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COMPUTER ORGANIZATION

The modern digital computer consists of five distinct
groups of equipment which perform the following functions:

(1) dinput

(2) memory or storage
(3) arithmetic

(4) control

(5) output

Figure I is a block diagram of these units showing the
relationships among them.

The input section consists of a photoelectric reader which

takes information from punched paper tape and places it in memory
and an electric typewriter which can be used to type information
into the arithmetic and control sections. The arithmetic unit is
always an intermediate in the flow of input information to mem-
ory. The information in question may be anything which can be
stored in memory: numbers, instructions, or alphabetical and nu-
merical comments.

The memory is an information-holding device composed of
electrostatic storage tubes. One memory contains ;g?storage
tubes and is subdivided into distinct units called words. The

memory is needed to record numbers and hold instructions. Thus,

each word may be a number, an instruction, or a coded comment.

Each memory unit is capable of recording up to 8,192 words, and

the computer in its final form will have 4 memory units.



The memory may be thqught of as N little boxes or loca-
tions where numbers or instructions can be located. Each of
the locations is given an identification number from 8 to N
(the numbers 0 to 7 are reserved for a purpose to be explained
later). The label of a location is called its address (synonyms:
cell, location, box). Note that the address 1371 does not mean
that we can find the number 1371 stored there - except by
accident; the.address is purely a label or identifying number.

A memory location can hold only one word at a time, and
placing a word in a location automatically destroys whatever
was there previously. It is possible to read a number out of
memory without destroying or removing it. A detailed description
of the word and the memory unit is given in the section on elec~
trostatic memory.

The arithmetic section does what its name implies. 1In

addition to the basic arithmetic operations, this unit can shift
numbers right and left and assist in certain operations which
make it possible for the computer to make decisions. If we use
the analogy of a desk calculator, this section corresponds to
the upper, lower and middle dials plus the wheels and gears
that actually do the calculation. A detailed description is
given in the section under the heading of arithmetic unit.
Register is a term commonly used in connection with these

various units. It denotes a device for temporarily storing a

/
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piece of information while or until it is used. A register
corresponds quite closely to the dials on a desk calculator.

Not only numbers but also instructions may be stored in a regis-
ter.

The whole computer is conﬁrolled by a certain set of
specified permissible operations, and no two such operations
can occur simultaneously. The permissible operations may be
executed in any desired sequence. It is up to the user to
specify the sequence of operations or, as it is commonly called,
the program. Each permissible operation can be specified in a
concise coded form called an order (synonym: instruction). For
a problem to be solved on a computer, it must be broken down

into a series of precise steps and this sequence is coded and

usually stored in memory as ordinary numbers. The correspondence

between the set of permissible operations and the set of numbers
which specify them is called the order code and is described in
the section on instructions,

The control section of the machine has the function of

accepting orders one by one and of interpreting or decoding
these instructions and then sending signals to the other units
telling them what to do. The control unit is equivalent to the
operation buttons which are pushed on a desk calculator. The
control section is described in detail in another section.

The output units are an automatic punch for paper tape




and a fast line printer. The printer can print up to 600 lines

per minute - each line containing up to 108 characters. Infor-

mation may also be permanently recorded (or written) on magnetic

tape.

SUMMARY of MACHINE CHARACTERISTICS:

The Rice Institute Computer is a megacycle computer (i.e.,

a basic pulse time of about 1 microsecond) with a speed that is

appropriate to:

(1)
(2)
(3)
(%)

memory access time for reading of 10 microseconds
memory access time for writing of 20 microseconds
an addition time of 4 microseconds

an average multiplication time of 120 microseconds.

The machine is asynchronous, binary and parallel in operation

and will have a random access memory of 32,000 words.



II.

OCTAL NOTATION

Binary numbers are very well adapted to representation
by electronic circuits. Since each digit can have only two
different values, zero or one, the digits of a binary number
can be put into one-to-one correspondence with the electrical
conditions of off-on, open-closed, non-conducting-conducting,
etc. We pay for this simplicity (i.e., small amount of infor-
mation per digit) by needing more digits to represent a given
amount of total information than if we had used a larger number
base., For example, a decimal number with N significant figures
is equivalent to a binary number with N In 10/1n 2 = N/0.30103 =
3.321 N digits. For example, the standard numerical word in
the Rice Computer will have between 40 and 47 significant binary
places. This is equivalent to about 12 to 14 decimal places.

The problem of conversion between base two and base ten
is actually simple but need not concern the reader at the
moment. The process will be carried out essentially automat-
ically by the computer by means of subroutines, so that the
average machine user will supply decimal input data and the
computer will deliver decimal final results.

In order to discuss the instruction word and numerical
word structure of the computer, we must use the full 54 bit

binary machine words. It is very inconvenient to write out



such words in full and it is equally inconvenient to type them
into a typewriter-tape punch., As a shorthand, we shall intro-
duce "octal" notation. The binary number is divided into triads
(groups of three bits). Instead of writing each triad in full,
we shall write instead an integer between zero and seven inclus-
ive:

binary octal

000
001
010
011
100
101
110
111

N~NoupPbwiNnke O

Each triad is thought of as an octal integer, and the digit
written is the usual symbol for this integer. The reader is
advised to memorize as soon as possible this conversion table.
This conversion is of course very easy in either direction.
The resulting shorthand number is actually the equivalent of
the binary number written to base eight, i.e., an octal number,
A 54 bit machine word becomes an 18 octal digit number, much
more manageable in length. We shall use expressions such as
"the second octal figure" and '"the second triad" essentially
synonymously. In the computer we shall have triads; on paper
or at the typewriter punch we shall use octal figures.

As an example, 000101011001010100111 is equivalent to

000, 101, 011, 001, 010, 100, 111 is equivalent to 0531247,



The octal form is obviously much easier to write and to absorb
at a glance,

In referring to an octal or binary number we read it
from left to right. For example, ''the first octal figure" re-
fers to the figure furthest to the left (0 in the above example);
"the second octal figure'" or '"the second triad" in the number

above is 5.
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NUMBER REPRESENTATION {

A number x = m --(2.5'6)e is represented by the number pair
(m,e) where m and e are referred to as the mantissa and exponent,
respectively. The actual computer representation of m and e de-
pends upon-g@e locaqion of x. There are two cases one must con-
sider, (a) the representaticn in storage; and (b) the representa-
tion in the arithmetic registers U and S,

(a') Reprezentaticn in storage,

In all storuge locations (electrostatic memory, R and T regis-
ters) ﬁhe number is a sequence of 54 binary bits, 6 exponent bits
and 48 mantissa bits, numbered as follows:

1 2 3 4 5 18 (
f——— r::———~ﬁ;12”“”‘““*\/"“‘“‘“”\7 - \ 7 \/ \

>

L i - '
%s e le, e3 e, e5 mslm1 m2%m3§m41m5 m, m7!m8 m9....m43‘m44 m45}m46 B0

]

Each bit is a O or =« 1, m, is termed the sign bit of m and
e, the sign bit of e (O means +, 1 means - ), The number represen=
tation is what is usually called the 1's complement system and can
be explained as follows. For simplicity and convenience in expla-
nation we will regard the binary point as being located between
m and m; e In floating point operations this is the only interpre-
tation possible, while in fixed point work the location of the binarxy

point can be chosen by the coder,

nantissa
: -1 -2 3 LY
ms = 0; m = m1o2 + m2o2 + "'_+ m47 2 |
- -1 - -2 - L ,=&7
moo= 1 mo= - (00270 @02 4 L.+ W02 )
9a



where 61 is the bit-complement of m = 1 and

4t that is, if m, = 0, ﬁi

ifm =1, 51 = 0, To clarify this system consider as an example

i
a 4-bit mantissa:

ms ml m2 m5

01 0 0 = 127% .2

000 1 1 = 1.2°241:2°3 . 3/8

1 0 1 1 = {1271y .222

1 1 0 0 = =-(0e2°% 4 1:272 4 1.27%) 2 -3/8
exponent

e, = 0; e = e1~25 + e2“24 + oee + e6'20

eg = 13 e = ~(&,02%+ &,02% .. 4 8 20)

As an example consider the following exponents

s 1 e2 63 84 e5

0 0 0 0 1 1 =4+3

1 + 0°20) = =- 2.

1 1 1 1 0 1 =«(1°2
The zero is a special case that must be given careful consideration,
A sequence of all zeros in m is called a logical zero (sometimes a
+ zero) while 2 sequence of all ones in m is called an arithmetic
zero (sometimes a -0), The word "zero" by itself will refer to
either +0 or -0,

In the exponent e, all ones represent the arithmetic zero and
all zeroes, b§ convention, represent an exponent < -32, The reason
for this will become clear when floating point operations are dis-
cussed,

Since the octal notation is often useful, the reader is advised

to study the following examples,

10a
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Octal Machine Number

00000 \

00200

087177

00577

77000

75200

02577 seo

Fixed point numbers

g- Floating point numbers
{

40020 ...~J

Value

zero (or "plus zero")

1/2

zero (or "minus zero")

1/2

ﬂ256)°x 0.0

i
|
|

<

(256)72x 0.5
(256)2 x (-0.5)

_(256)72%, (0.03125)

In fixed point numbers the choice of the exponent is left to the

coder, who will, however,

exponent,

find it advantageous to use 8 '"plus zero"

A nonzero floating point number will ngver have 00 for

an exponent,

(b) Representation in U and S,

In the arithmetic registers the number is a sequence of 56 bi-

\

nary bits, 7 exponent bits and 49 mantissa bits, numbered as
follows:
K e > || < m >
T T T n - - L
i lm. m, | |
e .legley 32§e3 e, e5 L my mlimalmﬂm4 mﬁ{mG ese maﬁm44 m45 6| Paq

The two bits e. and m

0 0’

called the exponent overflow and the

mantissa overflow respectively, have no representation in storage.

In S, e

the e. and m

0

is always equal to e and m_  is always equal to m .

0

0

Thus

bits in S as described below are only virtual con-

cepts, However in U the eq and my bits are actual stages in the

register,

register,

Whenever a number is transferred to U from some other

the computer automaticeaily sets

llsa

0

= €

and



m, = m;. We note, however, that these two bits (eo and mo) in U

are unaffected when (U) —=> U as described later in the interpretation
of Field 1,

The bits (eo, mo) are only altered upon arithmetic operations
and arithmetic shifts as explained in the section describing over-
flow and underflow, Whenever a number is stored, all bits except
€ and mo are transferred to their corresponding posétions in sto-
rage, It is conventent to consider the binary point in the mantissa
(to be located to the right of the ™ bit, In this manner we can
«give the following interpretation to the numbers in U:
mantissa

U 1is capable of working with mantissae in the range -2 to +2,

using the following convention:

m, m, range
A I - 4T

(1 o 2<m< -1 [m| - 1= B,027" + 8,027 Lo+ B, 02
- ° -1 - . .2 - . ‘47

(1 1 -1 <m s 0 |m| = m1 2 + m2 2 +oeet m47 2
o1 om2 =4t

0 0 0<m< 1 m = o, 2 + o, 2 teeet W, 2
-1 a2 41

0 1l 15m< 2 m - 1 =m12 +m22 +oeet m472

Whenever, as a result of an operation, m falls in the range
-2 to =1 or 1 to 2, it has overflowed the range of the storage lo-
cations and an overflow indicator will be turned on when appropri-
ate (see section entitled "overflow"),
exponent

In U the exponent has an extended range in which
-63 < e < +63,

| 12a




8 0]
1 0  -63<e< =32
1 1 -31<e< 0
0 ¢ 0 <e< +31
0 1 +32 < e < 63
Exponents

in range +32 to +63 are said to have overflowed and

an appropriate overflow indicator will be turned on if this occurs.,

Exponents in the range -63 to =32 are said to have underflowed the

storage range, By convention a zero exponent is represented by

all 1's, and all zeros will indicate an exponent smaller than -31,

The question probably occurs to the reader: Why do we use

the large base 256 rather than the more obvious value of 2? The
choice of base depends upon consideration of a number of factors
G’the number range desired, the minimum and maximum mantissa accu- \
racy desired, the details of the shifting techniquc used in stan-’
dardiaaﬁion of numbers, the proportion of arithmetical combinations

that may be expected to require a final standardization, etc,).

Our choice appears to be about optimum, We lose very little as .

+

compared with base two; we gain a great deal, ‘particularly in that

floating point operations will be carried out (on the average) very

nearly as faet as fixed point operations,

13a



IV,

ADDRESSING SYSTEM

The Rice Computer will have eight full length (54 bit
or 18 triad) registers (the A series), eight address or index-
ing eig?bit or 5 triad plus eme—sigm—bit) registers (the B
series), eight special purpose (15 or 16 bit) registers, and

an electrostatic memory of 215

=16 or 32,752 full length
words. The A and B series are jointly known as F registers,
The special purpose and F reigsters are fast registers, having
an access time of the order of one microsecond. The electro-
static memory addresses have an access time of about ten micro-
seconds. The A series and the special purpose registers,
together with the electrostatic series are known as M addresses.
The execution of every instruction by the computer in-
volves (1) procuring two operands, ome from an F address and
one from an M address, (2) some arithmetical or logical work
on these two operands, and (3) the storage of some result at

an F address or a modification of the contents of some B

register.,

12



A SERIES

address  abbreviation full name
0 0 zero or null register
1 U* universal¥*
2 R remainder
3 S storage
4 T4 temporary store 4
5 T5 temporary store 5
6 Te temporary store 6
7 T7 temporary store 7

*Note: The U register plays a special role in arithmetic
operations and has 55 bits - the extra bit is called an
overflow bit and its use will be explained in the detail-
ed description of arithmetic operations. This overflow
bit is always set t&=9 when a number is sent to U.
1 +o + qn bit
equnal +o he <iqn

B SERIES
address  abbreviation full name

0 CC control counter
1 Bl B register 1

2 Boy " 2

3 By " 3.
4 B, " 4

5 Bg " 5

6 B¢ " 6

7 PF1 pathfinder

13



M addresses range from O to 77777 (octal) (i.e., O to 32767
decimally), with O to 7 being from the A series and 10 to
77767 being true electrostatic memory addresses and 77770 to
77777 being the addresses of a class of special registers.,
Register 0 does not actually exist. By definition it
always contains zeros. The uses of address 0 will appear later.
U and S (and sometimes R) are used to hold the operands of arith-
metical or 1logical operations. After an operation, U and
R hold the result. T4 through T7 are used to temporarily store
words . |
CC holds the address of the next instruction word to
be fetched to the instruction register (see discussion of in-
struction register in section on control unit). B1 through
Bg contain address increments to be used in certain logical
manipulations of instructions. PFl is set to the current

an vncond i 4 onal classO
reading of CC immediately before a*ﬁransfer or skip is executed,

14



SPECIAL PURPOSE REGISTERS

on all modifications

address abbreviation name description 5¢& CC other
cC /" than +hi n?rmal
- 77770 PF2 pathfinder 2 2Pl PF2 Sy
£fer—er—skip—executed
- 77771 SL sense light " holds sense light
register information
- 77772 X increment or adds special purpose
index register increments to B series
registers
77773 ML mode light holds mode light in-
register formation
77774 TR frapping register holds trapping information
77775 TR indicator regicter  polds inglicator iaformation
— 77776 reserved for future use
77777

PF2 and X are 16 bit registers (5 triads plus sign); the
use of the X register is described in the discussion of field 3
operations. SL and ML are 15 bit registers and are described

fully in the section on indicators.

15
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INSTRUCTION WORD STRUCTURE

All instruction words are divided into four major fields.

These fields are further subdivided as follows:

1 IF inflection on F
. ﬁ:‘ 2 F F address
-~ 3 C class
4 Opl ™
5 Op2
2 < > 4 operation triads
6 Op3
7 Op4 -~
8 ISt inflection on store
’ {: 9 St store address
- 10 M inflection on M
11 IA: 1 bit indirect address bit
12 BM: 8 bits B modification of M
13
4 < 14
15
16 > M memory address
17
~ 18

16



An instruction word is decoded and interpreted by the

computer in the I register. We shall first take an overall

View of the results of this decoding, then return later to a

detailed view of each section.

(2)

(3)

(4)

(5)

I (6)

The computer consults CC and fetches the contents

of the indicated address to the I register. CC is
advanced by 1.

Field 1 (2 triads, IF and F) is decoded. Consequence:
a word in an F address (generally a numerical word)
is sent to U,

Field 4 (9 triads, IM, IA, BM, M) is decoded. Con-
sequence: a word is sent to S and an address
(possibly new) is left in position M of I,

Field 2 (5 triads, C, Opl, Op2, Op3, Op4) is decoded,
Consequence: in general, arithmetical or logical

work is done using the contents of U and S and/or
the final address M (which-have been set up by the
two preceeding steps). If the operation is arith-
metical, the primary answer will be found in U and
the secondary answer (if there is one) in R.

Field 3 (2 triads, ISt, St) is decoded. Consequence:
the contents of either U or R is sent to an F ad-
dress or certain changes may be made in the contents
of one of the B registers.

Return to step (1).
17



We shall use from now on the convention that an address
symbol in parentheses means the contents of that address loca-
tion; the address symbol alone means the numerical value of
that address. For example:

(M) represents the 54 bit word located at M

M represents a 15 bit numerical address

(B,) represents a 15 bit number and sign stored in By,
SUMMARY :

The common features of every instruction, without
exception, are:

(1) a number —> U

(2) an address —> M in 1

(3) a number —> S

The instruction may then operate with any or all of

these three results,
1. Field 1

The two triads of field 1 (IF,F) determine the F address
of a word which is brought to U and the modification of its
sign. F is a fast address. Bit 1 of IF determines whether we
mean an A or a B address, a zero for A and a 1 for B. The con-
tents of this address are fetched to U. Bits 2 and 3 of IF

determine a sign modification according to the scheme:

18



00 means + (no sign change)

01 " - (change sign)
10 " [ (absolute value)
11 " -1l (negative of absolute value)
I X
/ \/ \
I | l [ ]
0)A 00) +
1)B 01) - F address
10) |l
11) = ||

For convenient reference we quote again a table of F addresses:

A B
0 0 CcC
1 A U Bl
2 >10 R B2
3 7' s By
4 10 T, B4

101
5 TS Bg

6 T6 B6

7 (1] T, PFL

Examples of field 1:
- A\‘;q‘p:—:"“” 700 means zero —> U clear
‘o‘n} o 01 " (uy —>vu no change
;,ﬂ' . . 40 n (CC) ______> U

lel 05 " (T;) —> U

e

ﬂ\ /: /\4-5\’
aot o fol 15 " -(T5) —> U

19



Examples of field 1 (continued):

1

o109 e 25 means I(TS)‘ —> U
Qv 35 " -l(THl —> U

£, i
¥ 45 " (B5> —_ U

Whenever an integer from any B register is sent to a 54 or B¢&
bits of Fthe B register are

bit register (for example, U), the 15 bit—magnitude—is written

in the right hand end of the register and the sign bit of the

B register is sent to the sign bit of the apgg register. All
over Floye  bi eguval *o fle value of the ;;rsi bit
o

Mantissa, snclud +
Cthad on thee B+ edﬁ,f”ﬂe 8 n,,s+a.~/m?5%1/sffr e bits of the @xponont are s Zove,
remaining bits of the xegister—are—eleared—+te—zero. When using

operations of this sort it is convenient to regard this number

as an integer (either positive or negative).

2. Field 4
IM bits | IA | BM bits | M triads
/ AN //\_\ _ ; /\ : /\

15 bits

|

The nine triads of field 4 (IM, IA, BM, M) determine
what word is brought to the S register and the final address
residing in the I register. M is a 5 triad octal address.
00000 through 00007 refer to A addresses; 00010 through 77767
refer to electrostatic memory addresses; and 77770 through

77777 refer to the special purpose registers. BM consists of

20



8 bits. Counting from right to left, they refer to the 8 B
addresses: CC, By through Bg, and PFl. The M address as written
will be modified by the sum of the contents of the B registers

referred to. A zero means ignore, a 1 means use. For example:

BM meaning
01 001 O10 add (Bl) + (Bg) + (B6) to M
10 000 000 add (PFl) to M
00 000 o001 add (CC) to M
00 000 101 add (CC) + (By) to M

Field 4 is decoded according to the following sequence.

e~ a1 e el T K i G SN+ 4 TN T P s m st s B e FEF R iren B
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(
(

Field 4 is decoded accowding to the following sequence:

(1) If bit 4, 5, or 6 of trapping register is 1 and control

tag register = 1,

2, or 3 respectively, transfer to 41,

49, or 57, respectively,

(2) BM is decoded and a new M is formed in I

M o+ Z(Bi) - M

(M 18 incremented by the contents of all of the B registers

referred to in BM,)

(3) Test IA bit

if 0, go to step &

1f &, form new IA, BM, M in 1 {last¢ 24 bite of (M) — 1),

( then return
( (&) Test bit 1 1£ 1M

if 0, (M) = s

if 1, M —> s (last 15 bits of S, all others cleared

to step 1,

to zero)

(5) Test bits 2, 3 of IM and modify the sign of (S) as follows:

00 means +
Ol means -
10 means |]

11 means -||

(no sign change)
(sign change)
(absolute value)

(negative absolute value)

(6) If bit 1, 2, or 3 of the trapping register is 1 and the

arithmetic tag register = 1, 2, or 3 transfer to 9, 17,

25 respectively,

21a
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(abgolute valug)

(negative absoluke vallge)

Examples:
0 000
0 000

1 000

4 002

0 001

0 002
0 026
4 000
3 002

0 402

00000

00005

00077

00000

00005

00005
00005
00077
00077

00077

zero —> S

(T5) —> S
-(77) —> S 1i.e., the con-
tents of location 77 goes
to S

(Bl)'—~%> S

((CC) + 5)—>S i.e., the
word 5 later in the code

past the current reading of
cC '

((Bl) + 5)—>8S

((B4) + (By) + (By) + 5—>8
...00077 —> S

- [((Bl) + 77| —> S

((B)) + 77)->T (last 8

octal digits) followed by a
reinterpretation of I.

At the end of this sequence some word will have been

sent to S, with or without sign modification. This word may

have come from the original M address (no 1's in BM). It may

have come from M incremented by any or all of the B registers

22



(note the possibilities and flexibility in the fact that the B
series includes CC, PFl, and the regular B indexing registers,
singly or in combination). It may have come from an address
(with B modification) looked up in memory (IA bit 1). This
procedure may be repeated indefinitely. Finally, we have a
choice of obtaining either the contents of the final M address
or the address itself, with or without sign modification in
either case,

Most operations will work with the contents of U (set
up by field 1) and the contents of S. Some operations, however,
ignore (S) and use the final M. Examples: shifts of U and/or
R, set or increment B from address, and transfers. In these
cases, a 10 microsecond memory fetch time can be saved by writ-
ing a 1 in bit 1 of IM. These operations can be controlled by
M. They can also be controlled by the M portion of (M) by use

of the IA bit,
3. Field 2

The five triads of field 2 determine what arithmetical
or logical operation takes place. C is decoded first and de-

termines the class of the operation:

c class

0 control: compare, skip,or transfer
1 arithmetic

2 store, substitute, set tag
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c class

3 not used - reserved for future use
4 B register modify, set sense, shift
5 logical arithmetic

6 input-output

7 special functions

Class 0 - Control: Compare, Skip, or Transfer

This is a very flexible family of conditional transfers.
Op2, Op3, and Op4 are used to specify a set of zero, one, two,
or three tests. The inverse of every test is possible. Bit 1
of Opl specifies whether we mean a favorable outcome for the
whole test to be (0) a favorable outcome from any one test, (1)
a favorable outcome from all tests. Bits 2 and 3 of Opl give
the action to be taken on favorable outcome, i.e., some special

adjustment of CC.
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class 0 operations

Op4
VAN A\ /A /E :
/ \/ \/ \/
[ ! {
O0)any 00)halt & tr | O)normal 00)no test: O)normal 00)no test; O)normal 00)no test
[}
' i
1)all Ol)transfer ; 1)inverse 0l)man + ! 1)inverse 0l)man zero 1)inverse Ol)tag 1
10)skip by 1 10)man 1\ 10)man even 10) tag 2
11) skip by (X) 11) exp /!\ 11)sense 11)tag 3
— A light test,
600 §o TEST VO TEST NO TEST
/00 N6 TEST All Zerss No TAGS
man denotes mantissa /Pdenotes overflow indicator
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The first bit of Op2, Op3, and Op4 indicates whether we
mean the normal form or the inverse form of the indicated test.

The various tests are applied to:

(1) special indicators (e.g., overflow, tag, etc.)
(2) (U) - (S) (floating point subtraction)
(3) sense register
In case (2), the exponents of (U) and (S) are tested. If they
are both zero, effectively a fixed point subtraction is carried

ﬁe r‘c’.cy/)‘ of f/re Sub?"raclmn gocs A U, end S s cleared 7o Zero.
eh— e =23 ”:}m“ . 1If both exponents

are not zero, a floating point subtraction is carried out, and (U)
and (S) are possibly changed by shifting and normalizing pro=
cedures. In either case, the quantity (U) - (S) is me available in U
after the test.

In a transfer order M denotes the address to which one is
transferring; thus the number in S is not used. If Opl = 0, 1, 4,
or 5, zero—>S before the test and we test (U) - 0 == (U). 1In
view of this, one can also say that the computer has two classes

of control orders:
(1) test (U) and/or indicators and then transfer to M

(2) compare (U) with (S), test indicators and then skip
by 1 or (X)

If no tests are specified (i.e., an ignore test in ObZ, 3,
and 4), the function specified in Opl will be executed unconditionally.

Opl:
0) on any test successful, halt; transfer to M when
start button is pressed

1) on any test successful, M—>(CC) (transfer)
2y " " " " , (CC) + 1-—=>(CC) (skip)
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Op3:

3)

4)
5)
6)

7)

0)
1)
2)
3)
4)
5)
6)

7)

0)
1)

2)

3)
4)
5)
6)

7)

on any test successful, (CC) + (X) —=>(CC) (relative
transfer)

on all tests successful, halt; transfer to M when start
button is pressed

" 12 tn t , M%(CC)

" " " " , (CC) + l—>(CC)

13 1" 1" 1 , (CC) + (X) %(CC)
ignore Op2

mantissa positive?

mantissa overflow?
exponent overflow?
ignore Op2

mantissa negative?
no mantissa overflow?

no exponent overflow?

ignore Op3
mantissa zmek + O 09 —-O ?

mantissa lower bit zero? (equivalent to ''mantissa
even''?)

sense lights designated by 1's in M on?

iErere—Cp3 /s & cvery bit in UV zevo

mantissa nonzero?

manitssa lower bit one? (equivalent to "mantissa bdd"?)
sense lights designated by 1l's in M off?
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Op:
0)
1)
2)
3)
4)
5)
6)

7)

ignore Op4

tag indicator 1 on?

tag indicator 2 on?

tag indicator 3 on?

tag indicators all off?
tag indicator 1 off?
tag indicator 2 off?

tag indicator 3 off?

(4 is not the true inverse of 0 but appears to be too
useful to leave out.)

Class 1 - Arithmetic

As denoted by OP2
S, A(U) and (S) are

combined as follows:

0p2 operation

0) fixed point addition

1) fixed point subtraction

2) fixed point multiplication
3) fixed point division

4) floating addition

5) floating subtraction

6) floating multiplication

7) floating division
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With OPl = 3or 7 (division Order)) OP 3 may be

vsed as Fellows :

opP 3.

0) Leave (U) and (R) un chan
/) Clear (E m) 4o Sigu of (C Um) be fore division
(Simqle Ieng‘Hl dlvfclemo()

Z) Clear CUW\) to sign of (Pm) be fore a(:v\'s\'ow
Cinteger division) |

ﬁeJ (dovble length divideud)

3)
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That is, bit 1 determines fixed or floating arithmetic while 2
and 3 determine +, -, X, . In addition and subtraction, (U) +
(S)—>>U. 1In multiplication, the most significant 47 bits of the
mantissa of (U) x (S) go to U, with the remaining 47 bits going
to R. The exponent and sign of mantissa of R are set to agree
with U, The manitssa of R is merely the continuation of the
mantissa of U, Division is exactly the reverse of multiplication.
(U), with the mantissa of R being understood as the continuation
of the mantissa of U, is divided by (S). The exponent and sign
of (R) is ignored. The quotient appears in U and the remainder
in R.

In fixed point addition, the exponent part of S is simply
transferred to U, replacing the previous exponent. Thus, a
fixed point addition with field 1 = 0, 0 is a load (or fetch)com-

mand. However, a logical "or'" with field 1=0,0 is the usual load order.
e« [NSERT
Class 2 - Store or Substitute, Set Tag
Opl:
0) store (U)—>M

. ] u)> 3,
1) substitute part of (U)—>M ; in detail, part of (V)
' Then (S) - M
2) add to memory: (U) + (S)—>M

3) substitute—te—memoTy T PATLC OL 1(U) + (5) —>M (unless
|a—l-hasbeenrused—imbit—1of IM, (S) will have come

from-M) A/o/'L used
4),5),¢, 1V 7ag location M (no. in mrs not af'/&(/e‘{)

Op2: not used

Op3: this triad is interpreted only for substitute orders (1 or
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3 in Opl)

0) substitute the M triads of (U), i.e., last 5 triads
into S and store (S)—>M; note that the former con-
tents of M are in S if correct IM is used.

1) substitute right half (27 bits) of (U)—>M

2) substitute left half (27 bits) of (U)—>M

Op4: this triad may adjust the tag at address M

0) set tag to no tag

1) set tag to tag 1

2) set tag to tag 2

3) set tag to tag 3

4) Send comtents of arithmetic g register fo Tag bits af M
%, 5), 6), 7) ignore tag (do not change tagA sn M)

We can store (U), substitute from (U), or add (U) to
memory and at the same time clear,; adjust, or ignore the tag
condition at M. One note of caution about the substitute order is
needed. The order actually substitutes part of U into S and
then stores (S) at M. 1In order to be a true substitute in
memory order, one must be sure that bit 1 of IM is zero (i.e.,
(M) must first come to S).

We also note that the overflow bit in U cannot be trans-

ferred to memory since it exists only in U,
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Class 3 - Not Used

Class 4 - B Register Arithmetic, Shift, Set Sense and Mode Lights
The operations of this class are all controlled by the
final 15 bit integer M in I. The original M is used as a num-
ber or control symbol unless IA = 1. The particular operation
is specified by the triad in Opl as follows:
Opl:
0) increment (B;) by M, i.e., (Bj) + M—B,
1) arithmetic shift of U/R by M places
Furn on
2) -setsense lights designated by 1l's in M
3) 1logical bit count of (R) for M places
4) set (Bj) to M, i.e., M— B,
5) 1logical shift of U/R by M places
turn off
6) set—mede lights designated by l's in M
7) not used

With Opl = 0 or 4, Op2 designates which B register is to

be set to M or incremented by M, as follows:

Op2:
0) By =CC 4) By
1) By 5) By
2) B, 6) Be
3) By 7) By = PF1
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INSERT :

/n an arithmetic shift of U or R f'o the
V‘fﬁh"' the Sign is Propoﬁa:l'ed te the r;i/n"

as many Fla.ce.s as ‘the Com‘eu{s“ o F the reyfs'?’rr
are e shifted. In an arithmetic shift of U
or R to the lef, the sign fills i those places

oun the V‘iﬁl«f into w[\,"(_A ”O"Af“—j is bc‘(m3 shc'{?‘EJ.
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Shifting: a short discussion of shifting in the Rice
Computer will help clarify this set of instructions.

Consider a shifting register (e.g., U or R). This regis-
ter may be considered to have a '"donor" and an '"acceptor' stage
for bits. For example, when U shifts right,——> , the right hand
stage is the "donor" and the left hand stage is the "acceptor".

The shifts fall into two major classifications: (1) arith-
metic and (2) logical. In the arithmetic class, the left hand
bit of U is the overflow bit just to the left of the mantissa
and the right hand bit is bit number 54; the left hand bit of
R is bit number 8 (the highest order bit in the mantissa) and

INSERT
the right hand bit of R is again number SAQT‘In the logical
shifts, the entire word for both U and R is used, that is, the
exponent sign, exponent, sign, and mantissa (the overflow bit

in U being ignored). Thus for the logical shifts, the left hand

bit is the exponent sign and the right hand bit is bit number 54.

U R
Arithmetic Mantissa Mantissa
Cwv
Logical + | Exp| + | Mantissa + | Exp | +[Mantissa

Each register (U or R) may be shifted right or left M
(mod 27) times, taking into its "acceptor' stage either zeros

or the spill from the "donor'" of the other register. The
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number of bits entering the acceptor stage is equal to M(mod 27),
that is, the number of positions shifted.
The pattern of shifts is specified by the triads Op3 and

P ea I N

“Op&; with Op3 determining the behavior of the U register and

Op4 that of the R register in the following manner:

Op3 Op4
Bit 1 Bit 2 Bit 3 Bit 1 Bit 2 Bit 3
into U U left U right into R R left R right
"acceptor" "acceptor"
0)zeros 0 times 0 times 0)zeros 0 times 0 times
1)spill M times M times 1)spill M times M times
from R from U

The pattern of shifts can also be pictured in the follow-

ing way:
op3 op4 U R
1 0 >
2 0 «
0 1 _
0 2 «—
1 1 5 _—
2 1 - .
1 2 _ —
2 2 « P —
> 1 T —>
~< P
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The only connections that are meaningful for the
ol
to the left end of R and the

arithmetic shifts are U,,

i.e.

left end of R to Ush’

ﬁ\‘a/

In other words, any spill from the extreme ends of U or R

are lost, and only ones or zeros will be accepted at these

places. Hence, the full range of shifting possibilities

is available in logical shifts only.




Op3 Op4 U R
5 2 T D
\\_\_ é//
6 1 —  —
\‘é ~————//
6 2 < —€-
1 5 —>—
2 5 & y >
.
1 6 - _< =
—‘_9’
2 6 NN ——
5 5 N E i —
————— >—<
5 6 \_________(_/ !
6 5 —— 5T
g
6 6 < - < - I
__._TTsC

~——  /nsert

All shifts are controlled by the 15 bit integer M in the

instruction register, modulo 128.

The procedure for logical bit count is as follows:

(1D
(2)

U and S are cleared to zero.

The shift pattern specified by Op3 and Op4 is
executed with the spill out of the low end of R
going to the lowest order stage of the adder.
Thus the bits are added one at a time (with each

shift) to U. By convention we use 0, 1 for the

Op3, Op4 code in the bit count.

34



spectively are as follows:

0) sense 1lights

1) mode lights

2) trapping lights

3), 4), 5), 6), 7) not used

[ t

With Op 1 = 2 or 6 the lights turned on or off re-

Lights corresponding to zeros in M are not affected.

Bit Z 40 | 41

42 | - - - - - 53

54

Sense Light 1 2

Class 5 - Logical

Only Opl aaé—@p%ég;e used. (U) and (S) are combined

by a logical operation.

Opl Op2
A\ N\
/ \/
| |
0) + | 00) and :W
1) - : 01) or { xtrakct

10) sym.diff.

11) extract

NOT USED

15
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These operations will work on all 54 bits. The first
bit enables us to negate (one's complement) the final result.
In "and", "or", and "symmetric difference'" corresponding bits
- in U and S are compared and the usual logical result placed in

U. Extract is more complicated and involves three words. Be-

low we give the combination tables for '"and", "or"

or", and sym,

diff. and their negations:

Opl:

0) and 0 1 4) neg and 0 1
010 O o1 1
110 1 1110

1) or 0 1 5) neg or 0 1
0|0 1 0Ol 1 0
1111 110 0

2) sym diff 0 1 6) sym sum 0 1
0]0 1 0|1 O
1110 110 1

3) extract 7) neg extract

The extract order is outlined by:
(M) (R
@&*) thru @ into (F)— U
S
The contents of an-address—A%—(set—up—in—0Op2) is extracted
R

through the contents of 8 as a mask (this—werd—is—setTup by
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into (F), set up as usual by
field 1. The sequence of operations is as follows:
(1) (F)—U (from field 1)

(2) (M) or M—S (from field 4)

i

(3) The bits of (8) corresponding to l's in (R) are

substituted into U; the remaining bits of U are
unchanged.
The operation neg extract merely forms the 1's complement of

this final result in U.

Class 6 - Input-Output
The Rice Computer will have the following auxiliary
input-output equipment:
(1) one optical paper tape reader
(2) one fast line printer
(3) one console typewriter
(4) omne paper tape punch
(5) several magnetic tape units (Provision will be made
in the vocabulary to be able to add an arbitrary
number of units in the future. Initially there
will be two units.)
Of these five pieces of equipment, the magnetic tape

units will have the most complicated and versatile order code.
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For a complete understanding, the reader should read the sections
in this manual devoted to the detailed description of each unit.
However, for the purpose of following the description of this
class of orders the following brief outline will suffice.

The paper tape used is seven hole tape (i.e., the optical
reader may read seven bits at a time). The information in six
positions (a hexad) is transferred to and from the machine. The
seventh position is used for the purpose of control and is not
read into the memory. A punch in the seventh position means
that the corresponding hexad is not to be read into the machine
but is to be interpreted as a control on reading (e.g., delete
or ignore, end of word, end of tape).

Paper tape will be prepared on an electric typewriter
punch which will punch one hexad at a time.

The optical reader may be used to read (1) a whole

tape at a time (terminated by an "end-of-tape' control punch)
or (2) one to nine hexads at a time (as specified by the coder).
The first choice may also be initiated by a load switch on the

control console.
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The line printer will have 64 characters. These will

include the numbers from O through 9, mathematical symbols,
lower case letters a through f, upper case letters A through
Z, and special symbols. In addition, there will be provisions
for format control by means of a control tape on the printer
itself.

The console typewriter can be used to type octal (i.e.,

binary) information into the instruction register and into the
S register. In addition, the console typewriter can be used
to obtain the octal contents of any of the F registers (both
A series and‘B series). This can be accomplished by means of
a stored instruction or keys on the typewriter. There will be
one key for each register. When a given key is struck, the
contents of the corresponding register will be typed in octal.

The paper tape punch can be ordered to punch one to

nine hexads at a time or special control punches.
The contents of the memory can be recorded (i.e., written)

on magnetic tapes in blocks of arbitrary length. These blocks

can be grouped in files.

The triad, Opl, will be used to designate the unit or
units selected and their functions. The remaining triads, Op2-
Op4, then are used to designate various inflections and details.
Opl:

0 and
0) paper tape control (eithex read e punch)
1) type [(M)— console typewriter in octal]
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7\ L I -

2) printer control
3) magnetic tape control

4) dump memory control
y display control

5) cathode ra

6), 1) not used

- - eepsy

PR E TR R P i OB TRDSE)
The detailed description of each function is as follows.
Op2:

This triad specifies the various options on the ''read

paper tape' and '"punch paper tape' order.

+ 7th hole

Op2
Bit 1 Bit 2 Bit 3

: |
I

0) read | punch hexads | hexad mode
[ I
|

1) punch : punch hexads | octal mode
| |
| |

Description of read and punch paper tape orders:

In the read {hexad mode the following sequence is
octal
executed:
(F)—U

}> usual decoding of fields 1 and 4
(M) or M —>S
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—> (1) shift U left {’g }>p1aces [logical shift]
No )
l ov (2)<{2§§23j}under optical reader —U (triads 17-18)
L::(B) test exponent overflow
ov

L—>(4) store (U); (U)— M

(5) decode field 3, then proceed to next instruc-
tion

In the punch%ihexad]>mode, the following sequence is
octal
executed:
(F)—U

j% from fields 1 and 4
(M) or M—> S

(1) S—R
. ré . .
—(2) shift UR 1eft<L3 places [long logical shift]
h d
\ (3)4{£:§2d in lower order part of U—ypunch +
No '
ov 0—> 7th hole
1— 7th hole
L—(4) test exponent overflow
ov

(5) proceed

Bit 2 of Op2 refers only to the punch orders.
Op3:
This triad controls the various output formats of the

line printer on the print order.




Loading of paper tape
A, Automatic starting of the machine is accomplished by loading
the paper tape reader and pressing the load button on the control
console, Pressing the load button does the following:

1) Sets CC = 1

2) Turns on the‘repeat mode light

3) Sets I to the load instruction (see below)

4) Starts paper tape feed

The load instruction consists of the following, in the order

!

| of decoding:

Field 1
S S
/1 0 5‘ /6 0 6\ (cc)—>U, placing a 1 in the lowest order
bit of U.
Field 4
IM IA BM M

000 ‘0 0000001 ‘000 000 000 000 111

When Field 4 is decoded the first time (IM) is the fisst

true memory address 000 000 000 001 000, Each time the order is
repeated, (IM) is increased by (CC) = 1,
Note: If it is desired to start loading at an address other than
10, the desired read instruction must be manually typed into the
I register and the start button must be used,

Field 2

C OP1 OP2 OP3 OPG4,
10 %00 000 000 000

This field indicates that the order is an input-output order
and specifically denotes a read hexad paper tape function,

Field 3

\ Not used,

i The overall operation of the load procedure is the following:
The paper tape reader is loaded with the desired tape and the

load button is depressed, Field 1 is decoded and places a 1 in the

lowest order bit of U, This is accomplished by sending (CC)->U,

The machine begins reading hexads and shifting them into .the U

register, This is continued until the 1 which was previously placed

in the lowest order bit of U reaches exponent overflow, Then (U)->M

which initially is 10,,,

lp——




Since the repeat mode light is on the order is repeated until
the end of the tape punch turns off the repeat mode light, The
last word is then read from tape into U and (U) ~> M, leaving the
lagt word in U, The instruction register them consults CC for the
address of the next instruction, (CC) = 1, Therefore the next
instruction is (U) which is the last word from paper tape, Thus
the memory is loaded and the %3irst instruction is in the I register,

B, For manual starting or alteration of the normal loading proces:. B
dure, the control console aiso bas a selector switch and a start
butsrn, The selector switch (15 push buttons) selects registers

for manually typing in instructions and the start button serves

to remove halt conditions (Field 2, Class 0) as well as manually
starting the machine from a typed instruction, \
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Op 3:

0) no space.

1) space % line

2) space 1 iine

3) space 2 lines

4) format #1 on printer (usually restore half page)

5) format #2 on printer (usually restore full page)

6) format #3 on printer

7) format #4 on printer
The coder has the option of preparing up to four of his own
gormats for spacing control on the printer,
; The orders pertaining to magnetic tape should be ignored at
this time, The principal reason for this is that a simple buf-
fer and checking system is now being prepared for the computer.

A new description of magnetic tape input and output will be

written as soon as possible,

Class 7 - Special Functions,

We plan initially to have the square root ( \/(U) — U)
and eventually a number of other special functions, depending
upon the need for such functions and the feasibility of building

the necessary circuits.
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4. Field 3

The two triads of field 3 (ISt, St) offer an additional
flexibility to each instruction by allowing the coder to obtain
"frgﬁf (i.e., without an additional order or access time) one
of ¥eer convenient manipulations. The decoding of this field is
independent of the operation code and all -#&®r choices are avail-
able with all possible orders. St is a fagt address (see dis-

cussion of addresses),€§§%4w0£«%Stwdeterminesmwhethefmwewmaanwan

permissible-manipulations, namely, "store (U) in-a fast register,

store (R) in a fast register, advance By D?WTT”UT*HﬂV3ﬁCEWB;'by

the—eontents--of ‘X, the increment register.

ISt St

Ist: 0) (U)-—-VA1 4) (U)--)Bi
1) (R)>4 5) (R)—>B,
2) (Bi)+-1~>81 6) (Bi)'l-’ni;
— 3 B+ B, 7) (1), 5,8,

where Ai is an A-series register and B, is a B-series
reglster,
st; 1 =0, 1, ..., 7, the address of the desired register

in the A- or B-series.
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|
iedd is uzf/Bléi:/;afi TOS ) t‘nj/ﬁgé%iozﬁ/;}i e ignofe
and/the fompufer wi theén fetch fhe »éxt ixdstraOGcpion.

Examples of field 3:

octal code meaning
00 ignore
ce 8, -1 — B
=
03
2 =g (U) =S
14 (R)——>T4
24
2=
= <BB) + (X)——;»B3
40 (v) —CC (an effective
14-18 transfer)
75 (1:-)40‘54 — B

Whenever the last 15 bits of a long register (e.g., U)
fée}/ are fran.fferrec/ w:‘/luz" any clqu’e

are sent to a B register, the—mantissa—sign of the 54 bit—repis
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Examples shovld be a‘/sregardea/ as

prinfed in Yiew of changes in machine language.
Vi.

EXAMPLES OF SINGLE INSTRUCTIONS

In order to illustrate the procedure of microprogramming
instructions (that is, composing a single instruction) in
machine language, the following arbitrary iist of instructions
is presented.

The instructions are grouped according to class. The
numerical code in octal is first given for each order. The

octal digits are arranged according to the following pattern:

field 1 field 2 field 3 fi?}d 4
/ ‘ \
XX XXXXX XX XXXX XXXXX
IF, F class & IM. BM M
Op

Below each numerical pattern is a symbolic description
of what the order will accomplish. The reader is strongly ad-
vised to check the numbers against the previous outiine of the
order code and to try to compose a few instructions. After a
few attempts, one will realize how easv it is to memorize the

various field codes to compose orders.

Class O
00 00000 00 0000 00000
Stop. A class 0 (control) order. halt and transfer

variety which is unconditional; S and U are cleared, CC is set

to zero.
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01 01200 06 4000 06122

Transfer to location 6122 if mantissa overflow indicator

is on; U is unchanged and (U)——9T6; 6122— S.

01 01000 O0OC 4001 00015
Jump forward 15 instructions. U is unchanged and the

address (CC) + 15— S, thus saving a memory access time.

51 06150 00 5000 00007

Skip CC by 1 when ~(Bl) + 7 > 0 (positive, non-zero)

42 03120 61 4002 00007
Skip CC by (X) when + <B2) -7 - <Bl) is positive or
even. In any case, advance B

1 by 1.

04 07105 61 0002 00555
This order can be used to search consecutive memory loca-
tions starting at 555 until a number larger algebraically than
the one in T4 is found or tag 1 is reached (the end of the table).
This is accomplished by assuming that X contains -1 (i.e., the
two's complement of 1). As a note of caution we recommend that
such an order be in the T registers or that the repeat mode be

used. Otherwise the chance of a read-around error may become

appreciable.
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Class 1
00 10000 00 0000 12345
0—U and (12345)—>S; fixed point (U) + (S)—— (U) with

exponent of (S)— exponent of (U). Hence, (12345)—U.

04 10600 04 0002 12345

(T4) x (12345 + (Bl))———iU (floating point) then (U)—-—)‘I"4

41 10200 53 4004 00000
(Bl) X [(BZ) + 0]——U. R (fixed point)
: ) 15
i.e., [( —>
(R)14_18-—->B3 i.e., [(Bl) X (B3)] (mod 2 ) B3
Note that since we consider the numbers in B registers
as integers, they are sent to the lower bits of U and S and the

product is formed in the lower order 30 bits of R.

Class 2
01 20000 00 0000 12345

(U)— 12345 (clearing tag to zero)

07 21023 00 0002 12345
Bits 28-54 of (T7)—~>bits 28-54 in location [12345 +

(Bl)] with a tag 3.

03 20000 61 0002 12345
(S)— U
(12345 + (B)))—S

then (U)— 12345 + (Bl) and (Bl)% 1~—e>B1
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Together with the repeat mode, this can be used to shift

a block of numbers in storage.

Class 4
44 44400 07 4002 12345

(B4)——9U-—9T (i.e.. (Bq) is saved in T7)

7

12345 + (3,)—B,
In the same instruction 12345 + (B;)—>S, thus the new

number in B4 is also available in S.

01 40400 00 4400 12345
(B4) + (12345)14_18»—--)B4
We assume that location 12345 only contains a non-zero
number in the M section (triads 14-18), that is, with no modi-
fications. This is a means of incrementing B with a number in

memory .

01 45056 00 4000 00066
This instruction inverts the order of the bits in U and
sends the results to R and at the same time inverts the order

of the bits in R, sending the result to U.

22 46010 73 4000 50000
-(R)—/U
Turn on sense lights 1 and 3

then increment B, by (X). i.e., (B3) + (X)-—~>B3
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Class 5

01 55000 00 0002 12345

(U) "or" (12345 + (Bl))g then complement result,

06 53700 00 0000 12345
(T7) through (12345) into (T6), result—U
For example, consider the initial bits:
T 11 00 1 - - - -
12345 6 110 0 - - = =~
Tg 6o o1 11 - - = -

result 1 1 01 1 = = =~ =

Class 6

10 60000 61 4002 01000
Read one hexad from paper tape to location 1000 + (Bl)o
The hexad is located in the lower order 6 bits; all other bits
are zero except the exponent sign which is negative. In addition,
(Bl) + l———}Bl. If the repeat mode is used in conjunction with
this order, a series of hexads can be read into a block of
storage. The repeat mode light is turned off by a special con-

trol punch.

02 60100 61 4002 01000
We assume that R contains a one in bit 54 and zeros elise-
where. This order then reads 18 triads or a word from tape into

memory location 1000 + (Bl)o Then (Bl) + 1——?Blo
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10 60600 00 0002 12345
Punch the exponent plus sign of location 12345 + (Bl)

onto paper tape and punch control hole.
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Special purpose register (77775)8 is known as the

indicator register, The bits of this register are
themselves indicators which describe certain condi-
tions of the computer, If the bit is 1, the indica-
tor is said to be '"on'" or the corresponding condition

has been recorded.,

bit condition

1 arithmetic tag indicator #1

2 arithmetic tag indicator #2

3 arithmetic tag indicator #3

4 U mantissa overflow indicator

5 U exponent overflow indicator
6-15 not used
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VI1

INDICATORS

The Rice Computer will have available a number of indi-

cators useful in determining the logical control of the problems.

—- [/NSERT

Overflow and Tag Indicators
These indicators are either on or off and can be tested

by means of a class 0 test instruction. Transfer of control can
be effected by such instructions on either the '"on" or the "off"
status of the indicator. Whenever an indicator is turned on,

it remains on until it is tested. When it is tested, it is
turned off regardless of its prior condition. The reader is
advised to study the numerical word structure before reading

this section.

abbreviation full name

MAN ¢\ or MANOV U register mantissa overflow
EXP44\ or EXPOV U register exponent overflow
tag 1 tag indicator # 1

tag 2 " " # 2

tag 3 mooom # 3

The status of these indicators is displayed on the con-

sole in the form of small neon lights.
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Mantissa Qverflow Indicator

This indicator is turned on when the word in U has a

positive sign on its mantissa and a 1 is carried past the

binary point into the overflow position or when the word in

U has a negative sign on its mantissa and a 0 is carried

— past the binary point into the overflow position. This emm \

‘
i

can be the result of the execution of a fixed point arithmetic
or an arithmetic shift command. An example is a carry resulting

from an algebraic addition. The indicator can be turned off by

testing it. L See also *he section on Floa#ing point arithmeftic.]

Exponent Overfiow Indicator

-/ée GXPonenf of U has apasi‘“vc
) This indicator is turned on when ! i .
Sign apd a | is carried pust the

first bit of the exponent of the U register (i.e.. bit 2 in U ov when
+he exporeut >F U is negative and a o is carvied Past +he Fipst bi+,

This can be the result of the execution of a floating point
arithmetic order or a logical shift left. [ See a/ss the secfion
on floating psiut arithmetic]

Tag Indicators

When a word from memory enters the arithmetic unit through
the central distributor, the two tag bits are noted according

to the following code:

o no tag
01 tag 1
10 tag 2
11 tag 3

If the number in memory is tagged, the corresponding

tag indicator is turned on. Note that the two tag bits exist
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!
. tag register in +the
in memory and are amt transferred to the arithmetic wdst,
ar ithmetic onit.
For a discussion of the uses of tags the reader should refer to

the section entitled, ''Tagging and Trapping.'

Sense Light Register

The sense lights are numbered 1 through 15 and are avail-
able to the coder for general use, e.g., control of printing,
sequencing of orders, transfers of control, visual indication
of certain phases of a calculation,and so forth.

The lights are located on the console with a switch below
each light. The lights themselves correspond to the bits in the
sense light register (location 77771). When a given bit position
has a one in it, the corresponding light is on. The switch be-
low each light may be (1) in a neutral position (the sense in-
dicator is then under intermnal control); (2) depressed momen-
tarily to turn on the given sense light; (3) locked in the down
position which sets the sense indicator to '"one'" as long as the
switch is down; or (4) locked in an "off" position. When a
switch is in the neutral position, the sense light may be turned
on or off by a set sense instruction. The status of any sense
light or group of sense lights may be tested at any time. The

test does not affect the status of these indicators.
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Mode Light Register

The mode lights are numbered one through 15 and corre-
spond with machine operation modes one through fifteen. Modes
one through six have been assigned as noted below; the remainder
are reserved for assignment to be made at a later time as need
dictates.

Mode lights are essentially sense lights which control
and indicate the status (in use or not in use) of their corre-
sponding machine modes of operation. The lights are located on
the console with a switch below each light. The lights them-
selves correspond to the bits in the mode light register
(location 77773). When a given bit position has a 1 in it,
the corresponding light is on, indicating that the mode is in
use. The switches associated with the lights are used in ex-
actly the same manner as those associated with the sense lights

(see the previous section).

mode light control specification
1 ignore error stop mode
2 repeat mode
3 trapping mode
4 significance mode
5 round mode
6-15 reserved for future assignment
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When mode light one is on, the machine ignores all auto-
matic error stops (e.g., improper division). When mode light
2 is on, the '"fetch and advance CC" operation is omitted and
the computer will repeat the current order. When mode light 3
is on, the machine will operate in the trapping mode (see the
section on tagging and trapping). When mode light 4 is on, the
machine will perform floating point arithmetic in the significance
mode (see section on floating point arithmetic). When mode light
5 is on, the high order bit of R is added into the low order end
of U after floating point additions and subtractions and after

all multiplications.
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VIII.
TAGGING, TRAPPING, AND REPEAT ]

The numerical word and instruction word in the Rice
Computer is 54 bits in length. However, in memory each word
has two additional bits called tag bits which allow the coder
to tag a word with one of three possible labels. This concept
offers many novel features and posesibilities in coding.

Tag Registers

The arithmetic tag register is set every time a word goes
through the central distributor to the S register. The word in
memory consists of 56 bits, the last two of which are the tag bits.
All 56 bits come into the central distributor: then the £first 54
go to the § register and the last two go into the two-bit arithmetié
tag register., The bits of this tag register then go into a decodini
matrix which has an output 0, 1, 2, or 3, and this output sets the :
corresponding tag indicator om and is available for the_satisfactiou‘
of trapping conditions. It should be remembered that tag indicators
remain on until fested by a Class 0 instruction, but the contents
of the arithmetic tag register always corresponds to the tag of the ‘
last word taken through the central distributor into the S register.

The control tag register is set every time a word goes :
through the central distributor to the instruction register. The
last two bits of the 56 in the central distributor go to the two-bit
control tag register. The bits of this tag register go into a
decoding matrix with output 0, 1, 2, or 3 which is then available
for the satisfaction of trapping conditions. The contents of the
control tag register always corresponds to the tag of the last word
(or part of the word if indirect addressing is being used) taken
through the central distributor into the instruction register,

In cycles or loops which use a series of numbers stored in
memory, it is possible to tag the last number and end the cycle or
loop by testing for this tag. In two or three dimensional network
problems where moving boundaries occur, it is possible to tag certai:
functions at the boundary points and follow their progress more
conveniently, Examples of the use of tagging may be found in the

section on coding examples.,
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from memory
56 bits

Switches A and B are set
before the word is brought
from memory; A and B are
always equal,

Note:

Central distributor
2 bits (tag)

54 bits j
A=1 B (.

P—
¢ a=2

(e

to S registér

to I register -2

Arithmetic tag
register

Decoding matrix

BER | ]

0123 321 Q
Arithmetic tag=0 ——— | | | N
Arithmetic tag=1 __°“——~"11?JTLSet arithmetic tag indicator 1 on P [
Arithmetic tag=2 ‘{—ﬁ>Set arithmetic tag indicator 2 on L
Arithmetic tag=3 iSet arithmetic tag indicator 3 on —

S Ny)
[ee)
)

Control tag
register

Decoding matrix

.Control tag=0
Control tag=1
Control tag=2
Control tag=3
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Trapping mode

When mode light 3 (ML3) is on, the computer will operate in
the trapping mode, This mode allows the programmer to specify cer=
tain tests without using the class O or control commands, The com-
puter will automatically execute these special tests on every in-
struction, If a test is successful the regular sequence of events

is interrupted and control is transferred to one of seven fixed
trap addresses, This process is called trapping., If mode light 3
is off, all of these npecial tests are ignored,

In order to use this mode of operation one must know (a) the
method of specifying the tests, (b) the point at which the regular
sequence of events is interrupted (called the trap time) and (c)
the trap addresses, This information is summarized in the table

below,

One can specify up to fifteen special test conditions by means
of the trapping registers, (77774)8. Corresponding to each bit in
the trapping register there is one specific test (see table below).’
If this bit is a one the test is executed at the proper time but if)
this bit is a zero the test is ignored, The coder specifies his
tests by storing a bit pattern in register (77774)8 before entering
the trapping mode,

Trapping
::ﬁiﬁﬂe? Test Conditfon Trap Time Trap Address
1 Arithnetic ='1 | Immediatel (9]
s° nmediately o .
2 tag = 2 before decoding Transfer tojl7 ‘?fturn
3 register = 3 | field 2 2> jott ML3
4 Control = 1 | After decoding of 41)
5 tag = 2 | field 1 or when Transfer to (49| & turn
6 register = 3 | indirect address 57, off ML3
enters 1 ' ")
7 Control = 1 | After execution , fﬁl\
8 tag =2 { of Field 3 Transfer to|49| & turn
9 registex =3 57, off ML)
10 EU) positive After execution If transfer to 41, 49,2
11 U) negative of Field 3 and or 57 is not to be made,
12 Mantissa OV test c¢f Trap bits then transfer to %3 and
indicator on 7, 8, 9. turn off i3,

13 Exponent OV

indicator on )
14 ————— ;
15 ——eme- )
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The transfer to 41, 49, or 57 after execution of the instruc-
tion takes precédence over the transfer to 33; e.g.,, if TR8 = 1
and control tag register = 2, also TR13 = 1 and the exponent over-
flow indicator is on after execution of the instruction, then the
transfer to 49 takes place and the transfer to 33 is not effective
at this time,

When the trapping mode light is off, all trap transfers are
ignored and this light is automatically turned off in the process
of every trap transfer,

Trapping has extensive application in check-out routines and
interpreter-type systems as well as in the conventional control of
overflow conditions in the arithmetic unit, The coder should
naturally insure, if he uses this feature, that unexpected condi=
tions of the machine do not lead to unnecessary trap transfers,

We also note that the trapping address is given by

Arithmetic tag trap address = 8(contente of tag reg,)+l

Control tag trap address = 8(contents of tag reg.)l}}

)
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IX.

ELECTROSTATIC STORAGE OR MEMORY

The Rice Institute Computer will have a random access
electrostatic storage. This storage section will consist of 4
independent memory units, each capable of storing up to 8,192
words. [Note: this may be changed to 4,096 words for greater
reliability if necessary. ]

The basic unit in this memory is a barrier grid storage

tube which is pictured schematically in the fpllowing drawing:

electron deflection collector
gun plates electrode

|
]
barrier mica metallic
grid disk  backplate

Information may be stored in the form of a charged spot
on the front (left in the above diagram) surface of the mica
disk. This is used as a binary element. For example, a plus
charge at +25 volts potential relative to the metallic back-
plate may be interpreted as the digit "0" and a minus charge at
-25 volts potential relative to the backplate may be interpreted

as the digit "1".
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The spot may be "written' or ''read" by focusing an elec-
tron beam (produced by the electron gun) at the given position
in conjunction with appropriate manipulations of the backplate
voltage. The detailed electronic explanation of both reading
and writing may be found in the technical sections on this sub-
ject. For the purposes of this discussion it is sufficient to
think of the charged spot together with the backplate as a small
condenser which may be charged (writing mode) or discharged
(reading mode) by a beam of electrons striking the given spot.
The position at which the electron beam hits the mica surface
is governed by the voltage on the deflection plates. Thus
there is a one to one correspondence between the voltage on the
deflection plates and the position of the spot. The storage
tube being used has a mica surface 2 inches in diameter and can
store up to 8,192 distinct spots without any appreciable overlap.

The 8,192 spots in a given storage tube correspond to one
binary position of all the words in memory. For example, each
of the spots in Tube No. 5 is the fifth bit of each of the 8,192
words in this memory unit. Thus we see that for a 54 bit word
we must use 54 storage tubes in each memory. In addition, each
memory contains two extra tubes for tagging-pur_poses (see section

and six tubes for
on tagging), one tube for a parity sleek bit (see—seection—on

check bits
e::o;—éetéeeioa—and—eheekingb, and a monitor tube on which the

pattern of '""ones'" and ''zeros' in any tube can be visually dis-

played.
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In reading or writing a word in memory the computer must
accept a numerical location number, convert it by means of a
digital to analogue device into a set of deflection voltages
and apply this to the deflection plates of all 58 tubes. The
electron beam is then at the same position in all tubes and the
information is transferred in parallel (i.e., all the bits in a
word are read or written simultaneously).

Due to the actual physical spread of the electron beam
the continuous process of reading and writing tends to destroy
the overall information on the mica surface (see discussion of
read-around error in the technical sections). Thus each memory
unit is engaged in a regeneration process in which each spot is
read and clearly rewritten. Regeneration is always interrupted
when it is necessary to read or write a number. The entire
pattern can be regenerated in about 50 milliseconds and as a
general safety rule one should not try to read one particular
word more than 1000 times within one continuous 50 millisecond

period.
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Error detection and correction )

An outstanding feature of the memory of the Rice Computer is'

that it is self-correcting for errors that occur only one at a

time per word, The parity bit indicates the number of ones in a

word, and the check bits indicate the arrangement of these ones, p
Thus if a bit of a word reads differently when it comes from mem-?
ory than when it went to memory,
correction made,

this condition is sensed and the
Assuming that the sixty-four bits of the word in memory are 3
numbered O through 63, the function of error detection is performef

by the parity bit and the siz check bits as follows:

Parity bit wheole word

Check bit #6 (flast half of word ™~
Check bit #5 'vesis 1 1f | 2nd and &4th quarters of word _ Y
Check bit #4 / number j 2nd, 4th, 6th, 8th eighthc of word 0d4
Check bit #3 (’ of 1's \f2nd, 4th, .04 6th sixtecnths of word\
Check bit {2 \ in ... / 2nd, 4th,...,3gnd thirty-seéonggrgf \
Check bit #1 | bits 1,3,5,....,61, 63 of word )

-

These bits are computed when the word is written into memoLy

and again when the word is read out of memory, If the second chekk

bit #6 agrees with the first, there is no check #6 output; likewise

for the other check bits and the parity bit, If there is no parity

output and no check outputs, themn the word is free of errors, 1If
there is = parity output, one error is present and the check out-
puts read the number of the bit that must be complemented in order

for the word to agein be free of errors., For example, by

parity output check outputs
) _#6 #5 #4  #3  #2  #1
1 T o 1]

it is indicated [

——

I

that bit 13 of the word must be complemented, In
this case, any larger odd number of errors might be present and then
the configuration of check outputs would bear no significance; the

chances of this case arising are so small that the possibility is

profitably neglected, If there is no parity output but check output

is present, then the word contains two (or possibly a larger even num

ber of) errors, Again the check output is meaningless, so the ernmpr

cannot be corrected; but this condition will result in an error sgip‘
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S register 54 bits T registers 54 bits (4)

| [ i
+ | EXP| + IMANTISSA || +|EXP| +, MANTISSA | CONTROL UNIT
1 | ] | | i
[
static PRINTER AND
: /////7 TAPE PUNCH
A2
SUBTRACTER CD
54 stages < TAPE READER
X CENTRAL DISTRIBUTOR
I -
static CONSOLE
! TYPEWRITER

T
+IMANTISSA MEMORY

!E : \\\\A

U register 54 bits R register 54 bits

plus exp overflow bit, Q
and mantissa overflow bit, OV

Figure 2: Block diagram of the arithmetic unit. Arrows
represent, schematically, permissible paths for the flow of in-
formation excluding shifting. A detailed explanation of the
parts of each register and the terms exp, mantissa, etc. can
be found in the description of the numerical word structure.
"Static'" indicates a permanent (or static) connection. Thus

the subtracter always contains the difference of the current

(U) and (S)
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XO

ARITHMETIC UNIT

The arithmetic unit accomplishes all arithmetic functions
and has, in addition, facilities for tempocrary (or erasable)
storage. The execution time for each function will vary from
function to function and from operand to operand depending upon
the number of zero bits in the operand.

The arithmetic unit is built around an information dis-
tributing device called ''the central distributor,'" or CD. CD
is not a register since it cannot store information but is only
used to transfer information between registers and to and from
the other units in the machine. Figure 2 is a block diagram
of the arithmetic unit and is an expansion of part of the general
diagram in Figure 1. The various registers are listed below

and a paragraph description of each register and its function

is given:
registers
abbreviation name

U universal register

R remainder register

S subtrahend or storage register
T, temporary store No. 4

Tq temporary store No. 5

temporary store No. 6

temporary store No. 7
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Universal Register

The U register is involved in every arithmetic and
logical arithmetic operation. Before subtraction it contains
the minuend (note that the Rice Computer uses a subtractor
rather than an adder), before the multiplication the multipli-
cand, and before division it contains the higher order part of
the dividend. At the end of each operation the principal re-
sult is found in U. In subtraction U contains the difference,
in multiplication it holds the higher order part of the product,

and after division the quotient also appears in U.

Remainder Register

The R register is used partly as an intermediate in some
operations and as a storage for secondary results of a calcula-
tion. The multiplier is placed in R before the execution of a
multiplication instruction. This is done automatically by the
computer. The lower order part of the dividend before a division
is found in R. After multiplication R contains the less signif-
icant half of the product and after a division the absolute
value of the remainder appears in the mantissa of R, with the
sign of the dividend. In fixed point addition or subtraction
R plays no role, but in floating point addition it is used (see
section on floating point arithmetic). R is also used in certain

logical orders (see extract order in the order code).
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Subtrahend or Storage Register

Numbers coming from electrostatic memory or the control
unit first appear in S before each operation. Before subtrac-
tion S contains the subtrahend, before multiplication S holds
the multiplier (which is subsequently transferred to R), and
before division the divisor is found in S. The contents of S
after a general operation will usually be some complicated

intermediate and as such will seldom be used.

Temporary Storage Registers

The computer will also have four fast registers used
primarily for storing intermediate or temporary results. These
are non-shifting registers and will be designated by T4 to T7°
Instructions may be stored in these registers and will be

fetched at the proper time by the control unit.

Subtractor

U and S are connected statically to the subtracter and
the quantity (U) - (S) is available at the output of the sub-
tracter. This output may then be gated into U. An addition is per-
formed by first complementing the sign of S. 1In actual practice
(U) and (S) may be complemented during the process of subtraction
for electronic reasons. This will only concern the coder when
he is interested in the contents of S after an operation. Most

computers in the past have used an adder instead of subtractor,
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and common terminology or jargon has been the word '"adder'" since
the result available to the coder in this case was the sum of

(S) and (V).

Complementing

Both U and S have the facilities to form the 1's comple-
ment of their contents (i.e., each "0"—"1" and each "1"—'"0").
The 1's complement of U may be obtained using the logical arith-
methic orders. The 1's complement of S is often formed as an
intermediate step in an arithmetical calculation. This is one

of the reasons why (S) is generally not useful after an operation.

Shifting

Registers U, R, and S are all shifting registers and may
be shifted both right and left. On any arithmetic shift order
the machine automatically uses the optimum number of shifts of
8 plus shifts of 1. The logical shifts are carried out one bit
at a time. U and R may be treated as a double length register
and shifted together both in arithmetic operations and in logical

operations.

68



INSTRUCTION REGISTER

ss | 00600 | aA | BBRR | MMM MEMORY
16 bits
|
| INCREMENT, N
| X, REGISTER [S > f;:? switch
Lo
A\
| PATUFINDER || 16 bit
| 2 o
: ! ARITHMETIC
SENSE LIGHT [|€ B-ADDER CENTRAL
REGTSTER T DISTRIBUTOR
[
’ LoV
MODE LICHT |
REGISTER <i::> switch 2

15 bits

o | | | ' [ |
el [1] 2] (5] [ (5 e [

16 birts

&«—15 series ——>

Figure 3: Block diagram of the control registers and the re-
latiouships among them. The solid arrows represent permissible
transfers of information. The dashed arrows represent static
comnections to the adder. Swiich 1 is a 2-fold position electromnic
switch and switch 2 is an 8&-fold position electronic switch. In
this manner one of two registers may be comniniected to the upper
side of the adder while one of 8 registers may be connected to

the lower side. The D-adder also acts as a central distributor

for the contrel sectioi.
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XI.

CONTROL UNIT

The machine's control unit has the task of accepting
orders one by one into the I register and of causing the mach-
ine to carry out the operations specified according to the
order in the I register. All address modification also takes
place in this unit. Normally orders are obeyed by the control
unit in the sequence in which they are stored in the memory.
Sometimes, however, this sequence is broken and the control
unit starts over at some new position in the memory. This is
called a transfer of control. If control is transferred a few
locations back in the memory, the machine will repeat the
operations specified by the intervening orders. It is possible
to cause this repetition to occur any number of times. The
machine also has special facilities for the repetition of a
single instruction (see section on indicators).

The occurrence of cycles and conditional transfers of
control are some of the things that complicate the programming
of a calculation and at the same time make the computer of prac-
tical use. If each order in the memory were to be carried out
only once, the Rice Computer would get through them all in
about 3 to 4 seconds (even if the memory contained nothing but
orders). In actual practice, calculations vary in duration

from a few minutes to many hours.
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Because of the importance and the difficulty of program-
ing this type of cyclic control, emphasis has been placed on
special facilities in the control section to help the coder.
This tends to make the description of the control section of
this machine fairly involved. However, the prospective coder
is advised to master these additional features since they make
possible most of the interesting calculations and will greatly
shorten his time spent in coding.

The control unit is centered around a B-adder. This
plays the part of a central distributor for the control section.
The last 15 bits of the instruction register or the X register
can be connected to one side of this adder and one of 8 other
registers described below can be connected to the other side
i of the adder. The adder output may then be gated (i.e., trans-

ferred) to any of these control registers, the arithmetic central
distributor, or the memory. Figure 3 is a block diagram of the
control registers and their interrelations. The various regis-

ters are listed below, and a brief description of each one is

given:
] registers
abbreviation name
I instruction register
CC control counter (or location
register)

By B register 1
B2 B register 2
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abbreviation name

B3 B register 3

B, B register 4

35 B register 5

Bg B register 6

PF1l pathfinder 1

PF2 pathfinder 2

SL sense light register
ML mode light register
X increment register

Instruction Register

When an instruction is brought from memory into the con-
trol unit, it is placed in the instruction register where it is
decoded. The instruction register is a full length 54 bit word.
The last 15 binary digits (bits 40-54) specify an address or
location number. It is this number that is subject to modifi-

cation.

Control Counter or Location Register
15
This register with a capacity of B bits CEESINNESSE=]

“shas-arabpmer-oireptiawcie) determines the location in memory

from which the next instruction is taken. Whenever a new in-

struction is brought into the instruction register from memory,
the CC (control counter) is advanced by 1. However, during the

execution of a transfer or skip, the contents of CC may be

changed to any number in the address range. Whenr—eaeting—in-the
The control counter may also act as q B- register.
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B Registers

/5
The Rice Computer has six B registers each containing *&

bits. One of the primary uses of B registers arises from their
ability to modify the instruction address. When a given B regis-
ter is appropriately specified (this is explained in the detailed
discussion of the order code), the instruction is executed as if
its address had contained the stated address plus the contents

of the specified B register. The actual addition is carried

o~
-

e = e e L
A Y VS~ T

out in the B-adder,and jpEms
Iuprttipesiidtissonn The result of the addition is also placed in

M, the address section of I.
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When a number is8 transferred from a full length register
in the arithmetic unit to a B register, only the last 15 bits
of the full length register are transferred,

When a number is read out of a B register ianto the arith-
metic unit, the contents of the B register are placed in the last
15 bits of the specified arithmetic register. All other bits {(in-

cluding sign and overflow) are set to the value of the first bit

of the B register.

Pathfinder Register 1

Whenever 8n unconditional class 0 transfer or skip is about
to be executed, the contents of CC are placed into the pathfinder

register. The PFl register may also be used as a B register,

Pathfinder Register 2 {

On all modifications of (CC) except the normal advance by
)
1, the contents of MWt (before the above modification) are placed
into PF2., PF2 may not be used as a B reglater. Its address is
(77770)8.
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Sense Light Register

The sense light register is a 15 bit register with ad-
dress (77771)8. The uses of the sense light register are out-

lined in the section entitled "Indicators."

Mode Light Register

The mode light register is a 15 bit register with the
address (77773)8° Its uses are outlined in the section entitled

"Indicators."

Increment Register

The X or increment register is a 16 bit register with
address (77772)8° The contents of this register may be added to
the contents of any of the B series registers, with the sum be-

ing placed back into the B register.

B-Adder

As mentioned earlier, the B-adder controls the transfer
of information and carries out the address modification specified.
It is purely an adder and has not complementing facilities, and
thus, the complement system of numbers must be used. The reader

is referred to the discussion on complement arithmetic.
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XIII.

PRINTER OUTPUT

When paper tape is read into the memory, the only require-
ment is that the information gets into memory in convenient form.
The format on the paper tape is not of great importance. However;
the printer output must not only satisfy the peculiarities of the
machine but must also produce an easily readable report.

This requirement is partially met by having 64 different
symbols available on the printer and a format control tape on the

printer.

Available Symbols

The printer will have 64 symbols which may be used in any
way the coder desires. The 64 symbols may be put into a one to
one correspondence with the 64 binary numbers which a hexad (six
binary bits) is capable of representing. For convenience and
uniformity of notation the correspondence given in the following
table has been adopted. The order of symbols is also the order
in which they occur on the printer type wheel. The binary code
only refers to the position of the symbol on the print wheel,
and it is not in general the binary code that is used on punched

paper tape.
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symbol octal code

0 00
1 01
2 02
3 03
4 04
5 05
6 06
7 07
8 10
9 11
a 12
b 13
c 14
d 15
e 16
f 17
+ 20
- 21
/ 22
23

24

X 25
X 26

binary code

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

01

01

01

01

01

01

01

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101

0110

comments

ordinary
decimal

numbers

plotting symbols:
each symbol is
duplicated so that

graphs may be
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symbol octal code binary code comments

A 27 01 0111 plotted to 1/2
A 30 01 1000 a character width
* 31 01 1001
| 32 01 1010 absolute value

sign
( 33 01 1011

) 34 01 1100
X 35 01 1101 multiplication

symbol

= 36 01 1110
s 37 01 1111
A 40 10 0000 full alphabet in
B 41 10 0001 upper case type
C 42 10 0010
D 43 10 0011
E 44 10 0100
F 45 10 0101
G 46 10 0110
H 47 10 0111
I 50 10 1000
J 51 10 1001
K 52 10 1010
L 53 10 1011
M 54 10 1100
N 55 10 1101
0 56 10 1110
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symbol octal code binary code

P 57 10 1111
Q 60 11 0000
R 61 11 0001
S 62 11 0010
T 63 11 0011
U 64 11 0100
\4 65 11 o101
W 66 11 0110
X 67 11 0111
Y 70 11 1000
vA 71 11 1001
< 72 11 1010
< 73 11 1011
1 74 11 1100
« 75 11 1101
- 76 11 1110
d 77 11 1111

comments

less than sign
less than or equal

exponent symbol

subscript symbol

T

13
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The printer can print up to 108 characters on each line,
Each print order produces one line of printer output in 0,1
seconds., Thus one can print up to 600 lines per minute.

In discussing the print format it is helpful to consider a
layout chart as illustrated in figure 4. This chart has g squdre
for each position on the paper where a symbol can be printed.
Charts of this sort are useful in planning the programming of the
output. This layout may be done for each line individually orx
once for the entire output L1f a standard format is used for all
the lines.

To print one line the coder must reserve 128 consecutive words
in memory, this block being called a "print-matrix.,"” Each bit in

this block of words is an element Pc in this matrix and may have

» €
the value 0 or 1.

0%2¢c<63
¢ 1<t <108

The index c denotes the character to be printed and the index t

denotes the column, 1If Pc t: 1, the character ¢ will be printed
]

in column t in the line under consideration,

The location of these print-.matrix elements is given as follows

P = bit t in word ¢ if ¢t < 54
¢, t -

Pc ¢ & bit t=54 in word ¢+ 64 1£f t = 55
]

Thus the first 64 words control the format of the left hand side of
the page and the second 64 words control the format of the right

hand side of the page.
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The print. matrix which will produce the left half of line 1
shown on the layout chart of Figure 4 is given schematically in
Figure 5, Note that a new print-matrix must be constructed for
every line of print;

I1f all 64 characters are used the maximum speed of 600 lines
per minute can not be attained because the actual printing will
consume an entire drum revolution or O;l seconds and another drum
revolution will be required for the paper advance, However, 1if
only the first n characters are used one can tag the last signifi-
cant vord in the print matrix with a tag 3, The print order will
proceed to print characters until a tag 3 or character number 63
is reached; the paper will then be advanced as specified in the
order, If n< 54 (i.e;, if only the first 54 characters are used)';
the paper advance will not consume an extra O,l1 second but will b
accomplished within the 0,1 second period required to print one
line,

The words of the print matrix are placed in two buffer regis-
ters when they are needed, During the time interval between the
printing of successive characters the computer will proceed with
the calculation unless another print order or magnetic tape order
is encountered (both types of orders require the buffer register),
In fact, about 75 per cent of the time during the printing process
will be available for calculation,

In a print instruction the coder specifies the address of the
first word of the print-.matrix and whether - or not the paper ahoudd

be advanced after printing, Eight choices for the. paper mdvance
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will be available, Some o!Athe choices might be, for example,
space ¥ line, 1 line, 2 lines, 1/3 page, 1/2 page, 1 page.

Only one symbol should be specified for a given column 1n'a
single print-matrix. For example, in the sample given in Figure §
8 one in bit 32 of word 5 and a one in bit 32 of word 35 should
not be given. In general, only the firast symbol specified will bde
printed, but it is possible that the second symbol will be printed
over the first; ¢the actual output in such an instance is difficult
to predict.

In actual practice‘che formation of the printematrix will bde
accomplished by a set of subroutines. Subroutines will be availe.
able for the common types of tables in fimed and floating point
numbers. The coder will be able to select a subroutime for his
purposes (e.g8., a routine that will print five columns of ten ’
digit numbers in standard floiting point form) including o limitedx
number of alphabetical routines that will print specified column

headings, etec.
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left half right half
VAN /A
\/ \
column » 213 5|67 (8(91011]12] ===~~~ 5354]L 34| ==~~~ 5253’54
line 1 DEIN|S|I|T|Y| D F - AT M
J 2
3 T{(|D|E|G]|- K| d | ---
4 2(710]-|0 o7 L] ===
5 21(7(0]-15 - 7 -
6 21(7(1]-10 . 7 -
7 217]1]-15 - 7 -
8
9
10
11
12
Figure 4: Example of a print layout chart.
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symbol 1“1°2 3 4 5 5 7 8 9 101l - - - - - = - 54
0 lojcfojclojJofololoclelof-~----~- - o ]

[¢lolofoloJololofoJolo] Ic_|
D [0TiTolelclololola o o] ]
E lofof1joloJofofolofofo] 0 |
F [oJoJoJoJoJoTJoloTloTJoJ1] o ]
I [0ToTolololilololoolol ]
N [0lo]olT oo 0lolo [0l0] 0]

[0ToJoJoloJoloJoJo[1]0] 6]
s [0Jololo 1 olololoTolo] 0]
T [0]oJoJoJoJoJ1]o]oJolo] ¢ ]
Y [0]0JoJo]oJoJol1]oJoJo] Tc ]

Figure 5: Schematic drawing of print-matrix for left half

of line 1 in Figure 4.
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XIV.

PUNCHED PAPER TAPE

The initial input to the computer will be 7-hole punched
paper tape which will be read by a photoelectric reader. The
diagram below illustrates the terms used in discussing punched

paper tape:

6'[0':L
5|O: feed holes
4;0// v\
position < |® ° ) ° °
3|oi
210}
N110]
|
.
frame

The positions are located across the width of the tape and are
places where data holes can be punched. A frame is a column
whose location along the length of the tape is defined by the
feed hole.

The computer reads positions 1-6 in a frame sensing a
hole as a 1 and a blank as a zero. If position 7 is blank, the
information in 1-6 enters the U register. If position 7 is
punched, the information in 1-6 is not entered into the computer
proper. Thus, a hole in position 7 is effectively a delete

mark. However, there are a few combinations of punches (all of
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which have the 7th hole) which act as control punches. They
are not read into the U register but may affect the control of
the reading process. A table of control punches may be found
at the end of this section.

The tape is prepared by a "Flexowriter'" combination type-
writer and punch, whose keyboard layout is illustrated in Figure
6. Every key on the central keyboard will type a character on
the paper in the typewriter and at the same time if the ''punch
on" control key is down, a six bit code will be punched into
positions 1-6 on the paper tape frame under the typewriter punch.
A table giving the binary code for each key can be found below,
Many of the control keys (upper case, lower case, carriage re-
turn, tab, etc.) will not only carry out their designated
function, but will also punch a six bit code into the paper

" punch 7th hole' sSwitch
tape. Depressing the “Irh—hole—also" lsy by itself will not
have any visible effect, but if this key is down and another
key is struck, the corresponding six bit code plus a hole in

The ' swifches
position 7 will be punched. Seweral special control kesg (tape

awnd
feed, code delete  asbepassic-antd=ssac®l automatically punch the

7th position since this information need never be read by the
computer proper. Note that the upper case and lower case sym-
bols on a given key have the same binary code. The Computer

can only distinguish the two symbols by noting whether or not the

symbol is preceded by an '"upper case' or "lower case' punch.

89



A punched paper tape may be read by the Flexowriter
which will type the characters specified and if desired punch a
duplicate tape. All punches and operations may be duplicated
in this manner except ''code delete' and "stop code.'" '"Code
delete" punches will be ignored and '"stop code'" punches will
stop the automatic action of the typewriter. A 7th position
hole will be duplicated but will not affect the typing of the
machine. The back space key will simply back space the carriage

and paper tape one position but will not punch the tape.

key code key code
L-case U-case 7654 321 L-case U-case 7654 321
a A 0100 000 W W 0110 110
b B 0100 001 X X 0110 111
c C 0100 010 y Y 0111 000
d D 0100 011 z Z 0111 001
e E 0100 100 0 ( 0000 000
f F 0100 101 1 ) 0000 001
g G 0100 110 2 * 0000 010
h H 0100 111 3 # 0000 011
i I 0101 000 4 A 0000 100
N J 0101 001 5 o} 0000 101
k K 0101 010 6 « 0000 110
1 L 0101 011 7 8 0000 111
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key code key code
L-case U-case 7654 321 L-case U-case 7654 321
000
m M 0101 100 8 ¥ 0001 =2
(o]o]]
n N 0101 101 9 A 0001 =6
olo
o 0 0101 110 s T 0001 e
p P 0101 111 X = 0011 101
q Q 0110 000 + / 0010 000
r R 0110 001 - ~ﬂ$> 0010 001
s S 0110 010 < = 0111 010
t T 0110 011 R 0011 111
u U 0110 100 = | 0011 110
v \Y 0110 101 carriage e0—=06061
return oolo 100
o1l 100 0
upper case 1/2 space down 55Z$~—€§£+
Ol 110 &s)o6 o1
lower case 1/2 space up
ool 100
tab 0010 010 space (bar)
ooll 000 Co10 )|
tape feed (key) code stop(swith)ITE—gR
10 110 switch
back Space oolo code delete, 1111 111
4ape -Feecl (Sw;"‘[L) tan o0o0o
control punches
Bstop code" - turns off repeat mode light

7th hole

- frame is not read into U
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ODE
CODE
CODE
CODE

FEED|DE CODE |

F G H

Punch Tth.
2t START|STOP CH
ke | READ | READ

A

TAPEICODE STOP I~

[PuNcH oK)

[vPeer CASe][

RECORDER-REPRODUCER

2 TAPE
] fFEED
A BRI 2l o I « " a ™ e | SACK
TAB || |ormee o A 2 3 4 s o P7 8 9 x s:tS‘PACE
L\ \ /’J
T CAR
T o P
Q w E R Y V) 1 x RET
Bl
Lows AllstiiolllelllelllwlllolllwlitellZ Il ‘“‘1
CASE + -_ TASE
U;g < ’ | UPPER
CASE z X ¢ v 8 N M < d = CASE
LTt TT T T TTTATTTITT
bR —=O®®r S NOTo0ON®oo - NP o222 NRISSRNER85533535889592>3>N  Sre)
SPACE 1 Shace
DOWN

Figure 6: Keyboard Layout - Flexowriter Model - FL
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FIXED POINT ARITHMETIC
XV,

For a complete understanding of coding, it is necessary to
have a fairly thorough grasp of how the computer handles arith-
metic, For the purpose of illustration we will often consider
here a 5 bit mantissa, The reader may easily extend this to a
larger number of bits,

(a) Addition and Subtraction,

The fixed point addition is carried out by simply adding two
49 bit numbers (bits m, mo,...,m47) with one modification: the
carry (either O or 1) from bit m, is considered to be a carry into
bit My e In other words, addition is performed with an "end-azound"
carry., In this operation (Exp S)—> Exp U , Thus at the end of the
operation both U and S have the exponent part of the number from
memory, Aside from this transfer, the exponent plays no role in

the fixed point addition,

To 1llustrate this we consider a five bit mantissa and the

following examples:

ms mo . m1 ma m3
Uu o 0 . 1 0 0 1/2
1
S O o . 0 1 0 + 1/4
0 0 . 1 1 0 + 3/4
U 0 0 . 1 1 0 3/4
2
s 1 1 N 0 1 1 (=1/2)
1 0 0 . 0 (o)
end around carry
0 0 . 0 1 0 +1/4
92a
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U o ) . o 1 o© 174
S 1 1 . 1 0 O + (-3/8)
1 1 . 1 1 o -1/8

B-register arithmetic takes place in the B-adder and is an addition
of two 15-bit integers exactly analogous to that discussed above

for 49=-bit numbers,

(b) Overflow and Underflow:

The following conditions describe when the arithmetic opera-

tions result in an overflow of the storage capacity,

m n condition
] 0 —_—

0 1 overflow
1l 0 underflow

Sce section on overflow for more details,

(c) Arithmetic Shifting,

U and R are shifting registers and in the arithmetic

shifts behave in the manner described by the following diagrams,
; ’/-‘ =
ﬂ; s| 0| 12 ., . . 47 U right shift

T A FH 7 “w-lost
On a right shift the sign of U is propagated and preserved, Onm

shifting R alone the same connections (with the overflow bit

omitted) are made,

T e
| 8 0 } 2 . . . 47 U left shift

IOetb‘_,. \/ \$/f
On a left shift the sign of U is carried into the lowest order bit,

Oon shifting R alone the same connections (with the ovexrflow bit o-

mitted) are made,
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”(}?8 0 1 e o o & 147 Bg 1 2 e ¢ o o 47 UR right shift
T A T T Giost
NWN‘¢“~M“>WWWMVWMW;Xrﬁ~ym~”wﬁm»~~¢
F 0 1 e o o o {47 /{f\ l 8 1 2 e o o 47 ; UR left shift
\—}, J \?\/ T ‘/z f'\-/ /L\ N7 . 1\ } -
lost~ ~ ~ ’“““”<J K &
For example,
U U
shifted Rizht 2
ms mo ml ma !n3 ms mo ml m2 m5
1 1 0 o0 1 1 1 1 1 ¢

1

1 1 0 0 1 shifted left 2 1 0o 1 1

(d) Fixed point multiplication,

Multiplication is carried out by a process of wrepeated addi-
tion using a positive multiplier; When a multiply order is inie
tiated the two factors are in S and U respectively, and the fol=
lowing sequence of steps is executed,

(1) Test (U) for +0 or =0

(a) (U) = 0, clear mantissae of U and R, proceed to next
instruction,

(b) (u) £ 0, go to step (2).
(2) Test sign of (§)
(a) (S) +, go to step (3).
(b) (S8) -, complement (U) and (5), then go to step (3).

(3) (8) > R, (Exp 8)-> Exp R Note that R always

(u) = S, Exp U remains in U contains a + number,

-0 (i.,e,, all ones) —> U if sign U is - ,
40 (i.e., all zeros) => U if sign U is +
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(4) Multiply by repeated addition

(a) 1f m,, in R = 0, shift (UR) right one place using an
arithmetic shift,

(b) 1f m,, in R = 1, (u) + (s) = U, then shift (UR) right
one place,

(c¢) Repeat process 46 times, testing for groups of 8 zeros
in R, If a group of 8 zeros is encountered, (UR) is
shifted right 8 places,

(5) m, of U > m  of R,

Each of the above additions in step (4) is carried out
using the "end-around" caxvy in U, As an example we consider
a couple of three bit numbers: + 1/2 in U and - 3/4 in S, At

the end of step (3) we proceed as follows:

S ] R Procedure
m,omy m, m3 m, my m, m5 oy m, m5
1 0 1 1 1 1 1 1 1 1 0 (after step 3)
11 1 1 1 1 1 shift UR
1 0o 1 1 1 1 1 Add U + S
1 1 0 1 1 1 1 shift UR
1 0 0 1 1 1 1 Add U + S
1 1 0 O 1 1 1 shift UR

Answer is -3/8 in the one's complement system and is a double
length result in UR,

The process of multiplication can be explained in analytical
terms, Let the Algebraic value of the two factors be x and y
(2 in R and y which may be negative in S), The machine represen-

tation of negative y may be considered as

(250'- 2-47 + Y)
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with the leading ones being virtual in the sense that they appear
only on right shifts of U,
We then form
50 -47
(a) (277 - 2 + y)x from repeated addition scheme,

(b) 2'47x from the "end-around carry" into m, of U P

7

instead of m4 of R.

7
(c) +(250 - 2'47)2-47 from the initial setting of U to
all ones,
The sum of all these contributions is
290 x 423, Xy = p=94
And since any bits to the left of o in U are suppressed this is
equivalent to
6 - 279% Xy ,
which is the double length representation of xy in the 1l's com-

plement system,

(e) Rounding after Multiplication,

In the normal mode of operation, fixed point multiplication
will be performed without rounding; However, when operating in
the "rounding mode' the computer will carry out the following se-
quence of steps after the normal multiplication is complete,

Step (1): Compare m, and m, in R,
’ (a) m, = m,, proceed to next operation,
(b) m, # m;, proceed to step (2).

Step (2): Clear S and set m,, in 5 to a 1,

7
Step (3): Examine m, in U,
(a) mj = 0, proceed to step (&)
(b) m, = 1, complement S and then proceed to (4).

Step (4): (U) + (S) => U, proceed to next operation,
The effect of this sequence of steps is to add 1 to the magni-

tude of (U) only if the magnitude of (R) is greater than or equal to %
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(£) Fixed Point Division,

Division ;s carried out by a process of repeated subtractions
using a divisor and dividend of the same sign. If the sign of
(S) which is the divisor differs from the sign of (U) which is
the dividend, (S) is complemented before division and the quo-
tient is complemented after division, The mantissa of (U) must
be less than the mantissa of (S) and the exponents are ignored.
With the divisor in S and the dividend in UR, the following se=-
quence of steps 1is executed,

(1) Test Op 3 of divide instruction.

(a) op 3 =0, 3, 4, 5, 6, or 7, proceed to step (2).
(b) Op 3 = 1, clear R_ to sign of (U ) and proceed to

m
step (2).

(c) Op 3 = 2, clear Um to sign of (Rm) and proceed to
step (2).
(2) Compare sign of (U) and sign of (S).
(a) Us = Ss’ then will not complement quotient after
division in step (8).
(b) Usié Ss, - (S)2 S and will complement quotient
after division in step (8).
(3) Subtraeter output #0 and sign of subtracter outpot.
Fou?
(a) Yes, shift mantissa of (UR) left 1, set shift count
SC = 0; proceed to step (4).
(b) No, test ML #1,
(1) Omn, go to end of divide.
(ii) Off, stop.,
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(4) Subtracter output #0 and sign of subtracter output
£ U
(a) Yes, 0 - Ro47} proceed to step (95).
(b) No, subtracter output > U, 1 > Rm47; proceed to
step (5).
(5) Advance SC by 1.
(6) sC = 477
(a) Yes, proceed to step (7).
(b) No; (UR) arithmetic shift left 1; return to step (4).

(7) (R) > s, (U) >R,

(8) (8) > U or -(S) > U as indicated in step (1).

(9) End of divide,

After division the remainder is in R and the quotient is
in U. The exponent of the word that originally came to S from
memory ends up in R, and the éxponent of the word that was
originally in U remains in U,

Division is actually accomplished with a double length
dividend, (U) and its extension in (R)., If the sign of (R) is
not the same as the sign of (U), the results of the division
process are not the correct quotient and remainder, Any neces-
sary adjustment of the sign of (R) is left up to the coder in
the use of a double length dividend. 1In order to use a single
length dividend and obtain the correct results, R must be
cleared to the sign of U, and this may be done by proper use
of OP3 of the divide code. Division of two integers is accom-

plished by placing the dividend in R and clearing U to the eign
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of R, which may also be accomplished by use of OP3 in the
divide code,

As an example of division we consider two three bit numbers:
+1/4, a single length fraction in U, and 41/2 in S, After step (1)
we proceed as follows:

S U R Procedure
mg Memy W, My M MMy M, My B W Wy M, My
o 0,1 0 O o 0.0 1 O o 0,0 0 O after step (1)
0 0.1 0 O 0 0.0 0 O lsm$>IUml so shift
(UR) left 1 and
0-»Rm47 by (2)
0 0,0 0 O o 0.0 1 O ’Sm¥<lUml 8o
subtracter to U,
la»Rm47, shift
by steps (4)=-(6)
o 0,0 0 O 0o o.1 0 O |sml>lUm[ so shift
(UR) left 1 and
0--)le'_7 by
steps (4)-(6)
0 0,1 0 O o o,0 0 O interchange (U) and
(s) by (7) and (8)

The quotient ¢1/2 is in U and the remainder zero is in R.

If we consider the signel length numerator N and denominator
D with the same sign and (U)= N, (S)=D, (R)= Z initially, then
in fixed point division the bits of the quotient are obtained
by application of the algorithm

pO: N. Then for j: 0, 1, ce ey 46
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qj-k1= 1 and pj_+1= 2pj-D if sign (ij-D) = sign (2pj)
qj_+1= 0 and pj*.lz ij if sign (ij-D) # sign (ij) L
R= Py

- -1 -2 -47
Q"qlz +q22 +-.-+‘1472

1f | N|>|Dldivision overflow occurs.
1f sign (N) # sign (D), complement D before division and
complement Q afterwards.

Example: Assume N and D negative 4-bit fractions,

-D = ~(-7) = (§) = 00. 0111

N

-5 = (U) = 11. 1010

e
n

q; = 1 and Py = 11. 1100

q, = 0 and Py = 11, 1001
q5 = 1 and Py = 11, 1010
= 11,1100

q, = 1 and p4

so answer is q = .,1011 and R = 11,1100 x (2-4) .

This can be compared with

-5 . 2"4

-7 - 27"

It can be shown that the following equation connects the

-4 _ .0011

= (_:_0 2 = (11 - ) 2 = .1011 and -(**7*‘)

~jw

partial quotient (in R) ad the remainder (in U) after j appli-

cations of I with N and D:

N = 247'jq pt+273p

b i
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XVI.

BINARY POINT LOCATION AND FLOATING POINT ARITHMETIC

In programming fixed point calculations one of the major
broblems is decimal or binary point location. This problem is
particularly difficult if, during a calculation, the number of
required significant bits approaches the bit length of the man-
tissa. Various devices are used to assist in planning, but it
should be emphasized that these methods are primarily methods

of how to think about the numbers in memory.

Binary Point Location

The simplest method is to fix the binary point at some
arbitrary place in the middle of the word or at either end.
For example, suppose we locate the binary point between the
ninth and tenth bit in the mantissa of our word (that is, be-

tween bits number 15 and 16 in the word).

mantissa

[ Exp| [+ ] [1121314:516171819110111:1121- - - - - 147
I4

This would be the form in which all data and constants are

entered into the problem and in which all answers and inter-

mediate results appear. Note that no data or results may be
10 1023 -38

larger than 2% - 1 = ¥2% or smaller than 2 °°=0.000 000 000 002.

Since in this system all numbers in memory have the same

decimal point, addition and subtraction can be carried out
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without any preliminaries. If overflow were to occur, the sum

210 _ 1 and in this system nothing could be

would be larger than
done. It is up to the coder to look at his problem and choose
a location for his binary point such that all data and results
of calculations will be less than the largest number possible.

In multiplication we have two numbers each of which has
38 places to the right of the point. By the usual rules the
product (in U and R combined) will have 38 + 38 = 76 places to
the right of the point. These 76 places include the 47 places
in R and 29 places in U. Thus in the result the binary point can
be placed (in thought) between the 18th and 19th bits in the man-
tissa (i.e., bits number 24 and 25 in the entire word). It is
necessary to shift the combined mantissae of U and R left nine
places after each multiplication to re-establish the proper binary
point. Again any overflow is an error in this system.

In division there will be as many places to the right of
the point in the quotient as the difference of the number of
places in the fractional part of the dividend and the number in
the divisor. Note that the dividend includes U and R. Thus to
get 38 to the right of the point in the quotient (with 38 to the
right in the divisor) we must arrange to héve 76 in the dividend.

The dividend is thus shifted right nine places before each divi-

sion. This is almost the reverse of multiplication. .

It is important to note that the actual electronic pro-

cesses of add, multiply, etc., are independent of the choice
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of the binary point. The machine does not have a binary point
built in and it is entirely up to the coder to keep track of the
point.

If we think of the binary point as being to the left of
position 1 in the mantissa, the numbers all have 47 places to
the right of the point. By examination of the above discussion
one can see that in this case no shifting is required in multi-
plication and division. For this reason many people regard this
location of the point as the natural one and emphasize that the
computer only uses fractions as input data and only yields re-
sults in the form of fractions.

A slightly more general procedure would be to keep track
of the binary point with the following rules. (One must always
check for overflow and improper division.)

(1) 1In addition or subtraction, the binary point location

of both numbers must be the same.

(2) In multiplication, the product has as many places

to the right of the point as the sum of the number
of places to the right of the point in the multiplier
and multiplicand.

(3) 1In division, the number of plaées to the right of

the point in the quotient is the difference of the

number of places to the right of the point in the divi-
dend and the number of places to the right in the

divisor.
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Note: The location of the point in the dividend and in

the product is in respect to the U and R registers com-

binded, whereas all other quantities are regarded as

single length numbers.

Floating Point Representation

At best the problem of keeping track of the binary point
is time-consuming and annoying. At times it is extremely diffi-
cult to plan adequately, since it involves predicting the sizes
of all numbers in the calculation. A system is needed that will
indicate where the binary point is and instruct the machine to
take account of this in doing operations on numbers. Such a sys-
tem is a floating point system.

The basic idea is to write all numbers as a binary fraction
times a scaling factor. Thus, if x is the actual number and X

is the fraction in memory, we have the scale factor equation:

The object is to store the scaling factor in memory along with
the fractional part Xx.

In usual scientific applications, s is restricted to be a
power of 10, but in a binary machine s is usually restricted to
be a power of 2:

29 %

and q is the quantity stored in memory together with %X. The
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exponent q in this scheme is the same as the number of places to
the left of the binary point. In such a procedure we think of
all numbers in memory as having a binary point fixed at the left
end of the word. If a number is shifted, the binary point does
not move but rather the scale factor changes. This is obviously
merely a change in viewpoint. The "lining up'" of the binary
point by shifting in the fixed point procedure is replaced by a
"matching' of exponents, again by shifting, in the floating point
procedure. |

The disadvantages of such a system should also be men-

tioned:

(1) The number of bits used to hold the exponent in
memory decreases the number of significant figures
that can be carried in a number.

(2) The process of matching exponents (i.e., lining up
the binary points) of two numbers before addition
or subtraction is time-consuming.

(3) The problem of whether to restrict the operations to
completely normalized numbers (i.e., numbers between
1/2 and 1) or not is introduced.

(4) The possibility of floating point overflow and under-
flow must be considered.

(5) Conventions to avoid time-consuming shifts must be

adopted.
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It is not necessary to use a power of 2 as the scaling

factor. Suppose we consider:
s = (2P)4

where q is the variable exponent and p is a fixed integer.
This form is chosen so that there will be a simple relation
between shifting and the exponent q. Using such a scale factor
is often referred to as using the number base 2P, 1In many ways
this is convenient but it is important to remember that the
machine is still a binary computer.

With this choice of s, we need a smaller range in q for
a given range in s than in the previous system. Since only
shifts of p bits at a time can be recorded, the fractional part
of the number can vary over a wider range. In fact, if we main-
tain the least possible number of leading zeros in all the frac-
tional parts (this is called normalized or standardized numbers)
up to p-1 leading zeros can still occur.

2°P <% <1

A large p means a greater possible range in s (which is
of course the major object of a floating point system), faster
arithmetic (since matching of exponents by shifting is less fre-
quent and fewer shifts are needed in generél), but a smaller
possible number of significant figures (since p-1 leéding Zeros
will almost certainly occur during the calculation).

As a compromise p = 8 has been chosen for the Rice Com-
puter. As usual such a choice also introduces new complications
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which will be discussed below. Thus we have:
x= 289 % = (256)9 %
-l<x<1; 1> |&| > 1/256

-31 < q < 31

Normalization (or Standardization)

A floating point number is said to be in normal or stand-
ard form if the fractional part of the number, X, has no more
if_X_is Ppesitive eor no move than =7 leadling “ores'
than 7 leading zeros j N%txé th4€78A1S does not mean that the
remaining 40 bits in the mantissa are significant. It may well
be that none of the 40 bits are significant. The zero presents

a special problem. A normalized or standard zero is a num-

ber whose mantissa is zero (i.e., all 47 bits zero) and whose
exponent is =8 plus zero Cie. all € bits 2Cro)

In the process of normalization a number is shifted left
eight bits at a time (with a corresponding decrease in the ex-
ponent by one with each shift) until it is in standard form. In
some cases the U and R registers are combined and this is noted
in the description of the floating point arithmetic.

Normal Mode for Floating Point Arithmetic

When mode light 4 is zero (i.e., off), the machine will

carry out floating point calculations according to the following

scheme:
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(A) Addition and Subtraction,

Addition can be characterized by the following sequences

of steps, assuming that the two operands'aré in U and S.

(1)

(2)

(3)

(4)

(3

(6)

Examine ((Exp U)- (Exp S§)] at output of the adder.

(a) Positive: Interchange (S) and (U), proceed to
step (2).

tb) Negative: Proceed to step (2).

(Exp S)-é Exp R

(Exp U) ; (Exp 8) — Exp U 4 8
+ 1 — Exp §

Examine sign of mantissa of U,

(a) Positive- clear mantissa o& R to "plus zero"

(b) Negative- clear mantissa of R to "minus zero."

;Examine (Exp U).

(a) 1f (Exp U) £ =16, (S)—=>U, (Exp R)— Exp U,
proceed to step (12). '

(b) 1f (Exp U) > -15, proceed to step (5).
Test (Exp U)
(a) Exp U = 0, proceed to step (6)
(b) Exp U ¢-’o
(i) Shift UR right by eight
(i1) (Exp U) + (Exp 8) —> Exp U.
(1i1) Repeat Step (5).
Fix-point addition of (U) + (S)

(7) (Exp R)-f (Exp U) ,

(a) Bxp U 8 +0, proceed to end
(b) Exp Uz 40, proceed to scep’(sj.
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(5’, Test overflow.
(a) No overflow: Proceed to step (9).
(d) Overflow '
1) Shift UR right by eight
(11) (Exp U) + (Exp S) <> Exp U «» Exp R

(141) If Exp © ovitflowc set EXOV indicator, then
: proceed to end, '
(9) Zero -> Mantissa of S, Test Mantissa of U.

(d)-u 8 0, proceed to Spd of add
(b) U # 0, proceed to step (10).
(10) Compare Sign U and Sign R
(a) mg of U » mg of R, proceed to step (12)'

(b) mg of U¥ mg of R
(1) Set + 12 «47 in mantissa of S

(11) mg of U «» mg of R, proceed to step ay
(11) :cst eign of U ' A
' ,sf'(a') mg ®* 4 ; (U) = (S) «» U,ﬁxed point
(d) mg 2 < ; (U) + (S) <> U Fixed point
iia) Test m)} 'tomg of U . °
(a) m] «» mng f 0, proceed to end of add,
(b) mi~> mg = O, |
(1) . shift UR left eight places
(11) Exp (U) - Exp (S) ~» Exp U «» Exp R,
(c) Test Exp (U) for underflow
(1) Exp (U) underflows, clear UR to zeros, proceed to

end of addition
(11) Exp (U) does not underflow: Repeat step (12)

(13) Ead of Floating Ad4, 108a



(B) Normalization in Floating Point Addition;

No assumption is made about the initial operands - they may
be normalized or unnormalized numbers;

The result of a floating point addition is always normalized
with the following two exceptions:

(1) For complete cancellation of significant figures in U
(i;e., when the result of the fixed point addition step is zero),
the U register will be left with a zero mantissa and an exponent
equal to Exp R, The R register will contain whatever was shifted
out of U in the initial matching of exponents;

(2) When the exponents of both operands are "plus zero" the
addition will be a fixed point operation with no renormalization,
Thus the floating point addition order can be applied to fixed
point numbers 1f one is careful to give the fixed point quantit

a "plus zero" exponent,

Overflow and Underflow,

It has already been mentioned that an overflow conditiom is
sensed by the machine whenever sign and overflow bits in either
the exponent or mantissa of U differ in value, and that one can
recognize the (10) bit combination as a case of underflow and
(Ol)as overflow;' Exponent underflow on floating point operations
1s sensed by the machine, and (U) and (R)are replaced by the zero
word, so this is not a condition the programmer can detect, 1In

l addition, éhe exponent overflow indicator is used to detect a
"gpill" of a "1'" bit on logical shifts although this is mot truly
a numerical overflow; The table summarizes the cases which may

arise:
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Indicator Condition Cause Type

Mantissa 1, Arithmetic
Ooverflow ON left shift Overflow or underflow

Indicator 2. Fixed point add |[Overflow or underflow

3. Comparison of
fixed point num-
bers (exponents

zero) Overflow or underflow

4, Add to Memory of
fixed point no's)

1, Mantissa over=

OFF flow test ——

Exponent l, Floating point
add, subtract,
Overflow oN muléiply, or
Indicator divide Overflow
2, Comparison or-

ders and add
to memory Overflow

3, Logical left ‘
shift Overflow

OFF 1, Exponent over-
flow test

Note that overflow and sign bits act independently in arith-

" metic orders, but are regarded as a single bit (00 or 11) during
logical'operations in order to prevent spurious overflow conditions
being sensed, For this reason, before any logical order (Class 5
or Class 4 logical shift or bit count) the machine ties the over-
flow bit equal to the sign bit in both the exponent and mantissa
of U, |

Lastly, it should be noted that £ield 1 codes which call for
U, -U, |U], or -|U| to be brought to U treat sign and overflow
bits independently,
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(B) Floating Multiply

(1
(2)

(3)

(4)

(5)

(6)

(7)

(8)
(9)

(UI+(5) VU, —>R,

Test exponent overflow

(a) Overflow - Set EXOV indicator - proceed to end.
(b) Underflow - Clear UR to 4 0 - proceed to end,
(c) No overflow - Proceed to step (3).

Test sign of (8S).

(a) (S) +, go to step (4).
(b) (S) -, ecomplement (U) and (S), then go to step (4).
(s)) =R

(Um)~—>sm, -0--)Um if U is -
+0-+Um if U 1s + .
Test for zero at adder output,
(a) Zero; clear Um and Rm’ proceed to end.
(b) Not zero; proceed to step (6).
Multiply by repeated addition as in fixed point
multiplication.
o of U---)ms of R.
If mantissa of U ¢ 1/256, the number in U and R

combined is normali zed.

(C) Floating Divide.

(1)

Test Op 3 of divide instruction.

(a)
(b)

op 3 =0, 3, 4, 5, 6, or 7, proceed to step (2).

clear R

1, n

Op 3 = to sign of (Um);proceed to

step (2).

clear U
m

(c) Op 3 = 2, to sign of (Rm); proceed to

step (2).
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(2) Compare sign of (U) and sign of (S).
(a) Us = Ss’ then will not complement quotient after
division in stepv(lO).
(b) Us ¥+ Ss, -(8) = S and will complement quotient
after division in step (10).
(3) (Ue) - (se)-—yue..,\ae and -1—~>Se
(4) Compare Um and Sm .
(a) (u 2 |s | , shift (UR) in right 8 and
(Ue)+1 —)Ue—y Re.
(b) lUm{'<lSml , proceed to step (5).
(5) Subtracter output # 0 and sign of subtracter output #Ums?
(a) Yes, 0-—>Rms, shift (UR)m left 1, set shift count
sc¢ = 0,
(b) No, test ML#1.
. (i) On, go to end of divide.
(ii) off, stop.
(6) Subtracter output # 0 and sign of subtracter output #Ums?
(a) Yes, 0~)Rm47.
(b) No, 1~9Rh47. subtracter output —» U,
(7) Advance SC by 1.
(8) sCc = 47°?
(a) Yes, proceed to step (9). : |
(b) No, (UR) arithmetic shift left 1l; return to step (6).
(9) (R))=>S_, (U))>R_.
(10) (Sm)—-auUm or -(sm)-e-um as indicated in step (2).

(11) End of divide,
After division the quotient is in U and the remainder is in R,

both with the exponent of the quotieat.
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INDEX

A

A series registers, 12,13,14,
18,19,20,44

Adder (see Subtracter)

"And" instruction, 36

Arithmetic, fixed point, 9,28,
92-99

Arithmetic, floating point, 10,
28,100-110

Arithmetic instructions, 23,28-
29

Arithmetic section, 3-4,64-68,
78

B

B-adder, 69,71,73,75

B modification (BM) bits, 20-21

B register arithmetic instruc-
tions, 24,31

B series registers, 12,13,14,
17,18,19,20,21,31,44,69,71-
72,73-74,75,76

C
Central distributor, 64-65,69,
71
Class (C) triad, 23-24
Compare instructions, 23,26
Complement arithmetic, 76-78
Complementing, 68
Control instructions. 23,24-28
Control counter (CC), 14,17,58,
71,72,74
Control punches, 89,91
Control section, 4,69-75

E
Electrostatic storage (see Mem-
ory)
Exponent overflow, 27,52,53
Exponent underflow, 110
Extract instruction, 36

F
F registers, 12,17,18,19
Fast address (F) triad, 18-19
Fast registers, 12,44

Fetch order, 29

Field 1, 16,17,18-20

Field 2 (Op field), 16,17,23-44
Field 3, 16,17,44-45

Field 4, 16,17,20-23
Flexowriter, 89-91

I

Ignore error stop mode, 55-56

Increment (X) register, 15,44,
69,71,72,75

Indicators, 52-56

Indirect addressing (IA) bit,
21,22,31

Inflection on F (IF) triad, 18-
19

Inflection on M (IM) bits, 21,
22

Inflection on store (ISt)triad,
44

Input-output instructions, 24,
37-43

Instruction, execution of, 12,
17

Instruction (I) register, 17,
21,31,34,69-70,71,72,73

Instruction word structure, 16-
45 '

L
Layout charts, 83,86
Line printer, 5,37,39,41-42,79-
87
Logical arithmetic instructions,
24,35-37
Logical bit count, 31,34

M
M addresses, 12,14
M triads, 20,21,22,26,30,31,34,
35
Magnetic tape, 5,37,39,42-43
Manitssa overflow, 27,52-53
Memory, 2-3,5,61-63,69,71
Mode light (ML) register, 15,
55-56,69,72,75
Monitor tube, 62
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N
Normal mode, 106-109
Numerical word structure, 9-11

o)
Octal notation, 6-8
Optical tape reader (see Paper
Tape Reader)
"Or" instruction, 36

P
Paper tape, 38,59,88-91
Paper tape punch, 4,37,39
Paper tape reader, 2,37,38,88
Parity check, 62
Pathfinder 1 (PFl), 14,58,72,
74
Pathfinder 2 (PF2), 15,58,72,
74-75
Print-matrix, 83-85,87
Printer output, 79-87

R
Read around error, 63
Remainder (R) register, 14,17,
26,29,30,31-34,36-37,44,64-
66,68,95-99,101,103,107-110
Repeat mode, 55-56,59
Round mode, 55-56

S
Sense light (SL) register, 15,
27,54,69,72,75
Set mode instructions, 31,34-35
Set sense instructions, 24,31,
34-35
Set tag instructions, 23,30
Shift instructions, 24,31-34,68
Significance mode, 55-56,109-
110
Skip instructions, 23,26
Special functions instructions,
24,43

Special purpose registers, 12,
14,15,20

Square root, 43

Storage (S) register, 14,17,20,
21-22,26,29,30,36-37,42,64-
65,67,68,92-99,107-109

Store instructions, 23,29-30

Store (St) triad, 44

Substitute instructions, 23, 29-
30

Subtracter, 64,67,92-99

Subtrahend register (see Stor-
age Register)

Symmetric difference instruc-
tion, 36

T
Tagging, tag indicators, 28,30,
52,53-54,57,59,62,84
Temporary store (T) registers,
14,64-65,78
Transfer instructions, 23,59,70
Trapping mode, 55-56,58
Typewriter, console, 2,37,39

U
Universal (U) register, 13,14,
17,18,22,29,31-34,36-37,44,
52,53,64-66,67,68,92-99,101,
103,107-110

X
X register (see Increment Regis-
ter)

Z
Zero, floating, 110
Zero register, 14
Zero, standard, 106,110
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ELECTRONICS OF THE COMPUTER



I\)

ARITHMETIC UNIT

The arithmetic unit consists of seven registers, an
adder, and gates (such as the ''central dispatcher') for setting
or transferring the contents of registers. Three of the regis-
ters (R, S, and U) are used in arithmetic manipulations and may
be shifted left or right. The other four are a set of '"T"
registers which are used for temporary storage. The registers
and adder are static circuits, i.e., voltages can have stable

d.c. values in the absence of gating signals.

Basic Circuitry

Flip-Flop

The basic element of each register is a "flip-flop" cir-
cuit, often called a '"bistable multivibrator," 'binary," or
"Eccles~-Jordan circuit," Figure 1. This circuit is symmetrical
in d.c. operation with conduction either through the right hand
triode (defined as a "1" condition) or conduction through the
left hand triode (defined as a "0'" condition). The state of
the flip-flop (FF) circuit is measured at the grid of the right
hand triode, which drives the grid of a cathode follower to
provide a low impedance decoupled output. Thus the state "1"
is identified with zero volts output, the state '"0' corresponds

to about -20 volts output. By this definition, the COMPLEMENT
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of the state of the FF can be measured at the grid of the left
hand triode. In the U, R, and S registers the above method is
used to read the state of the FF; the T registers are read in
the plate circuit.

Since in arithmetic operations the number is 54 bits in
length, each register has 54 flip-flops, each with provisions
for reading its state and with provisions for setting its state.

The latter is discussed in the following section.

Gating In

To store a bit in the FF requires the capability to set
it to either a 1 or a 0 condition. Two gating schemes commonly
used are the double-sided and the single-sided gatés.

In the double-sided gating scheme the left hand triode
is cut off to set in a 1 (by lowering its grid or the opposite
plate), and the right hand tube is similarly cut off to set in
a 0. This requires two gates: one capable of setting in 0's,
the other to set in l's. Thus for setting a number into a regis-
ter from any of N different sources, there are required 2N gate
connections to the register.

An alternative technique is to clear the entire register
to 0, then set to 1 all those stages that are to have a 1 gated
in. This still requires two gates, but omne of them is common

for all gating operations. Thus for transferring a number into

a register from any of N different sources there are required

N + 1 gate connections.,



For a large number of gates, roughly half can be saved
by using single-sided operation rather than double. However,
there is a possible disadvantage if extra time is involved by
first setting the FF to O before gating in the 1's. This can
be avoided by setting in the O's and 1's simultaneously, pro-
vided that the setting in of a 1 overrides the setting in of a
0. Here this is accomplished by driving the same grid with
opposing signals that are at two different impedance levels.

One possible circuit arrangement is the asymmetrical
setting system shown in Figure 2: when clearing the FF stage
to 0, the left triode grid is pulled up by the current, I, when
switched by a positive pulse applied at A. When setting the FF
stage to 1, the same grid is driven negative by a voltage pulse
at B. Since in each case the left hand grid is being set to
its proper value, no speed-up capacitor is needed from the
opposite plate.

Accurate registration is not essential. 1t is required
only:

(1) that pulse "A'" be large enough to set the FF to 0O

during the pulse duration;
(2) that pulse 'B" go negative enough and last long
enough to set the FF to 1; and
(3) that when the '"B" pulse exists, it end after the

"A" pulse.
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A satisfactory approximation, which saves one diode per
stage and some d.c. power, is the circuit in Figure 3. The "A"
pulse need not start at -20 V, but a voltage sufficient to keep
the left triode cut off. For the circuit pictured, -15 V is
used.

It is possible to have several B inputs: see Figures 4
and 5. For the circuit of Figure 4 the back leakage current of
the diodes in parallel may load the high-impedance grid circuit.
The configuration of Figure 5 has the parallel diodes shunted
by the low impedance of a conducting diode '"d.' The quiescent
voltage of the "B'" lines is about +5 volts, enough to prevent
noise and "hash' on the lines from setting a 1 into the FF,
During a 0 state when the left triode is caught on grid current,
the barely-conducting diode 'b" does not divert much of the
grid current., (Diode 'b'" has a high impedance at the voltage
level ofEgrid minus Ediode ngn.)

The FF stage then has the appearance of Figure 5. The
18 mmf capacitor flattens the response of the crossover divider.
Whereas the grid of the left triode is limited by the voltage
at "A" to a swing from O to -15 V, the grid of the right triode
will move between 0 and ~20 volts. This grid is connected to

a cathode follower for a decoupled low impedance output.

Gating Out

The usual output from a register is dynamic; a 1 output



FIGURE 4 A CIRCUIT FOR MULTIPLE
INPUT GATES
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FIGURE 5 A BETTER CIRCUIT FOR MULTIPLE
INPUT GATES
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