Rice Institute Computer Project
Programming Memorandum i
July 1, 1959

Preliminary Notes on Programming

This is an attempt to summarise in as short a space as
possible the basic features of the computer and should be used
as & complement to the note on APl, the assembly program; The
Computer Manual remains the basic reference work, but it is
hopad that most pieces of coding can be successfully tackled with
an understanding of the following notes, and that a full study cf
the Manuval can be left to a later stage}l)

Our experience has shown already that the machine codes, al-
though flexible enough to meet the demands of the most ingenious
programmer, bewilder the newcomer by sheer proliferation, and it
is correspondingly difficult to gain from the Manual an idea of
the relative importance of various commands, ©Thus the mnemonics
of APl put a subset of the machine orders at the programmer's
disposal, and this Note only deals with such brders,\ Similarly,
the Trapping feature of the machine is not discussed here, and Q?
the use of tags is confined to the arithmetic tag‘indicatsrs;
Input and outpuf is dealt with by subroutine where possible, and

gome subroutine conventions are outlined, No magnetic tape orders

.
~.

are discussged,

(1) By «“hich #ime the Manual itself may have caught up with the most
recent changes in the machine, In points where the three works are in
conflict, the historical sequence of writing gives a clue to the pro-
bable accuracy of each acccunt:

September 1958: Computer Manual

January 1959: APl - A Basic Assembly

Program ‘
March 1959: Errata and Addenda tc the
Manual :
(1)

Lecture 1, Order and Number structure,

A definition of terms is appropriate, The machine is binary
so that convetsion between the base of 10 and 2 has to be pro-

grammed, It has electrostatic storage with an approximate access

time of 8 - 10 microseconds independent of the storage location
except for seven special "fast" stores with access time of 1
microsecond; There are 8191 Wwords in storage, each of 56 bitsxl)
Two of these bits are used as "tags", so it is correct to regard
both imstrustions and numbers as 54 bit words with a "label" of
0, 1, 2 or 3;2)Un1ess stated otherwise, the label is understood
to be 0; The words in storage are numbered serially from 0000

to 8191 (decimal) or 00000 to 17777 (octal), and a word is re=
ferred to by its location number orx address; Given M, an address
in storage, the contents of M are denoted in what follows by (M);
Given X, a word in storage, the location of X is L(X);

Thus, L((M)) = M;

The machine operates in the serial mode, so that orders to be
obeyed successively follow one another in storage, unless the first
is a transfer order; However, the machine is parallel in the sense
that all 54 bits are transferred from one register to another in a
single step, along 54 separate lines;

Logically, an overall scheme of the machine divides into

five sections:

1) i,e,, A digit taking only the values O and 1,
1

(2) i.e., Corresponding to the combinations 00, 01, 1Q, 11 for bits
55 and 56 (Tags 2 and 1 respectively),

2

Input |-G == ===~

A Y
[\
. R F—
T 1
Storage i . Arithmetic Unit§€“’ Control
! 1 | i Unit
{
]
/
output _ . = L .- -’ £ -~ Control paths

¢ Data paths,

(1)
The Arithmetic Unit has eight registers: U(universal), ARITH=

R(remainder), S(storage), Z(zero, a "virtual" register of METIC
'54 0's) and four Mfast" reglsters, T4, T5, T6, T7. Each oRET
has a regular machine address, i,e,, 00001, 000C2, 00003,
00000, 00004, 00005, 00006, and 00007 in the order given
above; In addition to their special purposes they can
act a8 "normal" storage 1ocations; Their function is dis-
cussed in lecture 5; A distributor acts as an "exchange
point" between all eight registers, and between storage
and control unit;

We consider the (k + 1)-bit register whose digits BINARY
are given by msmlma.;.mk. Then 1if ms=0, the number which 32;::'
this represents is determined by:

M= 29 (m12-1 + m22'2 + ..;+ mke'k) (1)

where 2% is some scale factor, Thus, 1f ¢ <0, M is a
fractional number, and if q > k, M is an integer, On
"fixed point" orders, the coder can control q so that any
accuracy in M can be attained, although the machine orders

proceed on the assumption that q = O, If q # O, it can be

(1) The word “"register" is generally used to denote a storage position
with some specialized purpose,

3

adjusted by the arithmetic shift orders,

is sufficient to determine the shifts necessary for cor-

rect adjustment of q before any operation, On "floating

point" orders the machine controls and adjusts q automa-

tically. The first six bits of each numerical word are

used to give a number E (the exponent) from which q can

be found, The remaining 48 bits give M, the mantissa,

If m, = 1, the number is negative, 1Its magnitude

is found by first complementing each bit and then eval-

uating the new number as in (1l); e.g., let q=k = 4:

m

represents +6
represents -(00110) s =6

represents ~(00001) = -1

s T1 Tp By Ty
then O O 1 1 O
1 1.0 01
1 11 0
1 1 1

represents -(00000) = O,

There are two zero's in the system (given by all 1's

or all O0's), As a consequence of this, addition must be

performed with "end-around" carry:

-6: 11001 -=5: 11010
add -1: 11110 +7: 00111
~fcarry —< 1] 10111 ~1]0 0 0 0 1
] - - RN
Answer -7 11000 +2: 00010 ,

A formal definition,

cluding negative numbers,

corresponding to (1), but in-

can be seen to be:

M = 2% (-ms + m

o=l 4 o2 “ky

5 +...+(mk+ms)2

The form of (1)

ONE'S

COMPLE-

MENT
MNETATION

(2)

. The form (2) requizes |M|<2q. Since in an addition opera-
tion this limit may be exceeded, an extra bit is provided
to detect when "overflow" has occurred, This is placed

between the sign and bit 1,

Bg Tp By Tp M3 My

+10 6 01 0 1 O
+ 7 0 0 0 1 1 1

+17 0 1 0 0 0 1
Overflow is sensed when moé m. It can be corrected by
a right shift and an adjustment to q, Since U is the
"accumulator", it is provided with two overflow bits,
e, and m for exponent and mantissa respectively()The

diagram shows the conventional labelling of bits in U,

. Other registers are similar, without e, and m i
E&ponent R Mantis§§:_ I
eglepl® e;fe3§e4 e5 ol 1/%2] o0 146 %47

By convention, the mantissa M is evaluated by (2), with
q=0, k=47, The exponent E is evaluated with q=k=5, The
value of a floating point number is M;28E o

Orders are sequeneed by taking successive words COUTROL
from storage to the instruction register, I, in the vuRz
Control Unit, Each order is a 54 bit word, i,e,, a
word of 18 3.bit triads, The order is decoded in four
fields, described below,

Two series of "fast'" registers are employed: the

arithmetic or A series mentioned above, and the B series

. (1) In transfers to U, e, and m, are set equal to e and m_, respec-

tively., 1In transfers from U, s and m, are igﬁored,
5

of 15 bit registers, which form part of the control
unit, There are eight of the latter, referred to by

the symbols CC (control counter), Bl, B2, B3, B4, B5, B6,
and PF (pathfinder). Bl through B6 are conventional
index registers (Lecture 3), PF and CC are also index
registers, but have additional functions (Lecture 3),

The diagram shows the sub-fields of I in terms of its 18 triads:

12 > 45/61718/9/ 10/ 11112113 14115]16117118 |

\\ﬁ ., N e AT }

Wy et Ty ~-. /’/M”“““ -
Field F?QId Field F131d
B i I11 v
SETU OPN AUX ADDRESS + MOD,

The order of decoding is:

(A) Field I (SETU) brings an A or B series register to U,

(B) Field IV (ADDRESS + MOD) brings a number to S,

(C) Field 1I (OPN) causes an operation to be performed on
one or more of U, R, and S, generally leaving the re-
sult in U or U and R or storing the result in memory,

(D) Field I1I (AUX) results in some auxiliary epezation
being performed,

On completion of the order, (CC) gives the address

of the next order to be obgyed.

Lecture 2, Basic Operation Codes,

From the Note on APl, it is seen that an order is written
symbolically in four fields on the coding form, corresponding
to the segquence (ACBD) given at the end of Lecture 1, A
fifth field, LOCN, gives the address of the order itself for
cross referencing purposes, Any field, except OPN (Field II),
may be blank, We summarise OPN first, assuming SETU has placed
a number in U and ADDR + MOD has brought a number to S, The
first triad of Field IX gives the class to which the order be-
longs,

For each order we give its name; its mnemonic abbreviation;
and its function, Let Xy denote the mantissa value of (X),

XE the exponent value (see Lecture 1) and X_ the floating point

_ F
value = XM.BQXE. Let a prime denote the value after the opera-

tion has been performed. Let @ stand for the constant factor
2'47. When a word is regarded as a pattern of bits, rather than
as a number, the bits are labelled 1,2,3..;54 from left to right,
Then any sub-field is indicated by a subscript notation, e;g.,

(X)10-13 means bits 10,11,12,13 in location'X,

Class o

0: See Lecture 3,
SONTROL ‘
‘las In all arithmetic orders U and § areiinVleed, R is also
i ; ° ugsed in multiplication, to hold the low order part of the pro=-
ARITH-duct, and in division, to hold the low order part of the divi-
{ETIC

JRDERS

dend before the operation, and the remainder afterwards,

Floating point addition and subtraction may shift part of the

7

smaller number into R, Floating point results are normalised

80

Rounding on multiplication is controlled by a switch on the

.

that 1> | v, | > 256"

console. Monwa&ly, no rounding takes place. After floating

point orders, ifu <-32, exponent underflow has occurred and

-

U is cleared to zero. If exponent overflow occurs, an indica-

tor is turned on,'but further action is up to the coder, Divide

che

cks, caused when |S| < |U| on fixed point orders; or poesiew

bly when a non-normalised floatiﬁg~point divisor is used, cause

a machine halt, or’ﬁay be ignored, depending on a console switch,

There are two groups of orders:

FIXED
20INT

FLOAT~
ING
POLNT

Class 2
STORE
ORDERS

lass 3

Class &
SHIFTS

Multiplication; MPY; Uy+ORy=U, X Sy, Rp=S
Division; DIV; Uy +ORE /Sy =[U +OR, 1/8,, [RY|<[S |, RE=S

Multiplication; FMP; U!
] 3 . . L} ; [] : 1] ¢ 1
Division; FDV; Ug+ QRF/SF={UF+9RF]/SF,]RF'<SF, Ul=R

Addition; ADD U'sU +SM, ut=S

ETE
Subtractiony SUB U MauM M’ UE=SE
E

E-E

Addition; FAD; U'+GR'=U +85 U'_=R!

F F ETE

. .yt 1 - R!
Subtraction; FSB; U F+GR _UF SF’-E E
' . v t [

F+9RF_UF¥18F, UEzRE

E

Let V be the final address formed in Field IV, Then we have:

Store; STO; (V)'=(U)

Store sum; STS§ (V)'_UE-PSF-GR'F

Replace left half; RPL; (V)"(");-zv(v)ze-sa
Replace right half; RPR; (v)'=(v)1_27(u)28_54
Relace "M" digits; RPM; (v)'z(v)1_59(u)40'54
There are no orders in Class 3,

All these orders depend on the number, V, formed when

Field IV is decoded, Only U and R can be shifted, Logical

shifts treat all 54 bits, Arithmetic shifié treat man-

tissas only, and have the property that a shift left of
1 place multiplies a'number by 2, and a shift right of

1 divides it by 2, provided, ce double length shifts,

that the sign bits of (U), and (R)M are equal.(l)

We can shift U, R, or both U and R (choﬁgh not

connected) as follows:
//”””““ﬂ\\
—- o (—aright - ~aleft
g .
Arithmetic: U: e leglep | e 65 m&_mo{m1 coe|Dyg

T unchanged lefé right

The sign bit determines whether O or 1 is brought into the

vacated position, Except for the omission of the over-

flow bit, R is identical with U, for shifting.

R e~ TN —

Logical: es eo 31 acq‘es ms mO ml QOO.m47

t U

The overflow bits are ignored; everything else shifts
right or left, Empty spaces are filled in with zeros,
The end bits are lost,

If U and R are defined to be connected, the following

shifts exist:

Arithmetics m mo ml se e m47 m m m s 47

left ‘/\"\" Mﬁ\/ ¥ight

The exponent bits are ignored; m of R is skipped; m of
U £ills in, Um determines whether O or 1 will be brought
to g, {on right shifts) or Rﬂ‘s (on left shifts),

&ogical

e

8

e

0 el see 65 ms mo ml PRPIPY m47 es el seoe es ms ml ..: m47

“/N\~“~/\~13 N AN A N N A \,/N*

R

The overflow bits are ignored; spaces are filled by zeros,

(1) And provided significant digits are not shifted out of the
register,

9

Class 4
SHIFTS

Class &
B=-REGISTERS

Class 5
LOGICAL
ORDERS

In 38 class 4 order, the number V gives the number of |

places to be shifted, and is evaluated modulo 128,

Symbolically: Arithmetic: UMR, U mantissa right; UML,

U mantissa left; RMR, R mantissa right; RML, R mantissa
left, DMR, double mantissarright; DML; double mantissa
left, Logical: LUR, lggical U right; LUL, logical U
left; LRR, logical R right; LRL, 3logical R left; LRS,
long right shift; LLS, long left shift,

We also have the bit count: BCT; a logical shift of
R right V places is made, and tﬁe number of ones shifted
off the end is added into U,

In class 4 we can modify the contents of any B series
register, using the 15 bit number V,
Set control counter; SCC; (cc)'=v
Set B register #1; SBl; (Bl)'=V
etc,
Add to control counter; ACC (CC)'=[(cCC)+V]

mod 215 *

Add to B register #1; ABl; (Bl)'=[(Bl)+V]mod 215 .

The basic three function tables are:

AND ORU 5YM
(u)ojoo (u){o| 0 1 (u)joj o1
1‘ 0 1 1{_l_l_ 1! 10

01 01 01

(s) (s) (s)

The complement tables are obtained &f the OPN code is

preceded by a "-" sign, Extract (XTR) is given by

10

Class 6
INPUT-
OUTPUT

Class 7
SPECIAL

[N
i~~~

= e O O o= O O |w
N”

(v) (u)!

t,e,, R "masks"
S into U,

= o o= O O O O |wa
= O pt O = O = O
P e = O O O

These orders are best understood by their commonest uses,
ARD uses a "mask" in S to clear portions of U to zero,
ORU places the conten&ts of S into the corresponding por-
tions of U; SYM adds two numbers bit by bit without
carry and can be used for the exact comparison of two
numbers; XTR places a field from S, determined by a
mask in R, into U without disturbing the rest of U, Note

the particular case of ORU, namely Clear and Add; CLA;

(u)'=(s).
See Lecture 5;

One special order is provided, No Operation; NOP; Field
Il has no effect, The other fields may be effective,
however, and the full "no operation' must be written:

U NOP 5 .

11

Examplesﬁl)Let X1, X2, X3 be APl symbolic locations

containing floating point numbers ®yy ¥y and 33

(i) To form X +Rp+X and store in X1:
CLA X1 x1—>U
FAD X2 x1+32—>U
FAD X3 x1+x2+x3—> U
s§TO X1 U —> X1
(i1) To form x12+ xaaand store in T4,
CLA X1 n=>U
FMP U %% —>u
ST0 T4 U —->T4
CLA X2
rMP U
FAD T4
STO T4 X 2+x 2 —>T4
1 2
. (iii) To store the exponent of Xy in the exponent posie-
tion of Xy o
CLA X1
LUR d48
LYL d48
STO T4 (x1)E ~>T4
CLA X2 4
ADD T4 Fixed point add,
STO X2 (:u)E(xe)M -> X2,

(1) In the examples given here, the first two columns give actual
code, The third column of explanatory remarks is ignored by
the machine,

12

Lecture 3, Control Orders and Fields I, II1I, and 1V,

APl allows Field IV to be determined by a symbolie
or an absolute (decimal or octal) address; 1f symbolic,
it is translated into an aboslute code by the assembly
program, In genefal, the contents of this address are
brought to S by the decoding of Field 1V, and it then
constitutes one of the operands in Field II, Thus,

CLA X2 brings (X2) to S, then sends(S) to U

FAD X3 brings (X3) to S, then floating adds

(8) to (U) and leaves the answer in U,

LLS 5 brings (00005) to S, then shifts
(UR) left logically 5 places,

Thus there is some redundancy in Field IV, and it is
shown later how to eliminate this,

The largest set of orders is Class O, Control, APl
provides a small subset of these, in mnemonic form, They
are of two types:

Unconditional Transfers which cause a break in the normal

serial sequencing of commands:

Transfer; TRA; Take the next order from the address given
in field IV

Halt and transfer; HTR; Stop, then proceed as in TRA when
the "start" key is pressed

Skip; SKP; the next order is omitted,
Jump; JMP; the next (X) orders are omitted, where X is

the 15-bit special register 777728.

P 13

Class O
CONTROL

Conditional Transfers, which cause a break in the se-

quencing of orders if some condition is satisfied; other=-

wise normal sequencing occurs, The general form is
IF(XXX)TTT where TTT is one of TRA, HTR, SKP, and JMP;
and XXX is the mnemonic for a condition given below;
Generally this depends on (U), but it may refer to the
sense light register 777718, or the indicator register
777758’ The SKP and JMP transfers are dependent on
{UF-SF], which is placed in U before the test is made
(note that (R) is lost in this case), S is always
cleared to zero; The tests on (U) are then:

ZER; (U)=07? POS; (U)> 0? NEG; (U)< 07
wzE; (U)4 02 PNZ; (U)> 07 NNz; (U)< 02
EVN; Is the last bit of (U) = 0?
ODD; Is the last bit of (U) = 12
NUL; Are all 54 bits of (U) = 0?

The tests on sense lights specify a 15-bit pattern in
Field IV; they do not affect the status of the lights:

SLN; Are the sense lights denoted by 1l's in Field IV
ail oN?

SLF; Are the sense lights denoted by 1's in Field 1V
all OFF?

The tests on the indicator register are as follows;

they also turn off the corresponding indicator:
MOV; Has mantissa overflow occurred?

NMO; Has no mantissa overflow occurred?

EQOV; Has exponent overflow occurred?

NEO; Has no exponent overflow occurred?

14

is ¢

TGl; Is tag indicator no, 1 ON?
IG2; Is tag indicator no, 2 ON?
TG3; 1Is teg indicator no. 3 ON?
NTG; Are all tag indicators OFF?

Example (i)

(i)

IF(NEG)SKP X1

the following order, Otherwise per=-

form the next in sequence',

IF(NMO)TRA THETA : "If no mantissa
overflow has occurred transfer to
the oxrder in location THETA,

Ctherwise, proceed serially."

Of the nine triads in Field IV, 5 specify a 15=-bit

address, Before using the address, it may be modified

by the (modulo 215) addition of one or more of the B

sevies registers, Eight bits in Field IV are used to

specify which B registers to use,

Symbolically, the

notation illustrated by "X5+B1l4+B6+CC" is used, An ex=

ample shows the power of B-moﬂification.

Example (iii) Find y = L x, where x, are stored in con=
i=1l

secutive locations starting in XF,

300

to do this is:

START CLA XF
FAD XF+1
FAD XF+2

- e a0 e A

FAD XF+¢299
STO Y

s"If [UFaxleg’O omit

One way

Field
v
B~MODIFI=-
CATION

This takes 301 orders, A better way, taking 11 orders,

15

START CLA Z

STO T5
SBl 4299
suM CLA T5
FAD XF+B1
ST0O 1I5
ABl 77776
cLA Bl
IF(NNZ)TRA SUM
CLA T5
STO Y,

Any number of B registers may be used, They can
be written down in any order, connected by '"4" aigns;
The description of the machiné given up to this
point is sufficient for many tasks and for practice
the coder should try a few examples with the facilia-
ties at his disposal; It will be seen that with this
command structure only marginal advantages can be
gained over a comparable machine such as the IBM 704,
The rest of this lecture intrcduces refinements whick
uee the lomg instruction word to add to the power of
a single order to an extent which, in practice, reduces
the length of a program by a factor of two or three,
Additional logical features further increase the flexi-
bility of the commands, The reader is advised not to
go beyond this point until he is £fully familiar with
the material to date,

16

As alfeady noted, CC contains the address of the
nexﬁ order to be executed at the end of any given order,
The next order will normally start off by adding 1l to
(cc); However, any transfer (HTR, TRA, SKP or JMP) will

further modify (CC), In addition, on unconditionsal

transfers (Class 0) only, {(8C) —> PF before CC is modi-
fied a second time; Hence PF contains a record of the
location following the one from which transfer was made;
In other respects, PF acts as a normal B-register, Note
that unconditional transfers also exist in class 4:

§CC X¥Z is equivalent to TRA XYZ

ACC 1 is equivalent to SKP
But in the class 4 orders, (CC) does not go to PF;

So far, it has been assumed that (U) remains undis-
turbed between orders, or is initially cleared by the
CLA order; However, Field I allows any one of the 16
A and.B series registers to be brought to U, When a
15-bit register is brought, it goes to & bits 40-54,
~Bits 1-6 are set to 0, and bits 7-39 are set equal to

bit 40, i,e, bit 40 propagates to the left in (U)M. Sym-

bolically, if SETU is left blank, U is undisturbed (except

by CLA), but any other special symbol in this field causes

that register to come to U, After that, (U) may be fur-

ther modified by a "-" or the absolute value "|" signs in

Field I. To change the sign of (U), only the mantissa is

complemented,
17

cC
AND
PF

Field

SETU

Examples (iv) B4 ADD B5 "“PFixed point addition
(B4)+(B5)"
-|T7} MPY PQ "Fixed point multiply
-(PQ).|(T7)| "

-Z AND K "Mantissa of (K) —> U"

So far, & bits in Field IV are not accounted for, Iwe Field

of these are used for sign inflection as in SETU, and are v
IN-

applied to (S) immediately before decoding the OPN field, FLEC-

Symbolically, an obvious notation is used, Another bit TIONS

is used to indicate indirect addressing, In this, if the
final address formed in Field IV is W, the number brought
to § is not (W) but ((W)Iv), assuming (W)Iv does not con=-
tain an indirect addressing bit, Symbolically, a "*% "
causeé indirect addressing to take place, As a final in-
fleetion in this field, the coder has the choice of bring-
ing not (W) but the 15-bit number W to S, This is con-
trolled by the "numerical" bit and is set symbolically by
the lower case "a", By means of "a", unnecessary accesses
to storage can be avoidedgl)lt will be seen that decoding
the ADDR+MOD field is a complex process; For full details,
see the Computer Manual; For further details on symbolic
forms, see the Note on APl,

Example (v) Suppose (00025)1_39=z, (00025)40_54=00061

Then or4 00025 brings 0000...61 to

CLA -00025 brings 0077 ...16 to
CLA *00025 brings (00061) * to
CLA a00025 brings 0000,..25 to

[I~ I — I |

(1) This is sometimes called immediate addressing,

18

¥

At the end of the operation, without loss in time, Field

the coder can call for one of the following additions 1rr
‘ AUX
or transfers to take place,
Operation Code Ezanple
Store U in some A or B register U—>A or B U->T7
Store R in some A or B register R~>A or B R->CC
Increment & B register by + 1 Bi+l B6+1
Increment a B register by
+(77772)g Bi+X PF+X
Send the final Fileld 1V ad- :
dress from I to a B register I->Bi I->B3.
Note that in some cases AUX may effect a transfer of
control, Symbolically, it is written after Field 1V,
This completes the description of the inmstruction
word, Its main sub-fields are summarized in the diagram:
Triad {1 2|3 4 5 6 7|8 9!10 11 12 13:14 15 16 17 18 |
\ [\ [(WY \ J
FIELD FIELD FIELD FIELD Address
1 I1 I11
SETU OPN AUX Modifications
Inflections
Example (vi) We can rewrite Ex.(iii) as:
START Z SBl d299, U->T5
CcLA -a2
STO 77772 (increment regis-
TS5 FAD XF+Bl, U->T5 ter)
Bl IF(PNZ)JMP Z, Bl-1l
T5 STO Y
nA L

. Lecture 4, Subroutines, and some special registers,

It can be seen that any arithmetic task and many SUB=-
simple logical tasks can be accomplished by a string of ROUTINES
orders in symbolic or aboslute form; Such a string is
called a routine or program, The routine uses pieces of
data from storage and places its results back in storage
and it is convenient to think of a routine for performing

a specific task as a single logical unit, It is then called

a subroutine, An example: The string of orders which takes

(T7) and replaces it by A/(T7) would be a "square root sub-
routine’”, This idea is the most important programming
device,

Consider finding y = ,\/ Xy + ,\/xe +,\lx3. We could
write, assuming L(x1)=X1, L(xa)axz, and L(x5)=x3:

START CLA X1, U—=>T7

A

T7 STO T6
CLA X2, U-=> T7
AN

T6 FAD T7, U-=> T6
CLA X3, U-> T7

A
T6 FAD T7
STO Y

where ZX stands for the N orders of the square root suba
routine, Thus a@glculating y requires 3N+7 orders, Now
suppose the order TRA PF is added to the end of
[\ to give /\', Then we could also write:

® 20

START CLA X1, U->T7
TRA SQRT
T7 STO T6
CLA X2, U->T7
TRA SQRT
T6 FAD T7, U->T6
CLA X3, U->T7

TRA SQRT
T6 FAD T7
STO. Y

N
where SQRT is the symbolic location of the first order in
/\'+ This method requires N + 11 orders to find y, so is
more economical provided N > 3, which is the case, Zx is
an example of an open subroutine, Zk ' is closed; The lat-

ter are most commonly used,

The commonest description of a computation is by LIBRARY
' SUB-
ROUTINES

means of a flow chart or block diagram, 1In it, a single

"block" may stand for a subroutine which may itself be
described by a flow chart, so the complete description is

a recursive process, running to many f£low charts, in which
only the simplest can lead to direct coding, In mathematical
problems, certain basic flow charts are common to many dif.
ferent calculations, and the whole process is simplified if
the commonest functions are coded once and stored as a
library of closed subroutines, These are stored on paper

tape, Later, they will also be on magnetic tape,

21

The problem of communicating with library subrou-
tines arises, Obviously, the less the coder has to re-
member about the subroutine the better, He should know
what it does, and (analytically) how it works, He should
know which fast registefs it uses, and where it gets its
data and where it stores its answers, But it should not
matter where it is in storage or (in detail) how it is
coded, Most of these requirements can be met by adopting
certain conventions for library program usage, and later
versions of the Assembly Program will further automate the
comnunication between routines, The present conventions are:

(L) A1l library programs are completely "relativised"” and CONVEN-
may be translated to any part of the main store in sin- TIONS

gle blocks, FOR

(11) They may use any fast registers, and the coder must SUB~-
first save those he doesn't want destroyed., Generally, ROUTINES
a subroutine will use the T's in the order T4, T5,

T6, T7; and the B's in the order PF, B6, B5, B4, .,.Bl,
(iii) Parameter values and arguments can be given in two ways:
(a) By placing ihem in the T's or B's (not U or R or S)
(b) By placing them in a "calling sequence" following
the transfer order in the main routine, so that the
subroutine can address them relative to PF; i,e,,

we have:
TRA SUBR CALLINGl
((PF)): (1st parameter) SE-
((PF)+1): (2nd parameter) QUENCE
e=w @tC, ===
{((PF)+n-1): (nth parameter)

22

The user must, of course, follow the choice of para-
meter storage made by the writer of the subroutine,
Note that a parameter need not be a true argument,
but may be the address of one, or the address of the
address of one, etc,, thus using the Indirect Addres-
sing option,

(iv) Output values can be placed in T's, or B's, or in the
calling sequence, or in the addresses given in the cala
ling sequence, as in (iii),

(v) The exit order(s) from the subroutine always send control

~ to the first word after the end of the calling sequence;
i,e, (PF)+n for an n-word pavameter list, If there is
in fact a chotdce of K possible exits, then k, the exit
parameter is stored in PF on leaving the subroutine,
This gives the user the choice of acting on error con-
ditions or special cases or ignoring them, or selecting
the one he wants without lengthening the calling
sequence.(l)

(vi) Transfer to a subroutine is normally made with the TRA
order, thus setting PF correctly, Other unconditional
transfers use SCC or ACC,

(vii) If a subroutine uses the Trapping, Sense or Mode reglsge
ters (other than as input or output parameters) it must
restore them before the exit order(s). The Indicator, X
and PF2 registers must be saved (if necessary) by the

user,

The following remarks apply to the special 15-bit fast SPECIAL
REGIS~

registers, 777704 through 777754, PF2(77770) receives .
TER

(cC) before any transfer is made, otker than normal se=-
quencing, Its main use is in error diagnosis, SL(77771)
is the Sanse Light register, corresponding to 15 switches

on the machine console, Each switch has 3 positions: ON,

(1) The writer of the subroutine can force the issue, if he thinks
there are some conditions the user can never foresee and never ignore,
by giving an extra return position in the calling sequence, but this
gives rise to undesirable complications in the syntax of the coding
language,

23

NEUTRAL, OFF. In the neutral position, it is under ma=-
chine control, and can be turned on and off by the pro-
gram (SLN, SLF). Otherwise, it is fixed in the ON or

OFF position, and can only be interrogated by the program,
To each switch corresponds a light, which is on when the
switch is ON, The words "switch" and "light" are used
synonymously, X(77772) is the increment register, used in
Field III and JMP; ML(77773) is the mode light register,
normally set to Z, The mode lights .control the internal
functioning of certain orders, It is possible, by turning
the Repeat Mode light on, to suppress the normal advance
of control and repeat the following order until some test
is satisfied, or until a labelled number enters the Arith-
metic unit, when the Repeat Mode light is turned off;

Example (i) To find the address (in B2) of the first non-
zero word in memory,

SB1 1
ERM Enter Repeat Mode
Z IF(NZE)SKP Z+Bl, I->B2 1Ig=(z+(B1))=0?
300
Example (ii) To form the sum 1§1 xi(Lecture 3, Ex.(ii1) and

, (vi)),
Assume that L(xi) = Xl41-1, Let (X14+4d299) have
Tag 1. Then the program is
SB1 1
z ERM ,U->TS
5 FAD X1l+B1l-1, U-DT5

24

i

The !rapping Register Th(7?774) is not discussed here. ARITHa
METIC
TAGS

It is ineffective provided the Erapping Mode Light is off.
The Indicator Lights IL(????S) include exponent overflow,
mantissa overflow, and arithmetic tag indicators no, 1,
no.a; no.5.‘ The latter are turned on and when a tagged
WOfd eﬁtérs tﬁe»arithmetic unit, théy are tested and turned
off by ﬁhe cléss 0 ofders (Lecture 3); The Computer Manual

shows how tags can be placed on numbers in storage., Lecture

5 shows how tags can be placed on data by the input routines,

25

Lecture 5, Input and Qutput procedures,

Offaiine

Paper tape readerl Flexowriter

AV4

Storage |—& >—| Arithmetic unit|&——-{Control unit

Vo \V/ W

Line printer Paper tape punch | console cypgyriﬁer‘ lcQBaaie;

The diagram shows the input-output units currently INPUT
AND

included in the machine schematic, Note firstly that out- ’
OUTPUT

put via the iine printer is independent of the arithmetic
unit, so this interrupts computing only while the print
order is initiated; Both the paper tape reader and punch
disturb U, R, and S when they are used; Paper tape 1s pre-
pared, reproduced, and transcribed to printed form by the
off-line Flexowriter; It is the primary input medium, and
the only permanent storage medium, but apart from this it
is much inferior to the printer for putting out information:
it is punched by the machine at around 30 characters per
second, while the printer operates at up to 1000 c.p;s.

A character on paper tape is represented by a six- PAPER
hole code (except for 7-hole control characters, which axze TAPE
not read by the machine), which is directly translated in-
to a six-bit Binary Coded Data (BCD) form by the machine;

All other translations have to be programmed; For paper
tape alone, subroutines are provided to convert from BCD
form to binary numbers, and vice versa; Numbers are read in

either 1in fixed or floating point decimal, or in octal form,

26

Each number is stored in one location, and numbers are de-

. limited on tape by one of the separating characters (~)

» (comma), "tab" (tabulate), "cr" (carriage return).(l)
The primary subroutines are then:

(a) PDECIN: read one decimal word and leave it in binary

form in T4, Floating point numbers are identified by a

decimal point, All others are converted as fixed point

integers and then shifted arithmetically, The number

forms are:

4+nn ,,, n,om,,.mE + ee T t, (floating point) DECIMAL
4n0n ,,, nB +8s Tt (fixed point) 1Hput
T indicates a tag t(=1,2, or 3); E a decimal power of
10; B a shift left (+) or right (-) which takes place

‘ after conversion, Floating point numbers are normalised.
Fixed point numbers have Z expomnent, Excessive digits are
ignored, so a number should have less than 15 significant

digits, Spaces are ignored,

Example (i) A typical data tape, with 3 floating point and
2 fixed point numbers, may be:

12., “’005E3’10026 E"?, 585, Ocr

The calling sequence for PDECIN is one order:

K TRA PDECIN
K+1 (point of veturn after executing the sub-
routine)

Normally, on returning from the subroutine (PF)=0 and (T4)
is the converted number, An error in the tape (an 1llegal char-

acter or a number our of range) will set (PF)al and (T4)=0,

‘ (1) The octal codes for these are respectively 37, 22, and 24,
27

Example (ii) A program to read and store 5 numbers in
’ (B1), (B1l)+1, ...(Bl)+& is

SB2 4
TRA PDECIN
T4 STO Z+Bl, Bl+1l

B2 IFYNZE)TRA CC-3, B2-1
(b) POCTIN: This, by analogy with PDECIN, reads in one octal
number (fixed point form only, not more than 18 digits) and
stores its binary @quivaleﬁt in Té; An initial "=" sign on the
number complements the finai word after conversion and shifting,
(e) PDECEX: This is the inverse of (a). A number with 2
exponent is4converted as an integer, If non-zero exponent,

the floating point form is

DECIMAL
OUTPUT

omm,,,. mE +eeTt
The number of places punched after the point is
given by (B6), the last place being rounded in the usual decimal
sense, Thus the inverse of Ex,(ii) is:

Example (iii), To punch 5 numbers in (Bl), (Bl)+1l
ses (Bl)+4 rounded to 3 decimal

places:
SB2 4
SB6 3
cLA Z+Bl, U=>T4
TRA PDECEX, Bl+l
7 pcH coMMA (punch ","

and space)
B2 IF(NZE)TRA CC-4, B2-1

where (COMMA) 74377621400,,.0
and (T7) = 0000290%004,.0
The PCH order punches & rows of koles, which position the

Flexowriter carriage in "upper case'; print ","; return to "lower

case" and "space" one position, ,
Example (iv) The output from Ex.(iii) would read:
1.200E1, -5,00El, 1.026E-7, 96, O
28

(d) POCTEX: This is the inverse of (b)., 18 octal digits

are punched, except for leading zeros,

(e) Direct transcription of BCD codes between memory and
tape is effected by the RDH (read hexad) and PCH (punch
hexad) orders, To punch (or read) 9 characters, a 1 is
brought to bit 54 of U, and the source (or destination)
is given by field IV,

Example (v)., Let (Bl)=1,

Then Bl RDH 1017 reads 9 characters
into 1017

Bl PCH gsigMA punches 9 characters
from (SIGMA),

Both (R) and (U) are destroyed by these orders,
The printer is for output only, The Print Matrix is PRIN-
the name of the 128 consecutive memory locations reserved TER
for the printing of any one line, and for which one "print"

order is necessary, A 1 at position P causes the printing

355
of character no, 3 at position 5 on the printéd sheet,
t (1-108) —>
c (1-64)
1
| 5,5 ? }
[}
TTTT] 11
Words 1 - 64 Words 65-128

The choice of the first word of the print matrix is arbitrarsy,

‘ 29

Example, ‘To print in positions: 1 2 3 4 5 6 7...106 107 108

The characters: B AFD ¥ A
we form: t oo
1234567 .00 54155 56 ... 106 107 108
c AOO0OO0100 0 o] 1
BBO10Q@QOO 0 0 0
CCoO0O0O0O0O0 0 1 0
DIOO0O OO0 1 0 0 0
EfO 00000 0 0 0
IOOO0OO10 0 0 0
Wokds 3 « 64 Words 65 - 128

Formats give the line spacing pattern to be followed; Class 5
orders specify address of first word in matrix and the format to
be used,

The basic subroutines for the printer assist in pre-
paring e print matrix from words coded in the six-bit char-
acters corresponding to the pcsition of a symbol on the
print wheel, 1In the case of certain symbols, including the
signs (+ =) and numbers, these codes are identical with the
BCD form,

(f) BINDEC converts one number (T4) from binary to BCD form,
1ea§ing the results in the T4 and T5, The above floating
point decimal format can conveniently be compressed to 18
characters by omitting ",", "E', and "T":

KoXXX oo xx ' PRINTER

/k//// \\\Q:§:§Q§;>&\ OUTPUT

X'I'XXX

I+

T4 T5
30

The calling sequence is:

K: TRA BINDEC
K+1 (normal return)

with two exit parameters O = floating point no,, 1 = fixed
point number, A fixed point number is left justified and
terminated by a "34" octal code;.

Thus 13 significant decimal digits are available, They
can be punched out as Flexowriter codes, or converted to the
print matrix form by:

(g) PRINTR which takes six-bit printer codes from a given

address and stores them in a given position of the print ma=-
trix, which is also specified, A single parameter contains

in packed form all the information required:

K: TRA PRINTR

K+1l: (Pack) FWA(%évuatriﬁ {15 bits), Dets lo¢on

' (15 bits), No, of symbols (9 bits), Type
position (9 bits),

K+2: (Return address)

Characters are taken from the left side of the Data Lo~
cation, Only 9 or fewercharacters can be specified, In
case the six~bit printer codes and the BCD codes are not the
same, a more elaborate conversion routine is necessary, How=
ever, (f) and (g) are adequate for numerical output, The
final matrix is printed with a single "PR1" order (print

and space one line),

(1) Commonly "FWA" stands for "First word address", Similarly,
"LWA" for “igst word address',

.31

Example (vi) To print out (W), (a floating point
number) with five places of decimals
(assuming no tag) in printer positions

9-20,
CLA W, U->Té4
TRA BINDEC
T4 LUR d12, U->R (truncate)
Z LLS d24
LUL dé6
ORY a33 (insert deci=-
mal point)
TRS &l18,R—>T4
TRA PRINTR (mantissa)
0CT 010000000401001100
5 LUR 6
LRS d18, R—>T4
TRA PRINTR (exponent)
O0CT 010000000400302200
PR1 01000 (print)

The subroutine library will itself contain more elaborate
routines of the type in Ex,(vi), but (a) - (g) are given as
fundamental building blocks, to which the coder can add with
the halp of the manual,

The console typewriter can be used for direct printed
output, at about 10 c;p.s; It is controlled either manually,
or by the program; and is mainly used for checking purposes,
as discussed in the next lecture, together with the use of

the console controls,

32

Lecture 6, Miscellaneous comments on using the machine,

There i8 no "operating system" for the machine,'and the
coder is free to devise his own procedures at every stage of
problem solving. The mechanical details are simple but with
the option of using a number of coding aids, he can hand over
an increasing proportion of the detailed routine work to the
machine, The five stages of solution from problem analysis

\

onwards are: ‘
(1) ©Preparation of a logical flow chart

(ii) Preparation of machine codes in absolute
or APl form

(iii) Program assembly
(iv) Program testing
(v) Program execution

and the main aids to coding are under headings (iii) and
(iv),

APl is a program of about 1000 orders, and is read into
the machine immedistely prior to feeding in the symbolic ASSEM-
paper tape, It is technically a two-pass system, and in BLY
the absence of magnetic tape units the tape with symbolic PROGRAM
codes must be xead into the machine twice; In pass 1,
fields I, II, and III are decoded, B-modifiers and inflec-
tions are stored and a Symbol Table is formed assoclating
an absclute address with each Symbol that appears, Since
a symbol need not be defined until after its first appear=-
ance, a second pass is necessary to fill in all the correct

addresses in Field IV, Various output options are provided,

and are controlled by Sense switches, The fiﬁal machine

35

program can be punched out in a condensed binary form, and

it is éutomatically headed by a loading routine and foliowed
by a "stop"” code, so in order to use it the programmer has
only to put the tape back into the machine and press the °
"load" key on the console, and then transfer to the starting
address, APl tapes are not relocatable, but with little
extra effort the coder can vwrite '"relativigsed" gode where all
transfers are made relative to (CC), and this amounts to the
same thing, |

The pseudo-orders given for APl are a means of con-

trolling the assembly program itself, thus affecting the
final program only indirectly, They are not included in the
final output tape, They allow for input of numerical and
BCD data at assembly time, for the control of printed output,
and the allocation of symbols and storage, In particular,

it should be noted that a whole program can be written as a
string of octal numbers preceded by the OCT order, and this
is the form in which Library subroutines are written,

Library routines can be read in at any point in the pro-
gram, They should be identified by the mnemonic code given
in the program abstract, either directly or via an EQU or-
der, No symbols in the main program, other than the subrou-
tine hame, have correspondence with any location in the
subroutine,

The attached example gives a short program in symbolic

form, its final absolute form and associated symbol table,

34

PSEUDO
ORDERS

LI-
BRARY
ROU~
TINES

At the end of the first pass the symbol table can be ob-
tained, punched in binary form, It contains enough infor-
mation to allow additions to be made to the program at a
later stage without complete reasseubly;

After assembly is complete, an attempt must be made
to run the program which has been produced, The control
console provides a number of keys for actuating the machine,
and lights for observing its status at any time, The main
keys are:

1, CLEAR: which sets all 56 bits of each storage word
to O,

2. LOAD: which causes a RDH order to be placed im I,
and actuates the paper tape reader to place
the first word in 000108.

3. STOP: which stops the machine at the end of the
current ozrder,

4, START: which sends control to (CC) for the next order,

The main lights are:
5. Control Counter <« GC (15 bits)
6, Sense lights SL (15 bits)
7. Indicator lights IL (15 bits)
8, Instruction register I -(54 bits)

Adjacent to or on the console are the line printer,
paper tape reader and punch, and the console typewriter,
which acts as an input and output device to all the fast
A and B series registers and the special 15 bit fast stores
(sL, 1L, etc.). It is possible to type octally into or out
of any of these locations, and to obtain a printed record of
all pieces of information transferred; A convenient way of

starting from a particular location is;

36

TYPE=-
WRITER

(a) Enter the location number in CC via the typewriter
(b) Press START,

Any number of events may cause the machine to stop.
Some may ﬂe important, and others the coder hay tant to
ignore féé the time beéing, THere is an "Ignore error séop”
. switch which causes invalid orders to be bypassed when it
48 set to ON, 1In addition, a stop may be caused by any of

the following situations: STOPS

(a) A programmed HTR or a satisfied conditional IF(XXX)ETR
(b) A "zero" order, which is effectively a HTR

(¢) A 2-bit parity failure in memory,

(d) A divide check

(e) An input-output order waiting for the appropriate unit
to be switched ON,

(£) Depressing the STOP key.

Generally, the failure of a program to produce a desired

’ result can be attributed to any one of the four main error
sources: .
(a) Machine faults such as parity failuresgl) ERRORS

(b) Typographical errors in data_or program tapes,
(¢) Arithmetic errors in the program, |
(d) Logical errors in the program,
A full analysis of the detection and diagnosis of these

would constitute a lengthy treatise, but by observing some
general rules the coder may aim at minimising the occurrence
of errors under each heading,

(a) Too little is known of the machine at the moment to be READ-
AROUND
ERROR

specific on this point, but the nature of electrostatic

storage places a slight restriction on coding, It is

(1) i,e,, an error in two or more bits in a word in storage, Single
. bit errors are eorrected by keeping a number of "parity" check bits
in addition to the "working" information,

36

known that sensing a storage spot will disturb adjacent
spots on the surface of a storage tube, and the cumula-

tive effect of many read or write operations in one spot
can induce errors nearby; The upper limit to the number

of operations is between 250 and 500; However, each spot

is automatically regenerated about every 60 milliseconds,
which is the time taken to execute about 2000 orders, Hence
tight loops of 8 or less orders which may be executed more
than 250 times should be used with care, In critical cases,
the use of T-registers for orders or data, or the use of the
Repeat Mode, may avoid danger,

{b) The main purpose of APl, and the data input routines, is
to allow orders and numbers to be written in a8 natural and
easily recognised‘way. During assembly, apparent errors
will cause 3 printed comment on the output listing; In
doubtful cases, a NOP order is inserted in the program by
arl,

(¢) and (d), At present, no help is given in detecting these
types of errors prior to execution., The coder must run his
program, and then see where it breaks down, The most useful
devices in detecting the source of an error are frequent
print-outs of intermediate results (which may be controlled
by Sense Light tests in the program, and suppressed when

it is working correctly), "Dump" routines (which achieve the

same effect by modifying the program just before execution]),

37

and "Trace" routines, which print out the contents of the
arithmetic registers during the execution of a particular
sequence of orders; The coder will add his own technigques
to this list; The main point is that errors always occur,
and the error detection techniques should be devised while
the code is being written; Standard Trace and Dump voutines
are part of the program Library,.

One £inal point; A machine of this £ype is stroagly
oriented towards "closed subroutine" programming: relativi-
sation is easy, and communications between routines are
almost automatic; Any coder is urged to take advantage of
this, and divide his program into distinct, relativised,
closed subrouvtines operating, possibly, on a fixed common
data region, The reason is that check-out time is not a
linear function of the length of a program, and it is most
efficient to get many short programs working separately and
then fit them together to form a long one; Later versions

of the Assembly Program emphasise this technigque,

38

An examgie qf APl and absolute coding&

The problem is to calculate the surface arca of the sphere
- centered at the origin, with a radius vector given by (x, y, 2)
where L(x) £ (Bl) and y and 2z are stored in the two following loca-

ticns, and to store the result in location A,

The appearance of symbolic codes on the coding sheet is:

LOCATION | SET U | OPERATICN |ADDRESS + MOD, AUX REMARKS
B 1»— oRG N 1@25' | ”
BEGIN oz sm2 2, U=> T5

) e c1a Ll4B2 42
mp U | |
FAD | 75, U -> 75
B2 TP (NZE) TRA| GC - 4, B2 - 1
o | T e | FCURPL o
| STO A
FOURPL DEC 12.5663706
A | . Equ d566
o END

The output of the assembly program is:

~ location Instruction
01625 00 44200 05 4000 00002
01026 00 50000 00 0006 00000
01927 01 10600 00 0000 00001
01030 01 10400 05 0000 00005
01031 42 05050 62 4001 77773
01032 05 10600 60 0000 01034
« 01033 01 20600 00 0000 01066
01iC34 C1 14441 76 6517 10652
’ Note that there is an exact correspondence between each exe=

cutable order and the absolute codes; use of APl does not affect

. execution time,

39

	Lecture 1. Order and Number Structure
	Lecture 2. Basic Operation Codes
	Lecture 3. Control Orders and Fields I, III, and IV
	Lecture 4. Subroutines, and some special registers
	Lecture 5. Input and Output procedures
	Lecture 6. Miscellaneous comments on using the machine
	n example of AP1 and absolute coding

