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CHAPTER 1 
INTRODUCTION 

1.1 TRACE Computer Systems 

Multiflow is com:mitted to providing complete solutions to engineering and scientific 
computing needs: Multiflow's TRACE /300 series systems are a family of general purpose 
computers, suitable for a wide variety of compute-intensive applications and 
environments. Major application areas include engineering analysis and simulation of 
solids, fluids, plasmas, and electronics; computational chemistry applications from ab 
initio calculations through molecular mechanics and dynamics; signal and image 
processing computations; and geophysical computations. TRACE systems are built on an 
underlying technology which permits their high peak performance to be delivered on a 
much wider range of algorithms and applications than traditional vector and 
multiprocessor supercomputers; all problem domains in which computation time is an 
issue are likely to be well-served by TRACE systems. 

The /300 series departmental supercomputers extend Multiflow's commitment to a new 
standard of performance, and provide supercomputer performance without supercoiD:puter 
costs. They offer: 

• A large fraction of the CPU, metnory, and I/0 performance of top-end 
supercomputers 

• Departmental computer system acquisition, maintenance, and environmental costs 

• Top-end supercomputer performance without application code restructuring 

• Extensive internal parallel hardware for low-cost, high-speed execution on all 
applications: scalar, vector, and parallel codes 

• Full-featured UNIX and VMS user, programming, and networking environments; 

• Supercomputer performance in an air-cooled, highly reliable, trouble-free system. 

Like their predecessors, the members of the /300 series are based on Multiflow's Very 
Long Instruction Word (VLIW) architecture and Trace Scheduling compacting compiler 
technology. The TRACE /300 series consists of three field-expandable and upgradable 
members: 

• The 7/300 provides peak performance of 53 million operations per second (MOPs) 
and 30 million floating-point operations per second (MFLOPS) in full precision. 
It has a 256-bit instruction word and executes up to 7 operations simultaneously in 
each machine cycle. 

• The 14/300 provides peak performance of 107 MOPs and 60 MFLOPS. It has a 512-
bit instruction word and executes up to 14 operations simultaneously in each 
machine cycle. 

• The 28/300 provides peak performance of 215 MOPs and 120 MFLOPS. It has a 1024-
bit instruction word and executes up to 28 operations simultaneously in each 
machine cycle. 
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1.2 Complete State of the Art Computing 

Raw performance alone seldom addresses computing requirements: megaflop ratings and 
Lin pack numbers don't tell the entire story. Performance n1ust be coupled with the right 
languages, operating system environment, I/0 horsepower, and networking connectivity 
and compatibility to solve computing problems, rather than create computer problems. 

TRACE systems provide a balanced, functional environment for solving large problems, 
not just a fast centra! processor. Unparalleled men1ory and I/0 bandwidth complements 
CPU speed. TRACE systems excel where many other computers fail: running the 
extretnely large jobs that are needed to do real work in a research or development 
environment. 

TRACE systems incorporate the state-of-the-art in flexibility and ease of use. Native, 
rich UNIX and VAX/VMS environments coexist. TRACE/UNIX is an enhanced 
implementation of 4.3 BSD UNIX, with its wealth of program development tools and 
utilities; enhancements include performance features for the supercomputer domain and 
such functional extensions as batch processing and accounting systems. DECLARE 
offers a fully functional VMS environment, including networking, programming 
languages, command language, magtape handling, and text editing. Programs running 
under DECLARE suffer no performance penalty, and can coexist and communicate with 
programs running in the UNIX environment. 

TRACE systems support a range of programming languages including industry standard 
FORTRAN 77 (with VAX/VMS FORTRAN extensions), C (Kernighan and Ritchie, 
with proposed ANSI extensions), PASCAL, Common LISP, and ADA. An available 
high-performance mathematical library speeds development and porting of programs 
doing a range of vector and n1atrix computations. 

TRACE systems fit easily into your current computing environment; they communicate 
and exchange data with existing systems from many vendors, and so enhance your current 
investments in existing systems, software, and user training. TRACE/UNIX features full 
TCP/IP networking; the Network File System is available as an option. TRACE/DN is 
a robust implementation of DECnet Phase IV protocols, offering transparent integration 
of TRACE systems into DECnet networks. 

Extensive use of industry standards in all asp~Cts of TRACE system design protects your 
investment in the future. Multiflow's choices in user environments (native UNIX and 
VMS compatibility), programming language features (upholding IEEE standards and 
supporting DEC extensions), data format (binary compatibility with workstations), and 
I/0 subsystems (interfacing to standard VMEbusses), are all widely supported. This 
allows you to grow your installation over time and select the best computing, 
visualization, and peripheral equipment from the best suppliers without problems with 
compatibility or efficiency. 

1.3 Easy, Productive Software Porting and Development 

Multiflow employs a unique, software-based approach to high performance which allows 
the TRACE to attain supercomputer execution speeds on scalar as well as vector code, 
and on standard software packages as well as on user code. Multiflow's compiler 
technology allows you to port existing software to the TRACE without rewriting it. You 
don't need to vectorize or parallelize code to receive the TRACE's performance 
advantage. TRACE systems free you to do what you do best: understand the technical 
problems you want to solve. They allow you to focus attention on your task, rather than 
on your tools. 
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1.4 Software-Driven Performance 

Multiflow's Trace Scheduling c01npacting compiler technology represents a fundamental 
shift in emphasis from hardware to software. Earlier approaches to high performance were 
hardware-dOininated: specialized processors were built to solve a certain class of 
problems (for example, vector processors). To realize any performance gain from such an 
approach, users were forced to restructure their code into patterns or "chunks" the 
processor could execute at high speed. This process of adapting code is often called 
vectorization or . parallelization. Multiflow has chosen a different, software-based 
approach. Multiflow's sophisticated compiler analyzes programs before they execute to 
find "fine-grained" parallellism among individual machine operations. It then schedules 
operations one by one for simultaneous execution on a Very Long Instruction Word 
(VLIW) processor. The compiler packs many independent operations into each wide 
instruction word. 

Previous vector and rnultiprocessor approaches to high performance are based on complex 
instructions (vector operations) and complex hardware (multiprocessor management and 
synchronization hardware). Multiflow's compiler technology delivers equivalent or 
better achieved performance with dramatically simpler hardware; in this way, Multiflow 
brings RISC principles to the world of supercomputing. 

Multiflow' s approach to concurrent execution is effective; it yields a fourfold to forty­
fold advantage over traditional CISC and RISC scalar processors, depending on the 
problem and the VLIW model chosen. Compared to vector computers running fully 
vectorized problems, Multiflow's approach always finds more practical concurrency. 

1.4.1 Results 

Multiflow's new technologies--the Trace Scheduling compacting compiler, VLIW 
architecture, and high performance memory and I/0 subsystems--produce outstanding 
results for scientific and engineering computing. TRACE systems are adapted for the 
large computing tasks and heavy workloads that characterize the research and industrial 
enviromnents. The chart below shows the TRACE's performance advantage over the 
VAX 8700 on a number of different applications: 

30X -,------

25X ---11----

20X ---11---­

lSX ---11---­

lOX ---11----

SX ---11---­

lX _.___ __ 
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Processing 

Introduction 
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Circuit Geo- Econo- Radio Comp. 
Simulation physics me tries Astronomy Chemistry 

(Data as of 2/1989) 
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This performance advantage applies to applications that are amenable to parallel and 
vector techniques (like finite element analysis and computational fluid dynamics) as well 
as applications that don't vectorize well (like signal processing and circuit simulation). 
The next diagram compares the performance of the TRACE series with a typical vector 
processor: 

' ' 
• Performance of RISC/Vector system 

• 7-wide VLIW performance advantage 

~ 14-wide VLIW performance advantage 

D 28-wide VLIW performance advantage 

TRACE systems 

RISC/Vector 

0% 
(scalar 
code) 

100°/o 
(completely 
vectorizable 

code) 

On completely vectorizable code, the 7/300 and the vector system have roughly similar 
performance. In practice, however, very few applications are completely vectorizable. As 
the percentage of scalar code increases, the vector processor's performance degrades to the 
speed of its scalar unit. At 75% vectorization, the TRACE has a significant performance 
advantage. This advantage is significantly greater when only 50°/o of the code vectorizes. 
Larger TRACE systems (the 14/300 and 28/300) provide even better performance. 

Multiflow's performance advantage arises because the Trace Scheduling compacting 
compiler is able to find and exploit fine-grained parallelism even when other forms of 
parallelism are not available. Because vector parallelism is a subset of fine-grained 
parallelism, the TRACE's performance equals the performance of a vector machine on 
vector codes. But vector parallelism is only a subset of fine-grained parallelism. On the 
many programs and parts of programs where vector parallelism is unavailable, 
Multiflow's compiler still finds enough fine-grained parallelism to deliver significant 
performance improvements. 
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1.5 Product Summary 

Multiflow's TRACE /300 series includes the following major product features: 

• VLIW CPU: Multiflow's innovative CPU design employs many features of 
traditional scientific computers, such as multiple functional units, pipelining, and 
RISC architectural ideas, while avoiding almost all of their limitations (complex 
control hardware, algorithm-sensitive performance, etc.). 

• Trace Scheduling Compacting Compilers: Multiflow compilers take full 
advantage of the VLIW design by compacting simple machine operations into very­
long-instruction-words. This advanced compiler technology results in significant 
execution speedups without programmer intervention. Available languages 
include FORTRAN 77 (with VMS extensions), C, PASCAL, Common Lisp, and 
ADA. 

• TRACE/UNIX Operating System: Multiflow's implementation of the 4.3 BSD 
UNIX operating system contains significant functional and performance 
enhancements, providing the command and interactive environments users have 
come to expect. 

• VAX/VMS Operating System: Multiflow's DECLARE Compatibility Suite 
provides a full VMS-compatible user environment, allowing the TRACE to fit 
comfortably into existing DEC installations. 

• Memory Subsystem: Unique cooperation between Multiflow's Trace Scheduling 
compilers and the TRACE hardware architecture allows the construction of a 
memory system which can sustain the bandwidth necessary for balanced overall 
system performance. 

• HPIOP: The TRACE's I/0 design incorporates an independent I/0 processor in 
order to minimize the impact of I/0 operations on the CPU (reserving its capacity 
for computation) while delivering supercomputer level transfer rates to multiple 
industry-standard VMEbusses. 

• Networking: The TRACE supports full TCP/IP and DECnet networking, 
providing connectivity to virtually any other computer system or workstation. NFS 
provides transparent file access across Ethernet. NQS provides network batch 
facilities. 

• Applications: A full range of third party application packages run on TRACE /300 
computers. 

• Program Development: TRACE/UNIX offers a wide variety of program 
development tools, including enhanced versions of many standard UNIX utilities. 

• System Reliability: TRACE systems are built for low cost of ownership. With 
their modest cooling and power requirements, TRACE systems have proven 
exceptionally reliable, with total system mean time between failures of over 4100 
hours. · 
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CHAPTER 2 
VLIW ARCHITECTURE 

2.1 Introduction 

Traditionally, specialized hardware has been used as the means to increase execution 
speed. Whether the specific strategy involves vector processing units, multiple CPU's, or 
something else, it's always been taken for granted that more complex hardware structures 
are the way to performance. · Once this decision has been made, it follows that software is 
secondary; programs will have to conform to the hardware, and performance will depend 
upon the degree to which they do. This places the burden for optimizing performance on 
the user. While substantial progress has been made in compilers which automatically 
vectorize or parallelize raw source code, there remain significant unsolved problems; in 
practice quite a bit of hand optimization is still necessary to achieve good performance. 

Multiflow's approach places software first. A major advance in compiler technology 
makes it possible for Multiflow's compilers to analyze and schedule your application 
programs, and then fit them onto a very simple Very Long Instruction Word (VLIW) 
processor. 

VLIW processors incorporate many of the execution hardware features found on more 
traditional supercomputers, such as interleaved memory and pipelined floating point. 
However, a VLIW processor has a dramatically simpler approach to the control and 
management of the execution hardware. Instead of building complex instruction 
decoding and scheduling hardware, which carries out vector instructions or synchronizes 
multiple independent processors, Multiflow does it the RISC way. A very long 
instruction word tells each portion of the computer what to do in each clock cycle, and a 
new VLIW is fetched each time the clock ticks. This places the entire task of managing 
the computer on software, and also allows software complete access to the computational 
hardware . The traditional problems with vector computers, wherein only certain loops 
can run at high performance, are completely bypassed; all code sequences can tnake full 
use of the system's high-performance memory and computational units. 

This chapter provides an overview of the architecture. Chapter 3 provides a specific, in­
depth look at the Trace /300 implementation, and Chapter 4 looks closely at Multiflow's 
compilers. 

2.2 VLIW Architecture Overview 

VLIW computers perform many program steps at once; many of the operations which 
would be performed one at a time on an ordinary computer are grouped together into Very 
Long Instruction Words and executed together. Separate fields of the wide instruction 
word directly control the operation of multiple functional units -- floating adders, 
floating multipliers, integer units, memory address units. The functional units are 
essentially the same hardware as might be found in an ordinary sequential computer; 
however, the long instruction word gives software the ability to use them 
simultaneously. 

One field of the instruction word controls program branching; a single program counter 
controls the fetching of Very Long Instruction Words. Like a RISC machine, a register 
file holds operands and results for all computations. LOAD and STORE operations 
move data between registers and main memory. 
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For greater throughput without added cost, the functional units are pipelined. Each 
functional unit is designed so that it can start a new computation in every clock cycle. 
An assembly-line or pipeline handles each stage of complex operations, such as floating 
point arithmetic. While a single floating-point addition may require 3 cycles (for 
exatnple) to complete, new adds may be started every cycle. Note that the memory system 
is also fully pipelined; new references may be started every cycle, although a single 
reference may require 3 cycles to complete. 

VLIW architectures .. are expandable. More functional units can be added, with multiple 
register files, communicating via buses. Again, a single program counter and a single 
flow of control directs the fetching of long instruction words which specify the operation 
of each functional unit in each cycle. All the functional units run in lockstep, each 
initiating one operation per cycle as directed by its field of the instruction word. A very 
wide instruction cache holds the instructions which the machine executes. The 
instruction word width is not related to the width of the data busses used for 
computation; it is related to how many functional units there are in the machine. 

Note that from one standpoint, VLIWs could be regarded as generalized, more efficient 
vector machines. The pipelined functional units are essentially the same as might be 
found in a vector tnachine, but no separation between scalar and vector hardware exists. 
Hardware control units which count out vector addresses have been replaced by wide 
instruction words, which specify each computation uniquely. Control hardware has been 
replaced with memory. Not only is the hardware lower cost to build, but with 
appropriate software technology, the computation units can be used much more 
efficiently. 

Viewed from another standpoint, VLIWs provide overlapped execution in the extreme. 
The instruction words allow the expression of arbitrary execution overlap among scalar 
operations, with potentially very large numbers of operations executing simultaneously. 
Operation overlap is completely flexible, within a single CPU: one stream of execution. 
No runtime synchronization hardware or software is required. 

2.3 /300 Series Overview 

TRACE /300 systems have been designed as ideal targets for Multiflow's Trace 
Scheduling compacting cmnpilers. Their design is elegantly simple and, as a 
consequence, reliable and economical. The compiler's strength allows TRACE systems 
to deliver high performance from relatively conservative chip technology. The CPU is 
built primarily from CMOS components, minimizing cooling requirements and power 
consumption. Although it uses relatively conservative chip technology, its design 
includes state-of-the-art features: 

• RISC Architectural Ideas: The /300 Series CPU embodies RISC design principles. 
There is no microcode: all instructions are directly implemented in hardware. A 
new instruction exectues every clock cycle. Pipelines are used for "complex" 
operations (e.g. memory and floating point); the compiler fully schedules the 
pipelines. The architecture is load/store; memory references are explicit, and 
other operands are taken from registers or immediate constants. The compiler 
controls allocation of all system resources. 

• Multiple Functional Units: TRACE CPUs contain many arithmetic logic units. 

2-2 

These multiple computation units execute many simultaneous operations. 
Operations are scheduled into functional units at compile time, not by specialized 
hardware at runtime (as in other architectural approaches). Software scheduling 
keeps the hardware simple and reliable; multiple functional units provide high 
peak speed. 

VLIW Architecture 
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• Generalized Pipelining: The TRACE /300 series takes full advantages of 
pipelining, or assembly-line execution techniques, in its design. First introduced 
in vector supercomputers, pipeline execution allows a fast clock rate and the 
construction of high-throughput computational units. VLIW architecture controls 
pipelines in a flexible, one-operation-at-a-time manner. This allows any 
sequence of computational steps to run at full performance. 

• Expandability: Three upward-compatible processor models span a factor of four in 
peak performance. Upgrades from model to model are easily accomplished in the 
field by installing extra circuit boards. 

The block diagram below shows the structure of the TRACE 7/300 CPU, the smallest 
member of the TRACE /300 family: 

To 
PC 

256-bit VLIW Instruction Stream 

I 
Reg. 

' ' ' ' ' ' ' 

F 
Reg. 

-------- ------- --------------------------- ---------------- ------------------------------ --

123 MB/sec 

Memory Subsystem 
Up to 512 MBytes 

Up to 64-way interleaving 

• 
. 
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In each cycle, the CPU executes seven operations: one conditional branch operation (Br), 
two integer operations (I), two memory operations (L/S), and two floating point 
operations (F). The 256-bit long instruction word contains separate fields to control 
each operation. This design is inherently expandable; to make a larger, more capable 
system, add more hardware for computation and lengthen the instruction word. The 
TRACE 14/300 executes fourteen operations each cycle; the 28/300 (shown in the next 
diagram) executes 28 operation per cycle: 
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1024-bit VLIW Instruction Stream 
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Note that with all its internal parallelism and many functional units, the 28/300 is still a 
single CPU. It has one stream of execution; any single job has available to it the power 
of the entire machine. 

2.3.1 Memory and 1/0 Subsystems 

Multiflow's /300 series systems overcmne limitations which many other computer systems 
have in memory and I/0 system performance. Software control and hardware simplicity 
make possible exceptional memory and I/0 system capacity and bandwidth. This is 
valuable for large real-world computations; memory and I/0 bandwidth must 
complement CPU computational speed for overall time-to-solution. 

The memory subsystem offers large capacity and high transfer rates. The /300 series has a 
maximum capacity of 512 Megabytes, and a maximmn sustained throughput of 492 
Megabytes per second. Main memory is spread across 64 independent memory banks 
which cycle simultaneously. Each instruction can issue up to eight 64-bit memory 
references, which are executed in parallel. The TRACE's software-managed interleaved 
memory system provides the required bandwidth without the limitations of a data cache; 
full performance is sustainable even when accessing matrices or datasets as large as main 
memory. By stressing intelligent software over complex hardware, Multiflow provides 
unequalled memory bandwidth and flexibility. 

The TRACE's I/0 subsystem delivers the data throughput necessary to support 
computation at supercomputer speeds. The focal point of the I/0 subsystem is the High 
Performance I/0 Processor (HPIOP). The HPIOP manages I/0 operations without 
involving the CPU, employing an intelligent channel protocol to direct I/0 operations. 
The HPIOP takes care of I/0 interrupts, device management, error handling, and other 
low level operations, and makes large block transfers at 246 Megabytes/second to main 
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memory. This I/0 architecture provides the bandwidth needed for large computational 
tasks while reserving the CPU for computation. A TRACE system supports one or two 
HPIOP I/0 subsystems; each HPIOP can support up to two VMEbusses, for a maximum of 
four VMEbusses per system. 

Many enhancements to the TRACE/UNIX operating system allow it to take full 
advantage the TRACE's I/0 and memory performance. TRACE/UNIX supports a per 
process virtual address space of 4 Gigabytes. It also incorporates many advanced memory 
management techniques including demand paging, filesystem paging and copy-on-write 
process creation. --.These features increase the flexibility as well as the efficiency of 
memory management. It also supports disk striping, whereby several physical disk drives 
can be combined into a single logical device, improving I/0 performance--a four-way 
striped disk delivers over 8 Megabytes per second of sustained I/0 throughput--and 
increasing filesystem capacity. 

2.4 Performance Through Concurrency 

At this point, the obvious question to ask is, "how much of this potential performance 
can the TRACE actually put to use?" How much work does each instruction do? One 
simple way of examining this can be had by looking at the standard double-precision 
Linpack benchmark (100x100, all FORTRAN) on several different computers: 

System Architecture Clock Speed Linpack MFLOPs Work/Cycle 
(MHz) (100 X 100) (VAX 8800 = 1) 

VAX 8800 CISC 25 1 1.0 
MIPS M2000-8 RISC 25 3.8 3.8 
Convex C-210 Vector 25 16 16.0 
IBM 3090/108S VF Vector 67 16 5.9 
Cray Y-MP/832 Vector 160 79 12.3 
TRACE 28/300 VLIW 8 20 62.5 

Data as of 2/1989 

The last column reports the amount of work done per cycle, relative to the VAX 8800. 
To compute this figure, we multiply the Linpack number for each systetn by the ratio of 
the VAX's clock rate to the computer's. This cancels the effect of different clock speeds 
and lets use compare the per-cycle efficiency of each machine. In each cycle, the 
TRACE 28/300 perfonns 62.5 times as much work as the VAX 8800, and five times as 
much work as the CRAY Y-MP. The compiler is the reason for this advantage: by 
packing many operations into each instruction and taking advantage of the TRACE's 
pipelines, it overlaps the execution of many operations. This overlap is both 
"horizontal" (between different operations packed into the same instruction) and 
"vertical" (between operations at different stages in the pipelines). 

Multiflow's TRACE /300 series combines supercomputer performance with simplicity, 
connectivity, and reliability. It takes advantage of the most important ideas of the past 
(pipelining and overlapped scheduling) and the most sophisticated ideas of the present 
(software-driven parallelism and concepts from the RISC architectural paradigm). 
Multiflow is the future of high-performance computing. 
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CHAPTER 3 
TRACE CPU IMPLEMENTATION 

The TRACE /300 series is an upgradable family of VLIW architecture computer systems. 
Members of the /300 series offer peak performance from 53 to 215 MOPS and from 30 to 
120 MFLOPS in 64-bit precision. The central processor consists of seven to 28 functional 
units, which operate simultaneously on a single, synchronous execution stream. The 
function units include multiple high-performance integer ALUs, floating point ALUs, 
and memory reference units. The family is designed for integrity and reliability using 
low-power, reliable 2 micron CMOS VLSI. The floating point units incorporate ECL 
logic for speed. 

The TRACE /300 family features large, high-bandwidth, low-cost main memory, with 
up to 512 Megabytes capacity and sustained bandwidth of up to 492 Megabytes/second. 
Memory is demand-paged and virtually addressed, with a 4 Gigabyte virtual address space 
per process. 

Simplicity and efficiency characterize the TRACE CPU. It executes instructions 
directly, without the overhead of intermediate interpretation or decoding. There is no 
microcode. All functional units are completely synchronized, controlled entirely by the 
instruction · word; no queues, interrupt mechanisms, or other specialized hardware is 
needed to move data within the CPU. There are no penalties for synchronization or 
communications, unlike multiprocessor systems. Simplicity and efficiency translate 
directly into performance and reliability. 

3.1 CPU Stn1cture 

The CPU consists of four major component groups: Integer Units, Floating Point Units, 
the Memory Subsystem, and the I/0 subsystem. Integer units and floating point units 
work as pairs, executing the TRACE's wide instruction words. Each pair is called a 
cluster. Each cluster provides raw computational rates of 30 MFLOPS and 53 VLIW 
MIPS, and executes up to seven independent operations per clock cycle: four integer 
operations, two floating point operations, and one conditional branch. 

Different TRACE models differ only in the number of clusters that are present: the 7/300 
has one cluster, the 14/300 has two clusters, and the 28/300 has four clusters. The length 
of the instruction changes with the number of clusters that are present. The 7/300 has a 
256 bit instruction word, the 14/300 has a 512 bit instruction word, and the 28/300 has a 
1024 bit instruction word. Upgrades consist simply of installing additional clusters; for 
example, to upgrade the TRACE 14/300 to the TRACE 28/300 involves adding two 
additional clusters (two Integer Units and two Floating Point units), and updating a 
configuration file. 

Five sets of global busses carry data between the major CPU subsystems; each set of busses 
provides many 32-bit wide data paths. The TRACE's major busses are: 

• Four 32-bit busses carry data to the integer units from memory. 

• Four 32-bit busses carry data to the floating point units from memory. 

• Eight 32-bit busses carry data between integer and floating point units. 

• Four 32-bit busses carry data to memory from the integer and floating point units 

• Four physical address busses carry addresses to memory. 
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Separate datapaths carry operands to and from ALU's. In addition to providing a memory 
bandwidth of 492 Megabytes/second, the TRACE 28 provides 492 Megabytes/second 
inter-cluster bandwidth (data transfers from one cluster to another), 492 
Megabytes/second intra-cluster bandwidth (data transfers between the Integer and 
Floating Point units within each cluster), 768 Megabytes/second operand bandwidth, and 
246 Megabytes/second I/0 bandwidt~. 

Within each cluster, large general-purpose register files route incoming data and provide 
the connectivity needed to support many simultaneous computations. Each cluster 
contains 64 32-bit Integer registers, 64 32-bit Floating Point registers, and 32 32-bit 
"store" registers (an intermediate destination for data en-route to memory). This yields 
160 registers on the TRACE 7 /300; 320 registers on the 14/300; and 640 registers on the 
28/300. 

Each cluster executes instructions directly from an instruction cache. The instruction 
cache contains 8192 instructions. Instruction execution and instruction fetch are 
pipelined, so that the CPU never needs to wait for instructions to arrive from memory. 
The instruction cache is distributed between the different CPU modules, so that it 
expands as additional clusters are added to the CPU. On the TRACE 28/300, the cache's 
size is 102A Kilobytes. 

The following diagram illustrates these interconnections on a TRACE 28/300. 
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3.1.1 Integer Unit 

The figure below shows the structure of the Integer and Floating-Point units. Two 
integer Arithmetic-Logical Units (ALUs), a Translation Buffer (TLB), and a Program 
Address generator comprise the Integer Unit. They perform the following functions: 

• Integer computation; 

• Initiation of memory operations; 

• Virtual-to-physical address translation for all data references; 

• Conditional branch operations. 

Each ALU can execute two operations per cycle (one operation per minor cycle, or 
"beat"), for a total of four integer operations per instruction. These ALUs perform over 
ninety primitive operations, including branches, arithmetic operations, comparison 
operations, logical and bitwise boolean operations, and operating system support 
operations. All operands are taken from integer register banks. 

On each Integer Unit, one integer ALU is responsible for initiating memory references. It 
is associated with a TLB (Translation Lookaside Buffer), which translates virtual 
addresses to physical addresses. 

TLB 

IL Buses 

I Registers ( 64x32) 

Progran1 
Address 

I Board 
I 

- - ----------...l 

Phys Addr Program Counter 

3.1.2 Floating Point Unit 

FL Buses 

-------, 

F Registers (64x32) 

Store Registers (32x32) 

Store Buses 

The primary responsibility of the floating point unit is executing the floating point 
operations specified in the TRACE instruction. To fulfill this function, the Floating 
Point unit has two independent floating point ALUs (FALUs). Each floating point 
ALU can execute one operation per cycle, for a total of two operations per instruction. 
The operation set for each F ALU contains over ninety primitive floating point 
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operations, including 64 and 32-bit floating point arithmetic (addition, subtraction, 
1nultiplication, division, square root), comparison, and type conversion operations. A 
group of special "multiply/accumulate" operations allow two floating point 
computations (multiplication and cumulative addition) to be combined in a single 
operation. Floating point arithmetic conforms to the IEEE 754 standard. 

The Floating Point unit in the TRACE /300 series includes low latencies for floating 
point operations, hardware for square root and division operations. Both floating point 
ALUs include the __ Jull opcode suite, unlike earlier TRACE family processors. These 
new features yield superior floating point performance. 

Together, the integer and floating point units provide the well-balanced computational 
power that is necessary for general-purpose high performance computing. The ratio of 
integer to floating point operations per cluster reflects the ratio found in most 
calculations. 

3.1.3 Memory Subsystem 

TRACE systems provide per-process virtual address space of 4 Gigabytes per process. 
Large process-tagged address translation buffers provide excellent virtual memory 
performance in an environment of many large processes. 

TRACE physical memory achieves the consistently high memory performance of large­
scale supercomputers by incorporating a software-managed interleaved memory syste1n. 
The completely synchronous nature of the TRACE CPU allows the compiler to 
determine, in advance, where and when every memory reference will take place. With 
this infonnation, the compiler generates code that obeys the memory subsystem's resource 
restrictions while optimizing speed. Software management takes the place of the 
hardware bank scheduler, or "stunt box," required to obtain high memory bandwidth in 
other supercomputer architectures. 

TRACE systems have many independent datapaths to service many memory references 
simultaneously. Twelve 32-bit busses carry data to and from memory. In a fully­
configured system, eight memory controllers, providing 64 interleaved memory banks, 
service memory references. The meinory system can handle up to 8 64-bit memory 
accesses per cycle, yielding a maximum bandwidth of 492 Megabytes/second. The 
maximum capacity of the memory system is 512 Megabytes. 

The memory subsystem incorporates SECDED error correction hardware. All single bit 
errors are corrected, and all two-bit errors are detected. 

3.2 Primitive Data Types 

The TRACE CPU supports four primitive data types: signed and unsigned 32-bit 
integers, 32-bit floating point numbers, and 64-bit floating point numbers. Byte 
ordering for all data is compatible with the 68000 microprocessor family and the IBM 370 
series; the most significant byte is stored at the lowest address in memory. 
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The diagrams below show the IEEE representation for floating point numbers: 

31 30 23 22 0 

lsignl Exponent I Fractional part I 
Single Precision 

63 62 52 51 0 

lsignl Exponent I Fractional part I 
Double Precision 

The table below shows the range of values that can be expressed by different primitive 
data types: 

Type 
Unsigned Integer 
Signed Integer 

32-bit Floating Point 

64-bit Floating Point 

Minimum 
0 

-2147483648 

-3*1038 

-1.7*10308 

3.3 TRACE /300 Series Instructions 

3.3.1 Primitive Operations 

Maximum 
4294967295 
2147483647 

3*1038 

1.7*10308 

Minimum Magnitude 
0 
0 

1.2*10-38 

2.3*10-308 

The TRACE operation set includes over 90 primitive integer operations and over 90 
primitive floating point operations. The following table summarizes the different 
operation set families. 
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Integer 
Arithmetic 

Logical artd-; 
Bitwise 
Operations 

Integer 
Comparison 

Select, 
Field Merge, 
Field Extract, 
Shift 

Memory 
Reference 

Flow Control 
Operations 

Integer: 

3.3.2 Instruction Format 

Floating Point: 

Floating Point 
Arithmetic 

Multiply I Accumulate 
Operations 

Floating Point 
Comparison 

Merge, 
Scale, 
Truncate 

Type 
Conversions 

The diagram below shows the basic instruction word for the TRACE 300 series. This 
instruction controls one cluster (one I-F pair); it ~ontains fields for two F board 
operations (one on each F ALU), four I board operations (early and late beat operations 
for each IALU) and two immediate constants (also used for branching). An instructi.on 
for the 7/300 consists of one such unit. 14/300 instructions consist of two of these units 
(16 words total), one controlling cluster 0, the other controlling cluster 1. 28/300 
instructions consist of £our of these units (32 words total). 

In each field, the opcode specifies which operation to perform; srcl and src2 specify the 
operand; dest specifies the destination for the result; d_b specifies the destination register 
bank; and btest controls conditional branching. 

The instruction is shown in the format which the TRACE processor stores it in its 
instruction cache. When stored in main memory or on disk, instructions are stored in a 
variable-length format to minimize instruction size. TRACE hardware expands 
instructions into the format below as they are fetched from memory. 
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TRACE 7/300 Instruction Word 

31 25 24 19 18 16 15 13 12 11 76 10 

ialuO early I opcode I dest I I branch I src1 I src2 I 

3J 0 
immediate I Immediate constant (early) 

31 25 24 19 18 11 76 10 
ialul early 

I opcode I dest I src1 I src2 I 
31 2524 23 22 1716 15 1110 65 0 

faluO I opcode I I dest I I src1 I src2 I 
31 25 24 19 18 11 76 10 

ialuO late I opcode I dest I src1 I src2 I 

immediate 3J 0 

I Immediate constant (late) 

31 25 24 19 18 11 76 10 
ialul late 

I opcode I dest I src1 I src2 I 
31 2524 23 22 1716 15 1110 65 0 

falul I opcode I I dest I I src1 I src2 I 

3.3.3 Sample Code 

This section discusses a sample of actual code compiled from a FORTRAN source 
program in order to illustrate the preceding concepts. 

DOUBLE PRECISION FUNCTION DOTPROD( N,X, Y) 

DOUBLE PRECISION X(*) ,Y(*) ,z 
DO 10 I= 1, N 

10 Z = Z + X (I) *Y (I) 

DOTPROD = Z 

END 

This routine was compiled using aggressive loop unrolling on a TRACE 14/300. The 
loop was unrolled automatically 81 times, yielding a body 58 instructions long. As a 
result, almost every operation available in each instruction was used. 

Because of the extensive unrolling, it is not practical to show the entire routine. Here 
are four instructions from the loop body. They are typical of compiler-generated code 
for a vector routine. At the beginning of the loop, the code is devoted almost 
completely to load operations (starting the memory pipelines) and comparisons, which 
are used for exit tests during the loop. In this part of the loop, the each instruction has 
eight load operations, using the memory system at its maximum bandwidth. After a few 
instructions, data begins arriving from memory and the actual computation begins. 
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The two instructions from the loop's computational core perform two additions (in 
the first instruction) and two multiplications (in the second). Together, these two in­
structions are equivalent to two iterations of the original loop's body. 

cluster unit opcode operands 
instr elO ialu0edld.64 fbO.r32,rl,6#8 

elO ialule egt.s32lilbb.r3,r32,6#10 

elO ialuOl dld. 64 fbl. r34, rl, 6#24 
elO ialul.f- egt. s3 2 lilbb. r4, r3 2, 6# 8 
ell ialuO~ dld. 64 fbO. rO, rO, zero 
ell ialule egt. s3 2 lilbb. r3, r3 2, 6# 11 
ell ialuOl dld. 64 fbl. r2, rO, 6# 16 
ell ialull egt.s32lilbb.r4,r32,6#9; 

instr el0ialu0edld.64 fbO.r36,rl,6#40 
elO ialule egt. s32 lilbb.r5,r32, 6#6 
elO ialuOl dld. 64 fbl.r36,rl,6#56 
elO ialullcgt.s32lilbb.r6,r32,6#4 
ell ialuOe dld. 64 fbO. r4, rO, 6#32 
ell ialule egt. s32 lilbb. r3, r32, 6#7 
ell ialuOl dld. 64 fbl.r4,r0,6#48 
ell ialull egt . s32 lilbb. r5,r32, 6#5 
ell br true and r3 Ll ?3; 

instr 

instr elO ialuOe dld. 64 fbl. rl2, r7, 17 # 8 0 

elO ialule egt. s32 lilbb. r3, r35, 6# 8 

elO faluOe add. f64 lfb. r8, r8, rl4 
elO falule add. f64 lfb.r42,r50,r42 
elO ialuOl dld.64 fbO.r48,r3,6#8 
elO ialull add.u32 ibl.r38,r38,17#96 
ell ialuOe dld. 64 fbl;r46,r3,17#88 
ell ialule egt. s32 lilbb.r4, r 37, 6#7 

--initial setup; loads (to fill 
registers) and comparisons 
(for exit tests) 

--instructions from the center 
of the loop body, showing 
peak computing bandwidth 

ell faluOe add. f64 lfb. r8, rl4, r8 --a pair of additions 
ell falule add. f64 lfb.r36,r34,r36 
ell ialuOl dld. 64 fbO. rl4, r5, zero 
ell ialull bor. 32 ibO. r3 6, zero, r3 6 

ell br false or r4 L41?3 

elO br true and r3 L42?3; 
instr elO ialuOe dld. 64 fbl. rl4, r5 ,.17# 80 

elO ialule egt. s32 lilbb. r4·,r35, 6#6 

elO faluOe mpy. f64 lfb. rl2, rl2, r6 
elO falulempy.f64lfb.r38,r38,r36 
elO ialuOl dld. 64 fbO.r6,r5,17#64 
ell ialu0edld.64 fbl.r48,r4,17#88 
ell ialule egt. s32 lilbb.r3,r37, 6#5 
ell faluOe mpy. f64 lfb. r4, r4, r2 
ell falule mpy. f64 lfb.r38,r38,r40 
ell ialuOl dld. 64 fbO.r36,r4,17#72 
ell ialull bor. 32 ibO. r5, zero, r3 8 

ell br true and r3 L43?3 

elO br false or r4 L44?3; 

TRACE Implementation 

--these two operations 
are a three-way branch 

--a pair of multiplications 

--another three-way branch 
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3.4 TRACE CPU Specifications 

The following table summarizes the major CPU specifications for all members of _the the 
TRACE 300 series. All systems in the series share the Multiflow VLIW (Very Long 
Instruction Word) architecture. 

System: 

Architecture 
Technology: 
Instruction length: 
Operations per Instruction: 
Operation rate (MOPS): 
Floating Point rate (MFLOPS): 

(64-bit precision) 

General Registers 
Number: 
Register Bandwidth (MB/ s) 

Instruction Cache 
Instructions: 
Bytes: 
Bandwidth (MB/s): 
Error Control: 

Cycle Time (ns) 
Major cycle: 
Minor cycle: 

Main Memory 
Technology: 
Capacity (MBytes): 
Bandwidth (MB/s): 
Virtual address space (GB): 

(per process) 
Interleaving: 
Page size (KB): 

7/300 14/300 28/300 

2 micron CMOS VLSI and Advanced Schottky Logic 
256-bit 512-bit 1024-bit 

7 14 28 
53 107 215 
30 60 120 

160 320 640 
948 1968 3692 

8192 8192 8192 
256K 512K 1024K 
246 492 984 

Single-bit soft- error correction 

130 130 130 
65 65 65 

256-Kbit or 1-Mbit dynamic RAM 
32 to 512 32 to 512 64 to 512 

123 246 492 
4 4 4 

16- to 64-way 
8 

16- to 64-way 
8 

32- to 64-way 
8 

Error control: Single-bit error correction; double-bit error detection 

110 subsystems 
Number: 1 or 2 1 or 2 1 or 2 
Number of VME busses: 1 to 4 1 to 4 1 to 4 
Memory to subsystem rate (MB/ s): 246 246 246 
Peak subsystem to device rate (MB/ s): 20 20 20 

(per VME bus) 
Maximum disk file size (GB): 8 8 8 
Maximum 110 page size (KB): 32 32 32 
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CHAPTER 4 
THE TRACE COMPILER 

Multiflow's Trace Scheduling compacting compilers are the heart of its software-based 
approach to supercomputing. Multiflow's VLIW architecture and Trace Scheduling 
compacting compiler technology combine to produce supercomputer execution speeds. 
Multiflow compilers produce this level of performance by compacting machine 
operations into \Vide instruction words, without requiring programmer intervention. 

The compiler operates by exploiting fine-grained parallelism: individual computational 
steps which can be · executed at the same time. This parallelism exists in all programs, and 
the compiler finds it after the source code has been translated into machine operations. 
It does not depend on the structure of the original source code, and so programmers need 
not write code in any particular forms to achieve good performance. Vectorizable and 
parallelizable code form a subset of the code that Multiflow compilers exploit. 

Multiflow's technology is uniquely able to deliver parallelism without user involvement 
because VLIW overlapped execution is below the level of the high-level programming 
language. Optimization and compilation proceeds automatically, without requiring user 
guidance or special programming techniques. 

Multiflow currently supports a number of popular programming languages including 
FORTRAN, C, PASCAL, Common LISP, and ADA. All compilers share the same Trace 
Scheduling compaction technology. The compilers are designed to conform to industry 
standards in order to minimize porting requirements and system dependence. Language 
specifications may be found at the end of this chapter. 

4.1 Using TRACE Compilers 

Using compilers on the TRACE is no different than using compilers on any VAX/VMS 
or UNIX system. The command line and user interface to the compiler are entirely 
standard. The material described later in this chapter, the internal workings of the 
compiler, is entirely hidden from the user. 

The command interface gives the programmer complete control over the compilation 
process, from both the Unix and VMS-compatible command shells. User switches 
include: 

• Compilation Mode: ranging from checkout mode, which rapidly compiles programs 
without optimization; to debug mode, which retains full symbolic information in 
the object file for the debugger; to optintized mode, which performs the 
optimization and compaction described in this section. 

• Optimization Level: ranging from -01, selecting minimal optimization but full 
compaction, to -04, including heavy loop unrolling and automatic inlining of 
subroutines, for peak performance. 

• Compatibility: programs can be checked for compatibility with FORTRAN-66 and 
for a variety of other constructs which might be misinterpreted on a UNIX system. 

• Performance: programmers can request various performance-enhancing actions, 
such as memory reference alignment and automatic conversion to double precision. 
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• Preprocessing: various preprocessors may be applied to source files prior to 
compilation. These may be used to compile different source versions depending on 
external conditions, and to generate and compile different versions of a program 
from a single set of source files. 

• Cross References: the compiler can produce a cross reference listing if desired. 

• Program Analysis: programs may be compiled to produce extra data for use by 
various performance monitoring utilities. 

4.2 Compiling for a VLIW Computer 

TRACE computers deliver their performance by executing many independent operations 
simultaneously. To compile code for this sort of computer, the compiler breaks the 
program down into long chains of basic operations (traces), determines which operations 
can be executed together , and packs them efficiently into the TRACE's wide 
instructions. The process is known as compaction. 

To pack operations efficiently, the con1piler rearranges the program's basic operations 
wherever necessary to get the most out of each instruction, provided that reordering 
doesn't change the program's behavior. Two constraints guarantee that the compiler will 
always produce correct code: 

• The compiler must observe data precedence; it cannot schedule an operation until 
the data needed to perform the operation is ready. For example, the operation 
C=A+B must not take place until the ope1ands A and Bare available. 

• The compiler .must observe resource constraints. For example, a TRACE 28/300 
instruction has room for eight memory operations. The compiler therefore cannot 
pack 9 or more memory operations into any instruction. Other resource constraints 
include rules about bus usage and memory usage. 

To see how the compiler performs these operations, let's consider a simple example. 
Later in this chaper, we will discuss the techniques used to analyze, schedule, and 
generate code in detail. Assume that we want to compile the following two lines of 
FORTRAN on the TRACE 7/300, with seven operations per instruction: 

C = ( A*2 + B*3 ) * 2*I 
Q = ( C+A+B ) - 4 * ( I+J ) 

In addition, assume that it takes three cycles for data to arrive from memory, and that all 
other operations take a single cycle. First, the compiler decomposes these statements 
into a sequential chain of basic operations. The figure below shows this chain of 
sequential operations on the left. Next, it analyzes the dependencies between these 
operations, and creates a dependency graph, such as the one shown in the center of the 
diagram. 
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FORTRAN Code: 

Sequential 
Code: 

[1] LD A 
[2] LD B 
[ 3] tl A*2 
[ 4] t2 B*J··C 
[5] t3=t1+t2 
[ 6] LD I 
[ 7] t4 = 2*1 
[ 8] c = t4*t3 
[ 9] ST C 
[ 10] LD J 
[ 11] t5 I+J 
[ 12] t6 = 4*t5 
[13] t7 = A+B 
[14] t8 = C+t7 
[15] Q = t8-t6 
[ 16] ST Q 

Dependency 
Graph: 

6 

c 
Q 

(A*2 + B*3) *2*1 
( C+A+B ) - 4*(I+J) 

Wide Instruction Words: 

LD 0 LD 1 Int 0 Int 1 FP 0 FP 1 Branch 

:::~p~~~~ ~ ! ~~p~~~ 

.·.· . . . ' : ': :-· : :. ·.·.·. · . · .· 

/~fiii~:: :: :J.+!U : ~ r~t% ' ~' AUfJk 
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. . . . . 
:::~t~:: 

.. . 

::: ~t9. : 

Finally, the compiler packs the operations into a sequence of wide instruction words, 
using dependency relationships and information about the computer to guarantee . that 
result will execute correctly. In this case, it packs two LOAD operations into the first 
instruction. It then waits three cycles before scheduling A *2 and B*3, because it takes 
three cycles for the memory pipeline to deliver this data from memory. When it has 
finished, we have a sequence of eight wide instruction words, which take eight cycles to 
execute. 

How does this compare with the performance of the same code on a sequential computer? 
Assuming that the convential computer takes the same amount of time to execute any 
individual operation (three cycles for a load or a store; one cycle for everything else), and 
has the same set of basic operations, this code would require 28 cycles. In this case, the 
VLIW computer has an advantage of over three-to-one. 

Furthermore, the sixteen basic operations fill under half of the available slots in the 
sequence of seven wide instructions. If we had more code to compile, we could put these 
additional fields to use. Let's assume that the next statement in the program is 
Z=M+N*2. This requires five more sequential operations, and increases the sequential 
computer's execution time to 39 cycles; however, it doesn't require any more wide 
instruction words. In this case, the VLIW has an advantage of almost five-to-one. And 
there is room to go futher. In general, the longer the chain of operations the compiler 
can compact at once, the more efficient and effective code it will be able to generate. 
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Sequential 
Code: 
LD A 
LD B 
tl A*2 
t2 B*3 
t3 tl + 
LD I 
t4 2*I 
c = t4*t3 
ST C 
LD J 
tS I+J 
t6 4*t5 
t7 A+B 
t8 C+t7 
Q = t8-t6 
ST Q 

FORTRAN Code: 

LD M 
LD N 
t9 N*2 
Z = M+t9 

t2 ST Z 

c 
Q 

z 

(A*2 + B*3) *2*I 
( C+A+B )-4*( I+J 
M + N*2 

Wide Instruction Words: 

LD 0 LD 1 Int 0 Int 1 FP 0 FP 1 Branch 

Speedup was achieved without relying on any regularity or structure in the original 
statements, which were a fairly random assortment of operations. The compiler found 
low-level parallelism between the basic hardware operations required to execute these 
statetnents. By packing many operations into a chain of wide instruction words, the 
compiler is performing the same function as the hardware schedulers for the IBM 3090, 
the Cray supercomputers, and other machines. Compaction is not a new idea; by 
performing cmnpaction in software, however, Multiflow has greatly decreased the cost 
and complexity of the hardware and greatly increased its ability to use this parallelism 
effectively. 

4.3 Compacting Long Streams 

Good use of VLIW architectures requires compacting many source code operations into 
single instructions; this is possible only when long streams of source code are available to 
be compacted together. This is evident in the above examples: better machine use 
resulted in the second example, in which more FORTRAN operations could be 
considered together for compaction. 

The ability to find long streams of operations which can be compacted together is one of 
Multiflow's key technologies. All other attempts to work with low-level parallelism 
have failed to find speedups beyond a factor of two or four over sequential execution 
because they have failed to find long streams of operations to compact. Most earlier 
attempts have been hardware-based (early machines such as the CDC 6600 and IBM 
360/91, and their heirs, the Cray and 3090); attempting to manage schedules while 
programs are running severely limits the number of operations and schedules which can be 
considered. A more crucial limit, however, has been the presence of conditional 
branches in programs. 

Consider the following example: 

4-4 

A=B+C 
IF (A . LE . 0 ) GOTO 10 0 
D=E*F 
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Where do we schedule the operations after the branch? To get the most efficient code, 
we would like to schedule them as early as possible. However, if we move these 
operations before the branch, we will execute them unconditionally. If it turns out that 
A is greater than 0 when we run the program, all is well and good; the program will 
accomplish the most work while executing the fewest possible instructions. However if 
A is less than 0, and the program branches, then we have committed an error: we have 
computed a new value for D when we should have left it untouched. 

All prior compact!9n technologies have dealt with this problem by being conservative; 
no operations mov·e beyond conditional branches. This has the practical effect of 
limiting the number of operations which can be scheduled together to 5 or 8 in the 
average program. 

Multiflow's Trace Scheduling compacting compilers solve this problem in a different 
manner. First, we compact entire streams together, as if the branches were not there; in 
this particular case, the compiler schedules the load operations and the multiplication 
before the branch. 

Sequential 
Code: 

LD B 
LD C 
A = B+C 
ST A 
tl = CMP(A,O) 
BRANCH IF tl 
LD E 
LD F 
D = E*F 
ST D 

Wide Instruction Words: 

LD 0 LD 1 Int 0 Int 1 FP 0 FP 1 Branch 

By treating this code as a single sequence, the compiler can schedule many operations at 
once and therefore generate more efficient code. It also means that the program always 
computes D, whether or not it branches. However, the compiler schedules the store 
operation for D after the branch. Although D is always computed, the program only 
stores D if it falls through. Therefore, the compiled code has exactly the behavior that 
the original FORTRAN code specified, even though the compiler has radically changed 
the order in which operations are performed. 

This technique is called compensation; other kinds of compensation allow the compiler 
to move operations after branches, or to handle situations in which two streams of code 
join. We discuss compensation more thoroughly later in the chapter. The ability to 
rearrange primitive operations in an optimal way, and then compensate for this 
rearrangement, allows the compiler to work on extremely blocks of code containing 
conditional branches. 

This small example scales up to large-scale compaction on your programs, without 
intervention on your part. With ordinary programs, Multiflow's compilers find 
opportunities for scheduling hundreds of operations together, achieving massive 
performance improvements. 
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4.4 Compiler Organization 

The compiler is organized in three major sections, known as Phase 1, Phase 2, and Phase 
3. In order to compile a program, each phase processes the code in sequence. The three 
phases are: 

• Phase 1: a language-specific front end. This part of the compiler interprets the 
program, which is written in a high-level language like FORTRAN or C, and 
translates it into a common intermediate language. The intermediate language 
representation is then passed to Phase 2. 

• Phase 2: an enhanced optimizer that analyzes the program's structure (in its 
intermediate representation) and performs a many optimizations on it. Its output 
is another intermediate representation of the program, which is passed to Phase 3. 

• Phase 3: uses Trace Scheduling compaction to generate wide instruction words. It 
takes Phase 2's intermediate representation, which is still serial, and compacts it 
into a sequence of wide instruction words, producing TRACE object code. 

Together, Phase 1 and Phase 2 form an advanced optimizing compiler. Phase 3 is the 
heart of Multiflow's unique technology. Phase 3 is itself composed of four important 
modules: the trace scheduler, which selects traces (long blocks of code) from Phase 2's 
output; the code generator, which generates wide instruction word object code from these 
traces; the disambiguator, which analyzes memory references; and the machine model, 
which is a database containing detailed information about every aspect of the TRACE 
hardware. 

The same compiler is used for all supportec languages. Each language has a different 
front end (Phase 1); all share the same back end (Phase 2 and 3). Phase 1 is the only 
language-specific part of the compiler. All programs therefore receive the benefit of 
optimization and compaction, regardless of the source language. 

The next diagram summarizes the compiler's organization. 
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Phase 1 Front End: language translators 

E ~ E 
' I / 

Phase 2 ~ i' /? 

,...-- Program Analysis and Optimizer: 
Optimization increases 

available 

I parallelism 

Phase 3 ,~ 'f 

Trace 
Scheduler Machine 

Disambiguator 
Model 

~ 

L Code ____j 
Generator Back End: 

generates 
object code 

TRACE Instructions (object code) 
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4.5 Phase 1: Language Support 

Phase 1 of the compiler reads the source code and translates it into an intermediate 
representation. It also performs storage allocation, assigning a location in memory to 
each variable and array the program uses. To aid in program development, Phase 1 
generates cross-reference listings, error and warning messages, and other infonnation 
about the program. 

Phase 1 performs one optimization: automatic inline substitution. Inline substitution 
can replace a call to a subroutine or function with a copy of the function itself. This 
copy takes into account all the semantic details so that the substitution doesn't change 
the behavior of the subroutine in any respect. The following diagram represents 
graphically the effect of inline substitution: 

Calling 
Program: 

Subroutine: 

Before: 

INLINE Substitution 

Before expansion, 
the subroutine is 
external to the 
calling program. 
It is executed by 
an explicit call. 

After: 

After expansion, 
the subroutine is 
internal to the 
calling program. 
Call overhead is 
eliminated and 
more basic 
operations are 
available for 
compaction. 

Inline substitution eliminates the overhead involved in calling a subroutine. It also 
allows the code generator to schedule operations from the subroutine together with 
operations from the calling program. Inline substitution can be performed three ways: it 
can be performed automatically, in which the case the compiler uses heuristics to 
determine which functions and subroutine to expand inline; it can be performed on the 
basis of directives within the program's text; and it can be performed on the basis of 
command-line options that specify which program modules to substitute. 

The output from Phase 1 is a representation of the program in an intermediate language. 
Programs written in FORTRAN, C, and all other supported languages are translated into 
the same intermediate representation. Because all front-ends produce the same 
intermediate language, all languages use the same back end (Phases 2 and 3), and get the 
full benefit of Multiflow's compaction technology. The intermediate language is similar 
to an assembly language for a sequential RISC computer, representing individual 
machine-level operations (loads, stores, multiplications, etc). 

4.6 Phase 2: Program Analysis and Optimization 

Phase 2 takes Phase 1's output and improves it. The improvements have two goals: 

• Simplifying and eliminating calculations to reduce execution time. 

• Reducing data dependencies between optimizations. This helps Phase 3 do a better 
job of compaction, producing faster object code. 
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As a first step, Phase 2 builds a flow graph of the program. The flow graph represents all 
possible courses of execution through the program. It then performs the following kinds 
of analysis on the program: 

• Loop structure analysis. Phase 2 finds all loop structures within the program. 
This includes all DO loops, of any type, and also includes loops formed by GOTO 
statements and IF statements. All loops (not just DO loops) will eventually be 
candidates for loop unrolling. 

• Live variaQl~ analysis. Phase 2 looks at all variables and finds all live variables 
(variables thai are used more than once). 

• Data dependency analysis. This analysis looks at the program's live variables and 
defines relationships between the statements in which a variable is assigned and 
statements in which the assigned variable is used. This information is used to 
determine the data dependencies between operations. More formally, data 
dependency analysis includes three separate analyses: reaching definition analysis, 
reaching use analysis, and reaching copy analysis. 

4.6.1 Optimization 

After performing these analyses (the results of which are used in optimization, and passed 
to Phase 3), Phase 2 carries out its optimizations. They include: 

Induction Variable Simplification 

Induction variable simplification simplifies loops by replacing repetitive 
multiplications with additions wherever possible. For exatnple, the two loops below are 
equivalent: 

10 

DO 10 I = 1, J 

K=I*10 
A(I)=B(K) 
CONTINUE 10 

K=O 
DO 10 I= 1, J 

K=K+10 
A(I)=B(K) 
CONTINUE 

The loop on the right yields faster code because an integer multiplication has been 
replaced by an addition, a significantly faster operation. 

Common Subexpression Elimination 

Common subexpression elimination simplifies calculations by finding like expressions 
that appear in several statements and rearranging the program so that these expressions are 
only computed once. For example: 

X= A*4 + B*3 
Y = A*4 + D*3 

t1 = A*4 
X= t1 + B*3 
Y = t1 + D*3 

The compiler introduces a temporary variable to hold the result of A *4. Then it uses this 
result to compute both X andY, rather than calculating A *4 twice. 

Constant Folding 

Constant folding consists of evaluating constant expressions during compilation, and 
replacing variables that are used as constants by the constants themselves. For example: 

Compilers 

PI= 3. 14159265 
FOURPI=4*PI 
RESULT=SERIES(X)/FOURPI RESULT=SERIES(X)*.0795774716 
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The single statement on the right is equivalent to the three statements on the left. By 
evaluating constant expressions, the compiler eliminates several memory references, a 
multiplication, and a division. 

Global Dead Code Removal 

Dead code removal consists of identifying code that does not effect the program's result. 
and eliminating it. For example, the last statement in the program below can be 
executed, but does not have any effect on the program's result: 

PRINT *,ANSWER 

ANSWER=SQRT(EARLIER)/4 

END 

Branch Elimination 

Branch elin1ination replaces certain simple branch statements with in-line select 
operations. A select is a basic hardware operation whose result is equal to one of its two 
operands, depending on the results of an earlier comparison. A select chooses one of two 
values for its result, and therefore can be used to eliminate simple a conditional 
branches. For example, the IF statement in the code below can be replaced by a single 
select operation: 

IF (A .GT. 1. OE12) A= 1. OE10 

Register Variable Detection 

Register Variable Detection identifies variables that can be kept entirely in registers, 
where they can be accessed without 1nemory references. This optimization is particularly 
effective for the TRACE systems because of the large number of general registers they 
provide (640 general registers on the TRACE 28/300). 

Loop Invariant Motion 

Loop invariant code motion removes unchanging expressions from loops by moving them 
outside of the loop, where they can be calculated once. For example, consider the two 
loops below: 

10 

DO 10 I = 1, 10 

A (I) = ( 4 *T/B) + D (I) 

CONTINUE 10 

t1 = 4*T/B 
DO 10 I= 1, 10 

A (I) = t1 + D (I) 

CONTINUE 

The expression 4*T/B is the same for every iteration of the loop. Therefore, the 
optimizer pulls this expression outside of the loop and assigns it to a temporary variable. 
After this optimization, the program only computes 4*T/B once, rather than computing 
it ten times. This is a version of Common Subexpression Elimination (above). 

Variable Renaming 

Variable Renaming introduces new names for unrelated uses of the same variable. For 
example, consider the two code sequences below: 

4-10 

1 
2 
3 

A= Z*X 

B = A*4 

A= Q*Y 

1 

2 
3 

A1 = Z*X 

B = A1*4 
A = Q*Y 
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In the code on the left, there is no data dependency between the values of A in statements 
1 and 3. Therefore, the compiler can rename A in statement 1 without changing the 
program's behavior. The code on the right is exactly equivalent, except that we have 
replaced the name A with A1 in statements 1 and 2. This optimization increases the 
parallelism available to the code generator. After variable renaming, the assignments to 
A and A1 may be scheduled in parallel. 

Loop Unrolling 

Loop unrolling modifies the program's inner loops by copying their bodies several times. 
After make use · ofthis optimization, the compiler can find parallelism between different 
loop iterations. For example, the code on the left is a simple loop as it might appear in 
the program; the code on the right represents the same loop, after the compiler has 
unrolled it four times: 

DO 10 I = 1, J 

A (I ) = B ( I) *C ( I ) 

10 CONTINUE 

DO 1 0 I = 1 , J , 4 

A (I) = B (I) *C (I) 

A(I+1) = B(I+1)*C(I+1) 

A(I+2) = B(I+2)*C(I+2) 

A(I+3) = B(I+3)*C(I+3) 

10 CONTINUE 

In this case, unrolling the loop's body yields a trace with much greater parallelism. When 
Phase 3 generates code, it can make use of the parallelism in the body of the unrolled 
loop, scheduling computations for all four iterations together. 

Loop Reduction 

Loop reduction handles a class of recurrences. It eliminates apparent dependencies 
between loop iterations. For example, the compiler might replace the simple dot 
product computation on the left with the "reduced" dot product on the right: 

10 

DO 10 I= 1, J 

S = S + X (I) *Y (I) 

CONTINUE 

DO 1 0 I = 1 , J , 4 

tO= tO+ X( I) *Y(I) 

t1 = t1 + X(I+1)*Y(I+1) 

t2 = t2 + X(I+2)*Y(I+2) 

t3 = t3 +X(I+3)*Y(I+3) 

10 CONTINUE 

S = tO + t1 + t2 + t3 

In the original dot product, each addition depends on the previous iteration of the loop. 
Loop reduction exposes the parallelism inherent in the dot product by introducing several 
partial sums, all of which are independent. In the code on the right, computations of tO 
through t3 are all independent, and can be overlapped during code generation. 

Intrinsic Function Optimizations 

Intrinsic function optimizations recognize patterns of intrinsic function use and improve 
the calling pattern, eliminating redundant internal calculations and finding more 
parallelism among the internal calculations of the intrinsics. These optimizations take 
into account several different kinds of phenomena. The examples below show two 
different cases in which intrinsic optimizations are applicable: 

Compilers 

X1 = R*COS(THETA) 

Y1 = R*SIN(THETA) 
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When processing this code, the compiler recognizes that a cosine and a sine can be 
computed much more efficiently by calling a special function in the math library that 
computes both together. The compiler automatically generates a call to this function 
rather than generating one call apiece to the sine and cosine functions. 

DO 10 I = 1, J 

X(I) = R*SIN(TMETA(I)) 

10 CONTINUE 

In this example, the compiler first unrolls the loop and then recognizes that all of the 
sine functions can be computed simultaneously. Therefore, it generates a call to a special 
function in the math library that computes batches of sines. This is sometimes called a 
vector intrinsic function. Use of these functions provides better parallelism than 
computing the sines independently, in addition to reducing the function call overhead. 
Vector intrinsics exist for most elementary functions, including all of the standard 
trigonometric functions, exponential functions, and logarithm functions. There is no 
need for users to use vector intrinsics explicitly; the compiler automatically recognizes 
where calls to them are appropriate. 

The compiler also uses basic mathematical and trigonometric relations to optimize calls 
to trigonometric, logarithmic, and exponential functions. 

4. 7 Phase 3: Trace Scheduling and Code Generation 

Phase 3 of the compiler takes the optimized intermediate representation produced by 
Phase 2 and produces object code for the TRACE. This requires building a flow graph 
for the program, picking traces, and generating packed wide instruction words for each 
trace. 

This part of the compiler is divided into four major modules: 

• The trace scheduler, which builds a flow graph of the program, selects traces for 
compilation according to their usage, and passes them to the code generator for 
compaction. 

• The memory reference disambiguator, which determines the relationships between 
data items in memory. Together with the machine model, the disambiguator lets 
the compiler replace arbitration and scheduling hardware. 

• The machine model, which provides information about the TRACE's resources. 
The machine model makes sure that the resulting code obeys all of the TRACE's 
hardware constraints. 

• The code generator, which takes traces generated by the trace scheduler and 
generates wide instruction words for them. The code generator is responsible for 
packing individual operations into wide instruction words effectively. 

4. 7.1 Trace Scheduler 

The trace scheduler controls and coordinates the rest of Phase 3. Its job is to select 
sequences of operations that are as long as possible (traces) and pass these traces to the 
code generator. The code generator compacts the trace into a schedule of machine code 
and returns the schedule. The trace scheduler then corrects any inconsistencies (performs 
compensation), and the process repeats until machine code has been generated for the 
entire program. 
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The trace scheduler starts its work by analyzing the control flow of the program. It 
builds a flow graph of the program. This graph represents each step required to execute 
the program. It then marks each item in the graph with its probability of execution, 
using heuristics about branch and loop behavior, information provided by directives, and 
information derived from loop trip counts. 

A trace is then selected starting with the highest probability statement, working forwards 
and backwards following the highest-probability path. The trace scheduler then passes it 
to the code generator; since Phase 2 optimizations will provide opportunities for long 
traces, excellent tnacliine code will result. 

The large-scale rearrangement performed by the code generator moves operations in ways 
which could cause logical inconsistencies when the program branches off the chosen 
trace. The trace scheduler corrects the flow graph of the remaining program to correct 
these inconsistencies; this process is known as compensation. 

Compensation takes into account three possibilities: 

• If the code generator takes an operation that was originally located after a branch, 
and moves it before a branch, this operation will be performed unnecessarily 
whenever the program branches. For example, the compiler often moves LOAD 
operations to the beginning of a loop body so that computation doesn't have to 
wait for data to arrive from memory. When this occurs, the trace scheduler 
manages register assignment so that the operation's result is never used if it turns 
out to be unnecessary. 

• If the code generator takes an operation that was originally located before a branch, 
and moves it after the branch, the compiler must make sure that the operation is 
performed whichever way the program branches. To do so, the trace scheduler 
adds a copy of this operation on the off-trace side of the branch; with this extra 
copy, the operation will always be executed. 

• If two traces join each other, the compiler may also need to generate a few copies of 
operations to splice the code segments together correctly. 

The trace scheduler takes appropriate action in each of these cases. Only the latter two 
involve adding any extra operations; the first case is by far the most frequent. Therefore, 
the number of compensation operations is always quite small. In addition, compensation 
operations (if any) are compacted into wide instruction words, like the rest of the code, 
and often occupy fields that would otherwise be unused . As a result, compensation 
operations account for an insignificant fraction of code size and execution time. 

The ability to compensate for assumptions made during code generation lets the compiler 
rearrange the operations to get optimal efficiency from the computer's resources. 

4. 7.2 Code Generator 

The code generator takes whole traces and compacts them into optimal sequences of wide 
instruction words. It is responsible for: 

• Finding data dependencies between individual operations on the trace; 

• Deciding which functional unit to use for each operation; 

• Assigning registers; 

• Scheduling each operation in an optimal way. 

To analyze data dependencies, the code generator builds a data dependency graph (called 
a directed acyclic graph, or DAG) that shows each operation in the trace and its 
relationships to other operations. Prior to reaching this stage, Phase 2 optimizations like 
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variable renaming and copy propagation have removed the program's superficial 
dependencies (i.e. dependencies that have to do with how the programmer wrote the 
code, but aren't basic to the algorithm itself). Only those data dependencies remain that 
are intrinsic to the computation. This sitnplifies the DAG and makes it easier to 
schedule operations efficiently. 

The following diagram shows three FORTRAN statements and the primitive operations 
to which they correspond. The graph on the right represents each operation, showing all 
the data dependencies between them. Each operation is a node on the graph (represented 
by an oval); each data dependency is an edge (represented by a line): 

Source: 

C=A+B 
D=C*I 
J=l*K 

Primitive 
Operations: 

LDA 
LDB 
C=A+B 
STC 
LDI 
D=C*I 
STD 
LDK 
J=l*K 
ST J 

Data Dependency Analysis: 

This graph represents all dependency relationships within the program, and can be used to 
generate code. The edge between C=A+B and LOAD A shows that the addition cannot 
be performed until the data has returned from the LOAD operation. To analyze data 
dependencies among memory references, the code generator consults the diswnbiguator, 
discussed below. 

After building a DAG, the compiler assigns each operation to a functional unit. In doing 
so, it tries to minimize the need to move data between different clusters. For example, 
the compiler will assign the operations D=C*I and C=A+B to the same cluster: this 
assignment allows the program to use C immediately, without copying it to another 
cluster. 

After assigning functional units, the code generator compacts the operations represented 
by the DAG into a sequence of \vide instruction words. Operations are scheduled into 
instructions using the DAG and the machine model, discussed below, to assign registers 
and generate the most efficient sequence of wide instruction words. 

Subroutine and function calls require special treatment. All TRACE programs use a 
"caller-saves" calling sequence, in which the code making a subroutine call is 
responsible for saving the values of any registers that it cares about, and restoring these 
values after the subroutine has completed. Because Phase 3 performs register allocation, 
and has the results rf Phase 2's data dependency analyses, it determines which registers are 
live across a call (i.e. contain data that will be needed after the subroutine has finished) 
and therefore need to be saved in memory. Data that won't be needed after the call isn't 
saved. Saving only the live registers decreases the overhead required to call a subroutine. 
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This calling sequence, together with the register passing strategy, has proven to be 
extremely efficient, reducing calling overhead to a mtmmum. The standardized calling 
sequence provides complete compatibility between code written in different source 
languages; FORTRAN program can call C language subroutines and library functions, 
and vice-versa, without difficulty. 

4. 7.3 Memory Reference Disambiguator 

The memory referep~e disambiguator is a part of the compiler that determines whether or 
not any pair of memory references can possibly refer to the same location in memory. 
The code generator uses this information to determine data dependency relationships and 
build the data dependency graph from which it schedules operations. 

It is often difficult to disambiguate two references to the same array. To do so, the 
disambiguator uses information gathered by Phase 2 to derive sytnbolic expressions for the 
array indices. It then determines symbolically whether or not the index expressions can 
ever be equal. For example, consider following unrolled loop: 

DO 1 0 I = K + 1 , N , 2 

1 A(I,J) = A(I,J) + T*A(I,K) 

2 A ( I+ 1 , J ) = A ( I+ 1 , J ) + T *A ( I+ 1 , K ) 

10 CONTINUE 

To generate good code for the body of this loop, the compiler would like to move all of 
the LOAD operations to the beginning of the loop's body. This is only legal if there are 
no data dependencies between statement 1 and statement 2. That is, the compiler can 
only schedule a LOAD operation for A(I + 1,K) before the STORE operation for A(I,J) if 
it knows that these two references cannot possibly refer to the same array element. 
Therefore, the compiler asks the disambiguator whether or not A(I,J) can refer to the 
satne element of the array as either A(I + 1,1) or A(I + 1,K). The answer to the first 
question is trivial: A(I,J) and A(I+ 1,J) can never refer to the same element. 

The answer to the second question is not trivial, because we don't know the value of K. 
To determine whether or not A(I,J) can refer to the same location as A(I+ 1, K), the 
disambiguator generates address expressions for each of these elements: 

&A(I,J) = &A(1,1) + 100*4*J + 4*I 

&A(I+I,K)= &A(1,1) + 100*4*K + 4*(I+1) 

We use the notation &X to mean "the address of X" (as in the C programming language); 
therefore, &A(1,1) means "the address of A(1,1)," which is the base address for the array. 
The constant 4 is the size (in bytes) of each array element, which is single precision. 
Setting these two expressions equal, we have the relation: 

&A(1,1) + 100*4*J + 4*I = &A(1,1) + 100*4*K + 4*(I+1) 

Simple algebra reduces this equation to: 

100*(J-K) = 1 

If there are any integer solutions to this equation, then it is possible for A(I,J) to refer to 
the same array element as A(I+ 1,K), and the compiler must schedule the LOAD for 
A(I+ 1,K) after the STORE for A(I,J). In this case, there are no integer solutions; this 
means that the compiler can schedule the LOAD as early as possible. 
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Multiflow's compilers handle many arbitration functions that normally fall to hardware. 
In particular, they must always generate code that obeys certain resource restrictions on 
memory and bus usage; the hardware can detect illegal situations, but cannot perform 
arbitration to resolve these problems. The disambiguator helps the compiler enforce 
three rules: 

• Two memory references scheduled in the same beat must never refer to data on the 
same memory controller. This is called a card conflict. 

• Two memory references scheduled in the same beat must never require the same bus 
to store or return data. This is called a bus conflict. 

• Two memory references scheduled within three beats of each other that refer to the 
same memory bank incur a slight performance penalty. This is called a bank 
conflict. 

The compiler must always observe the first two rules. For optimal performance, it 
observes the third wherever possible. To enforce these rules, the code generator asks the 
disambiguator another set of questions. Can two memory references refer to data on the 
same memory controller? Can they refer to storage in the same memory bank? Will the 
memory controllers need to overuse the data busses to service these memory references? 
The disambiguator determines whether conflicts can occur and, if so, what kind. The 
mathematics required to solve this problem are identical to those used to determine if 
two references can address the same element. 

4. 7.4 Machine Model 

To perform the ambitious scheduling needed to use the TRACE's hardware resources 
efficiently, the compiler requires a thorough knowledge of the hardware. A portion of 
the compiler called the machine model is a database that manages this information. The 
machine model provides information about: 

• Operation codes for each type of operation; 

• Pipeline depths for each type of operation; 

• Resource requirements for each type of operation; 

• Resource availability and restrictions (which depend on configuration); 

• Datapath availability. 

The code generator uses this information to assign operations to functional units and to 
determine when operations can be scheduled legally. For example, when the compiler 
needs to schedule a double precision floating point multiplication, the machine model 
shows that the TRACE can perform this operation on either FALUO or FALUl; that the 
operation requires two operands from the floating point register file, which is in use for 
two beats; that the multiplier itself is in use the beat after the instruction is issued; that 
the chosen FALU's output port is in use for two beats, starting two beats after the 
operation was initiated; and that the result may be used as an operand for other 
operations two beats after the multiplication was initiated. The code generator uses this 
information to determine whether or not the operation can be scheduled legally, and to 
track the availability of resources within the CPU for scheduling subsequent operations. 

The machine model contains information about each TRACE model: the 7/300, 14/300, 
and 28/300, in addition to the TRACE /200 series. Any TRACE compiler can therefore 
cross-compile for any TRACE configuration. 
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4.8 Language Specifications 

4.8.1 FORTRAN 

Multiflow FORTRAN fully implements ANSI FORTRAN 77 (ANSI X3.9-1978), 
including features specified in the Department of Defense Supplement (MIL-STD-
1753). It is compatible with the FORTRAN 66 standard (ANSI X3.9-1966), and includes 
extensions from the proposed FORTRAN 8X (ANSI X3J3/S8). The compiler has been 
fully validated by the ·National Bureau of Standards, and is in conformance with FIRMR 
201-8.109. 

The Multiflow FORTRAN 
FORTRAN, allowing easy 
VAX/VMS environments. 

compiler implements many 
program portability between 

Format and syntax extensions include: 

• 32-character variable names 

• End-of-line comments 

• INCLUDE statement 

• DATA statement 

• VAX syntax for octal and hexadecimal constants 

• Tab character formatting 

• Extended (132 character) source lines 

• DO WHILE and END DO statements 

• D debugging lines 

• 
0/o VAL, 0/oDESCR, 0/oREF, and 0/oLOC built-in functions 

• OPTIONS statement 

• VAX FORTRAN records 

features of VAX/VMS 
the TRACE/UNIX and 

• command line options to request default SAVE status, common block padding, and 
default zero initialization 

• command line option to specify inline substitution 

Data type extensions include: 

• INTEGER*1, and BYTE data types 

• LOGICAL*1 and LOGICAL*2 data types 

• Direct conversion of VAX data representations when reading or writing VAX/VMS 
files 

• Command line option to select DOUBLE PRECISION as the default floating point 
data type, rather than REAL 

I/0 extensions include: 

• Asynchronous I/0 (ASYNCHRONOUS file type, WAIT keyword, and 
ASYNCWAIT statement) 

• NAMELIST I/0 statement 

• TYPE, ACCEPT, DECODE, ENCODE statements 

• Sequential or relative organization for files 

• Fixed-length, variable-length, and stream record types 
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• Read-only files 

• VAX files directly accessible through TRACE/DN (DECnet) 

• Many miscellaneous VAX/VMS 110 keywords 

Extensions to support fine-tuning include: 

• ASSERTION directives 

• IFPROB directives (assertions about probabilistic behavior of branches) 

• UNROLL AMOUNT directives (explicit loop unrolling request) 

• BEGIN and END INLINE directives (explicit inline expansion requests) 

Other extensions for improved functionality and performance include: 

• Default use of shared libraries, to minimize executable image size 

• TRACE/UNIX system call library 

• Enhanced mathhtnatics ·library 

"' • VAX/VMS system call library 

• Automatic use of vector intrinsic functions 

• Stack traceback upon abnormal termination 

• Cross-reference listings 

The directives for fine tuning allow the programmer to control the optimization process. 
These statements may be used to override heuristics used by the compiler, provide 
information about memory references that is not available to the compiler, and control 
loop unrolling and inline expansion optimizations. 

4.8.2 c 
Multiflow C includes the complete UNIX System/V standard C language, with the 
Berkeley standard extensions. The C compiler also implements features from the 
proposed ANSI C standard (X3Jll/88). Multiflow has added extensions to support inline 
expansion. By default, ANSI and MFCI extensions are disabled, providing complete 
compatibility with standard C. All compilers share the same back end, and thus benefit 
from Multiflow's advanced optimization technology. 

Runtime data formats are exactly compatible with the runtime data formats used on 
68000-series workstations. Pointers, integer representation, and byte ordering are all 
compatible. For floating point numbers, the IEEE 754 representation is used. 

4.8.3 Other Languages 

A PAS CAL compiler is available for the Multiflow TRACE family. This compiler 
supports the ISO standard 7185; options select either Level 0 or Level 1 compliance. 
Level 0 is equivalent to ANSI/IEEE standard 770X3.97-1983, and lacks the conformant 
arrays supported by Level 1. 

A COMMON LISP compiler is available for the Multiflow TRACE family. 

4.8.4 Libraries 

TRACE/UNIX provides a complete set of enhanced math libraries; I/0 libraries; string 
manipulation libraries; UNIX system call libraries; and a VMS-compatible system call 
library. These libraries may be used by programs written in both FORTRAN and C. The 
math libraries provide exceptional accuracy, and have been tuned for optimal 
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performance on each TRACE 300 series model. An extremely wide range of functions has 
been implemented, including all of the standard power, trigonometric and exponential 
functions; hyperbolic functions; Bessel functions; and others. All of the math functions 
obey IEEE 754 rules for handling infinities, not-a-number, and other illegal 
conditions. 

All standard TRACE/UNIX libraries are available both as shared libraries and as 
archived libraries. This includes all run-time, system call, 1/0, and math libraries for C 
and FORTRAN. . The standard TRACE/UNIX utilities are compiled with shared 
libraries. Programs written by users may use either the shared libraries or the archived 
libraries, as requested during compilation and linking. Users may create their own 
libraries, which may be either standard (archived) libraries or shared libraries. 

An optional library of advanced mathematical routines performs extremely efficient 
matrix operations, fast fourier transforms (FFfs), vector intrinsic functions, and other 
operations. All the routines in these libraries have been carefully tuned to deliver the 
maximum performance of which the TRACE is capable. They have been designed so that 
they can be dropped in to many standard programs without any conversion effort. 
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CHAPTER 5 
TRACE 1/0 ARCHITECTURE 

The TRACE 300 series has a high-performance 1/0 architecture, advanced peripherals, 
and system software designed for maximum throughput with minimum overhead. 
TRACE /300 systems provide a well-balanced supercomputing environment that delivers 
performance in every respect, including the data throughput needed to support 
computation at supercomputer speeds, eliminating 1/0 bound jobs. The TRACE 1/0 
Subsystem is capable of performing under heavy loads without draining the CPU's 
resources. It also supports the extremely large files and file transfers typical of large 
scientific and engineering computations. 

5.1 1/0 Subsystem 

The TRACE 300 series has an channel-based 1/0 architecture that is designed for high 
performance and maximum efficiency. Each TRACE may have one or two 1/0 
subsystems. Each 1/0 subsystem moves data between the TRACE and main memory at 
246 Megabytes per second. Each 1/0 subsystem can be connected to one or two VME 
busses; disk drives, tape drives, networks, terminals and other peripherals are interfaced 
via VMEbus ·device controllers. Data moves between the 1/0 subsystem and the VME 
busses at 26.7 Megabytes per second. The following diagram represents the 1/0 
subsystem's basic connectivity: 
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Memory 
Busses 

246 
MB/s 
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The channel-based 110 architecture shields the CPU from direct interaction with 
peripherals; the main CPU only makes DMA transfers to the 1/0 subsystems, which take 
place at the full memory bandwidth. An independent processor on the VMEbus takes 
care of all low-level I/0 management. The following diagram shows the design of the 
1/0 subsystem, configured with a single VMEbus, in greater detail: 

Main 
Memory 
Busses 

26.7 
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VMEbus 

VME Buffer 

VME Processor 

Physical Devices 

The main components of the high performance I/0 subsystem (HPVME) are: 

• DMA Buffer: A buffer that makes DMA transfers to and from the TRACE's main 
memory. It adapts the relatively low 1/0 transfer speeds to the metnory subsystem's 
extremely high data bandwidth. It transfers data at 246 Megabytes per second 
between its internal buffer and main memory. This data rate minimizes TRACE 
CPU cycles lost to I/0. One CPU can be configured with one or two DMA buffers; 
each DMA buffer can be configured with one or two VMEbusses, for a maximum of 
four VMEbusses per system. 

• VME Buffer: A buffer memory directly accessed by VMEbus devices. The I/0 
subsystem transfers data between this memory and the DMA buffer at 26.7 
Megabytes per second. The size of the VME buffer is configurable from 1 to 4 
Megabytes. An auxiliary bus transfers data out of the VME buffer at full speed, 
while leaving the VMEbus free for use by the I/0 controllers and the VME 
processor. 

• VME Processor: A single-board Motorola 68030-based processor with its own 
local memory. This processor runs the device drivers, freeing the CPU from low­
level device management. It handles interrupts from devices, sends commands to 
the controllers, and controls the DMA engine that transfers data between the VME 
buffer and main memory. The VME processor never handles I/0 data directly, 
since this would limit the transfer rate. 

The VME Processor also runs the Multiflow Diagnostic Executive (MDX). This is 
a lightweight real-time multi-tasking operating system that provides interrupt 
handling and context management for device drivers. It also provides a command 
environment for diagnostics, booting, and controlling device configuration. 

Each VMEbus has its own interface, buffer, and processor boards. Each VMEbus can 
accommodate up to 18 peripheral controllers, providing maximum I/0 connectivity for 
the entire system. 
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The I/0 subsystem is also the platform for CPU diagnostics. One I/0 subsystem acts as a 
master for the TRACE's serial diagnostic bus, which provides access to registers, 
memories, and major control signals on each CPU board. The VMEbus processor 
provides an interactive environment for running diagnostics. 

5.2 Operating System Support 

The TRACE/UNIX I/0 system has been optimized for achieved I/0 performance. 
TRACE/UNIX communicates with device drivers which run on the VME Processor, by 
using an intelligent channel protocol. As much as possible, the channel protocol reserves 
the CPU for computation, relying on the I/0 control processors to do most of the work. 
The main CPU performs high level operations, services relatively few interrupts, and 
performs no physical device management. Thus large amoungs of I/0 can be performed 
with minimal CPU overhead. 

The VME processors take care of the low-level operations required to perform I/0. 
They service all device interrupts, prepare and transmit device commands, and control 
the DMA engine that governs data transfers between the I/0 subsystem and main 
memory. 

The channel protocol partitions I/0 processing between the main CPU and the control 
processors . . The CPU performs high level operations like buffer management and other 
tasks that benefit from the TRACE's speed and memory bandwidth. Real-time 
interaction that is limited by the speed of the I/0 device is handled by the VME 
processors, which effectively shield the main CPU from most of the I/0 overhead. This 
division of labor is superior to other architectures in which relatively slow front-end 
processors are responsible for all I/0 handling. It yields excellent I/0 performance and 
interactive response. 

The TRACE CPU initiates I/0 requests by preparing a channel command requesting a 
device driver to read or write data. When the command is ready, the CPU signals the I/0 
subsystem, which moves the command packet into the DMA buffer in one burst. 

The I/0 subsystem then delivers the command packet to a device driver running on one 
of its control processors. The device driver issues the relevant commands to move data 
from the VME buffer to the device, or to move data from the device to the VME buffer. 
The device driver never touches the data itself, relying on the I/0 device to make high­
speed block transfers directly into the VME buffer. 

When the device driver has finished servicing the request, it prepares a channel response 
packet, which includes any data buffers that need to be moved back to the CPU. When 
the packet is ready, the device driver sends it back to the main CPU. The response 
returns to main memory in another burst. When the transfer has finished, the I/0 
subsystem interrupts the CPU to inform it that the data has arrived. 

Both the CPU and the device drivers maintain queues of active I/0 requests. By 
managing queues of outstanding I/0 requests, and optimizing the order in which they act 
on these requests, the device drivers attain optimum throughput. For example, disk 
drivers perform seek optimization to minimize head travel and attain the best possible 
actual transfer rate from the disk. 
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5.3 Filesystem Enhancements 

Scientific applications software often 
other applications may require huge 
results. These constraints place great 
the speed and disk storage required. 
these requirements in mind. ' 

requires large amounts of data; simulation and 
input files or generate gigabytes of intermediate 
demands on scientific computers, both in terms of 
The TRACE I/0 system has been designed with 

The TRACE/UNIX filesystem handles the very large files that are typical of large 
scientific applications. It uses disk block sizes up to 128 Kilobytes, a data cache of up to 
32 Megabytes, directory look-up caching, file write-behind and read-ahead, and a tuned 
file allocation algorithm. Maximum file size is 64 Gigabytes; i.e. file size is limited 
only by the amount of storage available. The basic TRACE/UNIX disk configuration 
supports files up to 1 Gigabyte in length. 

To further increase delivered performance, the TRACE/UNIX filesystem implements 
filesystem striping. A striped disk is a group of disk drives that have been configured to 
act as a single disk partition. Files are interleaved between the individual disks making 
up the filesystem on a block-by-block basis. Disk striping allows TRACE/UNIX to 
perform disk operations in parallel, retrieving data from all of the striped disk's 
components simultaneously and reassembling it. This allows sustained transfer rates 
much faster than a single disk drive can support, and file sizes much larger than a single 
disk drive can provide. Disk striping is completely transparent to the user and to any 
user-written software; accessing a file on a striped disk is identical to accessing any other 
file. 

A striped disk drive can be formed from up to eight physical disk drives . A striped disk 
formed from four disk drives yields maximum sustained performance of over 8 
Megabytes/second, and a maximum capacity of roughly 4 Gigabytes. A striped disk 
formed from eight disk drives . yields a maximum sustained performance of over 10 
Megabytes/second, and a maximum file size of roughly 8 Gigabytes. 

Disk striping is extremely flexible. System managers can configure striped disks, and can 
change the configuration of these disks at any time. A single system can mix striped and 
non-striped disks. The diagram below illustrates disk striping: 
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TRACE/UNIX provides an asynchronous I/0 facility. Asynchronous 1/0 lets 
application programs explicitly overlap computation and I/0 operations. It also 
minimizes I/0 overhead by copying data directly to and from buffers in the program's 
address space. Asynchronous I/0 has been integrated into the FORTRAN I/0 library, 
allowing FORTRAN programs to manage asynchronous I/0 directly. 

TRACE/UNIX integrates all of these features into a single hierarchical filesystem that 
spans many different physical disk drives. A single, consistent naming strategy allows 
users to specify any )ocal or remote file without concern for its locality, disk type, or 
striping. To a program, there is absolutely no difference between a local file, a file 
accessed through NFS, a file on a striped filesystem, or any other file type. The 
filesystem's delivered performance and flexibility makes TRACE/UNIX an excellent 
environment for general timesharing use, program development, and production. 

5. 4 Peripherals 

Multiflow provides a full line of peripherals, including disks, tapes, terminal 
controllers, network controllers, and others. 

5.4.1 Disk Drives 

Multiflow is . committed to using the most advanced and reliable disk drives and disk 
controllers available. The 1 Gigabyte disk drives use 8 inch sealed Winchester disk 
technology. These disks are extremely compact, and combine large capacity and high 
transfer rates with extremely high density. Up to 20 disk drives can fit into a single 
peripheral cabinet, providing 20 Gigabytes of storage in a 28" by 45" footprint. A single 
drive provides raw transfer rates of 3.0 Megabytes/ second. Striped configurations provide 
much higher raw transfer rates and capacities. All Multiflow disk drives perform 
automatic error detection, correction, and recovery. 

5.4.2 Tape Drives 

Multiflow provides three tape alternatives: a 200 IPS (inches per second) start-stop 9-
track tape drive, a 50 IPS start-stop 9-track tape drive, and a high-capacity cartridge 
tape drive. 

Both 9-track tape drives are auto-loading tri-density tape drives that use standard 1 mil, 
1/2 inch, 2400 foot tapes. By supporting 800, 1600, and 6250 BPI densities, these tape 
drives are compatible with virtually all tape systems in use. The 200 IPS drive is 
particularly useful in environments that use magnetic tape heavily as a medium for 
transferring or storing data. 

The cartridge tape drive, standard on all systems, uses advanced helical scan recording 
technology (used in 8mm video cassette systems) to achieve tape densities well beyond the 
capabilities of nine-track tapes. Advanced error correction techniques and high­
coercivity media result in data reliability substantially better than nine-track tapes. It is 
ideal for archives, for backups, and for data interchange between TRACE systems; a 
single cartridge provides up to 2 Gigabytes of storage in a package that measures only 4" 
by 2.5" by 0.75". The tape cartridges themselves are inexpensive and widely available. 
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5.4.3 Terminals and Workstations 

With flexible support for many families of terminals, workstations, and graphics devices, 
TRACE systems adapt well to any environment. They can be used alongside of 
equipement from all major computer manufacturers, ranging from simple ASCII 
terminals to the most powerful supercomputers. 

I 

TRACE/UNIX supports virtually all terminal types through the UNIX termcap 
database. In particular, all DEC terminals are supported, including the VT52, VT100, 
VT125, VT200, and VT220. Virtually all Tektronix terminals are also supported. One 
TRACE system can support up to 64 RS-232C terminal lines. DR-llW and Versatec 
interfaces allow the TRACE to support high-speed DMA -driven raster terminals. 

TRACE/UNIX's strong networking features allow you to use SUN, DEC, HP, Apollo, 
Silicon Graphics, and other workstations as I/0 devices. Features like the X Window 
System and Network Window System allow you to use these workstations to provide a 
graphics front end for programs running on the TRACE. The NETdisk service (part of 
the Network Filesystem) allows a TRACE to act as a SUN fileserver, letting diskless 
workstations boot and page from the TRACE's disks. 

Standard Ethernet networking lets the TRACE communicate fluently with all other 
UNIX systems (using TCP/IP) and all DEC systems (via DECnet). 

5.4.4 Peripheral Specifications 

The following tables show specifications for selected peripheral devices that are 
available for the TRACE 300 series. For a complete list of the peripherals that are 
available and their specifications, contact your sales representative. 

Disk Drives 

Formatted Capacity: 
Transfer Rate: 
Average Latency: 
Maximum Latency: 
Average Seek time: 
Technology: 
Expansion: 
Error Checking: 

1/2 Inch Tape Drives 

Speed: 
Densities: 
Rewind time: 

Cartridge Tape Drive 

Tape: 
Capacity: 
Technology: 
Interface: 
Transfer Rate: 
Rewind Time: 
Error Checking: 
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1.0GB 
3.0 MB/sec 
8.33 milliseconds 
16.83 milliseconds 
16 milliseconds 
8" Winchester 
20 drives per I/0 cabinet 
Built-in on-the-fly correction via ECC polynomial 

50 IPS 200 IPS 
6250, 1600, 800 BPI 6250, 1600, 800 BPI 
120 seconds (2400' tape) 66 seconds (2400' tape) 

Standard Video 8 cartridge 
Up to 2 GB per tape 
Helical Scan Recording 
SCSI 
225KB/ s sustained; up to 1.5 MB/ s burst 
135 seconds (2 GB cartridge) 
Read-after-write and automatic rewrite 
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One cartridge tape drive is standard on all systems. 

Network Controllers 

Physical Link: 
Data rate: 
Supported Protocols: 

Line Printers 

Interface: 
Lines per Minute: 
Width: 
Character set: 

Terminals and Graphics Devices 

Terminal Interface: 
Baud rate: 
Number: 
Graphics interfaces: 
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IEEE 802.3 (Ethernet) 
10 Mbit/ second 
TCP/IP, DECnet phase IV 

Centronics 
300, 600, 1200 lines per minute 
132 columns 
Standard 96-character ASCII 

RS-232C 
60 to 19200 
Up to 64 
DR-11W, Versatec interfaces supported 
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CHAPTER 6 
THE TRACE/UNIX OPERATING SYSTEM 

In the past few years, UNIX has gained acceptance as the de-facto standard for technical 
computing environments. UNIX has been implemented on an extremely wide range of 
computing systems, ranging from personal microcomputers to supercomputers. Every 
major computer manufacture, including those who have developed proprietary operating 
systems, supports a UNIX version. It is the only operating system currently available that 
provides portability and compatibility over such a wide range of computers . Standard 
networking features support reliable communications with computers of many types and 
architectures. 

All JNIX implementations provide tools ranging from editors to typesetters to lexical 
analyzers and compiler generators. This repertoire includes debuggers, execution 
profilers, sort/merge utilities, a database facility, and many other programs and 
libraries. The list of UNIX tools grows constantly as new features, like the X Window 
System, the Network Filesystem, the Network Queuing System, and others are added. 

Multiflow's UNIX implementation, TRACE/UNIX, is an enhanced version of Berkeley 
4.3 BSD UNIX. Multiflow has extended the basic 4.3 release with additional 
functionality · and performance enhancements. TRACE/UNIX demonstrates Multiflow's 
deep commitment to supporting, integrating, and maintaining new standards and new 
features; it includes the X Window System, the Network Computing System, the 
Network Queueing System (a batch queue facility), the Network Window System, and 
other features as standard parts of the product. The Network Filesystem is available as an 
option. 

6.1 Performance Enhancements 

TRACE/UNIX's ability to support many users and tnany concurent tasks is exceptional, 
and allows the TRACE to serve as a resource that is shared by a large community. The 
TRACE's efficient virtual memory implementation guarantees that it will perform 
effectively in environments that stress the ability to handle extremely large jobs. 

6 .1.1 Multiuser Efficiency 

TRACE computers perform effectively in multiuser environments. They were designed 
for maximal efficiency under a heavy workload, minimizing the time lost to operating 
system overhead. As a result, a single TRACE can support thirty to sixty users 
comfortably in a time-sharing environment. 

To support a large number of active processes effectively, the TRACE computer and the 
TRACE/UNIX operating system minimize the time required for a context switch. This 
is the overhead required to stop one process, and schedule another during general time­
sharing. At a minimum, a context switch requires saving the contents of the TRACE's 
registers and doing whatever is needed to use a different virtual address space. Under a 
heavy workload, the context switch time can account for a significant portion of total 
system overhead. 

The operating system's code for saving and restoring registers has been carefully tuned for 
optimal performance, using the TRACE's maximum memory bandwidth. The address 
translation hardware (the instruction and data TLBs) and the instruction cache (the 
ICACHE) have been designed so that changing from one address space to another requires 
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virtually no overhead. Each entry in the TLBs and in the ICACHE is tagged with an 8-
bit process number (address space ID, or ASID). Therefore, to execute a context switch, 
TRACE/UNIX only needs to load a new address space ID number into a special register. 
The old entries can remain; during normal execution, the hardware detects mismatches 
between the ASID associated with a cache entry and the ASID of the currently running 
process. Consequently, TRACE/UNIX only needs to replace elements in the ICACHE 
or TLB as needed. There is no need to purge the instruction cache or the TLB. 

This design requires only 150 microseconds for a complete context switch. The result is 
effective performance with minimal time lost to system overhead, even under very heavy 
multiuser loads. 

6.1.2 Virtual Memory Features 

TRACE/UNIX provides a demand-paged virtual memory n1anagement system, with a 
logical address space of 4 Gigabytes per process. Several extensions in TRACE/UNIX 
increase the efficiency and flexibility of virtual memory management. Increased virtual 
memory efficiency greatly reduces the system overhead required to support large scientific 
programs. 

TRACE/UNIX uses designated swapping files in the filesystem for all paging (swapping) 
activity, unlike most UNIX systems which require designated fixed size swapping 
partitions. Paging files can be created or deleted with a single administrative command. 
Filesystem paging allows system administrators to adjust the space devoted to swapping to 
their installation's requirements, and to change the size of the swapping area conveniently 
as those requirements change. It also allows individual users to create private paging 
areas for their own use, which can be created and deleted according to need. The ability 
to change the size of the paging area, move it to another disk, or create private paging 
areas means that system administrators can manage disk usage more effectively. 

The text segment of any program (the executable image) is paged fron1 the executable file 
itself. Paging files are only used for the program's private data. Therefore, 
TRACE/UNIX can swap a text page without copying it to a paging file; it can simply 
reassign the page, knowing that it a valid copy exists in the original executable file. This 
reduces startup time for large programs, increases the amount of virtual memory that a 
given configuration can support, and reduces the I/0 activity needed for paging. 

TRACE/UNIX provides copy-on-write process creation. A new process initially shares 
its virtual address space with its parent. Sharing continues until until the new process 
modifies (i.e. writes) to one of the shared pages, which are marked read-only. At this 
point, TRACE/UNIX creates a private, writeable copy of the page; all unmodified pages 
are still shared. This reduces the copying required to start a new process, making process 
startup quicker. It also reduces the total memory requirements, reducing paging activity 
and improving overall performnace. 

6.1.3 Shared Libraries 

TRACE/UNIX implements a shared library facility. The linker handles library 
references by inserting a branch to a single copy of a routine that is always present in 
virtual memory, rather than by extracting object code from an archive and inserting it in 
the executable file. This allows an unlimited number of programs to share a single copy 
of the library routine, rather than replicating the routine within every executable image 
that references it. 
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Shared libraries allow more efficient use of disk space and of virtual memory. Because 
library routines are not included within the executable image, executable files are 
significantly smaller. Only one copy of the shared library resides in virtual memory at 
any time, regardless of the number of programs currently running that use the library. 
This reduces the total demand for virtual memory, and hence reduces paging activity and 
improves overall performance. 

Multiflow's shared library implementation has these features: 

• Negligible run-'-titne overhead; no run-time linking is required to use a shared 
library. 

• Source level transparancy; progratns do not require source code changes to use 
shared libraries. 

• Updates; shared libraries may be updated without recompiling or relinking 
programs that use the library. 

• Multiple versions; the shared library facility allows multiple libraries (and 
tnultiple versions of the same library) to coexist. 

• User-created libraries; customers may define and create their own shared libraries. 

All standard TRACE/UNIX libraries are available both as shared libraries and as 
archived libraries. This includes all run-time, system call, I/0, and math libraries for C 
and FORTRAN. The standard TRACE/UNIX utilities are compiled with shared 
libraries. Programs written by users may use either the shared libraries or the archived 
libraries, as requested during compilation and linking. Users may create their own 
libraries, which may be either standard (archived) libraries or shared libraries. 

6.2 Workstations and Network Computing 

TRACE/UNIX systems can communicate with virtually any workstation via Ethernet, 
using either TCP/IP or the DECnet protocol family. 

The Network Filesystem option (NFS) allows TRACE users to share disks with other 
systems on the network. Access to files on other systems is completely transparent. Users 
never need to know if a given file is local or remote; all application programs will 
automatically work with remote files without any modification. Remote filesystems are 
completely integrated into the TRACE/UNIX directory hierarchy. The network 
filesystem also lets TRACE systems "export" their filesystems for use by other computers 
on the network. The network filesystem works across many different computer 
architectures and operating systems. Operating systems that currently support NFS 
include: 

• Virtually all versions of UNIX, including Ultrix; 

• MS-DOS for IBM-compatible PCs and others; 

• VAX/VMS (support announced for version 5.0); 

• IBM's MVS operating system (announced by Sun Micro systems); 

• Apollo Computer's Aegis operating system. 

With NFS, the TRACE has completely transparent access to files on all of these different 
operating systems. It becomes a powerful network computing tool, uniting all of your 
computing facilities. 

Facilities like NCS (the Network Computing System) and RPC (Remote Procedure Call; 
a part of NFS) let workstation users write software that uses the TRACE as a compute 
server. Both of these facilities let programs call subroutines and functions that execute 
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on other computers. Both automatically handle data format conversions (for example, 
byte order conversions) that may be necessary when the caller and the callee are running 
on different machines of different architectures. Using either of these facilities, software 
running. on a workstation can call a routine (for example, a matrix solver) that runs on the 
TRACE. This makes it possible to partition a program into different segments that run 
on different processors, using the c~pabilities of each to the best advantage. 

Two other features, NeWS (the Network Window System) and X (the X window system, 
version 11) are distributed graphics protocols. They provide standard library interfaces 
that allow a client program to communicate with a graphics server. By using NeWS or 
X, TRACE software can effectively use many different graphics systems (including the 
major graphics workstations) to provide an interactive graphics front end. Both NeWS 
and X are designed to maximize portability, allowing you to move software between 
different computing environments with ease. 

TRACE/UNIX supports diskless SUN workstations (NETdisk). Diskless nodes can boot 
from a TRACE, eliminating the need for a SUN fileserver. The size and performance of 
the TRACE/UNIX filesystern lets it support a large number of workstations gracefully. 
In this configuration, the TRACE is an ideal compute-server for a workstation 
network. By using tools like NeWS, X, and RPC, computation can easily be distributed 
between the TRACE and the workstations. 

Other standard UNIX utilities let TRACE users log in to other UNIX systems; execute 
commands on other UNIX systems; and copy files to and from other systems. The 
following diagram illustrates the range of TRACE/UNIX communications capabilities: 
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TRACE/UNIX system administration includes all the basic facilities needed to add new 
users, accounts, and account . groups; change the TRACE's hardware configuration by 
adding disks, terminals, printers, netWork controllers, and other peripherals; assign and 
manage disk quotas; perform full and incremental backups, and restore individual files, 
groups of files, or entire filesystems from save sets; permit or restrict access to the system 
through telephone lines and networks; permit or restrict access to files; and other 
features. TRACE/UNIX may be configured so that only a small group of users can 
perform administrative tasks; administration can be further restricted so that it can only 
be performed from certain terminals. 

Multiflow has enhanced the standard UNIX administration facilities by adding a project­
based accounting system. This facility collects accounting information on a per-user and 
per-group basis. It reports total user time, system time, elapsed (job execution) time, 
and connection time. In addition, it reports memory and I/0 usage statistics. With other 
UNIX tools, it can be used as the foundation on which billing programs can be based. 
Other tools provide printer accounting and connection time accounting. 
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The Yellow Pages (yp) enhances administration of a network of TRACE systems. The 
yellow pages is a distributed database system designed for administrative purposes. It 
manages the major UNIX administrative databases, including the user accounts database, 
the table of network hosts, and the database of user groups. All systems running the 
yellow pages service can share these major databases. As a result, each system in the 
network does not need its own copy of the database files; a change to the database (for 
example, addition of a new user account) can be made once and propagated automatically 
to the rest of the network. Workstations can also make use of same database and be 
centrally administered by a master system. Yp can also manage site-specific custom 
databases. 

TRACE/UNIX provides the standard UNIX backup utilities (dump and restore). 
Restore has a new interface that allows administrators to search through an archive 
interactively and select a group of files for retrieval, using commands similar to the basic 
TRACE/UNIX file manipulation commands. Optionally, Multiflow supplies a 
compatible implementation of the VAX/VMS BACKUP utility. All backup and restore 
utilities support multivolume save sets, support incremental backup, and archive entire 
filesystem hierarchies. A cartridge tape drive with a capacity of 2 Gigabytes per tape is 
standard, and provides an ideal backup medium. With this tape drive, multi-volume 
backup sets are rarely needed. The small size of the cassette (2.5" X 4" X .75") greatly 
simplifies archival storage requirements. 
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CHAPTER 7 
THE TRACE/UNIX USER ENVIRONMENT 

The greatest strength of UNIX, and the primary reason for its acceptance as the standard 
programming environment for research and engineering, is the wealth of tools that it 
provides. These tools greatly speed program development. TRACE/UNIX provides all 
the tools that belong· to the Berkeley 4.3 UNIX distribution, in addition to selected tools 
from the AT&T System V implementation. 

7.1 Command Languages 

Users interact with TRACE/UNIX through a shell. A shell is the operating system's 
primary user interface; shells are the command interpreters that provide the interactive 
environment you see when working at a terminal. TRACE/UNIX offers two shells: the 
Bourne shell (sh) developed originally by AT&T, and the Berkeley-developed C shell 
(csh). These shells provide simple, consistent, powerful command of the system. 

Both shells perform similar functions and accept similar command languages. They 
provide: 

• Multiple process management. Jobs can be run in the background, allowing you to 
run other tasks in the foreground while you wait for the background task to 
complete. The C shell additionally allows you to move jobs between the 
background and the foreground while they are running. 

• 1/0 redirection. TRACE/UNIX defines three default I/0 streams: standard input, 
standard output, and standard error. These streams normally read data from the 
terminal or send output to aterminal. Streams may be "redirected" to read from a 
file or write to a file. 

• 1/0 pipes. Standard output from one job can be sent to another job's standard input 
by using a simple "pipe." This allows you to chain a sequence of commands 
together. For example, the command jobl I job2 takes the output from jobl and 
"pipes" it to the input of job2. The character I represents a "pipe" on the command 
line. 

• Shell programs. Both shells provide complete command languages with branching, 
looping and other control structures. Both shells allow the use of "shell 
variables." These features allow you to build complex commands from simple 
utilities by writing command files ("shell programs"). Shell programs are easy to 
debug, and help programmers to break complex tasks into a number of simple 
subtasks, each handled by a separate piece of software. In many cases, shell 
programs can let you perform new tasks with your current software and standard 
utilities without writing any new FORTRAN or C code. 

• Customization. The shell lets you customize your working environment by 
renaming commands and providing your own names for commonly used 
combinations of commands. Your personal set of abbreviations may be stored in a 
customization file that is executed automatically when you log in. 

• On-line help. The TRACE/UNIX Programmer's Reference manual is available on­
line, and accessible through a simple command, called man. Another command 
provides a keyword search through an index to the manual. 

• History editing. The C shell can be configured to remember the commands that you 
have typed. A simple notation lets you recall these commands, modify them, and 
re-execute them. The history may be extended across different terminal sessions. 
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• Timing. The shell contains a simple command for timing program execution. 

7.2 Program Development Tools 

TRACE/UNIX provides a range of utilities for software development, including 
compilers, libraries, debuggers, profi)ers, and source code management tools. 

The make utility provides a convenient way to automate compilation for large, complex 
programs. To use make, the programmer describes how to compile the program in a 
"makefile." The makefile describes what options to use to compile each source file and 
the dependencies between object modules, header files, and source files. After writing a 
makefile, you can recompile the program by typing the command make. Make then looks 
at the dates of all the source files and object modules; decides which source files have 
been modified recently, and which object files need to be re-generated; and then executes 
the compilation commands that are needed to regenerate the relevant object files and link 
them to a new executable file. This greatly reduces the amount of compilation needed by 
eliminating needless recompilation of unmodified code; often, only a small part of the 
program needs to be recompiled afterchanges. Make also reduces the potential for errors 
in compilation because the makefile specifies which compilation options are required for 
each module. It therefore provides a record of all the command-line options needed to 
generate each version of the program. 

Software configuration and revision control is provided by the Revision Control System 
(res) and the Source Code Control System (sees), both of which are included in 
TRACE/UNIX. These tools manage archives of incremental revisions of source code 
files. Both let you reconstruct any old version of a file from the archive. They also serve 
as "librarians" for large projects, requiring programmers to "check out" files for 
modification and thus preventing two developers from modifying a program 
simultaneously. 

TRACE/UNIX includes two debuggers: adb and dbx. Dbx is a source-level debugger 
for C and FORTRAN. It provides breakpointing, source-level code and data 
examination, stack trace backs, address break, and other powerful debugging features. 
Address break is a feature unique to TRACE/UNIX; it allows dbx to suspend execution 
whenever the program access a specified location in memory, and is supported by an 
address break register in hardware. Adb is an assembly language debugging utility. 

Three program profilers are part of TRACE/UNIX. The prof profiler generates a simple 
profile that totals the amount of time spent in each routine, and each trace within each 
routine. It points you directly to the part of a program (often, to a few lines within a 
program) that consume the most execution time, showing you where to begin your tuning 
efforts. The gprof profiler generates a call graph profile, which analyzes how the 
program's routines call each other; it shows how much time each routine in the program 
spends on behalf of each of its callers. This information can be invaluable in deciding 
where inline expansion is appropriate, and in making larger algorithmic improvements to 
your software. A third kind of profile, an execution histogram, is a list of program 
counter values that the program executed while running. The TRACE/UNIX linker (/d) 
uses this histogram to optimize the placement of routines within an executable file, 
minimizing cache conflicts. By optimizing instruction cache usage, the linker maximizes 
the efficiency with which your programs use the TRACE. A profiling tool, pf, lets you 
enable or disable any kind of profiling without recompilation or relinking. When 
disabled, profiling has no impact on program performance. 

Other utilities include infinite-precision desk calculator programs (de and be); mail 
har.~dlers; file handling utilities for sort, search, merge, and compare; a database facility 
(dbm); a printer spooling system; a mail system that can be configured to participate in a 
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nation-wide mail forwarding network and bulletin board service; and many more 
features. More advanced tools include a pattern scanning and processing language (awk), 
a lexical analyzer (lex), and a compiler generator (yacc). 

TRACE/UNIX includes an on-line help facility that provides complete documentation 
for all utilities, system calls, libraries, file formats, and management tools. The on-line 
documentation system also includes a ke)'\vord search facility. 

7.3 Batch Processing 

TRACE/UNIX includes the network queueing system (NQS). This is a batch processing 
system designed for use in a network environment. NQS provides batch job submission 
queues and print queues. Queues may span different computers on a network, allowing a 
user to submit a job on one TRACE for execution on another. Queues may be configured 
for load balancing, automatically submitting jobs for execution on the TRACE with the 
least activity. Jobs can be assigned different priorities within a queue; and queues may 
have different priorities relative to each other. 

The batch processing system is robust. Queues remain configured after a system shutdown 
or a crash. After the system has rebooted, any jobs that were in progress when the system 
went down are restarted automatically. Jobs that were waiting in the queue but not yet 
running when the crash occurred are completely unaffected. 

Queue management is provided by a tool named qmgr. This is a command-based program 
for creating, configuring, and manipulating queues. NQS queues may be configured to 
enforce limits on total CPU time, run-time scheduling priority, and virtual memory 
usage. NQS also enforces limits on the number of batch jobs that can run simultaneously. 

By using the TRACE/UNIX cron facility, a system administrator can configure queues 
whose properties change dynamically (for example, nighttime queues, weekend queues, 
low priority queues). 

7.4 Text Processing 

In addition to the standard UNIX editor, vi, TRACE/UNIX supplies the jove editor (a 
version of the popular Emacs editor) and GNU Emacs, another version of emacs 
developed by the Free Software Foundation. All three editors are part of the standard 
TRACE/UNIX system. Both emacs versions are extremely flexible and powerful, letting 
users define their own commands and editing environments by writing customized 
commands and macros. GNU Emacs incorporates special modes for editing text, 
FORTRAN, C, and LISP source code. These modes automatically enforce stylistic 
conventions like indentation; they also make some simple correctness checks (for 
example, matching parentheses). 

Other standard editing tools include sed, a programmable "stream editor" designed for use 
in shell scripts, and several line-oriented editors. A version of Digital Equipment's 
popular EDT editor is also available as part of TRACE/DECLARE. 

As a standard feature, TRACE/UNIX includes AT&T's "writer's workbench" software. 
This package includes device-independent troff, an extremely flexible typesetting 
program that can prepare documents for most laser printers, and nroff, a tool for 
previewing troff documents on a terminal, or printing them on a standard line-printer. 
Standard macro sets for nroff and troff define easy-to-use formats for memoranda, UNIX­
style reference manual entries, academic papers, and view-graphs. The writer's 
workbench includes a graphics preprocessor that can create line drawings from a simple 
description; an equation preprocessor that lets you use a set of abbreviations and 
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commands to describe complex mathematical equations conveniently; and a table 
preprocessor that can produce complex tables and charts. All three preprocessors are 
integrated into the troff typesetting package. Spelling checkers, style analysis tools, and a 
bibliographic database utility complete the TRACE/ UNIX writing environment. 
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CHAPTER 8 
THE DECLARE USER ENVIRONMENT 

Multiflow's DECLARE Compatibility Suite integrates the TRACE seamlessly into the 
VAX/VMS environment. It demonstrates Multiflow's commitment to the user: 
TRACE/DECLARE adapts the TRACE to the needs of your site's user community, 
rather than forcing· you to adapt to a new operating system. It eliminates the need for 
personnel retraining, code conversion, and specialized communications interfaces. 
VAX/VMS users can be productive on the TRACE immediately. Thus, 
TRACE/DECLARE minimizes lost time, eliminates conversion expenses, and protects 
your current investment in software and equipment while increasing your con1putational 
power. It links the power of TRACE supercomputers to the familiarity and convenience 
of the VAX environment. 

The TRACE/DECLARE compatibility suite integrates the TRACE into a VMS 
installation in three ways: by providing a compatible user environment; by providing 
programming compatibility; and by compatible networking. 

The TRACE/DECLARE compatibility suite consists of five major components: 

• TRACE/DCL is an interactive command environment that provides a VMS­
compatible user interface. It eliminates the need for retraining users in 
TRACE/UNIX. 

• TRACE/EDT is a version of the popular EDT editor. Together with 
TRACE/DCL, TRACE/EDT provides a familiar and comfortable environment 
for users new to the TRACE. 

• TRACE/DN is Multiflow's implementation of DECnet Phase IV networking. It 
gives the TRACE users access to VAX/VMS files, and lets VAX users access files 
that are stored on the TRACE. 

• Multiflow FORTRAN is Multiflow's FORTRAN 77 compiler. Many features have 
been added to provide compatibility with VMS FORTRAN. A VMS-compatible 
system call library has also been added. As a result, programs written in VMS 
FORTRAN can be ported to the TRACE with minimal effort. 

• TRACE/DECLARE Utility Package consists of implementations of the VAX/VMS 
BACKUP and COPY programs. These allow you to read and write tapes in all 
standard VAX/VMS tape formats, making data interchange between TRACE 
systems and VAX/VMS computers trivial. 

Perhaps the most important feature of the TRACE/DECLARE environment is the high 
degree of integration between different tools. Without this integration, the package 
would be of limited use. · All the tools within TRACE/DECLARE are compatible with 
each other, and with the standard TRACE/UNIX utilities. FORTRAN programs can use 
VMS file specifications and access VAX/VMS files via TRACE/DN without any special 
handling; TRACE/DCL uses TRACE/DN to access VAX/VMS files automatically; 
TRACE/DCL also provides access to the standard TRACE/UNIX utilities. 
TRACE/DECLARE is more than a random collection of tools; it is a complete working 
environment that has been designed to let VAX/VMS users be maximally productive 
immediately, without retraining. 
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8.1 TRACE/DCL 

TRACE/DCL gives VAX/VMS users a familiar command environment. It allows users 
to give most commonly used VAX/VMS commands and qualifiers, in addition to 
providing access to native TRACE/UNIX commands and utilities. It provides an ideal 
environment \\;ithin which to use the other parts of the DECLARE compatibility suite. 

I 

TRACE/DCL provides: 

• Most user oriented commands from DCL, along with the most commonly used 
qualifiers. 

• An on-line help facility that is equivalent to the VAX/VMS help fa~ility. It 
provides detailed information about all available TRACE/DCL commands and 
their qualifiers. 

• VAX/VMS file specification syntax, including wildcards and node names. tt-is 
integrated into TRACE/DN; . file specifications that include a node name 
automatically refer to files on remote nodes. 

• VAX/VMS symbols. Symbols can be used to define abbreviations for commonly 
used commands, TRACE/UNIX commands, etc. Symbols can also be used as 
variables within command files. TRACE/DCL provides full support for all VMS 
operators. 

• Full support for VAX/VMS logical names, including system, group, process, and 
group logical name tables. This provides a way to abbreviate frequently used 
character strings, directory specifications , etc. Pre-defined logical names like 
SYS$0UTPUT and SYS$INPUT may be used to redefine defaults. 

• Most VAX/VMS lexical functions. These provide system and process manipulation 
capabilities. 

• VAX/VMS command editing and command history features. These features allow 
users to retrieve, correct (or otherwise modify) and re-issue earlier commands. 

• Command files, and all DCL command file control structures (IF, GOTO, GO SUB, 
CALL, and others). Command files provide TRACE/DCL with a programming 
environment equivalent to DCL. Command files may mix TRACE/DCL 
commands and command names with TRACE/UNIX commands. 

• System-wide and individual initialization (LOGIN.COM) files. 

• A TEACH facility, designed to help VAX/VMS users learn TRACE/ UNIX. The 
TEACH facility automatically shows the TRACE/UNIX equivalent to each 
VAX/VMS command, helping new users to understand how the two operating 
environments correspond. 

TRACE/DCL is integrated into the NQS, the TRACE's batch processing facility; it lets 
you submit batch jobs and manage batch job queues with the standard VAX/VMS queuing 
commands. 

Within TRACE/DCL, the default editor is TRACE/EDT, if it is available. Users who 
prefer other editors may use any of the standard TRACE/UNIX editors, including the 
two Emacs versions, jove and GNU Emacs. 

Users who want to work completely within a VMS-like environment can make 
TRACE/DCL their default command shell. Other users may switch freely between the 
TRACE/UNIX command shells and TRACE/DCL. 

8-2 TRACE/DECLARE 



Multiflow Computer: TRACE /300 Series Technical Summary 

8.2 TRACE/EDT 

TRACE/EDT is a complete implementation of the EDT editor, the most popular editor 
available under VAX/VMS. By using TRACE/EDT, new users can start working on the 
TRACE immediately, without learning a new editor. 

TRACE/EDT implements virtually all of EDT's features, including: 

• All three EDT command modes (keypad mode, nokeypad mode, and line mode). 

• Gold Key edititig~ emulating all gold-key features. In keypad mode, all 
TRACE/EDT editing commands are available with two keystrokes or less. 

• All screen editing features, including global search and replace, cut and paste, case 
changes, open line, search direction changes, etc. 

• Entity-based editing, allowing the user to apply basic editing commands to 
characters, words, lines, regions, and other pre-defined entities. 

• Text formatting commands, including automatic word wrapping, filling, 
justification, and structured tabs. 

• Journal files. Journal files allow TRACE/EDT to reconstruct changes to a file if 
an editing session is interrupted by a power loss or some other failure. 

• On-line help facility equivalent to the help provided by DEC's EDT editor. The 
help facility contains over 200 help screens, and provides general and detailed 
information about all three editing modes. 

• Customization. Users may define special keys for frequently used command 
sequences. Users may write macros to perform specialized editing functions. 
TRACE/EDT allows both individual and system-wide customization files 
(EDTINI.EDT files), allowing administrators to define a site- and user-specific 
editing environment within EDT. 

VAX/VMS users who are familiar with the widely-used Emacs editor may also use either 
jove or GNU Emacs within the TRACE/DECLA~E environment. Both of these editors 
are part of the standard TRACE/UNIX distribution, and available at no extra cost. 
Conversely, TRACE/EDT may be used within the 'i'RACE/UNIX environment, 
providing a familiar editing environment for users who prefer to work within UNIX. 

8.3 TRACE/DN 

TRACE/DN supports Phase IV of the Digital Network Architecture, commonly known 
as DECnet, as an end node. With TRACE/DN, TRACE systems can participate fully in 
DEC installations; a TRACE becomes a fully functional end node, with complete access 
to every VAX on the network. Users can use TRACE/DN to access files, to log-in to 
VAX/VMS systems, etc. TRACE/DN is fully integrated into TRACE/DCL and 
Multiflow FORTRAN. Integration into the FORTRAN I/0 library gives FORTRAN 
programs direct access to files on VAX/VMS systems, without modification. Integration 
into the TRACE/DCL command shell lets users work with VAX/VMS files 
transparently; all TRACE/DCL commands automatically use TRACE/DN when given a 
file specification that refers to a file on a remote node. TRACE/DN may also be used 
within the TRACE/UNIX command environments, giving UNIX users complete access 
to VAX/VMS systems and files. 

TRACE/DN implements the following functions: 

• Server processes equivalent to DEC's NETACP, NML, REMACP, and FAL. 
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• NFARS (Network File Access Routines); a library that allows programs on the 
TRACE to access files on VAX/VMS systems, using DAP. NF ARS is integrated 
into the FORTRAN I/0 library, and is available as a separate C library. 

• A version of the NCP administrative utility. Ncp is completely compatible with 
the VAX/VMS network management tool, NCP. 

• Support for task-to-task communications via standard UNIX system calls. 
Programs running on a TRACE can exchange data with programs running on 
VAX/VMS systems. 

All TRACE/UNIX systems also support, as a standard, the TCP/IP network protocol. 
Therefore, TRACE systems can serve as a "bridge" (or "gateway") between DECnet hosts 
and TCP /IP networks. 

8.4 Multiflow FORTRAN 

Multiflow FORTRAN provides tnany features for compatibility with VAX/VMS 
FORTRAN. These extensions to the FORTRAN 77 standard make it easy to port 
software to the TRACE from VAX/VMS environments. The extent of Multiflow's 
support for VMS FORTRAN indicates Multiflow's complete commitment to the 
VAX/VMS programmer. 

Chapter 3 provides a more complete description of Multiflow FORTRAN. The list 
below summarizes the VMS FORTRAN compatibility features: 

• Extended VMS character set (uppercase, lowercase, special characters) and 32-
character variable names. 

• TAB-formatted source and continuation lines. 

• Extended-length (132 column) source lines supported with a command line option. 

• INTEGER*2, INTEGER*l, BYTE, LOGICAL*l, LOGICAL*2, and DOUBLE 
COMPLEX data types. 

• NAMELIST I/0. 

• IMPLICIT NONE statement. 

• ACCEPT, TYPE, ENCODE, and DECODE statements. 

• VMS File organization and record type keywords supported. 

• DO WHILE and ENDDO statements, extended range DO-loops. 

• Direct support for Asynchronous I/0. 

• Remote file access over DECnet. 

• Automatic conversion of DEC floating point and integer data formats when 
accessing VAX/VMS files. 

• Argument list built-in functions (0/o VAL, 0/oREF, 0/oDESCR, and 0/oLOC) 
provided. 

• Bit function intrinsics compatible with VMS FORTRAN and Military Standard 
FORTRAN. 

• PARAMETER statement without parentheses. 

• Q and$ edit descriptors in FORMAT statements. 

• Comments beginning with exclamation points. 

• D debugging lines. 

• Data initialization in type statements. 
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• DATA statements may be mixed with executable statements 

• Octal and Hexadecimal constants may be used in DATA statements. 

• Full Hollerith support, including use of Hollerith constants as integers. 

• & prefix to labels. 

• FORTRAN-66 compatibility option. 

• VMS system call library including mathematical functions, string manipulation, 
error handling, lpgical names, inter-process communication, file manipulation, 
and other features. 

In addition, the TRACE provides a source-level symbolic debugger, tools for program 
analysis and profiling, cross-reference listings, and automatic compilation and source 
control systems (similar to DEC/MMS and DEC/CMS respectively). 

8.5 TRACE/DECLARE Utilities 

The DECLARE utility package provides tape compatibility between Multiflow TRACE 
systems and VAX/VMS. It allows the TRACE to read and write tapes in VAX/VMS 
formats, making it simple to move data, source code, tape archives, backups, and other 
data between systems. It simplifies tape management by letting you use a single tape 
format, readable by all systems, for your backup and archive tapes. 

The package consists of two utilities: vmscopy and backup. Vmscopy handles VAX/VMS 
COPY format tapes, and is integrated into the TRACE/DCL COPY command. Backup 
handles VAX/VMS BACKUP tapes, and is integrated into the TRACE/DCL BACKUP 
command. They provide the following features: 

VMS COPY: 

• Reads and writes variable-and fiXed-record length tapes. 

• Upon request, pads all records to a fixed record length. 

• Reads tapes without ANSI headers. (These are "header-less" tapes; on a 
VAX/VMS system, they would be mounted FOREIGN). 

• Can skip files on the tape if desired. 

• Writes tapes in VMS FILES-11 format. 

• Can read tapes containing SOS files. Upon request, it can either retaining or 
discarding the SOS line numbers. 

BACKUP: 

• Reads and writes VAX/VMS save sets. 

• Reads and writes multiple volume save sets. 

• Notifies the user when a new volume needs to be mounted. 

• Saves and restores directory hierarchies; files are saved together with their position 
in a directory structure. 

• Provides verification and file comparison operations. These operations are 
equivalent to the VAX/VMS /VERIFY and /COMPARE qualifiers. 

• Supports special handling: operations on selected files only, exclusion of certain 
files from backup or restore operations, deletion of files after they have been 
written, and confirmation of operation on a fil~-by-file basis. These operations 
are equivalent to the VAX/VMS /SELECT, /EXCLUDE, /DELETE, and 
/CONFIRM qualifiers. 
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• Translates text files between the VAX/VMS and TRACE/UNIX formats. 

• Supports VAX/VMS file and directory naming conventions; automatically converts 
file names to a form appropriate for the target system. 
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CHAPTER 9 
SERVICE AND RELIABILITY 

9.1 Reliability 

In the two years since Multiflow's first shipment, the TRACE 200 series has proven to be 
an exceptionally reliable platform. The integrity of the software and hardware has 
produced a system that rarely experiences failure of any kind. It is common for a TRACE 
to run for months without any unscheduled interruption of service. 

Total system MTBF (mean time between failures) in the field has been substantially over 
4100 hours. This figure includes all systems shipped to date; in particular, it includes our 
beta-test systems for both the 200 and the 300 series. Our early 300 series customers have 
found it to be as reliable and stable as our earlier products. CPU-only MTBF is in excess 
of 15,000 hours. MTBF for each peripheral device and controller is in excess of 30,000 
hours. Few products achieve these levels of reliability in their lifetime, let alone in the 
first years after their introduction. 

9.2 Diagnostic Environment 

The I/0 Subsystems run a small, UNIX-like operating system called MDX (Multiflow 
Diagnostic Executive). MDX performs power-on testing and is responsible for booting 
the TRACE. It accesses a dedicated disk partition with an independent file system that 
contains bootstrap programs, diagnostics, and error logs. 

The MDX environment simplifies running and developing diagnostic tools. Through the 
I/0 subsystetn, it has access to the TRACE Diagnostic Bus, a special diagnostic channel 
that probes every part of the TRACE. Diagnostic programs have direct access to every 
signal on the TRACE gate arrays, access to the instruction cache, most special registers, 
many internal buses, and other logic throughout the system. 

The diagnostic bus also also performs board configuration. There are no switch settings 
or jumpers in the CPU or memory boards. This allows remote configuration and testing. 

The MDX environment can be accessed from the console terminal or through the 
diagnostic modem associated with the diagnostic processor. The diagnostic modem 
allows Multiflow customer support engineers to access the diagnostic system remotely, 
run diagnostics, and diagnose problems. The ability to diagnose problems prior to 
making a service call substantially decreases the time to repair. 

9.3 Environmental Processor 

The TRACE Environmental Processor (EP) monitors operating conditions and enforces 
safety limits. It monitors all power supply voltages, temperature, air flow, and AC 
power. The EP controls AC power and power supply DC voltage settings. It can select 
high and low margin voltages and clock speeds for testing. The high and low margins 
insure that the TRACE operates safely under a wide range of abnormal conditions. 

The environmental processor includes a modem that allows customer support operations 
to perform many operations (including power-on and power-off) remotely. 
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9.4 Error Detection and Correction 

TRACE systems are intended to handle enormous computations with large numbers of 
hardware functional units. Accordingly, Multiflow has taken great care in the system de­
sign to assure computational integrity, and to eliminate undetected transient errors. 

All general registers, buses, and major datapaths incorporate parity checking. Parity 
hardware verifies that data is correctly transmitted and stored. Byte parity is computed 
on-chip when functional units generate results, and checked on-chip when functional 
units accept operands. Parity flows throughout the system and is stored in registers, for 
end-to-end protection. To avoid impacting the system cycle time, parity is transmit­
tedand checked one clock period following the data. 

Main tnemory is protected by error detection and correction logic which automatically 
corrects all single-bit errors and detects all double-bit errors. Seven extra bits are stored 
for each 32-bit field stored in memory, providing enough redundancy to allow all single­
bit errors to be transparently corrected, and all double-bit errors to be detected. A mem­
ory scrubbing protocol ensures that all of main memory is accessed and rewritten with 
corrected data on a regular basis. Error correction significantly improves system reliabil­
ity, as it compensates for the primary source of errors in modern computer systems: soft 
errors (dropped bits) in dynamicRAMs. 

The Instruction Cache and address translation buffers detect and correct single-bit er­
rors. Byte parity is stored with the cache data; parity errors are treated as cache misses, 
and the cache entry is transparently reloaded from the backing store. This technique has a 
similar impact on overall systetn uptime; occasional static RAM errors can be tolerated. 
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