
lo
D

0
J
0
D

D

D

D

D

D
D

D

J
J
D

J
D
D

N O T E S

on the

G E N I E C O M P I L E R

for the

R I C E U N I V E R S I T Y C O M P U T E R

January, 1964

------ --- --

D

D
J
D

0
D
0
0
D

D

0
D

D

0
0
u
D

J

IJ

TABLE OF CONTENTS

I General Format ••••••••••••••••••••

II Names ••••••••• -••••••••••••••••••••

III Numbers ••• o. o a ••••••••••••••• e ••••

IV Variables •••••••• 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

v Declarations ••••••••••••••••••••••

VI Functions••••••••••••o•o•o••••••••

VII Co~stants••••••••v••••••••••••••••

VIII Remarks •••••••••••••••••••.•••••••

IX Command Sequence••••••••••••••••••

x Arithmetic Comm~nds •• ~··••••••••••

XI Conditional Arithmetic commands •••

XII Transfer Control Commands •••••••••

XIII Loop Control Commands•••••••••••••

XIV Execute Control Commands ••••••••••

xv Input-Output Commands •••••••••••••

XVI Fast Registers••••••••••••••••••••

D
n
LJ

0
0
D

D

D

D
0
D
D
D
0
D

D

XVII

XVIII

XIX

xx

XXI

XXII

XXIII

XXIV

xxv

XXVI

XXVII

XXVIII

XXIX

xxx

XXXI

Assembly Language•••••••••••••••••

Alphabetic Printing •••••••••••••••

Size Restrictions•••••••••••••••••

Punctuation•••••••••••••••••••••••

Genie Placer••••••••••••••••••••••

Back-Translator •••••••••••••••••••

Symbolic Addressing in SPIREL •••••

Symbolic Cross References •••••••••

Context Output ••••••••••••••••••••

Number to Name Conversion •••••••••

Genie Spirel •• ~····•••••••••••••

Running Genie Programs ••••••••••••

Example I •••••••••••••.•••••••••••

Example II •••••••.•••••••..••..•.•

Epilogue •••••••••. •••••••••••• ••••

APPENDIX•••••••••••••••••••••••••••••

D

D
D
D
n
LJ

D

D

D
D
0
0
D

D
D

D
0
0

GENERAL FORMAT

The unit of definition to the Genie compiler is the

definition set, which has the form

DEFINE

declarations of external variables and non-scalar

parameters for the entire definition set

constant codeword address specifications for external

variables

_.£ u nci.i_o n S-fl e _c i£Lc a tLo.n-s

PROG 1 (PARAMl) .=SEQ

declarations of internal variables

remarks

constant specifications

command seq~ence for the calculation

END

PROG2(PARAM2) .=SEQ

END

PROGn

END

LEAVE

lcr stop

DEFINE

j lst tab stop

A definition, then, is a collection of programs

st 1 · program

in definition

set

nd
2 program

in definition

set

]
th n program

in definition

set

(in the most usual

case just one) which depend on a common set of external quantities

and which are completely independent with respect to their private

internal symbols. The definition set has meaning only at compila-

tion; the independent programs may be dynamically interconnected,

among themselves or with programs compiled at another time, in

any meaningful way at the time they are executed.

--- ----~

II
I
~

D

0

D

n
LJ

J

D
0
D
D

0
D
D

GENERAL FORMAT

2

Typing of the definition set is begun by the sequence 'er tab uc

DEFINE'. This first 'DEFINE' insures that the compiler does not

retain any symbols mentioned by another user of the system. Each

line of a program should be begun with a case punch (uc or le) and

is ended by a carriage return (er). If a statement is so long

that it needs to be broken in typing, the sequence 'er tab tab tab'

provides continuation of the statement onto the next line. 1 PROGi 1

designates a program name. 'PARAMi' designates the parameters of

the program, a non-empty list of names separated by commas. The

operator '.=' followed by the symbol 'SEQ' signals initiation of

code genera ti on for the pro gram • ' END ' , typed a t the 1 e ft hand

margin and followed immediately by a 'er', terminates the program,

initiates final compiler output of the program, and causes the

symbol table limit to be backed up so that the compiler retains

only its vocabulary symbols and the external variables of the

definition set. The second 'DEFINE' terminates the definition

set and causes the symbol table limit to be backed up so that the

compiler retains only its vncabulary symbols; all external

v a r i a b 1 es b a c k e d o v e r a re pr in t e d o u t • ' LE A VE ' , t y p e d a t the 1 e f t

hand margin and followed immediately by 'er er', causes exit from

the system.

0
n
J

0

n
LJ

0
D

0
n
LJ

D

D
n
LJ

0
D

NAMES

Private names, those invented by a user of the Genie

compiler, are formed by the following rules:

1) a single lower case Roman letter;

or 2) an upper case Roman letter, followed by upper case

Roman letters, followed by lower case Roman letters,

followed by numerals (no spaces intervening).

By rule 1) the following are examples of names:

a i p x

By rule 2) the following are examples of names:

A CAT Fn DDxy 12 PQ2 9 Dog3

Concatenation of names implies multiplication of the variables

specified. The following are not names:

ab A B38 Pt4p M5ef w 10

and will be interpreted respectively as:

aXb AXB38 Pt4Xp M5XeXf wx 10

In scanning from left to right to collect the characters which

comprise a name, the appearance of a character which cannot be

concatenated by rule 2) or of a space will terminate the collection.

Any number of characters may be used in a name, but only five

will be retained by the compiler. If lower case Roman letters

are imbedded in a name, the first is tallied as two characters.

The names

m Man

will be printed and stored internally as

.M M.AN

I

D

0
n I , . I
LJ

n
LJ

n
t I
u

0
n
LJ

n
LJ

n
: I
u

0
D

D
n
LJ

D
n
LJ

D
n
i l
LJ

fl
LJ

D

Names

the coder

and

ATAN

Bl

B2

B3

B4

BS

B6

BCD

BOOLE

cc

in the vocabulary

as private names.

COL FALSE

CON TR FIX

cos FOR

COT FUNCT

DATA I

DE FIN if

END IL

EOV INTEG

EVEN INV

EXE CU LEN GT

EXP LET

NAMES

2

of the compiler may not be used by

These are:

LOG READ TS

MA TRI REM T6

MS PAC RE PEA T7

not RE SUL TAN

NEO ROW TRAN

NUMBE s TRUE

or SCALA u

PF SIN VECTO

PRINT SL VS PAC

PUNCH SQR WAIT

R T4 x
z

D
n
LJ

fl u

D
n
: I
LJ

n u
n u

n
LJ

D
0
0
0
D

0
n
l I
LJ

n
: I u

D

A string of decimal numerals

DDD < 2 14

NUMBERS

is an integer. A string of decimal numerals containing either a

decimal point ' or a power point '*' is a floating poiht number.

The form of a floating point number i.s illustrated by

A .B*C

which is interpreted to mean

A.BXlOC

There may be as many as 14 numerals in A and B combined. C is an

integer between .-70 and 70; if C is not preceded by a minus sign,

it is taken to be positive. Minus signs may precede decimal

numbers, integer or floating point, with the usual arithmetic

meaning.

A string of 18 or fewer octal num~rals immediately preceded

by a unary '+'

+¢¢¢
is a right-adjusted octal configuration. [A '+' between two

numbers is binary and will not cause the number which follows it

to be octal.]

The following numbers will be understood as shown:

3 decima 1, integer

-3.0 de c inia 1:, :flpating : point

3 • -de c ima 1, floating :point

3*8-- de c inia 1;. . floating.: point

3.0*-8 decima 1, floating point

-0. 3 decimal, floating point

. 3 decima 1, floating point

+3 octa 1

II

D
D
D

D

D

D ~.
! I u

D
n
LJ

0
0
D

D

0
D
D

I

VARIABLES

In any program, each variable falls into one of three

categories: internal, external, or parameters.

Internal variables must be scalars (integers or floating

point numbers), and these are assigned storage within the

program. Internal variables do not retain their names after

compilation; hence, the same name may be used in more than one

program with a different meaning in each of the programs. Labels

on statements are also internal variables.

External variables may be either scalar (floating point

scalar, integer, or Boolean), or non=scalar (program, vector,

or matrix), and all non=scalars must be external. At the time the

program is run, an external variable has its name on the symbol

table (ST,~':113) and its scalar value or non-scalar codeword

the corresponding value table (VT, ~n22) entry. Externa 1

variables of any one program are the common property of all

programs in the machine at running time, and the names must

in

have unique meaning throughout the system. All external variables

of a program must appear in the definition set containing that

program before any 'SEQ'.

Parameters may be either scalar or non=scalar. If they are

non-scalar they must be so declared within the definition set

containing the program before any 'SEQ'. Parameters are neither

internal nor external with respect to the program in which they

appear, but while running will fall into one of these categories

with respect to dynamically higher level programs. Parameters of

a program are only representative of those variables which will be

specified to the program by the dynamically higher level program

which uses it while running. Within a system of programs the

dynamically highest level program receives control from the

operating system and cannot have its own system variables specified

as parameters; hence, the dynamically top level program should have

~ purely dummy parameter, a name that is never referred to in the

program. The names of parameters are used only in compilation, and

are not retained while running a program.

II

D

D
D
D

D
D

D
D

D
D
D

D

D

D

D

D
D
D
D

l er

DECLARATIONS

The form permissible for declarations are illustrated by:

VECTOR A

VECTOR A, B, C

VECTORS A, B, C

I ls t tab

Either a singular or a plural declaration identifier is permitted;

it is followed by. one or more variable names, separated by commas.

Before any 'SEQ' all external variables and those parameters

which are not floating point scalars must have their types specified.

Declarations for use in this area are:

INTEGER for integer scalar, v~ctor of irit~ger

SCALAR

BOOLEAN

VECTOR

MATRIX

FUNCTION

elements, matrix of integer elements, or

function with integer result

for floating point scalar

for Boolean scala~, vector of Boolean

elements, matrix of B.oolean elements,

or function with Boolean result

for data vector, elements assumed to be

floating point scalars unless also dec­

lared 'INTEGER' or 'BOOLEAN'

for data matrix, elementi assumed to be

floating point scalars unless also

declared 'INTEGER' or '~OOLEAN'

for program whose name is not in the

vocabulary of the compiler, result

assumed to be floating point scalar

unless declared to be rion-scalar

(1 VECTOR 1 or 'MATRIX') and/or non­

~loating point ('INTEGER' or 'BOOLEAN')

Not more than one declaration in each group may be applied to a

single variable.

II

D

D

D

D
D

D
D

D

D
D

D
D

D

D
D

D

D

D
D

DECLARATIONS

2

(
\

Internal variables are scalars: integers, floating point

numbers, or Boolean variableso If the first appearance of an

internal scalar is on the left hand side of an equation, it assumes

the type of the expression on the right hand side. If its first

a p pea ran c e i s on the r i g h t ha n d s i de o f an e qua t i on , an in t-e r n a 1

scalar is assumed to be floating point unless it has been explicitly

declared as an integer or a Boolean variable. The only declara­

tions meaningful for internal variables are:

INTEGER for integer scalar

BOOLEAN for Boolean scalar

D

D

0
D
D

D
D
D
D
D

D
D
0
D

D

D

D

D

D
I

FUNCTIONS

A function is a program which may be referred to in the

Genie language, either for im_plicit execution as 'F' in the

command

y=a+F (P) +b

or for explicit execution as 'G' in the command

EXE CUTE G (Q)

Implicite execution is meaningful only if the function is

single valued; in this case its output is not specified in the

parameter list. In all other instances explicit executiori is

required.

The last executed command of a function to be used implicitly

must define the result as follows:

jcr

RESULT=scalar or non-scalar arithmetic expression

j lst tab

The parameters of a function are given as an ordered list

;of those quantities which are supplied to the function routine

by the program which causes it to be executed. When a function

is used within a program a parameter which designates a quantity

to be calculated by the function must be specified as a simple

variable name; other p~rameters may be given by any arithmetic

expression. For example, if F(A,B,C) is defined such that A and

B a re used in the calculation of c by the function F, a proper use

of F would be 2
F (3m +n, V8 , P) .. But F(SIZE, SPAN, q2) is incorrect

since the third pa rame te r may not be an expression. In the

definition of a Genie program and in the use of it in other Genie

programs care must be taken that parameters are always listed· in

the same order and that the number of parameters and their types

are the same at each occurrence. In a Genie program a function

name must appear with parameters following, as SIN X2 or CALC(q)

or MAP(g,VAR), except in declarations. As a consequence, function

names may not be used as parameters of other functions.

II

0
0
0
D
D

D

0
0
0

D
J
D
D

0
0
D

D

D

FUNCTIONS

2

If a function is to be executed implicitly and its output

is not a floating point scalar, then its name must appear in

declarations to define the output as well as in a function declar-

ation. Thus, the function with its parameters is an operand which

must be assigned the type of its output if it is to appear within

an arithmetic expression.

Every Genie program is a function. It may be used as such

by any other Genie program but it may not use itself. The

appendix discusses details that will be of interest to the

who wishes to code functions in a lower level language.

user

A function may be sufficiently simple to be defined in one

s ta temen t. This is done before any 'SEQ' and is illustrated by

the definition off in the statement
2

f(x,y)=3ax+a y, a=2+x

lcr llst tab

The function f may then be used implicitly within the command

sequence of a program in the definition set, as in the command
2

h=k f(m,n)

where the closed subroutine f will be applied to the parameters

m and n. During compilation, output for f will be produced

independent of that for the programs in the definition set. The

function is external to the programs in the definition set and

may be used implicitly by any program at running time since its

name will appear on the symbol table.

There is a collection of function names known to Genie.

These names need not be declared as functions.

D

D
n
i I
LJ

D
n I I

LJ

D
r,

LJ
n
l I
LJ

D

D
r,

LJ

0
n
LJ

D

D

D

D

D
D

CODEWORD
NAME ADDRESS ---

* * * :for impli:cit

SIN(A) 200

COS(A) 201

SQR(A) 202

EXP(A) 203

LOG(A) 204

ATAN(A) 205

TAN(A) 206

COT(A) 207

LENGTH (A) 2 10

ROW(A) 210

COL(A) 211

FIX(A) 2 17

INV(A) 224

TRAN(A) 225

EVEN (A) 22 7

'/: ic * for explicit

tvs PACE (A, B) 2 13

tMSPACE (A, B, C) 2 14

tCONTROL(n,+WXYZ,r,f) 2 30

DESCRIPTION

execution only

A;'.2:0

A<170.0

A>O

I result!< TT /2

!Al< rr/2

* *

l
'A'

FUNCTIONS

3

*

floating

sea la r input;

point

re su 1 t floating

poing s ca la r

J
'A' vector; result integer length

of A

'A' matrix; result integer number

of rows in A

'A' matrix; result integer number

of cols in A

'A' floating point; result integer

nearest to A

'A' matrix; result matrix which is

inverse of A, if A non-singular

1 A' matrix; result matrix which is

transpose of A

'A' integer scalar; result Boolean

true or false

execution only***

'A' vector, 'B' integer; takes

space for A of length B

'A' matrix, 'B' integer; 'C' integer

takes space for A, Brows by C cols

'n' integer, 'WXYZ' octal, 'r' octal

or integer, 'f' name; control word

is composed and *126 in SPIREL is

executed, as explained in write-up

of SPIREL

tSPIREL monitoring on the printer is provided if sense light 14 is

off.

D
D
D
D
0
D
D
D
D
D

D

D
D
0
D
D
D
D

CONSTANTS

Constants of a program may be numerically specified by a

'LET' statement appearing (except as noted below) within a prog~am.

The statement must be given before the name of the constant is used

in the commands of the calculation. The form of this statement

is illustrated by:

LET PI=3.14159

lcr llst tab

This is a message to the compiler which causes the floating point

number 3.14159 to be used in the program each time the internal

variable name 'PI' appears.

be generated.

A 'LET' statement causes no code to

An internal integer value may be specified if the variable

has first been appropriately declared, as

LET K=3

An octal configuration (right justified) may be specified,

but the variable should not be declared as an integer, as

LET MASK=+777777077

where the+ inflection concatenated immediately to the left of a

number denotes octal conversion of the number.

A Boolean value (TRUE or FALSE) may be specified if the

variable has first been appropriately declared, as

or

LET t=TRUE

LET No=FALSE

A fixed codeword address may be specified, as

LET #CDWD=+265

so that the codeword for the function, vector, or matrix named

CDWD will be addressed at machine address 265 instead of in the

value table. This is the only LET which may appear in a definition

set outside a program. A Genie program may assign its own name

a numerical equivalent, and the tape produced by the compiler

will load with codeword at the address specified.

D
D

0
D

0
D
D

0
D

D
D
D
n
LJ

D

D
0
D
D

CONSTANTS

2

The valuse of non-scalars may not be specified in a 'LET'

statement.

More than one constant may be specified in a 'LET' statement,

if they are separated by commas, as

LET A=3, z=S.41, #PROG=+247

There are two other commands which identify names with values.

They are explained later: BCD in the section on alphabetic

printing, and NUMBERS in the section on assembly language. Both

of these commands are non-executable and must be transferred

around, and must therefore be used with care.

The 'LET' statement may also be used to specify the equiva~-

lence of two names. For example

LET ALPHA= BETA

causes 'BETA' to be substituted for 'ALPHA' throughout the program.

Simi la r ly

LET COUNT = BS

causes the index register BS to be used for 'COUNT'.

0
D
D
D

D

D
0
D

D
D
D

0
D

D

0
D

D

D

REMARKS

Printed comments in program listings may be obtained by

using the REM statement within the program, as illustrated by

REM COMPUTE FIRST VALUE

lcr llst tab l2nd tab

where .. indicates a typed space. The statement may be continued

to succeeding lines at the 3rd tab position by using the

'er tab tab tab' sequence,

The REM statement does not introduce any data into the final

program; its only effect is to cause the remark to be printed in

the final output listing.

I

J
J
D

0
D
J
J
D

D

0
0
0
D

J
0

D

COMM;ANp SEQUENCE

All statements of a program from the 'SEQ' to and including

the 'END', except 'LET's, remarks, and declarations, cause code

to be generated. Such statements are called commands. The

occurrence of a label on a command causes a command sequence to be

initiated. The ordered set of all command sequences of the program

is called the command sequence for the calculation. Each command

falls into one of three categories; arithmetic, control, or

input-output. These will be discussed in separate sections.

Any command may be labelled. The label is typed at the

left hand

CALC

I c r

margin, as 'CALC' in the command
2

A=B +B+3.2, B=W+S.l

llst tab

0
J
J
D
D

J
J
D
0
D

0
0
D

J

ARITHMETIC COMMANDS

The form of a simple arithmetic command is illust~ated by:

I c r

A=arithmetic expression

llst tab

The form of a compound arithmetic command is illustrated by:

A=arithmetic expression, B=arithmetic expression,

where more than one equation appears in the command. If there

are no interdependencies among the equations of a command, the

equations are coded by Genie in the order given. If there are

interdependencies, the first equation will be coded last and

preference will be given to coding. the remaining equations from

right to left; for the second and any following equations, if

th · th d d the J. th and 1.· >J. (t · f 1 f · h) e 1.:. epen s on coun 1.ng rom e t to rig t ,

then the jth equation will be c6ded before the ith. So the

second and following equations may well be used to define

subexpressions of the first (or primary) equation, producing

code that will run more efficiently and copy that will be more

readable.

lcr

An example in which reordering will take place is

y=a+b, a=Sc/d, b=6, c=b+4

I lst :tab

The code generated will evaluate b, then G, then a, then y. On

the other hand, the equations in

M=P+Q, a=3, i=j+l

are not dependent upon each other and will be coded in the order

given.

An operand in Genie is a single variable, a function name

followed by a parenthesized list of arguments, or an expression

enclosed in parentheses which dictate order of computation in

the conventional manner. Order is also implied by relative

rank of operations. In order of decreasing rank,

binding first, the arithemtic operations are:

unary inflections:

subscription

exponentiation

X and I

+ and binary -

I· .. I, and 'not'

i.e., the most

0
J

J

J
J
J
J
J
0

ARITHMETIC COMMANDS

2

Arithmetic operations that are permitted within an arithmetic

expression on the right hand side of an equation are:

1) +, x, I between integer or floating point scalar operands.

If the operands are both integer or both floating

point, the result will be of the same type. If the

operands are of different types, the integer will be

floated before the operation is carried out, and the

result will be floating point.

2) +(or), -(symmetric difference), X(and), /(symmetric sum)

between two Boolean scalar operands.

Combination of Boolean operands yields a Boolean

by the following rules:

+ jTRUE FALSEj

TRUE jTRUE TRUE

FALSE f TRUE FALSE-J

TRUE I FALSE.·
--==4'j=:;===i=====

x

:·TRUE ' . FALSE.

_T_R_u_E--+i-F_A_~s E__ T RU_E_I

FALSE TRUE FALSEJ

I i' TRUE
l

FALSE I

result,

TRUE TRUE FALSE!

~ALSE \lALSE FALSE i FALSE FALSE

FALSE I
!

TRUE !

3) +,

The octal representations for the Boolean values a re

TRUE 007777777777777777

FALSE 007777777777777776

X between two non-scalar operand~ containing

integer or floating point elements.

Standard conventions apply as to restrictions on

dimensional compatibility, and the operands must be

in standard form.* Addition or subtraction of two

vectors or two matrices yields a vector or a matrix

respectively. Multiplication of two matrices yields

a matrix. Multiplication of a vector and a matrix

yields a vector. And multiplication of two vectors

yields the scalar product which is a scalar. If the

operands are both integer or both floating point, the

result will be of the same type. If the operands are of

different types, the integer operand will be floated

J
1
LJ

n
LJ

D

D

J

J
J

J

0

ARITHMETIC COMMANDS

3

b e f o re the o p e ra t i on i s ca r r i e d o u t , an d the re s u 1 t

will be floating point.

4) X between integer or flo-ting point scalar and integer

or floating point non~scalar.

The scalar may be on the left or the right of the non­

scalar, which must be in standard form.* The result

has the same form as the non~scalar operand, vector or

matrix. If the operands are both integer or both

floating point, -the result wi 11 be of the same type.

If the operands are of different types, the inte.ger

operand will be floated before the ·multiplication is

carried out, and the result will be floating point.

5) Implied .multiptication between .op~r~nds _which .. appear
. . i

immediately next to o.ne·. another,, not sepaxa·ted · by an

operation. The same rules apply as for the explicit X.

6) Exponentiation between two integer or floating point

scalars.

If either or both of the operands is floating point,

the result will be floating point. If both of the

operands are integers, the result is an. integer, zero

i f the ex pone n t ha s a n e g a t iv e v a tu e . No t e th a t AB

is typed 'A sup B sub', using the superscript and

subscript keys on the flexowriter. The counter

associated with these carriage moving keys should be

set to zero before starting .a ~rogram and must return

to zero before the er which ends each command.

7) Exponentiation of a short logical operand by an integer.

Short logical words are 15-bit configurations whose

bits are numbered 1 to 15 from left to right. In

particular SL (the sense light register) and IL (the

indicator light register) are in the vocabulary of the

compiler and fall into this category. The result of

exponentiation of such an operand by an integer, as

SL\ is Boolean, TRUE if bit k of SL is on and FALSE

if it is off. The value of the bit addressed is not

0
J
J
J
n
J
,-,

J

D
D
r,

lJ

D

D
D
D

0
0
D

I

ARITHMETIC COMMANDS

4

affected by the operation. The user may also exponenti-

ate a private variable which has been declared BOOLEAN.

8) Subscripting of a vector by an integer scalar operand

or of a matrix by a pair of integer scalar operands

separated by commas.

The result is an element of the vector or matrix and is

of the same type (integer or

non-scalar of which it is an

floating point) as the

element. The expression

AB is typed 'A sub B sup' and return to zero carriage

level must be observed as for exponentiation.

9) Unconventional subscripting by integer scalar operands.

Under normal conditions, only standard vectors and

matrices will have their elements addressed with the

subscript notation.* But any operand may be subscripted

by as many as five integer operands separated by

commas. The operand which is subscripted will be

indirectly addressed after the integer subscripts are

loaded into Bl, ••• J BS from left to right. Data

arrays and arrays of programs can be handled with SPIREL

if such elaborate addressing is desired.

10) ~nary - applied to an integer or floating point scalar

operand.

The negation of the operand takes place before it is

combined with any other across a binary operation.

This rule is unambiguous but leads to a possibly

unexpected interpretation in the case of -AB. Code is

generated to form (-A)B. Inflection of the expression

AB should be written -(AB).

11) Absolute value of an integer or floating point scalar

operand.

This inflection is denoted by absolute value bar

before and after the operand. These hars are simply

parentheses that cause the quantity inside to be

taken with positive sign.

J
'l
LJ

'1
J

J
J
J
·1
u

n
LJ

'l

LJ

n
LJ

'1

LJ

D
D

J
D
D
0
D
n

I·
LJ

ARITHMETIC COMMANDS

5

12) Unary vnot' applied to a Boolean scalar operand.

The complementation of the Boolean operand takes

place before it is combined with any 6ther across

a binary operation. The complementation rule is

not A=FALSE if A=TRUE

=TRUE if A=FALSE

The variable on the left hand side of an e~tiation may be a

scalar, or a non~scalar, or a st1b,scriptecl non·~sca'lar (denoting

a scalar element of a vector or ~atri~). All left hand side

variables in a command must be distinct, .no. scalar or non-scalar

defined more than once and not more than one element of one

non-scalar defined in ariy one cqmmand.

The '=' joining left hand side to right hand side of an

equation causes storage of the computec;I: rig.ht h:a·n;d, sid:e {rlt,o the

location or array specified on the left hand sideo Compatibility

of types is checked for at time of compilation, and an error

message is printed out if incompatibility of the two sides is

detected. In every case the right hand side dominates and will

be stored as calculated, no conversion tak~ng. place. A n,on­

subscripted non-scalar on the left h~tid ~ide mu~t ~a~e base

indices one. If the right hand sid.e is ·n.o0:~5:ca.·lar,, the storage

addressed by the codeword on the left hand side is freed through

STEX, the storage control rotitine in SPIREL, before the store

across the '=' takes place.

Genie has the ability to apply the commutative laws of

arithemtic to reorder the terms of an expression to provide

calculation using a minimum number of temporary stores. In the

coding for a scalar expression, the compiler may use the fast

T-registers of the computer for temporary storage. Push-down

storage addressed by index register B~ is also used for this

purpose. When profitable, the T-registers are used ~y the

compiler for scalar variables that are referred to often in an

equation. The codeword at machine address 240 is used in the

code by the compiler as an accumulator for vectors and matrices

produced in the course of evaluating the right ha·nd side of a

D

0

0

D

D
D

D
D

D
D
D

D

0

ARITHMETIC COMMANDS

6

non-scalar equation. This address may not be used by a coder.

Temporary storage for non-scalars is always on the B6-list.

See the appendix for more details.

*The standard form for vectors and matrices is that handled by

VSPACE, MSPACE, and the Genie input-ou.tput commands. Generation

and input-output of non-standard forms can only be handled by

explicit use of SPIREL facilities. Standard forms of non-scalars

are discussed further in the appendix.

D

D

D

D

D
D

D

D
n
LJ

D
D
D
0
D

D
D

CONDITIONAL

ARITHMETIC COMMANDS

A simple arithmetic comman~ may be of conditional form, as

illustrated by

lcr . .,
A=Ei if Pi,

I 1st tab

if P2, ... ' if Pn , En+ l

where the E 1 are arithmetic expressions and the P1 are predicates,

expressions which are

will evaluate A as E1

true or false.

for the least· i

The code that is

for which P1 is

generated

true. If

is true, for i = 1, 2' ... ' n then A is evaluated as En+l

not En+l may.be omitted from the command, in which case A is

evaluated if all predicates are false. A Boolean predicate is

simply a Boolean expression. An arithmetic predicate is of

the form: Lr R, where Land Rare arithmetic expressions and r

is a rel~tion, one of =, =f, <, {, :::;, f. A compound predicate

is formed by joining simple predicates with the operations 'and'

and IO r I J as in

A = 1. 0 if (B s;; c or I C+D I =I= 3. 72) and S L5 + not(SLn)

D < m+p, 2. 0 if x < 0. 0, 3.0

I c r

·The

I 1st tab ! Znd tab !3rd tab

most: biqding first, the o p e r a t i o r,,·!3

1,:- arithmetic operations

relations

'and'

'or'

a re ordered

.~
'11 ·~

'·

as follows:

Parentheses may be used, as in the above example, to dictate

computat~onal order.

no

The!arithmetic predicate form F1 r F2 r' F3 is tempting but

not permitted. An equivalent permissible compound form is

Fi r F2 and F2 r' F3

Genie requires a precise sequence of typed characters

the nega:ted re lat ions:

=I= is typed = backspace UC

t is typed I < backspace UC

f is typed :::; backspace

for

D

D

D
D

D
D

0
n
J

D
0
D
0
D
0
0
0
D

D
D

CONDITIONAL

ARITHMETIC COMMANDS

2

Tw6 ~xceptional Boolean predicates are 'EOV', asking if the

exponent ?verflow light is on, and its negation 'NEO'; neither

of these may be inflected by 'not'. Both of these tests turn the

light in ihe indicator register off.

A co~ditional arithmetic equation must stand alone as a

command. It may not be grouped with other equations in a

compound ~rithmetic command.

D

D
D
D

D
'[<~
I

D
0
0
D
0
D
0
l]

0
J
J
J
0
D

TRANSFER

CONTROL COMMANDS.

Code is generated so--that the commands of the program are

normally executed in the order written. An explicit variation

in this order is indicated by a trnasfer command, illustrated by

CC = 1faLOOP

lcr I 1st tab

Here 'CC' is the mnemonic for the control counter which is

normally stepped sequentially through the orders of the code.

'LOOP' is a label on a command of the program, the command to

which control will be passed by this, transfer command. Note

that 'END' is a label in every program and may be transferred

to for exit from the program. The inflection '#' is required

in this context to indicate that the address corresponding to

LOOP, and not the contents of the location whose address is LOOP,

is to be calculated on the right hand side.

is analagous to the 'a' bit in APl.

The '#' inflection

The conditional transfer command provides variation in the

order of command exectuion depending upon the truth values of

predicates. The form of this type of control command is shown by

CC = 1faA1 if P1, 1faA:a if P:a, ••• , 1faAn .. if Pn, 4faAn + 1

where the A1 are labels within the program and the P1 are

predicat~s. The code generated causes CC to be evaluated as the

first #A 1 for which P1 is true.

true, CC is evaluated as #An~l.

If no P1 , for i=l, 2, ... , n, is

The term 1FAn+l may be omitted

from the command, in which case CC is unchanged if all P1 are

false, so that no transfer is made •. The predicates P1 are of the •

form described in the section on condittonal arithmetic commands.

D

D

D

D
D

D

0

J
J

J
J

LOOP

CONTROL COMMANDS

Loops may be realized in Genie language by a combination of

arithmetic commands and transfer control commands. A concise

notation for a popular loop structure is provided by the loop

control commands. The commands of a loop are parenthesized by

the FOR and REPEAT commands of the form

lcr

FOR P=A, B, C

commands of the loop

REPEAT

llst tab

The parameter of the iteration is P. The initial value of Pis

given by A, which may be a constant, a single variable, or an

arithmetic expression. The positive or negative increment by

which Pis stepped at the end of each iteration is given by B,

which may be a constant, a variable, or an arithmetic expression.

The final value of P is given by C, and the loop will be traversed

until P exceeds C in numerical value. The elements of the FOR

command must be scalars, either integers or floating point numbers.

A 'REPEAT', followed immediately by a carriage return, must be

written for every 'FOR'.

Loops may be nested to any level, but distinct iteration

parameters must be used at each level within a nest. Transfer

of control may be made from a command within a loop to another

command within the loop or to a command outside the loop.

Transfer from outside a loop to the FOR command is permitted,

but transfer from outside a loop to a command within a loop is

not permitted. The 'REPEAT' is considered to be within the loop

which i t t e rm in a t e s ; the ' FOR ' i s no t . Any 'FOR' or 'REPEAT'

may be labelled for purpose of transfer to it. If addressed from

outside the loop, the iteration parameter will have the value it

had upon exit from the loop.

The code generated by the compiler when a FOR command is

encountered:

1) sets the iteration parameter to the initial value

2) transfers control to the command beyond the corresponding

I

I

•

0
0
0
n
Li

0

.r,
u
n
LJ.

0

0
0
J
J
J
J

1 u

LOOP

CONTROL COMMANDS

2

REPEAT if the current value of the increment is

positive/negative and the current value of the

iteration parameter is greater than/less than the

the fin~l value, or else to the first of the commands

of the loop.

The code generated when a REPEAT command is encountered:

1) sets the iteration parameter to its current value plus

the increment (which may be negative), as specified

in the corresponding FOR command

2) transfers to step 2) of the FOR sequence described above •

The compiler generates the label '-FORn' on each FOR

command and

n = 1, 2,·

'-RPTn' on the corresponding REPEAT command,

. ' 9, a, b, in each program . A coder's labe 1

will be used instead if it appears. Thus, FOR and REPEAT

commands begin command sequences whether or not they are labelled

by the coder.

The machine index registers B3, B4, BS may be used as

iteration parameters in loops and will cause significantly more

efficient code to be generated when a constant increment = ± 1

i s s p e c i f. i e d • The section on fast registers discusses coder

usage of ~achine registers.

n
J

1 u

D
0
0
n
LJ
n u
n
LJ

n
J

n
~l

n
LJ

n
J

lcr

The command

EXECUTE PROG(PARAM)

llst tab

EXECUTE

CONTROL COMMANDS

causes control to be transferred to the program whose name is

denoted by 'PROG' in this illustration. 'PROG' must have been

declared as a function outside the command sequence for the

calculation. 'PARAM' denotes a list of one or more parameters

separated by commas. Parameters may be arithmetic expressions

unless they designate quantities which are to be calculated by

the function, in which case they must be simple variable names.

Control is returned from PROG to the next command in the sequence.

The interpretation given to the EXECUTE command by Genie is

parallel to that for the arithmetic command, the information to

the righe of the space after the EXECUTE corr~sponding to that

after the first !_I in an arithmetic command.

conditional EXECUTE command is allowed, such as

EXECUTE A(P) if a< b + c, B(Q)

Thus, a simple

And a compound unconditional EXECUTE command is allowed, such as

EXECUTE SUM(x,y), x = 2a/b, y = ab, b = 4

I

J
\/

'1
J

n
J

J
'l

I

LI

n
J
n
J
n u
n

I

u

~
d
,,
LJ

n
I

LI

n u

n
lj

D
J
1
u

n
'

LJ

n
Lj

INPUT-OUTPUT

COMMANDS

The input~output commands are:

lcr

DATA list

PRINT list

PUNCH list

READ list

list tab

where 'list' denotes a collection of names (which may have been

assigned machine addresses in 'LET' statements), not expressions,

of scalars or of non-scalars with base indices equal to one.

Functions (or program) names may not appear in the argument list

of an input-output command. Neither may vector or matrix elements

in the subscript notation be designated in such an argument list.

The DATA command provides reading of manually punched signed

decimal numbers from paper tape. The list given in the command

may contain any type of variable. When the paper tape is read,

if a decimal point appears the number will be converted to float­

ing point within the machine; the absence of a decimal point

causes conversion to integer form. Every number on the tape must

be followed by a carriage retur·n, tab, or comma. Integers greater

than or equal to 2 15 in absolute value are meaningless; floating

point significance to more than 14 places is not meaningful. A

floating point number may be followed by the sequence 'e signed

integer' which will cause it to be multiplied by 10 to the signed

integer power upon conversion. The magnitude of such numbers

less than 10 70 . The absence of a
. ~ 70

must be greater than 10 but

sign on a number implies positive sign. Then

punched 32 8 c r

46.9cr

.469e2cr

-539lcr

-69.e-lcr

converts to integer 328

floating point 46.9

floating point 46.9

integer -5391

floating point -6.9

Scalars must be punched as single numbers in the format

described. A vector of

n+l numbers: integer n,

length n is punched as the sequence of
th

first element, ... , n element. A

I
II

I

J
J
,'I . I
LJ

J
ri
J

J

D
0

0
J
J
D
ri
J

'l u

0
0

INPUT-OUTPUT

COMMANDS

2

matrix of m rows by n columns is punched as the sequence of mn+2

numbers: integer m, integer n, element (1, 1), element (1,2),
• • 0 '

element (l,n), element (2, 1),
0 • • '

element (2,n), ... ' element

(m, 1), ... ' element (m,n).

the proper tape is assumed

14 is off, the line

DATA NAME

When

to be

che DATA command is executed,

in the reader. If sense light

will be printed out for each quantity read, where 'NAME 1 is as

designated in the program containing the READ command. Thus,

printer monitoring of 'DATA' applied to parameters bears the

dummy parameter name, not the name of the argument supplied as

the parameter.

The PRINT command provides output on the fast line printer

of any named scalar or non-scalar quantities. These are labelled

by the name given in the routine in which the PRINT command

appears, Scalars are printed one per line. Vectors are printed

five elements per line.

elements per line.

Matrices are printed by row, five

The PUNCH command and the READ ~and may be applied only

to variables which are named on the symbol table at the time the

command is executed. All external variables of the program in

which the 'PUNCH' appears and those parameters which at the

time of execution are indeed external in some dynamically higher

level program fall into this category. Care must be taken to

apply these commands properly to parameters as there are no checks

built into the compiler or input-output program to insure

presence of a particular name on the symbol table. 'PUNCH'

provides, for each variable listed, a single control word,

followed by the name as it appears on the symbol table, followed

by the data in hexad with checksum. For a scaler the SPIREL

control word has wxyz=0040;

wxyz=0240; for a matrix the

for a vector the control word has

control word

output paper tapes may be loaded through SPIREL

they may be read with a READ command. In fe,ct,

These

symbolically or

only tapes of the

J

1 u

J
1
LJ

0
0
D
n
J

0
0
0
J
J

1
LJ

0

INPUT-OUTPUT

COMMANDS

form produced by a PUNCH command may be read by a READ command.

Additional forms of input and output may be obtained by use

of SPIREL programs directly, but those provided by the ~nput­

output commands should be sufficient for a large number of

problems.

3

D

D

D

D
D

D

D

D

D

D
D

D

FAST REGISTERS

TI may be used only for output of a scalar from a single

valued function that will be executed implicitly. The command

executed immedietely before 'END' in such a program may be of the

form

T7 = calculated output

lcr llst tab

T6, TS, and T4 may be used within a command as the names

of scalar variables computed in other than the first equation of

the command. Genie will not make use of any T-register mentioned

by the coder, and code efficiency may be increased by explicit

'assignment of auxiliary variables to these fast registers. Only

T6, TS, T4 are available for this purpose, and they should be

called upon in this order since Genie will use only Ti for i less

than the smallest Tj mentioned by the coder. The command
:a .

M=T6/TS, T6=a+b, TS=(c +c-4.1) /d

is an example of coder use of fast registers. The values in T6,

TS, T4 are~ preserved by Genie from one command to another as

they are subject to use in Genie-generated code in any command in

which they are not explicitly mentioned by the user.

The index registers B3, B4, BS may be used as the names of

scalar integers. These are disturbed by Genie-generated code only

to address elements of atrays of more than two dimensiorts .. (Non­

standard subscripting is discussed in the section on arithmetic

commands.) Efficiency of code is gained if these registers are

used as subscripts or as iteration parameters of loops with

explicit increment ±1. The index registers Bl and B2 -may be used

only if the user understands Genie coding conventions as explained

in the appendix and can accurately anticipate the use of these

registers by Genie generated code. The registers B6 and ,F may

not be used in Genie language but may be used in the assembly

language if compatibility with Genie generated code is maintained.

II

--- ----------------

J
J
J
D

J
J
D

D

J

D

D
D

ASSEMBLY LANGUAGE

The assembly language recognized by Genie is called AP2.

Instructions in the AP2 language may interspersed at will with

commands in the Genie language within the command sequence for

a Genie program. AP2 is discussed in detail in a separate write-

up.

Frequent use will probably be made of AP2 language for

setting of sense lights since no notation for this operation

exists within the Genie language. To turn on sense light 3:

lcr llst tab

S LN

!2nd tab

+10000

l3rd tat

When the assembly language is employed, it may be desirable

to dictate placement of numbers within a program at a particular

point.

CONST

lcr

The Genie command illustrated by

NUMBERS 36.5, -2.8, 6, +77l~777

j lst tab

provides this facility. In the program Genie generates, in this

case,

floating point 36.5 at COKST

floating point -2.8 at CONST+l

integer 6 at CONST+2

octal 774777 (right justified) at CONST+3

The command may or may not be labelled. One or more numbers

(each but the last followed by a comma) are listed, and the list

may be extended onto succeeding lines by use of the 'er tab tab tab'

sequence. The words generated are~~ exec:-:E_able, so transfer

around NUMBERS commands must be explicitly coded.

In AP2 commands, the coder may make use of the fast registers,

taking care to preserve the value of PF for reference to parameters

and to use B6 for temporary push-down storage only. Entire func-

tions may be written in the assembly language, but the user must

first understand various Genie coding conventions, as discussed

in the appendix.

I
I

---- -----------

D

D
n
LJ

D
D

0
J
J

0
D

0
D

D
D

ALPHABETIC

PRINTING

Alphabetic information for output on the printer may be

defined by the BCD command, as illustrated by

MESS 1. BCD TE'MPUS 'FUGIT

lcr llst tab l2nd tab

where indicates a space when typing. The command may continue

onto succeeding lines at the 3rd tab position by use of the

'er tab tab tab' sequence. A space is inserted by Genie between

the last character of one line and the first of the next lin~. At

the place such a BCD command appears in the command sequence for

the program, the printer code for the information is inserted

in the code for the program, nine characters per word. Of course,

what is generated is~ executable, so transfer around BCD com­

mands must be explicitly coded.

Once alphabetic information has beeri specified, it may be

~et into the print matrix at any position on the line, one word

(i.e., nine characters) at a time, and then printed with program

*127 in SPIREL. An AP2 code sequence for printing MESSl start­

ing at print position 12 is

RSPF

I er

PF

z
RPA

SB3

CLA

TSR

CLA

TSR

TSR

SPF

I 1st tab l2nd tab

RSPF

12, U->Bl

MESS 1, U~TZ-,

*+127,Bl+l

MESS l+l, U..,.T7

*+12 7

*+127,Bl+l

z
l3rd tab

Detailed discussion of program *127 may be found in the write-up

on S FIRE L. For printing MESSl at the left hand margin, the Genie

language command

I c r

EXECUTE CONTROL(2,+4010,0,MESS1)

llst tab

with SL14 on will provide the desired output. The parameters in

this command indicate that two words starting at the location

named MESSl are to be printed in hexad form. Printing is

II

D

0
D
n
: I
LJ

0
n
LJ

0

J
J
J
J

J

0
D

ALPHABETIC

PRINTING

2

produced 108 characters per line, as many lines as necessary.

In the example 14 characters require two words of storage,

hence the value 2 for the first parameter to CONTROL.

tion CONTROL is explained in the FUNCTIONS section.

The func-

D

D

D

D

D

D

0
D

D

D

D

D

SIZE RESTRICTIONS

The sizes of command sequences and programs generated by the

Genie compiler are limited by the size of the memory. With BK

of memory no command sequence may cause generation of more than

300 (octal) instructions, and the entire program may not exceed

1000 (octal) instructions in length. The compiler does not check

for overflow, but it should be apparent at time of compilation if

the limits are exceeded. No absolute correspondence can be es­

tablished between the length of a Genie program in symbolic form

and the length of the absolute program it causes the compiler

to generate. Roughly, though, a page of Genie language segmented

into four command sequences should not exceed the size restric­

tions imposed on the code generated. A remedy for size restric~

tions on programs is found in the ability to break a single

program into several within the same difinition set.

While compiling, the number of private symbols which may be

stored is 70 (decimal). While running a system, the standard

SPIREL allows for 64 external names on the symbol table.

• I

D
D
D

D
D
D
D
D

D
D

D
0
0
0
D

0
D

D

D

Reference to rules of punctuation for use in

of Genie programs has been made in other sections.

PUNCTUATION

the punching

A few

generalities and notes here may help the user to avoid some of

the most common mistakes.

Only statement labels, the program name, 'END',· and

'LEAVE' are typed at the margin.

'REM' and 'BCD' are followed by a 'tab' punch.

Since 'SEQ', 'END', and 'DEFINE'

must be followed immediately by a 'er'

end statements,

punch.

they

For compilation to be terminated properly 'LEAVE' must

be followed immediately by two 'er' punches.

Every line should begin with a case punch so that it

does not depend on the case at termination of the preceding

line, and editing of tapes will be thus simplified.

Every tape must begin with a 'CR' punch and a case punch

for proper interpretation.

Spaces may appear anywhere but within a name or number;

they will be ignored.

Backspaces are ignored except within the sequence of

punches for negated relations.

The superscript and subscript punches should be used only

where meaningful; the sequences 'sup sub' and 'sub sup' are

not equivalent to no punch at all and will not be accepted by

the compiler

The carriage counter should be set to zero befor~ typing

a program and must return to zero before the 'er' which ends

each statement.

A statement is continued onto second and succeeding lines

by the sequence of punches 'er tab tab tab'.

The operation 1 .=' must be punched as just those two

characters in succession.

II

D

D
n
LJ

D
D
D
n

LJ

D

D

D
D

D

D
D

D

PUNCTUATION

2

The negated relations require specific sequences of

punches for proper interpretation:

+ is punched = backspace UC

t is punched I < backspace UC

f is punched ::::; backspace

The operations 'not', 'and', 'or', 'if' are punched in

lower case and must contain no superfluous punches. All

other "words" in the vocabulary of the compiler are punched

fully in upper case letters.

Function definitions and program name may appear either
. ·'

at the left margin or at the 1st tab position.

Declaration identifiers, 'LET', 'FOR', 'NUMBERS', 'DATA',

1 PRINT 1 , 'PUNCH', 'READ' and 'EXECUTE' may be followed by

either a space or a tab punch.

D

D
n u
J
n
J

0
n
l :

u

0
0
D

D

D
J

IO: . L

n
J

D

0
D

iJ

GENIE PLACER

The Genie PLACER ~ystem provides operations on symbolic and

absolute Genie tapes, It is located on the MT System magnetic

tape at block 101.01. When this PLACER is read into memory

program *240 is ~xecuted, and the stop

(I): 00 HTR cc
occurs. the set of options to be exercised should then be

designated in

S·L 1

SL2

SL 3

SL4

s15

SL 6

SL 7

the sense lights:

read symbolic tape

edit

punch (edited) symbolic tape

1 is t (e di t e d) s ym b o 1 i c ta p e

check (edited) symbolic tape punched

compile (edited) symbolic tape

back-translate absolute tape

The original tape to be processed should be placed in the reader.

st7 is used if this tape is absolute, and SLl is used if it is

symbolic. It is not meaningful to elect both SL7 and SL 1 options

in PLACER. Pushing CONTINUE causes the specified operations to

be carried out'.in order as described below:

SL 7 , BACK-'.Blt~.NSt:AtE·.,,--'l'He st'op

(I): 0 7 HTR CC

occurs if the absolute tape to be translated is not in the reader.

Options as explained in the separate section on the back-translator

may be set into the sense lights. Pushing CONTINUE causes the

translator to read the tape and create in the machine a symbolic

tape image.
1

SL-, READ. The symbolic tape to be read must contain only

one definition set, tpis begun with one carriage return and

terminated by two carriage return punches. All characters beyond

the last er on the tape are ignored by the system. When the

reading is complete, the system has in the machine a tape image.

SL2 , EDIT.i> The stop

,(I.): 02 HTR cc
occurs .• The ed~t tape is placed in the reader. Pushing

CONTINUE causes tt'ij.J;.S 'ft.ape, which must coi:itairi only the

II

D

D

D
D

D
D

D

D

D

D

D
D
D

D
D

GENIE PLACER

2

corrections for the tape image in the machine, to be read. When

reading is complete, PLACER's tape image in the machine is edited,

Each correct~on is specified by three parameters: the

initial carriage return number (i), the final carriage return

number (f),

correction

and the number of lines in octal in the symbolic

(n) . A line in a symbolic tape is terminated by a

carriage return, these being numbered from 1 on listings. The

n lines of 2 correction will replace the portion of the program

read from and not including carriage return i _!:_!i.rou[!::_ carriage

return f. Note that n=O effects a deletion. The last line of a

symbolic tape must not be replaced. On a sing 1 e edit t.a p e f of

one correction may not equal i of another correction.

for punching the correction parameters is:

The format

(l.c.) i (sp) f (sp) n (er)

SL 3 , PUNCH. The tape image in the machine is punched out on

paper tape.

S L lf s , LI T. The tape image in the machine is listed on the

fast line printer with carriage return numbers. A lower case

Roman letter is printed as upper case letter Su per scripts

line. Un-and subscripts are printed above and below the main

fortunately, I l. I · T prints as I I I ' the = being lost because the

two characters are too close to

SL 5 , CHECK. The stop

9ach other on the print whee 1.

(I) : 05 HTR cc
occurrs if the tape to be checked is not in the reader. P:i.s h in g

CONTINUE causes the tape that is read to be compared ta the tape

image in the machine. An error print is given if the comparison

fails,

SL 6 -c. h ____ , · ,OMPILE ... T e stop

(I) 06 HTR cc

occurs, The symbolic Genie tape is placed in the reader. Pushing

CONTINUE causes the tape to be read, This reading is very

irregular as the text is being processed by Genie as it is read.

---- -- ----- - - ---

D
D
D

D
D
D
J
J
D
D

D
D

0
D
D
D
D
D
D

GENIE PLACER

3

When an 'END' statement is read, output of the program is p~ovided

on the printer and the absolute tape is punched. The final

'DEFINE' statement causes printing of the external variables of the

program just compiled. Then the 'LEAVE' statement cau~es exit

from the compiler to PLACER control program *240.

D
D

D

D

D

D
0
D
D

D
D

D

D
D

D

D

BACK-TRANSLATOR

It is sometimes desirable to obtain symbolic APl listings or

tapes for programs which exist in absolute form only. These

programs may have been compiled or absolute-coded so that no list­

ings exist, or listings which once existed may have been lost.

Symbolic listings for documentation and tapes which may be

edited are generated by the APl Back-Translator loaded as part of

Genie PLACER.

in

is

The back-translation is in the form of a symbolic tape image

the same form as is generated when an ordinary symbolic tape

read under PLACER control. All operation mnemonics in the

extended APl vocabulary are recognized, and symbolic addressing

is set up when instructions reference locations within the program.

For most programs, instructions are distinguished from data words,

and the data words are translated to OCT pseudo-orders.

The types of tapes which may be back-translated are:

1. SPIREL-loidirig relative programs in any punch foimat

2. SPIREL-loiding absolute programs in any punch format

3. SELF-lo&ding. programs in octal br he~ad~

The first word on the tape determines the type of the tape; it is

not necessary to make any other indication. If single control

words, such as base-changing control words, are on the tape, they

are passed over; sections of tape with symbolic cross-references are

also ignored.

usage

If SL7 is turned on at the normal halt (I) : 00 HTR CC in

Genie PLACER, a program will be read from paper tape and a symbolic

tape image constructed in memory. This symbolic tape image is
1

equivalent to one generated by the READ option (SL), and may then

be listed, punched, or edited.

If SL? is the only sense light turned on, or if there is no

paper tape in the reader, a halt occurs with (I) : 07 HTR CC.

At this time, certain sense light options on the back-translation

may be selected (see below). After the symbolic tape image is

created, control retruns to PLACER at the normal halt

((I) : 00 HTR CC .) .

II

D

n
' I

LJ

J
n
J

n ~

0
D

D
D

D
J
D

D

D
J

BACK-TRANSLATOR

2

If more than one sense light is turned on at the 00 HTR CC

and if there is tape in the reader, the 07 HTR CC will be by-

passed. In either case, a symbolic tape image will be generated

first, and then the other specified options (print, punch, etc.)

will be performed on the new image.

Options

In normal use, the process of back-translation takes place

in two phases:

1.

2 •

A flow analysis of the program t~ determine which

words may be executed as instructions and which

are internal data words or constants

the construction of a symbolic tape image to

represent the program, with OCT pseudo-orders for

constants and symbolic labels only on lines which

are referenced by instructions wi·thin the program.

Information is passed from the first phase to the second by

tagging the words of the program as they are classifiedo The

tag conventions are:

no tag

tag 1

tag 2

tag 3

Data word not explicitly referenced in the

program

Data word explicitly referenced in the program

Instruction not explicitly referenced in the

program

Instruction referenced in the program.

Tag O may also indicate an instruction which cannot be identified

as such.

It is possible for a program to be written in such a way that

the flow analysis will not distinguish properly between instruc-

tions and constants. Three of the most common types of programm-

ing which cannot be analyzed properly are those which involve

1. entry points at other than the first instruction

of a program,

2 • use of transfer vectors or computed transfers

within a program (e.go, TRA CC+B3) '

0
;l

LJ
n
LJ
n u

:l

J

n
LJ

0
D
D
n
LJ

J

0

J
n
! I

LJ

D

J

3.

BACK-TRAWSLATOR

3

use of the X register, as in JMP in the operation

field or CC+X in the auxiliary.

Four sense light options are provided to make it possible to

specify as executable instructions those words which would not

otherwise be identified as such. These sense lights must be set

at the 07 HTR CC as described above.

S L 12 • Do n o t p e r f o rm c on t r o 1 f J. ow an a 1 y s i s , bu t t ran s 1 a t e

on the basis of the tags on the program as read.

SL 13.

SL 14.

SLJ.S.

Accept a list of extra eqtry points or other words

which must be identified as instructions. If this

option is selected, a 13 HTR CC will occur

immediately after the program tape is read. At

this time the back-translator will accept added

entry points from paper tape punched in the special

format

[c r] AAAAA [c r] BB BBB [c r] CCC CC •....•

where [er] is a carriage return and AAAAA, BBBBB,

CCCCC, are five-d:lgi.t (octal) relative locations

in the

end of

program. The process is terminated when

tape is detected. Note that it is only

the

necessary to specify the first word of a block of

instructions (a block is ended by an unconditional

transfer instruction, either explicit or implicit).

Punch the program with tags after the flow analysis.

Do not perform translation to symbolic tape image.

D

0
0

0
D
D

D

D

D
D
D

D

D
D

D

D

SYMBOLIC ADDRESSING

IN S PIREL

In the Genie language qupntities are normally identified by

name, not by the machine address where the corresponding value

or codeword is located. The SPIREL system provides facilities for

addressing scalars, programs, vectors, and matrices by name.

A control word with a nul;l f field will cause program *126 (XCWD)

to read what follows on paper tape as a 5-hexad name preceded by

a er punch. The name is added to the symbol table (ST,*113) if

it is not already present. Then the f field is assigned the address

in the value table (VT,*122) which parallels the name in ST. Under

program control a control word with null f may be given in T7, a

5-hexad name left justified in T4, and entry made to the second

order of *126 with the AP2 order

, TSR *+126, CC+l

Again, the f field is assigned the appropriate VT address.

The name must be given as exactly 5 printer hexads, as

54-40-55-25-25 for MAN

54-26-40-55-25

54-40-55-01-25

26-54-25-25-25

for

for

for

Man

MANl

m

These configurations are not always conveniently punched on the

flexowriter since case punches may~ appear, the '26' hexad is

given by a backspace punch, and the '25' fill hexad is given by the

tab punch.

Given the ST-VT configuration

ST VT

Al scalar Al

A2 codeword for vector A2

A3 primary codeword for matrix A3

A4 codeword for program A4

the control word with symbol

er 00001-0030-0000-00000 er 40-01-25-25-25

will cause the scalar Al in decimal form to be read into Al's

VT entry, The control ~ord with symbol

er 00000-4130-0000-00000 er 40-02-25-25-2~

will cause the vector A2 with codeword in A2's VT entry to be

-~~----- ----------------------------------~

D

D

D
D
0
D

J
D

D
D

D
D

D

lo
D
D
D
D
D

SYMBOLIC ADDRESSING

IN S PIREL

printed in decimal form. The control word with symbol

er 00000-5440-0000-00000 er 40-03-25-25-25

will cause the matrix A3 with primary codeword in A3's VT entry

to be punched with symbol. The tape punched will load at a

later time, creating a matrix with primary codeword in A3's VT

entry, even if this entry is not in exactly the same relative

VT location. The control word with symbol

er 00004-0420-0003-00000 er 40-03-25-25-25

will cause the space currently addressed by the codeword in A3's

VT entry to be freed.· Then a 4 by 3 matrix of zeroes to be

created and addressed by the codeword in A3's VT entry. The

control word with symbol

er 00000-4100-0000-00000 er 40-04-25-25-25

will cause the program A4 with codeword in A4's VT entry to be

printed out in octal. The control word with symbol

er 00001-4030-0000-00000 er 40-01-25-25-25

will cause the scalar Al, stored in Al's VT entry, to be printed

out in decima 1.

2

D

D
n
LJ

D

D

D

D

D
D
D
n
LJ

D

J

D

SYMBOLIC

CROSS REFERENCES

An absolute Genie program, one that has been generated by

the compiler, contains one reference word for each external

variable referred to in the program, An order which addresses

an external variable does so through the reference word with

indirect addressing. At execution time the reference word for

a scalar contains the value table (VT) address where the scalar

is stored; for a non-scalar it contains an indirect addressing

(*) bit and the VT address where the codeword is stored. For

any Genie program the output tape is in two sections, the program

itself in hexads with no checksum which will be loaded

symbolically through SPIREL, and a control word followed by a

list which will load symbolic cross references into the program.

This operation supplies proper VT addresses in the reference

words of the program.

The figure below illustrates symbolic interconnections

between two named programs and the named data to which they

refer.

ST ·-
p

0

M

N

I_.

Explanation is

next page.

on

.VT

p~ p
,_ M ____ -

~-~----~-----~-q c 1-'----t::--:--C];:i....-:--jlL. __
me I +m- 1 ,""-----·-----------"' M, ~

'---· __ J
.. -

1.-
(N) ' I __ _ nc

·----------

II

J
n

J

D

D

D
J
J
D
n
LJ

n u
l
LJ

n u

n
J

n
• I u
n
i I
LJ

SYMBOLIC

CROSS REFERENCES

2

P and Qare programs, Mis a vector, and N is an external scalar.

Prefers to Q and M through the reference words a and b respective~

ly. Q refers to N through the reference word c,

for Q and Mare shown as qc and me respectively,

The VT addresses

and these are

inserted into a and b by loading sym~olic cross references .into

program P, The VT address for N is shown as nc, and this address

is inserted into c by loading symbolic cross references into

program Q. The paths of addressing from orders of P and Q to the

data addressed are shown by arrows in the figure.

Programs written in APl language and loaded with numeric

codeword addresses rather than names may, with some effort, refer

to exter~al quantities whose names a~e in ST with values or

codeword in VT~ When writing such a program, a block of

reference words should be created within the program~ For a

scalar namad SS the reference word should be written

SS

lcr

For

pp

For

vv
For

MM

The

B·CD SS Sp sp Sp 0 0 0 0

\ ls t tab \ 2nd tab \3rd tab

a program named pp the reference word should be written

BCD pp sp sp sp A 0 0 0

a .vector named vv the reference word should be written

BCD vv sp sp Sp A 0 0 0

a matrix named MM the reference word should be written

BCD MM sp sp sp AO O O

'A' in the above BCD instructions provides the* bit

required in reference words for non-scalars. Within the code

the data is always addressed through the reference words with

indirect addressing, as

FAD *SS

TSR' *PP

CLA *VV

STO *MM

Once such an A Pl program is in the machine, proper VT addresses

.D

D

D
D

D
D

D

D

D

D

D

D
J
D

D

D
D

D

D

SYMBOLIC

CROSS REFERENCES

3

need to be inserted into the address fields of these reference

words. Program *173, SXREF, provides a means of filling a

block of reference words in the form described above. One

"control word" is punched on paper tape for each block of

reference words to be operated on by SXREF. The fo~m of this

"control word" is

er nnnnn 0000 rrrr fffff

or

er nnnnn 0000 rrrr 00000 er sssss

where nnnnn gives in octal the length of the block of reference

words, rrrr gives in octal the relative address within the program

of the first word of the block, fffff gives the codeword address

of the program if it has been loaded numerically, and sssss

gives the 5-hexad name of the program if it has been loaded

symbolically. When executed, SXREF will read these "control

words" and perform the designated cross referencing until a

null word is detected or the end of the paper tape is encountered,

D

D

D

D

D

D

0
D
D

D

D
0
J

D

D

D

CONTEXT OUTPUT

Once a Genie absolute program is read into the machine and

its symbolic cross references have been loaded, the program is

in a form that is dependent upon the exact contents and order of

ST and VT. It may be desirable to punch with name a single

program or a system, To reload such tapes, the ST-VT mu~st first

exist in the machine precisely as they did at the time the

punching took place.

Program *174,CNTXT,

re-establishes context:

provides for punching of a tape which

the val~~ of 117 (current length of

ST and VT), correction of *113 (ST) to its current length,

clearing of *122 (VT) to its current length. This tape must

then be loaded before any items whose names appear on ST as

punched. If sense light 13 is off CNTXT proceeds to punch in

hexad with checksum all quantities with names in ST for later

symbolic loading.

II

J

J
n

J

J
n
. i
u

]

J

D

n

J

NUMBER TO NAME

CONVERSION

It may be that programs or data which is punched to be

loaded at specific addresses or with numbered codeword addresses

need to be converted to symbolic loading form for use in a

Genie-coded system.

Program *172, SMBLZ, will punch out with the name specified

constants loaded into numbered addresses or blocks and arrays

loaded with numbered codeword addresses. SMBLZ reads from paper

tape the following information about each item to be punched:

er sssss tab x tab nnn

where sssss is the 5-hexad name which is to be given to the item,

xis the digit O if the item is a scalar, xis the digit 1 if the

item is a program or vector or matrix, and nnn is the three digit

address or codeword address where the item is located in memory

at the time this punching takes place.

all of the array will be punched.

If the item is a matrix,

SMBLZ will punch all items described on one tape, exiting

only when end of tape is detected. If sense light 13 is on when

SMBLZ is executed, tape feed will be supplied between the items

punched.

I
II

D

D

D

D
D

D

D

D

J
J

D

D

GENIE SPIREL

Genie SPIREL is located on the MT System magnetic tape at

block 101.03. This is a full SPIREL and the set of programs

which provide support for compiled programs at execution time.

The specific contents are listed below.

CODEWORD
NAME ADDRESS DESCRIPTION

fu 11 S FIRE L

SMBLZ

SXREF

CNTXT

***utility programs * * *

172

173

174

see NUMBER TO NAME CONVERSION

see SYMBOLIC CROSS REFERENCES

see CONTEXT OUTPUT

*** programs whose names may be used in Genie language***

SIN

cos
SQR

EXP

LOG

ATAN

TAN

COT

LENGTH

ROW

COL

VS PACE

MS PACE

FIX

INV

TRAN

EVEN

CONTROL

200

201

2 02

203

204

205

206

207

2 10

2 10

2 11

2 13

2 14

2 17

22 4

225

227

2 30

l
floating point scalar function

of floating point scalar

integer length of vector

integer number of rows in matrix

integer number of columns in matrix

dynamic creation of vector

dynamic creation of matrix

integer nearest floating point input

inverse of matrix

transpose of matrix

test integer for being even

application of SPIREL to named

quantity

*** programs which may be used by Genie-generated programs ***

2 12 used for DATA, PRINT, PUNCH, READ

command

2 15 integer to an integer power

I
II

D
n
LJ

D

D

D

D

n

LJ

D

D

D

D

D
D

D

D

NAME
CODEWORD
ADDRESS

2 16

220

221

222

223

226

231

DESCRIPTION

GENIE SPIRE L

2

floating point number to a float­

ing point power; uses 203,204

copy of vector or matrix

addition of two vectors or two

matrices

subtraction of two vectors or

two matrices; uses 221

multiplication of vectors or

matrices

multiplication of floating point

scalar and vector or matrix

floating of an integer vector or

matrix

Available for use by the coder are addresses 241-277. The

system occupies about 6,000 (octal) words of storage and may be

cut down by extracting just those programs necessary to a par­

ticular system.

Parameters and restrictions for the named programs are

discussed in the section on functions. The remainder of the

Genie SPIREL programs are discussed below.

2 12

2 15

2 16

220

operation specified by (B 1) on entry:

(B 1) = 1, DATA

(B 1) = 2 J PRINT

(B 1) = 3, PUNCH

(B 1) = 4, READ

parameters are listed one per word following TRA to the

program; word contains name in BCD and addressing infor­

mation; list terminated by a null word; return to location

following null word.

(U) (R) - U and T7

(U) (R) - U and T7

(Bl)= codeword address of copy; (B2) = codeword address

of input; (Bl) set to 240 before copy if null on entry.

- ------ - ----------

D

D
n
LJ

D
f' lJ

D

D

D
n
LJ

J

D

D
D

D

J

D

D

GENIE SPIRE L

3

221-223 (Bl) = codeword address of first operand; (B2) = code-

226

231

word address of second operand; (Bl) set to 240 before

operation if null on entry; codeword for non-scalar result

a t 2 4 0 ; s ~ a 1 a ,r re s u 1 t . in Ti an d T 7 ; s ·to r a g e f o er f i rs t

operartd freed after operation.

(Bl)= codeword address of non-scalar operand; (U) =

scalar operand; (Bl) set to 240 before multiplication

if null on entry; codeword for result at 240; storage

for non-scalar operand freed after multiplication.

(Bl) = codeword address of non-scalar operand and result.

D
n
LJ

n
I I u

D
n
LJ

n
LJ

;l
I I u

D
n u

J
J
J
1
LJ

1 u

,,
LJ

J
0
0

RUNNING GENIE

PROGRAMS

The procedure for testing Genie programs should follow an

outline similar to the following:

1) load Genie SPIREL from magnetic tape

2) read private programs under SPIREL control

3) activate STEX with control word 00000-3120-0000-00135

4) read ~ata items which are prefixed with SPIREL

control words

5) position "run tape" which· contains the control word

er 00000-3100-0000-00000 er PPPPP

where PPPPP is the 5-hexad name of the program to be executed,

followed by any data to be read by the program. A "fetch" from

location 21 or a CONTINUE to 20 will then cause PPPPP to be

executed by SPIREL.

The first version of a Genie program should contain ample

PRINT commands that provide display of intermediate results.

These may be edited out of the program for production or their

execution may be donditional upon sense. light settings.

A program should be tested with sense light 14 off. This

causes monitoring on the printer of all SPIREL operations, all

input-output operations, and all space taking operations.

information is often a valuable debugging aid.

Such

If a progrm stops unexpectedly while it is being checked

out, the following information may be of value:

A) dynamic dump of fast registers, obtained by:

1) type out contents of CC on console typewriter

2) type 20000 into CC on console keyboard

3) raise, then depress FO switch on console

4) at halt, type saved contents of CC into U on console

keyboard

5) push "CONTINUE" switch on console

6) output appears on printer, and CC indicates where

program stopped, P2 indicates where last transfer

occurred, and PF shows where last transfer to sub­

routine occurred,

D
D

n
LJ

0
D
D
D
0
0
D
D
D

D

D
n
LJ

D
D

B)

C)

RUNNING GENIE

PROGRAMS

2

SPIREL dump of ST-VT, showing values of external scalars

and codewords for external non-scalars defined at

the time, obtained by:

1)

2)

3)

4)

type 20 into CC on console keyboard

type SPIREL control word 00000-0500-0000-00000

into U on console keyboard

raise, then depress FO switch on console

output appears on printer, and machine stops ready

to accept next control word in U.

SPIREL dump of any programs in which values of internal

variables may be of interest, any external arrays

which may be of interest. Note that the codeword

address in VT for each item loaded by name appears

on the load record for the run. It is easier to

use this address, :rather than the name, for identi­

fication of the item to SPIREL from the console.

Tracing of Genie programs is not advised. If it is done,

care must be taken not to trace transfers to programs 136 (SAVE),

137(UNSAVE), 212 (INPUT-OUTPUT).

D

D
0
D
D

0
D

0
0
0
0
D
D

D
D

0

0
D

EXAMPLE I'

The program SUBR takes two vectors, Vl and V2, and a scalar,

SCLR, as input parameters and returns two more vectors, SCNT and

VPRIME, as output.

If Vl and V2 are of the same length, their dot product DPROD

is computed and Vl is multiplied by SCLR. If their lengths a re

different, an indicator is turned on for later testing.

Next, space is taken for the vector SCNT and its elements

are evaluated as: SCNT. = 0 if Vl. is within 0.001 of a multiple
J J

of rr/2, otherwise SCNT. = sec(Vl.).
J J

After SCNT is evaluated, the indicator is tested. If it

is ff
0 '

space is taken for the vector VPRIME and it is evaluated

as a function of V2 and SCNT; if the indicator is on, the cal­

culations on VPRIME are skipped.

Finally, the indicator is turned off and the values of SCLR,

DPROD, Vl, SCNT, and VPRIME are printed.

Notes on Symbolic Listing:

Line

3,4

5

10

11

Remark

All non-scalars, all functions not in the vocabulary

of th~· compiler, and all external scalars must be declared

before the SEQ.

The one-line definition of function REM is also located

before the SEQ: the user must supply a function INT to com-

pute the largest integer contained in a number. Exte rna 1

specifications apply to the function REM as well as to the

main program.

LNGl, LNG2, and j are declared as integers. Since this

statement appears after the SEQ, the integers are internal

to the program SUBR.

HALFFI is defined as 1.570796; this value is used in

the code wherever the name appears. Since 'HALFPI' is more

than fi:v.e,:characte.r!'l": long·,; .it wjill:.appear on listings as

··· ·· .. ,·,'HALFP'·:·and will no·f:.be".d;!.stingtiished from.any ·other .charac­

ter beginning 'HALFP'.

12 Several equations separated by commas may appear on one

line.

0
D

D
D

D
D

0
D

0
D

D

D

0
D

D

D
D

LINE

13

REMARK

EXAMPLE I

2

Since the value of CC is to be unchanged if the con-

dition is not satified, the alternative value is omitted.

Note that the Genie lister prints I for+ and~ for#.

14, 15 Vector Vl is multiplied by vector V2 for a scalar re-

sult and each element of Vl is multiplied by SCLR. The

use of X to indicate multiplication on line 13 is synonymous

with the juxtaposition of the factors on line 14.

20,22,23 Execution of a function may be called for explicitly

with an EXECUTE command or implicitly in an arithmetic

command, depending on the function.

21,24,25,30,31 These commands control a loop indexed on j.

A test is made at the beginning of each pass through the

loop to determine which of two calculations is to be per-

" f o rm e d : f o r the current v a 1 u e o f j • '.At the en d of ea ch ca 1-

c u lat ion, j is incremented and control is transferred to

the initial test if j ~ .LNGl or to the first instruction

after the loof if j > .LNGl.

32 A sense light is tested in Genie language by writing the

number of the sense light to be tested as an exponent of SL.

35,40 This is a simpler method of loop control; it is useful

for loops with positive increments and a single exit point.

36,37 A statement may extend for more than one line. The case

punch for the second line follows the third tab in the

~ct tab tab tab' sequence.

17,27,41 AP2 instructions may be interspersed with GENIE

43

45

statements; no special indication is necessary. AP2 commands

that use SKP, JMP, or otherwise depend on CC should be used

with caution. It is difficult to predict the number of

machine language instructions which a GENIE command will

generate.

'END' terminates the command sequence by generating code

for return of control to the program at the next higher level.

'LEAVE' causes exit from Genie at compilation time.

D

D
D

0
D

D
0
J
D
n
LJ

J
D
D
J
J

DE.F'INE
VECTORS VliV21SCNT1V~RtME
PuNCTIONS REMNO,INT
REMNDIA1B): A/B -~ I~T(A/6)

SUBR I SCL.;R,·v 1, v.2,:sCNT, VPR I ME l, =SEjQ
RE.M !MIS rs A SAM~~E PROGRAM
DNTE.GER~ L.NGt,UNG2A,J
LET HAL.~Pl:1,5,0?96
WNGl~LENGTH(Vll,LNG2~LENGTH(V21
CC:•A:RND , I, ,F' UNG I I t..NG2 , ,O ,R ,L"IG I ·s O
DPRQD:v I >< 'V?..
VI :: ;SCL.;R VI
cc:i .. EVN

A~ND ~UN +~oooo
E~N EXECUTE'. VSPACE pSCNT, l.iNG I l

iJ= 1
COMP.A CC : ·•L,OW , J ,F" REMND (VI ,J'HALF'P I) < 0, 00 I

SCNT IJ : I, ·0/.COS I V 1
1
,JI

,J : , 1J'!' I
CC .: •CUMPA , l, iF 1 ,Js .LNG I, ,.;coMPB

Ldw SCNT : 0, 0 ,J
~~N -+~oooo·

,J = jJ+!
CC : •COMPA ,I, ,FI . .;J ,. LNG l

COM AB CC:i•OM I! I I, ,F' SL I
REM SECOND SECTI-ON
EXECUTE VSPACE('V~RIME,L.NG2)
FOR JJ; l,1,.UNG2
\IPR I ME •J .: V'?. , I, ,F'

t. • .J .
RE:PEAT

OMI! ,SI ·i:- ·+'410000
PR TNT SCLR,,oRRODiV I, SCNT, 'VP FUME

END
DEFINE

L.EAV.E

·e
'3 ,.
5
6
7

lo
l I
1·2
1'3
14
p5
16

"' :20
:21
:22

!23

:24
:25
:26

:27
;3n
::i I

;32
;33
;34
;35
;36

;37

,.,.o
·'+ I
·At2
·'tl'.3
·'+~
·'+5
·~6

0
J
J
n
LJ

n
LJ

D
D
J
'l

I
LJ

n . I
LJ

J
1
1_j

J
1
LJ

REJMND
•BGI,N
E!ND

REIMND -e -

RElMND
I II
I I 2
1: 3

;O
l
2
3
'+
5
6
7

10
I l
0
l
2

ST.ART NEW ·P~03RAM,
PRO~R~M S~QUENCE,
PROGRAM SEQUENCE,.

·•6Gl'N I
2
3

"' s
6
7

10
1T
112

END 1:3
1~
rs

S'\'IMBOL '1'.ABLE,
A 102
B 102
•BGIN 100

1·0
01
'+7
01
01
05
01
01
05
01
01
01
07'

0
I
l

01000
~0001
21641
21700
21100
l:2?00
'+0000
'+0007
1!2?00
110'+00
01·000
1!10006
01000

0
0
3

SUBROUTVNES REFeRENCED
JNT

02 t+'POO 00136
00 41,00 717.63
00 6001 000 l·O
06 0600 00001
05 0600 00000
00 QOOO 00006
07 J+lf,O l 00006
Q'+ 4lt;Ol 00003
00 ()000 00006
07 1·000 0000'+
00 4'4oOO 001,37
00 '+000 00000
oo 1taoo 00000

END
a
A
T6
INT
E'ND
t6
t~

0
0
0

•

•

0
0
0

0 ;SUBR :START NEW 'PC?OGRAM,
·•BGlN ·PROGRA~ ;SEQUE~CE,

0 .ARND 'PRO~RAM :SEQUENCE,
l:.VN 'PROGRAM :SEQUENCE,.
:C,JOMPA ·PRO~RAM ·S8QUENCE,

n .LO~ 'PROGRAM SEQUENCE,
.COM PB 'PROGRA!"l :SEQUENCE,

LJ ,;.FlOR I 'PROGRAM ,SEQUEJNCE,
·•RPT1 'PRQ('3RAM :SEQUENCE,

n IUMIT ·PROGRb.~ SEQUENCE,

LJ t.JND 'PROGRAM ;SEQUENCE,

D
D

D sue~ ~:= !O ·•BGilN I t·O O l 000 ,02 ·'+'+00 ;C)Q ti36
I 2 !Q 1 ,0007.100 ·'+LOO ·11,60

D '.2 3 .47 a 16'+ 1 ,oo ,ooo 1 1ooaos :END +
THI~ IiS A :SiOlMP.L.E ~ROGRAM

7 ~ 10 I 21100 01 Qaoo 00001 VI

n 1,0 5 10 I ';QOOO 00 4'+00 oO!to .L.ENCIT
I t 6 10 I 40007 00 i+401 ooao2 .E'.ND +

LI 1:2 7 IQ 1 aooot 00 '+001 00803 L.NGI
1:3 10)0 I 217·00 07 oaoo 00002 V2

J
I·'+ IT ,o I 4QOOO 00 '+'l!OQ Q021·0 L.ENGT
1;5 1·2 101 Lt!QQQ7 00 '+401 001"16 !::No +
1,6 1'3 10 I aooo1 00 '+001 ooaoo L..NG2
17 l lf. ,o I 21700 06 0001 001'76 L.NGI

J :20 15 06 02050 00 0001 001'76 .L..NGa
:21 16 IQ I 01000 00 '+001 00001
:22 17 ,o l 01000 00 '+001 00002
:23 ;~g 106 0251·0 00 '+000 00000

'l :a'+ :2 t 10 I 01000 00 '+001 00002
iJ :a5 '22 101 217,00 oo '+001 00023 . .t(RNO

'.26 :23 10 l aoo1+0 '410 0000 00000

!]
:27 !2lf. io I 21700 '+ 1 oaoo 00001 VI

I :30 :as ,O I 21700 412 0900 00002 V.2
I

LJ :31 :26 !O 1 lliOOOO 00 '+400 0022:;
:32 '.27 ,o 1 '+0007 00 '+'+01 00t61 E:NO ·+

fl :33 130 10 I aooot 00 4001 00164)PROD
I J3'+ :3 t ,o l 217'00 14!2 oaoo 00001 Vt

LJ :35 :32 100 '+0000 41 '+'+00 00220
136 :33 10 I '+0007 00 '+'+0 l 00 i;55 E;ND ·+

J :37 134 ,o I 50400 00 0600 00000 SCLR
-'+O ;35 102 'liOOOO 00 4+J~oo 00226
..... l :36 >O 1 '+0007 00 '+4f.O l 001:52 ENO -+
·'+:2 ;37 iOl 21700 41 oaoc 00001 V l

J ·4'!3 ·'+6 ;00 '110000 '412 4f.'+OO 00 l:35
·4'+ ·'+ 1 10 I '+0007 00 4401 001 , ENO ·+
.41,5 ·4tl2 100 50401 !32 0000 002'+0

J
·'4!6 ·'+~ ;Q2 20001 00 4002 00000
·'+7 .4 lt ·'+ l ~ 164 I 00 000'+ 00000
;50 ·'+5 ;QI '21700 ~o ltOOt 00001 E:VN

,o ARND ·46 10 t '1!2000 00 '+-000 '+0000

n - ,o EVN ·'+? io I 21702 a6 oaoo 00003 SCNT
I ;50 ,oo 20102 a6 ,001 001.42 t.;NGI

LJ :2 ,5 t ;O 1 '+0000 00 4400 00213 V.SPAC -

:3 ;52 •O I '+0007 00 ·4401 00 l:36 EJNO ·+ l .
n ·'+ ;5~ 10 I 21700 00 ·'+000 00001
LJ

n
LJ 5 ;54 ·O I 20001 00 ~001 00141 ,J

0 COMr:iA 55 ;O I 2·1140 41 0001 ·001·40 ,j
n 1 56 ·01 ~17i;,O ·OO 0~00 ,00001 Vi
LJ 2 ,5., 10 I 20001 71 4001 •001·37 •Pl

3 6Q ·41 21602 ·a6 4,000 00000

n '+ 61 •00 ?O t·02 ·a6 4001 ·00136 HAL.F'P

LJ 5 62 101 4!-0000 '00 ·'*401 ·001:36 REM~O
6 ,63 101 '90007 ·OO 4~0 l ·001!25 ~NO +
7 6'+ ,o 1 ()6550 •00 0001 ,ookas 41!NUMB

D
1,0 65 101 O l 000 ·00 ~001 100002
11 ,66 ,o 1 21700 00 4>001 •00024 l.;OW
1:2 67 ,o t 200~0 A:10 0000 100000
1:3 '70 ,01 2 P:40 -lH 0001 100 l:25 ,J

D I·'+ '7 i 101 211,0 00 0600 ;00001 VI
L5 '72 ,o ! ~0000 ·01-~~00 100201
1,6 '73 10 ! ~0007 100 ·4~0 l •OO 115 ENO +

J
1'7 ·74 ,o l t.6 700 ,oo 0001 •00 l'.26 •bNS:F'

:20 '75 io I aooot ·ae ,'> 1,00 100000
:21 '16 ,oJ 217'00 ·41 0001 100 l 17 4J
:22 .,'.77 10 t 21700 ,66 ,OLOO 77176

D
:a3 J.,00 10 .1 aooo1 100 ·'11-600 100003 SCNT
:24 110 l JO I 211,0 ,oo 4000 •00001
:as l10c!! 1Q 1 t,0000 100 000 1 100113 ,J
:a6 ~OS •01 aooo1 ,oo 4001 •00 l 12 ,j

n :27 io1+)Q 1 a 11~0 100 ,coo 1 10011 l .J
' I

I J3Q 1105 10 l oas 1·0 100 ooo 1 100 l10S WNGI
LJ

:31 1106 IQ l 01,000 100 ·':-00 l 100002

n
:32 ,IJO? ·O t 2 t 7'00 100 ,li;OO I 777.4-lf. COMP.A

J :33 I 1,0 IQ 1 01000 ,oo ·~00 l 100001
:3'+ I 1 'f 10 l z 1?00 100 ,ll,QO 1 ·000 l'+ COM PB
:35 11:; ,o 1 aoo,o,~o oaooiooooo

J
10 LOW 11 iQ I a POO -l{. l ·000 t .1001102 ,J
I 1 Pt .co aooo l· ;oo -4600 ;00003 SCNT

:z l rs 10 I ~2000 100 .,ooo 40000
J3 .l.Je)Q l 21140100 --000 100001

J ·'+ 1 1'7 iQ I 110000 ,oo 000 I 100076 ,J
;5 1:20 ·O I aooo 1 ,oo ·1¢00 t ,0001s JJ
,6 J'2 i ,o 1 21 ?.40 ,oo ,0001 ,0007~ ,J
'7 l:22 io I gas Io ,oo ,ooa 1 ,ooo?o WNl11

n !JO 1:23 10 I o 1·000 ,oo #OO 1 ,ooooa
J 1 I l:2lt ,o 1 217100 ,OO ·~001 '?7727 COMA A

!:2 l'.25 101 aoo,o,,o ,0000100000

n 0 COMf:11:1 f86 JO I ~1,00 ,oo ,0000·11110
I 1 l:27 iot 'li501·5 ,oo -l)OOO 100016

J 2 1,30 101 5ooro 100,iooo ·11?76
3 ,1J3 I 101 01·060 ,oo 400 1 •0000 l

n '+ J,:32 10 I 01000 ,oo ~00 l 100002
5 1:33 ,o 1 21 7,00 ,oo ,400 t iQQ04t;3 OMI'T

l.J 6 1,31;, 10 I aoo,o ,o 10000,00000
SE:CQND SECT llON

n 1!2 \l35 10 I 21102 :a6 oaoo)oooo, VPRiiM
I ll3 1,36 100 ao 1!02 :a6 ·'too 1 ,oooss UNG!

LJ 1-4 1;37 ,o t ,0000 10b 4,00160213 VS PAC
J:5 l:'+Q ,o I ~0007 ,OO ·4'+0 l ;00050 ~NO ...

J ,o ·•l=iO~l 1·'+ l IQ J 21100 ,oo --000 100001
t 1·'4i2)01 aooo 1 ,oo 4-00 1 •00053 .J

'.2 J'f3 ·01 '217i00 ,oo ,()001 ,oooscs WNG2

J
:3 1· '+ lt 10} 02 l IO iOO ,QOO I •0005! h.l
·'+ 1·'+5)Q 1 01·000 100 -400 l ,00031 .. ~PTI ·+
:5 1,4~ 101 2 l7i00 ,06 000 l !0004? ,J
,6 po ,o 1 21740 il-l ,0000 •00006 T6

n '1 1·50)Q l 21740 •04·0600 100003 SCNT
liO 1;5 t IQ I a r140 -4 l ,0000 100006 T6
l l 1;52 101 21,_o 100 0600 100002 V2
1:2 1;s~ 10 I 02510 ,oo ·0000 iQOOOIJ. T,~

D 1:3 i':5'+ ,o 1 O l 000 00 ·4'001 \00003

- ~ - --- -- - -----

0 I'+ 155 01 217'+0 41 0000 00006 T6
l·S 156 01 21740 00 0600 00002 \12

D 1,6 157 01 01000 00 4001 00010
17 16C 01 21740 41 0000 00006 T6
20 16 t 01 21740 00 0600 00002 V2

n 21 1.62 21 06550 00 0001 00041 .,.NUMB
. I 22 16:?. 01 01000 00 LtOO! 00002
LJ 23 164 01 21700 00 4000 00000

2'+ 165 01 01000 00 ~001 00002

D 25 1_66 01 ~1740 '+ I 0000 00006 'f6
26 167 Ol 217'+0 00 0600 00001 Vt
27 170 01 20001 a6 4100 00000
30 171 06 20040 '+ l 0000 00000

n 31 172 01 217'00 66 Ql,00 77776
LJ 32 173 01 20001 00 4600 0000'+ VPRIM

0 •RPTI 17'+ 01 217'00 00 4000 00001

n I 1. 75 01 \:Ql{.0 I 00 0001 00020 ,J
2 1'76 01 01000 00 -4001 777'+3 •FOR! + 2

LJ 0 OMIT 177 01 4200'+ 00 '+000 40000
l 200 01 4QOOI 00 4'000 00002

n 2 act 01 01000 00 4400 00212

LJ 3 202 62 l.j,2536 1:2 ;5600 00000 SCL.R
'+ 203 '+3 57615 6'+ :300 l 0001 l OP ROD
5 ao'+ 65 01252 s2 saoo 00001 Vt

D
6 aos 62 4+2556 32 :saoo 00003 SCNT
7 806 65 57615 OS 4200 00004 VPRlM

10 207 00 00000 00 0000 00000
0 ENO 210 O I 01000 00 ·'+400 00 t:37

D l 21 I 01 /;0006 00 '+000 00000
2 21'2 01 01000 oo 41;aoo 00000

1 ,SUBR SYMBOL TA BL Ee LJ

11:2 SCL:R 1,02 0 0 0 0

LJ
I 1:$.,BGI'N l·OO I 3 0 0
11,4 UNG! 200 !2113 3 0 0
1 lib WNC32 200 !2l4 3 0 0
11·6 ~..; 200 !21·6 3 0 0

ri 1 f7 HALFr-: 1,00 :2ao 3 I 00 I'+'+'+ 1"7i657f!2 l130 0 I

~ 1ao ARND 1,00 46 3 0 0
121 DP~OD l·OO !21;5 3 0 0
122 EVN 1100 '+7 3 0 0 n
1·a3 OQMPA 1100 :55 3 0 0 i u ra4 wow 1·00 1f3 3 0 0
1a5 -iNUMR 1,00 222 3 '76110 I ~22335 l 36 t 62~ 0

n raei •Pl 100 217 3 0 0
. i 127 OQMPB 1100 la6 3 0 0
u 1'30 OMI"T 1,00 177 3 0 0

131 •FOR f 1,00 I '+ I 3 0 0
n 1~2 eiR?Tt 1100 17-4 3 0 0
i I 1'33 •NUMB 1,00 Z2lt 3 7~01463t4631463i46 0
LJ

J SUBROUTINES REF'eRENCED
201

:1 REMND
I \ASPAC 213 J 135

2a6

D
2~C
223

LENGT 2110

n
J

D
n
LJ

n
' I LJ

D

D
0
n
: I
LJ

D
D
J
J
J
'1

J
n
: I
LJ

'l
J

'l
,_J

1-.

I
LJ

D
n
J

END 10F'
103
I 04
106
I 06
107
1 1,0
l I I

DEFINITION
VI
V.2
SCNT
VP~I'-1
RE"1N~
J;NT
suaR

~ET,
l 2 l I
121 2
1'21 '3
1·21 4t
l 1,0 221
110 1·6

l·O 5

E;XTERNAL.
0
0
0
0
0
3
0

SYMBOLS,
0
0
0
0
0
0
0

0
0
0
0
0
0
0

----~----- - --- ~ ---- -- ---

D I

D
00000 ORG 2

RE:M BAC~-TFViNaL.AT ?!ON 3
l. t •Z T'RA ,~1111136, u .. R 4

D
l.2 SPF iAB6+777t,3 !5

PF RWT L. l· '+ 6
C:L.A lltPF+t,U .. T&i 7
CL.A 111PF-tiZ1U""T5 lO

D t5 12700 6 I l
TSR ,AIIIL. I 6, U• T7 12
SPF' ,Allll., l '+1 U•T,4 13

D T6 12700 6 I'+
,..AD •'+,U•T7 15
TRA ,A• t 3? 16

D L. f'+ SB6 ,AZ l?
T? TRA PF•Z ao

L. t,6 z uoooo •Z il

D
ElND c?2

i3
ii+

LJ

D

D

D

D

D

D

D

J
D

D
D

--- - ~--

D

D
00000 '0RG 2

·~e:M B~C~ciTRANSLATlON 3
L. I ·~z 'TRA ,lti• t:36i~•R 4
1.2 ;SPF ,AB6+777.60 s

D PF :~WT i.;21 I 6
·9L.A P!::+ 111U•T7 .,
'TSR aA11t2 l O l•O

D ;~PF ,AIIIL.:21 I J I
:~i,o ,Al.:21'3 U?
:~L.A PF,..,2,1y-0T7 l'!

D '!SR ,A11121·0 , ,.
·~PF ,A•l.;21 I ps
:sr,o ,AL.:21·"' 1·6

D ·~L.A 1.21:31 'J•T.6 1·,
t6 }F' n~zE l'SKP L.;2 l 4 ao

!RA ,AL80 21

D
L l'7 'TRA ,AL.;22 ae
1.;ao T.6 .I:F' I NEG ISKF' ,AZ a3

TRA ,Al..:24 a"'

D
l..;22 :~LA ,AL.46 as

NOP z,,u,qcc a6
l.;24 ~LA pr:::+ I ;iu•B 1 27

D
~l.,A ·p~,.i2,1u!Oe2 30
TSR ,A~223 ~I
SPF ,A•l.;2 t 1 32

J ~110 ,AL.:215 ;33

~L.A P~+1.a1u•e2 ~4
z TSR ,A•220,JU.oB I 35

D
~PF ,All!l.;21 I ~6

.WDR •PF+.Z .:,;
R TSR ,A~226. 4fiO

~, . _,

D
~F'F ,A•t..;211 ·41
~~A PE:* t .11l!:J,0B I '412

.z]SR ,lliiu ll35iU•El2 n

D
~PF uAllll.;211 "'"' z ~D~• a'1!oo:~•B2 ~5

R 8110 ,AB t•¢!Z ·'+il!i
Bl ~WT B2+Z ·llii

D fl.A ,Al.~7,-U"!CC ,50
L.~6 ~UN uA'IIOOOO ;5 t

J
l.'t7 ?17:02 Pf:+38-B6~1 ;?2

z ao 1ia2 ,Al.:21'3.o B6+ l ;53

!SR 1AIM2 i:3 ,54
SPF ,Ai•l:!2 I I ;55

J ~L.A ,A I ,56

~110 ,AL:21·6 ;57

~55 21?,~o L.;2 l,6olU•B l ,60

D ~17"'0 lliPf+l ,~t
~-ro ,Al.;21'7, I·•!:\ I ·~2

Bl ~1·602 ,AZ,·~6+ ·1 ·~3

D z 201'02 ,AL:2201·B6+ l ,6'1,
TSR ,i1;1111,;221 ,65
;~PF 0A11tl,.!2 l l ,66

D
.I:F' INNZ)·SKF' .l,;~22 ,61

-- ----- -- -- - ---- --

D l'RA ,AL. ilO 70

D
L66 -~L.A ,AL 11 :l 71

NOP z, U<iCC:: 72
l.;'10 :21740 l.;216., U•B I "13

0
'.2174110 llfF'F' • l ., ,.
'!SR ,iti•ao t, U•T7 ·75
;SF'F ,Ai•L:21 I 76
'VOF 1.223 77

D ;sr:a ,AB6~Z, B6+ l 100
CL.A L:2 I 61!U•B l l·O i
:~I.A 86+777761B6•l 1•02

D ;si,o ,A111PF+3 t:03
!2174,0 ,A I 1104
.ADD L2H, 1105

D ;~r:o ,AL:2 t,6 1106
'.2174+0 L:21-6 1•07
I:~ l'NE r, l1SKF' W21;3 ll•O

D "rRA ,AL.Ill qi
L.110 7 :~L.A ,A~55 11·2

'TRA ,AL. I 1:2 q·3

D L.1 I I :9LA ,AL. t:86 1 l 4
L. t 12 INOP ,Z1l~o1~~ 1 n;
L 113 ;~I.A L:2 l-61JU•B 1 11,6

D
z ;~110 ,A•?E•3 11'7

i§LJN. ,A'VOOOO 1:20
:~ t 740 ,A I 1:21

D
ADD L:216 t:22
5110 ,AL:2 l,6 1:23
co11to i.;21,6 t:24

D
l:F'tNEl'l l:SKF' L:2 i:3 1:25
IRA ,AL. t:86 t:26

L 1!24 ~I.A ,AL.i55 l:27

0
NOP z,1u-iict t:30

L. !!2~ 91.A 7777i0 t:3 t
-~~s ,A 16 1:~2

D
RRU ,fi!.771"U 1:33
.l:r: !·ODD)'T,RA .AL.1,3:::, t:3it
!~A ,AL t,35 l,3!5

L tt:3~ ~L.A ,AL..17'7 ~36

D NOP Z.1JU,q~~ t:~7
L 1135 ~1702 P~+'+a·B6+ 1 l·'t-0

.z ~Oll02 ,Al:21·41,~6+ 1 l·~ j

D TSR ,A-.21:::a l·'f2
SPF ,.Ailll.:21 1 1·'413
c;L.A ,Al ,.,,.

J ~110 ,AL.:2 l,6 . l·~!!S
L.. i:43 ~I.A L:214 l·'+6

1:F (·Ros)'SKP ~21,€, l·lf?

D !~A ,Al.1'7? · 1•50

L.1·46- ~I.A L:21·68'U•t6 MS!
217'+0 6,JU•B 1 ~~2

D 2tJ.40 lllPF"-+13,U•T't, t,53
2174iiO 61IU-.B l .1;54

~17'+0 liPF<t!2 · ·1;55.

D
I~ (NEil)·SKF' ·4 li56

- -- -~- ---- -----

I

I
D !RA ,AL 1,60 l·5?

D
I. li55 !2 l 740 61IU-,~ I l,60

'.21740 •l::IF'"-!2 1,61

!RA ,Al. l70 u,2
Lt,60 :21740 6,1u .. s t 1,63

n :21'740 IIIPF'-6!2 1,64
LJ 111.i I I_~ (NNZ ISK? .L.224 HH5

·rRA ,AL t,66 1,66

D 1.1,64 :~I.A ,AZ t,67
l'RA ,AL. l"7'0 170

1.1,66 '.~l 7'+0 61JU•~ I 1'71

0 '.~ l 740 IIIPF•l 1'72
I. f70 ;~!10 ,ABe~z, 86+ I 1'?3

'T,6 :NOP z,iu .. ~ 1 174

D ·51.A ;6+77776, B6• I 1'75
~llO ,A•PF•"lt 1'76
·~I.A ,A I 1'77

0 EAO• ~21·6 200
TRA ii\~ 1·~3 201

L.1'77 ;~1.F ,Aqiooog 202

D
:~e I .~2 ao3
'TRA ,A~21!2 204'

1.aoa liB21 '!2536 ... ,A•PF·Z,•J.f•R· aos

D
,B~ ~7,6 t:5 • I.L:21;5 I ,,Bl+• I ao,
1,651 o i:as2 "' ~APF+·1,!R~e2 207 ·- . ; .
liB21 '¥2556 .,. ,APF.+i31,B2~X 2lt0

0
liBSI S?6 t;s ,APF+'+,1U•1i!5 211
z ·00000 z 212

1.210 TRA oA• tl37 213

D
L.21 ~ i~B6 ,AZ 214

T7 '!RA ,APF+.Z 215
1.213 1qcr oooouooooooooooooo 2l,6.

n l.;214 i9cr -000000060000000600 21'7.

J L.21·5 ,q<;r 000060000606000606 2ao
L.;21·6 1~CT 000006000000000000 22t

- , :, ~ . ' ' . ' ' '

D
1..217 10,CT OOOOQOOOOOOOOOOOOO 222
L.;220 1~CT o~oo~4~41j6~162~30 2a:3
1.;a21 z 100000 •Z 2c!4
L.;222 ·-l-861 l;O 1"«2 ·h•Bt+B3+B6~~61?~71~B3+t 2as

'l 1.;22~ . 1~ l'RSN l'HTR .Z 226
LJ L.22,. ··t·PFI io f'+6a .. ~~APF+Ba+a3~B6+~3~,.61~R~l4 227

-~ND aao

D
aaI
aa2

0
D

D

D
-~~--

n
J

D
n
LJ

0
0
n
LJ

n
LJ

0
0
n . I

u

n
LJ

D

1
LJ

J
n

I u

n
LJ

n u

EXAMPLE II

The program NEWTN(COEF,GUESS) uses a variant of Newton's

method to obtain the roots of a polynomial

INPUT:

n n-1
P(X) = X +An-lX +---+A 1X+A0

Vector COEF, of length n, the coefficients

(An-l'.An-2' ---,AO)

Vector GUESS, length n, containing the approximate

roots of P.

OUTPUT: COEF: unchanged

GUESS: contains the refined values of the roots

Vector POFR, length n, which contains the value of P

at the next to last iteration for each root.

METHOD: Let XK denote the value obtained for a certain root at

the K-th iteration. Then

x1 = (value obtained from GUESS)

x2 = 1. 00 1X 1

XK+l = XK-P(XK) if K>2

At most twenty iterations are performed.

~- - -------- --------~-------

n LJ

D
D

D
'l
' l LJ

n u

D
n
LJ

I
D
D
n
: I
LJ

fl
L.J

D
I

n
D
n u
D

OEF'lNE
VECTORS 'OOEF,GUESS,POFR

NSW 'TIN (:COEF ,·GUESS I.:: SEQ

IN!I

L.ooe
GlUII

END

L.SAVE

IlNTEGER~ J,.K,.t.,IM
I..: ~OW!OOEF'I
E:XECUTE VSPACE ('POFR, I.. I
F'OR J : t, l,L.
GA: GU~SSJ

FlOR K = l I I, 20
F1N : I, 0
F',OR M : I• t,L
FlN = co~~M•FN><GA
RE~EAT
CC :· ~lNl'T. ,L OF 1~<K
FlO: FN, GO: GA
GA ; I, 001 GA
CC: •l,.,OOP
GS : GA, ·OELF' : r::N-FO
CC: ~QUfT .,~~ OELF:
GA: G~-ANtG~-oor10E~F'
GO: GS1 FlO: F1N
RE:F'E~T
GUE:SSJ = i3A

AOF'R : F'N . J

REP.E~T

DEFINE

1
2
!
~

!5
6 ..,

1,0
11

!'2
l'3
1-4
15
16
r,
ao
21
22
23

0 a4
ae
a1,
27
30

3t

32
33
.34
3~
36

D

D
D
D

D

D

D

D

D

D

D

D

D

D
D
D

J
0
:]

EPILOGUE

The Genie compiler is the invention of John K. Iliffe, now

with Ferranti, Ltd. in London. Major contributions to its

realization have been made by Jane G. Jodeit, T.A. Kitchens, Jr.,

and Jo Kathryn Mann.

Programming development has been supported by the National

Science Foundation under grant NSF G-17934. Construction of

the Rice University Computer was supported by the Atomic Energy

Commission under contract AT-(40-1)-1825, further development

under contract AT-(40-1)-2572.

Genie may well be improved and extended by future efforts in

a number of areas:

*(i) Notation for sense light iterrogation would be very

useful .

.... (..) "" 11. The case of a program with no command labels should

be handled properly.

(iii)

ic(iv)

Function names should be allowed as parameters.

The machinery for Boolean variables exists but needs

to be checked out and made available.

* (v) At compilation time a list of programs reterred to

in the compiled code should be provided.

(vi)

(vii)

Compound conditional commands should be permitted.

Checks on overflow of size limits and various other

compiler diagnostics should be provided and documented,

(viii) A major effort would be required to allow programs

to use themselves, but this might be interesting and worthwhile.

(ix)

useful.

Rice University

Houston, Texas

More elaborate input-output facilities would be

Jane G. Jodeit

April, 1963

*provided by October, 1963

I

D
D
D

D

D
D
D

0
0
J
J
0
D
D
D
D
D
D

D

Since April, 1963 Genie has been subjected to considerable

use at Rice, and the system has been impocoved in various areas:

(i) Boolean arithmetic is available.

(ii) Notation for sense light interrogation is avail-

A program with no command labels is compiled

able.

(iii)

properly.

(iv) Programs referred to in compiled code are listed on

compilation output.

The machine index registers are addressable in Genie (v)

language.

(vi) Elements of general arrays of more than two dimen-

sions may be referred to in Genie language.

(vii) Genie generated code for loops and for matrix

operations is more efficient.

(viii) Numbers may be specifically placed within programs.

(ix) Matrix operations are extended to matrices of

integers where meaningful.

(x) The program name may appear at the left margin for

ease of identification, and the need for many 'tabulate' punches

has been eliminated.

(xi) Iteration parameters for loops may decrease or

increase from initial to final value.

(xii) Provision has been made for explanatory remarks

within programs.

(xiii) Simple uniform notation has been introduced for

designation of the result of a function to be implicitly executed.

(xiv) Genie PLACER has been extended to include the Genie

compiler itself and the newly developed translator from machine

code to assembly language. Magnetic tape handling provides the

system access to two full 8K memory loads.

0
D
n u

D

D
D

D
D
D

D
D
D

D

D

D

D

D

D

D

(xv) These NOTES on Genie have been improved and

augumented. A separate document on the assembly language is

available, and one ori SPIREL is forthcoming.

Rice University

Houston, Texas

Mary M. Shaw

October, 1963

2

-- -- ~----------

0
D
n LJ

D
n
: I

LJ

n LJ

0
D
D
n , I
LJ

D
J
n
J

D

D
n
iJ

n
I I
LJ

D
n
J

APPENDIX

GENIE CODING CONVENTIONS

This appendix dis~usses details of compiler generated code.

It is intended for those who are particularly interested and for

those who wish to code in a lower level language while maintaining

compatibility with compiled programs. This material is not essen-

tial to the understanding of the Genie language and should not be

read before attempting to write some programs for the compiler

and gaining some familiarity with the Rice Computer, the assembly

language, and the SPIREL system.

Program initialization and termination

The 'SEQ' causes the compiler to generate a sequence of orders

which initializes the program being compiled. The first of these

orders is labelled 1 <-BGIN', and the orders are collectively called

the "<-BGIN code sequence". For each "SEQ' there is an 'END', so

there is an "END code sequence" corresponding to each <-BGIN code

sequence. The form of these code sequences depends on the number

of parameters (k) listed for the program and, in some cases, the

type of parameters. A single fast parameter in the definition of

a program is a special case which causes only PF to be saved and

assumes no parameter addressing in Genie language within the

program. Otherwise, fast register names should not be used as

parameters in a program difinition, and the following discussion

applies.

a scalar

scalar in

A single parameter enters a program in T7, the value of

or* codeword address for a non-scalar. Immediately a

T7 is stored at internal location 1 <-T7ST'; a non-scalar

parameter is

if there are

stored on

pa rame te rs

the B6-list. All fast registers are saved;

on the B6-list (k>l or K=l and a non-

scalar parameter) PF is set to point to the first parameter. In

this case (PF) is stored in the address port.ion of 'END+l' and

must be maintained with this value throughout the program for the

purpose of addressing parameters. The END code sequence restores

the fast registers, sets B6 to free the storage occupied by any

parameters on the B6-list, fetches (T7) for implicit execution,

and exits to the PF setting on entry. The specific code sequences

are as follows:

II

D

D
APPENDIX

n LJ
2

D k=l <-BGIN PF R~A,WTG END

fast

r--, END TRA z
I I u

k=l <-BGIN ..,z TRA *+136, U-+R
n
I I s ca la r T7 STO <-T7S T
u

r-.
! I END TRA *+137
L.J

T7 TRA PF

D k=l
J non-scalar <-BGIN T7 STO B 6, B6+1 n.· u -Z TRA *+136, U-+R

SPF B6-10
n
i I
u PF RPA,WTG END+l

n

LJ END TRA *+137

SB6 z

J T7 TRA PF

n k>l <-BGIN -Z TRA *+136, U-+R
: I
: I

u SPF B6-k-9

PF R~A,WTG END+l
n
: i
LJ

END TRA *+137

n SB6 z
LJ

T7 TRA PF
n
I I
;_J

fl
. I u

r1

I
u

I

n u

D

D

D

D

D

D

D
D

D

D

D

D

D

D

D

D

D

D

D

RESULT for implicit execution

APPENDIX

3

A program which is single valued may be executed implicitly;

that is, it may be mentioned within the formula on the right hand

side of an equation in Genie language. A scalar result must be in

U upon exit from the program, a non-scalar result in the non­

scalar accumulator whose codeword is by definition at location

+240 during execution. The name 'RESULT' is interpreted by the

compiler as T7 for a scalar and as codeword address +240 for a

non-sea lar~ 'RESULT' may appear only on the left hand side of

an equation and must be defined in the last command executed

before 'END' on all dynamic paths to 'END'. The 'END' code

sequence fetches (T7) to U as it exits so that a scalar result is

indeed in U upon return to the program causing the implicit ex-

ecution.

Addressing of variables

With respect to any given program every variable is in one

of three categories: internal, external, parameter. A 11 intern a 1

variables are scalar, the values. beigg stored within the program.

External variables may be scalar or non-scalar, the address or

* codeword address respectively being stored in a reference word

within the program, the value or codeword respectively being

stored in the Value Table (*+122) during execution. In the genera 1

case, reference words for parameters are stored on the B6-list,

the kth parameter being addressed at (PF)+k-1 after execution of

the '-BGIN' code sequence. Parameters of a program during ex-

ecution are indeed internal or external with respect to some

dynamically higher level program,

ing in the program where they are

but this does not affect address-

pa rame te rs • The following

chart summarizes addressing conventions for variables.

D

D

D

D

D
D

D

D

D

J
D
D
D

D
D

D

variable
I

:±-epresentation
data
address

I

APPENDIX

4

codeword :
address : value

I I

I
I
I

:element

internal :value in program aIS : (IS)
scalar : at IS 1 1 : 1 1
----------~-----------------~---------~----------J--------~-------J

I . I I I I I
external 1address 1.n prograTI\ (ES) 1 1 *ES r I

scalar : at ES 1 1 1 1 :
----------~-----------------J---------J----------J--------~-------J

I I I i I I
external 1 ic codeword address1 1 (ENS) 1icENS I

non-scalar:in program at ENS: : address :
----------L-----------------J---------J----------J--------~-------J

I I I I I I
scalar 1 address at 1 (PF+k-1) 1 1 *PF+k-11 --- 1

parameter : PF+k-1 1 : 1 1 :

----------L-----------------J---------J __________ J ________ J _______ J
I I I I I . . I

non-scalar,~\- codeword address1 1 (PF+k-1) 1 1*PF+k-l1
parameter :at PF+k-1 1 : address 1 1 1

----------L-----------------J---------J----------J--------~-------J

B6-list, working storage

The SPIREL system reserves machine locations from 17600 8

upward as a working storage area. The conventions associated with

this storage are that B6 points to the next available location on

the 1 i s t [hence, the t e rm "B 6 - 1 i s t " J and th a t the s to r a g e i s use d

in a linear "last-in-first-out" or "push-down" fashion. Genie

generated code uses the B6-list for temporary storage of inter­

mediate quantities within the calculation of an arithmetic

f o rm u 1 a , a 1 ways s to ring a t (B 6) , inc rem en ting (B 6) a f t e r the

store, retri.eving from (B6)-1, and decrementing (B6) after

retrieval. In addition, the B6-list is used for storage of

parameters before entering a program; the program then decrements

(B6) over the

by parameters

parameters before return since

is no longer in use. The SAVE

the storage occupied

(*+136) and UNSAVE

(*+137) programs and other SPIREL routines use the B6-list for

temporary dynamic push-down storage.

Using the B6-list for temporary storage, the following

sequence shows storage of A, B, C and later retrieval of C, B, A

D

D

0
D

D

D
D

D

D

D
D
D
D

D

0
0
D

D

D

APPENDIX

5

with proper maintenance of (B6) as a pointer to the B6-list:

CLA A

STO B6, B6+1

CLA B

STO B6, B6+1

CLA c
STO B6, B6+1

calculation perhaps involving
use of B6-list with balance
of stores and retrivals,
so that fina 1 (B6)

= initial (B6)

CLA B6-1, B6-1

STO c

CLA B6-1, B6-1

STO B

CLA B6-1, B6-1

STO A

Parameter set-up for program execution

Execution of a program with a single scalar parameter SP is

preceded by code which accomplishes (SP)-T7. In the case of a

single non-scalar parameter NSP, the code accomplishes *NSP~T7.

For more than one parameter, representations are stored se-

quentially on the 6 1 . · f h th ' 1 SP B - ist; i t e k parameter is a sea ar ,

then SP-B6, B6+1; if the kth parameter is a non-scalar NSP, then

*NSP-B6, B6+1. If one of a group of parameters is given by a

number or an expression, then the quantity must be given a

n
LJ

n
LJ

n
LJ

D

0
0
D
D

D

D

0
D

0
D
n
LJ

0
D

D
n,
lJ

APPENDIX

6

name before the proper parameter representation can be stored on

the B6-list. For such purpose the names 1 +-Pl', 1 +-P2 ', etc. are

generated by the compiler. The quantity is stored at +-Pn, and

then +-Pn for a scalar or *+-Pn for a non-scalar is stored on the

B6-list. The execution of program PROG is accomplished by

TSR *RI.WG where PROG is a loci:itiori within the program doing. the

execution which contain* codeword address for PROG; the code-

word for PROG is in the Value Table (*+122). Thus, PROG is an

external variable with respect to the program which executes it.

Subscription

In the Genie language any variable may be subscripted by

from one to five indices separated by commas. The indices are

assumed by the compiler to be integers: explicit numbers, simple

names, or arithmetic expressions of any complexity. The indices

are loaded successively into Bl, B2, •.. , BS by the. following

procedure which allows subscripts to themselves be subscripted:

1) scan n indic:es· from left to right:, computing those

which are not numbers or simple names, and storing

those computed (except the last) on the B6-list;

2) scan from right to left storing (U), quantity from

B6-list, named quantity, or explicit number into

Bi for i=n, n-1, ... , 1.

In the sense of SPIREL, a subscripted variable is called an

"array". In particular, a one-dimensional array of data is called

a "vector" and 'is indexed by Bl, and a two-dimensional array of

d a ta is ca 11 e d a "ma tr ix" and i s indexed by B 1 and B 2 in th a t or de r •

But in fact an array may be of as many as five dimensions and may

contain either data or programs, and its elements may be addressed

in the Genie language. The indices may take on negative values

if the storage configuration is correspondingly established.

D

D
n
LJ

D

0
D

0
D

D

0
0
D
n LJ

D
n
LJ

n u
n
LJ

Operations on standard forms of non-scalars

APPENDIX

7

In order to perform an operation between a scalar and a vector

or matrix, to combine two vectors or matrices, or t.o store a vector

or matrix the non-scalar itself must be addressed in the code.

Although completely general forms of non-scalars may be created

and manipulated in the SPIREL context and may have their elements

addressed in the Genie language, operations on full vectors and

matrices are defined only for arrays of standard form in order

that execution time is not spent in handling the most general case.

In face, the standard form of non-scalars is entirely sufficient

in a vast majority of applications. The definition is as follows:

standard form of one dimensional array, Vector

1) loaded with STEX activated

2) indexed by Bl

3) initial index= 1

standard form of two dimensional arr~y, matrix

1) loaded with STEX activated

2) indexed by Bl for row specification and B2 for

coiumn specification

3) initial row index= 1, initial column index= 1

Arithmetic operations involving standard non-scalars parallels
o,

scalar arithmetic quite closely. By convention, codeword +240 is

used as a non-scalar accumulator, commonly called 'U*'. The

programs used for performing operations on non-scalars recognize a

null codeword address for a non-scalar operand to mean that the

operand is U*. The non-scalar result of such an operation is

placed in U*. The creation of a new U* causes the storage previous-

ly addressed by that "name" to be freed. If a non-sbalar in U*

needs to be temporarily saved, this is done on the B6-list; that

is, a word on the B6-list is taken as the codeword for the storage

addressed as U*, and the U* codeword is cleared. Note that this

storage also involves adjustment of ihe STEX back-reference to

address the new codeword.

0
D

0
D
0
D

D

D

D
D

D
n u

r,

J
n
LJ
,....,
i i
LJ

n L...1

.,
i I u

!r
, I
LJ

APPENDIX

8

The code sequence generated by the compiler for matrix

storage A_, Bis as follows:

.z

.z

z
R

Bl

CLA

TSR

SPF

CLA

TSR

SPF

LDR->

STO

RPA,WTG

A, U->B2

*+220, U->B 1

*END+l

B, U->B 1

*+135, U->B2

*END+l

+2 40, R->B2

Bl

B2

+(PF) reset after destruction b~ TSR

for reference to parameters.

Assignment of type to variables

]copy A-U* only if A~U*

]
free storage addressed as
B only if B$U* and not on
B6-list ·

]
clear U* codeword J
store new codeword if
.:for. B
update back-reference

only if program using (PF)

: .In the ,Genie language. each scalar, vector, matrix, :and .function

(result) has a type: integer, floating point, or Bo·olean. The

type of a variable may be explicitly specified in a declaration:

INTEGER for integer, SCALAR for floating point, and BOOLEAN for

Boolean. If the first appearance of a variable name is not in a

declaration, its type is implicitly specified by the following

rules:

1) If a variable name first appears on the right hand

side of an equation, the variable is assigned

floating point type.

2) If a variable name first appears on the left hand

side of an equation, the variable is assigned the

type,of the expression:on the:right hand side.

In a compilation a variable will not have its type changed.

once it is assigned. An equation which has left and right hand

sides of different types will cause the compiler to comment on the

equating of unlike types; code will be generated to perform a

store appropriate to the quantity on the right hand side, but the

type of the quantity on the left hand side will be unaffected.

D

D
D
D
D
D
D
D
D
D
D
D
D
0
D

D

APPENDIX

9

Arithmetic combination of variables of different types

In arithmetic expressions Boolean and integer variables may

be combined only in exponentiation, Boolean scalar variable to an

integer scalar power. Boolean and floating point variables may

not be combined. Integer and floating point scalars and non­

scalars may be combined in any mathematically meaningful way. In

all cases except exponentiation of a floating point scalar by a

numerically specified integer ~7, the integer must be floated be­

for~ the combination takes place. In all ca~es the result of the

combination is floating point. If a numerically defined integer

scalar is floated, the floating point equivalent is generated at

compilation time and is referenced in the generated code for the

combination. Otherwise, the floating of an integer scalar A is

acc-0mplished by the following generated code:

+53100 -A

FMP ~TW47

where '~TW47' refers to the constant 2 47 which will be stored

within the program. The floating of an integer vector or matrix

is accomplished by use of the Genie SPIREL program *+231.

Boolean variables and operations

A Boolean variable may take on the value ''TRUE' or 'FALSE',

these being represented in the computer by full length quantities

TRUE = +007777777777777777

FALSE= +007777777777777776

The binary operations between Boolean variables to yield a

Boolean value cause code to be generated as follows:

or, A+B,

and, AXB,

true if either A or Bis true

CLA A

ORU B

true if both A and Bare true

CLA

AND

A

B

n u

D
D

D

D
D

D

D
D

D

D

D

D

APPENDIX

10

symmetric difference, A-B, true ~f A:arid B have difter~nt values

symmetric

CLA

SYD

ORU

sum,

CLA

SYS

AND

A

B

1/:+77776

A/B, true if A and B have the same value

A

B

1/:+77777

The only meaningful unary operation on a Boolean variable is

complementation, not A, true if A is false

-U

CLA

ORU

A

1/:+7 7776

The machine registers sense lights (SL) and indicator lights

(IL) are each a collection of 15 bits, any one of which may be

individually meaningful and may be in an on or off (1 or 0) state

at any timeo The variables SL and IL are Boolean and exponentia­

tion to an integer power is defined

AB, true if bit B of A is on (1) where the bits of A are

numbered from 1 to 15, from left to right

CLA A }f LUR 15-B B is a number

ORU 1/:+77776

CLA B

BUS 1/: 15, U->R if B is

CLA A
a name
or

LUR :kR. an expression

ORU 1/:+7 7 7 76

Although the Boolean exponential notation is particularly meaning~

ful for the lights, it may be applied to any Boolean variable.

Thus, a Boolean variable A which does not itself have a value of

TRUE or FALSE may be a collection of fifteen bits (the rightmost

in a machine word) A1, A2 , ... , A15 each with a value of TRUE or

FALSE.

D

D
D
D

D
D

D

D
D
D
D
D

D

D
D
D
D
0
D

/'

Loop coding

APPENDIX

11

In the Genie language a loop is begun by the command

FOR iteration parameter= initial, increment, final

and.,~nded:by the cnmmand

REPEAT

If there are not labels on these commands, the·K~h loop will

have the labels '~FORk' and '~RPTk' associated with it. The

generalized code generated for loop control is as follows:

~FORk

[~FORk+m]

~RPTk

[~RPTk+n]

compute initial

initial~ iteration parameter

skip

storage for increment

compute increment

store increment

skip

storage for final

compute fina 1

store final

LT7

z IF(POS)SKP

T7 IF(POS)SKP

T7 IF(NEG)SKP

TRA

orders of loop

CLA

FAD~

TRA

fina 1

increment

iteration

iteration

~RPTk+n

increment

iteration

~FORk+m

parameter, CC+l

parameter

pa rame te r

l
J
l
A

J
J B

l c

J

l
D

J

D

D
n
LJ

D
n
LJ

D
0
D

D

D
n
LJ

D
D

D

D
D
fl LJ

D

APPENDIX

12

Seldom is the full generalized code necessary, and the following

notes pertain to condensations which are provided in various

specific cases.

(A)

(B)

(C)

(D)

The increment and the final value are computed and stored

only if they are given by expressions, that is, not

simple variable names or explicit numbers.

The final value will be stored in the address field of

the order if it is given by an explicit integer.

If the increment is given by an explicit integer, it will

not be tested for being positive or negative and only

the appropriate comparison of iteration parameter to

final value will be generated.

If the iteration parameter is a long fast register F, the

<-RPTk code sequence will be

<-RPTk F FAD

TRA

increment, U->F

<-FORk+m

If the iteration parameter is an index register Bi and

the increment is an explicit integer +l or -1, the

<-RPTk code sequence will be

<-RPTk TRA <-FORk+m,Bi±l

Use of fast registers in Genie generated code

Fast registers may be used in the Genie language and in

assembly language coding to be used in a Genie context if there is

no conflict with usage generated by the compiler:

T7 is always subject to use for special purpose temporary

storage.

T7 is used for storage of a single parameter when a function

is executed implicitly or explicitly.

T4, TS, T6 are subject to use in any arithmetic command for

scalar temporary storage and for storage of scalars meitioned

two or more times in one equation if these fast register

names are not mentioned explicitly in the command.

Bl is used when loading parameters onto the B6-list if a name

<-Pn is used.

D
n
LJ

n
LJ

n LJ

D
D
D
D
D
n
LJ

n L_J

n
LJ

D
n
LJ

0
fl lJ

D
n
J
n
I I
LJ

APPENDIX

13

Bl, B2, B3, B4, BS are used for subscripts in addressing

elements of arrays. The first k are used to address an

element of an array of k dimensions.

Bl and B2 are used in operations on vectors and matrices.

Bl is used in input-output commands to specify to program

*+212 the operation to be performed.

B6 always addresses the push-down B6-list which is used for

temporary storage of scalars and non-scalars and for

multiple parameter storage.

PF is used within a program to address its own parameters if

there are more than one or if there is only one but that is

a non-scalar. The appropriate value of (PF) is, in such

cases, stored in the address portion of END+l so that re­

setting is easily accomplished by

SPF .*END+l

P 2 i s u s e d in t ran s f e rs (T RA, an d no t TS R,) to

'i'~+212, the input-output program

*+136, SAVE used in the ~BGIN code sequence

*+137, UNSAVE used in the END code sequence

Therefore, these orders must not be traced.

Rearrangemnet of arithmetic formulae for efficient evaluation

The compiler has the ability to rearrange the terms in add~

ition (or subtraction) and multiplication {or division) strings.

Constant terms are shifted to the left in the formula. Terms

which are themselves expressions, rather than simple variable

names or numbers, are shifted to the left to save temporary stores

that would be required were such complex terms to appear to the

right in a string. The ordering of the complex terms is deter-

mined by the number of temporary stores required to evaluate each;

the complex term requiring the most temporary stores will be

shifted farthest to the left.

n LJ

n
LJ
n u
D
n
LJ

D

D
0
D

D

D
D

D

D

0
D
0
D

D

APPENDIX

14

If the order of evaluation within a formula is of importance,

this rearrangement may be avoided by defining each complex term

in a separate equation, therebe giving each a name. Then the

original formula will involve only simple variable names, and

rearrangement will not take place.

	Table of contents
	General format
	Names
	Numbers
	Variables
	Declarations
	Functions
	Constants
	Remarks
	Command sequence
	Arithmetic commands
	Conditional arithmetic commands
	Transfer control commands
	Loop control commands
	Execute control commands
	Input/output commands
	Fast registers
	Assembly language
	Alphabetic printing
	Size restrictions
	Punctuation
	Genie PLACER
	Back-translator
	Symbolic addressing in SPIREL
	Symbolic cross references
	Context output
	Number to name conversion
	Genie SPIREL
	Running Genie programs
	Example I
	Example II
	Epilogue
	Appendix: Genie coding conventions

