal integer constant in ADDR; 'a' bit is generated automatically due to shift order in OPN.
37	Simple store option ' \rightarrow ' on class 1 arithmetic order; store is to fast register T6.
4 6	R is cleared to zero in AUX by $R \rightarrow Z$, <u>not</u> $Z \rightarrow R$.
60	Increment of CC in AUX causes a skip.
65	-I in field 1 sets U to the integer -1.
100	Only AUX is used here; no operation is perform- ed in OPN.
10 1	I \rightarrow B3 means final address to B3 in AUX.
110	More than two B-mods in field 4.
131	Store ATR to memory in OPN, compound mnemonic.
137	+3, store to B6 + M option in OPN.
155	Control counter is incremented by contents of X register in AUX, causing a jump.
17/	Long octal constant is used in ADDP and is stared

constant is used in ADDR and Long at bottom of program.

CODING EXAMPLES

2

Lines	Comments
224	T7 is restored from value stored on the B6-list.
227 - 230	Labelled long octal constants out of code sequence. The first will be right-adjusted, filled with lead- ing zeroes to 18 octal places.
231	Binary coded decimal psuedo-order generates two words of hexads here.
232 - 240	Equated symbolic names.

Ę

4/11/	66 11+3	32		PAGE 1	
154		ORG			1 2
		REM	STEX FOR SPIREL		3
	T 7 - Z 7 7 7 7 7 7 7 7 7 7 7 7	LT7+2 TRA BAU+2 LDR LLS BAU BAU IF(ZER)TRA IF(NUL)TRA	B1,B6+1 a≺SAVF,U+R X,35+1 STORAG d15,U+T6 FIRSTEX,U+T5 a81,2U+T4 REORG,R+Z TAKE		56701123456
		REM	INACTIVATE SPACE	ADDRESSED BY	17 31
SIVEI	T7 F5	CLA IF(NUL)TRA CRL LUR LUR IF(NUL)TRA	B1,U+T7 GTVE5,U+B4 d15,R+B3 d24,U+85 3,U+B5 GTVE2 MAGK2		21 22 23 24 25 26 27 20
	7	LDR 1F(NUL)SKP AB4	MASK2 T7 B3,CC+1		30 31 32
GIV ^E S	7 7		55 ≈1 a33+1≠U+R á34 rs		32 34 35
	F F4 T7 F1 F4 Z	ADD RPA AND IF(NUL)TRA STO ADJ BAU+2 TPA	T4 MASK1 GTVE3 B5,B6+1 A33-1,U+B1 A33-1,U+B1 LTVE1,2+7		334444444
3I V ⁴ 3	Z Z Z F F F	LDR+ LLS BAU IF(POS)SKP TRA LRS BAU	G1VE13R+2 B13R+84 G13JU+PF G34=13PF+1 T53R+7 G1VE4 G15384-1 *STORAG21+83		4455555555
	F3 P4	STU IF(<u>NUL</u>)TRA RPA	Б4 С©+1: БЗ≠СС+1		57 601
GIVH4	P4 7	RPA BAU IF (NZC) SKP	5TJRAG 831 14 74		61 62 63
GIV⊢5	- I	HKA ADD÷ IF(NZF)TRA CLA TRA	14xE 85=11=1 GIVE11R+Z 85=21J+86 GIVE31J+81		64 6F 66 67
		REM	ACTIVATE BLOCK O	F LENGTH BZ+1	71

 \sim

 $\sum_{j=1}^{j}$

 \sim

4/11/	64 11.3	s		PAGE	2
TAK	P2	IF(ZEP)TRA	ATAKE . R+Z		74
	7	BAU	a32+1, J+T7		75
	Т6	IF(POS)SKP	Τ7 🖕		76
	Z	TRA	ATAKE J+B1		77
		NOP	a7.U+T6		1004
		LDR	*STORAG/I+B3		101
	7	LLS	d15		102
		IF(POS)SKP	T7,U+H5		103
		TRA	REJRG		104
TAKFI	Τ4	ราว	67,33+1		105
TAK-2	P5	LRS	01518+34		106
	75	IF (ZEP)TRA	TAKES		107
* A 17 E D	0	STO	53+52JI+64		110 -
1 AK - 3	i~ 4	RPA			111
	14	TRIZER)IRA			112
	1 3	IRA	A ANE JUABI		
		0EM	WOITH ACTIVE PLOCKS	TO LOW	ADDEECCE
		RC I	WAITE ACTIVE BEUCKS	IU LUW	114
REORG	F6	MEN	Ü4000≠1+T7		117
	. 0	STX	Z, I+86		120
		SBB	≍FIRSTEX.I→B4		121
		TRA	KEORG7		122
REORG1		CLA .	×34, Ů+35		123
		CRL	915, R+31		124
	6 □	IF(NZE)TRA	REJRGP		125
		sB3	Ë3+B1+1≠I≠B4		126
		TRA	REDRGA		127
RE0732		CLA	a35+d4		130
		RPAJWTG	*34		+131
		CAA	MASK1		132
		IF(NZE)TRA	KEORGB/B3+1		133
		AB 3	B1,B4-1		134
	E 4	RPA	CC+1>B1+1		135
	I	AB4 EPM	E1+1/U+E5		134
		CLA WTG+3			137
JEOHIN		TRA			140
					141
REU~ 64					142
		IF (NUL) IRA	KIUKUNJOITI MASKOIDINE		143
					144
	5		d3+CC+1		140
	2 2		d9,85-1		140
			a36		150
		TE (PONXZER) TRA	ÚC+1#B5+1		151
		ADD	a35-11U+85		152
	P3	RWT	65-1		153
REORGE	P1	IF (NZE) TRA	REORG4, B3+1		154
REORGE	7	5AU	ā34,0℃C+X		155
		IF(NEC)SKP	Τ 4		156
	P6	STX	E.J→PF		157
REOPG7	E 4	IF(NZE)SKP	a⊀LASTEX		160
		TRA	REDRGA		161
		LDR	54		162
	7	LLS	d15≠U+B1		163
		IF(NUL)TRA	REORGI		164
	F3	SUB	a31+B4, I+B4		165
		TRA	R=JRG7,U+86		166

_

4/11/	/66 11.3	12		PAGE	3
₹E0498	T7 T4 PF	MLF IF(NN7)SKP ADD+	04000≠0+36 TS T4		167 170 171
		IF(SLF)SKP TRA	00002 REORGA (000000000000000000000000000000000000		172
		BAU SLN	aNUTE#U+T7 00002		174
		TSR SLF	* XCWD 01002		177
RE0°39		LDR CLA	G ,		202
REOFIO	Z 195 176	LDR IF(NZF)SKP TRA	MASK2+U+PF a84+1+84+1 REJR11+U+86		203 204 205
			64+1 a?7,U+d1		206 207
		IF(NUL)SKP	2,9F=1		510
	PF		54+1 FDR10		213
REOKII	т 4 Z	IF(NZF)TR≜ TRA	TAKE1+R+Z TAKE2+U+B2		215 216
ATAKE	ITAL	LRS	015 5 7 7 8 4 6		217
	P 1 7	STX TF(ZED.NTC)TRA	a < 36~ 1 ≥ U + T7 a < JNSAVE • B6- 1		555
	T7 PF		65-1, U+B1 677776, U+CC		224
MASKI		JCT	41000000		227
MASK2 NOTH		OCT BCD	77777777740077777 REORGANIZATION		230 231
G XCW ¹⁾ SAVE		190 200 200			238 238
UNSAVE STOPAG			137		235
FIRSTEX LASTEX		100 100	1.1		237
		E ND			241 242
					243

STEY FOR SPIREL							
	1	07	50472	56	0002	00000	
	2	10	0100	02	4400	00136	SAVE
	3	00	50105	56	2000	77775	67084a
	4	01	~('40e	00	0000	00100	STORAG
	56	00	20100	05	1000	00017	FIDSTE
	7	00	20100	04	4002	00000	1 INDIE
	10	41	01010	10	4001	00070	REORG
	11	07	01040	00	4001	00047	TAKE
INACTIVATE SPACE	E AUDRE	SSED	PY BI				
GIVEI	12	01	21700	07	0002	00000	
	13	01		44	4001	00041	GIVE5
	15	01	45010	53 45	4000	00017	
	16	45	45010	45	4000	00003	
	17	01	01040	οũ	4001	00004	GIVER
	20	01	57400	00	0001	C0167	MACKP
	51	00	02040	00	0000	00007	
	22	01	41004	20	4040	00000	
GIVES	23	01	41004	00	4040	77776	
GIVER	25	00	20100	00	4010	00001	
	26	01	02510	00	0000	000005	
	27	02	10001	00	2000	00006	
	30	44	21601	00	2002	00000	
	31	07	F0314	00	0001	00155	MASKI
	32	01	01040	00	4001	00004	GIVËB
	33	41	20001	26	4100	00000	
	34 25	44	20102	41	4010	00000	
	36	00	01000	10	4001	77752	GIVEL
GIVES	37	00	50401	54	0002	00000	01/01
	40	00	45062	47	4000	00017	
	41	00	20100	27	4020	77776	
	42	01	05110	10	0000	00005	
	43	01	<u>, 1000</u>	00	4001	00006	GIVE4
	45	4/	50100	73	9000	00100	STORAG
	46	01	20001	00	4020	00000	210M.C
	47	43	r104r	ñũ	4001	00001	
	50	44	21601	50	0010	00000	
	51	44	21601	00	0000	00100	STORAG
GIVE4	52	00	20100	00	4002	00000	
	53	01	01000	00	4001	00004	TARE
GIVEE	5	30	10001	61	001	77776	
	56	01	01050	10	4001	77732	GIVET
	57	01	21700	76	0100	77775	
	60	01	01000	41	4001	77755	GIVES
ACTIVATE BLOCK (DF LENG	TH B	2+'				4 - 4 - 5
IAKE	61	42	01010	10	4001	C0117	ATAKE
	62	00	02100	07	4004	00001	
	64	00	01000	41	4001	00114	ΔΤΔΚΕ
	65	01	20000	06	4000	00000	
	66	01	F0400	73	0400	00100	STORAG
	67	00	45067	00	4000	00017	
	70	01	07110	45	2000	00007	000
TAUT	71	01	2001	00	4001	00007	REOKG
IAKE 1 TAVES	72	04 // E		رع ۳7	4010	00000	
17750	74	4⊖ ДБ	01010	00	4000	00017	TAKES
	75	02 10	20001	74	4014	00000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PROBRAM 154

4/12/66 15.27

	TAKER	76 77	44 04 43	21601 01010 01000	00 10 41	0000 4001 4001	00100	STORAG ATAKE ATAKE
WRITE	ACTIVE BLO REORG	101 102	LOW 46	4DDRFS	55E 07	4000 4000	04000	
	REORGI	102 103 104 105	01 01 01 01	40003 01000 21700	74 00 45	4000 4400 4001 0420	00000 00101 00035 00000	FIRSTE REORG7
		106 107 110	01 46 01	45066	51 00 74	4000 4001 4012	00017	PEORG2
	REORG2	111 112 113	01	C1000 21700 21641		4001 4140 0420	00025 00000 00000	REORG6
		114 115 116 117 120 121	01 01 01 44 20	50214 01050 41003 21601 41024 21742	00 23 64 21 45 61	0001 4001 4002 0001 4002 0040	00072 00005 00000 00001 00001 00001	MASKI REDRG3
	REORG3 REORG4	122 123 124	01 01 01	01000 21743 53403	00 24 24	4001 0020 0020	00017 00000 00000	REORG7
		125 126 127 130 131 132 133 134	01 01 02 01 02 01 01 01	01040 F0114 01040 45020 45020 45020 05110 10000 2144	61 5502 6502 6502 5502 6502 5502 6502 5502	4001 0001 4001 4000 4000 4000 4000 4000	00010 00061 00011 00011 00011 00044 00001 77776	RECRG5 MASK2
	REORCS REORC6	136 137 140	41 00 01 46	01050 20100 02510 43005	23 30 00 47	4001 4020 0000 4000	77764 00000 00004 00002	REORG4
	REOR¢7	1 4 2 1 4 3 1 4 4 1 4 5 1 4 6 1 4 7	44 01 01 00 01 43	02050 01000 50400 45062 01040	00 00 41 00 74	4400 4001 5020 4000 4001 4022	00102 00005 00000 00017 77735 00000	LASTEX REORG8 REORG1
	REORC8	150 151 152 153 154	01 07 04 47 01	01000 42006 06550 17001 02070	46 46 00 00	4001 4000 0000 0000 4000	77770 04000 00005 00004 00002	REOKG7
		155 156 157 160 161	01 01 01 01	21000 21700 20100 42000 40000	00 00 07 00 00	4001 0001 4001 4000 4400	00005 00034 00031 00002 00126	REORG9 +0000A NOTE XCWD
	REORG9	162 163 164	01 01 01	42004 57400 21700	00 54 45	4000 0000 0020	00002 00125 00000	G
	REORIO	165 166 167 170 171 172 173 174 175 176	00 45 01 01 01 01 47 01	50400 02050 01000 21700 45010 21700 02040 41007 21401 01000	47 24 45 00 41 47 67 00 00	0001 4020 4001 0020 4000 0207 0000 4000 4000 4000	C0022 00001 00007 00001 00033 00000 C0000 00001 00001 77766	MASK2 REOKIL

•

~

	REOR11	177	04	01050	10	4001	7767	TAKEI
		200	00	01000	42	4001	77671	TAKE2
	ATAKE	201	26	45015	00	4000	00017	
		202	02	20301	00	0000	00100	STORAG
		203	41	43005	07	4500	77776	
		204	00	01014	66	4400	00137	UNSAVE
		205	07	56470	41	0100	77776	
		206	47	41006	40	4000	77776	
	MASK1	207	00	0000	00	4000	00000	
	MASKR	210	77	7 7 777	77	7400	77777	
	NOTE	211	61	44=64	14	6405	55071	
		212	40	43505	65	5252	52525	
****	ŧ¥¥.							
	+0000A	213	00	00240	10	0000	00000	

314	SAVE	Ó	136	0	2430000000000000	0
3'5	STORAG	ō	100	Ō	245000000000000000	ŏ
316	FIRSTE	Q	101	С	246000000000000000	ō
317	RFORG	0	101	1	1240000000000000	0
320	TAKE	0	61	1	7700000000000000	0
301	GIVEL	0	12	1	23000000000000000	Ō
3°5	GIVE5	0	55	1	660000000000000	<u>`</u> 0
353	GIVE2	С	24	1	350000000000000	0
3~4	MASK2	0	210	1	235000000000000	0
375	MASKI	0	207	1	2330000000000000	0
3-26	GIVE3	0	27	1	500000000000000	0
3°7	GIVE4	0	52	1	630000000000000	0
330	ATAKE	Ó	201	1	224000000000000000	0
331	TAKEI	0	72	1	1100000000000000	Э
325	TAKE2	0	73	1	1110000000000000	0
3-3	TAKE3	ò	7 6	1	114000000000000000	0
374	REORG7	0	142	1	1650000000000000	О
3,2	REORGI	0	10	1	1300000000000000	0
376	R50RG2	0	112	1	1350000000000000	0
377	REORG6	Ó	137	1	16200000000000000	0
340	REORG3	0	123	1	14600000000000000	Ō
341	REORG4	0	124	1	14700000000000000	О
342	REORG5	0	136	1	1610000000000000	0
343	LASTEX	Ó	102	0	2470000000000000	0
344	REORG8	0	151	1	1740000000000000	Û
345	REORG9	0	163	1	2060000000000000	0
346	♦0000	0	512	1	2510000000000000	0
347	NOTE	0	211	1	237000000000000	0
350	XCWD	0	126	0	24200000000000000	0
351	G	0	125	0	2410000000000000	0
352	REORIO	Ó	166	1	21100000000000000	0
353	REOR11	0	177	1	22200000000000000	0
354	UNSAVE	0	137	0	244000000000000000	O

٨.

• Matrix Inverse

This program computes the inverse and determinant of a real matrix and prints an error message if the matrix is singular. The method used is essentially in-place Gaussian reduction as described in "An Introduction to Numerical Mathematics", Stiefel, E.L., 1963, page 3. Each successive pivot element is the largest in absolute value of all the remaining choices in a given column. The result is a compromise between speed and accuracy. An n \times n matrix is numerically singular if the ratio of any two pivot elements exceeds $10^6/n$. The codeword address of the matrix to be inverted is in T7 on entry, the inverse is stored as USTAR (codeword address 10), and the determinant is output in T7. If the matrix is singular, T7 = 0 on exit.

Lines 11 to 36:

The fast registers are saved, the input matrix is copied if necessary, internal constants are computed, the row codewords are labelled, and DET is initialized.

Lines 37 to 61:

The next column is scanned for the largest element, the largest and smallest pivot are stored and tested.

Lines 62 to 101:

The exchange algorithm is now applied to USTAR, the nonscalar accumulator in Genie and the pivot element is multiplied into DET.

Lines 102 to 113:

The two appropriate row codewords and their back references are exchanged if necessary.

Lines 114 to 151:

The columns of the final inverse matrix are now sorted as necessary due to non-diagonal pivoting.

Lines 152 to 157:

This section of code causes printing of an error message.

CODING EXAMPLES

Lines	Comments
2	This is a symbolically named program, INV.
4 - 5	Cross-reference words for named items referred to by INV.
7	Extra carriage returns and a remark in the code sequence.
11	Use of +2 store option in operation field, store to B6.
12	Minus inflection in SETU, compound test in OPN, use of EQU'ed name in address field. The 'a' bit is not required since TRA gives this inflection auto- matically.
15 - 16	EQU'ed name in address field, and REF'ed name in address field.
3 5	Decimal constant in address field will be stored at the bottom of the program.
41	Absolute value inflections in SETU and ADDR, and indirect addressing specified by '*' in ADDR.
4 6	' \rightarrow ' codes as a store to M, here MAXP; '+1' in OPN is equivalent.
66	Enter repeat mode option on set or add to B-register orders.
106	Use of more than one B-modifier in field 4, B1 + PF + M (M = 0).
127	Reset X register from number originally stored on B6-list.
154	The address part of this instruction or M was replaced by the contents of PF at the instruction on line 13. Anything in () is ignored in assembly.
160	A decimal constant is defined and is stored at EPSLN.
162-165	'Z' with OCT causes zero to be stored at these locations.

CODING EXAMPLES

5

Lines Comments

166-171 EQU psuedo-orders assign numeric values to names.

173-174 The END pseudo-order terminates the code but generates no instructions. It is followed by two carriage returns.

4/11/66 16	5.12
------------	------

INV		ORG		5
MCOMY		REF	#MCOPY	З 4
ERPR		REF	¥≁ERRP	5
		REM	INV(T7) + USTAR	7
	7	HA: L+ O	V. 74+1	10
	-7	IFIZED FOVITER		12
	PF	RPA	PESAVE R+Z	13
	7	BAU	T7,R+B3	14
	-	IF (ZER)SKP	aUSTAR, I+B1	15
	Τ7	TSR	a≮MCOPYJU→B2	16
	Z	STO	AMINP	17
		STO	aMAXP	20
				21
			anio/r.*04	20
	-04	Ê M P	ບ∠ Tພິ 47	23
		VDF	ÉPSLN	25
		STO	aEROR	26
ROWSTO		LDR	B1+1+B3+1	27
		LLS	ad15,U+B5	30
	P3	LRS	ad15	31
	F	STO 15 (Decise)	a31+1≥B1+1	32
	23	IF (POS)SKP		33
	E 4			34
	F	STO	aDET	36
INVLP	7	STX	a7,U+T6	37
-	-	SB2	aPF,I+B1	40
SCAN	1161	IF(POS)SKP	I & JSTARI	41
	P1	LT6	¥'JSTAR,JU→B3	42
	P3	AB1	a77776JU+T7	43
		IF (PN/) IRA		44
	1101	ITS+		40
	Т5	IF(ZEP)TRA	aFIRST	47
	τ4	IF (PN7)SKP	TS	50
	75	STO	AMÁXP	5 1
FIRST	Τ4	LT6+	MINP	52
		IF (ZER)TRA	astest	53
	T 4	IF (NN7)SKP		54
STEST	10			50
3'6 1		FDV	MINP	57
		IF (NEG) SKP	ERROR R+Z	60
		TRA	asingle	61
	83	LT4		62
	Τ4	LT5+	*USTAPJR+B2	63
	- -	FDV		64
	T5	FMP+		65
	C4			66
0021	P4	SB2	aPF,U+B1	5/
	FI	IF (ZER) MP	T7, B4-1	70
	z	LT5+	*USTAR	72
		SB2	âSố	73

	4/11/	66 16.1	2		PAGE	2	
	L0025		SB1	a*T7		74	
		T5	FMP	*USTAR		75	
			SB1	a34+1		76	
			<u>F</u> AD→	₩USTAR,B2-1		77	
		P2	IF(PN7)TRA	áL00P2		100	
		P4	IF(PN7)TRA	al_JOP1		101	
		Τ7	SB4	a*T6+U+B3		105	
				USTAR U+B1		103	
		۲J	IF (NZE)SKP			104	
			ČLA			105	
				B1+B2.1+32		105	
		83	STO	A32+R+A2		110	
		R	STO	a31+PF+I+B3		111	
		83	STO	aB2, PF=1		iiż	
	TEST	PF	IF(PN7)TRA	atNVLP		113	
			SB3	a34, I+B2		114	
	HUNT		LDR	B1+B3		115	
		7.	LLS	a 115		116	
			IF(ZEP)SKP	aB2+B3=1		117	
		P3	IF(PNZ)TRA	ahunt		120	
		B2	IF (ZER)SKP			121	
		D 1				122	
	+ ACT	r1	CBO			123	
	LA3'	P 2	IF (PNZ) TRA			125	
	υUT	۰ L	TRA	a *UNSAVE		126	
	001		STX	a*====================================		127	
		FF	LT7	DET.U+CC		130	
	SWAP	P 1	5B1	a34, U+PF		131	
	EXLOOP		LDR	*USTAR		132	
		P2	SB2	a33+U+B3		133	
		F	LDR+	*'JSTAR		134	
		F2	SB2	aB3,U+B3		135	
		F.	STO	*USTAR, B1-1		136	
		e 1	IF (PNZ) IRA			13/	
				FF +03		140	
				ad15.lleR		141	
			CRR	ad15		143	
			STO	aPF+B3		144	
	FIX		E DR	PF+B2		145	
			LLS	ad15		146	
		P5	LRS	a 115		147	
		R	STO			150	
		+'F 7	IRA			151	
,	SINGLE	2	581			152	
	SECAVE	•	CDE			103	
	Fr 3 ~ VC	1				134	۰.
		7	sto	aDET		156	
		-	TRA	anut		157	
	EPSLN		DEC	100000.0		160	
	TWO47		OCT	05200000000000000000		161	
	ERRUR		ÛCT	2		152	
	MINP		UCT	Z		163	
	MAXH		UCT	Z		164	
	DET		UCT	Z		165	
	USTAR		EQU	10		166	. •
· · · · ·							
·							

4/11/60	4 16.12		PAGE	з
STEX SAVE UNSAVE	500 500 500	1 35 1 36 1 37		167 170 171
	END			172 173 174

.

PROGRAM	1	INV						4/11/66 16.
T N1/ 77	MCCPY ERPR	77776 77777	54 75	42565 44616	77 15	0400 7400	00000 00000	
TIMALIN	+ U . 1.	1 2 3	00 10 47	20102 01210 21601	26 02 10	0000 4400 0001	77775 00136 00140	SAVE PFSAVE
		56	00 01 07	*000 05010	53 71 42	4000 4401	00010	USTAR MCOPY
		7 10 11 12	00 01 01 01	20001 20001 21700 45066	00 00 41 54	4001 4001 3002 4000	00143 00143 00000 00017	MINP Maxp
		13 14 15	54 01	50100 10600 16700		4000 0001	00000 00134 00132	TW047 FPSLN
	ROWSTO	16 17 20 21	01 01 01 43	20001 50400 45062 45015	00 23 45	4001 0002 4000 4000	00133 00001 00017 00017	ERROR
		22 23 24	02 43 01	20001 02110 01000	00 00 51	4002 4020 4001	00001 00000 77771	ROWSTO
	INVLF	25 26 27	44 02 00	50400 20001 43005	47 00 06	0001 4001 4000	00130 00126 00007	+0000A DET
	SCAN	30 31	01 26	40002	71	4200	00000	USTAR
		33 34	41 43 41	41001	43 07 00	4000 4001	77776	SCAN
		35 36 37	26 01 05	01310 50451 01010	00 04 00	4001 0001 4001	00104 00115 00002	SINGLR MAXP FIRST
	FIRST	40 41 42 43	04 05 04 06	20001 50461 01010		4001 0001 4001	00112 00110 00002	MAXP MINP STEST
	0.77.07	44 45	04 06	06550 20001	00	0000	00006	MINP
	21521	46 47 50	01 01	10700 02510	00 00 10	0001 0001 0001	00105 00103 00101	MAXH MINP ERRŪR
		51	01 43	C1000 50440	00 41	4001	00070	SINGLR +OnGOA
		54 55 55	04 01 05	10700	54 22	0400 0000 0001	00010	DET
	LOOPI	56 57 60	44 04 44	40023 10401 40002	06 63 41	4040 0400 4200	00000	USTAR
		61 62	41	03010 50451	64 00	0000	00007	USTAR
	LOOP2	64 65	01	40002	00	4400	00007	USTAR
		67		10401	62	040C	00001	USTAR
		70	42	nE150	00	4001	77772	LOOP2
		71 72	44 07	05150	00 43	4001 4400	77765 00006	L0021
		73 7#	01 43	21700	41 00	0000	00010	USTAR
		75	01	ninon	67	4001	00005	TEST

I

EPSLN EVO47 ERROF MINP MAXP DET **	146 147 150 151 152 153 154 155	01 03 06 00 00 00 00		44 00 00 00 00 00	2000 2000 2000 2000 2000 2000	00000 00000 00000 00000 00000 00000 0000	CUT
EPSLN TW047 ERROF MINP MAXP DET **	146 147 150 151 152 153 154 155	00 01 03 06 00 00 00		44 00 00 00 00	0000 0000 0000 0000 0000	00000 00000 00000 00000 00000 00000 0000	CUT
PFSAVE	146	00	01000	00	4 001	///45	CUT
	144	20	40007 01000 20001	41 21 00	4000 4401 4001	00000 77631 00006	ERPR
SINGLR	137 140 141 142	45 02 47 00	45015 20001 01000 40001	00 00 41 42 00	4000 4204 4001 4000	00017 00000 77751 00010	LAST USTAR
FIX	130 131 132 133 134 135	01 01 01 01 01 01	21700 50400 45062 45055 20001 50400 45062		0210 0204 4000 4210 0204 4000	0000 00017 00017 00017 0000 0000 0000	
	124 125 126 127	02 42 02 41	FC401 40002 20001 05150	00 43 61 00	0400 4010 4400 4001	00010 00000 00010 77771	USTAR USTAR EXLUOP
SWAP Exlocp	121 122 123	41 01 42	40001 50400 40002	47 00 43	4020 0400 4010	00034 00000 00010 00000	USTAR
OUT	115 116 117	42 01 01	CE150 01000 43005	00 00 66	4001 4400 4500	77766 00137 77776	HUNT UNSAVE
LAST	107 110 111 112 113 114	01 43 42 01 41 01	02010 05150 02010 01000 40002	63 00 23 47 73	4004 4001 4010 4001 4001 4004	00000 77773 00001 00006 00021 77776	PUNT Swap Fix
HUNT	104 105 106	01 01 00	40003 50400 45062	72 00 00	4020 0012 4000	00000 00000 00017	
TEST	77 100 101 102 103	01 43 02 43 47	50401 20001 20001 20001 20001	73 52 73 67 00	0202 0012 4004 4202 4004 4001	00000 00000 00000 00000 77722	INYLP
	TEST HUNT AST DUT SWAP EXLOOP	76 77 100 101 102 FEST 103 HUNT 105 106 107 110 111 112 113 -AST 114 115 0UT 116 117 120 SWAP 121 EXLOOP 122 123 124 125 126 127 130 131 132 133 134 FIX 135 136 137 140 141 SINGLR 142 143 PFSAVE 144	76 01 77 01 100 43 101 02 102 43 102 43 TEST 103 40NT 105 100 107 110 43 111 42 112 01 113 41 114 01 113 41 113 41 113 41 114 01 115 42 000T 116 117 01 120 47 SWAP 121 120 123 123 42 124 02 125 42 126 02 127 41 130 01 131 01 132 01 133 01 134 01 137 45 140 02	76 01 21700 77 01 50401 100 43 20001 101 02 20001 102 43 20001 102 43 20001 102 43 20001 102 43 20001 102 43 20001 102 43 20001 102 43 20001 102 43 20001 103 47 05150 40NT 105 01 #0002 104 01 40002 110 43 01 01000 113 41 113 41 01000 113 41 115 42 05150 120 15000 124 02 20002 126 02 20001 132 01 45055 120 127 41 05150 133 01 45057 133 145057 133 145050 133 01	76 01 21700 42 77 01 50001 52 101 02 20001 52 101 02 20001 73 102 43 20001 52 101 02 20001 73 102 43 20001 52 101 02 20001 73 102 43 20001 67 103 47 05150 00 104 01 40003 72 40NT 105 01 50400 00 107 01 0200 107 63 112 01 01000 43 0100 113 41 0100 47 6400 0001 116 01 0100 47 115 42 05150 00 0001 117 01 43005 66 120 47 50470 40 SWAP 121 41 40007 43	76 01 21700 42 0202 77 01 50001 52 4004 101 02 20001 52 4004 101 02 43 20001 52 4004 102 43 20001 67 4004 102 43 20001 67 4004 102 43 20001 67 4004 102 43 20001 67 4004 103 47 05150 00 4001 40NT 105 01 50400 0012 104 01 40007 73 4004 110 43 05150 00 4001 111 42 0210 0010 4001 113 41 01000 47 4001 113 41 0100 47 4001 115 42 05150 00 4000 124 02 5002 4000 4000 124 02 5002	76 01 21700 42 0202 00000 100 43 2001 52 4004 00000 101 02 2001 52 4004 00000 102 43 2001 52 4004 0000 102 43 2001 67 4004 0000 102 43 2001 67 4004 0000 102 43 2001 67 4004 0000 104 01 40003 72 4020 0000 104 01 40003 72 4020 0000 105 01 F0400 00 017773 110 43 01 0001 7776 111 42 0210 0400 7776 0001 115 42 0107 0001 00034 SWAP 121 41 4001 42 0000 0010 123

157n00000000000000 163n000000000000 25n000000000000 EPSEN 0 150 1 ERROR 0 152 1 ROWSTO 0 17 1

() ()

-		••		-		-	
3°7	◆0000▲	0	156	1	17700000000000000	0	
370	DET	0	155	1	1710000000000000	0	
371	INVLP	Õ	27	1	35000000000000	0	
372	SCAN	0	21	1	370000000000000	0	
3~3	SINGLR	0	142	1	15000000000000000	Э	
374	FIRST	Ö	42	1	5000000000000000	ò	
375	STÉST	0	46	1	54000000000000000	ა	
376	LOUPI	0	65	1	6600000000000000	0	
377	LOUPZ	õ	64	1	720000000000000	Ō	
340	TEST	0	103	1	111000000000000000	О	
341	HUNT	0	105	1	113000000000000000	0	
342	SWAP	0	121	1	12700000000000000	0	
343	FIX	Ó	135	1	143000000000000000	0	
344	LAST	Ö	114	1	12200000000000000	Ō	
345	OUT	0	116	1	1240000000000000000	0	
346	UNSAVE	0	137	0	17500000000000000	0	
347	EXLOOP	õ	128	1	13000000000000000	0	
350	STEX	Ô	135	0	1730000000000000	0	

4/20/66	14.	39
---------	-----	----

4/20	J/6E 14+	34		PAGE	1
INV		oRG			1
		REM	BACK-TRANSLATION		2
L77776		REF	* YCOPY		4
L77777		REF	* • ERRP		F
L1	Z	BAU+2	7775+36+1		f
	- Z	01310	a×136*U+R		7
	FF	RPA	▶14422→7		10
	Z	BAU	T7,R+H3		11
		IF (ZER)SKP	a10,1+d1		12
	<u>T</u> 7	TSR	*L7///6,U+B2		13
	Z	SIJ			14
					14
					10
	-84	CPL	a7		20
	- 1	FMP	L151		21
		VDF	L150		25
		STO	L152		53
L17		LDR	B1+1+3+1		24
		LLS	17×U+85		25
	РЗ	LRS	17		- 26
	R	STO	B1+1+1+1		27
	P3	IF(POS)SKH	a 3 4		30
	D 1				31
	F 4	eta -			32
1.27	7	310 GTV	7.4 JATA		35
	2	SB2	PF I + PI		35
L31	1761	IF(Pos)SKP	1*101		36
	E I	LT6	×10,00+83		37
	P3	ABI	77776 · U + T7		40
	P1	IF(PN7)TRA	L31		41
	1751	01310	áL142		42
		LT5+	L1542U+T4		43
	т5	IF(ZER)TRA	L42		44
	T 4	IF(PN7)SKP	15		45
	5	510			48
L#2	14 T4				4/
	7 O	TEINNAISKP			30
	T6	STO	1153		50
L46	0	CLA			57
		FDV	L153		54
		IF(NEC)SKP	L152+R+Z		55
		TRA	L142		54
	РЗ	LT4	-L156/U+B1		57
	Τ4	LT5+	*10,R+B2		60
		FDV	Ĩ5JU+T4		61
	15	FMP+	L155/82+1		62
	P 4	40023			6.3
1.60	14	68 2			64 7 E
LOU	F 4 P 1	IF (ZEE) IMP			57
	7		*10		47
	1	sB2	85 S		70
L64		SB1	¥7		71
	Τ5	FMP	×1)		72
	-	SB1	B 4 + 1		7?

 \bigcirc

|

 \bigcirc

	4/20/66	14.39		PAGE	2
		FAD+	×10≠BP=1		74
	F2	IF (PN7) TRA			75
	F4 T7	IF (PNZ) TRA			76
			10+0+51		100
	FЗ	IF (NZE) SKE	â¤F		101
		TRA	L133, PF-1		102
		CLA	P=+B1+U+B2		103
	50	LDK+	B1+B3+I+B3		104
	F 3	SIJ	D718472 P548111423		105
	F 3	STO	BP, PF-1		107
L107	PF	IF(PNZ)TRA	L27		110
		SB3	B4,I+ ^H 2		111
	_	LDR	B1+B3		115
	2	LLS IE/ZEDISKR	17 a32+H2-1		113
	P3	IF (PN7) TRA			115
	P2	IF (ZER)SKP	a33+1		116
		TRA	L121+43+1		117
	P 1	TRA	L135, U+PF		120
	Ē O	582	B9-17 (+83		121
1116	ť 2	TRA	#137		122
L117		STX	*36=1+86=1		124
	FF	LT7	L135, U+CC		125
L121	P1	SB1	B4∎U≠ [₽] F		126
L12°	D :)	LDR			127
	52	502	ມ < J U ≫ ີ 3 #1 ໂ		130
	P2	sB2	Б3≠U⇒₿3		132
	_ 	šтā	*10,B1=1		13?
	P 1	IF(PN7)TRA	L122		134
		CLA	PF+B3		135
		LUR			136
			17		140
		STO	PF+B3		141
L134		LDR	PF+B2		142
	DE		17		143
	F 5	eti)	PE+B2		144
	FF	TRA	L114, U+B1		146
L147	7	SB1	1 1 1 4 ⁶ 2		147
		TSR	¥1.35		150
L144	Ť	SPF			151
1144	7	TRA STA	₩ ↓//////		152
<u> </u>	2	TRA			154
L15^		OCT	01017204400000000		155
L15!		OCT	0520000000000000000		156
L15°		OCT	000000000000000000000000000000000000000		157
1154			000000000000000000000000000000000000000		160
L15 ⁴		nCT	000000000000000000000000000000000000000		162
L154		ост	010000000000000000000000000000000000000		163
		END			164

 \mathbb{C}^{n}