
.

•

_Rice In$titute Computer Project

Programming Memorandum #2

July 1, 1959

!_~iminary Notes o~ Programming

This is an attempt to summarise in &s short a space ss

possible the basic features of the computer and should be used

as c complement to the note on AP11 the as~embly program. The

Computer Manual remains the basic reference work, but it is

hoped that moat pieces of coding can be successfully tackled with

an understanding of the following notes, and that a full study cf

the Manual can be left to a later stage}l)

our experience has shown already that the machine codes, al•

though flexible enough to meet the demands of the most ingenious

programmer, bewilder the newco~er by sheer proliferation, and it

is correspondingly difficult to gain from the Manual an idea of

the relative importance of various commands. rhus the mnemonics

of APl put a subset of the machine orders at the programmerta

disposal, and this Note only deals with such orders. Similarly,

the Trapping feature of the machine is not discussed here, and ·•

the use of tags is confined to the arithmetic tag indicators.

Input and output is dealt with by subroutine where possible, and

some subroutine conventions are outlined. No magnetic tape orders
-·-.

are discussed.

(1) By Shieh time the Manual itself may.have caught up with the most
recent changes in the machinee In points where the three works are in
conflict, the historical sequence of writing gives a clue to the pro
bable accuracy of each account:

September 1958:
January 1959:

March- 1959:

(1)

Computer Manual
APl - A Basic Assembly

Program
Errata a..nd Addenda to
Manu.al

the

LeAture 1. Order and Number structure.

A definition of terms is approprtate. The machine is binary

80 that conversion between the base of 10 and 2 has to be pro-

grammed. It has electrostatic storage with an approximate access

time of 8 - 10 microseconds independent of the storage location

except for seven special "ia&t" atoras witb access time of 1

microsecond, There are 8191 words in storage, each of ,6 bitsJl)

Two of these bits are used as "tags", so it is correct to regard

both t11stcv.a1:l.ons and numbers as ;4 bit words with a "label" of

o, 1, 2 or ,~< 2 >on less stated otherwise, the label is understood

to be o. The words in storage are number4d serially from 0000

to 8191 (decimal) or 00000 to 17777 (octal), and a word is re-

ferred to by its location number or address. Given M, an address

in storage, the contents of Mare denoted in what follows by (M).

Given X, a word in storage, the location of Xis L(X).

Thus, L((H)) • M.

The machine operates in the serial mode, so that orders to be

obeyed successively follow one another in storage, unless the first

is a transfer order. However, the machine is parallel in the sense

that all 54 bits are transferred from one register to another ia a

single step, along 54 separate lines,

Logically, an overall scheme of the mach~ne divides into

five sections:

· (1) i.e,, A digit taking only the values O and 1.
(2) i.e., Corresponding to the combinations oo, 01~ 10., 11 fos1: bi ts

55 and 56. (Tags 2 and 1 respectively).

2

Input -~ - - - - - - ,
\

Storage ~thmetic Unit 1<- -tcon tro 1
I :;r.. Unit

t
I
I

I
;

- -::::E,- - ... - - ,,,,, f - - Contro 1 pa~hs Output

-E----- Data paths.

The Arithmetic Unit has
(1)

eight registers; U(universal),

tt(remainder), S(storage)., Z(zero., a "virtual" register of

54 o•s) and four "fast" registers, T4, T5, T6., T7. Each

has a regular machine address., i.e., 00001., 00002, 0000,,

00000, 00004, 00005, 00006, and 00007 in the order given

above. In addition to their special purposes they can

act as "normal" storage locations. Their function is dis-

- cussed in lecture:,. A distributor acts as an "exchange

point" between all eight registers, and between sto;,-age

and control unit.

We consider the {k + 1)-bit register whose digits

Then if m =0, the number which s

this represents is determined by:

q (-1 -2 -k) M = 2 m12 + m22 + ••• + mk2

where 2q is some scale factor. Thus, if q ~ o, Mis a

fractional number, and if q ~ k, Mis an integer. On

"fixed point" orders, the coder can control q so that any

accuracy in M can be attained, although the machine orders

proceed on the assumption that q = o. If q ~ o, it can be

ARI TH·
ME TIC
UNIT

BINARY
ARITH

METIC

(1)

(1) The word ''register" is generally used to denote a storage po•ition
with some specialized purpose.

3

adjusted by the arithmetic shift orders. The form of (1)

is sufficient to determine the shifts necessary for cor-

rect adjustment of q before any operation. On "floating

point" orders the machine controls and adjusts q automa-

tically. The first six bits of each numerical word are

used to give a number E (the exponent) from which q can

be found. The remaining 48 bits give M, the ~n_!_~ssa.

If m = 1, the number is negative. Its magnitude s

is found by first complementing each bit and then eval-

uating the new number as in (1) o e • g., let q = k = 4:

m s ml m2 m3 m4

then 0 0 1 1 0 represents +6

1 1 0 0 1 represents -(00110) l;I -6

1 1 1 l 0 represents -(00001) = .. 1

l 1 l 1 1 represents -(00000) = o.
There are two zero's in the system (given by all

or all 0 1 s). As a consequence of this, addition must be

performed with "end .. around" carry:

-6: 1 1 0 O l

add -1: 1 l 1 l O

[-[carry ~ l] 1 0 l 1 l
_______ ., __ -------------> l

A.n swe r - 7: 1 l O O O

-5: 1 1 0 1

+7: 0 0 l 1

C1_1~~~ o ~
I

+2: 0 0 0 1

0

1

l

1

0 •

l's

A formal definition, corresponding to (1), but in-

eluding negative numbers, can be seen to be:

ONE'S

COMP LI-
MENT

HOT!TU)N

M = Zq (-m8 + m12-l + m22· 2 + ••• +(mk+m8)2-k) (2)

4

The form (2) requi¥es IMl<2q. Since in an addition opera

tion this limit may be exceeded, an extra bit is provided

to detect when "overflow" has occurred. This is placed

between the sign and bit 1.

m mo ml m2 m3 m4 s

+10 0 0 l 0 1 0

+ 7 0 0 0 1 1 l

+17 0 l 0 0 0 l

Overflou is sensed when m0 ~ ms• It can be corrected by

a right shift and an adjustment to q~ Since U is the

"accumulator", it is provided with two overflow bits,

e and m for exponent 6~d mantissa respectively.(l)The
0 0

diagram shows the conventional labelling of bits in u.

Other registers are similar, without e 0 and m0 :

Expo~ent .--·---- Mant~ssa. ______ , __ .,,.. ""'·-. ,•- __ ,.,., -- -~, ,.--.... --·------_,,) - -.-----~,--M ---.,

Jes[eoje1Je2!e;:e4Je5J nq-m;-r~1mgl_::· 1m46jm47 !

By convention, the mantissa Mis evaluated by (2), with

q=O, k=47. The exponent Eis evaluated with q=k=5•
. 8E

value of a floating point number is M~2 •

Orders are ne~ueneed by taking successive words

from storage to the instruction register, I, in the

The

Control Unit. Each order is a 54 bit word, i.e., a

word of 18 3-bit triads. The ordei is decoded in four

fields, described below.

Two series of "fast" registers are employed: the

arithmetic or A series mentioned above, and the B series

CO~'IIDL
UNIY

(1) In transfers to u, e 0 and m0 are set equal toe and m, respec
tively. In tran&fers from u, e0 and m0 are ig~oredo 8

s

of 15 bit registers, which form part of the control

unit. There are eight of the latter, referred to by

the symbols CC (control counter), Bl, B2, B3, B4, B5, B6,

and PF (pathfinder). Bl through B6 are conventional

index regist..!.!! (Lecture 3). PF and CC are also index

regioters, but have additional functions (Lecture 3).

The diagram shows the sub-fields of I in terms of its 18 triads:

"""-"! ., ·- ~, ,.....-..+-
/

Field Fteld
. I: ' IlE

SETU OPN

The order of

/1ol11i12 1 114115!16111i1a 1

Field
III
AUX

decoding

---."".~--
Field

IV
ADDRESS+ MOD.

is:

(A) Field I (SETU) brings an A or B series register to u.
(B) Field IV (ADDRESS+ MOD) brings a number to s.

(c) Field II (OPN) causes an operation to be performed on

one or more of u, R, and s, generally leaving the re-

sult in U or U and R or storing the result in memory.

(D) Field III (AUX) results in some auxiliar, ~P••atton

being performed.

On completion of the order, (cc) gives the add~ess

of the next order to be ob.,ed.

6

Lecture 2. Basic Operation Codes.

From the Note on APl, it is seen that an order is written

symbolically in four fields on the coding form, corresponding

to the sequence (ACBD) given at the end of Lecture 1. A

fifth field, LOCN, gives the address of the order itself for

cross referencing purposes. Any field, except OPN (Field II),

may be blank. We summarise OPN first, assuming SETU has placed

a number in U and ADDR + MOD has brought a number to s. The

first triad of Field II gives the class to which the order be-

longs.

For each order we give its name; its mnemonic abbreviation;

and its function. Let XM denote the mantissa value of (x),

XE the exponent value (see Lecture l) and XF the floating point

4lt value= xM.28XE. Let a prime denote the value after the opera-

Class

O:

tion has been performed. Let Q stand for the constant factor

2 -47. h Wen a word is regarded as a pattern of bits, rather than

as a number, the bits are labelled 1,2,3 ••• 54 from left to right.

Then any sub-field is indicated by a subscript notationJ e.g.,

(x) 10_13 means bits 10,11,12,13 in location·x.

See Lecture 3.

JONTROL

::lass
In all arithmetic orders U and S are·inv~lved 0 R is also

1 used in multiplication, to hold the low order part of the pro

\RITH-duct, and in division, to hold the low order part of the divi-
1ETIC

dend before the operation, and the remainder afterwards.
)RDERS e Floating point addition and subtraction may shift part of the

7

e
FIXED

?O'IN'l'

FLOAT·

ING
POINT

smaller number into R. Floating point results are normalised

so that

.. .
Rounding on multiplication is controlled by a switch on the ..
console. ltc»mal!.:,, no rounding takes place. After floating

point or.d~rs, if UE$·32, exponent unde~fl~w has occurred an~
./;.. . t~ . . . ••-

u is cleared to zero. If exponent overflow occurs, an ihdica•

tor ls turned on, but further action is up tb the coder. Divide

checks, caused when ISi < !UI on fixed point orders, or possi

bly when a non-normalisea floatirig point divisor is used, cause

a machine halt, or' may be.ignored, d•pending on a console switch.

There are two groups of orders:

Addition; ADD; U~=UM+SM'. UE::.SE

Subtraction; SUB; U\1=UM-sM., UE=SE

Multiplication; MPY; U~+9Rg=UM X SM, R~=SE

Divtsi~l'!; ~.o;v; uM+Q~/SM=[uM+Q~] /SM., l~l<f SM I,, 1Rt=:SE

Addition; fAp; U~+Q~F=UF+~F' U'E=RE
Subtraction; FSB; u• p+QR;.=uF-sF., ~~=R~

Multiplication; FMP; u·•F+eRt=u,x#sF, u8.a~
Division; FDV; u;.+ GRF/SFa[Up+QRpJ/s,., IRi,f<sF, u~-Rg
Let V-be the final address formed in Field IV. Then we have:

Class. 2

STORE

ORDERS

Store; STO; (V)'=(U)

Store sum; STS; (V)'=u,+s1-ga•1
Replace left half; RPL; (V)'=(u) 1• 27 (V)2a.54

Replace right half; RPR; (V)'•(V)1.27 (U)28·5~

Relace "M" digits; RPM; (V)'=(V)1.,9(u)40.54

Class 3

Class 4

SHIFTS

There are no orders in Class 3.

All these orders depend on the number, v, formed when

Field lV is decoded. Only U and R can be shifted. Logical

8

shifts ~eat al.1 54 bits. Arithmetic shifts treat man

tissas only, and have the property that a •hift left of

l place multiplies a number by 2, and a shift right of

l divides it by 2, pvovtde41 ea 4oubla !tngth shifts,

that the sig~bits of (JLlM- and (R)M are equal.Cl)

We can shift u, R, 9r both U and R (though not

connected) as follows:

Arithmetic: U: I esjeoje1 l •••je5j1m~,Jmojm1j• .. jm47 !
unchanged lef{- + ·- ~ght

. ~left

The sign bit deteTm·ines whether O or l is brought into the

vacated position. Except for the omissiop of the over-

flow bit, R is identical with u, for shifting.

"-------- . ---~ .. ---./
Logical: I esjeoje1j u:l51E..slmo!m1 ! •••jm47 ! : U

The overflow bits are ignored; everything else shifts

right or left. Empty spaces are filled in with zeros.

The end bits are lost.

If U and R are defined to be connected, the following

shifts exist:

Arithmetic: I msjmolm1l···lm47nmslm1jm2l···Jm47 I
left ~ ~ ~ight

The exponent bits are ign~red; m8 of R is Skipped; m8 of

U fills _in·. Um determines whether O or 1 will be brought . s
to Cft4 (on right shift.a_) or a111, (on left shifts).

~o g,lf •. ,c.al' .

[ea! . e O I e 1 I • • · ! e 5H ms I mo J m 1 I • • • I m 41 ! I es I e 1 I • • ~ J e 5 Um s l m 1 ! • • ~ l m 4 7 !
~u~~~~

The overflow bits are ign~red; spaces are filled by zeros.

(1) And provided signifi~ant di&its are not shifted out of the
register. 9

Class 4
SHIFTS

Class 4

B-REGISTERS

Class 5
LOGICAL

ORDERS

In a class 4 order, the number V gives the number of

places to be shifted, and is evaluated modulo 128.

Symbolically: Arithmetic: UMR, U mantissa right; UML,

U mantissa left; RMR, R mantissa right; RML, R mantissa

left, DMR, double mantissa right; DML, double mantissa

left. Logical: LUR, lQgieal U right; LUL, logical U

left; LRR, logical R right; LRL, logical R left; LRS,

long right shift; LLS, long left shift.

We also have the bit count: BCT; a logical shift of

R right V places is made, and the number of ones shifted

off the end is added into u.

In class 4 we can modify the contents of any B series

register, u•ing the 15 bit number v.
Set control counter; sec; (cc)'=V

Set B register .#:1; SBl; (Bl)'=V'

etc.

Add to control counter; ACC (CC)'=[(CC)+V]mod 2 15 •

Add to B register 01; ABl; (Bl)'=[(Bl)+V]mod 2 15 •

The basic three function tables are:

AND ORU SYM

(u)~
(u)

O~l (U)~
l O 1 1 1 1 1 1 0

0 1 0 1 0 1

(s) (s) (s)

The complement tables are obtained tf the OPN code is

preceded by a"·" sign. Extract (XTR) is given by

10

Class 6

IN PUT
OUT PUT

Class 7

SPECIAL

{ s 2 (R) {Y.l (u 2.
0 0 0 0

0 0 1 1

0 1 0 0 t,,_e., R "masks"
0 1 l 0 S into u.
1 0 0 0

l 0 l l

1 1 0 1

1 1 1 l

These orders are best understood by their commonest uses.

AND uses a "mask" in S to clear portions of U to zero,

ORU places the contents of S into the corresponding por

tions of u. SYM adds two numbers bit by bit without

carry and can be used for the exact comparison of two

numbers, XTR places a field from s, determined by a

mask in R, into U without disturbing the rest of u. Note

the particular case of ORU, namely Clear and Add; CLA;

(U)'=(S).

See Lecture 5.

One special order is provided, No Operation; NOP; Field

II has no effect. The other fields may be effective,

however, and the full ~no operation" must be written:

u NOP s •

11

Examples(1)Let Xl, X2, X3 be APl symbolic locations

containing floating point numbers a 1, a 2 and a 3

(i) To form x 1+x2+x3 and store in Xl:

CLA Xl
-

FAD X2

FAD X3
STO Xl

2 2 (ii) To form x 1 + x2 and store in

CLA Xl
FMP U

STO '1'4

CLA X2
??MP U

FAD

S'rO
T4
T4

x 1->U

X1+•2->U
2e7~+x2+x3-> U

U -> Xl

T4.
~. ->U

2
2Cl ->U
U ->T4

2 2 x 1 +x2 ->T4

(iii) To store the exponent of x 1 in the exponent posi

tion of x2 •

CLA Xl
tUR d48

LUL d48

STO

CLA

ADD

STO

T4

X2
T4

X2
Fixtd point add.

(Xl)E(X2)M -> X2.

(1) In the examples given here, the first two columns give actual
code. The third column of explanatory remarks is ignored by
the machine.

12

Lecture 2. Control Orders and FieldsJ...L Itt, and IV.

APl allows Field IV to be determined by a symbolic

or an abso~ute (decimal or octal) address. If symbolic,

it is translated into an aboslute code by the assembly

program, In general, the contents of this address are

brought to S by the decoding of Field IV, and it then

constitutes one of the operands in Field II. Thus,

CLA X2

FAD X3

LLS 5

brings (X2) to s, then sends (s) to U

brings {X3) to s, then floating adds

(s) to (u) and leaves the answer in u.

brings (00005) to s, then sh~fts
(UR) left logically 5 places$

Thus there is some redundancy in Field IV, and it is

shown later how to eliminate this.

The largest set of orders is Class o, Control. APl

provides a small subset of these, in mnemonic form. They

are of two types:

Unconditional Transfers which cause a break in the normal

serial sequencing of commands:

Transfer; TRA, Take the next order from the address given

in field IV

Halt and transfer; HTR; Stop, then proceed as in TRA when

the "~t~rt" key is pressed

Skip; SKP; the next order is omitted.

Jump; JMP; the next (X) orders are omitted, ~~ere Xis

the 15-bit special register 77772a·

13

Class O

CONTROL

Conditional Tr~nsfers, which cause a break in these

quencing of orders if some condition is satisfied; other-

wise normal sequencing occurs. The general form is

IF(XXX)TTT where TTT is one of TRA1 HTR, SKP, and JMP;

and XXX is the mnemonic for a condition given below.

Generally this depends on (u), but it may refer to the

sense light register 777718, or the indicator register

777758• The SKP and JMP transfers are dependent on

[UF-SF], which is placed in U before the test is made

(note that (R) is lost in this case). Sis always

cleared to zero. The tests on (u) are then:

ZER; (U)=O'l POS; (u)2: 0 'l NEG;(U)S 01
IZE; (u)~ O? PNZ; (U)> O? NNZ;(U)< O?
EVN; Is the last bit of (u) = O?

ODD; Is the last bit of (u) = l?

NUL• . . Are all 54 bits of (u) = O?

The tests on sense lights specify a 15 .. bit pattern in

Field IV; they do not affect the status of the lights:

SLN; Are the sense lights denoted by l's in Field IV

at! ON'l

SLF; Are the sense lights denoted by l's in Field IV
all OFF'l

The tests on the indicator register are as follows;

they also turn off the corresponding indicator;

MOV; Has mantissa overflow occurred?

NMO; Baa no mantissa overflow occurred?

EOVJ Has exponent overflow occurredf

NEO; Has no exponent overflow occurred?

14

e
is :

TGl; Is tag indicator no, 1 ON'l

TG2; Is tag indicator no~ 2 ON?

TG3; Is tag indicator noc: 3 ON?
NTG; Are all tag indicators OFF?

Example (i) IF{NEG)SKP Xl

the following order~ Othefwise per

form the next in sequence".

(ii) IF(NMO)TRA THETA : "If no mantisea

overflow has occurred trans~er to

the order in location THETA~

Otherwise, proceed serially~"

Of the nine triads in Field IV, 5 specify a 15.bit

address. Before using the address, it may be modified

by the (modulo 2 15) addition of one or more of the B

series register~ Eight bits in Field IV are used to

specify which B registers to use. Symbolically, the

notation illustrated by "X5+Bl+B6+CC 11 is used. An ex ..

ample shows the power of B-modification.
300

Example (iii) Find y = t x1 where xi are stored in con
i=il

secutive locations starting in XF. one way

to do this is:

START CLA XF

FAD XF+l
FAD XF+2
.......
FAD XF+d299
STO y

Field

I'l

B-MODIFI·

CATION

This takes 301 orders. A better way, taking 11 orders,

15

.

START CLA z
STO ,,
SBl d299

SUM CLA T5
FAD XF+Bl

STO T5
A-lU 77776
CLA Bl

IF(NNZ)?RA SUM

CLA T5
STO Y.

Any number of B registers may be used. They can

be written down in any order., connected by 11 +0 aignsQ

The description of the machine given up to this

point is suf£icient for many tasks and for practice

the coder should try a few examples with the facili·

ties at his di-sposal. It will be seen that with this

command structure only marginal advantages can be

gained over a comparable machine such as the IBM 704.

The rest of this lecture introduces refinements which

uee Iba lmng instruction word to add to the power of

a single order to an extent which, in practice., reduces

the length of a program by a factor of two or three.

Additional logical features further increase the flexi-

bility of the commands. The reader is advised not to

go beyond this point until he is fully familiar with

the material to date.

16

As already noeed, CC contains the address of the

next order to be executed at the end of any given ordeT.

The next order will normally start off by adding 1 to

(cc). However, any transfer (HTR, TRA, SKP or JHP) will

further modify (cc). In addition, on unconditional

transfers (Class 0) only, (CC)-> PF before CC is modi-

fied a second time. Hence PF contains a record of the

location following the one from which transfer was made.

In other respects, Pi acts as a normal B-register. Note

that unconditional transfers also exist in class 4:

sec XYZ is equivalent to TRA XYZ

ACC 1 is equivalent to SKP

But in the class 4 orders, (cc) does not go to PF.

So far, it has been assumed that (U) remains undis

turbed between orders, or is initially cleared by the

CLA order. However, Field I allows any one of the 16

A and.B series registers to be brought to u. When a

' 15-bit register is brought, it goes to U bits 40-54.

Bits 1-6 are set to 0 1 and bits 7•39 are set equal to

bit 40, i.e. bit 40 propagates to the left in {U)M. Sym

bolically, if SETU is left blank, U is undisturbed {ex~ept

by CLA), but any other special symbol in this field causes

that register to come to u. After that,·· (U) may be fur

ther modified by a"·" or the absolute value "I" signs in

Field I. To change the sign of (U), only the mantissa is

comp lemeu ted.
17

cc
AND

PF

Field

I

SETU

Examples (iv) B4 ADD B5 "Fixed point addition

(B4)+(B5)"

-IT7J, MPY PQ "Fixec;t point multiply

·(PQ).l(T7)f "

-Z AND K "Mantissa of (K) -> U"

So far, 4 bits in Field IV are not accounted for. Two

of these are used for sign inflection as in SETU, and are

applied to (s) immediately before decoding the OPN field.

Symbolically, an obvious notation is use.d. Another bit

is used to indicate indirect addressing. In this, if the

final address formed in Field IV is w, the number brought

to Sis not (W) but ((w)1V), assuming (W)IV does not con

tain an indirect addressing bit. Symbolically, a"*"

causes indirect addressing to take place. As a final in

fleetion in this field, the coder has the choice oC bring

ing not (W) but the 15-bit number W to s. This is con

trolled by the "numerical" bit and is aet symbolically by

the lower case "a". By means of "a0 , unnecessary accesses

to storage can be avoidedJl)It will be seen that decoding

the ADDR+MOD field is a complex process. For full details,

see the Computer Manual. For further details on symbolic

forms, see the Note on APl.

Example (v) Suppose (00025) 1• 39.z, (00025)49.54=00061
Then CLA 00025 brings 0000 ••• 61 to u

CLA -00025 brings 0077 ••• 16 to u
CLA *00025 bsings {00061) ' to u
CLA a 0002, brings 0000 ••• 25 to u

• (1) This is sometimes called immediate addressing.

18

Field

IV
IN•

FLEC·

TlONS

At the end of the opecation, without loss in time,

the coder can call for one of the following additions

or transfers to take place.

Operation Code l•••ple -
Store U in some A or B register U->A or B U->T7
Store R in some A or B register R->A or B R->CC
Increment a B register by .± 1 Bi.fol B6+1 -Increment a B register by

+(11112) 8 Bi+X PF+X

Send the final Field IV ad-
dress from ·I to a 8 register 1->Bi I->B,3.

Note that in some cases AUX may effect a transfer of

control. Symbolically, it is written after Field IV.

This completes the description of the instruction

word, Its main sub-fields are summarized in the diagram:

Triad I l 2! 3 4 5 6 7 ! 8 __ 9 f l..<[])._12 13 ! 14 15

F?iJ.,D--F-I E_L_D_F~D ,...J. \-FIELD

16 11 1a I , __
Address

I .II III \ IV
SE~U OPN AUX Modifications

flee tions

Example {vi) We can rewrite Ex.(iii) as:

START z SBl d299,U->T5
CLA -a2
STO 77772 (increment

T5 FAD XF+Bl, U->T5
Bl IF(PNZ)JMP z, Bl·l

T5 STO y

19

Field

III

AUX

regis-
ter)

Lecture 4. Subroutines, and some special registers.

It can be seen that any arithmetic task and many

simple logical tasks can be accomplished by a string of

orders in symbolic or aboslute form. Such a string is

called a routine or program. The routine uses pieces of

data from storage and places its results back in storage

and it is convenient to think of a routine for performing

SUB·

lOUTZNES

a specific task as a single logical unit. It is then called

a subroutine. An example: The string of orders which takes

(T7) and replaces it by ,J(T7) would be a "square root sub-

routine". This idea is the most important programming

device.

Consider finding y = ,J-;.1 + ~-;2 + "1i3• We could

write, assuming L(x 1)=Xl, L(x2)=X2, and L{x3)=X3:

START

T7

T6

T6

CLA Xl, U->T7
/.).
STO T6

CLA X2 1 U-> T7

~
FAD

CLA

6
FAD

T7, U-> T6
X3, U-> T7

T7
STO Y

where D,. stands for the N orders of the square root sub

routine. Thus a4lculating y requires 3N+7 orders. Now

suppose the order TRA PF is added to the end of

/J. to give A•• Then we could also write:

20

START CLA Xl., U->T7
TRA SQRT

T7 STO T6

CLA X2, U->T7
TRA SQRT

T6 FAD T7, U->T6
CLA x3, U->T7
TRA SQRT

T6 FAD T7
STO y

t:1 •

where SQRT is the symbolic location of the first order in

~·. This method requires N + 11 orders to find y, so is

more economical provided N > 3., which is the case. 6. is

an example of an open subroutine. /i. • is closed. The lat-

ter are most commonly used.

The commonest description of a computation is by

means of a flow chart or block diagram, In it., a single

11 block 11 may stand for a subroutine which may itself be

described by a flow chart., so the complete description is

a recursive process, running to many flow charts, in which

LIBRARY

SUB
ROUTINES

only the simplest can lead to direct coding. In mathematical

problems, certain basic flow charts are common to many dif ..

ferent calculations, and the whole process is simplified if

the commonest functions are coded once and stored as a

library of closed subroutines. These are stored on paper

tape. Later., they will also be on magnetic tape.

21

The problem of communicating with library subrou-

tines arises. Obviously, the less the coder has to re

member about tbe subroutine the better. He should know

what it does, an4 (analytically) how it works. He should

know whtc, fast registers it uses, and where it gets its

data and where it stores its answers. But it should not

matter where it is in storage or (in detail) how it is

coded. Most of these requirements can be met by adopting

certain conventions for library program usage, and later

versions of the Assembly Program will further automate the

communication between routines. The present conventions are:

(i) All library programs ~re completely ''relatlviatd" and CONVEN·

may be translated to any part of the main store in sin- TIONS
gle blocks. FOR

{ii) They may use any fast registers, and the coder must SUB-

first save those he doesn't want destroyed. Generally, ROUTINES
a subroutine will use the T's in the order T4, T5,
T6, T7; and the B's in the order PF, B6, B5, B4, ••• Bl.

(iii) Parameter values and arguments can be given in two ways:

(a) By placing ihem in the T's or B's (not U or R or S)
(b) By placing them in a "calling sequence'' following

the transfer order in the main routine, so that the

subroutine can address them relative to PF; i.e.,

we have:

((PF)):

((PF)+l):

TRA SUBR
(lat parameter)

(2nd parameter)

·-· etc. ---
((PF)+9-l)i (nth parameter)

22

CALLING

SE·
QUE NCI

The user must, of course, follow the choice of para

meter storage made by the writer of the subroutine.

Note that a parameter need not be a true argument,

but may be the address of one, or the address of the

address of one, etc., thus using the Indirect Addres

sing option.

{iv) Output values can be placed in T's, or B's, or in the

calling sequence, or in the addresses given in the cal

ling sequence, as in (iii).

(v) The exit order(s) from the subroutine always send control

to the first word after the end of the calling sequence;

i.e. (PF)+n for an n-word parameter list. If there is

in fact a chotce of K possible exits, then k, the exit -.E,!lrameter is stored in PF on leaving the subroutine.

This gives the user the chotce of acting on error con

ditions or special cases or ignoring them, or selecting

the one he wants without lengthening the calling
sequence.Cl)

(vi) Transfer to a subroutine is normally made with the TRA

order, thus setting PF c~rrectly. Other unconditional

transfers use sec or ACC.

(vii) If a subroutine uses the Trapping, sense or Mode regis

ters (other than as input or output parameters) it must

restore them before the exit order(s). The Indicator, X

and PF2 registers must be saved (if necessary) by the

user.

The following remarks apply to the special 15-bit fast

registers, 11110 8 through 777758• PF2(77770) receives

(cc) before any transfer is made, other than normal se

quencing. Its main use is in error diagnosis. SL(77771)

is the S~nse Light register, corresponding to 15 switches

on the machine console. Each switch has 3 positions: ON,

SPECIAL

REGIS·
'fl!.8

(1) The writer of the subroutine can force the issue, if be thinks
there are aomCl conditions the user can never foresee and never ignore,
by giving an extra return position in the calling sequence, but this
gives ~lse to undesirable complications in the syntax of the coding
language,

NEUTRAL, OFF. In the neutral position, it is under ma

chine control, and can be turned on. and off by the pro•

gram (SLN, SLF). Qaherwise, it is fixed in the ON or

OFF position, and can only be interrogated by the program.

To each switch corresponds a light, which is on when the

switch is ON. The words "switch" and "light" are used

synonymously. X(77772) is the increment register, used in

Field III and JMP. ML(77773) is the mode light register,

normally set to z. The mode llghts .. control the internal

functioning ~f certain orders. It is possible, by turni~

the Repeat Mode light on, to suppress the normal advance

of control and repeat the following order until some test

ia satisfied, or until a labelled number enters the Arith

metic uni~ when the Repeat Mode light ia turned off.

Example (i) To find the address (in 82) of the first non-

zero word in memory.

SBl 1

ERM

Z IF(NZE)SKP Z+Bl, l->B2
,oo

Example (11) To form the sum 1~1 x1 (Lecture

Balel" Repeat Hocle
Il•(Z+(Bl))a01

3, Ex.(iii) and
(vi)).

Assume that L(x1 } • Xl+t•l. Let (Xl+d299) have

Tag 1. Then the program f.a

SBl 1

z ERM 1 'U->T5
T5 FAD Xl+!l·l, U->'?5

24

: <. ,. !

tlie Twapping R~gister ?1(?7774) is not discussed here.

It is ineffective provided the frapping Mode Light is off.

The Indicator Lights IL(77775} include exponent overflow,

mantissa overflow, and arithmetic tag indicators no. 1,

no.2, no.5. The latter are turned on and when a tagged

word enters the arithmetic unit, they are tested and turned

off by the class O orders (Lecture 3). The Computer Manual

shows how tags can be placed on numbers in storage. Lecture

5 shows how tags can be placed on data by the input routines.

25

ARI TH•
ME TIC

TAGS

Lecture 5. Input and Output procedures.

Pa reader Off•line
Flexowritar

Storage -(.._., ___)...,.., Arithmetic unit () I control unit I
Line printer 11<pe~ tape pun~onsole ty~e

0
wr1ter j jcoon~e+

The diagram shows the input-output units currently

included in the machine schematic. Note firstly that out

put via the line printer is independent of the arithmetic

unit, so this.interrupts computing only while the print

order is initiated. Both the paper tape reader and punch

disturb u, R, and S when they are used. Paper tape is pre-

pared, reproduced, and transcribed to printed form by the

off-line Flexowriter. It is the primary input medium, and

the only permanent storage medium, but apart from this it

is much inferior to the printer for putting out information:

it is punched by the machine at around 30 characters per

second, while the printer operates at up to 1000 c.p.s.

A character on paper tape is represented by a six

hole code (except for 7-hole control characters, which ese

not read by the machioe), which is directly translated in

to a aix-bit Jinary Coded Data (BCD) fucm by the machine.

All other translations have to be programmed. Por paper

tape alone, subroutines are provided to convert from BCD

form to binary numbers, and vice versa. Numbers are read in

eithe~ in fixed or floating point decimal, or ln octal form.

26

INPUT

~ND

OUTPUT

PAPEI.

TAPE

Each number is stored in one location, and numbers are de-

limited on tape by one of the separating characters (X)

, (comma), "tab" (tabulate), "er" (carriage return). (l)

The primary subroutines are then:

(a) PDECIN: read one decimal word and leave it in binary

form in T4. Floating point numbers are identified by a

decimal Point. All others are converted as fixed point

integers and then shifted arithmetically. The number

forms are:

+ nn • • • n • mm ••• mE ± e e T t 'X,

+ nn ••• n B ±SST t'X,

(floating point)

(fixed point)

T indicates a tag t(=l,2, or 3); Ea decimal power of

10; Ba shift left(+) or right (-) which takes place

after conversion. Floating point numbers are normalised.

Fixed point numbers have Z exponent. Excessive digits are

ignored, so a number should have less than 15 significant

digits. Spaces are ignored.

Example (i) A typical data tape, with .3 floating point and

2 fixed point numbers, may be:

12., -.05E.3, 1.026 E-7, 385, ocr •

The calling sequence for PDECIN is one order:

K TRA PDECIN

K+l (potnt of return after executing the sub
routin~)

DECIMAL
INPUT

Normally, on returning from the subroutine (PF)=O and (T4)

is the converted number. An error in the tape (an illegal char

acter or a number our of range) will set (PF)al and (T4).o,

(1) The octal codes for these are respectively 37, 22, and 24.

27

Example (ii) A program to read and store 5 numbers in

(Bl), (Bl)+l, ••• (B1)+4 is

SB2 4

TRA PDECI1'l

T4 STO Z+Bl, Bl+l

B2 tF(NZE)TRA CC-3, B2·l

(b) POCTIN: This, by analogy with PDECIN, reads in one octal

number (fixed point form only, not more than 18 digits) and

stores it.a binary e·quivalent in T4·. An initial "·" sign on the

number complements the final wo!'d after conversion and shifting.

(c) PDECEX: This is the inverse of (a). A number with Z

exponent is converted as an integer. If non-zero exponent,

the floating point form is

± n.mm ••• m E + ee T t

The nu3ber of places punched after the point is

DECIMAL

OUTPUT

e given by (B6), the last place being rounded in the usual decimal

sense. Thus the inverse of Ex.(ii) is:

Example (iii}. To punch 5 numbers in (Bl), (Bl)+l

••• (Bl)+4 rounded to 3 decimal

places:

B2

where (COMMA)=

and (T7) =

SB2 4

SB6 3
CLA Z+Bl, U->T4

TRA PDECEX, Bl+l

PCH COMMA

IF(NZE)TRA CC-4, B2-l

743776!.l.1,00,' 90

OOOOOOOlOOt1coO

(punch \ '1

and space)

. .
The PCll order punches 4 rows of holes, vhich poiition the

· ...
Flexowriter carriage in "upper case"; print","; return to "lower

case" and "space" one position.

Example (iv} The output from Ex.(iii) would read:

l.200El, -5.00El, l.026E-7, 96~ 0

28

(d) POCTEX: This is the inverse of {b). 18 octal digits

are punched, except for leading zeros.

(e) Direct transcription of BCD codes between memory and

tape is effected by the RDH (read hexad) and PCH (punch

hexad) orders. To punch (or read) 9 characters, a 1 is

brought to bit 54 of u, and the source (or destination)

is given by field IV.

Example (v). Let (Bl)=l.
Then Bl RDB 1017 reads 9 characters

ineo 1017
Bl PCH SIGMA punches 9 characters

from (SIGMA)•

Both (B.) and (U) are destroyed by these orders.

The printer is for output only. The Print Matrix is

the name of the 128 consecutive memory locations reserved

for the printing of any ~ line., and for which one "print"

order is necessary. A 1 at position p315 causes the ~rint~ng

of character no. , at position 5 on the printed sheet.

t (1-108))

c (1-64)

l -·-
I ..
I

I P3, S I
I I
t -·

Words 1 - 64 Words 65-128

PRlN•
TEI.

The cfmlil11e of the ·f.t.rst w:ord of th.e .pr.int .matr'ix. t..s a.l!b:Ws'ra.;.

29

we

•

Example. ·To print in positions: l 2 3 4 5 6 7 106 107 108

The characters: B AF D c A
form: t I

1 2 3 4 5 6 7 • • • 54~ 55 56 ••• 106 107 108

c 0 0 0 l 0 0 0 0 1

B 0 1 0 () 0 0 0 0 0

c 0 0 0 0 0 0 0 l 0

D 0 0 0 0 0 1 0 0 0

E 0 0 0 0 0 0 0 0 0

F 0 0 0 0 l 0 0 0 0

Wotida 1 ... 6l} Words 65 - 128

Formats give the line spacing pattern to be fo 1 lowed; Class 5

orders specify address of first word in matrix and the format

be used.

The basic subroutines for the printer assist in pre-

paring e print matrix from words coded in the six-bit char-

acters corresponding to the position of a symbol on the

print wheel. In the case of certain symbols, including the

signs (+-)and numbers, these codes are identical with the

BCD form.

(f) BINDEC converts one number (T4) from binary to BCD form,

leaving the results in the T4 and T5. The above floating

point decimal format can conveniently be compressed to 18

characters by omitting "•", "E", and 11 T11 ;

to

+ x.xxx

~/
• • • x E + XJC T x

~~)x
PRINTER

OUTPUT

+ x x

T4 T5

30

The calling sequence is:

K: TRA BIND EC
K+l (normal return)

with two exit parameters O = floating point no., 1 = fixed

point number. A fixed point number is left justified and

terminated by a 1!;411 octal code ••

Thus 13 significant decimal digits are available. They

can be punched out as Flexowriter codes, or converted to the

print matrix form by:

(g) PRINTR which takes six-bit printer codes from a given

address and stores them in a given position of the print ma

trix, which is also specified. A single parameter contains

in packed form all the information required:

K: TRA PRINTR

K+l: (Pack) FwJtl Matr,• (l' bltsJ, Data toQ~

(15 bits), No. of symbols (9 bits), Type

position (9 bits).

K+2: (Return address)

Characters are taken from the left side of the Data Lo·

cation. Only 9 or fewer characters can be specified. In

case the six-bit printer codes and the BCD codes are not the

same, a more elaborate conversion routine is necessary. How-

ever, (f) and (g) are adequate for numerical output. The

final matrix is printed with a single "PRl" order (print

and space one line).

(1) Commonly "FWA" stands for "First word address". Similarly,
11 LWA11 for "Last word address".

Example {vi) To print out (w), (a floating point

number) with five places of decimals

(assuming no tag) in printer positions

9-20.

T4

z

T5

CLA

TRA

LUR

LLS

LUL

ORU

LB.$

TRA

OCT

LUR
LRS

TRA

OCT

PRl

w, U->T4

BIND EC
dl2, U->R (truncate)

d24

d6

a33 (insert deci-
mal point)

.t1'18, R->T4

PRINTR (mantissa)

010000000401001100

6

dl 8, R->T4

PRINTR (exponent)

010000000400302200

01000 (print)

The subroutine library will itself contain more elaborate

routines of the tFpe in Ex.(vi), but (a) - (g) are given as

fundamental building blocks, to which the coder can add with

the help of the manual.

The console typewriter can be used for direct printed

output, at about 10 c.p,s. It is controlled either manually,

or by the program; and is mainly used for checking purposes,

as discussed in the next lecture, together with the use of

the console controls.

32

Lecture 6. Miscellaneous comments on using the machine.

There is no "operating system0 for the machine, and the

coder is free to devise his own procedures at every stage of

problem solving. The mechanical details are simple but with

the option of using a number of coding aids, he can hand over

an increasing proportion of the detailed routine work to the

machine. The five stages of solution from problem analysis

oewa rds a re:

(i)

(ii)

(iii)

(iv}
(v)

Preparation of a logical flow chart

Preparation of machine codes in absolute
or APl form

Program assembly

Program testing

Program execution

and the main aids to coding are under headings (iii) and

(iv).

APl is a program of about 1000 orders, and is read into

the machine immediately prior to feeding in the symbolic ASS EM·
paper tape. It is technically a two-pass system, and in BLY

the absence of magnetic tape units the tape with symbolic Pl.OGRAM

codes must be read into the machine twice. In pass 1,

fields I, II, and III are decoded, B-modifiers and inflec-

tions are stored and a Symbol Table is formed associating

an absolute address with each Symbol that appears. Since

a symbol need not be defined until after its first appear-

ance, a second pass is necessary to fill in all the correct

addresses in Field IV. Various output options are provided,

an4 are controlled by Sense switches. The final machine

33

program can be punched out in a condensed binary form, and

it is automatically headed by a loading routine and followed

by a "stop" code, so in order to use it the programmer has

only to put the tape back into the machine and press the'

''load" key on the console, and then transfer to the starting

address. APl tapes are !!.2! relocatable, but with little

extra effort the coder can write "relativiaed" oode where all

transfers are made relative to (cc), and this amounts to the

same thing.

The pseudo-orders given for APl are a means of con-
'

trolling the assembly program itself, thus affecting the

final program only indirectly. They are not included in the

final output tape. They allow for input of numerical and

BCD data at assembly time, for the control of printed output,

and the allocation of symbols and storage. In particular,

it should be noted that a whole program can be written as a

string of octal numbers preceded by the OCT order, and this

is the form in which Library subroutines are written.

Library routines can be read in at any point in the pro

gram. They should be identified by the mnemonic code given

in the program abstract, either directly or via an EQU or-

PSEUDO

ORDERS

LI
BRARY
ROU·

der. No symbols in the main program, other than the subrou- TINES

tine name, have correspondence with any location in the

subroutine.

The attached example gives a short program in symbolic

form, its final absolute form and associated symbol table.

•

At the end of the first pass the symbol table can be ob-

tained, punched in binary form, It contains enough infor-

mation to allow additions to be mafte to the program at a

later stage without complete reassembly.

After assembly is complete, an at~empt must be made

to run the program which has been produced. The control

console provides a number of keys for actuating the machine,

and lights for observing its status at any time. The main

keys are:

1. CLEAR: which sets all 56 bits of each storage word
too.

2. LOAD: which causes a RDH order to be placed ia I,
and actuates the paper tape reader to place
the first word in 000108•

3. STOP: which stops the machine at the end of the
current order.

4. START: which sends control to (cc) for the next order.

The main lights are:

5. Control Counter ~ cc (15 bits)

6. Sense lights SL (1s·&1es)
7. Indicator lights IL (15 bits)

a. Instruction register I ·(54 bits)

Adjacent to or on the console are the line printer,

paper tape reader and punch, and the console typewriter,

which acts as an input and output device to all the fast

A and B series registers and the special 15 bit fast stores

(SL, IL, etco). It is possible to type octally into or out

of any of these locations, and to obtain a printed record of

all pieces of information transferred. A convenient way of

starting from a particular location is:

TYPE
WRITER

•

(a) Enter the location number in CC via the typewriter

(b) Press START.

Any number of events may cause the machine to stop.

Some may be important, and others the coder may want to
I

ignore for the time being. Tliere is an ''Ignore error stop"

switch which causes invalid orders to be bypassed when it

ts. set to ON. In addition, a stop may be caused by any of

the followiug ~ituation&:

(a) A programmed HTR or a satisfied conditional IF(XXX)HTR

(b) A "zero" order, which is effectively a UTR

(c) A 2-bit parity failure in memory.

(d) A divide check

(e) An input-output order waiting for the appropriate unit
to be switched ON.

(f) Depressing the STOP key.

Generally, the failure of a program to produce a des(red

result can be attributed to any one of the four main error

sources:

STOPS

(a) Machine faults such as parity failures1 1) ERRORS
(b) Typographical errors in data or program tapes.

(c) Arithmetic errors in the program.

(d) Logical errors in the program.

A full analysis of the detection and diagnosis of these

would constitute a lengthy treatise, but by observing some

general rules the coder may aim at minimising the occurrence

o f errors under each heading •

(a) Too little is known of the machine at the moment to be

specific on thi& folnt, but the nature of electrostatic

storage places a slight restriction on coding. It is

READ·

AROUND

ERROR

(1) i.e., an error in two or more bite in a word in storage. Single
bit errors are eorrected by keeping a number of "parity" check bits
in addition to the "working" information.

36

•

..

known that sensing a storage spot will disturb adjacent

spots on the surface of a storage tube, and the cumula-

tive effect of many read or write operations in one spot

can induce errors nearby. The upper limit to the number

of operations is between 250 and 500. However, each spot

is automatically regenerated about every 60 milliseconds,

which is the time taken to execute about 2000 orders. Hence

tight loops of 8 or less orders which may be executed more

than 250 times should be used with care. In critical cases,

the use of T-registers for orders or data, or the use of the

Repeat Mode 1 may avoid danger.

{b) The main purpose of APl, and the data input routines, is

to allow orders and numbers to be written in a natural and

easily recognised way. During assembly, apparent errors

will cause a printed comment on the output listing. In

doubtful cases, a NOP order is inserted in the program by

APl.

(c) and (d). At present, no help is given in detecting these

types of errors prior to execution. The coder must run his

program, and then see where it breaks down. The most useful

devices in detecting the source of an error are frequent

print-outs of intermediate results (which may be controlled

by Sense Light tests in the program, and suppressed when

it is working correctly), "Dump'' routines (which achieve the

same effect by modifying the program just before execution),

37

•

and "Trace" routines, which print ou.t the contents of the

arithmetic registers during the e~ecution of a particular

sequence of orders. The coder will add his own techniques

to this list. !he main point is that errors always occur,

and th~ etror detection techni4ues should be devised while

the code is being WT~tten. Standard Trace and Dump routines

a~e pert of the program Library.

One final point. A machine of this type is strongly

oriented towards "closed subroutine" programming: relativi

sation is easy, and communications between routines are

almost automatic. Any codeT is urged to take advantage of

this, and divide his progr~m into distinct, relativised,

closed subroutines operating, possibly, on a fixed common

data region. The reason is that check-out time is not a

linear function of the length of a program, and it is most

efficient to get many short programs working separately and

then fit them together to form a long one. Later versions

of the Assembly Program emphasise this technique •

38

•

A,n exam,eje of APl an4 absolute. codf:.!'Jk.

The problem is to calculate the surface area of the sphere

centered at the origin, with a radius vector gtven by (x, y, z)

where L(x))· (Bl) and y and z are stored in the two following loca-

ttons, •nd to store the result in location A.

The appearance of symbolic codes on the coding sheet is:

LOCATION SET u . ~OPERA~!ON !ADDRESS + MOD 1 AUX REMARKS
' .

I
""" ... t ORG I 1025 ... !

BEGIN z SB2 2, u .. > TS
~-·

Cl.A Ill + B2 + z

FUP u

FAD f T.S, u -> '!5

B2 i.F (NZE) TRA cc - 4, B2 - 1

T5 I FMP FOUR PI I

STO A I

FOUR PI DEC 12.5663706

A EQU d566

I END
!

I
The output of the assembly program is:

Location Instruction --
01025 00 44200 05 4000 00002
01026 00 50000 00 0006 00000
01027 01 10600 00 0000 00001
01030 01 10400 05 0000 00005
01031 42 05050 62 4001 77773
01032 05 10600 00 0000 01034
01033 01 20000 00 0000 01066
01034 01 14441 76 6517 10652

Note that there is an exact correspondence between each exe •

cutable order and the absolute codes; use of APl does not affect

execution time.

39

.

	Lecture 1. Order and Number Structure
	Lecture 2. Basic Operation Codes
	Lecture 3. Control Orders and Fields I, III, and IV
	Lecture 4. Subroutines, and some special registers
	Lecture 5. Input and Output procedures
	Lecture 6. Miscellaneous comments on using the machine
	n example of AP1 and absolute coding

