L1

R I CE

NOTES

on the

GENTIE COMZPITULER

for the

UNIVERSTITY

COMPUTER

January, 1964

-

1

CJ

Y R B SN [y N By A B SN B A

TABLE OF CONTENTS

IT

III

v

VI

VII

VIII

IX

XI

XII

XIII

XIV

XV

XVI

General Format,..

Namesnoooooaoo'oco

NumberSceececoooes

Variable3.....o..

DeclarationS.eeoo

FUHCtiOnSooooooou

ConstantSesecoocoo

Remarks........-.

© 0000006 0000e

®© 0006 000006000

Command Sequence.ooonoooooooooo

Arithmetic CommandSo.jooooooceo

Conditional Arithmetic commands

Transfer Control CommandS.cooeoeo

Loop Control CommandS,eocoscsoscoce

Execute Control CommandScecosso

Input=-Output CommandS.ccececcessoa

FaSt RegisterSOOQQOQOQO'OOOOOOO..

c

C_1

)
J

31 .3 .4

]

XVII

XVIII

XIX

XX

XX1I

XXII

XXIII

XXIV

XXV

XXVI

XXVII

XXVIII

XXTIX

XXX

XXX1I

Assembly Language.ooooooa.~.ooo

Alphabetic Printingecececccses

Size RestrictioONSeecesseccecoeooses

Punctuationocooootoo.'t..oo'oo

Genie PlaCeroooanoooooooononet

Back=Trans latOreeeececoosocosssos

Symbolic Addressing in SPIREL,

Symbolic Cross Referencesi.....

Context Output..‘.............

Number to Name ConversSioONesess

Genie Spireloootooooooo'

Running Genie

Example T....

Example II...

Epilogue.csss

APPENDIXO ® &6 0 0 0 00

Programs..

® o 00000 00 o0

® 0 0. 00 0000 0

CJ 31 3

. .,

3

C 3

o .33 .

3 C

1

]

) C33 3

]

GENERAL FORMAT

The unit of definition to the Genie compiler is the

definition set, which has the form

DEFINE
declarations of external variables and non-scalar
parameters for the entire definition set
constant codeword address specifications for external
variables
function specifications
PROG1 (PARAM1) .=SEQ : ~

declarations of internal variables st
1 rogram
remarks prog
o . in definition
constant specifications

command seqﬁence for the calculation set
END 2
PROG2 (PARAM2) .=SEQ 274 orogram
. » in definition
set €
END -
PROGn th
n program
. in definition
END set
DEFINE
LEAVE
cr stop |lst tab stop

A definition, then, is a collection of programs (in the most usual
case just one) which depend on a common set of external quantities
and which are completely independent with respect to their private
internal symbols. The definition set has meaning only at compila-
tion; the independent programs may be dynamically interconnected,
among themselves or with programs compiled at another time, in

any meaningful way at the time they are executed.

1]

C.1

]

oy -3 a3 .3

S R S R N I S

7

—

] g C

GENERAL FORMAT
2

Typing of the definition set is begun by the sequence 'cr tab uc

DEFINE'., This first 'DEFINE' insures that the compiler does not
retain any symbols mentioned by another user of the system. Each
line of a program should be begun with a case punch (uc or 1lc) and
is ended by a carriage return (cr), If a statement is so long

that it needs to be broken in typing, the sequence 'cr tab tab tab'

provides continuation of the statement onto the next line. 'PROGi'

designates a program name., 'PARAMi' designates the parameters of
the program, a non-empty list of names separated by commaé. The
operator '.=' followed by the symbol 'SEQ' signals initiation of
code generation for the program. 'END', typed at the left hand
margin and followed immediately by a 'cr', terminates the program,
initiates final compiler output of the program, and causes the
symbol table 1limit to be backed up so that the compiler retains
only its vocabulary symbols and the external variables of the
definition set. The second 'DEFINE' terminates the definition

set and causes the symbol table limit to be backed up so that the
compiler retains only its vocabulary symbols; all external
variables backed over are printed out, 'LEAVE', typed at the left
hand margin and followed immediately by 'ecr cr', causes exit from

the system,

C 3

C3

31 .3 3 C3 g

CJ -3 C3 3 C3

C

1 C.J 3

NAMES

Private names, those invented by a user of the Genie
compiler, are formed by the following rules:
1) a single lower case Roman letter;
or 2) an upper case Roman letter, followed by upper case

Roman letters, followed by lower case Roman letters,

followed by numerals (no spaces intervening).
By rule 1) the following are examples of names:

a i p X
By rule 2) the following are examples of names:

A CAT Fn DDxy 12 PQ29 Dog3
Concatenation of names implies multiplication of the variables
specified. The following are not names:

ab A B38 Pt4p M5ef wl0
and will be interpreted respectively as:

axb AXB38 Pt4Xp M5Xexf wx10
In scanning from left to right to collect the characters which
comprise a name, the appearance of a character which cannot be
concatenated by rule 2) or of a space will terminate the collection.
Any number of characters may be used in a name, but only five
will be retained by the compiler. If lower case Roman letters
are imbedded in a name, the first is tallied as two characters.
The names

m Man
will be printed and stored internally as

.M M.AN

I8 [SR B B

L1 C

C_3

3

3

1]

cJ -3 .o .3 3 .3 L.

[

J

N R

1

Names in the vocabulary of the compiler may not be used by

the coder as private names,

and COL
ATAN CONTR
Bl cos
B2 COT
B3 DATA
B4 DEFIN
B5 END
B6 EOV
BCD EVEN
BOOLE EXECU
ccC EXP

FALSE
FIX
FOR
FUNCT
I

if

IL
INTEG
INV
LENGT
LET

These are:
LOG
MATRI
MS PAC
not
NEO
NUMBE
or
PF
PRINT
PUNCH

READ
REM
REPEA
RESUL
ROW

S
SCALA
SIN
SL
SQR
T4

NAMES
2

T5

T6

T7
TAN
TRAN
TRUE
U
VECTO
VS PAC
WAIT

1 [

(-

]

.

c-

3 3 3 .2

CJ .3 .3

3

3

-3

S I S

] C

1

NUMBERS

A string of decimal numerals

DDD < 214

is an integer. A string of decimal numerals containing either a

decimal point '.' or a power point '*' is a floating point number.

The form of a floating point number is illustrated by

A.B*C
which is interpreted to mean

a.Bx10°
There may be as many as 14 numerals in A and B combined. C is an
integer between .-70 and 70; if C is not preceded by a minus sign,
it is taken to be positive. Minus signs may precede decimal
numbers, integer or floating point, with the usual arithmetic
meaning.

A string of 18 or fewer octal numerals immediately preceded

by a unary '+'

+900

is a right-adjusted octal configuration. [A '+' between two

numbers is binary and will not cause the number Which follows it
to be octal.]

The following numbers will be understood as shown:

3 . . decimal, integer
-3.0 . ..:..décimal, ‘floating:point
3. " : decimal, ‘floating :point
3#8.. . .. decimal, :floating point
3.0%-8 decimal, floating point
-0.3 decimal, floating point
.3 decimal, floating poinﬁ
+3 octal

C 31

]

C 3]

C

T
J

C—

1]

]

]

J]]

C—

]

I

1

3 .

VARIABLES

In any program, each variable falls into one of three
categories: internal, external, or parameters,

Internal variables must be scalars (integers or floating

point numbers), and these are assigned storage within the
program., Internal variables do not retain their names after
compilation; hence, the same name may be used in more than one
program with .a different meaning in each of the programs., Labels
on statements are also internal variables,

External variables may be either scalar (floating point

scalar, integer, or Boolean), or non-scalar (program, vector,

or matrix), and all non-scalars must be external., At the time the
program is run, an external variable has its name on the symbol
table (ST,%*113) and its scalar value or non=-scalar codeword in

the corresponding value table (VT, %*122) entry. External
variables of any one program are the common property of all
programs in the machine at running time, and the names must

have unique meaning throughout the system. All external variables
of a program must appear in the definition set containing that
program before any 'SEQ'.

Parameters may be either scalar or non=scalar., If they are

non-scalar they must be so declared within the definition set
containing the program before any 'SEQ'. Parameters are neither
internal nor external with respect to the program in which they
appear, but while running will fall into one of these categories
with respect to dynamically higher level programs. Parameters of

a program are only representative of those variables which will be
specified to the program by the dynamically higher level program
which uses it while running. Within a system of programs the
dynamically highest level program receives control from the
operating system and cannot have its own system variables specified
as parameters; hence, the dynamically top level program should have
one purely dummy parameter, a name that is never referred to in the
program., The names of parameters are used only in compilation, and

are not retained while running a program,

1 . C I 2 7

1 3

1 -] -9 —4J -4 33 3 C3J CJ . cC4g

DECLARATIONS

The form permissible for declarations are illustrated by:

VECTOR A

VECTOR A,
VECTORS A,

‘cr |1st tab

c

Either a singular or a plural declaration identifier is permitted;

it is followed by one or more variable names, separated by commas,

Before any 'SEQ' all external variables and those parameters

which are not floating point scalars must have their types specified,

Declarations for use in this area are:

INTEGER

SCALAR
BOOLEAN

~
rVECTOR
MATRIX

~

—
FUNCTION

<

for integer scalar, vector of integer
elements, matrix of integer elements, or
function with integer result

for floating point scalar

for Boolean scalar, vector of Boolean
elements, matrix of Boolean elements,
or function with Boolean result

for data vector, elements assumed to be
floating point scalars unless also dec-
lared 'INTEGER' or 'BOOLEAN'

for data matrix, elements assumed to be
floating point scalars unless also
declared '"INTEGER' or 'BOOLEAN'

for program whose name is not in the
vocabulary of the compiler, result
assumed to be floating point scalar
unless declared to be non=-scalar
('VECTOR' or 'MATRIX') and/or non-
floating point ('INTEGER' or 'BOOLEAN')

Not more than one declaration in each group may be applied to a

single variable,

L

L

1 I s /. /£

DECLARATIONS
é
Internal variables are scalars: integers, floating point
numbers, or Boolean variables, If the first appearance of an
internal scalar is on the left hand side of an equation, it assumes
the type of the expression on the right hand side, TI£f its first
appearance is on the right hand side of an equation, an internal
scalar is assumed to be floating point unless it has been explicitly
declared as an integer or a Boolean variable. The only declara-
tions meaningful for internal variables are:
INTEGER for integer scalar
BOOCGLEAN for Boolean scalar

1 -1 -0 I o 1o

[

(I

L

I]]

FUNCTIONS

A function is a program which may be referred to in the

Genie language, either for implicit execution as 'F' in the

command
y=a+F (P) +b)
or for explicit execution as 'G' in the command

EXECUTE G(Q)

Implicite execution is meaningful only if the function is
single valued; in this case its output is not specified in the
parameter list. In all other instances explicit execution is
required.

The last executed command of a function to be used implicitly

must define the result as follows:
_ RESULT=scalar or non-scalar arithmetic expression
cr lst tab

The parameters of a function are given as an ordered list

0f those quantities which are supplied to the function routine

by the program which causes it to be executed. When a function
is used within a program a parameter which designates a quantity

to be calculated by the function must be specified as a simple

variable name; other parameters may be given by any arithmetic
expression. For example, if F(A,B,C) is defined such that A and

B are used in the calculation of C by the function F, a proper use
of F would be F(3m2+n,Va,P);k But F(SIZE, SPAN, qz) is incorrect
since the third parameter may not be an expression. In the
definition of a Genie program and in the use of it in other Genie
programs care must be taken that parameters are always listed in
the same order and that the number of parameters and their types
are the same at each occurrence. 1In a Genie program a function
name must appear with parameters following, as SIN X2 or CALC(q)
or MAP(g,VAR), except in declarations. As a consequence, function

names may not be used as parameters of other functions.

3

-] -3 -3J -] -3 - -3 .3 -3 .83 43

N B S

FUNCTIONS
2
If a function is to be executed implicitly and its output
is not a floating point scalar, then its name must appear in
declarations to define the output as well as in a function declar-
ation. Thus, the function with its parameters is an operand which
must be assigned the type of its output if it is to appear within
an arithmetic expression.
Every Genie program is a function. It may be used as such
by any other Genie program but it may not use itself. The
appendix discusses details that will be of interest to the user
who wishes to code functions in a lower level language.

A function may be sufficiently simple to be defined in one

statement. This is done before any 'SEQ' and is illustrated by
the definition of £ in the statement

f(x,y)=3ax+a2y, a=2+x

cr |1st tab

The function f may then be used implicitly within the command
sequence of a program in the definition set, as in the command

h=k2f(m,n)
where the closed subroutine f will be applied to the parameters
m and n. During compilation, output for £ will be produced
independent of that for the programs in the definition set. The
function is external to the programs in the definition set and
may be used implicitly by any program at running time since its
name will appear on the symbol table.

There is a collection of function names known to Genie.

These names need not be declared as functions.

C 3

C]

.

C

]

J

3

L3

]

(D R B

C2

(.

1

—

CODEWORD
NAME ADDRESS
* % % for implicit
SIN(A) 200
C0oS (4) 201
SQR (4) _ 202
EXP (A) 203
LOG (4) 204
ATAN (A) 205
TAN (A) 206
COT (A) 207
LENGTH (A) 210
ROW (A) 210
COL(A) 211
FIX(A) 217
INV(A) 224
TRAN (A) 225
EVEN (4) 227
* % % for explicit
VS PACE (A, B) 213
tMSPACE (A, B, C) 214

fCONTROL(n, +WXYZ, r, f)

tSPIREL monitoring on
off.

230

FUNCTIONS
3
DESCRIPTION

execution only % % %

|

A=0 'A' floating point
A<170.0
A>0 : result floating

scalar input;

Iresu1t|< m/2
|al< m/2

poing scalar

'"A' vector; result integer length
of A

'"A' matrix; result integer number
of rows in A

TA! matrix? result integer number
of cols in A

'A' floating point; result integer
nearest to A

'"A' matrix; result matrix which is
inverse of A, if A non-singular

"A' matrix; result matrix which is
transpose of A

'A' integer scalar; result Boolean
true or false

execution only % % %

'A' vector, 'B' integer; takes
space for A of length B

'A'" matrix, 'B' integer; 'C' integer

takes space for A, B rows by C cols

n' integer, 'WXYZ' octal, 'r' octal
or integer, 'f' name; control word
is composed and %126 in SPIREL 1is

executed, as explained in write-up

of SPIREL

the printer is provided if sense light 14 is

(I R N

1 1 C3J1 3 C 4

C 1

CONSTANTS

Constants of a program may be numerically specified by a
'"LET' statement appearing (except as noted below) within a program.
The statement must be given before the name of the constant is used
in the commands of the calculation. The form of this statement
is illustrated by:
LET PI=3.14159
cr lst tab
This is a message to the compiler which causes the floating point
number 3.14159 to be used in the program each time the internal
variable name 'PI' appears. A 'LET' statement causes no code to
be generated.
An internal integer value may be specified if the variable
has first been appropriately declared, as
LET K=3
An octal configuration (right justified) may be specified,
but the variable should not be declared as an integer, as

LET MASK=+777777077

where the + inflection concatenated immediately to the left of a

number denotes octal conversion of the number.
A Boolean value (TRUE or FALSE) may be specified if the
variable has first been appropriately declared, as
LET t=TRUE
or
LET No=FALSE
A fixed codeword address may be specified, as
LET #CDWD=+265
so that the codeword for the function, vector, or matrix named
CDWD will be addressed at machine address 265 instead of in the
value table. This is the only LET which may appear in a definition
set outside a program. A Genie program may assign its own name
a2 numerical equivalent, and the tape produced by the compiler

will load with codeword at the address specified.

C 1

1 a3 .4

3 .31 .3

]

3

C_J

—/— o1 . .o C.g g

3

I C3

CONSTANTS
2

The valuse of non-scalars may not be specified in a 'LET'
statement.
More than one constant may be specified in a 'LET' statement,
if they are separated by commas, as
LET A=3, z=5.41, #PROG=+247
There are two other commands which identify names with values.
They are explained later: BCD in the section on alphabetic
printing, and NUMBERS in the section on assembly language. Both
of these commands are non-executable and must be transferred
around, and must therefore be used with care.
The 'LET' statement may also be used to specify the equiva-.
lence of two names. For example
LET ALPHA = BETA
causes 'BETA' to be substituted for 'ALPHA' throughout the program.
Similarly
LET COUNT = B5

causes the index register B5 to be used for 'COUNT'.

] 3 33

]

1

C

]

) C31 . . .3 .

(I

3

REMARKS

Printed comments in program listings may be obtained by

using the REM statement within the program, as illustrated by

REM __ _COMPUTE _FIRST_VALUE
cr l1st tab 2nd tab
where . indicates a typed space. The statement may be continued

to succeeding lines at the 3rd tab position by using the
'cr tab tab tab' sequence.

The REM statement does not introduce any data into the final
program; its only effect is to cause the remark to be printed in

the final output listing.

CJ 2 C3J C3 C

)

1 .3 0 .3

1 -3

COMMAND SEQUENCE

All statements of a program from the 'SEQ' to and including
the 'END', except 'LET's, remarks, and declarations, cause code
to be generated. Such statements are called commands. The

occurrence of a label on a command causes a command sequence to be

initiated. The ordered set of all command sequences of the program

is called the command sequence for the calculation, Each command

falls into one of three categories; arithmetic, control, or

input-output. These will be discussed in separate sections.
Any command may be labelled. The label is typed at the

left hand margin, as 'CALC' in the command

CALC . . A=B2+B+3.2, B=W+5.1

cr lst tab

o 1 o -oJ 031 ¢t 041 -t 3

1 .3 .33 3

L1 Ca

)y ¢ 3 .3

ARITHMETIC COMMANDS

The form of a simple arithmetic command is illustrated by:

A=arithmetic expression
cr lst tab

The form of a compound arithmetic command is illustrated by:

A=arithmetic expression, B=arithmetic expression,
where more than one equation appears in the command. If there
are no interdependencies among the equations of a command, the
equations are coded by Genie in the order given. If there are
interdependencies, the first equation will be coded last and
preference will be given to coding the remaining equations from
right to left; for the second and any following equations, if ﬂ
the i;h depends on the jth and i>j (counting from left to right),
then the jth equation will be coded before the ith. So the
second and following equations may well be used to define
subexpressions of the first (or primary) equation, producing

code that will run more efficiently and copy that will be more

readable. An example in which reordering will take place is
y=a+b, a=5c/d, b=6, c=b+4
cr lst :tab

The code generated will evaluate b, then ¢, then a, then y. On
the other hand, the equations in

M=P+Q, a=3, i=j+l
are not dependent upon each other and will be coded in the order
given.

An operand in Genie is a single variable, a function name
followed by a parenthesized list of arguments, or an expression
enclosed in parentheses which dictate order of computation in
the conventional manner. Order is also implied by relative

rank of operations. 1In order of decreasing rank, i.e., the most

binding first, the arithemtic operations are:

unary inflections: -, |...|, and 'not'
subscription

exponentiation

X and /

+ and binary -

J 3 .3 C.J

cC 1 3 £

cC.J1 .3 C4J

r

CJ

a1 -3 -3 3 .3

ARITHMETIC COMMANDS
2

Arithmetic operations that are permitted within an arithmetic

expression on the right hand side of an equation are:

1) +, -, X, / between integer or floating point scalar operands.

If the operands are both integer or both floating
point, the result will be of the same type. TIf the
operands are of different types, the integer will be
floated before the operation is carried out, and the

result will be floating point.

2) +(or), -(symmetric difference), X(and), /(symmetric sum)

between two Boolean scalar operands.
Combination of Boolean operands yields a Boolean result,

by the following rules:

+ ||TRUE |FALSE| - [TRUE | FALSE
TRUE ||TRUE |TRUE . TRUE ||FALSE | TRUE
FALSE||TRUE |FALSE | FALSE|TRUE | FALSE

x ||TRUE |FALSE / |TRUE | FALSE|
TRUE ||TRUE |FALSE' TRUE || TRUE | FALSE|
-EXLSE1FALSE FALSE . FALSE| FALSE | TRUE

The octal representations for the Boolean values are
TRUE 007777777777777777
FALSE 007777777777777776
, -, X between two non-scalar operands containing
integer or floating point elements,
Standard conventions apply as to restrictions on
dimensional compatibility, and the operands must be
in standard form.* Addition or subtraction of two
vectors or two matrices yields a vector or a matrix
respectively. Multiplication of two matrices yields
a matrix. Multiplication of a vector and a matrix
yields a vector. And multiplication of two vectors
yields the scalar product which is a scalar. If the
operands are both integer or both fioating point, the
result will be of the same type. 1If the operands are of

different types, the integer operand will be floated

C 3

C_]

.13 .3

C31 CJ .23

[
e J

1 a3 1 3t 3 3

31 .3 .3

4)

X

ARITHMETIC COMMANDS
3

before the operation is carried out, and the result
will be floating point.
between integer or floating point scalar and integer
or floating point non-scalar.
The scalar may be on the left or the right of the non-
scalar, which must be in standard form.% The result
has the same form as the non-scalar operand, vector or
matrix. 1If the operands are both integer or both
floating point, -the result will be of the same type.
If the operands are of different types, the'integer
operand will be floated before the multiplication is

carried out, and the result will be floating point.

5) Implied multiplication between.operands which.appear

immediately next to one another, not separated by an

operation. The same rules apply as for the explicit X.

6) Exponentiation between two integer or floating point

scalars.
If either or both of the operands is floating point,
the result will be floating point. TIf both of the
operands are integers, the result is an integer, zero
if the exponent has a negative value; Note that AB
is typed 'A sup B sub', ﬁsing the superscript and
subscript keys on the flexowriter. The counter
associated with these carriage moving keys should be
set to zero before starting.a program and must return

to zero before the cr which ends each command.

7) Exponentiation of a short logical operand by an integer.

Short logical words are 15-bit configurations whose
bits are numbered 1 to 15 from left to right. 1In
particular SL (the sense light register) and IL (the
indicator light register) are in the vocabulary of the
compiler and fall into this category. The result of
exponentiation of such an operand by an integer, as
SLk, is Boolean, TRUE if bit k of SL is on and FALSE

if it is off. The value of the bit addressed is not

C

cJ .3 3 7]

5

ARITHMETIC COMMANDS
4

affected by the operation. The user may also exponenti-

‘ate a private variable which has been declared BOOLEAN.

8) Subscripting of a vector by an integer scalar operand

or of a matrix by a pair of integer scalar operands
separated by commas.

The result is an element of the vector or matrix and is

of the same type (integer or floating point) as the
" non-scalar of which it is an element. The expression

A, is typed 'A sub B sup' and return to zero carriage

°B
level must be observed as for exponentiation.

9) Unconventional subscripting by integer scalar operands.

Under normal conditions, only standard vectors and
matrices will have their elements addressed with the
subscript notation.* But any operand may be subscripted
by as many as five integer operands separated by

commas. The operand which is subscripted will be
indirectly addressed after the integer subscripts are
loaded into B1l, ..., B5 from left to right. Data

arrays and arrays of programs can be handled with SPIREL

if such elaborate addressing is desired.

10) ﬁnary - applied to an integer or floating point scalar

operand.
The negation of the operand takes place before it 1is
combined with any other across a binary operation.
This rule is unambiguous but leads to a possibly
unexpected interpretation in the case of -AB. Code 1is
generated to form (-A)B. Inflection of the expression

AB should be written -(AB).

11) Absolute value of an integer or floating point scalar

operand.
This inflection is denoted by absolute value bar
before and after the operand. These bars are simply
parentheses that cause the quantity inside to be

taken with positive sign.

31 3 C3J1 a3 3 . a3 £

C1

C_ 1]

-]

C 1 1 [

L]

C_1

]

-

(I

C 1

ARITHMETIC COMMANDS
5

12) Unary 'not' applied to a Boolean scalar operand,
The complementation of the Boolean operand takes
place before it is combined with any othér across
a binary operation. The complementation rule 1is
not A=FALSE if A=TRUE
=TRUE 1f A=FALSE
The variable on the left hand side of an’équation may be a
scalar, or a non-scalar, or a sdbscripted nonsscalar (denoting
a scalar element of a vector or matrix)., All left hand side

variables in a command must be distinct, no scalar or non-scalar

defined more than once and not more than one element of one
non-scalar defined in any one command,

The '=' joining left hand side to right hand side of an
equation causes storage of the computed figﬁﬁ hénd éide into the
location or array specified on the left hand side, Compatibility
of types is checked for at time of compilation, and an error
message is printed out if incompatibility of the two sides is
detected, 1In every case the right hand side dominates and will
be stored as calculated, no conversion taking place. A non-
subscripted non-scalar on the left hand side must -have base
indices one, If the right hand side is noﬂeécalar, the storage
addressed by the codeword on the left hand side is freed through
STEX, the storage control routine in SPIREL, before the store
across the '=' takes place,

Genie has the ability to apply the commutative laws of
arithemtic to reorder the terms of an expression to provide
calculation using a minimum number of tempdrary stores, In the
coding for a scalar expression, the compiler may use the fast
T-registers of the computer for temporary storage, Pushedown
storage addressed by index register B6 is also used for this
purpose, When profitable, the T-registers are used by the
compiler for scalar variables that are referred to often in an
equation, The codeword at machine address 240 is used in the
code by the compiler as an accumulator for vectors and matrices

produced in the course of evaluating the right hand side of a

b

il

]

C

C 1 1]

)y 0 I .4

1

C1 .1

1 CJ £

ARITHMETIC COMMANDS
6

non-scalar equation. This address may not be used by a coder.
Temporary storage for non-scalars is always on the B6-list,

See the appendix for more details,

*The standard form for vectors and matrices is that handled by
VSPACE, MSPACE, and the Genie input-output commands, Generation
and input-output of non-standard forms can only be handled by
explicit use of SPIREL facilities, Standard forms of non-scalars

are discussed further in the appendix,

B i [s R s I

1

1 C C3 _]

C]

-

1

]

]

C)

]

—J

CONDITIONAL
ARITHMETIC COMMANDS

A simple arithmetic command may be of conditional form, as

illustrated by
A =E, if P,, Ep if Pp, ..., E, if Py, Ej41
cr "7 |1st tab

where the E, are arithmetic expressions and the P, are predicates,

expressions which are true or false. The code that is generated
will evaluate A as E; for the least % for which P; is true. If no
P; 1is trﬁe, for i = 1, 2, ..., n, then A is evaluated as E,.,.
Epsl may:be omitted from the command, in which case A is not
evaluated if all predicates are false. A Boclean predicate is
simply a;Boolean expression. An arithmetic predicate is of

the form L r R, where L and R are arithmetic expressions and r
is a relétion, one of =, +, <, *, =, *. A compound predicate

is formed by joining simple predicates with the operations 'and'

and 'or', as in
A= 1.0 if (B £ C or |C+D| # 3.72) and SL> + not(sL™)
D < m+p, 2.0 if x < 0.0, 3.0
cr lst tab |2nd tab |3rd tab

"The most;binding first, the operations are ordered as follows:

‘arithmetic operations

relations
'and' 5
Iorl

Parentheses may be used, as in the above example, to dictate
computational order.

Theiarithmetic predicate form F; r Fp r' Fz is tempting but
Egﬁ_permitted. An equivalent permissible compound form 1is

F, r Fp and Fp r' Fj

Genie requires a precise sequence of typed characters for

the negated relations: (
+ is typed ' = backspace uc | !

1

* is typed ' < backspace uc |
$ is typed =

! backspace I !

C 1 3

C 1

1

C

]

r-

)

q

c-

]

(I R B

CONDITIONAL
ARITHMETIC COMMANDS
2

Two éxceptional Boolean predicates are 'EOV', asking if the
exponent pverflow light is on, and its negation 'NEO'; neither
of these may be inflected by 'mot'. Both of these tests turn the
light in ihe indicator register off.

A cohditional arithmetic equation must stand alone as a
command. - It may not be grouped with other equations in a

compound arithmetic command.

N [SN D SR B B

1

C

]

D R

7

]

C]

CJ

C 3

R I BN D B

TRANSFER
CONTROL COMMANDS .

Code is generated so-that the commands of the program are
normally executed in the order written. An explicit variation
in this order is indicated by a trnasfer command, illustrated by

cc = #LoOP

cr |1st tab
Here 'CC' is the mnemonic for the control counter which is
normally stepped sequentially through the orders of the code.
'LOOP' is a label on a command of the program, the command to
which control will be passed by this transfer command. Note
that 'END' is a label in every program and may be transferred
to for exit from the program. The inflection '#' is required
in this context to indicate that the address corresponding to
LOOP, and not the contents of the location whose address is LOOP,
is to be calculated on the right hand side. The '#' inflection
is analagous to the 'a' bit in API1.

The conditional transfer command provides variation in the

order of command exectuion depending upon the truth values of
predicates. The form of this type of control command is shown by
CC = #Ay if Py, #Ap; if Py, ..., #A, if P,, #A .1
where the A, are labels within the program and the P; are
predicatés. The code generated causes CC to be evaluated as the
first #A, for which P; is true. If no Py, for i=1, 2, ..., n, is
true, CC is evaluated as #A,,1. The term #A,,; may be omitted
from the command, in which case CC is unchanged if all P; are
false, so that no transfer is made. .The predicates P; are of the

form described in the section on conditional arithmetic commands.

L1 [C3

C_J

1

L3

]

L1 C

.-

1

LOOP
CONTROL COMMANDS

Loops may be realized in Cenie language by a combination of
arithmetic commands and transfer control commands. A concise
notation for a popular loop structure is provided by the loop

control commands. The commands of a loop are parenthesized by

the FOR and REPEAT commands of the form
FOR P=A, B, C

commands of the loop.

.REPEAT
cr lst tab
The parameter of the iteratiom is P. The initial value of P is

given by A, which may be a constant, a single variable, or an

arithmetic expression. The positive or negative increment by

which P is stepped at the end of each iteration is given by B,
which may be a constant, a variable, or an arithmetic expression.

The final value of P is given by C, and the loop will be traversed

until P exceeds C in numerical value. The elements of the FOR
command must be scalars, either iumtegers or floating point numbers.
A 'REPEAT', followed immediately by a carriage return, must be
written for every 'FOR'.

Loops may be nested to any level, but distinct iteration
parametefs must be used at each level within a nest, Transfer
of control may be made from a command within a loop to another
command within the loop or to a command outside the loop.
Transfer from outside a loop to the FOR command is permitted,
but transfer from outside a loop to a command within a loop ié
not permitted. The 'REPEAT' is considered to be within the loop
which it terminates; the 'FOR' is not. Any 'FOR' or 'REPEAT'
may be labelled for purpose of transfer to it. If addressed from
outside the loop, the iteration parameter will have the wvalue it
had upon exit from the loop.

The code generated by the compiler when a FOR command is
encountered:

1) sets the iteration parameter to the initial value

2) transfers control to the command beyond the corresponding

—

3

1 .3 3 [

C 3

r

,

.

J

c

C J

1 . 1 CJ

1

LOOP
CONTROL COMMANDS
2

REPEAT if the current value of the increment is
positive/negative and the current value of the
iteration parameter 1s greater than/less than the
the final value, or else to the first of the commands
of the loop.
The code generated when a REPEAT command is encountered:

1) sets the iteration parameter to its current value plus
the increment (which may be negative}, as specified
in the corresponding FOR command

2) transfers to step 2) of the FOR sequence described above.

The compiler generates the label '~FORn' on each FOR
command and '<RPTn' on the corresponding REPEAT command,
n=1,2, ..., 9, a, b, ... in each program. A coder's label
will be used instead if it appears. Thus, FOR and REPEAT
commands begin command sequences whether or not they are labelled
by the coder.

The machine index registers B3, B4, B5 may be used as
iteration parameters in loops and will cause significantly more
efficient code to be generated when a constant increment = £ 1
is specifiied. The section on fast registers discussesS coder

usage of machine registers.,

cCJ .31 . J .3 .3

Cca1 3 .3 -3 [

[

cC 31 Co C-4

C 3 o 1 CJ

]

 S—

—-

EXECUTE
CONTROL COMMANDS

The command
EXECUTE PROG (PARAM)
cr lst tab

causes control to be transferred to the program whose name is
denoted by 'PROG' in this illustration. 'PROG' must have been
declared as a function outside the command sequence for the
calculation. 'PARAM' denotes a list of one or more parameters
separated by .commas. Parameters may be arithmetic expressions
unless they designate quantities which are to be calculated by
the function, in which case they must be simple variable names.
Control is returned from PROG to the next command in the sequence.
The interpretation given to the EXECUTE command by Genie 1is
parallel to that for the arithmetic command, the information to
the right of the space after the EXECUTE corresponding to that
after the first '=' in an arithmetic command. Thus, a simple
conditional EXECUTE command is allowed, such as

EXECUTE A(P) if a < b + ¢, B(Q)
And a compound unconditional EXECUTE command 1is allowéd, such as

EXECUTE SUM(x,y), x = 2a/b, y = ab, b = 4

CJ -3 C.J .3

-3 33 C.3

N B

1

CJ o o]

-

r

L2

INPUT~-OUTPUT
COMMANDS

The input~output commands are:

DATA 1list

PRINT 1list

PUNCH 1list

READ 1list

cr lst tab

where 'list' deﬁbtes a collection of names (which may have been
assigned machine addresses in 'LET' statements), not expressions,
of scalars or of non-scalars with base indices equal to one.
Functions (or program) names may not appear in the argument list
of an input-output command. Neither may vector or matrix elements
in the subscript notation be designated in such an argument list,

The DATA command provides reading of manually punched signed

decimal numbers from paper tape. The list given in the command
may contain any type of variable. When the paper tape is read,

if a decimal point appears the number will be converted to float-
ing point within the machine; the absence of a decimal point
causes conversion to integer form. Every number on the tape must
be followed by a carriage return, tab, or comma. Integers greater
than or equal to 215 in absolute value are meaningless; floating
point significance to more than 14 places is not meaningful. A
floating point number may be followed by the sequence ‘e signed

integer' which will cause it to be multiplied by 10 to the signed

integer power upon conversion. The magnitude of such numbers
must be greater than 10"70 but less than 1070. The absence of a
sign on a number implies positive sign. Then
punched 328 cr converts to integer 328
46 .9cr floating point 46.9
.469%9e2cr floating point 46,9
-5391cr integer -5391
~-69.e-lcr floating point =-6.9

Scalars must be punched as single numbers in the format

described. A vector of length n is punched as the sequence of
. . t]
n+l numbers: integer n, first element, ..., n B element. A

cJ .31 .3 3 .3t

J

~
L

CJ

.

-

coA

INPUT-OUTPUT

COMMANDS
2

matrix of m rows by n columns is punched as the sequence of mn+2
numbers: integer m, integer n, element (1,1), element (1,2), ...,

element (l,n), element (2,1), ..., element (2,n), ..., element
(m,1), ..., element (m,n). When the DATA command is executed,
the proper tape is assumed to be in the reader. If sense light
14 is off, the line

DATA NAME
will be printed out for each quantity read, where 'NAME' is as
designated in the program containing the READ command. Thus,
printer monitoring of ‘DATA' applied to parameters bears the
dummy parameter name, not the name of the argument supplied as
the parameter.

The PRINT command provides output on the fast line printer

of any named scalar or non~scalar quantities., These are labelled
by the name given in the rcutine in which the PRINT command
appears., Scalars are printed one per line. Vectors are printed
five elements per line. Matrices are printed by row, five
elements per line.

The PUNCH command and the READ commaud may be applied only

to variables which are named on the symbol table at the time the
command is executed., All external variables of the program in
which the 'PUNCH' appears and those parameters which at the

time of executicn are indeed external in some dynamically higher
level program fall into this category. Care must be taken to
apply these commands properly to parameters &as there are no checks
built into the compiler or input-output program to insure
presence of a particular name on the symbol table. '"PUNCH'
provides, for each variable listed, a single control word,
followed by the name as it appears on the symbol table, followed
by the data in hexad with checksum. For a scalar the SPIREL
control word has wxyz=0040; for a vector the control word has
wxyz=0240; for a matrix the control word has wxyz=0440., These
output paper tapes may be loaded through SPIREL symbolically or

they may be read with a READ command. In fact, only tapes of the

cJ ¢t .3 CJ

C_J

cJ 31 ¢33 .3 3 .3

CJ C_1

]

c

C]

INPUT-OUTPUT
COMMANDS

form produced by a PUNCH command may be read by a READ command,
Additional forms of input and output may be obtained by use

of SPIREL programs directly, but those provided by the input-

output commands should be sufficient for a large number of

problems.

1 31 C.J 3 .3

1 L1 1] O g g 4J

C1y .31

C_1

FAST REGISTERS

T7 may be used only for output of a scalar from a single
valued function that will be executed implicitly. The command
executed immediately before 'END' in such a program may be of the
form

T7 = calculated output
cr lst tab

T6, T5, and T4 may be used within a command as the names

of scalar variables computed in other than the first equation of
the command. Genie will not make use of any T-register mentioned

by the coder, and code efficiency may be increased by explicit

assignment of auxiliary variables to these fast registers. Only

T6, T5, T4 are available for this purpose, and they should be
called upon in this order since Genie will use only Ti for i less
than the smallest Tj mentioned by the coder. The command
M=T6/T5, Té6=a+b, T5=(c®+c-4.1)/d
is an example of coder use of fast registers. The values in T6,
T5, T4 are not preserved by Genie from one command to another as
they are subject to use in Genie-generated code in any command in
which they are not explicitly mentioned by the user,

The index registers B3, B4, B5 may be used as the names of

scalar integers. These are disturbed by Genie-generated code only
to address elements of arrays of more than two dimensions. (Non-
standard subscripting is discussed in the section on arithmetic
commands.) Efficiency of code is gained if these registers are
used as subscripts or as iteration parameters of loops with
explicit increment *1. The index registers Bl and B2 may be used
only if the user understands Genie coding conventions as explained
in the appendix and can accurately anticipate the use of these
registers by Genie generated code. The registers B6 and PF may

not be used in Genie language but may be used in the assembly

language if compatibility with Genie generated code is maintained.

C 31 C3J

I I

c

C_1

C_J

ASSEMBLY LANGUAGE

The assembly language recognized by Genie is called AP2,
Instructions in the AP2 language may interspersed at will with
commands in the Genie language within the command sequence for
a Genie program. AP2 is discussed in detail in a separate write-
up. |

Frequent use will probably be made of AP2 language for

setting of sense lights since no notation for this operation

exists within the Genie language. To turn on sense light 3:
S LN 4-10000
cr lst tab 2nd tab 3rd tab

When the assembly language is employed, it may be desirable
to dictate placement of numbers within a program at a particular

point. The Genie command illustrated by

CONST NUMBERS 36.5, -2.8, 6, +774777

cr lst tab
provides this facility. 7In the program Genie generates, in this
case,

floating point 36.5 at COKST

floating point -2.8 at CONST+1

integer 6 at CONST+2

octal 774777 {(right justified) at CONST+3
The command may or may not be labelled. One or more numbers
(each but the last followed by a comma) are listed, and the list
may be extended onto succeeding lines by use of the 'cr tab tab tab'

sequence, The words generated are not executable, so transfer

around NUMBRERS commands must be explicitly coded.

In AP2 commands, the coder may make use of the fast registers,
taking care to preserve the value of PF for reference to parameters
and to use B6 for temporary push-down storage only. Entire func-
tions may be written in the assembly ianguage, but the user must
first understand various Genie coding conventions, as discussed

in the appendix.

J .3

.

31 .3 .31 C 3 C.3

1

e -

-

C

—

ALPHABETIC
PRINTING

Alphabetic information for output on the printer may be

defined by the BCD command, as illustrated by

MESS1. BCD _ _TEMPUS. FUGIT
cr lst tab 2nd tab
where indicates a space when typing. The command may continue

onto succeeding lines at the 3rd tab position by use of the

'cr tab tab tab' sequence., A space is inserted by Genie between
the last character of one line and the first of the next line. At
the place such a BCD command appears in the command sequencé for
the program, the printer code for the information is inserted

in the code for the program, nine characters per word, Of course,

what is generated is not executable, so transfer around BCD com-

mands must be explicitly coded.

Once alphabetic information has been specified, it may be
Set into the print matrix at any position on the line, one word
(i.e., nine characters) at a time, and then printed with program
#127 in SPIREL. An AP2 code sequence for printing MESS1l start-

ing at print position 12 is

PF RPA RS PF

z SB3 12,U-B1
CLA MESS 1, U-T7,
TSR *+127,B1+1
CLA MESS 1+1, U=T7
TSR *+127
TSR ®#+127,B1+1

RSPF S PF Z
cr lst tab |2nd tab |3rd tab

Detailed discussion of program *127 may be found in the write-up
on SPIREL. For printing MESS1 at the left hand margin, the Genie
language command
EXECUTE CONTROL(2,+4010,0,MESS1)
cr |1st tab
with SL14 on will provide the desired output. The parameters in
this command indicate that two words starting at the location

named MESS1 are to be printed in hexad form. Printing is

C]

J

]

—
| W

—

7

]

R . S

ALPHABETIC
PRINTING
2

\

produced 108 characters per line, as many lines as necessary.

In the example 14 characters require two words of storage,

hence the value 2 for the first parameter to CONTROL. The func-
tion CONTROL is explained in the FUNCTIONS section.

1]

1 C3J

I

O

C_J

C 1 CJ

SIZE RESTRICTIONS

The sizes of command sequences and programs generated by the
Genie compiler are limited by the size of the memory. With 8K
of memory no command sequence may cause generation of more than
300 (octal) instructions, and the entire program may not exceed
1000 (octal) instructions in length. The compiler does not check
for overflow, but it should be apparent at time of compilation if
the limits are exceeded. No absolute correspondence can be es-
tablished between the length of a Genie program in symbolic form
and the length of the absolute program it causes the compiler
to generate. Roughly, though, a page of Genie language segmented
into four command sequences should not exceed the size restric-
tions imposed on the code generated. A remedy for size restric=
tions on programs is found in the ability to break a single
program into several within the same difinition set.

While compiling, the number of private symbols which may be
stored is 70 (decimal). While running a system, the standard

SPIREL allows for 64 external names on the symbol table.

C

3 [CJ

]

3 I

C .

PUNCTUATION

Reference to rules of punctuation for use in the punching
of Genie programs has been made in other sections. A few
generalities and notes here may help the user to avoid some of
the most common mistakes.

Only statement labels, the program name, 'END', and
'LEAVE' are typed at the margin.

'REM' and 'BCD' are followed by a 'tab' punch.

Since 'SEQ', 'END', and 'DEFINE' end statements, they
must be followed immediately by a 'cr' punch.

For compilation to be terminated properly 'LEAVE' must
be followed immediately by two 'cr' punches.

Every line should begin with a case punch so that it
does not depend on the case at termination of the preceding
line, and editing of tapes will be thus simplified.

Every tape must begin with a 'CR' punch and a case punch
for proper interpretation.

Spaces may appear anywhere but within a name or number;
they will be ignored.

Backspaces are ignored except within the sequence of
punches for negated relations.

The superscript and subscript punches should be wused culy
where meaningful; the sequences 'sup sub' and ‘'sub sup' are
not equivalent to no punch at all and will not be accepted by
the compiler

The carriage counter should be set to zero before typing
a program and must return to zero before the 'cr' which ends
each statement.

A statement is continued onto second and succeeding lines
by the sequence of punches 'cr tab tab tab',

The operation ‘f.=' must be punched as just those two

characters in succession.

1 - -t /g -t . .3 .4

3

)

3]

-

C 1 o 3 .

L

PUNCTUATION
2

The negated relations require specific sequences of

punches for proper interpretation:

+ is punched ' = backspace uc | !
{ is punched ' < backspace uc | !
is punched ' =< backspace l !

The operations 'mot', 'and', 'or', 'if' are punched in
lower case and must contain no superfluous puhcheé. \All
other "words" in the vocabulary of the compiler aré punched
fully in upper case letters,

Function definitions and program name may appear either
at the left margin or at the lst tab position. J

Declaration identifiers, 'LET', 'FOR', 'NUMBERS}, 'DATA',
"PRINT', 'PUNCH', 'READ' and 'EXECUTE' may be followed by

either a space or a tab punch.

1 [

CJ CJ1 C.3

C J

C_J

C 3 3

1 .3 3

C 3

-

GENIE PLACER

The Genie PLACER system provides operations on symbolic and
absolute Genie tapes, It is located on the MT System magnetic
tape at block 101.01. When this PLACER is read into memory
program %240 is executed, and the stop |

(r): 00 HTR cc
occurs. The set of 6ptions to be exercised should then be

designated in the sense lights:

SLl . read symbolic tape

SL2 edit

SL3 punch (edited) symbolic tape

SL4 list (edited) symbolic tape

SLS check (edited) symbolic tape punched
SL6 compile (edited) symbolic tape

SL7 back-translate absolute tape

The original tape to be processed should be placed in the reader.
sL’ is used if this tape is absolute, and SLl is used if it is
symbolic. It is not meaningful to elect both SL7 and SL1 options
in PLACER. Pushing CONTINUE causes the specified operations to

be carried out.in order as described below:

SL7, BACK-TRANSLATE. = The stop
(1): 07 HTR CC

occurs if the absolute tape to be translated is not in the reader.

Options =2s explained in the separate section on the back-translator
may be set into the sense lights. Pushing CONTINUE causes the
translator to read the tape and create in the machine a symbolic
tape image.

SL1 READ. The symbolic tape to be read must contain only

25, RASY
one definition set, this begun with one carriage return and

terminated by two carriage return punches., All characters beyond
the last cr on the tape are ignored by the system. When the
reading is complete, the system has in the machine a tape image.
SL2z EDIT, The stop
(L): 02 HTR ceC
occurs, The edit tape is placed in the reader. Pushing

CONTINUE caiises this tape, which must comntain only the

1 1 3 - - - 1 a ot

1]]

1 .1 .3 .

C 1 1

GENIE PLACER
2

corrections for the tape image in the machine, to be read. When
reading is complete, PLACER's tape image in the machine is edited.
Each correction is specified by three parameters: the
initial carriage return number (i), the final carriage return
number (f), and the number of lines in octal in the symbolic
correction (n). A line in a symbolic tape is terminated by a
carriage return, these being numbered from 1 on listingse‘ The
n lines of 2 correction will replace the portion of the program

read from and not including carriage return i through carriage

return £f. Note that n=0 effects a deletion. -The last line of a
symbolic tape must not be replaced, ©On a single edit tape f of
one correction may not equal i of another correction. The format
for punching the correction parameters is:
(l.c.) i (sp) £ (sp) mn (cr)
ST

H?, PUNCH. The tape image in the machine is punched out on

paper tape.

§}4z LIST. The tape image in the machine is listed on the
fast line printer with carriage return numbers. A lower case
Roman letter is printed as '. wupper case letter ', Superscripts
and subscripts are printed above and below the main line. Un-
fortunately, '4' prints as '|', the '=' being lost because the
two characters are too close to 2ach other on the print wheel.

SLSLiCHECKo The stop

{(I): 05 HTR CccC

occurrs if the tape to be checked is not in the reader. Pushing

CONTINUE causes the -tape that is read to be compared to the tape

image in the machine. An error print is given if the comparison
fails, ‘

SL6,<COMPILE;i\The.stopwu

“ (1): 06 HTR cc

occurs. The symbolic Genie tape is placed in the reader. ©Pushing
CONTINUE causes the tape to be read. This reading is very

irregular as the text is being processed by Genie as it is read.

(N R

C 1 C3J

1]

C

1 - -] -—J - - 1 o/

C 1 31 3

GENIE PLACER
3

When an 'END' statement is read, output of the program is provided
on the printer and the absolute tape is punched. The final
'DEFINE' statement causes printing of the external variables of the
program just compiled. Then the 'LEAVE' statement causes exit

from the compiler to PLACER control program %240,

o .1 .3 A

1 .3

o o .3 .1 Cd

C

1]

c

a1 31 .31 &3 .43

C 1

BACK-TRANSLATOR

It is sometimes desirable to obtain symbolic APl listings or
tapes for programs which exist in absolute form only. These
programs may have been compiled or absolute-coded so that no list-
ings exist, or listings which once existed may have been lost.

Symbolic listings for documentation and tapes which may be
edited are generated by the APl Back-Translator loaded as part of
Genie PLACER.

The back-translation is iﬁ the form of a symbolic tape image
in the same form as is generated when an ordinary symbolic tape
is read under PLACER control. All operation mnemonics in the
extended APl vocabulary are recognized, and symbolic addressing
is set up when instructions reference locations within the program.
For most programs, instructions are distinguished from data words,
and the data words are translated to OCT pseudo-orders.

The types of tapes which may be back-translated are:

1. SPIREL-1lodding relative programs. in any punch format
2. SPIREL-1lodding absolute programs. in any punch format
3. SELF-loading programs in octal or hexad.
The first word on the tape determines the type of the tape; it is
not necessary to make any other indication. TIf single control
words, such as base~changing control words, are on the tape, they
are passed over; sections of tape with symbolic cross-references are

also ignored.

Usage

If SL7 is turned on at the normal halt (I): 00 HTR CC 1in
Genie PLACER, a program will be read from paper tape and a symbolic
tape image constructed in memory. This symbolic tape image is
equivalent to one generated by the READ option (SLi), and may then
be listed, punched, or edited.

If SLZ

is the only sense light turned on, or if there is no
paper tape in the reader, a halt occurs with (I): 07 HTR CC.

At this time, certain sense light options on the back-translation
may be selected (see below). After the symbolic tape image is
created, control retruns to PLACER at the normal halt

((I): 00 HTR CC).

3 .3

]

31 .31 .3

]

CJ

]

—
—

T

]

—

1 7

1) .3 3

BACK-TRANSLATOR
2

If more than one sense light is turned on at the 00 HTR CC
and if there is tape in the reader, the 07 HTR CC will be by~
passed, In either case, a symbolic tape image will be generated
first, and then the other specified options (print, punch, etc.)
will be performed on the new image.

Options

In normal use, the process of back-translation takes place
in two phases:

1. A flow analysis of the program to determine which
words may be executed as instructions and which
are intefnal data words or constants

2. the construction of a symbolic tape image to
represent the program, with OCT pseudo-orders for
constants and symbolic labels only on lines which
are referenced by instructions within the program.,

Information is passed from the first phase to the second by
tagging the words of the program as they are classified. The

tag conventions are:

no tag Data word not explicitly referenced in the
program
tag 1 Data word explicitly referenced in the program
tag 2 Instruction nét explicitly referenced in the
| program
tag 3 Instruction referenced in the program.

Tag O may also indicate an instruction which cannot be identified
as such.

It is possible for a program to be written in such a way that
the flow analysis will not distinguish properly between instruc-
tions and constants. Three of the most common types of programm-
ing which cannot be analyzed properly are those which involve

1. entry points at other than the first instruction
of a program,
2., use of transfer vectors or computed transfers

within a program (e.g., TRA CC+B3),

CJ ¢ J C 31 C3J3 3

3 3

—

—

.

C 3

C 1

]

-

—
—

C 1 CJ

BACK-TRANSTLATOR
3

3. wuse of the X register, as in JMP in tae operation
field or CC+X in the auxiliary.

Four sense light options are provided to make it possible to
specify as executable instructions those words which would not
otherwise be identified as such. These sense lights must be set
at the 07 HTR CC as described above.

SL12° Do not perform control flow analysis, but translate

on the basis of the tags on the program as read.

SL13. Accept a list of extra entry points or other words

which must be identified as instructioms. If this
option is selected, a 13 HTR CC will occur
immediately after the program tape is read. At
this time the back-translator will accept added
entry points from paper tape punched in the special
format

[er] AAAAA [cr] BBBBB [cr] CCCCC
where [cr] is a carriage return and AAAAA, BBBBER,
CCCCC, ... are five-digit (octal) relative locations
in the program. The process is terminated when the
end of tape is detected, WNote that it is only
necessary to specify tne first word of a block of
instructions (a block is ended by an unconditional
transfér instruction, either explicit or implicit).

SL14. Punch the program with fags after the flow analysis.

215 . . .
SL”. Do not perform translation to symbolic tape image.

CJ .31 1 .1 CJ -3 4

C 1 C3

]

r

]

C

L1 C3J C4

[D

1

]

SYMBOLIC ADDRESSING
IN SPIREL

In the Genie language quantities are normally identified by
name, not by the machine address where the corresponding value
or codeword is located. The SPIREL system provides facilities for
addressing scalars, programs, vectors, and matrices by name.
A control word with a null f field will cause program %126 (XCWD)
to read what follows on paper tape as a 5-hexad name preceded by
a cr punch. The name is added to the symbol table (ST,*113) if
it is not already present. Then the f field is assigned the address
in the value table (VT,*122) which parallels the name in ST. Under
program control a control word with null f may be given in T7, a
5-hexad name left justified in T4, and entry made to the second
order of %126 with the AP2 order

TSR *+126, CC+l1

Again, the f field is assigned the appropriate VT address,

The name must be given as exactly 5 printer hexads, as

54-40-55-25-25 for MAN
54-26-40-55-25 for Man
54-40-55-01-25 for MAN1
26-54-25-%5-25 for m

These configurations are not always conveniently punched on the
flexowriter since case punches may not appear, the '26' hexad is
given by a backspace punch, and the '25' fill hexad is given by the
tab punch.

Given the ST-VT configuration

ST VT,
Al scalar Al
A2 : 1 codeword for vector A2
A3 ' ——primary codeword for matrix A3
A4 - —1 —_codeword for program A4
the control word with symbol

cr 00001-0030-0000-00000 cr 40-01-25-25-25
will cause the scalar Al in decimal form to be read into Al's
VT entry. The control word with symbol

cr 00000-4130-0000-00000 cr 40-02-25-25-25

will cause the vector A2 with codeword in A2's VT entry to be

C 1

]

C 1 C3J1 [C3J3 [

SYMBOLIC ADDRESSING
IN SPIREL

printed in decimal form., The control word with symbol

cr 00000-5440-0000-00000 cr 40-03-25-25-25
will cause the matrix A3 with primary codeword in A3's VT entry
to be punched with symbol. The tape punched will load at a
later time, creating a matrix with primary codeword in A3's VT
entry, even if this entry is not in exactly the same relative
VT location. The control word with symbol

cr 00004-0420-0003-00000 cr 40-03-25-25-25
will cause the space currently addressed by the codeword in A3's
VT entry to be freed. Then a 4 by 3 matrix of zeroes to be
created and addressed by the codeword in A3's VT entry. The
control word with symbol

cr 00000-4100-0000-00000 cr 40-04-25-25-25
will cause the program A4 with codeword in A4's VT entry to be
printed out in octal. The control word with symbol

cr 00001-4030-0000-00000 cr 40-01-25-25-25
will cause the scalar Al, stored in Al's VT entry, to be printed

out in decimal.

13

] .[””7

T
)

r

1 .3

]

]

C 1

C

]

(N

C 1

SYMBOLIC
CROSS REFERENCES

An absolute Genie program, one that has been generated by

the compiler, contains one reference word for each external

variable referred to in the program. An order which addresses
an external variable does so through the reference word with
indirect addressing. At execution time the reference word for
a scalar contains the value table (VT) address where the scalar
is stored; for a non-scalar it contains an indirect addressing

(%) bit and the VT address where the codeword is stored. For

any Genie program the output tape is in two sections, the program

itself in hexads with no checksum which will be loaded
symbolically through SPIREL, and a control word followed by a

list which will load symbolic cross references into the program.

This operation supplies proper VT addresses in the reference
words of the program.
The figure below illustrates symbolic interconnections

between two named programs and the named data to which they

refer.
Explanation is on P Q :
>p CLA %M |~—— —>q |CLA | *N
next page. . ,
: TSR | *Q -
a *qc & c _w““““ngc“nﬁﬁz
PRl
b *mc 3 ~
ST VT
- .] . M e
P pc P m
Q qc q -
M mc T+m-1 5 My
N nc (N) (e}

9

-

(I

CJ

C 1 3

.1 .3

-

c

1

31 3

1 .3

—

L

SYMBOLIC
CROSS REFERENCES
2

P and Q are proérams, M is a vector, and N is an external scalar.
P refers to Q and M through the reference words a and b respective="
ly. Q refers to N through the reference word ¢, The VT addresses
for Q and M are shown as qc and mc respectively; and these are
inserted into a and b by loading symbolic cross references .into
program P, Thg VT address for N is shown as nc, and this address
is inserted into c¢ by loading symbolic cross references into
program Q, The paths of addressing from orders of P and Q to the
data addressed are shown by arrows in the figure.

Programs written in APl language and loaded with numeric
codeword addresses rather than names may, with some effort, refer
to externai Quantities whose names are in ST with values or
codeword in VI, When writing such a program, a block of
reference words should be created within the program. For a
scalar named SS the reference word should be written

SS BGD SS sp sp sp 0 0 0 O
cr lst tab 2nd tab 3rd tab
For a program named PP the feference word should be written
%P BCD PP sp sp sp A 0O 0O
For a .vector named VV the reference word should be written
A" | BCD VV sp sp sp A 0 0O
For a matrix named MM the reference word should be written
MM BCD MM sp sp sp A 0 0 O
The 'A' in the dbove BCD instructions provides the % bit
required in reference words for non-scalars, Within the code
the data is always addressed through the reference words with

indirect addressing, as

FAD *SS
TSR’ *PP
CLA *VV
STO MM

Once such an APl program is in the machine, proper VT addresses

C 1 1 CJ

C_J

C_1

C 1]

SYMBOLIC
CROSS REFERENCES
3

need to be inserted into the address fields of these reference
words. Program %173, SXREF, provides a means of filling a
block of reference words in the form described above. One
"control word" is punched on paper tape for each block of
reference words to be opefated on by SXREF. The form of this
"control wofd” is -

cr nnnnn 0000 rrrr f££f£f£ff
or

cr nnnnn 0000 rrrr 00000 cr sssss
where nnnnn gives in octal the length of the block of reference
words, rrrr gives in octal the relative address within the program

of the first word of the block, fffff gives the codeword address

of the program if it has been loaded numerically, and sssss

gives the 5-hexad name of the program if it has been loaded

symbolically. When executed, SXREF will read these "control
words'" and perform the designated cross referencing until a

null word is detected or the end of the paper tape is encountered,

C 1 C33 .3

C 3 C3

]

C

1 C.3

.

-

C

C

CONTEXT OUTPUT

Once a Genie absolute program is read into the machine and
its symbolic cross references have been loaded, the program is
in a form that is dependent upon the exact contents and order of
ST and VT. It may be desirable to punch with name a single
program or a system. To reload such tapes, the ST-VT must first
exist in the machine precisely as they did at the time the
punching took place.

Program *174,CNTXT, provides for punching of a tape which
re-establishes context: the valye of 117 (current length of
ST and VT), correction of %113 (ST) to its current length,
clearing of %122 (VT) to its current length. This tape must
then be loaded before any items whose names appear on ST as
pﬁnched. If sense light 13 is off CNTXT proceeds to punch in
hexad with checksum all quantities with names in ST for later

symbolic loading.

_— L_J 3 o3 a1 g 4

J

c

NUMBER TO NAME
CONVERSION

It may be that programs or data which is‘punched‘to be
loaded at specific addresses or with numbered codeword addresses
need to be converted to symbolic loading form for use in a
Genie-coded system.

Program %172, SMBLZ, will punch out with the name specified
constants lbaded into numbered addresses or blocks and arrays
loaded with numbered codeword addresses. SMBLZ reads from paper
tape the following information about each item to be punched:

cr sssss tab x tab nnn
where sssss is the 5-hexad name which is to be given to the item,
x is the digit O if the item is a scalar, x is the digit 1 if the
item is a program or vector or matrix, and nnn is the three digit
address or codeword address where the item is located in memory
at the time this punching takes place. If the item is a matrix,
all of the array will be punched.

SMBLZ will punch all items described on one tape, exiting
only when end of tape is detected. TIf sense light 13 is on when

SMBLZ is executed, tape feed will be supplied between the items
punched.

C 1

C_

C 1]

1

GENIE SPIREL

Genie SPIREL is located on the MT System magnetic tape at
block 101.03. This is a full SPIREL and the set of programs
which provide support for compiled programs at execution time.
The specific contents are listed below.

| CODEWORD
NAME ADDRESS DESCRIPTION

full SPIREL

* % % utility programs * % %

SMBLZ 172 see NUMBER TO NAME CONVERSION
SXREF 173 see SYMBOLIC CROSS REFERENCES
CNTXT 174 see CONTEXT OUTPUT

*%% programs whose names may be used in Genie language %%%
SIN 200

cos 201

SQR 202 ‘

EXP 203 floating point scalar function

LOG 204 of floating boint scalar

ATAN 205

TAN 206

COT 207

LENGTH 210 ;nteger length of vector

ROW 210 , integer number of rows in matrix
CoL 211 integer number of columns in matrix
VS PACE 213 dynamic creation of vector

MSPACE 214 dynamic creation of matrix

FIX 217 _ integer nearest floating point input
INV 224 inverse of matrix

TRAN 225 transpose of matrix

EVEN 227 test integer for being even

CONTROL 230 application of SPIREL to named

quantity

%%% programs which may be used by Genie-generated programs %%¥

212 used for DATA, PRINT, PUNCH, READ
command
215 integer to an integer power

1 CJ

31 .3 .

CJ

1 CJ C4

C 1 CJ .

C

C_J

1 C 31 [C

]

r

NAME

GENIE SPIREL

2

CODEWORD

ADDRESS DESCRIPTION

216 floating point number to a float-
ing point power; uses 203,204

220 copy of vector or matrix

221 addition of two vectors or two
matrices

222 subtraction of two vectors or
two matrices; uses 221

223 multiplication of vectors or
matrices

226 multiplication of floating point
scalar and vector or matrix

231 floating of an integer vector or

matrix

Available for use by the coder are addresses 241-277. The

system occupies about 6,000 (octal) words of storage and may be

cut down by extracting just those programs necessary to a par-

ticular system.

Parameters and restrictions for the named programs are

discussed in the section on functions. The remainder of the

Genie SPIREL programs are discussed below.

212

215
216
220

operation specified by (Bl) on entry:
(Bl) = 1, DATA

(B1) = 2, PRINT
(Bl) = 3, PUNCH
(Bl) = 4, READ

parameters are listed one per word following TRA to the
program; word contains name in BCD and addressing infor-
mation; list terminated by a null word; return to location
following null word.

(U)(R) - U and T7

@ ® v and 17

(Bl) = codeword address of copy; (B2) = codeword address
of input; (Bl) set to 240 before copy if null on entry.

3y .31 .31 -3 .33 .3

1 3

1 . .3

I R

]

C 1 3 C

]

—
L

] C31 3

221-223

226

231

GENIE SPIREL
3

(Blj = codeword address of first operand; (B2) = code-

word address of second operand; (Bl) set to 240 before
operation if null on entry; codeword for non-scalar result
at 240; scalar result:in U and T7; storage for first
operarnd freed after operation. '
(Bl) = codeword address of non-scalar operand; (U) =
scalar operand; (Bl) set to 240 before multiplication
if null on entry; codeword for result ét 240; storage
for non-scalar operand freed after multiplication.

(Bl) = codeword address of non-scalar operand and result.

3] 3

] 1

1

1 -3

C]

C_J

L

r_.u.
L

3

RUNNING GENIE
PROGRAMS

The procedure for testing Genie programs should follow an
outline similar to the following:
1) 1load Genie SPIREL from magnetic tape
2) read private programslunder SPIREL control
3) activate STEX with control word 00000-3120-0000-00135
4) read data items which are prefixed with SPIREL
control words
5) position '"run tape'" which contains the control word
cr 00000-3100-0000-00000 cr PPPPP
where PPPPP is the 5-hexad name of the program to be executed,
followed by any data to be read by the program. A "fetch" from
location 21 or a CONTINUE to 20 will then cause PPPPP to be
executed by SPIREL.

The first version of a Genie program should contain ample
PRINT commands that provide display of intermediate results.
These may be edited out of the program for production or their
execution may be conditional upon sense.light settings.

A program should be tested with sense light 14 off. This
causes monitoring on the printer of all SPIREL operations, all
input-output operations, and all space faking operations. Such
information is often a valuable debugging aid.

If a progrm stops unexpectedly while it is being checked
out, the following information may be of value:

A) dynamic dump of fast registers, obtained by:

1) type out contents of CC on console typewriter

2) type 20000 into CC on console keyboard

3) raise, then depress FO switch on console

4) at halt, type saved contents of CC into U on console
keyboard

5) push "CONTINUE" switch on console

6) output appears on printer, and CC indicates where
program stopped, P2 indicates where last transfer
occurred, and PF shows where last transfer to sub-

routine occurred.

C 1 33 .3

C 1]

1 1 3

CJ] -3 C.3J .

RUNNING GENIE
PROGRAMS

B) SPIREL dump of ST-VT, showing values of external scalars

1Y)
2)

3)
4)

and codewords for external non-scalars defined at
the time, obtained by:

type 20 into CC on console keyboard

type SPIREL control word 00000-0500-0000-00000
into U on console keyboard

raise, then depress FO switch on console

output appears on printer, and machine stops ready

to accept next control word in TU.

C) SPIREL dump of any programs in which values of internal

variables may be of interest, any external arrays
which may be of interest. ©Note that the codeword :
address in VT for each item loaded by name appears
on the load record for the run. It is easier to
use this address, .rather than the name, for identi-

fication of the item to SPIREL from the console.

Tracing of Genie programs is not advised. If it is done,

care must be taken not to trace transfers to programs 136 (SAVE),

137 (UNSAVE),

212 (INPUT-OUTPUT).

1 CJ C3 C3

3 1

31 . C3J 3 [

3 . .3

3

1

C

C]

C]

EXAMPLE T

The program SUBR takes two vectors, V1 and V2, and a scalar,
SCLR, as input parameters and returns two more vectors, SCNT and
VPRIME, as output.

If V1 and V2 are of the same length, their dot product DPROD
is computed and V1 is multiplied by SCLR. If their lengths are
different, an indicator is turned on for later testing.

Next, space is taken for the vector SCNT and its elements
are evaluated as: SCNTj =0 if Vlj is within 0f001 of a multiple
of m/2, otherwise SCNTj = sec(Vlj).

After SCNT is evaluated, the indicator is tested. If it
is off, space is taken for the vector VPRIME and it is evaluated
as a function of V2 and SCNT; if the indicator is on, the cal-
culations on VPRIME are skipped.

Finally, the indicator is turned off and the values of SCLR,
DPROD, V1, SCNT, and VPRIME are printed.

Notes on Symbolic Listing:

Line Remark
3,4 All non-scalars, all functions not in the vocabulary

of the compiler, and all external scalars must be declared
before the SEQ.

5 The one-line definition of function REM is also located
before the SEQ: the user must supply a function INT to com-
pute the largest integer contained in a number. External
specifications apply to the function REM as well as to the
main program.

10 .- LNG1l, LNG2, and j are declared as integers. Since this
statement appears after the SEQ, the integers are internal
to the program SUBR.

11 HALFPI is defined as 1.570796; this value is used in
the code wherever the name appears. Since 'HALFPI' is more
than fiwveccharactexrs,. longy, .it will: appear on . listings as

v 'HALFP'vand will not:.be distinguished from any other charac-
ter beginning 'HALFP'.

12 Several equations separated by commas may appear on one

line.

1 CJ .3 .3

I R

1 3

D S Y (N [SN A SO B S

C]

EXAMPLE I
2
LINE REMARK
13 Since the value of CC is to be unchanged if the con-

dition is not satified, the alternative value is omitted.
Note that the Genie lister prints | for % and « for #.

14,15 Vector V1 is multiplied by vector V2 for a scalar re-
sult and each element of V1 is multiplied by SCLR. The
use of X to indicate multiplication on line 13 is synonymous
with the juxtaposition of the factors on line 14.

20,22,23 Execution of a function may be called for explicitly
with an EXECUTE command or implicitly in an arithmetic
command, depending on the function.

21,24,25,30,31 These commands control a loop indexed on j.

A test is made at the beginning of each pass through the
loop to determine which of two calculations is to be per-
:rformed for the .current.value of j. At the end-of each cal-
culation, j is incremented and control is transferred to
the initial test if j < LNGl or to the first instruction

after the loof if j > LNGL1.

32 A sense light is tested in Genie language by writing the
number of the sense light to be tested as an exponent of SL.

35,40 This is a simpler method of loop control; it is useful
for loops with positive increments and a single exit point.

36, 37 A statement may extend for more than ome line. The case
punch for the second line follows the third tab in the
'ct tab tab tab' sequence.

17,27,41 AP2 instructions may be interspersed with GENIE

statements; no special indication is necessary. AP2 commands

that use SKP, JMP, or otherwise depend on CC should be used
with caution. It is difficult to predict the number of
machine language instructions which a GENIE command will
generate., : |

43 '"END' terminates the command sequence by generating code
for return of control to the program at the next higher level.

45 '"LEAVE' causes exit from Genie at compilation time.

3 3

3 3 .3 43

1 .3 1 .3 3

1

CJ) 73

]

.

C 1 3

DEFINE

VECTQRS V|sV2sSCNTsVRRIME
PUNCTIONS REMND, INT
REMND(A4B) = A/B = INT(A/B)

SUBR('SCLRsV 14 V22SCNT, VPRIME), =SEQ

ARND
EMN

CaMPRA

Law

camPe

oMIT

END

LEAVE

REM THIS 1S A SAMPLE PROGRAM
INTEGERS LNG|sUNG2s 4

LET HALFPI=], 570796
LNG1SLENGTH(V), LNG2SLENGTH(V2)
CC==ARND 1 ,F UNG] | LNG2 J0R LNG) s 0
DPRODZV] x 'vp

V] = SCLR V|
CC=«EVN
SLN +40000
EXECUTE VSPACE(SCNT2LNG})
INES|

CC = «LOW ,1,F REMND(V] : #HALFPL) < 0. 00!
.

SCNT = 1,:04C08(V1)
i e

J

J
W= aadel
cC .= "CUMPA W['F 1 vJS NGl «COMPB
SCNTJJ S 00
SLN -+40000 "
i = !
CC = «COMPA I ,F LiJ ' LNGY

CCzeQMIT 41 4F L'

REM SECOND SECTION
EXECUTE VSPACE(VPRIME,LNG2)
FOR iJ 5 la11LNG2

VPRIME ., = Va2 JI«F SCNT & V2 20 b F
v

. i L N
v € 0,0 !
REPEAT
iSUF +40000

PRTNT ‘SCLRJDRRODsV 12 SCNTs 'VPRIME

DEF INE

O NOUI WD —

I
I2
I3
14
V5
16
17
20
21
22
23
24
‘2%
26
27
;30
131
;32
33
i34
;135
136

37

40
)
43
Ay
45
46

C 1 C3

ry 31 3 - -3 -3 -3 .. &3 .4

]

coy)y ¢33 3 31 .3 2

REMND
OBG IIN
END

REMND . =

REMND
i
l2
'3

e o

START NEW '‘PROGRAM,
PROGRAM SEQUENCE, -
PROGRAM SEQUENCE,

-«BGIN - 1:0
01
47
01
01
(o]
0l
01!
os
(o}
0l
o1
07

N O—ONCNFWN—O

END

Ol 3 W10 D Ul £ W 1 —1

SYMBOL ‘TABLE,
A 12 0
B 1Q2 |
«8GIN 100 !

01000
40007
21641
21700
21700
12700
40000
40007
112700
10400
91000
40006
91000

wo-o

SUBROUTINES REFERENCED

INT

Q2
00
00
06
05
00
07
04
00
07
00
00

k400
4100
0001
0600
0600
0000
4401
4401
0000
1000
4400
4000
4300

00136
77763
00010
00001
00000
00006
00006
00003
00006
00004
00137
00000
00000

END

Té
INT
END
16
4

(e Yo HeoJ

00O

1 31 .o Co oo

3

— 3

C

]

1

.

]

C

-

(N .

C3J C.3J

]

‘SUBR
«BGIN
ARND
EVN

COMPA
AL Ow

.COMPB
-«POR|
*RPT|
IMIT
END

SUBR_ g:=)o
l

2
THIS IS A SAMPLE RROGRA

'START NEW '‘PoOGRAM

'PROGRAM
'PROGRAM
'PROGRAM
‘PROGRAM
'PROGRAM
‘PROGRAM
'PROGRAM
'PROAGRAM
PROGRAM
'PROGRAM

-«BGRIN

ARND
EVN

‘SEQUENCE,
‘SEQUENCE,
‘SEQUENCE,
SEQUENCE,
SEQUENCE,
‘SEQUENCE,
SEQUENCE,
‘SEQUENCE,
SEQUENCE,
‘SEQUENCE,

! 10

2 0!

3 &7

M)

& 101

B 01

b 01

7 101

10 0l

11 01

12 01

13 01

14 101

I8 06

16 101

17 101

20 106

21 01

22 01

‘22 01

24 101

25 01

26 101

27 01

130 0l

131 Q1

32 100

i33 01

134 01

135 102

36 01

37 101

40 Q0

41 101

-42 100

43 ol

YN 41

45 101

Y] 101

47 01

B0 Q0

81 Q1

52 101

53 01

01000
40007 €

21641

21700
40000
40007
30001
21700
40000
%0007
20001
21700
92050
01000
21000
Qes |0
21000
21706
30040
21700
21700
40000
40007
30001
21700
40000
40007
50400
40000
40007
21700
40000
%0007
50401
20001
2164)

21700

42000
21702
20102
40000
%0007
21700

a2

07
00
00
00
07
00
00
00
0é
00
00
00
20
00
00
40
4]
LT
00
00
00
42
41
00
00
00
00
41
42
00
852
00
00
40
00
aé
a6
00
00
00

4100

0200
4400
4401
4001
0200
4400
4401

4001
0001

0001
4001
4001

4000

4001

4001

0000
0200
0200
4400
4401
4001
0200
4400
4401
0600
4500
4401
020C
4400
4401
0000
$002
0004
4001
4000
0300
4001
4400

4401
4000

4400 100136
4100 ‘77760
0001 100205

00001
00210
00202
00203
00002
00210
00176
00200
00176
00176
00001
00002

00000

00002
00023
00000
00001
00002
00223
00161
00164
00001
00220
001858
00000
00226
00152
00001
00135
00147
00240
00000
00000
00001
40000
00003
00142
00213

00136
00001

‘END +

Vi

LENGT"
END +

LNG}

ve
LENGT
END -

LNG2
NG|
LNG2

ARND

Vi

ve

END
JPROD
Vi

END
SCLR

END
vl

END ¢

s

+

EVN

SCNT
LNG1
VSPAC
END

+

3 L

(-

1 3]

]

-

C

3 C3

c o

C 3

) .3 .3

3 3]

1 3

o

G+ WN—ONGCU £ WN— O 0l

N e =
OoONo

W@ W W W N D) MM D
VFWN—ONO U+ N —

@O

oA

o~

et s e

0Ol + WN— O —

SECUND SECTION
re
13
L4
1'5
Q0
l
2
i3
4
5
6
f7~
10

11
le
13

COMPA

LOW

caMere

«FOR |

01
01
01
0 1
4
00
01
01
101
101
101
0 1
01
01
01
i01
101
01
101
101
01
0!
01
101
101
101
Q1
101
101
101
101
.00
101
101

01
;Oj
101
101
1014
01l
101
01
101
101
01
01
01

01
00
101
101
0}
01
0l
01
01
01
101
01
01
101
01
01

20001 00
21740 4|
21740 00
2000! 71
21602 26
20102 ‘36
40000 ‘00
%0007 00
96550 :00
01000 -00
21700 00
20040 40
21740 4|
21740 00
40000 07
%0007 100
16700 100
20001 36
21700 41
21700 66
20001 '00
21740 100
10000 100
20001 100
21740 100
Q2510 100
01000 100
21700 100
01000 00
21700 100
20040 40
21700 41

‘30001100

42000 '00
2174000
10000 00
2000! :00

2174000 ‘
:0001 :00070
4001 00002
4001 '77727

Q2510 100
01000 :00
21700 100

20040 40
21700 100 10C ,
5000 100016

45015 00
5001:0::00
01060 00
91000 00
21700 :00
20040 40

21702 126
20102 '136
%0000 100
%0007 00

21700 :00

20001 :00
21700 :00
Q211000
01000 100
21700 06
21740 4]
21740 04
21740 4|
21760 :00
02510 :00
01000 :00

4001
0001
0600
40601
000
001
4401
4401
0001
4001
4001

00141
00140
00001
00137
00000
‘001:36
00136
00125
'001:35
00002
00024

0000 100000
0001 100125
0600 00001
4600 100201
440100115
0001 00§26
4100 100000
0001 100117
0100 77776
4600 100003
4000 100001

0001
4001
0001
0001

4001

400
4001
4001
0000
30001

00113
00112
00111
100108
100002
77744
100001
00014
100000
001102

4600 100003
4000 40000

4000 00001
@001 00076
4001100075
0001 00074

/0000100000
000077770

4000 77776

4001 100001
4001 100002

4001 100043
0000 100000

0200 :0000%

4001 100055

4400 100213
4401 100050
4000 100001
4001 00053
0001 00056
0001 00051

400100031

0001 100047
0000 ‘00006
0600 00003
0000 100006
0600 00002
0000 00004
4001 100003

"
Vi
P |

HALFP
REMND
END ¢
«NyUMB

LOW

o
Vi

END ¢

<ONEF
IN|
SCNT

3

e

C

3 CJ 33 .3 .3

o3 -3 .3 .3

D I B

~
| S

CJ

C

]

1 .3

_—

iISUBR

|12
113
I L4
116
106
117
120
12}
122
133
|34
185
126
127
130
13]
132
133

«RPTY

OMIT

NVN—OONOGCUIFWN—-—0ON—0

END

SYMBQL
SCLR
«BGIN
LNG]
LNG2
9]
HALFF
ARND
DRRQOD
EVN
COMPA
LOwW
«NUMB
P
CcoMPB
OMIT
«FQOR|
“RPT1
«NUMB

155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177
200
201
202
203
204
205
206
207
210
211
212

TABLE,
a2
100
200
200
200
oo
100
100
Q0
100
100
100
100
100
100
100
Lo]o]
1:00

2 13
12 14
216
1220

1215
47
55

113
222
217
126
177
141
[74
22k

21740
21740
01000
21740
21740
96550
91000
21700
91000
21740
21740
20001
20040
21700
20001
21700
10401
21000
52004
40001
01000
42536
57615
01252
42556
57615
00000
01000
40006
01000

WOWWWWWWHWYWWwWwWw Wwwo

SUBRQUTINES REFERENCED

REMND
VSFAC

LENGT

20l

213
135
226
22C
223
a1o

.2
00
00
41

00

00
00
00

41
00
26
41
66
00
00
00
00
00
00
00
1.2
64
32
32
05
00
00
00
00

0000 00006 T6
0600 00002 ve
4001 000}0
0000 00006 Té
0600 00002 ve
0001 00041 =NUMB
45001 00002
4000 00000
4001 00002
0000 00006 T6
0600 00001 Vi
4100 00000
0000 00000
0100 77776
4600 00004 VPRIM
4000 00001
0001 00020 N
4001 77743 *FOR| +
4000 40000
4000 00002
4400 00212
5600 00000 SCLR
:3001 00011 DPRQD
5300 00001 vl
‘5200 00003 SCNT
k200 00004 VPRIM
0000 00000
4400 00137
4000 00000
4200 00000
0
0
0
0
0
Loopwu@rzss7aav38
0
0
]
0
‘76P0|Q283351361523
0
0
0
0
770146314631463146

0OOCO0O00O0DDOULUOOOCODOO0O

2

cC1 C 3

C 1 C1

oy 1 .2

3 [C.3

]

C_J

]

-

(I

]

C_

C_J

END IOF DEFINITION SET,

103
104
109
106
107
110
1

OO — & wh—

EXTERNAL SYMBOLS,

OWOoOOO0OO00

0000000

O0OO00O0O0OO0OO

C 1 .3 C3

1 Cy C3J .3 3

]

‘t::] 31 2 .3 .3 .3 -3 Ca g g

00000

L1
L2

Li4

L1é

PF

TS

T8

ORG
REM
TRA
SPF
RWT
GLA
CLA
12700
TSR
SPF
12700
FAD
TRA
SBé
TRA
Vo000
END

BACK=TRANSLATION
WAM 365 UeR
1AB6+77763
L4
KPF+1aU=T4
uPF4Zs{«TS
é

WAl | 60U=T7
AML 14, UsTh
é

whyUsT?
(A1 37

WAL

|APF+Z

wZ

o .1 -3 - & /g g s

L J

I R

[::j 1 .3 31 - .

00000

L1
L2

L17
Lao

L22

La4

Lis
L47

L55

PF

Té

Té

‘ORG
REM
‘TRA
'SPF
‘RWT
CLA
TSR
iSPF
ST
CLA
'TSR
iSPF
'STQ
CLA A
IFUNZE ySKP
‘TRA
"TRA
IF (NEG)SKP
TRA
‘CLA
NOP
CLA
CLA
TSR
SPF
$T0
CLA
TSR
SPF
LDOR
TSR
SPF
CLA
TSR
SPF
LOR»
sT0
RWT
CLA
SUN
21702
EOhQE
TSR
SPF
CLA
$T0
21740
21740
STQ
21602
2olqe
TSR
'SPF

IF (NNZ ySKP

BACK=TRANSLATION
WA 11365 UeR
1AB&+77760
Lail

PR | 2YsT7
AR210
AMp21 |
WAL213
PFR42,UsT7
Am210
WARL21 |
AL214
L2135 JsTé
L2114

*Al.20
Al.22

AZ

AlLzé

WAL 46
Z22U<CC
PF+1slUeB]

PF+24sU=B2

JAH223
A2t
AL21S

PR+ |aiU=B2
WAM220sUsB |
AuL211
®PF +Z
AR226
WARL2 1
FF&14UaB|
WAk 1352 UeR2
Amp21 |
240,R=B2
!ABT?Z
Ba+Z

WAL 47 24=CC
A40000
PE+3sB6+|
WAL213,B6+|
AR213
Axpal |

Al

AL216
L2164U=B|
WP+ |

QAL’E 1;70 .I"B l
WAZaB6*]
AL220sB6+1
AmL22]
JANL21

Laega

SNBOIE W -

l\
1
e
13
14
5
16
17
20
21
a2
23
g4
as
26
27
30
31
33
34
35
36
37
40
41
42
%3
44
45

46

¥7
50
;St
52
93
5S4
85
.56
57
60
61
)éa
'63
)64
l§5
66

67

o1 1 .31 3 431 31 -3 43 4o

) 3]

C 1 C 3

]

c

31]

C 1]

L6é

L70

Lp07

L1l
L1112
L1113

Lra4

Ly2é

L33

L35

L§43

L1468

TRA
CLA
NOP
121740
121740
'TSR
'SPF
'VOF
iSTQ
CLA
CLA
'STO
21740
.ADD
iSTO
21740
IFINEG)SKP
‘TRA
‘CLA
'TRA
‘CLA
INOP
CLA
'STOo
iSLN.
‘21740
ADD
ST0
21740
IF (NEG }SKP
TRA
CLA
NOP
CLA
kRS
ORY
IF (ODD YTRA
TRA
CLA
NOP
21702
aojaz

TSR

SPF
CLA

870

CLA

[F(ROS)SKP
TRA

CLA

21740
21740
21740
21740

IF (NEGISKP

WAL 70
ALLLS
ZaUaCC
L216aU=B|
MPF & |
Aa01 2 UT7
Amp21]
L223
1ABE&+ZsB6+|
L216sU<B}
B&+77776,B6<]
WANPF+3

Al

LeLé

Al.216
L21eé

Lays

AL
WALS5
cAlea

WAL 1126

ZaUsCC

L21641UsB]
1APF43
vA40000
Al

L21é

AL2 16
L216
L2113

Al 1126
1ALS5
2ay<CC
77770
oAlé
WR7777¢
nALﬁ3§
WAL 1135
ALTT77
24y<CC
PF+4aBé+1
AL214s86+]
AP 3
AMU21 |
Al
AL216
Leta
Lale
ALLIT77
L216sUsTé
64U=B1
MPF432U+Th
64U«B|
WPF 42

4

70

71

72
73

74
78

76
77
100
101
102
103
104
105
106
107
110
11
1re
13
114
1S
116
117
2o
ey
122
123
l24
125
1§-1)

R Y

1130
131
132
133
134
138
136

137

140

L4

ko2
143
LT

148

146
147

150

psi
192
153

V54
185
156

1 1 3

C

1 31 31 31 .3

C 3

] C.] -3 .o -3 3

-

]

e
—

1 .

L1585

L1160

L[)6“
L1668

L1'70

L177

Lao2

L21o0
Lall

L213
L2tk
k215
Layeé
L217
L220
Lzel
La22
L223
Laz24

i

"Té

82|

B3

185
B2l
hBs|

77

~=|B6|

- |PF |

TRA
21740
21740
TRA
21740
21740
IF (NNZ)SKP
‘TRA
CLA
TRA
‘21740
‘21740
$T0
INOP
CLA
STO
GLA
FADe
TRA
SLF
:§Bl
"TRA
42836
57615
01252
42556
57615
‘00000
TRA
'SB6
‘TRA
0cT
QcT
acT
QcT
10CT
QcT
100000
loL42
IF(PSNHTR
01463
END

AL 160
641UsB |
WPF 42
WAL 170
64sU=B1
MPF &2

Lag4

AL 166

WAZ

1AL 170
62U=B1

WPF |

Zsy+B1
364777765861
VAP w4

Al

L2y6

AL 143
A4000Q

AR

Au212

= AMPF+ZyKeR
=1L215| sBé=1
= APF#+] 2R«B2
= APF+3282+X
WAPF+4UeTS
Z

AN 37

AZ

WAPF+Z
0000u0000000000000

000000000000000000

000000000000000000
000000000000000000
000000000000000000

0100 1444765742130

2

= 4B | +B3+B6+.6 | 747 | #B3+|

Z

| APF+B2+R3+B6+831 46| 2RsTH

157
160
161
162
163
164
168
166
167
170
171
172
173
174
175
176
177
200
201
202
203
204
205
206
207
210
21
2)2
213
214
215
216
217
220
22
222
223
224
225
226
227
230
23|
2332

EXAMPLE IT

The program NEWTN (COEF,GUESS) uses a variant of Newton's
method to obtain the roots of a polynomial
n-1

P(X) = Xn+An_1X Fo- oA XA

INPUT: Vector COEF, of length n, the coefficients

(A _1r8n_ 00 == 4p)

Vector GUESS, length n, containing the approximate
roots of P.
OUTPUT: COEF: wunchanged
GUESS: contains the refined values of the roots
Vector POFR, length n, which contains the value of P
at the next to last iteration for each root.
METHOD: Let X_ denote the value obtained for a certain root at

K
the K-th iteration. Then

X, = (value obtained from GUESS)
X2 = 1.001X1
Ze-%x1
Xppp = Xg-P(Xg) P(X) -P(Xy_1) 1f K>2

At most twenty iterations are performed.

\ NN N AU R N U (N [(N A A A G A U Y U T S S S [A A (N B

T

CJ

31 . .3 3

3 -3

I R

1 CJ

]

—

C_]

]

]

-

-

|- I

DEF INE
VECTQRS 'C0EF, GUESS,PIFR

NEWTIN(COEF, GUESS),'= SEQ

INIT

LooP
QulT

END

LEAVE

INTEGERS JsKsLslM

b = ROW(GQEF)

EXECUTE VSPACE('POFRsL)
FOR J = tslsl.
GA = GUESSJ

FOR K = lals20

FIN =1,0
FOR M = 1s1,L
FIN = COEF _+#FNXGA

M
REPEAT
CC = «INIT ., LW 1<K
FO = FNo Q0 := GA
GA = 1,001GA
CC = - 00pP
GS = GAs QELF = FN=FO
CC = «QUIT . L+ DELF = 0
GA = GA-FINLGA=Q0)/DELF
G0 = GS» FO = AN
REPEAT
GUBSSJ1= GA
HOPRJ‘z'FN
REPEAT
DEFINE

ONGOA &S WM —

1
12
I3
a4
15
16
¥4
20
21
22
23
24
as
26
27
30
31
32

33
34

3%
3s

1 -1 .33 . .43

cJ] - -3 3 C.J -1 CJ C

L1

EPILOGUE

The Genie compiler is the invention of John K. Iliffe, now
with Ferranti, Ltd. in London. Major contributions to its
realization have been made by Jane G. Jodeit, T.A. Kitchens, Jr.,
and Jo Kathryn Mann.

Programming development has been supported by the National
Science Foundation under grant NSF G-17934. Construction of
the Rice University Computer was supported by the Atomic Energy
Commission under contract AT-(4071)-1825,1further development
under contract AT-(40-1)-2572,

Genie may well be improved and extended by future efforts in

a number of areas:

* (1) Notation for sense light iterrogation would be very
useful,.
*(ii) The case of a program with no command labels should

be handled properly.
(iii) Function names should be allowed as parameters.
*(iv) The machinery for Boolean variables exists but needs
to be checked out and made available.
*(v) At compilation time a list of programs referred to
in the compiled code should be provided.
(vi) Compound conditional commands should be permitted.
(vii) Checks on overflow of size limits and various other
compiler diagnostics should be provided and documented.
(viii) A major effort would be required to allow programs
to use themselves, but this might be interesting and worthwhile."
(ix) More elaborate input-output facilities would be
useful.
Jane G. Jodeit
April, 1963
Rice University

Houston, Texas

*provided by October, 1963

CJ . .31 C3 C3a 3 3

Since April, 1963 Genie has been subjected to considerable

use at Rice, and the system has been improved in various areas:

(i) Boolean arithmetic is available.

(ii) Notation for sense light interrogation is avail-
able. |

(iii) A program with no command labels is compiled
properly.

(iv) Programs referred to in compiled code are listed on

compilation output.

(v) The machine index registers are addressable in Genie
language.
(vi) ‘ Elements of general arrays of more than two dimen-

sions may be referred to in Genie language.

(vii) Genie generated code for loops and for matrix
operations is more efficient.

(viii) Numbers may be specifically placed within programs.

(ix) Matrix operations are extended to matrices of
integers where meaningful.

(x) The program name may appear at the left margin for
ease of identification, and the need for many 'tabulate' punches
has been eliminated.

(x1i) Iteration parameters for loops may decrease or
increase from initial to final value.

(xii) Provision has been made for explanatory remarks
within programs.

(xiii) Simple uniform notation has been introduced for
designation of the result df a function to be implicitly executed.

(xiv) Genie PLACER has been extended to include the Genie
compiler itself and the newly developed translator from machine
code to assembly language. Magnetic tape handling provides the

system access to two full 8K memory loads.

) - -] -0 -—J C . - - ¢ ..t

3

{

,_.
L

3 .3 .4 C4a

(xv) These NOTES on Genie have been improved and
augumented. A separate document on the assembly language is
available, and one on SPIREL is forthcoming.

A Mary M. Shaw
October, 11963
Rice University

Houston, Texas

o1 £33 .3

1 .3 .3 .

1 CJ

C_ 1 3

A

C

(.

3 .1

C]

APPENDIX
GENIE CODING CONVENTIONS

This appendix discusses details of compiler generated code.
It is intended for those who are particularly interested and for
those who wish to code in a lower level language while maintaining
compatibility with compiled programs. This material is not essen-
tial to the understanding of the Genie language and should not be
read before attempting to write some programs for the compiler
and gaining some familiarity with the Rice Computer, the assembly

language, and the SPIREL system.

Program initialization and termination

The 'SEQ' causes the compiler to generate a sequence of orders
which initializes the program being compiled. The first of these
orders is labelled '<BGIN', and the orders are collectively called
the "<BGIN code sequence'. For each "SEQ' there is an 'END', so
there is an "END code sequence'" corresponding to each «<BGIN code
sequence. The form of these code sequences depends on the number
of parameters (k) listed for the program and, in some cases, the
type of parameters. A single fast parameter in the definition of
a program is a special case which causes only PF to be saved and
assumes no parameter addressing in Genie language within the
program. Otherwise, fast register names should not be used as
parameters in a program difinition, and the following discussion
applies. A single parameter enters a program in T7, the value of
a scalar or % codeword address for a non-scalar. Immediately a
scalar in T7 is stored at internal location '«T7ST'; a non-scalar
parameter is stored on the B6-list. All fast registers are saved;
if there are parameters on the B6-list (k>1 or K=1 and a non-
scalar parameter) PF is set to point to the first parameter. 1In
this case (PF) is stored in the address portion of 'END+1' and
must be maintained with this value throughout the program for the
purpose of addressing parameters. The END code sequence restores
the fast registers, sets B6 to free the storage occupied by any
parameters on the B6-list, fetches (T7) for implicit execution,
and exits to the PF setting on entry. The specific code sequences

are as follows:

C 1

r

(.

C_]

]

)

2

C_

(I

)

C_J

-

J 3

t
———

3

—
——.

)

-

L

]

—

k=1
fast

k=1

scalar

k=1

non-scalar

k>1

<BGIN

END

“<BGIN

END

<BGIN

END

<BGIN

END

PF

-Z

T7

T7

T7

PF

T7

PF

T7

RPA,WTG

.

TRA

TRA
STO
TRA
TRA

STO
TRA
SPF
RPA,WTG
TRA
SB6
TRA

TRA
SPF
RPA,WTG

TRA
SB6
TRA

APPENDIX
2

END

%*+136, U=-R
“~T7ST

®*+137
PF

B6, B6+1
*#+136, U-R
B6-10
END+1

*+137
Z
PF

%+136, U-R
B6 -k -9
END+1

®*+137
Z
PF

1 31 .1 B3 C&d 3 .3

C 1 C3

-

31 1 C3 3

1 C3

C

o .3

APPENDIX
3

RESULT for implicit execution

A program which is single valued may be executed implicitly;
that is, it may be mentioned within the formula on the right hand
side of an equation in Genie language. A scalar result must be in
U upon exit from the program, a non-scalar result in the non-
scalar accumulator whose codeword is by definition at location
+240 during execution. The name 'RESULT' is interpreted by the
compiler as T7 for a scalar and as codeword address +240 for a
non-scalar, 'RESULT' may appear only on the left hand side of
an equation and must be defined in the last command executed
before 'END' on all dynamic paths to 'END'. The 'END' code
sequence fetches (T7) to U as it exits so that a scalar result is
indeed in U upon return to the program causing the implicit ex-

ecution.

Addressing of variables

With respect to'any given program every variable is in one
of three categories: internal, external, parameter. All intermnal
variables are scalar, the values.being stored within:the program.
External variables may be scalar or non-scalar, the address or
% codeword address respectively being stored in a reference word
within the program, the value or codeword respectively being
stored in the Value Table (%+122) during execution. In the general
case, reference words for parameters are stored on the B6-list,
the ktb parameter being addressed at (PF)+k-1l after execution of
the '<BGIN' code sequence. Parameters of a program during ex-
ecution are indeed internal or external with respect to some
dynamically higher level program, but this does not affect address-
ing in the program where they are parameters. The following

chart summarizes addressing conventions for variables.

]

L

C

J .J 33 £33 .3 43 .3 3

C 1

o .3 £ .3 3 3

APPENDIX
4

1 L} t . t t

X | data | codeword '
variable !fepresentation ! address | address | value lelement
‘ 1 1 1 1 1
internal ;value in program | aIs ' ' (1S8) § ——
scalar lat IS ' ' ' ' ,
---------- U (G (U g U PR g
external ,address in program (ES) ' i %ES ; ——
scalar lat ES ' ' : .
__-______;.L _________________ - ——— - - ——— - [S e - e - -
external % codeword address —— ' (ENS) p— *ENS
non-scalar}in program at ENS | | address | :
—— e ———— o e - - o - - A== - | PR

1

scalar :address at : (PF+k—1): : *PF+k~-1 j ——
parameter |PF+k-1 ' : : :
__________ .l._._........____._....._..__..I.._..__._...___I.......____..__J___—---—-:———————
non-scalar;* codeword address — : (PF+k-1) pp— 1*PF+k~1
parameter jat PF+k-1 ' ! address | '
__________ T i U [.

B6-list, working storage

The SPIREL system reserves machine locations from 176008
upward as a working storage area. The conventions associated with
this storage are that B6 points to the next available location on
the list [hence, the term "B6-list"] and that the storage is used
in a linear '"last-in-first-out" or '"push-down'" fashion. Genie
generated code uses the B6-list for temporary storage of inter-
mediate quantities within the calculation of an arithmetic
formula, always storing at (B6), incrementing (B6) after the
store, retrieving from (B6)-1, and decrementing (B6) after
retrieval. 1In addition, the B6-list is used for storage of
parameters before entering a program; the program then decrements
(B6) over the parameters before return since the storage occupied
by parameters is no longer in use. The SAVE (*+136) and UNSAVE
(*¥+137) programs and other SPIREL routines use the B6-list for
temporary dynamic push-down storage.

Using the B6-1list for temporary storage, the following

sequence shows storage of A, B, C and later retrieval of C, B, A

C

1 o 3 3o 3 3 .43

- | C 1 C3 CJ

31 .3

APPENDIX
5

with proper maintenance of (B6) as a pointer to the B6-list:

CLA
STO

CLA
STO

CLA
STO

CLA
STO
CLA
STO
CLA
STO

B6, B6+1
B6, B6+1
c

B6, B6+1

calculation perhaps involving
use of B6-list with balance
of stores and retrivals,

so that final (B6)

= initial (B6)

B6-1, B6-1
C
B6-1, B6-1
B
B6-1, B6-1
A

Parameter set-up for program execution

Execution of a program with a single scalar parameter SP is

preceded by code which accomplishes

single non-scalar parameter NSP,

For more than one parameter,

quentially on the B6-1list; if the kth

then SP-B6, B6+1l; if the kth

(SP)-T7. 1In the case of a
the code accomplishes #%NSP-T7.

representations are stored se-

parameter is a scalar SP,

parameter is a non-scalar NSP, then

*NSP-B6, B6+1l. 1If one of a group of parameters is given by a

number or an expression, then the quantity must be given a

L1

cJ 3 .3 .3

1 31 C3J o Cg . o .4

3

C 3

3

-

C 1 C3J CJ

APPENDIX
6

name before the proper parameter representation can be stored on
the B6-list. For such purpose the names '<Pl', '<P2', etc. are
generated by the compiler. The quantity is stored at «Pn, and
then «Pn for a scalar or *<Pn for a non-scalar is stored on the
B6-1list. The execution of program PROG is accomplished by

TSR *PROG where PROG is a. location within:the program doing: the
execution which contain % codeword address for PROG; the code-
word for PROG is in the Value Table (%+122). Thus, PROG is an

external variable with respect to the program which executes it.

Subscription

In the Genie language any variable may be subscripted by
from one to five indices separated by commas. The indices are
assumed by the compiler to be integers: explicit numbers, simple
names, or arithmetic expressions of any complexity. The indices
are loaded successively into B1l, B2, ..., B5 by the following
procedure which allows subscripts to themselves be subscripted:

1) scan n indices from left to right, computing those
which are not numbers or simple names, and storing
those computed (except the last) on the B6-list;

2) scan from right to left.storing (U), quantity from
B6-1list, named quantity, or explicit number into
Bi for i=n, n-1, ..., 1.

In the sense of SPIREL, a subscripted variable is called an

"array". 1In particular, a one-dimensional array of data is called

a "vector" and is indexed by Bl, and a two-dimensional array of

data is called a "matrix" and is indexed by Bl and B2 in that order.
But in fact an array may be of as many as five dimensions and may
contain either data or programs, and its elements may be addressed
in the Genie language. The indices may take on negative values

if the storage configuration is correspondingly established.

3 C3

C_]

1 .31 3 C3 .o 3

1

1 3

]

C]

— C_]

CJ

o

C

APPENDIX
7

Operations on standard forms of non-scalars

In order to perform an operation between a scalar and a vector
or matrix, to combine two vectors or matrices, or to store a vector
or matrix the non-scalar itself must be addressed in the code.
Although completely general forms of non-scalars may be created
and manipulated in the SPIREL context and may have their elements
addressed in the Genie language, operations on full vectors and
matrices are defined only for arrays of standard form in order
that execution time is not spent in handling the most general case,.
In face, the standard form of non-scalars is entirely sufficient
in a vast majority of applications. The definition is as follows:

standard form of ohe dimensional array, vector

1) loaded with STEX activated
2) indexed by Bl
3) initial index = 1
standard form of two dimensional array, matrix
1) loaded with STEX activated
2) indexed by Bl for row specification and B2 for
column specification
3) initial row index = 1, initial column index = 1

Arithmetic operations involving standard non-scalars parallels
scalar arithmetic quite closely. By convention, codeword 4240 is
used as a non-~scalar accumulator, commonly called 'U*'. The
programs used for performing operations on non-scalars recognize a
null codeword address for a non-scalar operand to mean that the
operand is U%, The non-scalar result of such an operation is
placed in U%. The creation of a new U* causes the storage previous-
ly addressed by that '"name'" to be freed. If a non-scalar in U#®
needs to be temporarily saved, this is done on the B6-list; that
is, a word on the B6-list is taken as the codeword for the storage
addressed as U%, and the U% codeword is cleared. Note that this
storage also involves adjustment of the STEX back-reference to

address the new codeword.

1 C3

]

CJ .3 .3

]

(—J1 [

C

1 3 C3

S R G

N R B

1]

APPENDIX
8

The code sequence generated by the compiler for matrix

storage A - B is as follows:

CLA A, U-B2 T
Z TSR %+220,U-B1 copy A-U% only if ALU*
1 SPF ¥END+1)
CLA B,U-B1 h
free storage addressed as
. % -
z TSR +135,U-B2 B only if B#U* and not on
1 SPF ¥END+1 JB6-1ist
Z LDR~ +240,R-B2 Jclear U* codeword
[£ %
R STO B1 §§ore new codeword i B%U
‘ for B
Bl RPA,WTG B2 Jupdate back-reference

+(PF) reset after destruction by TSR only if program using (PF)

for reference to parameters.

Assignment of type to variables

. In the Genie language each scalar, vector, matrix, ‘and function
(result) has a type: integer, floating point, or Boolean. The
type of a variable may be explicitly specified in a declaration:
INTEGER for integer, SCALAR for floating point, and BOOLEAN for
Boolean. 1If the first appearance of a variable name is not in a
declaration, its type is implicitly specified by the following
rules:

1) 1If a variable name first appears on the right hand
side of an equation, the variable is assigned
floating point type.

2) 1If a variable name first appears on the left hand
side of an equation, the variable is assigned the
type.of the expression :on. the:right hand side.

In a compilation a variable will not have its type changed,
once it is assigned. An equation which has left and right hand
sides of different types will cause the compiler to comment on the
equating of unlike types; code will be generated to perform a
store appropriate to the quantity on the right hand side, but the
type of the quantity on the left hand side will be unaffected.

APPENDIX
9

Arithmetic combination of variables of different types

In arithmetic”expressions’Boolean and integer variables may
be combined only in exponentiation, Boolean scalar variable to an
integer scalar power. Boolean and floating point variables may
not be combined. 1Integer and floating point scalars and non-
scalars may be combined in any mathematically meaningful way. 1In
all cases except exponentiation of a floating point scalar by a
numerically specified integer <7, the integer must be floated be-
fore the combination takes place. 1In all cases the result of the
combination is floating point. 1If a numerically defined integer
scalar is floated, the floating point equivalent is generated at
compilation time and is referenced in the generated code for the
combination. Otherwise, the floating of an integer scalar A is
accoﬁplished by the following generated code:

+53100 -A
FMP “TW47

47 Ghich will be stored

where '<~TW47' refers to the constant 2
within the program. The floating of an integer vector or matrix

is accomplished by use of the Genie SPIREL program %+231.

Boolean variables and operations

(NN [N N N N N O N A s s N S S S s B S

A Boolean variable may take on the value "TRUE' or 'FALSE',
these being represented in the computer by full length quantities
TRUE = +007777777777777777
FALSE = +007777777777777776
The binary operations between Boolean variables to yield a
Boolean value cause code to be generated as follows:

or, A+B, true if either A or B is true

CLA A
ORU B
and, AXB, true if both A and B are true
CLA A
AND B

1 o1 .31 4o 1 . cCc3d .3 4

1] -—J C-—J I CJ C-—.3J 3 C3 3 43

APPENDIX
10

symmetric difference, A-B, true if A and B have different values

CLA A
SYD B
ORU #+77776
symmetric sum, A/B, true if A and B have the same value
CLA A
SYS B
AND #+77777

The only meaningful unary operation on a Boolean variable 1is

complementation, not A, true if A is false

CLA A
=U ORU #+77776

The machine registers sense lights (SL) and indicator lights
(IL) are each a collection of 15 bits, any one of which may be
individually meaningful and may be in an on or off (1 or Q) state
at any time. The variables SL and IL are Boolean and exponentia-
tion to an integer power is defined

A true if bit B of A is on (1) where the bits of A are

2
numbered from 1 to 15, from left to right

CLA A h

LUR 15-B if B is a number
ORU #+77776)

CLA B N

BUS #15,U-R if B is

CLA A ir“ame

LUR ®R.. an expression
ORU #+77776 B

Although the Boolean exponential notation is particularly meaning-
ful for the lights, it may be applied to any Boolean variable.
Thus, a Boolean variable A which does not itself have a value of
TRUE or FALSE may be a collection of fifteen bits (the rightmost

2
in a machine word) Al, A, ..., Al5 each with a value of TRUE or

FALSE.

31 .3 .3 .3

]

[

]

1 CJ 4o .1 . 3 33 /3o C

C 1

APPENDIX
11

Loop coding

In the Genie language a loop is begun by the command

FOR iteration parameter = initial, increment, final
and. ended by the command

REPEAT
If there are not labels on these commands, theEKFhfidop will
have the labels '<FORk' and '«<RPTk' associated with it. The
generalized code generated for loop control is as follows:
<FORk compute initial

initial - iteration parameter

skip

storage for increment

compute increment

store increment

skip

storage for final

compute final

store final

—a— I S

[~FORk+m] LT7 final B
Z IF (POS)SKP increment
T7 IF (POS)SKP iteration parameter, CC+l
T7 IF (NEG)SKP iteration parameter
TRA <RPTk+n

orders of loop

“RPTk CLA increment 1
FAD=- iteration parameter D
TRA <FORKk +m J
[“RPTk+n] .

3 3

31 .3

1 CJ C3 C3 C3 .3

1 CJ C3 .43 &4

-

[

]

APPENDIX
12

Seldom is the full generalized code necessary, and the following
notes pertain to condensations which are provided in various
specific cases.

(A) The increment and the final value are computed and stored
only if they are given by expressions, that is, not
simple variable names or explicit numbers,

(B) The final value will be stored in the address field of
the order if it is given by an explicit integer.

(C) 1If the increment is given by an explicit integer, it will
not be tested for being positive or negative and only
the appropriate comparison of iteration parameter to
final value will be generated.

(D) If the iteration parameter is a long fast register F, the
<RPTk code sequence will be
“RPTk F FAD increment, U-F

TRA <FORk+m
If the iteration parameter is an index register Bi and
the increment is an explicit integer +1 or -1, the
<RPTk code sequence will be

<RPTk TRA <FORk+m,Bi+l

Use of fast registers in Genie generated code

Fast registers may be used in the Genie language and in

assembly language coding to be used in a Genie context if there is

no conflict with usage generated by the compiler:

T7 is always subject to use for special purpose temporary
storage.

T7 is used for storage of a single parameter when a function
is executed implicitly or explicitly.

T4, T5, T6 are subject to use in any arithmetic command for
scalar temporary storage and for storage of scalars mentioned
two or more times in one equation if these fast register
names are not mentioned explicitly in the command. »

Bl is used when loading parameters onto the B6-list if a name

<Pn is used.

(I

1

1] o o 1 -1 43 o /g

I I

1 .3 .3

APPENDIX
13

Bl, B2, B3, B4, B> are used for subscripts in addressing
elements of arrays. The first k are used to address an
element of an array of k dimensions.

Bl and B2 are used in operations on vectors and matrices.

Ei-is used in input-output commands to specify to program
%+2 12 the operation to be performed.

B6 always addresses the push-down B6-list which is used for
temporary storage of scalars and non-scalars and for
multiple parameter storage.

PF is used within a program to address its own parameters if
there are more than one or if there is only one but that is
a non-scalar. The appropriate value of (PF) is, in such
‘cases, stored in the address portion of END+l so that re-
setting is easily accomplished by

SPF .*END+1
P2 is used in transfers (TRA, and not TSR) to
®*+212, the input-output program
%+136, SAVE used in the «BGIN code sequence
*+137, UNSAVE used in the END code sequence

Therefore, these orders must not be traced.

Rearrangemnet of arithmetic formulae for efficient evaluation

The compiler has the ability to rearrange the terms in adds:’
ition {or subtraction) and multiplication (or division) strings.
Constant terms are shifted to the left in the formula. Terms
which are themselves expressions, rather than simple variable
names or numbers, are shifted to the left to save temporary stores
that would be required were such complex terms to appear to the
right in a string. The ordering of the complex terms is deter-
mined by the number of temporary stores required to evaluate each;
the complex term requiring the most temporary stores will be

shifted farthest to the left.

]

(I B

cCJ 3 .o .3

1 C.J .1 .3 3

L J

—3

31 .3

31 .3 .3

APPENDIX
14

If the order of evaluation within a formula is of importance,
this rearrangement may be avoided by defining each complex term
in a separate equation, therebe giving each a name. Then the
original formula will involve only simple variable names, and

rearrangement will not take place.

	Table of contents
	General format
	Names
	Numbers
	Variables
	Declarations
	Functions
	Constants
	Remarks
	Command sequence
	Arithmetic commands
	Conditional arithmetic commands
	Transfer control commands
	Loop control commands
	Execute control commands
	Input/output commands
	Fast registers
	Assembly language
	Alphabetic printing
	Size restrictions
	Punctuation
	Genie PLACER
	Back-translator
	Symbolic addressing in SPIREL
	Symbolic cross references
	Context output
	Number to name conversion
	Genie SPIREL
	Running Genie programs
	Example I
	Example II
	Epilogue
	Appendix: Genie coding conventions

