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Introduction. 

Some potentialities of the Rice Computer code are examined 

herein, and a formalism is described for the machine representa­

tion of algebraic formulae which has advantages in compilation, 

interpretation, and symbolic manipulation. The interpretive 

process is considered in detail and presented in Appendix I. 

A tentative formal language is specified in Appendix II. 

Readers familiar with the latest developments in machine 

code should omit Section 1. 



1 .. 0 Full details of the Rice Institute Computer are given 

1.1 

elsewhere. In this section we shall give just sufficient 

information for an appreciation of subsequent applications. 

This computer is an asynchronous, parallel, binary, 

single address, electrostatic storage machine with an arith• 
metic unit consisting of eight 54-bit machine words (in "flip­

flop" registers) and a control settion consisting of eight 

lS·bit words• each equi~alent in length to one full address 

in the main -torage. The arithmetic th in one's complement 
form, both fixed and floating point, with a six-bit exponebt 

. ' 

(representing a power of 256) and 48-bit mantissa in the lat-

ter case. Pixed point 4r1thmetic uses only the 48-bit frac­

tional part of the word. 
Each machine word contains, besides the 54 bits which· 

represent a number, two "tag11 bits which can be treated as a 

label (we distinguish four cases: no tag, tag 1,2, and 3) on 
a number or an operation. 

Input and output is by means of 6-hole punched paper tape, 

fast line printer, and magnetic tape. 

tn the arithmetic unit there is a single length accumula­

tor (56 bits), its extension (R), a subtrahend register (S), 

four temporary stores (T4 ••• 't7) and a null (zero) register (Z). 

Access time to one of these registers is of the order of one 

microsecond. Each is addressable as a normal memory cell. 

These are later referred to as A-registers. In comparison with 

the IBM 704, U is roughly equivalent to AC, R to MQ, ands to 

the storage register. 
1.2 The control unit consists of eight B·lines, one of which 

is the control (or location) counter, and another is desig­
nated the "pathfinder" (PF) which automatically serves the 

purpose conventionally assigned to index register #4 on the 

IBM 704. As well as these special uses each B•register is 

available as an indexing box and is manipulated by a conven­

tional set of orders. 
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e.3 

1.4 

There is a further set of six addressable 15-bit fast 

access registars, consisting of acnae b.gh'1. 11;1ode light. 

trapping light, indicator, and increment (X) registers, and 

the second pathfinder. The sense lights are used as manual 

or 3Utomatic switches in the usual way. Mode lights are also 

subject to manual and automatic control. but can not be in• 

terrogated in the same way as sense lights. A mode light 

affects the detailed functioning of a class of machine orders, 

and may be thought of as controlling the sequencing of a sin­

gle order in a way analogous to sense light control of the main 

program. We thus have the option of operating in a rounding. 

significance. or trapping mode (or any combination of these) 

without formally changing the program in the machine. 

Overflow and tag indicators are placed in the indicator 

register, and may be reset at any time. The X register may 

be used for incrementing B-registers or controlling jumps by 

a preset amount. The second pathfinder plays a role comple­

mentary to the "first" pathfinder and is designed to assist 

mainly in check-out programs. 

Each order entering the instruction register I is de-

coded in a simi.lar way. The format of the order distinguishes 

four fields and although there is some overlap in timing it 

is convenient (and correct) to regard the decoding as taking 

place in the following sequence: 

1. Field 1 (6 bits) Some number from an A· or B-register is 

brought into u. If n is such a number, 

we have the options of bringing inn, 

-n, f nl , or • I n I • 

SPE, 
CIA 
REG 
TE:8 

IN• 
STll 
TIO: 

2. Field 4 (27 bits) The address field is decoded an4 a number is 

brought into s. Details of this decoding 

are given in section 1.6 where it will be 

noted that the B-registers are additive, 

that infinite indirect addressing is pos­

sible, and that if mis the address which 

is finally formed in I we have the option 
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of bringing into S one of M, ·M, I M f , 
• I M f or (M) • ·CM)• 1(M)l or • t<M) I • 

). Fteld 2 (15 bits) This is the operation code itself, which 
generally performs some operation on s, U, 
R, or possibly a B-register. The codes 
are built up on a modal principle, and a 
significant proportion of the 215 possible 
orders is meaningful. Some of the more un­
usual orders are discussed in section 1.5. 

4. Field 3 (6 bits) After the operation is completed several 
options are provided for incrementing B· 
registers or transferring quantities in 
the arithmetic or control units. These 
are as follo,,s: 
(I) Store U (or R) in some A (or B) 

register 
(II) Modify some B register by .:t 1. 

(111) Modify some B register by +x. 
(IV) Send the final (effective) address 

from the instruction register to 
some B register. 

An assembly program for the machine allows full flexibility 
in the synthesis of the order, whilst gaining the convenience 
of symbolic codes. An example of a single order is 

T4 ADD A +Bl+ B2, Bl+ 1 
which has the effect of adding to T4 the contents of Location 
(A +(Bl)+ (B2)) and leaving the result :ln u. Also Bl" is in­
cremented by l after completion of the order • 

Apart from conventional orders for arithmetic and logic 
and B·line modification, the presence of tags calls for a set 
of orders to control and test these. The arithmetic unit con­
tains both two tag bits, which are set and reset as each num­
ber :ls brought to s, and three tag indicators which are set 
by the tag bits (tag 1, 2, 6r 3) and remain set until interro­
gated by a control order. Thus they act as a basic "memory" 
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1.6 
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of the type of numbe,r which has come into the arithmetic 

unit, and can be used as such for a variety of purposes 

such as loop control, boundary point recognition, tracing, 

etc. A number may be stored with tags unchanged, or with 

a specified tag. 

Control orders provide for testing whether any or all - -
of up to three conditions is satisfied and taking one of 

four possible courses of action if the test is successful. 

Thus any of 2 12 alternative control orders may be executed. 

Twelve of the sixteen binary logical functions are 

provided. 

A repeat mode is available to ~aci1itate table search­

ing procedures., After entering this mod~ (by an order or 
; ; 

manually) the next command is repeated until either a tagged 

number is brought to s or a test is satisfied. 

Possibly the most important new logical feature in the 

machine is the use of tags for arbitrary trap transfers 

when the machine is in the trapping mode· (if the machine is 

not in the trapping mode, tags have no effect except in 

setting the arithmetic tag indicators). The principle of 

trapping is that for certain purposes it is advantageous 

to interrupt the normal sequencing of orders at specified 

points in order to perform some other task such as input­

output control, giving checking information, interpreting 

the data ins or the order in the instruction register which 

is about to be obeyed, or taking action on some unusual 

arithmetic condition such as an overflow. 

The trapping register is used to monitor these condi­

tions, and each bit of the register which is set equal to 

1 is used for interrupting control when both the machine is 

in the trapping mode and the condition to which this bit 

corresponds is satisfied. In addition, the option is pro­

vided with tag traps of trapping before executing the order 

(field 2) or after executing field 3. When a transfer takes 

Ta.A. 
PIN 



place, the next order is taken from one of seven fixed ad­

dresses, depending on the condition ~ausing the transfer. 

The following conditions may arise and cause a trap 

transfer: 

a) Mantissa overflow: trap after order has been obeyed. 

b) Exponent overflow: trap after drder has been obeyed. 

c) Sign of U mantissa= 1: trap after otider has been obeyed~ 

d) Sign of U mantissa=(): trap a,fter otder bas been obeyed. 

e) Tag bit l~ 2 or 3 set in control tlnitt trap before or 
after field 2:. 

f) Tag bit 1, 2 or 3 see in arithmetic unit: trap before 
field 2. 

Some bits of the trapping register are spare for additional 

tests. The detail of field 4 is so arranged that trapping may -
occur during an indirect addressing chain. That is to say, we 

have the sequence in decoding field 4 of: 

1. If control trap condition 'is met, trap and turn off 

indicator. 

2. Modify address portion of field 4, M, by adding in the 

contents of specified B-registers. 

M + J:iB{ .... M 

3. Test indirect address bit. If 1, bring bits 31 - 54 and 

tags from location Mand return to 1. If O, proceed to 

4. 

4. Examine bit 28 of I. If 1, transfer M to s. If 0, 

transfer (M) to s. 
5. Adjust sign of S according to bits 29, 30 of I (i.e., 

±s,± ht). 
6. End of field 4. Proceed to test arithmetic tag bits. 

It will be noted that some ambiguity in the cause of trap­

ping may arise since separate addresses are not provided for 

each possible trap. It is up to the coder to resolve such prob­

lems arising from multiple trapping lights. 
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A scheme for array manipulation. 

In this and succeeding sections ptactical applications 

of the Rice tnstitute Computer are considered. These are 

illustrated by elementary programs in symbolic form, and more 

detailed programs ate kiven in Appendi~ I~ 
2.1 Indirect array referenctn&.•i Consider an array of n numbers 

a 1 ••• an stored in consecutive locations A •• • A+ n .. 1. There 

are several equivalent ways of referring to the ith number a 1 
in this set (with an address independent of i) and each assumes 

that (Bl) (i.e. the contents of B-register 11) is i. 

a) We could write CLA A +Bl-1. 

b) We could write CLA *AC (an asterisk denotes in .. 
direct addressing) 

where (AC) :zER A + B l-1. 

Obviously this process could continue indefinitely through 

the indirect addressing feature of the machine. AC is called 

a codeword for the array A. 

Now consider an array of mn numbers a 11 , a 12 , ••• amn stored 

in consecutive locations such that aij is found in A +(i-l)n+j-1. 

Again, a ''direct" indexing instruction would depend on having 

(Bl)= (i-l)n and (B2) = j .. l, say, and then we would write down 

CLA A+ Bl'+ B2 
to call out aij" The fact that Bl and B2 do not contain the 

"true" indices (i,j) leads us to enquire whether a scheme can 

be devised with this property, with the following result: 

Firstly, we set up an array of m codewords of the form: 

(AJ) : ZER 

(AJ + 1) : ZER 
• • . 
• 

(AJ+ m-1): ZER 

A +B2-l 

A+n+B2-l 

A+ (m-l)n+ B2·1 

Secondly, a single codeword AIJ is stored: 
• 

(AIJ) : ZER *AJ +Bl-1 (2.1.1) 
Then supposing (Bl)= i and (B2) =j the order 

CLA *AIJ 
calls out the required element a1 j. 



It will be noted that in each codewotd, only the address 

field and its B-modifiers (field 4) are used, and the sign 

modifiers (bits 28. 30) are retained frdm the original order. 

Thus CLA • I AIJl brings • I aijl to u. 
The above method is quite general, and can be applied to 

arrays of any order up ta 6. Further, any arra~ tan have anf 

number of sets of codewords for the convenience of the coder. . ' 

An illustration of this case is the mattix transposition ~ou• 

tine given in Appendix I(i). It should be remarked, however, 

that the circu~etances in which transposition is necessary are 

effectively reduced bt the availability of such codewords, 

since we can say the mattlx is virtually transposed by writing 

down a new set, say: 

(AI) ZER 

(AI+ 1) : ZER . 
• • • 

A+Bl-1 

A+ n + Bl-1 

(AI+ m-1): ZER A+ (m-l)n + Bl-1 

AJI : ZER *AI + 132-1 

Then if (Bl)= i and (B2) = j the reference 

CLA *AJI 

calls out the aji element of the array. 

• • • (2.1.2) 

The actual storage~location of the array is unimportant, 

except that it should be in an ordered fashion with respect to 

the last index. We conventionally assume it to be stored with 

the last index varying most frequently. For an 1 1 X 1 2 ••• Ik 
k array we require c 1 codewords where 

c~= l+I 1 (l+I2 (1+ ••• (l+Ik-l) ••• )) (2.1.3) 

and in this case it can be shown it is most economical to choose 

(2.1.4) 

for then c~ is minimised. 

There is still some loss in time and space in using code­

words to set against the gain in coding simplicity. This can 

be reduced by generating codewords only for as long as they are 



required, and then overwriting, and also by transferring the 

single codeword which is the "key" to 'the array to a fast ac­

cess register during a~ inner loop (in th- above example, we 

may send (AIJ) to T4, saj). , 
11 

Relative addressing within arrays and between corresponding 

elements of different ar~ay~ i~ acdompJished by ujing only one 

set of codewords. Thus, if we have thre~ matrices A, B, c, of 

equal site with elements a 1 j~ blj~ c 1 j ahd a set of codewords 

for A starting in AIJ, the order 

CLA *AIJ, I...,.B3 
wi 11 bring aij to U if (Bl)= i and (B2) = j, and also store the 

address in which aij is stored in B3. Subsequently, references 

to bij and cij may be made relative to this B register. 

2.2 Use of tags for control purposes. In cases where the array is 

stored in full in a regular manner many efficient ways of scan­

ning it systematically exist, and the formalism of sec. 2.1 ts 
particularly useful when it is necessary to use a scanning "pat­

tern" other than by "row" or by "column", for example a diagonal 

scan in which i + j = a constant. The size of the array deter­

mines the range of indices, and it is a straightforward matter 

to set and test these using conventional orders. 

It is also possible, however, to use the "tag" labels to 

indicate when the end of a row, say, has been reached, and to 

rely on these for indexing purposes. With two tag bits, a two­

dimensional array is handled conveniently, tag 1 indicating 

the last word in a row and tag 2 the last word in a column. In 

this way quite general subroutines may be written to operate 

on any array of a given order, independent of its size (in a 

later memorandum we shall consider subroutines which operate on 

arrays of any order). 

In cases where two tag bits are not available, or the for­

malism of sec.2.1 is being used, a simple alternative is possible 

using only one tag bit which may also be used for higher order 

arrays. An example of this scheme in which codewords are tagged 

4tl-9 



is given in Appendix I(ii), and it will be noted that it is 

based on the idea of tagging the last word in any linear array, --either of numbers or codewords. In the following sections where 

this idea is used, we shall always reserve tag 1 for this purp~se: 

The last word of an array is always denoted by ,tag~ (2.2a. 

2.3 Use of tags in data interpretation. For many purposes, as re­

marked above, the size of an array is immateriai. Jowever, in­

formation of this kind must be re.dily available both to the 

a>der· and to the routine~ which ~111 be required ho ~anipulate 

arrays and codewords in -korhge. It is aiso desirable to be 

able to siore arrays in •~condenied" form, when many of the ele-
. ,:, i 

ments are zero and subsuantial economies in space can thereby 

be made. A typical exan1ple of the latter situation is found in 

a linear programming problem where there exists a large matrix 

(say 100 X 200 elements) in which perhaps only 20% of the ele• 

ments are non-zero. 

We therefore suggest extending the functions of the codeword 

to give the maximum and minimum values attained by the index of 

the array to which it refers, and also the maximum allowed value 

of the index. Denoting these quantities by ikmax' ikmin' and Ik 
respectively, we allocate nine bits to each (which allows a 

range of index up to 512) and store them in the left half of the 

codeword. 

Type 1 
codeword 

9 9 9 3 1 

• • • (2.3.1) 

Normally, we have tk •ik and ik 1 = 1. However, in cases max m n 
where the array is condensed we may have l'-ikmin4kikmax~Ik. 
Note that the three bits in the codeword denoted by IM are still 

unused, and also the general rule that if the sub-array is another 

set of codewords, IA =1 (indirect address bit) but if the sub­

array is a set of numbers, IA =O. The BM field indicates which 

B-registers are used to modify M. 



The methods of the previous section are unaltered in a 

"normal" situation where the array is stored in f~~l. However, 

in a condensed array we have to ensure, fot each 1', that ikmax) i, 

& i) ikmin' before extracting the cotrespond:l.ng element. If 

:i .) ikmai ~r i < i~ntill~ th~. eletnen,t: has val~e zer~ •. This can 
b• itran~ed. in a numbet,61 -~~s~ ,lthet by extra~ting ikmax' 

ik~in' a~d ik before ~rit~fi~g a loop, and modifying the control 
~tder~ aebo~d~hgl~ (dr by a. priori knowledge of the values of 

ikmax• lkmtn as ln the case, for example, of a band matrix); or 
by the lntervention of an interpretive scheme which recognises 

i 

the codeword and automatically extracts the correct element of 

the· array. Such a scheme w:1.11 be detailed later, but we note 

that tag 2 will be used, by convention, to denote a codeword 

which is to be interpreted, and this will be used to trap out 

of an indirect addressing sequence. 

Type l codewords only handle an array in which the terminal 

elements mdy be zero. In the most general case, non-zero elements 

are randomly distributed in the array, and we want to store only 

these, Moreover, we shall have occasion to add and delete ele• 

ments from the array in an arbitrary fashion, and therefore a 

"chaining" system is proposed similar to that used by Newell and 
( 1) 

Shaw in the IPL language. There is one codeword corresponding 

to each elc~ent of the sub-array giving the value of the index 

for that element, the location of the element in storage, the 

location of the codeword of the next element in the array, and -the "order" of the current array, counting the first codeword 
in the sequence as order 1. we denote these quantities by 

ik, M, L(ik) and R. 

Type 2 
codeword 

3 15 

ja I L(tp 

3 1 8 

••• (2.3.2) 

Note that the right hand half of the type 2 codeword is 

similar in form to that of type 1. 

These codewords are used extensively in what follows, and 

it is convenient to have a schematic representation of some 
(i)See;·for-exampie; A.Newell and J.C.Shaw,"Programming the Logic 

Theory Machine". Proceedings of the 1957 Western Joint Computer 
Conference, p.230. 11-11 



expresBiona. in which the codeword is a buiiding block of the 

form 

'-----------------....-~--J.-+.-Td location-L(ik) 
i· 

To location M 

where A is the address of the codeword and i its tag (if any). 
0th.er information may be written inside the box. 

For an example, consider the case of the M X N L.P. matrix 
given at the beginning of this section. A general element is 

aij' and the matrix is stored "by column", that is, with index 

i varying most rapidly. To call out element aij we set (Bl)= i, 

(B2) • j and give the order 

CLA *AIJ. 
The codewords are as follows: 

(AIJ): type 1 with ikmax •N; ikmin = 1; Ik = N: 

IA =1; Address =AI +h2.;1, Nd tags. 
I 

(AI) : type 1 with ikmax =M; ikmin = 1; ik =M 
' 

IA •O;. Addrels •PWA 6£ codeword for 1st 
i ' 

non-zero element of fir$t column; Tag 2. 

(AI 1): type l with ikmax •M; ikmin • l; Ik •M 

• • • 

IA =O; Address =FWA of codeword for 1st 

non~ie~o element of second column, Tag 2. 
etc. . . , . 

(AI +N-1): type 1 with ikltlax ==M; ikmin = l; Ik =M 

IA =O; Addres =FWA of codeword for 1st 

non-zero element of Nth column; Tags 1 and 2. 
Finally, the elements are stored as a chain of type 2 code­

words for each column of the matrix. Schematically, the following 

diagram shows the structure of the array (Shaded cells represent 
elements). 
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___ ) At t-! , J 
r- ~ 1st columr 

AI+ 1 

Al+ 2 '
?:?:::?:: --:?') non - zero ~-«:J elements 

t-----------··~..,· ~ · , ......................... - .. , ........... -3th co lur.:, 

t l .· ~ :~:;::~~ 
---~-~-T_....~···-- ':?"/;7?'1. last non~· 

~i::::.L--6-__.. .... ~-.. e le men t 

The only block of cells necessarily consecutive is AI to 

AI+ N-1, although it may be convenient to store elements in con­

secutive locations particularly when the matrix is being byste­

matically scanned and rewritten. The indirect addressing sequence 

is trapped by tags on the second order codewords, and the inter­

pretive program recognises the structure of the sub-arrays. 

The importance of the above scheme in array manipulation is 

considered to be the simplicity of coding achieved by allowing 

the B~registers to contain true index values, and the fact that 

several d:ifferent types of storage arrangement can be made formallf 

equivalent (from the coder's point of view) by means of interpre­

tive-type subroutines called in by the trapping feature of the 

computer. 

found here, 

The normal disadvantages of interpretation are not 

since "wasted" interpreting time is reduced to a 

small fraction of execution time. 
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3. Gen"'r.alisation of the array concept. 

3.0 In this section we shall extend the idea of an array deu 

-3.1 

scrib2~ by codewords to the description of mathematical for­

mulae ~ithin the machine. This is based in the first place 

on describing the formulae as arrays, and then using the con­

ventions of the previous section to handle the array within 

th~ ~omputer. It is characteristic of this method that the 

cod~~0rds pro~ide both a natural description of the array and 

the means of ha.ndling it in comp\ltational and manip1llative ;:,ro­

ccsaes. We shall also see that we are left with the opti0n of 

proceasing the array by means of a compiler-type program ~afore 

starting a calculation or of starting the calculation dir~ctly 

and interrupting the program where it is necessary t~ interpr~t 

an operation or operand. The trapping feature brings the exe­

cut:l'.on time of interpreter-type p,:ograms to within a small mul-

tiplG of that for direct madh1ne language codes. 

~r~le algebraic ~ystem. 1:6 start with, consider the following 

algebrai4 system. 

We have two fundamental quantities handled by the machine, 

namely variables and constants. These are identical in. form 

(floating point numbers) and differ only in their use in the 

calculation. We denote these by v and c respectively, or, if 

it is not necessary to distinguish between them, by x. Dif­

ferent quantities are distinguished by subscripts, as in v7 , but 

we do not suggest at this stage that they form part of an array 

in the sense of se.ction 2. 

There are two operators in the system, namely+ (add) and 

X (multiply) and well-formed formulae (w.£.f.) containing 

these are defined as follows: 

1. Given a formula (string of symbols) w, if w =some v or 

c then it is a w.£.f. 

2. (a). If w is formed from a finite succession of w.f.f. 

connected by+ signs, then w is well-formed, i.e., 

:fl:l-14 



w= w1+ w2+ ••• +wk is a w.f.f. For ](: ~k, wi is a 

Rub-formula of w. 
(b). If w is formed from a finite succession of w.f.f. 

of the type (wi) connected by X signs, then w is well­

formed; i.e., w:(w 1) x (w2)x ••• x (wk) is a w.£.f. For 

1( i~k, w1 is a sub-formula of w. 
i. If w is a w.f.f. then so is (w). 

to If w is a w.f.f. then so is (-w). For brevity, we may 

write w1+ (-w2) as w1-w2 • 

These are the only w.f.f. of the system. Formulae of type 

2(.:1) are called I:-formulae, or-,= -terms, and foi-mulae of type 

2(b) are n -formulae or n-terms. A particular I .. term is written 

as 'S"'or (j"'i, and a particularntertn as 'lror "ff""1· _ 
Then we can say that any w.f.f. is given by some (f"orif or 

x, aud if it is (j or 'ff', then each sub-formula is of the form 

(}" or 1("' or x, • • • and so on un ti 1 the formula has been decom­

posed into x-terms. 

We define the value of a formula was follows: 

1. If w is x-type, the value of w is the number in the location 

associated with x. 

2. If w is ('J' or1f" -type, the value of w is the result obtained 

by applying the machine operations of floating point addition 

(multiplication) to the sub-formulae of (J (1t ) . 
3. The value of (w) is the same as the value of w. 

4. The value of (-w) is the negative of the value of w. 

Consider first the representation of was an array. In 

general the x-type formulae will be stored in a.·random manner in 

the computer, so it is not possible to use a type 1 codeword to 

describe a ·'I: or rl term. A modified type 2 codeword is chosen 

instead. As usual, tag 1 denotes the end of the array, tag 2 

indicates that sub-arrays are to be interpreted. The three 

basic schemes are: 

1. x-type. A single codeword gives the location of x and 

sign modifications (if any). There is no 

tag 2; there may be tag 1. 

1Fl-15 
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2. er-•type. A single codeword C gives the location of the 

fir-st codeword of the chain, which carries a 
tag 2. C may include sign modification in the 

IM field and there may also be a tag 1. 
3. Tr -type. A tag 2 codeword ia used, as in (2). to indi­

cate the beginning of a new w.f.f. 
The modified codewords which we use give L(ik) and Mas 

before, but the remainder of the word is used to give sign in­

flexions, a description of the sub-array. and a code for the 
aub•array (or formula) 

Modified 
t1.pe 2 
codeword 

6 6 

f Type J Code 

15 

fL(next) 

3 1 8 15 

As before, the IA bit is used to indicate that the sub-array 
is an array of codewords. If the sub~array ia x type, it is 
effectively named by the (BM, M) portion of the word-. If it ia 
tr' or ·l{' type, the name and tf'pe codes will be used as a "first 
order sieve" in comparing two arrays. 

Thus the expression a +by + c is represented as the array: 

Ao Al A1.-2 __ ,.....•1••,,~i-. A.3 

IO"' (f fT ____ .,... 

In a ••nae,. the expression is represented as a "tree" in which 
the terminal. points· are x-type formulae, and the structure of 
the tree corresponds to the structure of the expression. Hote 

that two addresses (shaded) are not- use~-here. Strictly speaking, 
a saving of two locations can be made in the above scheme, but a 
use for the additional codeword is suggested in Section S.1. 

We now i 1 lus,trate' two methods of evaluating a given expres­

sion. First·l~. consider the I -sequence of x-type formulae 
whose first data codeword.is in the address given by (Bl). As­
sume (T7)• 0 initially.. Then we may write: 
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-

SIGMA 

T7 

CI.A Z +Bl, 
LUB. d27, 

PAD *R, 
IP'(NTl)TRA 

U'"'B. 

U--,Bl 

U-4?7 
SIGMA 

Find. codeword 

Find address of nel 

Form sum 

(3. i~ 1) 

The.,,--sequence evaluator is similar, with FAD replaced by FMP. 

Next suppose that the machine is controlled to execute a 

trap transfer whenever tag 2 enters the arithmetic unit before 

the instruction is obeyed, and that 

t: -sequence a +by +c given above. 

brought to S (in the third order of 

SIGMA ia operating on the 

Then as soon as (K0) is 

the loop), a trap transfer 
takes place to a routine which organises a transfer of control 

to the Pl program sequence before continuing with SIGMA. (The 

next section deals with the mechanics of this interpretation). 

An alternative to (3.1.l) is possible, which produces a 

machine code rather than evaluating a 't:-term directly. Consider 

SIGMA CLA Z +Bl, u-,. a Find codeword 

LUB. d27, U~Bl Find address of ne: 

CLA •a Trap transfer point 

R ORU SMASK Form order 

STO Z +B2, B2 +1 Store in program 
IF(NTl)TRA SIGMA-1, cc+ 1 Test 

SMASK T7 FAD z, U-+T7 (3.1.2) 

In the above, (B2) gives the location count in the compiled pro­

gram; (SMASK) gives the basic order in the compiled program, 

which is simply modified for arr -sequence. 

[It is interesting to note •n alternative code to 3.1.2: 

Suppose we make the type codes correspond exactly with the com­

puter codes for floating point addition and multiplication, 

both in bit pattern and position in the word. Then suppose, 
when a basic cycle is started, that the codeword is placed in 

a temporary store. Then a general basic cycle can be written 

which extracts the function and address from the codeword into 

a mask to form the next order to be executed.] 
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The primary problem of trans.lating a paper tape cod:C:2 into 

the machine representation of an expression is resolved only for 

an el~mentary algebraic expression, but the following considera­

tions indicate it is not likely to prove much more involved :tn R. 

more practical case. We have relied on compound w.f.f. beinJ 

enclosed in parentheses in order that they may be distinguished 

readily, and this implies that where parentheses and multipli­

cation signs a~e omitted in normal notation, they must be re­

placed by the machine by compounding such transformations as 

with 

ab becomes ax b 

.:tab becomes .±(a.X b 

ba.± becomes b X a)± 

and so on. 
i 

When these replacements have been made, we note the importint 

fact that the occurrence of a left parerttbe~ts is associated with 

a tag 2 codeword, aftd a right parenthesis with tag l. In this 

way, an array becomes a1most a direct transcription, symbol by 

s)mbol, of an expression, provided reference addresses are 

placed correctly and operation codes inserted. 

In fact, the process of scanning an expression to form an 

array can be defined neatly in a recursive fashion, and is illus­

trated in the Appendix l{iii). 

Before proceeding to an elaboration of this scheme, we may 

summarise its apparent advantages as follows: 

(1) The machine representation forms a "natural" link be­

tween computer code and formal algebraic expressions, which 

lends itself to direct manipulation by the machine. 

(2) The option is provided of evaluating expressions by 

direct interpretation or by compiling a machine language program. 

(3) The scheme is readily extended to more complicated 

operations and functions. 

(4) The possibility exists of providing for data traps, where 

it is required to interpret and man~pulate data in different forms 

such as double precision or complex numbers, matrices, etc., durini 

execution of the object program. 
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(S) The scheme is consistent with the array manipulative 

~ystem of se~tiott2~ Ind the a~dte sim~le conventions provide 

for the ditect e9aluation of ~~pres~iohs such as 

Yt =ti! -3l x .. •:1.f • 
by using the full address porti~n of the descriptive codeword~ 

3.2. Extensions of the representatio..!!.!. We shall not be concerned here 
with detailed extensions to the scheme outlined in sec.3.1, but 

will indicate some possibilities which have been explored and 

appear promising. In Appendix 11 the language we have construc­
ted for writing mathematical formulae is presented in summary 

form • 

. 3.2. l Division. This seems best handled by including it in a 1\-sequenc( 

as the last term, so that the most generalfT -type formula is 

1"1 =w1w2 • • .wn-1/wn 

which does not limit us in any way, since wn may be any w.f.f. 

Thus the last codeword of a IT-sequence, •htch has a tag 1, also 
indicates whether this is a divisor or multiplier. 

3.2.2 Series. The compatibility of sec.3.1 with sec.2 makes the summatiot 
of series of indexed terms a natural generalisation of the 1: eva1;.. 

uation, and correspondingly for a product of terms. Thus we in­

clude such expressions as r i =O, nai and n j == l, 10b j as allowed ' 
terms. (The Flexowriter code includes t: and f'\. and the facilitf 
for sub- and super-scripting) 

3.2.3 Function Subroutines. Exponentiation (a binary function), trigo­
nometric (unary) functions, and, more generally, n-ary functions 

may be represented by the array type 

2 

I r I I 
Transfer~ Value 
Address 

Function subroutines are written in such a way that they are com­
patible with the interpretive or compiling master program (this 

imposes only minor restrictions) and allow other functions as 

arguments. 
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e3.2.4 Operand Interpretation. Most of the previous work is concerned 

with the interpretation of orders by means of basic loops such 

as 3.1.l. The potential use of trapping also includes the in­

terpretation of numerical data at the time of prog~am execution 

without any formal change in the program. This applies partic­

ularly in cases where the system is used as a compiler to pro­

duce a working program, which the coder may wish to apply, for 

experimental purposes, to single or double length fixed or 

floating point re~l or tompl~k numbers or arrays~ without re­
compiling. These options can bij provided under sense and mode 

light control provided arithaetic otders in the ~a•l• ldo-s are 
' j 

3.2.5 

themselves trapped. In the same way, some details of array 

manipulation may be lef~ b~ ~h intetpt$tlve progta~ used by 

the object program where a vkriety of types of array is to be 

handled. 

Thus we can envisage the use of data interpretive routines 

and array manipulative routines at both the compiling and exe­

cution staaes of problem solving. 

More basic looes• The ability to handle more basic loops depends 

primarily on the complexity of the recognition process. It would 

be desirable, for instance, to include the polynomial evaluation 

L a 1 x1 as a basic loop, · and :Lt 

seems feasible to recognise this. We should also consider in­

cluding half term Pourier Series £a cos(nt), 1: b sin (nt) :Lu a n · n 
working system, but at this stage we reach a point where a fine 

distinction has to be made between the use of a Fourier series 

as an operand (the value of z an cos(nt)) and as an operator or 

function (~(an' t) ~ an cos(nt))and in doing so we draw a line 
between simple automatic coding and more refined algebraic pro­

cesses which can be performed by the machine, but are better 

discussed in a later memorandum. 
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e 4.0 Interpretation ~f arc~ts~ 

In this section we riturn to an examination of the type of 

interpretive routine called for by the generalised arrays of 

section 3. It has been noted that any expression can be evalu­

ated either by direct ibte~pretation and computation or by in­

terpretation leading· uo the comp~lation of a sequence of orders 

for computing the value df the expressi~n at a later st~~e~ We 

shall concern ourselves mainly \.Jith the former method, on the 
l 

assumption that a clos~ly pa~aliel systei ia ad~quate for the 

latter. 
4.1 The interpretive ~rocedure~ Thi~ cari be stated quite simply. 

It is aimed at linking together! set of manipulative or com­

puting sequences (CS) such aJ ~.1.1 to perform particular 

functions witbp.rtibular operands, on the assumption that the 

operands are of a P"'tticular nature. In the event that the 
' ' 

hatJre of the o~~rahd changes, the sequence is interrupted and 

lurther tntefpretation is necessary. 

It is characteristic of t~e system that one CS may, through 

trapping, use itself in an iterative or recursive fashion, and 

it is known that provided (a) the subroutine does not modify 

itself and (b) some control over working storage and data allo­

cation is exercised, this is allowable {these conditions are 

sufficient, but not necessary). Condition (a) is accounted for 

when the routine is written, and {b) is handled by the "working 

storage counter" which is controlled by the interpretive routine. 

(This is simply a B-register, and all references to working sto­

rage are modified by its contents, as in STO W +B4.) The ease 

with which the order code of this machine can be adapted to 

such processes should be noted. 

Figures 4.1.1 and 4.1.2 give, in flow chart form, the way 

in which the interpreter acts. The concept of a subroutine 

"level" at any point (i.e., the number of steps "down" from the 

main routine) is useful, although not essential to the code. 

The full interpretive routine for the system of sec, 3.1 is 
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Trap from main 
~outi. n·e or higher 

order sequence P 

Figure 4.1.l 

Flow of the 
interpretive 
loop. 

Return to 

Leave trapping 
mode and enter 
interpretive code. 

S~ve sign inflexion 
on this term. 

Save partia sum of 
Pup to this point. 

'

Save indicator regis­
ter and return address. 

Advance working 
count. 

Trans er to appropr ate~· 
basic routine for this · 
sequence Q. Enter trap 
ping mode. 

/vrom bas~ Decrease working 1--_.,.,:.;_ __ __. 

stora e count. \:00 P• 1 

Restore indicator 
re ister. 

Place value of this 
term in temporary 
11 to rage for P. 

Replace partial sum 
of P. 

Go to return addressl 
Enter trapping mode. f 

higher order l---....tt!f:;....-------' 
sequence. 
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Level O 

Figure 4.1.2. 

Interpretive 
orders a---~ ..... --

Basic 
Computing 
Loop 

Level 1 

Tag trap 

Relation of the Interpretive routine to 
the main routine and basic computing cycles. 
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4.2 

4.3 

given in Appendix I(iv). Its e~tension to more elaborate array 
structures is analogous. Whilst indexing within the expression 

is controlled by~ and {loperators, an expression may also be 

indexed from without, and is subject to control operators which 
are discussed in a later memorandum. 

It should be noted in passing that use of recursive algo­
rithms can lead to extreme inefficiency, as can be seen by ap­
plying the above methods to evaluatuig 

Jn(x) • (2 (n•l)J 1Cx))/x - J 2 (x) 
n- n• 

A final remark should be made in that this scheme, like 
any other interpretive or quasi-interpretive system, is well 
adapted to giving check-out information at all stages of 
problem solving by means of trap transfers under manual control. 
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es. Manipulation of expressions and construction of program sequences..!. 

We briefly indicate in this section some uses of the array 

representation in manipulation of a source program. 

5.1 Array complexes. We have so far avoided saying what is under­

stood by an arithmetic formula. It stand• for some numerical 

value ~hich is inserted in relation~l,ex~•~ssto~s such as 

(u <vj or in arithmetic definitions of the form 
ul= V1 5.1.l 

where v1 is a formula an(! u 1 is a ~atiable symbol not defined 

elsewhere. In the machine, this is encoded as the array 

L k 2 l f U i : k ~i II '''~l .... -......__ ____ ::f·-·-·••••••••••-••••• .. t,_··-: ... ---l 
L. 1 _ _I L -----,-- ___ I 

f 5 .1. 2 
name of u 1 v1 array 

Note that both addresses in the codeword in L refer to k, the 

first codeword of the V-array. Lis called the name of the 

expression for u 1• 

Now we may have a set of definitions: 

ul = Vl(u2 • • • ukxl . . . xn) 

u2 = V2(ul • • • ukxl • • • xn) 

u = k Vk(ul • • • uk-lxl . . . xn) 5.1.3 

which express (u 1 ••• uk) in terms of some other variables 

(x1 ••• xn) by means, possibly, of some "cross-connections". 

In circumstances (which we do not consider here) where the 

u 1 ••• uk are properly defined, it is possible to form the 

program sequence (PS) evaluating u 1 ••• uk given (x1 .~. xk) 

starting from any u1 and working through the list until they 

are all found. 
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5.2 

Firstly, note that S.1.3 is represented by a set of inter­

connected arrays, since any reference to h1 in the definitions 

u 2 ••• uk will be made vta a symbol table td location Lin the 

first array, and $0 on, Such a set is call•d an array complex, 

and it plays ari important role in program coristruction. Second­

ly, we arrange to replace the second address in each array name 

by a reference to a location containing its value as soon as 

this is found, so it is not re-computed later, e.g., the u 1 
array becomes 

Value of u 1 

Ths basid CS lo6ps ,re unchanged, and dompiling (or in· 

te~preting) stops when all u1 are found. The order of calcu­

lating the u 1 is un!~portant, since the array complex "unwinds 

itself". 

The independent variable table I.V.T. In the above array com­

plex, if some x (l(q-€n) is altered then the values of some 
q 

(not necessarily all) ui must be recomputed. Such ui are con-

veniently found from the independent variable table, which is 

derived in turn from 5.1.3. It consists of a matrix Tij of bi­

nary elements such that 

Tij = 1 if uj is dependent on xi 

= 0 otherwise 5.2.l 

ln cases when xi does change, then all uj-arrays for which 

Tij= 1 must be changed from form 5.1.4 to 5.1.2. 

5.3 Equivalence. Two expressions are equivalent if they represent 

the same function of the same variables, and we would expect the 

equivalence of their arrays to be recognized. The present solu­

tion to the problem closely parallels the IPL approach, with a 

crude nsieve" contained in the expression name and a recursive 



• 

type matching process. tu this case, since operators may have 

many arguments whose sequence is unimportant, some "standard" 

or "normal form" convention has to be adopted to give equivalent 

arrays a chance of being matched, and a simple numerical order­

ing of variable names has been evolved. 

S.4 Re-ordering the expression. It is well known that the order in 

which an expression is evaluated affects the number of temporary 

stores used by the compiling algorithm. (Compare the calculation 
of 

x = a +b (c + d (e +f)) 

with. x • ((e +f)d +c)b+ a. 

by left-to-right scan.) 
The re-ordering necessary to minimise the use of working 

stores can be expressed in terms of array manipulation. and in 

fact made compatible with the "normalising" process of sec.S.3. 

Other types of re-ordering may be considered (e.g., round• 

off minimisation) but they are less easily defined numerically~ 

In any case, this is an optional feature in the compiler in case 

the coder -already knows the "best" order of calculation in the 
expression. 

S.5 Factorisation. The machine may fail to recognise two expressions 

as equivalent if one is factored and the other not, e.g., 
·~ ~ 1 2 Ir.: ::H 1 J-.r::· ~--

1 
a(b+c): 

c 

ab +ac: rll ':::Jin \t; ~ s,q~ .:~~ 
On.e solution is to "multiply out" all expressions before attempting 

to mate h them, and this does seem to be the only unique way of 

defining an expression in normal form since its algebraic factors 

are not unique. This process is likely to be interminably long 

and clumsy, and it seems more hopeful that some heuristic pro• 

cesses may be applied in attempting factorisation • 
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"Unpili~~::_ We also wish to consider the converse problem, of 

whether a given program sequence is computationally equivalent 

to a given formula, which involves proceeding from code to ar­

ray and from formula to array and attempting to match the two. 

Firstly, note that subject to minor restrictions it is 

possible to proceed from a machine ianguage to symbolic program 

of the APl (assembly) type provided the final symbol table is 

available. Hence the problem is first to derive an array complex 

from a given symbolic code. A program of practical use would 

have to deal with control orders and data manipulations as well 

as as "straightforward" formula evaluations; by considering the 

latter first we may gain experience in this direction. Therefore 

consider a program sequence (PS) of arithmetic and store orders 

which may or may not evaluate a formula in the scheme of section 

3 .1. 

are 

The basic orders for evaluating a ~ sequence A1 ±A2 ±· •• 

CLA 

FAD 

FAD 

FAD 

STO w a 

A n -sequence is similar. Such a sequence can be recognised 

+A 
- a 

by the machine and coded as the·~ formula Wa = A1 ± A2± ... ± Aa. 

Since in the simple algebra we proposed, only such sequences 

as these are possible we end up with a set of formulae of the 

type w = A Ct A2 QA a 1 
. . . a 

wb = B Q B2 ... @ Bb 1 

wn = ul Q N2 ••• Q N n 
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where A1 .,. Nn may include any of W8 ••• Wn, andO stands fot 

one of the allowed machine operations. But this is what has 

al~e~dy been described (section 5.1) as an array complex (AC) 

and we may treat it as a single array for manipulative purposes. 

It is hoped that a general approach along these lines will 

prove fruitful. 
5. 7 Subroutines. In cases where frequent applications of I.V.T. caus,.::. 

recalculation of some u1 , it is conveniently written as a func­

tion subroutine u1 cu 1 ••• uk, x, ••• xn) to ensure that a compiler 

codes it in a closed form. The organisation of the subroutine 

hierarchy is a problem of control rather than formula language. 

However, expressions such as 5.1.1 may be generalised to include 

functional expressions of one or more arguments by an array which, 

instead of having a value reference in the name codeword, has a 

reference to a list of arguments, the onalogQIQ of a calling se­

quence in machine code. References to the argument are made, 

;ndirectly, via the argument list. 

f(x) = .•.•. x • • • • • 
becomes 

______ : ·-···· ... · .... I· ---J-·-*_H_,} ···~····· .......... . 

M L(x).....C -tllll---------------------

2 

L f 

x 
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Appendix I. Examples of codes using the conventions of this 

memorandum. 

(i) ¥atrix t 1r~nspositi9n! (A) is an NX N matrix for which 
' . · 1 '. 

two sets of codewords liave be~n set up, as described in 

section 2. i, with 11 key" en tty words AIJ, AJI, which call 

out the a~ 1 arid ,. 1 •l~ments respectively, where (Bl) = i, 
J. J J tn2) = j. !h~n we have: 

TRANSP z 

... u 
AA z 

s 
-B2 

Bl 

SBl 1, U~B2 

CLA aN, B2 +l 

STO X, B2 + l 

CLA *AIJ, I--)B3 

FST *AJI 

STO Z+ B3 

IF(ZER)SKP X 
sec AA, B2 + l 
ADD a2, U"'"""?'B2 

IF(POS)SKP -X, 

sec 
TRA 

AA 

PF 

Bl+ 1 

(B 1) : i = 1 

N " order of matr:1.. 

(B2) = j = 2 

(a 1 j)-:>,U 

U~L(a .. ),(a. 1.)~S 
J l. J 

S..-+L(aij) 
is j e N? 

No 

Yes 

Is i: N-1? 

No 

Yes. Return. 

(ii) Control of Loops by tags. The following routine sums the 

squares of the elements of a vector a of any length, storing 

the result in Y. It is assumed that the a 1 are stored as 

floating point numbers in successive locations starting in 

A+ land finishing with an element bearing tag 1. 

SQSUM Z STO T4, U~Bl 

NEXT CLA A+ l+Bl 

FMP U, Bl+ 1 

FAD T4, U-;,T4 

IF(NTI)TRA NEXT 

T4 STO Y 

(iii) The basic computing sequences of section 3.1: 
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(a) SIGMA 

SLOOP 

(b) PI 

PLO OP 

(c) INTERP 

CLA 

LUR 

CLA 

Z + Bl, U--tR 

d27, U-4131 

*R, U~T7 

CLA Z + Bl, U-+R 

LUR d27, U~Bl 

T7 FAD *R, U-4T7 

IF(NTl)TRA SLOOP 

CLA 

LOR 

CLA 

CLA 

LU8. 

Z + Bl, U~R 

d27, U~Bl 

*R, U~T7 

Z +Bl, U-?,R 

d27, U4Bl 

T7 FMP *R, U-+T7 

IF(NT l)TRA PLOOP 

S RPL R 

PF IF(ODD)TRA NOTSAV 

LUL dlS 

ORU 

LUL 

ORU 

STO 

BS RPM 

R STO 

T7 STO 

Z STO 

LLS 

Z LLS 

INDREG ,,. 

dlS 

Bl, B6+1 

2 +BS 

R, BS+ 1 

Z + BS 

BS-1 

INDREG, BS+ l 

d9, U~PF 

dlS, U-?Bl 

Evaluation of 

the ~ -sequence 

Evaluation of 

the n -sequence 

Interpretive loop. 

Save indicators, 

pathfinder, and 

(Bl). 

Save inflexion on 

this sub-array 

Transfer code~PF 

Z ETM , U~R Enter trap. mode. 

sec (Transfer location) +PF, BS+ 1 

Execute ba~ic computing sequenc3 

RETURN CLA BS-1, U~Bl Return from CS 

LUR dlS, BS-1 with value of 

STO INDREG, B5-l result in T7. 



PF 

T1 
s 

,, 
LUR dl5, U--+PF 

1.F(ODD)TRA HOT RES 

FST BS-1 
E'rM , U ....:,.T7 

CLA BS+ 1, ~R 

sec PF-1, B6-l 

Restore registers. 

Set refere11ce 

word in R 

Exit 

Notes (i) A distinction is made between the cases of 

saving the partial result of the higher order 

array or not, and only routines for the former 

case are given here. 

(ii) (B5): working storage count; (B6): level count 

(d) Conversion of data input to arrays, 

We consider the problem in quite general terms. The 

main difficulty comes from the concept of a hierarchy of 

binary operations permitting parentheses to be omitted. 

The subsidiary complication of allowing one operation 

sign (e.g. multiplication) to be omitted is easily dealt 

with. 

When parentheses are inserted in a formula they are 

dealt with by tag traps as indicated below. We therefore 

consider a program n designed to convert a formula F 

from punched paper tape codes to the array convention in 

storage, where F does not contain any internal parentheses! 

Let o1 o2 ••• On be a set of binary operations with 

associated values r 1 , r 2 ••• .( rn, which rank them in the 

hierarchy. At any point the following quantities are in 

the machine: 

(i) Aj, the array of completed codewords and formula 

names with its associated index j giving the next 

available memory space. 

(ii) s L, the list of partially completed sub-expressions 

S of F. Each term in L gives (a)j 1, the index of 

the first codeword of sin A; (b) j 2 the index of 

the last complete codeword of Sin A; (c) the rank 

rs of S; (d) the sign inflexion (if any) on s. 
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(iii) M, the coaeword for the last complete sub­

fotmula read, but not yet stored. 

(iv) N, the codeword. for tlie next sub-formula (in 
I I t 

the ca~e of r, this 1$ always a variable sym-
:! - ' ' . : : 

bol V with sign On' tank rn). 
Then fl us,s four primitive sub-processes on F: 

-rr1 ! . 

112 Cri)t 

Add Mt~ Aj At level r s 
ter~in~te ~urrent sub-expression with its codeworc 

in M, and "step up" to the level ri. 
s l Start new sub-expression in L with rank ri 

and first numbers Mand N. 

114 : Place the codeword for the next sub-expression 

n. 

in N. Then can be described by a symbolic 

control language (to be more fully explained in 

a later memorandum) as follows (for " "read 

"and then execute" and for Cp(q,r) read "if p 

execute q, if not p, executer"). 

: 114 + (M":. N) ~114 ~1\3(rn)~ n(M, N, Ls). 

C(rs=rn)((1f1~(M: N)~i\4 ), (C(rs < rn) 

(( 1T 3 (rn)~11 4 ), ( -ri" 2(min(rs-l'rn)))))~ 

n(M, N, L 6 ). 

Use of Tags. Characters read from paper tape are edited and 

checked by the input routine for illegal characters and character 

pairs before combining signs with variable symbols to present to n . The edited symbols are placed in an input buffer region Dk 

before being transferred by ,r4 to N. Left and right parentheses 

or their equivalent ( f l 1' etc) cause a tagged codeword to be 
k placed in D , with the following effect in ,{ 4 : 

Tag l (Right parenthesis): Indicates the end of F. ""'112 is 

executed to "step up" through the remaining incomplete ex­

pressions to the final codeword for F, which is stored in N 

before continuing. 

Tag 2: Interrupts the current F and transfers to a new fl. 
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In addition, t.!.l_.1 is used to indicate the end of data 
k stored in D, initiating a further read-in from tape using the 

editing program. In this way it,:is hoped to find an optimal 

value for the amount of algebraic code to process at a time. 
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Appendix II: The Formula Language 

This is a tentative 4es~riptlon of a language for pre­

senting mathematical formulae to the Rice Institute Computer, 

based o~ the,~o~~iling and injer~~,tive features of the pro-. ·, . " 

grams described.1ij the rest of this memorandum. It is intended 

to be suf~icienfit ae,etlit ho~~vet, ~o be applied to many 

other format syst~ms •. Thts 1~ bbv1ous1, a 1ong-term project, 
but many useful siib• (and super~) systems can be devised, such 

as that of sec.3.1. 
(i) Variabiei: Any single symbol a, b ••• z, A, B, ••• z, 

~, B, , (f , 0- , f\, Tr 458 in all) stands for a 

variable or operand in this language, which, unless 

otherwise indicated, is assumed to be a single pre­

cision floating point number. The list of distinct 

symbols is enlarged by allowing any of the above which 

do not appear in an array declaration to be subscripte, 

with up to four Flexowriter characters. 

Thus x, ~ass' )..t '- 7 are allowed variable 
symbols. The subscripts have no significance other 

than as distinguishing marks. 

(ii) Constants, The symbols .0123456789 express constants 

as decimal numbers in conventional form, which are 

converted to floating point form unless they appear in 

subscripts or index expressions. 

(iii) Arrays. Any symbol may be declared to stand for an 

array of either one dimension or two. By convention, 

elements of an array are indicated by subscripting 

the array symbol. It is not necessary to specify the 

size of the array, since this can be controlled by the 

data input program, but by doing so some execution 

time is saved. The dimension may be symbolic. 

Thus Matrix Q (5, 10) 

Vector 7f 
Matrix K (m,n) 
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are •klid aitdj ~~clar~tions. An element of an array 

may itself be an array, as in 

, Vector Qi,j(lO) 
in which ~h• ~th element is denoted by (Q1 ,j)k. 

(iv) Subscriets. The g~neral subscript form is i ±n where 

i is a variable symbol and nan integer constant. By 

appearing as a subscript i is defined as an index 

variable and is always evaluated using integer arith­

metic modulo 512. 

(v) Operations. The symbols +, -, /, X have their 
normal arithmetic meanings when appearing between 

elementary operands. Where possible, they are also 

interpreted correctly between arrays. At times, 

however, it may be desirable to leave the interpre­
tation of some operations to program execution time, 

* in which case the superscript * is used, as in + , 

* * * - , I, X . These cause interpretive trap transfers 

when the order reaches the control unit. The normal 

X may be omitted if so desired. 

(vi) Operand types. As with operations, the operands may 

be labelled with* to cause an interpretive trap 

transfer when the operand reaches the arithmetic unit 

during program execution. 

(vii) Formulae. A formula is a string of operand and opera­

tion symbols, whose meaningfulness is defined in a 

recursive fashion. Some examples illustrate the type 

of formula which is allowed: 

a +2bx + cx2 

(a1 +lf1,.• .0019\)• 

(A*+ B*) /n* 

sinfx+yl where 11 sin","cos 11 appear in 
cos (x +* y) the subroutine list. 

Y ( 1 + r - r 2 ) where uy'" appears as a 
Q functio&al expression 

'I, i= 1, 108 i xi 
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(viii) Express£ons.are of the form 
u : v • • • • • (A) 

whare Vis a formula independent of u and u.is a 

variable not defined elsewhere. 

Example: y = ax2+ bx+ c is a normal expression.. 

We distinguish two special cases: 

I. If u is defined as an index variable, then (A) is 
an index expression and Vis evaluated using inte­

ger arithmetic modulo 512. 

II.If u is of the form u(x 1x2 ••• xr) then (A) is a 
functional expression expressing u as a single 

valued function of the r independent variables 

The formula language consists of a set of array 

declarations (iii) and expressions (viii). To form 

a meaningful computer program, these must be linked 

by a control language, which organises program se­

quences and input-output functions together with 

storage allocation. However, simple sequences may be 

specified entirely in this language. 

Example. Matrix A (10,10) 
y: (x/90)% 

x : ~i• 1, 10 L_ j:1 + i, lOAi~ 

~ i•l, 10 L.jsl, i-lAi~ 

This defines y as the root mean square of the off. 

diagonal elements of A. 
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