Rice Institute Computer Project

Proéramming Memorandum #1
March 1, 1959

Applications to Automatic Coding - Part 1.

Array manipulation and the algebraic formula language.

J. Ko Iliffe

Contents, Page

IntroductioN.ivecseeereoceesvescosssrosnssnsonansssecfflal
1. Characteristics of the Rice Computer code.scuwss #l=2
2. A scheme for array manipulatioD..esesvecccccsessifla?
3. Generalisation of the array concept.cecscseseoceeilalé
4. The interpretation of arraySieccececscescecersesssffla2l

5. Manipulation of expressions and construction of
PTOBram BEqUeNCeSesscecevscssasascsscnssnsnsssssila25

Appendik I. Examples of codes using the conventions
R of this memorandum.

Appendix II., The formula language.

Introduction.

Some potentialities of the Rice Computer code are examined
herein, and a formalism is described for the machine representa-
tion of algebraic formulae which has advantages in compilation,
interpretation, and symbolic manipulation, The interpretive
process is considered in detail and presented in Apéendix 1.

A tentative formal language is spécified in Appendix 11,

Readers familiar with the latest developments in machine

code should omit Section 1. ’

#l-1

1.0

1.1

1.2

Charactevistics of the Rice Compurer code.

Full details of the Rice Institute Computer are given
elsewhere. 1In this section we shall give just sufficient
informaetion for an appreciation of subsequent applications.

This computer is an asyanchronous, parallel, binary,
single address, electrostatic storage machine with an arithe
metic unit consisting of eight 54-bit machine words (in "flip=
flop" registers) and a control section consisting of eight AR
15-bit words, each equibalenc in length to one full address ME:
in the main ECOrage. The arithmetic 1@ in one's complement
form, both fixed and floating bbihé. with a six-bit exponent
(representing a power of 256) and 48~bit mantissa in the late
ter case. Fixed point arithmetic uses only the 48-bit frac=
tional part of the word.

Each machine word contains, besides the 54 bits which
represent a number, two "tag" bits which can be treated as a T4
label (we distinguish four cases: no tag, tag 1,2, and 3) on
a number or an operation.

Input and output is by means of 6-hole punched paper tape,
fast line printer, and magnetic tape.

In the arithmetic unit there is a single length accumula-
tor (56 bits), its extension (R), a subtrahend register (S),
four temporary stores (T4...T7) and a null (zero) register (Z). AR?
Access time to one of these registers is of the order of one ME%
microsecond. Each is addressable as a normal memory cell, U}
These are later referred to as A-registers., In comparison with
the IBM 704, U is roughly equivalent to AC, R to MQ, and S to
the storage register.

The control unit consists of eight B-lines, one of which

is the control (or location) counter, and another is desige- cor
'r" \;
nated the '"pathfinder" (PF) vhich automatically serves the égA

purpose conventionally assigned to index register #4 on the
IBM 704, As well as these special uses each Beregister is
available as an indexing box and is manipulated by a conven-

tional set of orders,
#l=2

..3 There is a further set of six addressable 15-bit fast

access registcers, consisting of sense light, mode light, SPL
trapping light, indicator, and increment (X) registers, and CIA
‘ REG

the second pathfinder. The sense Iighcé arc used as manual TER
or autcematic switches in the usual way. Mode lights are also
subject to manual and agutomatic control, but can not be ine
terrogated in the same way as sense lights. A mode light
affects the detailed functioning of a class of machine orders,
and may be thought of as controlling the sequencing of a sin-
gle order in a way analogous to sense light control of the main
program. We thus have the option of operating in a rounding,
significance, or trapping mode (or any combination of these)
without formally changing the program in the machine.
Overflow and tag indicators are placed in the indicator
register, and may be reset at any time. The X register may
be used for incrementing B-registers or controlling jumps by
a preset amount., The second pathfinder plays a role comple=
‘ mentary to the "first" pathfinder and is designed to assist
" mainly in check-out programs.

1.4 Each order entering the instruction register I is de-
coded in a similar way. The format of the order distinguishes IN-
four fields and although there is some overlap in timing it :ii

is convenient (and correct) to regard the decoding as taking

place in the following sequence:

1. Field 1 (6 bits) Some number from an A= or Bmregister is
brought into U. If n is such a number,
we have the options of bringing in n,

-n, {n| , or - |nj| .

2. Field & (27 bits) The address field is decoded and a number is
brought into S. Details of this decoding
are given in section 1.6 where it will be
noted that the B-registers are additive,
that infinite indirect addressing is pose
sible, and that if m is the address which

. is finally formed in I we have the option

#1-3

L35

of bringing into S one of M, =M, ‘Mt ’
- |ufor), ~), || or - () .
3. Fileld 2 (15 bits) This is the operation code itself, which
generally performs some operation on S, U,
R, or possibly a B-register. The codes
are built up on a modal principle, and a
significant proportion of the 215 possible
orders is meaningful, Some of the more une
usual orders are discussed in section 1.5.
4, Fleld 3 (6 bits) After the operation is completed several
options are provided for incrementing B-
registers or transferring quantities in
the arithmetic or control units. These
are as follows:

(1) Store U (or R) in some A (or B)
register

(11) Modify some B register by + 1.
(I11I) Modify some B register by +X.

(1V) Send the final (effective) address
from the instruction register to
some B register.,

An assembly program for the machine allows full flexibility
in the synthesis of the order, whilst gaining the convenience
of symbolic codes. An example of a single order is

T4 ADD A +Bl+ B2, 31+ 1

wvhich has the effect of adding to T4 the contents of Location
(A +(Bl) + (B2)) and leaving the result in U. Also Bl is ine
cremented by 1 after completion of the order.

Apart from conventional orders for arithmetic and logic
and Beline modification, the presence of tags calls for a set
of orders to control and test these, The arithmetic unit cone gg&
tains both two tag 2&52, wvhich are set and reset as each nume ORD
ber is brought to S, and three tag indicators which are set
by the tag bits (tag 1, 2, ¢r 3) and remain set until interro-
gated by a control order. Thus they act as a basic ‘''memory"

#l-4

of the type of number which has come into the avrithmetic
unit, and can be used as such for a variety of purposes
such as loop control, boundary point recognition, tracing,
etc. A number may be stored with tags unchanged, or with
a specified tag.

Control orders provide for testing whether any or all

of up to three conditions is satisfied and taking one of
four possible courses of action 1if the test is successful.

Thus any of 212

alternative control orders may be executed.

Twelve of the sixteen binary logical functions are
provided.

A repeat mode is available to facilitate table search-
ing procedures. ' After entering this mod% (by an order or
manually) the next command is répeéted until either a tagged
number is brought to S or a test is satisfied.

Possibly the most important new logical feature in the
machine is the use of tags for arbitrary trap transfers

when the machine is in the trapping mode (if the machine is

not in the trapping mode, tags have no effect except in
setting the arithmetic tag indicators). The principle of
trapping is that for certain purposes it is advantageous
to interrupt the normal sequencing of orders at specified
points in order to perform some other task such as input-
output control, giving checking information, interpreting
the data in S or the order in the instruction register which
is about to be obeyed, or taking action on some unusual
arithmetic condition such as an overflow.

The trapping register is used to monitor these condi-
tions, and each bit of the register which is set equal to
1 is used for interrupting control when both the machine is
in the trapping mode and the condition to which this bit
corresponds is satisfied. In addition, the option is pro-
vided with tag traps of trapping before executing the order
(field 2) or after executing field 3. When a transfer takes

#1-5

TRA

PIN

place, the next order is taken from one of seven fixed adw
dresses, depending on the condition causing the transfer.

The following conditions may arise and cause a trap
transfer:

a) Mantissa overflow: trap after order has been obeyed.

b) Exponent overflow: trap after drder has been obeyed.

c) Sign of U mantissa=1: trap aféet ofder has been obeyed,

d) Sign of U mantissa =0: trap after order has been obeyed.

e) Tag bit 1, 2 or 3 set in control unit: trap before or
after field 2.

£f) Tag bit 1, 2 6r 3 set in arithmetic unit: trap before
field 2.

Some bits of the trapping register are spare for additional
tests, The detail of field 4 is so arranged that trapping may
occur during an indirect addressing chain. That is to say, we
have the sequence in decoding field 4 of:

1., If control trap condition 'is met, trap and turn off

. indicator.

2. Modify address portion of field 4, M, by adding in the

contents of specified B-registers.
M+ T B > M

3. Test indirect address bit, If 1, bring bits 31 - 54 and
tags from location M and return to 1. If 0O, proceed to
4,

4, Examine bit 28 of I. If 1, transfer M to 8. 1If O,
transfer (M) to S.

5. Adjust sign of S according to bits 29, 30 of I (i.e.,

s, |s}).
6. End of field 4., Proceed to test arithmetic tag bits.

It will be noted that some ambiguity in the cause of trap-
ping may arise since separate addresses are not provided for
each possible trap. It is up to the coder to resolve such prob-
lems arising from multiple trapping lights.

#1-6

Q A scheme for array manipulation.

In this and succeeding sections practical applications
of the Rice Institute Computet are considered., These are
illustrated by elementary programs in symbolic form, and more
detailed programs are éiven in Appendik I.

2.1 Indirect array referencing. Consider an array of n numbers
8y «o0 8 stored in conéecutive locations A ... A+n - 1, There
are several equivalent ways of referring to the ith number a;
in this set (with an address independent of i) and each assumes
that (Bl) (i.e. the contents of B-register #1) is i.
a) We could write CLA A +3Bl-1,

b) We could write CLA *AC (an asterisk denotes in-
direct addressing)
where (AC)=ZER A +3B1l-1.

Obviously this process could continue indefinitely through
the indirect addressing feature of the machine, AC is called
a codeword for the array A.
. Now consider an array of mmn numbers 8190 819000 3, stored
1 is found in A +(i-1)n + j-1,
Again, a "direct" indexing instruction would depend on having
(Bl) =(i-1)n and (B2) = j-1, say, and then we would write down

CLA A+Bl+B2

to call out aij' The fact that Bl and B2 do not contain the
"true" indices (i,j) leads us to enquire whether a scheme can
be devised with this property, with the following result:

in consecutive locations such that a

Firstly, we set up an array of m codewords of the form:

(AJ) : ZER A +B2-1
(AT +1) ZI:JR A+ n +B2-1
(AJ+ m=-1): ZéR A+ (mn=1)n+ B2-1 .
Secondly, a single codeword AIJ is stored:
(A1J) : ZER *AJ +Bl-1 (2.1.1)
Then supposing (Bl)= i and (B2) =j the order
. CLA *ALJ

calls out the required element aij'

#l-7

It will be noted that in each codeword, only the address
field and its B-modifiers (field 4) are used, and the sign
modifiers (bits 28 - 30) are retained from the original order.

Thus CLAaka]".::f’t brings - |a;,| to U.

The above method is quite general, and can bé applied to
arrays of any order up to 6. Further, aﬂy array c¢an have any
number of sets of codewords for the convenience of the coder,
An illustration of ihisvcase is the matrix Eranéposition rous
tine given in Appendix I(i). It should be remarked, however,
that the circumstances in which t}anspbbitibn is necessary are
effectively reduced by tﬁe availability of such codewords,
since we can say the matrix is virtually transposed by writing
down a new set, say:

(AI) : ZER A+Bl-1

(AT +1) ZI}'R A+n+Bl.l

4

L

. (AL +m=1): ZéR A+ (mel)n +Bl-1
AJL ¢t ZER *AI +B2-1 ses (2.1.2)
Then if (Bl) =i and (B2) = j the reference
CLA ®*AJIL

calls out the aji element of the array.

The actual storage allocation of the array is unimportant,
except that it should be in an ordered fashion with respect to
the last index. We conventionally assume it to be stored with

the last index varying most frequently. For an Il><1 I

2 LI] k
array we require c? codewords where
k
€= I'HL1 (1+12(1+...(1+1k_1) cee)) (2.1.3)

and in this case it can be shown it is most economical to choose
Ik; Ik-—l con)Il (2.1.4)

for then c? is minimised,
There 1s still some loss in time and space in using code=-
v words to set against the gain in coding simplicity. This can
. be reduced by generating codewords only for as long as they are

#1.8

2.2

required, and then overwriting, and also by transferring the
single codeword which is the "key" to the array to a fast ac-
cess register during an inner loop (in the above example, we
may send (AIJ) to T4, say). - ’ % |

Relative addressing within ar:ays'ana between corresponding
elements of different atfayé is accomplished by using only one
set of ccdewbrds. Thus, 1f We have tﬁ%ég matrices A, B, C, of
equal size with elements aijs bij; cij and a set of codewords
for A starting in AIJ, the order

CLA *AIJ, I-»B3

will bring aij to U if (Bl)=1 and (B2)= j, and also store the
address in which aij is stored in B3, Subsequently, references

to bij and cij may be made relative to this B register.

Use of tags for control purposes. 1In cases where the array is

stored in full in a regular manner many efficient ways of scan-
ning it systematically exist, and the formalism of sec., 2.1 is
particularly useful when it is necessary to use a scanning "pat-
tern" other than by "row" or by "column'", for example a diagonal
scan in which 1+ j= a constant., The size of the array deter=-
mines the range of indices, and it is a straightforward matter
to set and test these using conventional orders.

It is also possible, however, to use the '"tag" labels to
indicate when the end of a row, say, has been reached, and to
rely on these for indexing purposes. With two tag bits, a two-
dimensional array is handled conveniently, tag 1 indicating
the last word in a row and tag 2 the last word in a column. In
this way quite general subroutines may be written to operate
on any array of a given order, independent of its size (in a
later memorandum we shall consider subroutines which operate on
arrays of any order).

In cases where two tag bits are not available, or the fore
malism of sec.2.1 is being used, a simple alternative is possible
using only one tag bit which may also be used for higher order
arrays. An example of this scheme in which codewords are tagged

#1-9

is given in Appendix I(ii), and it will be noted that it is

based on the idea of tagging the last word in any linear array,

either of numbers or codewords. 1In the following sections where

this idea is used, we shall always reserve tag 1 for this purpose:
The last word of an array is always denoted by tag 1 (2.2..

Use of tags in data interpretation. For many pqrpoées, as re=
marked above, the size of an array is immateriai. ﬁowever, in-
formation of this kind must be readily available both to the
coder and to the routines which will be required to manipulate
arrays and codewords in btorage. It is also desirable to be

able to store arrays in “condensed" form, when many of the ele-
ments are zero and substantial economies in space can thereby
be made. A typical exaﬁﬂle of the latter situation is found in
a8 linear programming problem where there exists a large matrix
(say 100 X 200 elements) in which perhaps only 20% of the ele-
ments are non=-zero.

We therefore suggest extending the functions of the codeword
to give the maximum and minimum values attained by the index of
the array to which it refers, and also the maximum allowed value
kmax’ 1kmin’ and I
respectively, we allocate nine bits to each (which allows a
range of index up to 512) and store them in the left half of the

of the index. Denoting these quantities by 1 K

codeword. 9 9 9 3 1 8 15
Type 1 i i I, {IM{ IA| BM| M eee (2.3.1)
codeword kmaxr kmin k

Normally, we have Ik ik ax and ik in= 1. However, in cases

where the array is condensed we may have ls;ikmini: kmaxszl

Note that the three bits in the codeword denoted by IM are still
unused, and also the general rule that if the sub-array is another
set of codewords, IA =1 (indirect address bit) but if the sub-
array is a set of numbers, IA =0. The BM field indicates which
B-registers are used to modify M.

#1-10

The methods of the previous seg%ion are unaltered in a
“"normal'" situation where the array is storedkin full. However,
in a condensed array we have to ensure, for each i; that ikmgﬁﬁ
& 13 i .., before exéracting the corresponding element. If
i ') ikm % ?r i < kmin’ the element has valhe zero. This can
be arranged in a numbek of ways, either by extracting Ly max?
fymin® 204 I before eneeriﬁg a loop, and modifying the control
orders accotdihgly (or by a priori knowledge of the values of

as in the case, for example, of a band matrix); or

temax® ‘kmin
by the intervention of an interpretive scheme which recognises

the codeword and automatically extracts the correct element of
the: array. Such a scheme will be detailed later, but we note
that tag 2 will be used, by convention, to denote a codeWO:d
which is to be interpreted, and this will be used to trap out

of an indirect addressing sequence.

Type 1 codewords only handle an array in which the terminal
elements may be zero., In the most general case, non-zero elements
are randomly distributed in the array, and we want to store only
these., Moreover, we shall have occasion to add and delete ele=
ments from the array in an arbitrary fashion, and therefore a
"chaining" system is proposed similar to that used by Newell and
Shaw in the IPL languagé}) There is one codeword corresponding
to each elcuient of the sub-array giving the value of the index
for that element, the location of the element in storage, the
location of the codeword of the next element in the array, and
the "order" of the current array, counting the first codeword
in the sequence as order 1. We denote these quantities by
ik’ M, L(i) and R.

9 3 15 3 1 8§ 15

Type 2 i R L(i) IM 1A BM M ese (2.3.2)
codeword

k

Note that the right hand half of the type 2 codeword is
similar in form to that of type 1.

These codewords are used extensively in what follows, and
it is convenxent to have a schematic representation of some

(l)See, for example, A.Newell and J,.C.Shaw,"Programming the Logic
Theory Machine™, Proceedings of the 1957 Western Joint Computer

Conference, p.230, #1-11

expressions, in which the codeword is a building block of the

form

iy TO locationAL(ii)

To location M

where A is the address of the codeword and i its tag (if any).
Other information may be written inside the box.

For an example, consider the case of the MXN L,P, matrix
given at the beginning of this section. A general element is
aij’ and the matrix is stored "by column", that is, with index
i varying most rapidly. To call out element aij we set (Bl) = i,
(B2)= j and give the order

CLA *ALJ.

The codewords are as follows:

(A1J): type 1 with ikmax =N; ikmin =13 :Ik. =N:
IA =1; Address =Al +i32-‘-1; No tags.
(A1) : type 1 with ikmax =M; ikmin =1° Ik =M

IA =0; Address =FWA of codeword for lst
non-zero element of first column; Tag 2.

(AT 1): type 1 with i #M; ikmin =1; Ik =M

IA =0; Address =FWA of codeword for lst
non-z2ero element of second column, Tag 2.

kmax

) etc, .es s

(AL ¥N-1l):type 1 with Lpnax =Mi 1km1n =1; I,

IA =0; Addres =FWA of codeword for lst
non-zero element of Nth column; Tags 1 and 2,

=M

Finally, the elements are stored as a chain of type 2 code-
words for each column of the matrix. Schematically, the following
diagram shows the structure of the array (Shaded cells represent

elements).

#1-12

1

AL Al T2 ‘ lst colums

S
Al + 1 T2 7‘2 ['Z ‘7/ Zﬁnon-zero
AL 4 2 o ! %// / elements:

l
A 1o 2]) don-sers”

eleament

The only block of cells necessarily consecutive is AI to
4i%¥ N-1, although it may be convenient to store elements ian con=-
secutive locations particularly when the matrix is being syste=-
matically scanned and rewritten. The indirect addressing sequence
is trapped by tags on the second order codewords, and the inter-
pretive program recognises the structure of the sub-arrays.

The importance of the above scheme in array manipulation is
considered to be the simplicity of coding achieved by allowing
the B-registers to contain true index values, and the fact that
several different types of storage arrangement can be made formally
equivalent (from the coder's point of view) by means of interpre-t
tive-type subroutines called in by the trapping feature of the
computer, The normal disadvantages of interpretation are not
found here, since "wasted" interpreting time is reduced to a

small fraction of execution time.

#1-13

3.0

3.1

Generalisation of the array concept.

in this section we shall extend the idea of an array de-
scribal by codewords to the description of mathematical for-
mulae within the machine. This is based in the first place
on describing the formulae as arrays, and then using the con=-
ventions of the previous section to handle the array within
tlie computer. It is characteristic of this method that the
codcwords provide both a matural description of the array and
the means of handling it in computational and manipulative pro=-
ccsses. We shall also see that we are left with the optisn of
processing the array by means of a8 compiler-type program .afore
starting a calculation or of stdrting the calculation dircctly
and interrupting the program where it is necessary to inierpret
an operation or operand. The trapping feature brings the exea

|
|
\
, |
cution time of interpreter-type programs to within a small mul-
tipic of that for direct machine language codes.

A simple'alge&raic system, T6 start with, consider the following

algebraic¢ system.

We have two fundamental quantities handled by the machine,
namely variables and constants, These are identical in. form
(floating point numbers) and differ only in their use in the
calculation, We denote these by v and ¢ respectively, or, if
it is not necessary to distinguish between them, by x. Dif-
ferent quantities are distinguished by subscripts, as in Vs but
we do not suggest at this stage that they form part of an array
in the sense of section 2,

There are two operators in the system, namely + (add) and
X (multiply) and well-formed formulae (w.f.£f.) containing
these are defined as follows:

1, Given a formula (string of symbols) w, if w =some v or

¢ then it is a w.f.£f.

2. (a). 1f w is formed from a finite succession of w.f.f,

connected by + signs, then w is well-formed, i.e.,

#l-14

w=w,tw,t L., dwy is a w.f.£f. For 1<i\<k, w, is a

sub-formula of w.

{b), If w is formed from a finite succession of w.f.f.
of the type (wi) connected by X signs, then w is well-
formed; 1i.e., w=(w1))<(w2)x oo X (wk) is a w.f.f., For
1 1$:k, w, is a sub-formula of w.

3., If w is a w.f.£f, then so is (w).

e I1f w is a w.f.£f. then so is (~w). For brevity, we may

write w1+ (-wz) as wl-wz.

These are the only w.f.f, of the system. Formulae of type
2¢{a) are called sz-formulae, orjif-terms, and formulae of type
2(b) are [1 -formulae or rT-terms. A particular}i‘ term is written
as ¢ or O"i, and a particular [] term as T or ™.)

Then we can say that any w.f.f., is given by some T orIf or
x, and if it is & or w, then each sub-formula is of the form
0 or% or x, ... and so on until the formula has been decom-
posed into x-terms,

We define the value of a formula w as follows:

1. If w is x-type, the value of w is the number in the location
associated with x.

2, If w is("orf-type, the value of w is the result obtained
by applying the machine operations of floating point addition
(multiplication) to the sub-formulae of 6’(1?).

3. The value of (w) is the same as the value of w.

4, The value of (-w) is the negative of the value of w.

Consider first the representation of w as an array. In
general the x-type formulae will be stored in a.'random manner in
the computer, so it is not possible to use a type 1 codeword to
describe a'jz or r‘“term. A modified type 2 codeword is chosen
instead., As usual, tag 1 denotes the end of the array, tag 2
indicates that sub-arrays are to be interpreted. The three
basic schemes are:

1. x-type. A single codeword gives the location of x and

sign modifications (if any). There is no
tag 2; there may be tag 1.

#1-15

2. T <type. A singlé codeword C gives the location of the
first codeword of the chain, which carries a
tag 2. C may include sign modification in the
IM field and there may also be a tag 1.

3. ¥ ~type. A tag 2 codeword is used, as in (2), to indi-
cate the beginning of a new w.f.f.

The modified codewords which we use give L(ii) and M as
before, but the remainder of the word is used to give sign in-
flexions, a description of the sub-array, and a code for the
sub-array (or formula)

Modified 6 6 15 3 1 8 15
type 2 | Type |Code |L(next) |IM (1A} Bﬁ{ M
codeword

As before, the IA bit is used to indicate that the sub-array
is an array of codewords, If the sub-array is x type, it is
effectively named by the (BM, M) portion of the word, If it is
¢~ or T} type, the name andtype codes will be used as a "first
order sieve" in comparing two arrays.

Thus the expression a +by +¢ 1is represented as the array:
A 4 A L A2 N A3 ‘
T g }T
K 2 K, L‘K,) 1
oo S S ¢ A
| | Ly ~y
In a sense, the expression is represented as a "tree" in which
the terminal points are x-tyﬁe formulae, and the structure of
the tree corteSpouds to the structure of the expression. Note
that two addresses (shaded) are not used- here. Strictly speaking,
a saving of two locations can be made in the above scheme, but a
use for the additional codeword is suggested in Section 5.1.
We now 111usxrate'cwo methods of evaluating a given expres-
sidn. 'Firsily, consider the 2.-sequence of x-type formulae

whose first data codeword is in the address given by (B1l). As-
sume (T7)= 0 initially. Then we may write: ‘

#1-16

SIGMA CLA Z +Bl, U—-R Find. codeword
LUR da27, U8Bl Find address of ne.
T7 FAD *R, U—17 Form sum
IF(NT1)TRA SIGMA (3.%.1)

The‘rr-sequence evaluator

Next suppose that th
trap transfer whenever ta
the instruction is obeyed
3E -sequence a +by +c giv
brought to S8 (in the thir

is similar, with FAD replaced by FiP,
e machine is controlled to execute a
g 2 enters the arithmetic unit before
» and that SIGMA is operating on the
en above, Then as soon as (Ko) is
d order of the loop), a trap transfer

takes place to a routine which organises a transfer of control

to the PI program sequenc

e before continuing with SIGMA. (The

next section deals with the mechanics of this interpretation).

An alternative to (3
machine code rather than

SIGMA CLA

LUR

CLA

R ORU

STO

.1.1) is possible, which produces a
evaluating a:E:-term directly. Consider

Z +Bl, U-—->R Find codeword

d27, U-—B1 Find address of ne:
*R Trap transfer point
SMASK Form order

Z +B2, B2 +1 Store in program

IF(NT1)TRA SIGMA-1l, CC+ 1 Test

SMASK

In the above, (B2) gives
gram; (SMASK) gives the
which is simply modified
[It is interesting
Suppose we make the type
puter codes for floating
both in bit pattern and p
when a basic cycle is sta

T7 FAD Z, U—-T7 (3.1.2)

the location count in the compiled pro-
basic order in the compiled program,
for afﬂ—~sequence.

to note an alternative code to 3.1.2:
codes correspond exactly with the com-
point addition and multiplication,
osition in the word. Then suppose,
rted, that the codeword is placed in

a temporary store. Then a general basic cycle can be written

which extracts the functi
a mask to form the next o

on and address from the codeword into
rder to be executed.]

#1e17

The primary problem of translating a paper tape codz into
the machine representation of an expression is resolved only for
an elémentary algebraic expression, but the following considera-
tions indicate it is not likely to prove much more involved in a
more practical case. We have relied on compound w.f.f. beinz
enclosed in parentheses in order that they may be distinguished
readily, and this implies that where parentheses and multipli-
cation signs are omitted in normal notation, they must be rce
placed by the machine by compounding such transformations as

ab becomes axb
with *ab becomes j;,(-hXb

bat becomes bXa)t
and so on.

When these replacements have been made, we note the important
fact that the occurrence of a left pareﬁthesis is associated with
a tag 2 codewotd, and a right parenthesis with tag 1. 1In this
way, an array becomes almost a direct transcription, symbol by
symbol, of an expression, provided reference addresses are
piaced correctly and operation codes inserted,

In fact, the process of scanning an expression to form an
array can be defined neatly in a recursive fashion, and is illus-
trated in the Appendix I(iii).

Before proceeding to an elaboration of this scheme, we may
summarise its apparent advantages as follows:

(1) The machine representation forms a "natural" link be=-
tween computer code and formal algebraic expressions, which
lends itself to direct manipulation by the machine,

(2) The option is provided of evaluating expressions by
direct interpretation or by compiling a machine language program.

(3) The scheme is readily extended to more complicated
operations and functions.

(4) The possibility exists of providing for data traps, where
it is required tolinterpret and manZpulate data in different forms
such as double precision or complex numbers, matrices, etc.,, durin;
execution of the object program.

#1-18

- 3.2.1

3.2.2

3.2.3

(5) The scheme is consisteant with the érray manipulative
system of section2; and the above simple conventions provide
for the divect evaludtion of expressions such as

y, =a -3} x - x|,
by using the full address portian of the descriptive codeword.

Extensions of the representation, We shall not be concerned here

with detailed extensions to the scheme outlined in sec.3.1l, but
will indicate some possibilities which have been explored and
appear promising. In Appendix II the language we have construc-
ted for writing mathematical formulae is presented in summary

form.

Division. This seems best handled by including it in a*ﬁr-sequencr

as the last term, so that the most géneralrf -type formula is

gn.=w1w2 ...wn_llwn
which does not limit us in any way, since W, may be any w.f.f.
Thus the last codeword of a ?T-sequence, which has a tag 1, also
indicates whether this is a divisor or multiplier,

Series, The compatibility of sec,3.1 with sec.2 makes the sgmmatibr

of series of indexed terms a natural generalisation of the}[@eval}
uation, and correspondingly for a product of terms, Thus we ine
clude such expressions as 2:1 =0, ni agd f‘i ﬁl,lobj as allowed
terms. (The Flexowriter code includes £ and {1 and the facility
for sube~ and super-scripting) |
Function Subroutines., Exponentiation (a binary function), trigo-.

nometric (unary) functions, and, more generally, n-ary functions
may be represented by the array type
2]

‘ —) H S— |

Transfer t_nValue Lwal «~a2 Cos L.a
Address

Function subroutines are written in such a way that they are com-

patible with the interpretive or compiling master program (this
imposes only minor restrictions) and allow other functions as

arguments,
#1-19

.3.2.4 OQe:and Interpretation. Most of the previous work is concerned

3.2.5

with the interpretation of orders by means of basic loops such
as 3.1.1. The potential use of trapping also includes the in-
terbretation of numerical data at the time of progtam execution
without any formal change in the program. This applies partic-
ularly in cases where the system is used as a compiler to pro-
duce a working pfogram, which the coder may wish to épply, for
experimental purposes, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>