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INTRODUCTION 

Multiflow TRACE computer systems are general purpose 1nachines designed for use in a wide 
range of compute-intensive applications. A family of upward compatible processor n1odels 
deliver extraordinary performance via breakthroughs in computer architecture and c01npiler 
technology. 

Very Long Instruction Word (VLIW) architecture provides TRACE processors with perfor­
mance from 53 to 215 VLIW MIPS, \vith overlapped execution in a single execution stream. 

Trace Scheduling compacting compilers exploit fine-grained parallelis1n without programmer 
intervention to deliver high performance on unmodified C and FORTRAN applications. 

The TRACE/UNIX operating system delivers excellent interactive and computational perfor­
mance. TRACE/UNIX is based upon 4.3BSD, with significant functional and perfonnance 
enhancements for engineering and scientific computing. TRACE/UNIX supports deinand­
paged virtual addressing, with 4 Gigabytes of address space available per process. 

This document provides an overview of the technology underlying Multiflow's products. 
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CHAPTER 1 
PARALLEL PROCESSING BACKGROUND 

Computer designers have sought to apply parallelism to improve execution speed since the 
earliest systems were designed. Substantial cost and reliability improvements are obtained 
when perfonnance can be achieved by using n11,lltiple low-cost circuits instead of exotic elec­
tronics. 

1.1 FINE-GRAINED PARALLELISM 

Most modern computers use small scale parallelism to great advantage; for example, instruc­
tion fetch is commonly overlapped with instruction execution in modern "pipelined" supermini­
computers. This technique dates back to tnainframes of the early 1960's, and is quite 
effective in delivering a twofold improvement in overall execution speed. 

Instruction fetch pipelining, coupled with appropriate instruction set design, helps computers 
achieve a major design goal: executing one instruction per clock cycle. As RISC design phi­
losophy spreads throughout the industry, this goal is increasingly being achieved by midrange 
computer systems. 

Designers of high-performance cmnputers have achieved a more difficult objective: executing 
· multiple instructions per clock cycle. Today's high-performance mainframe computers incor­
porate a technique introduced in the late 1960's: overlapped execution of multiple program 
steps. Overlapped execution exploits parallelism atnong individual scalar operations, such as 
adds, tnultiplies, and loads. A scheduler examines the relationships among operations of the 
progratn; then multiple functional units carry out independent computations simultaneously. 

This fine-grained parallelistn exists throughout all applications, and is independent of the 
high-level structure of the progratn. As a result, overlapped execution has been a feature of 
nearly every high performance scientific and engineering computer built in the last twenty-five 
years. Examples include the CDC 6600 and all of its descendants; the Cray supercomputers; 
and the IBM STRETCH, 360/91, and descendants. 

Overlapped execution has been universally successful and widely used, but has suffered frmn 
a lhnitation: available speedups have been lilnited to about a factor of two or three. Charac­
teristics of programs have prevented computer designers frmn delivering larger speedups due 
to this low-level approach. 
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1.2 COARSE-GRAINED PARALLELISM 

In response to the limitations of overlapped execution, designers of high-perfonnance 
scientific computers have looked for other ways to use more hardware in parallel to boost 
application perfonnance. 

Vector architectures perfonn parallel cmnputations on data aggregates. Vector cmnputers 
augtnent a standard scalar architecture with tntlltiple pipelined functional units under rigid 
lockstep control. Special vector opcodes cause a vector control unit to initiate multiple cmn­
putations in parallel while accessing registers or tnetnory in a fixed pattern. The regular struc­
ture of vector operations allows the construction of computers with high peak performance at 
relatively low cost. High performance can be delivered on those portions of the compl.1tation 
which exactly fit the structure of the vector hardware. 

Multiple processor systems (multiprocessors, or parallel computers) incorporate tnultiple 
independent CPUs with communication and synchronization hardware, and in some cases 
shared tnain tnemory. The overhead cost of fetching and decoding instructions must be paid 
per CPU; some multiprocessors offset this by exploiting low-cost microprocessor CPU s. The 
costs of runtime arbitration and synchronization tend to be high, both in hardware and in the 
time these operations require. Recently, attetnpts have been made to apply such systems to 
improve time-to-solution for a single application. Multiple processors can be applied to those 
portions of an application where large blocks of computation have been identified as being 
independent of each other, and the program has been expressed as multiple tasks. 

Both vector and multiprocessor architectures are coarse-grained, in that groups of indepen­
dent operations must be identified and expressed, either as vector operations or as tasks, in 
order for parallel hardware to contribute to perfonnance. Such systems vary widely in their 
"grain size". Available vector machines have a minimum vector length required for any per­
formance improvement which ranges from five to over 100. Available multiprocessors have a 
minimum block size required for any parallel benefit ranging from approximately 30 to tnany 
thousands of operations. Both approaches require high-level "pattern match" between 
hardware capabilities and program structure. 

Early vector and multiprocessor systems required special programtning techniques to use the 
parallel facilities. Great strides have been tnade in the automatic identification of loop struc­
tures which may be vectorized, eliminating the need for special syntax and languages to use 
these facilities. Vectorization technology has been adapted to some multiprocessor systetns, 
allowing certain multiply-nested DO loops to be converted to "tasks". 

However, significant application restructuring is universally required to achieve a reasonable 
percentage of vectorization or parallelization. Specific operation patterns and high-level data 
independence are required for even the most advanced "vectorizing" and "parallelizing" cmn­
pilers to do their job. 
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1.3 AMDAHL'S LAW 

Compute-intensive engineering and scientific applications vary widely in the extent to which 
they are parallelizable. Only regularly structured code, containing specific operation patterns, 
can be n1apped onto coarse-grained parallel hardware. The percentage of running time spent 
in such code is extremely application dependent. 

High degrees of parallelizability have been found to be rare. Most applications spend 
between 20 and 60 percent of their running time in code that is potentially vectorizable or 
parallelizable. 

Amdahl's Law points out that for a 50°/o parallelizable application, even with infinitely fast 
vector hardware, or infinitely many parallel processors, the 1naximmn achievable speedup is a 
factor of two. 

This phenon1enon is responsible for the great disparity between peak and achieved perfor­
lnance observed on coarse-grained parallel syste1ns. Scalar computations tend to dominate 
the running time on coarse-grained systems, greatly lilniting their effectiveness . 
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CHAPTER 2 
A NEW APPROACH 

Multiflow's product line is based on a fundamentally new approach to parallel processing. 
Multiflow's VLIW architecture and Trace Scheduling compacting cmnpilers deliver massive 
perfonnance improvements through overlapped execution of long stremns of operations. 

These technologies have yielded a compiler/computer combination which finds and exploits 
all the parallelism accessible to vector and multiprocessor architectures. It additionally finds 
parallelistn throughout applications, in code which coarse-grained architectures cannot 
address. Much largerspeedups are delivered with low-cost hardware because the "scalar speed 
bottleneck" has been broken. 

2.1 VLIW ARCHITECTURE 

Figure 1 shows an idealized VLIW (Very Long Instruction Word) cmnputer. Fields of a wide 
instruction word directly control the operation of multiple functional units -- floating adders, 
floating multipliers, integer units, memory address units. One field of the instruction word 
controls program branching. 

A single program counter controls the fetching of Very Long Instruction Words. In this 
idealized example, a single register file holds operands and results for all computatioi1s. 
LOAD and STORE operations move data between registers and main n1en1ory. 

The functional units are fully pipelined. Each functional unit is designed so that it can start a 
new con1putation in every clock cycle. An assembly-line or pipeline of hardware handles each 
stage of con1plex operations, such as floating point aritlunetic. While a single floating-point 
addition tnay require 3 cycles to complete, new adds may be started every cycle. Note that 
the memory system is also fully pipelined; new references tnay be started every cycle, 
although a single reference may require 3 cycles to cmnplete. 

This simple VLIW tnay be expanded. More functional units can be added, with tnultiple 
register files, comtnunicating via buses. Again, a single program counter and a single flow of 
control directs the fetching of long instruction words which specify the operation of each 
functional unit in each cycle. All the functional units run in lockstep, each initiating one 
operation per cycle as directed by its field of the instruction word. 

A very wide instruction cache holds the instructions which the machine executes . The 
instruction word width. is not related to the width of the data buses used for computation; it is 
related to how many functional units there are in the machine. 
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Men1ory 

Instruction 
Word 

LD/ST 

Register File 

FADD FMUL IALU BRANCH 

Figure 1: A Simple VLIW 

Note that frmn one standpoint, VLIWs could be regarded as generalized, n1ore efficient vec­
tor machines. The pipelined functional units are essentially the satne as might be found in a 
vector machine, but no separation between scalar and vector hardware exists. I-Iardware con­
trol units which count out vector addresses have been replaced by wide instruction words, 
which specify each computation uniquely. Control hardware has been replaced with memory. 
Not only is the hardware lower cost to build, but with appropriate software technology the 
cmnputation units can be used n1uch more efficiently. 

Viewed from another standpoint, VLIWs provide overlapped execution in the extreme. The 
instruction words allow the expression of arbitrary execution overlap among scalar operations, 
with potentially very large numbers of operations executing simultaneously. Great flexibility is 
available in how we overlap operations, within a single CPU; one progratn, one program 
counter. No runtime synchronization hardware or software is required. 

2.2 OVERLAPPED EXECUTION REVISITED 

Let's examine overlapped execution in the context of a VLIW. The burden of scheduling 
sequential code for simultaneous execution has been placed on the compiler which generates 
VLIW object code; scheduling hardware has been removed. Very high perfonnance is 
achieved when the compiler identifies independent operations and compacts thetn into long 
instructions. 

Consider first a single FORTRAN statement. 

A = (B + C) * (D + $) 

On a tnodern, sequential computer this expands to an assembly language sequence which 
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looks like: · 

LD Rl, #B 
LD R2 I #C 
FADD R3, Rl, R2 
LD R4, #D 
LD RS, #E 
FADD R6, R4, RS 
FMUL Rl, R6, R3 
STO Rl, #A 

This sequence performs the computation that our FORTRAN state1nent specified. B and C 
are loaded from me1nory into registers; then they are added. Their sum is held in R3. D and 
E are loaded, then added. Finally the two sums are multiplied, and the product stored from · 
R1 back into the memory location representing A. 

On a modern sequential computer, typical operation costs for the different program steps are: 

LD, FADD, FMUL 
STO 

3 cycles 
1 cycle 

With these assumptions, the running tilne for this fragment is 22 cycles. Each operation 
finishes before the next operation cmnpletes. 

Consider a VLIW built with the same hardware technology, with the sa1ne cycle delays for 
operations. Let's examine the above fragment, compacted for VLIW execution. 

As We compact the code, we must obey two constraints. 

First, operations may be scheduled only when their data is ready; we must observe data pre­
cedence. For example, we cannot schedule the FADD step until the two LD operations have 
completed. Since we have a pipelined VLIW which starts a new instruction every cycle, this 
1neans that the FADD will be, at the earliest, three instructions after the second LD. 

Second, operations 1nay be scheduled only when the required functional unit is available; we 
observe resource constraints. In the silnple VLIW we're considering in this example, only one 
LD/ ST unit is available, so only one me1nory reference 1nay be started per instruction. (More 
powerful VLIWs could potentially start n1ultiple references per instruction.) Similarly, only 
one FMUL, one FADD, and one integer operation 1nay be started per cycle. Note that up to 
five operations may be started in each instruction; due to pipelining, up to 11 operations may 
be in progress at once. This simple VLIW, whose hardware cost is nearly identical to that of 
a standard sequential cmnputer using the same electronics, offers the potential of a tenfold 
performance ilnprove1nent. 

The overlapped code for our fragment, for our idealized VLIW, is shown in figure 2. The 
running time for this fragn1ent is 13 cycles; it runs 1.7 times faster than it did on the sequen­
tial machine which cost the same to build. 
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LD/ST IALU FADD FMUL BRANCH 
LD #B 
LD #C 
LD #D 
LD #E 

FADD Rl,R2 

FADD R4,R5 

FMUL R6,R3 

STO #A 

Figure 2: VLIW Compacted Code For Example 1 

Notice that we've obeyed the rules stated above. The first FADD is scheduled three instruc­
tions after the LD of c. The tnachine never paused for the memory references; c wasn't 
available in the registers until instruction 3. 

By doing this small-scale overlap, on just a single FORTRAN statement, we've improved per­
formance by 1. 7 times. What happens as we compact larger fragments of code? 

A = (B + C) * (D + E) 
F = (G * H) + (X * Y) 

This expands into: 

LD Rl, #B 
LD R2, #C 
FADD R3, Rl, R2 
LD R4, #D 
LD RS, #E 
FADD R6, R4, RS 
FMUL Rl, R6, R3 
STO Rl, #A 
LD R7, #G 
LD R8, #H 
FMUL R9, R7, R8 
LD R4, #X 
LD RS, #Y 
FMUL R6, R4, RS 
FADD Rl, R6, R3 
S.TO Rl, #F 

with a running time of 44 cycles. 

The VLIW version of this fragtnent is shown in figure 3. This has a running titne of 17 
cycles, 2.6 times faster than the scalar version. 
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LD!ST 
LD #B 
LD #C 
LD #D 
LD #E 
LD #G 
LD #H 
LD #X 
LD #Y 

STO #A 

STO #F 

IALU FADD 

FADD Rl,R2 

FADD R4,R5 

FADD R6,R3 

FMUL 

FMUL R7,R8 
FMUL R6,R3 
FMUL R4,R5 

Figure 3: VLIW Compacted Code For Example 2 

BRANCH 

Notice that we've freely intennixed steps of the computation from the first and second FOR­
TRAN statements. Since the variables in those state1nents didn't have anything to do with 
each other, we were free to do so and still get correct results. In fact, we could have 
reversed the ordering of many of the steps without affecting the result. 

2.2.1 COMPACTION OF LONGER STREAMS 

As more operations are considered together for con1paction, the perfonnance improvement 
continues to grow. If we were to increase the size of the above example to four statements, 
the scalar code would require 88 cycles; the VLIW would be 3.5 times faster, at only 25 
cycles. A wider VLIW would be even faster. 

Very large amounts of parallelis1n are found when long streams of operations are compacted, 
allowing wide VLIWs with many functional units to deliver tenfold and hundredfold perfor­
Inance improvements over scalar execution. 

However, a problem arises in trying to compact long streams. Programs are not straight-line 
streams of operations; they contain control flow statements, or conditional jumps. These 
pose a serious proble1n for scheduling. How can we overlap operations with prior conditional 
ju1nps? . 

A = (B + C) * (D + E) 
IF (A .GT. l.OE6) GOTO 5 
F = (G * H) + (X * Y) 

5 CONTINUE 

In this example, if the the assignment of F and its computation occurred before the IF test, 
the program would produce incorrect results whenever A was greater than l.OE6. 
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Because of correctness issues like this, all previous efforts to overlap execution have over­
lapped only straight-line sections of code, or "basic blocks." Each conditional jmnp caused 
execution to serialize until its test resolved, and the scheduler could know which way to 
proceed. 

Conditional jumps are found every five to eight operations in typical programs. This jump 
frequency, coupled with basic block compaction, has been the primary obstacle to very large 
performance gains frmn overlapped execution in scientific progrmns. When only small 
nmnbers of operations are candidates for overlapped execution, the gains from overlapped 
execution will be correspondingly small. 

In the above example, basic block cmnpaction would perfonn poorly in the presence of the 
IF test. If the operations below the IF cannot be started before the IF completes, the run­
ning time will be 27 cycles, as opposed to 17 cycles without the IF. 

However, if we believe that the IF test will only rarely be true, and we have some sophistica­
tion in our management of registers, we can achieve all the overlap that we did before we 
added the IF. Figure 4 shows this code. 

LD/ST 

LD #B 

LD #C 

LD #D 

LD #E 

LD #G 

LD #H 

LD #X 

LD #Y 

STO #A 

STO #F 

IALU FADD 

FADD Rl,R2 

FADD R4,R5 

FCGT Rl,#l.OE6 

FMUL 

FMUL R7,R8 

FMUL R6,R3 

FMUL R4,R5 

---------- ----------
FADD R6,R3 

BRANCH 

CBR 5 

Figure 4: VLIW Compact Code Including Conditional Branch 

No extra cycles are required to do the compare and branch. Only the STO operation need 
follow the execution of the branch. 
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2.3 TRACE SCHEDULING 

Multiflow's Trace Scheduling compacting C and FORTRAN compilers overlap execution over 
long streams of code, going beyond many conditional jumps. The compilers use statistical 
information about program behavior, and a compensation technique, to perforn1 aggressive 
compaction of long execution paths. 

Trace Scheduling is carried out on one program module or subroutine at a tilne, after the pro­
gram has been converted to an intern1ediate representation and after standard optimizations 
have been carried out. 

2.3.1 TRACE SELECTION 

Using loop trip count and branch probability information derived from program profiling or 
from heuristics, the compiler selects the most frequent path, or trace, that the code will fol­
low during execution. The path may include multiple conditional jumps (see figure 5). 

load B load A 

Figure 5: Selecting a Trace; Starting Compaction 

This trace is then handed as a whole to a scheduler. The scheduler compacts operations into 
wide instruction words, taking into account data precedence and hardware resource con­
straints. These wide instruction words will be directly executed by Multiflow TRACE sys­
tems, using multiple functional units. Now, instead of five or eight operations which are can­
didates for scheduling, hundreds or thousands of operations may be candidates. Many 
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opportunities for parallel execution will be present, and compaction will yield large speedups. 

This large-scale overlapping moves operations in ways which could cause logical inconsisten­
cies when a conditional branch goes the "less frequent" direction (see figure 6) . 

...................................................................................................... . . . . . . . . 

? ~-- __ ··: ..... . 
··: ........... ]... . ··················· .. . 

····... . ······:· · .. 
····· ..... 

? . 
if...then~ 

..................................................................................................... 

Figure 6: First Trace Compacted; Trouble at Off-Trace Branches 

2.3.2 COMPENSATION 

Finding a method for handling these inconsistencies after compaction, without touching the 
cmnpacted code, was the conceptual breakthrough of Trace Scheduling. The compiler 
adjusts the flow graph of the remaining program to correct the scheduling-generated incon­
sistencies, and restore correctness for all execution paths (see figure 7). 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
; ~ 

~~ ~ 
~ ~~~~ 
··:. ·· .. 

·················... ··················· .... 

········ ... ---
·:· 
---

if ... then~ 

. . . . ...................................................................................................... 

Figure 7: Cmnpensation Operations Correct Off-Trace Paths 

For example, if an operation originally above a conditional jump is scheduled below the 
jump, it is copied as part of the compensation for the jump. The copy is 1nade only if the 
operation "n1atters" on the off trace path; that is, if there are operations in the off trace code 
which depend upon the result of this operation. 

Si1nilarly, if an operation below a conditional jump is scheduled above the jmnp, its results 
are discarded as part of the cmnpensation code. This 1nay not involve adding any operations; 
in n1ost cases, the compiler has multiple temporary values for a variable, and simply uses a 
previous temporary value. 

Similar compensation steps are added at joins into the trace other than at the top of the 
trace. 

C01npensation code adds only minor mnounts to progrmn size, and less to program runtime. 
Only a s1nall fraction of the total scheduling decisions 1nade during c01npaction cause incon­

. sistencies . Only smne of these actually require computations to correct. 
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2.3.3 THE PROCESS REPEATS 

The whole process then repeats. The next-most-likely execution path is chosen as a trace and 
handed to the code generator. This trace may include original operations and compensation 
code. It is compacted; new compensation code may be generated; and the process repeats, 
picking paths and compacting them until the entire program has been compiled (see figure 8) . 

...................................................................................................... . . . . . . . . . . 

---*---1st Trace 

2nd Tracer>··~i. ··= ......... . 

~ . : ···.... ·· ... 
······ ... 

····· ... 

-·~ 

Figure 8: The Next Trace Is Selected For Compaction 

2.4 MEMORY REFERENCE DISAMBIGUATION 

Array references can pose special problems for compile-titne data dependency analysis. 

Consider a modification to our earlier fragment: 

A(I) = (B + C) * (D + E) 
F = (A(J) * H) + (X * Y) 

Getting the best perfonnance here requires compile-time analysis of the possible values of I 

and J, so as to be able to decide if the reference to A ( I ) can possibly refer to the same 
memory element as A ( J) . If so, the memory load of A ( J) must be scheduled after the 
store into A (I) , which will reduce parallelism somewhat. 
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Multifiow's Trace Scheduling con1pacting C and FORTRAN con1pilers perfonn this analysis. 
The cmnpilers analyze the values which array index expressions can assume, and build sym­
bolic derivations for their values in terms of local loop induction variables and invariant 
values. They then solve for whether or not the expressions can ever be equal. The process 
is sophisticated but effective, and autmnatically resolves memory references to allow max­
imum parallelistn and cmnpaction. 

2.5 EXAMPLES 

The innennost loop of direct matrix solvers consists of the vectorizable operation Y = ax + 
Y. We include the source, drawn from Argonne National Laboratories' LINPACK, and 
object code produced for the Multifiow TRACE 7/200. We include this code as a simple 
example of Trace Scheduling and VLIW treatment of vectorizable operation patterns. 

The code: 

20 DO 50 I = l,N 
DY(I) = DY(I) + DA*DX(I) 

50 CONTINUE 

Multifiow's Trace Scheduling emnpacting FORTRAN compiler autmnatically unrolls this 
loop, performs a sequence of optimizations, then generates compacted object code, subject 
to data dependencies and tnachine resources. · 

The object code below is for the Multifiow TRACE 7/200. The TRACE 7/200 performs up 
to seven operations in each instruction (see Chapter 4). In the assembly listing below, each 
"inst" token marks a new instruction. Individual 32-bit and 64-bit operations are specified by 
fields of each instruction. Note that pipelined metnory and floating point operations are 
heavily overlapped. Full performance is obtained from pipelined functional units without the 
rigidity of a vector-style control unit. Any operation pattern can be expressed by Multifiow's 
Trace Scheduling cmnpacting con1pilers. 
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?T·._daxpy_.1:: 
L0?3: 
inst · 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 
inst 
inst 
inst 

ialuOe ld. 64 fb0.r2,r3,zero 
ialuOl ld.64 fb0.r4,r3,6#8 
ialuOe ld. 64 fb0.r6,r3,6#16 
ialuOl ld.64 fb0.r8,r3,6#24 
br true and r3 Ll?J; 
ialuOe ld.64 fb0.rl2,r3,6#32 
ialuOl ld.64 fb0 . rl4,r3,6#40 
ialuOe ld.64 fb0.r32,r4,zero 
ialuOl ld.64 fb0 . r34 , r4,6#8 
ialuOe ld.64 fb0.r38,r4,6#16 
ialull bor.32 lib.r5,zero,r36 
ialuOe ld.64 fbO.r42,r4,6#24 
ialuOl ld.64 fbO.r2,rS,zero 
faluO mpy.f64 fbO.r40,rlO,r4; 
ialuOe ld.64 fb0.r46,r4,6#32 
ialuOl ld.64 fb0.r4,r5,6#8 
faluO mpy.f64 fbO.r44,rlO,r6; 
ialuOe ld.64 fb0.r50,r4,6#40 
faluO mpy.f64 fbO.r48,rlO,r8; 
ialuOe ld.64 fb0.r54,r6,zero 
faluO mpy.f64 fbO.r52,rlO,rl2 
ialuOe ld.64 fb0.r36,r6,6#8 
faluO mpy.f64 fbO.r32,rlO,rl4 
ialuOe ld.64 fbO.r40,r6,6#16 
faluO mpy . f64 fbO.r34,rlO,r2 
ialuOe st.64 sbO.rO,r4,zero 
ialuOl ld.64 fb0.r42,r6,6#24 
falul add.f64 lsb.r6,r48,r42 
ialuOe st.64 sb0.r2,r4,6#8 
ialuOl ld.64 fbO.r46,r6,6#32 
falul add.f64 lsb.r8,r46,r52 
ialuOe st.64 sbO.r4,r4,6#16 
ialuOl ld.64 fb0.r32,r6,6#40 
falul add.f64 lsb.rO,r32,r50 
ialuOe st.64 sb0.r6,r4,6#24 
faluO mpy.f64 fbO . rSO,rlO,rl2 
br false or r6 L5?3; 
ialuOe st.64 sb0.r8,r4,6#32 
faluO mpy.f64 fbO . r34,rlO,r2 
br true and r7 L6?3; 
ialuOe st.64 sbO . rO,r4,6#40 
ialull add.u32 lib.r34,r37,6#48 
br false or r4 L7?3; 
ialuOe st.64 sb0.r2,r6,zero 
falul add . f64 lsb.r8,r48,r42 
ialuOe st.64 sb0.r4,r6,6#8 
br true and rS L9?3; 
ialuOe st.64 sb0.r6,r6,6#16 
br false or r6 Ll0?3; 
ialuOe st.64 sbO.r8,r6,6#24 
ialuOe st.64 sbO.rO,r6,6#32 
ialuOe st.64 sb0.r2,r6,6#40; 
br true or false L0?3; 

ialule cgt.s32 lilbb.r3,r32,6#5 
ialull cgt.s32 lilbb.r4,r32,6#4; 

ialule cgt.s32 lilbb.r3,r32,6#3 
ialull cgt.s32 lilbb.r5,r32,6#2 

ialule cgt.s32 lilbb.r6,r32,6#1 
ialull cgt.s32 lilbb.r7,r32,zero; 
ialule add.u32 lib.r35,r32,6#6 
ialull add.u32 lib.r36,r33,6#48; 
ialule add.u32 lib.r37,r34,6#48 
faluO mpy.f64 fbO.r36,rlO,r2; 
ialule bor.32 lib.r6,zero,r37 
ialull add.u32 lib.r33,r36,6#48 

ialule add.u32 lib.r32,r35,6#6 
ialull bor.32 lib.r3,zero,r33 

ialuOl ld.64 fb0.r6,r5,6#16 

ialuOl ld.64 fb0 . r8,r5,6#24 
falul add.f64 lsb.rO,r32,r36; 
ialuOl ld.64 fb0.rl2,r5,6#32 
falul add.f64 lsb.r2,r34,r40; 
ialuOl ld.64 fb0.r2,r5,6#40 
falul add.f64 lsb.r4,r38,r44; 
ialule cgt.s32 lilbb . r4,r35,6#5 
faluO mpy.f64 fbO.r38,rlO,r4 
br false or r4 L2?3; 

ialule cgt.s32 lilbb.r3,r35,6#4 
faluO mpy.f64 fbO.r44,rlO,r6 
br true and r3 L3?3; 

. ialule cgt.s32 lilbb.r5,r35,6#3 
faluO mpy.f64 fbO.r48,rlO,r8 
br true and rS L4?3; 
ialule cgt.s32 lilbb . r6,r35,6#2 
falul add.f64 lsb.r2,r54,r34 

ialule cgt.s32 lilbb.r7,r35~6#1 
falul add.f64 lsb.r4,r36,r38 

ialule cgt.s32 lilbb.r4,r35,zero 
falul add.f64 lsb.r6,r40,r44 

ialule bor.32 lib.r4,zero,r34 
br true and r3 L8?3; 

falul add.f64 lsb . r0,r46,r50 

falul add.f64 lsb . r2,r34,r32 

br true and r7 Lll?J; 
br false or r4 Ll2?3; 

This code runs at 7. 7 1nillion floating point operations per second on the TRACE 7/200. 
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2.5.1 ANOTHER EXAMPLE 

Trace Scheduling and VLIW architectures perform equally well on irregular code. From the 
Lawrence Livermore National Laboratories cmnputational kernels: 

c 
C***************************************************************************** 
C*** KERNEL 15 CASUAL FORTRAN. DEVELOPMENT VERSION. 
C***************************************************************************** 
c 
c 
C CASUAL ORDERING OF SCALAR OPERATIONS IS TYPICAL PRACTICE. 
C THIS EXAMPLE DEMONSTRATES THE NON-TRIVIAL TRANSFORMATION 
C REQUIRED TO MAP INTO AN EFFICIENT MACHINE IMPLEMENTATION. 
c 

c 

15 

30 

31 
32 

33 
34 
35 

36 

37 
38 
39 

40 
41 

42 

DO 45 L 1,Loop 
NR= 7 

DO 
DO 

NZ= n 
AR= 0.053 
BR= 0.073 

45 j = 2,NR 
45 k = 2,NZ 

IF( j-NR) 31,30,30 
VY(k,j)= 0 . 0 

GO TO 45 
IF( VH(k,j+1) - VH(k,j)) 33,33, 32 

T= AR 
GO TO 34 

T= BR 
IF( VF(k,j) -VF(k-1,j)) 35,36,36 

R= MAX( VH(k- 1,j), VH(k-1,j+1)) 
S= VF(k-1,j) 

GO TO 37 
R= MAX( VH(k,j), VH(k,j+1)) 
S= VF(k,j) 

VY(k,j)= SQRT( VG(k,j)**2 +R*R)*T/S 
IF( k-NZ) 40, 39,39 

VS(k , j)= 0. 
GO TO 45 

IF( VF(k,j) -VF(k,j-1)) 41,42,42 
R= MAX( VG(k,j - 1), VG(k+1,j - 1)) 
S= VF(k,j-1) 
T= BR 

GO TO 43 
R= MAX( VG(k,j), 
S= VF(k,j) 
T= AR 

VG(k+1,j)) 

43 VS(k,j)= SQRT( VH(k,j)**2 +R*R)*T/S 
45 CONTINUE 

c .................. . 

For this code, the cmnpiler produces a series of traces . TRACE 7/200 object code for trace 
number ?,again produced by Multifiow FORTRAN release 1.4: 

L12?3: 
inst ia1u0e 1d.64 fbO.r52,r3,6#8 

ia1u11 cgt.s32 1i1bb.r3,r32,6#2 
inst ia1u0e 1d. 64 fbO.r56,r4,6#8 

ia1u01 1d.64 fb0.r60,r5,17#5664 
inst ia1u0e 1d.64 fbO.r32,r5,17#5656 

ia1u01 1d.64 fb0.r34,r7,17#25864 

A New Approach 

ia1u1e bor.32 1ib.r4,zero,r34 
fa1u0 div.£64 1fb.r6,r20,r4; 
ia1u1e cge.s32 1i1bb.r6,r33,zero 
ia1u11 cge . s32 1i1bb . r4,r32,6#2; 
ia1u1e cgt.s32 1i1bb.r7,r32,6#1 
ia1u11 cge.s32 1i1bb.r5,r33,zero; 
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inst ialuOe ld. 64 fb0.r40,r8,6#8 ialuOl ld.64 
inst ialuOe ld.64 fb0.r38,rl2,17#5664 ialuOl ld . 64 
inst ialuOe ld. 64 fb0.r54,r5,6#8 ialuOl ld.64 

falul sub.f64 lfb.r42,r52,r56i 
inst ialuOe ld.64 fbO.rB,r7,17#31520 ialuOl ld.64 
inst ialuOe ld.64 fbO.rlO,r9,6#8 ialuOl ld.64 

falul sub.f64 lfb.r52,r60,r32i 
inst ialuOe ld.64 fb0.rl2,r7,17#31528 ialuOl ld.64 

falul cgt.f64 li0bb.r4,r42,zeroi 
inst ialuOe ld. 64 fb 0 . r 3 2 , r 3 , 6 #16 ialuOl ld.64 

falul sub.f64 lfb.r56,r34,r40i 
ihst ialuOe ld. 64 fb0.rl8,r9,6#24 ialuOl ld.64 

falul clt.f64 li0bb.r5,r52,zeroi 
inst ialuOe ld.64 fb0.r22,r5,17#5672 ialuOl ld.64 

faluO mpy.f64 fbO.r34,rlO,rl0 falul cle. f64 
inst ialuOe ld.64 fb0.r28,r6,6#16 ialuOl ld.64 

faluO mpy.f64 fb0.r52,rl2,rl2 falul cge . f64 
inst ialuOe ld . 64 fb0.rl2,r8,6#16 ialuOl ld.64 

faluO mpy.f64 lsb.rO,r6,r2 falul cgt . f64 
inst ialuOe ld.64 fb0.r24,r5,17#5680 ialuOl ld.64 

faluO mpy.f64 fb0.r56,rl4,rl4 falul cgt.f64 
inst ialuOe ld.64 fb0.r2,r5,6#24 ialuOl ld.64 

faluO mpy.f64 fb0.r46,rl6,rl6i 
inst ialuOl ld.64 fb0.rl8,r3,6#24 faluO mpy.f64 
inst ialuOe st.64 sbO.rO,r7,zeroi 
inst ialuOl st. 64 sb0.r2,r0,6#(?2.1?2loc_stg + Ox lc) 

falul bor.64 lsb.r2,zero,r56i 
inst ialuOl st.64 sbO.rO,r0,6#(?2.1?2loc_stg + Oxc) 

falul bor.64 lsb.r0,zero,r42i 
inst ialuOe ld.64 fb0.r56,r5,17#5672 faluO bor.64 

falul bor.64 lsb . r2,zero,r32i 
inst ialuOl ld.64 fbO.rl4,r8,17#5672 faluO bor.64 

falul bor . 64 lsb.r6,zero,r46i 
inst ialuOe ld . 64 fb0.r46,r6,6#24 faluO bor.64 

falul bor.64 lsb.rlO,zero,r52i 
inst ialule bor.32 lfb . r8,zero,32#1068180176 

ialull bor.32 lfb.r9,zero,32#3758096384 

fb0.r36,rl2,17#5656i 
fb0.r4,r9,zeroi 
fb0.r58,r6,6#8 

fb0.r48,r8,17#5664i 
fb0.r44,r8,17#5672 

fb0.rl4,r9,6#16 

fb0 . rl6,r7,17#31536 

fb0.r20,rl2,zero 

fbO.r26,r5,6#16 
lflbb.rl,r38,r36i 

fbO.rlO,r7,17#25872 
li0bb.r6,r56,zeroi 

fb0.r6,r4,6#24 
lfb.rSO,r58,r54i 

fb0.r42,r5,17#5664 
lib.rl0,r44,r48i 

fb0.rl6,r8,17#5680 

fb0.rl4,rl8,rl8i 

lsb.r4,zero,r2 

lsb.rO,zero,rl4 

lsb.r8,zero,r8 

ialuOl ld.64 fb0.r38,r4,6#16 faluO mpy . f64 fb0.r32,r4,r4 
falul slct.64 lfb.r2,r38,r36i 

inst faluO bor. 64 lfb.r42,zero,r24 falul 
inst ialuOl st. 64 sb0.r4,r0,6#(?2.1?2loc_stg + 
inst ialuOe st. 64 sb0.r8,r0,17#(?2.1?2loc_stg 

ialuOl st.64 sbO.rlO,r0,6#(?2.1?2loc_stg 
inst ialuOe st . 64 sbO.r6,r0,6#(?2 . 1?2loc_stg + 

ialuOl st.64 sb0.rl2,r0,17#(?2.1?2loc_stg 
inst 

inst 
insti 
insti 
insti 

ialuOe 
ialuOl 
ialuOe 

st.64 sbO.rO,r0,6#(?2.1?2loc_stg 
st. 64 sb0.r2,r0,6#(?2.1?2loc_stg 
ld. 64 fb0.r4,r0,17#(?2.1?2loc_stg 

inst faluO mpy.f64 fb0 . r36,r4,r4i 
insti 
insti 

+ 
+ 

+ 
+ 

+ 

bor. 64 lsb.rl2,zero,r56i 
Ox34)i 

OxSc) 
Oxl4) i 

Ox24) 
+ Ox3c) i 

Ox2c) 
Ox 4) i 

OxSc) i 

inst ialuOl ld.64 fb0.r4,r8,6#24i 
inst ialuOl ld.64 fb0.r52,r7,17#25880 br true o r false Ll3?3i 

This code runs at 3.5 MFLOPs on a TRACE 7/200. 
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CHAPTER 3 
COMPILERS 

Multiflow's product line includes fully optimizing Trace Scheduling compacting C and FOR­
TRAN compilers which generate code for the TRACE series of VLIW computers. 

Multiflow's Trace Scheduling cmnpacting cmnpilers exploit fine-grained parallelism to gen­
erate high-performance object code for the TRACE series of VLIW computer systems. The 
compilers pack multiple operations into each wide instruction word, allowing the TRACE's 
hardware functional units to execute those operations simultaneously. 

Multiflow's TRACE series of computers were designed specifically to 1natch the requirements 
and capabilities of Multiflow's Trace Scheduling compilers. This design approach -- software 
technology directing processor development -- has produced extremely efficient, cost-effective 
computer systems. 

3.1 FORTRAN LANGUAGE 

Multifiow FORTRAN fully implements ANSI FORTRAN-77 (ANSI X3.9-1978), including 
features specified in the DoD Supplement (MIL-STD-1753). It is compatible with the older 
FORTRAN 66 standard (ANSI X3.9-1966). Multifiow FORTRAN includes extensions from 
the proposed FORTRAN 8X standard(ANSI X3J3/S8). . . 

VAX FORTRAN compatibility features provide easy program portability from VAX/VMS 
environments. 

Format and syntax extensions include: 

• 32-character variable names 

• End-of-line comments 

• INCLUDE state1nent 

• DATA state1nents may appear in executable code 

• Constant syntax includes Hollerith, hex, and octal 

• Tab character formatting 

Functional extensions include: 

• Direct system call interface from FORTRAN 

• Extended-range DO loops 

• DO WHILE and END DO constructs 
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• Extended I/0 format descriptors 

• ACCEPT and TYPE statetnents 

• Bitwise intrinsic functions 

Data types include INTEGER *2, INTEGER *4, LOGICAL, REAL *4, REAL *8, COM­
PLEX*8, and COMPLEX*l6. All data types are directly supported by TRACE hardware 
facilities. · 

Directives, contained in comment fields, allow the user to control compiler optimizAation. 
Automatic mechanisms for inline substitution, loop unrolling, memory reference disambigua­
tion, and branch prediction may be overruled by the programmer without introducing unport­
able changes to the source code. 

3.2 C LANGUAGE 

Multifiow C includes the complete UNIX Systen1/V standard C language, with the Berkeley 
standard extensions. 

The C compiler front end was derived from the System/V pee front end, with Berkeley exten­
sions added. Syntax, semantics, and error messages are con1pletely compatible with industry 
standard C implementations. 

Runtime data formats are exactly compatible with runthne data formats found on 68020-based 
workstations. Pointers, integer representations, and byte ordering are all compatible. Single 
and double precision IEEE 754 floating point formats are used. 

3.3 STANDARD PROGRAM EXECUTION 

FORTRAN and C programs execute on Multifiow TRACE cmnputers just as they do on con­
ventional "scalar" computers. Programs run in the standard, sequential, predictable way that 
scientific users expect. Conventional program developn1ent and debugging techniques are 
used. 

This is a major benefit to users familiar with standard computer systems. Multifiow's Trace 
Scheduling technology is uniquely able to deliver parallelistn without user involvement, 
because VLIW overlapped execution is below the level of the language. Optimization and 
compilation proceeds automatically, without user guidance and without requiring special pro­
gramming techniques. 
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3.4 COMPILER STRUCTURE AND ORGANIZATION 

The compiler does its job in three phases. Phase 1 is a language-specific front end; Phase 2 is 
an enhanced optitnizer; and Phase 3 uses Trace Scheduling compaction to build TRACE wide 
instruction words. 

FORTRAN 

Analysis 
Optimization 

r----------------------------, 
I 

Phase 3 : 

I 
I 
I 
I 
I 
I 
I 

Generator 
~----------------------------

I 
I 
I 
I 
I 
I. 

Figure 9: Multiflow Trace Scheduling Compacting Compiler Organization 

Independent FORTRAN and C front ends feed a common Phase 2. This strategy guarantees 
cmnpatibility between code produced for FORTRAN and C subroutines and guarantees that 
FORTRAN and C progratns receive the benefits of full optimization. 

3.5 PHASE 2: ANALYSIS AND OPTIMIZATION 

Phase 2 performs a wide range of optimizations on the program's intermediate representation. 
These optimizations have two primary goals: 

• Reducing run-titne computation 

• Reducing data dependency between operations (to increase parallelism). 

As a first step, Phase 2 builds a flow graph of the program. The flow graph represents all pos­
sible control flows through the program, with straight-:-line code sequences, or basic blocks, as 
the nodes in the graph. 

It then perfonns a series of analyses on the flow graph. These analyses will be used during 
optitnization. They include analysis for: 
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• Loop structures 

• Live variables (those that will be used more than once) 

• Reaching definitions (a mapping from a statement defining a variable to statements 
where that variable may be used) 

• Reaching uses (a mapping frotn a statement using a variable to statetnents where that 
variable tnay be defined) 

• Reaching copies (tracing variable assignments). 

Following these analyses, Phase 2 performs optimization. Optimizations include: 

• Induction Variable Simplification. Simplifies calculations within loops by replacing repeti­
tive tnultiplications in terms of an induction variable with iterative addition. For exmnple, the 
two loops below are equivalent: 

10 

DO 10 I=1,J 
K=I*10 
CONTINUE 

K=O 
DO 10 I=1,J 
K=K+10 
CONTINUE 

This optitnization greatly simplifies address calculations for arrays; tnultidilnensional array 
index tnultiplications can be replaced by additions. Often an induction variable can be 
entirely eliminated. This is a special case of Strength Reduction. 

• Common Subexpression Elimination. Simplifies calculations by eliminating expressions that 
are comn1on to two or more statements. For example, the following sequences of code are 
equivalent: 

X 
y 

A*4+B*3 
A*4+D*3 

temp=A*4 
X=temp+B*3 
Y=temp+D*3 

The code on the right is significantly faster because the computation A*4 is only perfonned 
once. 

• Copy propagation. Eliminates needless assignments. The following sequences of code are 
equivalent: 

A 

z 
y 

B A 
S * A Z 
A + 4. 0 Y 

B 

S * B 
B + 4.0 

Since A and Bare not changed between the statement A=B and the use of A, the uses of A 
can be replaced by uses of B. This is preferable because Z=S*B is independent of the assign­
tnent A= B; tnore cmnpaction will be possible. Later, if the first assigmnent is no longer 
used, Dead Code Retnoval will eliminate it. 

• Constant folding. Evaluates constant expressions during cmnpilation; replaces variables 
being used as constants by the constants themselves. 

• Global dead code removal. Removes all code that is unreachable by any legitimate path 
from the start of the program, produces no result that is ever used, or for any other reason 

3-4 Multifiow Technical Summary 



has no effect on the outcome of the program. This optimization "cleans up" after other 
optilnization steps have been performed, removing stubs which bec01ne unreachable after 
other optimizations. 

• Register Variable Detection. TRACE systems have large numbers of general registers. 
Register Variable Detection identifies variables that can reside in registers instead of main 
memory, eliminating 1nemory references. 

• Loop Invariant Motion. Removes unchanging expressions fr01n loops by 1noving then1 out­
side, where they can be calculated just once. 

• Variable renaming. Introduces new names for disjoint uses of the san1e variable. For 
example, the following code sequences are equivalent: 

A 

B 

A 

Z * X 
A * 4 

Q * y 

Al = Z * X 
B Al * 4 
A = Q * y 

The first and second use of the variable A are disjoint. The rena1ned version of the code (on 
the right) has equivalent functionality, but more parallelism available to trace scheduling. 

• Inline substitution. At the points where the source program calls a subroutine, automati­
cally decides whether or not to insert the subroutine into the program directly rather than 
generate a subroutine call. This optimization removes procedure call overhead and allows the 
machine code for the called subroutine to be overlapped in parallel with the code for the cal­
ling routine. Multiflow's Trace Scheduling FORTRAN compiler is unique in that it does 
inline substitution automatically. Compiler heuristics detennine, based on call frequency, 
number of call sites, and object code expansion, when to substitute subroutine bodies inline. 
The inline substitution process generates code that in every respect 1natches the behavior of 
the original subroutine. Other than performance improve1nents, there are no programmer 
visible changes; the behavior of local SAVED variables, COMMON references, etc. are con1-
pletely preserved. 

• Loop Unrolling. Modifies the program's inner loops by replicating their bodies several 
times. This optin1ization exposes parallelis1n between loop iterations, allowing Phase 3 to 
generate more efficient code through compaction of longer traces. Compiler heuristics deter­
Inine loop unrolling mnounts, based on loop body size, expected iterations, and object code 
expansion. 

3.6 PHASE 3 

Phase 3 compacts the program. It takes the optimized sequential representation of the pro­
gram as input, and produces c01npacted ·very Long Instruction Word object code for a 
TRACE serie.s processor as its output. 

Four major modules comprise Phase 3: 

The Trace Scheduler, which builds a flow graph of the progra1n and picks execution paths, or 
traces, for compaction; 
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The Code Generator, which compacts the operations in each trace into wide instructions; 

The Machine Model, which represents the resources and architectural rules for each TRACE 
processor; and 

The Disambiguator, which solves array index expressions to distinguish tnetnory addresses 
and allow parallel execution of memory references. 

3. 7 COMPACTION 

Operations are scheduled using information about program control flow, data dependencies 
atnong operations, and hardware resources . 

• Control flow. Control flow analysis, performed by the trace scheduler, allows scheduling of 
operations drawn frmn the source progran1 beyond basic block boundaries . Statistical infor­
mation about program execution is gathered frmn sample runs of the application or generated 
by compiler heuristics. These statistics guide the selection of long execution paths, or traces, 
for compaction. The selection process begins with the most frequent execution path, com­
pacting it for highest performance, then repeats, picking traces and compacting thetn until the 
entire program has been cmnpiled. As each trace is picked, the trace scheduler calls the 
code generator to generate machine code for the trace. 

Each trace is compacted as a whole. The code generator has access to parallelism throughout 
the trace. Instead of the small · nmnber of operations available within straight-line "basic 
blocks", hundreds or thousands of operations become candidates for overlap. Many oppor­
tunities for parallel execution are present, and compaction yields large speedups . 

This large-scale · overlapping n1oves operations in ways which could cause logical inconsisten­
cies when the program branches off the chosen trace. The trace scheduler adjusts the flow 
graph of the remaining progrmn, adding small amounts of compensation code to correct for 
scheduling-generated inconsistencies and ensure correctness for all execution paths. 

For example, if an operation is scheduled after a branch which it originally preceded, a cmn­
pensation copy will be made of the operation on the off-trace branch path, if any operations 
along the off-trace path depend upon the operation. 

• Data dependencies. Data dependencies are managed while scheduling operations into wide 
instructions. Extensive analysis and optitnization is perfonned to eliminate "surface" depen­
dencies which resillt frotn the expression of the program, rather than from the algorithm 
itself. Memory references are exhaustively analyzed, using index expression derivation 
analysis and symbolic evaluation, to minitnize conflicts atnong array references. 

The code generator first builds a graph showing every operation on the trace, and the data 
dependencies among operations. It then uses this graph to assign operations to functional 
units, to assign registers, and to generate an efficient sequence of wide instruction words. 

In placing operations, the code generator takes advantage of the exposed nature of the 
hardware, deciding which functional unit should perform each operation. 

Memory reference analysis and detailed compiler knowledge of the TRACE memory 
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structure further allows c01npile-tin1e management of metnory banks. This provides high 
memory bandwidth via an interleaved, pipelined n1emory system without "stunt boxes" or 
hardware metnory reference schedulers. 

• Hardware resources . Multiflow compilers incorporate a detailed tnodel of the TRACE 
hardware which includes functional unit opcodes, pipeline depths , resource requirements, and 
datapath interconnect. The con1pilers completely control the operation of the hardware on a 
cycle-by-cycle basis, and manage system hardware resources such as buses, functional units, 
memory banks, and register write ports. Control and scheduling hardware has been replaced 
by compiler tnanagement. 
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CHAPTER 4 
TRACE COMPUTER SYSTEMS 

Multiflow TRACE computers are an upgradable, compatible processor fan1ily offering from 
53 to 215 VLIW MIPS and from 30 to 120 MFLOPs single precision, and from 15 to 60 
MFLOPs double precision. Floating point .cmnputation confonns to IEEE standard 754. Up 
to 28 fast functional units operate simultaneously, in a single, synchronous execution stream, 
under the control of a Very Long Instruction Word. The central processor includes multiple 
high-performance integer/logical units, memory reference units, floating point multiply/divide 
units, floating point add/logic units, and a floating point square root unit. 

TRACE systems are designed for integrity and reliability using high-speed, low-power CMOS 
VLSI cmnponentry with advanced Schottky TTL support logic. 

TRACE systems feature large, high-bandwidth, low-cost main 1nemory, with sustained perfor­
Inance to 492 Megabytes per second and capacity to 512 Megabytes. Memory is detnand­
paged and virtually addressed, with 4 Gigabytes per user process. 

Unlike coarse-grained parallel systems, no high level regularity in the user's code is required 
to 1nake effective use of the hardware. VLIW instructions can express any pattern of parallel 
execution. Unlike multiprocessor systems, there is no penalty for synchronization or com­
tnunication. All functional units run completely synchronized, directly controlled in each 
clock cycle by the compiler. No queues, recognizers, or interrupt 1nechanisms are required 
to move data about the processor. 

The true cost of every operation is exposed at the instruction set level, so that the compiler 
can optilnize operation scheduling. Pipelining allows new operations to begin on every func­
tional unit in every instruction. Exposed concurrency allows the hardware always to proceed 
at full speed, since the functional units never wait for each other. 

Pipelining also improves the system clock speed. Judiciously used s1nall scale pipelining of 
operations like register-to-register n1oves and integer Intlltiplies, together with the more tradi­
tional floating point calculation and memory reference pipelines, allows a fast clock rate for 
TRACE CPUs with low-cost, reliable electronics. 

There is no microcode. Hardware directly executes the Very Long Instruction Words, 
without the overhead of intermediate interpretation or decoding steps. 

Over the last two decades, the cost of computer memory has dropped 1nuch faster than the 
cost of logic, making the construction of a VLIW, which replaces scheduling logic with 
instruction-word memory, practical and attractive. 

VLIWs yield a type of computation that users are accuston1ed to. Unlike multiprocessor sys­
tems, VLIW execution patterns are fully static; the fine-grained execution pattern does not 
depend on how many users are using the machine concurrently. Progrmns run the same way 
every tilne, in1proving software testability and problem isolation. 

TRACE systems are designed for large-scale applications. Functional units are optimized for 
64-bit floating-point intensive computations, with high perfonnance integer and 32-bit floating 
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computations. Excellent multi-user Unix performance is achieved; many hardware features 
improve performance in a tnultiple-process interactive environment. 

4.1 SYSTEM ARCHITECTURE 

TRACE computers are tnodular, expandable machines. The core circuitry is itnpletnented in 
low-power, reliable 2 micron CMOS VLSI, with advanced Schottky TTL support logic. Main 
tnemory is impletnented with high density, low-cost Dynamic RAMs, using pipelined and 
interleaved design techniques for very large capacity and perfonnance at low cost. 

Six basic module types make up the system: Integer Units, Floating-Point Units, Memory 
Controllers, Memory Modules, I/0 Processors, and a Global Controller. The core of the 
Integer and Floating Point ·units is built in 8000-gate 2-micron CMOS gate arrays. 

Compact packaging provides reliability and minitnal space requirements. A single 24 inch 
backplane acommodates CPU and memory in all configurations. 

4.2 INTEGER UNIT 

The TRACE integer instruction set con1prises over 80 operations, including arithmetic, logi­
cal, and compare operations; high performance pritnitives for 32-bit and 64-bit multiplication; 
shift, bit-reverse, extract, and merge operations for bit and byte field manipulations; and pipe­
lined 32-bit and 64-bit load and store operations for referencing tnetnory. 

Each Integer Unit contains two Arithmetic/Logic Units units (ALUO and ALUl) associated 
with a register bank of 64 general-purpose 32-bit registers. The register bank incorporates 
tnultiple read and write ports and a bus-to-bus crossbar atnong its twelve bus ports. During 
one instruction, eight reads, eight writes, and eight bus-to-bus data moves can be accommo­
dated. 

Each instruction executes in two 65 nanosecond tninor cycles, or "beats." Each ALU per­
forms a new 32-bit operation during each beat; four separate integer or address computations 
are perfonned on each Integer Unit during each instruction. Integer operations cotnplete 
itntnediately, without pipeline delay. 

A Program Address unit provides target branch addresses. Prioritized conditional branch 
operations are based on the results of comparison operations. 

Substantial support is provided for injecting immediate constants into computation. Each 
ALU can use a 6-bit, 17-bit, or 32-bit immediate constant, under the control of the instruc­
tion word. A 32-bit immediate field of the instruction is flexibly shared between ALUO, 
ALUl, and the Program Address unit. 

The Integer Unit also contains a virtual to physical address translation buffer (TLB). The 
TLB contains 4K process-tagged entries, so that the TLB need not be flushed at every context 
switch and provides a high multi-user hit rate. Operating system software manages TLB con­
tents and handles "misses". TRACE systems support 4 gigabytes of data address space per 
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Figure 10: TRACE 7/200 Major Datapaths 

4.3 FLOATING-POINT UNIT 

Like the Integer Unit, the Floating-Point Unit contains a bank of 64 general-purpose 32-bit 
registers with a bus-to-bus crossbar. 32-bit registers are used in pairs to hold 64-bit values. 
Functional units include a floating-point tnultiplier/divider (FMUL), a floating-point adder 
(FADD), and two integer ALUs. · An additional register bank of 32 "Store" registers expands 
register bandwidth and ilnproves memory reference performance. 

The floating operation suite includes the integer opcodes, plus floating opcodes for addition, 
subtraction, multiplication, division, type conversion, and comparison. 

Exception handling hardware provides several modes of operations, including full compliance 
with IEEE 754 exception processing. 

Pipelined design techniques allow the multiplier, the adder, and the integer ALUs to initiate a 
new operation with every instruction regardless of the previous instruction. 64-bit floating 
addition has a pipeline depth of six beats, or 390 ns; 64-bit floating n1ultiplication has a seven 
beat pipeline. 
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Word 0: I 0 ALU 0, Early beat. 
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Figure 11: TRACE 7/200 Instruction Word Format 
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Figure 11 shows the instruction word for a TRACE 7/200. The representation as 32-bit words 
corresponds to the way instructions are stored in main memory; the entire 256-bit instruction 
is fetched and executed simultaneously. 

The instruction word for a TRACE 28/200 has this format replicated four times, with 
separate fields of the instruction controlling the operations of multiple Integer Units and 
Floating Units. 

4.4 THE MEMORY SUBSYSTEM 

Unique cooperation between Multiflow's compilers and the TRACE hardware architecture 
allows the construction of a men1ory systetn which can sustain high bandwidth without the 
litnitations of data caches or the costs of hardware memory-reference schedulers. 

The speed of the CPU/memory interconnection in a computer systetn is a n1ajor determining 
factor in overall systen1 performance. Every modern computer design has to handle the 
mismatch in speed between the dynatnic RAMs used to build the memory and the (much fas­
ter) logic used to build the processor. 

For standard sequential processors which cannot express or tolerate parallelism among 
tnetnory references, the overall tnemory bandwidth B = 1/L, the latency for a single refer­
ence. Sequential processors frequently include cache memories for data references. Caches 
provide lower latency than tnain memory when there is reasonable locality of reference in the 
access pattern. Shared-tnetnory tnultiprocessors depend upon caches to lower the n1emory 
bandwidth requiretnents of each processor, so that tnultiple processors can share a bus to 
memory. 

Data caches, however, work poorly in tnany scientific applications, where very large arrays of 
data are repeatedly accessed. During tnatrix solves and other large-scale c01nputations, cache 
hit rates fall off rapidly. Systetn performance degrades to the performance of the n1ain 
men1ory. 

High-end superc01nputers employ a different approach. Through overlapped scalar execution, 
and through vector metnory references, parallelistn atnong metnory references can be 
identified. In this case, overall memory bandwidth is potentially B = N 1 L, where N is the 
number of references pending sitnultaneously. The memory systetn is interleaved and pipe­
lined. Metnory addresses are spread across tnultiple independent banks of RAMs. While 
one or tnore new references may be initiated in each cycle, each reference requires multiple 
cycles to complete. 

One problen1 in high-end superc01nputer design is managing the status of several sin1ultane­
ously outstanding references. In a traditional scalar or scalar/vector supercomputer, a 
hardware bank scheduler, or "stunt box", is required to track the busy status of each bank of 

· memory, watch each memory address, and prevent conflicts by temporarily suspending execu­
tion. Conflicts would arise if a single bank of RAMs were accessed while still busy process­
ing an earlier reference. 

Multiflow TRACE systetns achieve the consistently high memory performance of large-scale 
supercomputers without the costs and complexities of hardware scheduling. The TRACE 
architecture incorporates a software-managed interleaved memory system. Memory addresses 
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are spread across multiple independent banks of RAMs. The memory system is pipelined; up 
to eight new references may be initiated in each instruction. Multiple RAM banks cycle 
si1nultaneously to provide massive bandwidth. Multiflow's cmnpilers incorporate knowledge 
of the TRACE memory bank structure, and generate code that executes correctly and at high 
performance without requiring hardware scheduling. 

Multiflow's compilers schedule memory references by analyzing array index expressions and 
the cmnpiler's placement of data in memory. The compiler builds derivation trees for array 
index expressions and solves for whether or not references can conflict. 

Under this approach, software guarantees that conflicts cannot occur. This allows TRACE 
computers to provide uniformly high speed access to very large main memories at very low 
cost. 

The memory subsystem consists of up to eight Memory Controllers, each of which carries up 
to four Memory Modules. Sixteen 32-bit data and address buses interconnect the TRACE 
CPU and Memory Controllers, for high sustainable performance. Memory references, includ­
ing virtual address translation, have a seven beat pipeline depth. 

Each Memory Module carries two independent banks of RAM. Memory addresses are inter­
leaved among controllers and banks. A fully populated system is 64-way interleaved, with a 
capacity of 512 Megabytes, using 1 Megabit DRAM technology. 
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Figure 12: TRACE System Bus Architecture 
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4.5 INSTRUCTION CACHE 

The CPU's Global Controller coordinates instruction fetch and execution and controls the . 
Instruction Cache. The Instruction Cache is virtually addressed and process-tagged; for 
excellent multi-user performance. Due to process tagging, cache "cold starts" occur rarely, 
not at every process context switch. The Instruction Cache accomodates 8K instructions in 
all processor configurations. In a fully configured system, this corresponds to 1 tnegabyte of 
instruction cache with a cache bandwidth of 984 megabytes per second. 

Instruction virtual addresses are translated to physical addresses during cache refill through a 
dedicated instruction-stream translation buffer (ITLB). The ITLB has 4K process tagged 
entries, with an addressing scheme which optimizes multiple-process hit rates. 

Because TRACE instructions are directly executed without decoding or microcode dispatch­
ing, instruction fetching and branching is fully overlapped with execution and never stalls or 
restrains the processor except on cache misses. Conditional branch operations never delay 
computation. 

4.6 INSTRUCTION COMPACTION 

Not every very long instruction word in every compiled program will be fully packed with 
operations. Yet each instruction in a fully configured machine is 1024 bits long. The unused 
parts are filled with no ops, which would take up a significant amount of memory if stored 
there. To save main memory space, TRACE systetns store instructions in memory in a 
compressed form. An encoding is used such that empty instruction fields take up no physical 
space in the main metnory. This allows maximmn expressible parallelism with minimal object 
program size. 

4.7 MULTI-WAY J.UMP 

The TRACE architecture incorporates a multi-way conditional jump, used by Multiflow com­
pilers to compact tnultiple source progratn conditional jump operations into single instruc­
tions. Up to four conditional jmnps can be executed in each instruction. A software con­
trolled priority mechanism selects one of five target addresses at which execution will con­
tinue. Multiflow compilers use this mechanistn to allow · simultaneous execution of tnultiple 
conditional jumps. 
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4.8 HARDWARE SQUARE ROOT UNIT 

The Global Controller includes a high-perfonnance floating-point Square Root Unit. The 
Square Root Unit extracts a 32-bit square root in 4.8 microseconds, and a 64-bit square root 
in 7.8 microseconds. 

4.9 I/0 PROCESSOR 

I/0 transactions on the TRACE system are handled by I/0 Processors (lOPs). Up to two 
lOPs are currently configurable per system. 

The CPU fully overlaps execution with I/0, and is relieved of interrupt-handling, optiiniza­
tion, and device management tasks. Each lOP includes: 

• A Motorola MC68010, with 2 megabytes of local RAM 

• A 512 Kbyte multiported, high-bandwidth buffer 1ne1nory 

• A DMA engine which reads and writes main memory at 123 MB/s 

• A 6 megabyte per second interface to the VMEbus 

• Interrupt facilities to/from the CPU 

• A diagnostic-channel interface to the CPU 

An intelligent channel protocol is ·used to direct I/0 operations. Each lOP carries out I/0 
operations, stealing small bursts of time for block data transfers to and from 1nain memory. 
The CPU is involved only when each high-level transaction completes. Due to the high 
bandwidth of the DMA engines, the CPU is slowed by at n1ost 6°/o when both lOPs are fully 
active. 

4.10 CONFIGURATIONS 

Three upwards-compatible, field-upgradable processor models are currently included in the 
TRACE series: 

The TRACE 7/200 features: 

• One Integer Unit 

• One Floating-Point Unit 

• 256-bit instructions 

• 7 operations per instruction 
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• 256 KByte instruction cache 

• 984 Megabytes per second register bandwidth 

• 53 VLIW MIPs 

• 30 MFLOPs single precision 

• 15 MFLOPs double precision 

• 123 Megabytes per second memory bandwidth 

• 32 to 512 Megabyte memory capacity 

The TRACE 14/200 features: 

• Two Integer Units 

• Two Floating-Point Units 

• 512-bit instructions 

• 14 operations per instruction 

• 512 KByte instruction cache 

• 1968 Megabytes per second register bandwidth 

• 107 VLIW MIPs 

• 60 MFLOPs single precision 

• 30 MFLOPs double precision 

• 246 Megabytes per second memory bandwidth 

• 32 to 512 Megabyte memory capacity 

The TRACE 28/200 features: 

• Four Integer Units 

• Four Floating-Point Units 

• 1024-bit instructions 

• 28 operations per instruction 

• 1024 KByte instruction cache 

• 3692 Megabytes per second register bandwidth 

• 215 VLIW MIPs 

• 120 MFLOPs single precision 

• 60 MFLOPs double precision 

• 492 Megabytes per second memory bandwidth 

• 32 to 512 Megabyte memory capacity 

The family is upward compatible; object code compiled for a stnaller model will run 
unchanged on a larger one. Recompilation is required to obtain higher performance on the 
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larger system. 

4.11 INTEGRITY, RELIABILITY AND SERVICEABILITY 

TRACE syste1ns are intended to handle enormous cmnputations with large numbers of 
hardware functional units. Accordingly, Multiflow has taken great care in the system design 
to assure cmnputational integrity, and to eliminate undetected transient errors. 

All general registers, buses, and 1najor datapaths incorporate parity checking. Parity 
hardware verifies that data is correctly transmitted and stored. Byte parity is con1puted on­
chip when functional units generate results, and checked on-chip when functional units accept 
operands. Parity flows throughout the system and is stored in registers, for end-to-end protec­
tion. To avoid impacting the system cycle time, parity is transmitted and checked one clock 
period following data. 

Main 1nemory is protected by error detection and correction logic which a1.Itomatically 
corrects all single-bit errors and detects all double-bit errors. Seven extra bits are stored for 
each 32-bit field stored in n1emory, providing enough redundancy to allow all single-bit errors 
to be transparently corrected, and all double-bit errors to be detected. A me1nory scrubbing 
protocol ensures that all of main memory is accessed and rewritten with corrected data on a 
regular basis. Error correction significantly improves system reliability, as it co1npensates for 
the primary source of errors in modern computer systems: soft errors (dropped bits) in 
dynamic RAMs. 

The Instruction Cache and address translation buffers detect and correct single-bit errors. 
Byte parity is stored with the cache data; parity errors are treated as cache n1isses, and the 
cache entry is transparently reloaded from the backing store. This technique has a similar 
i1npact on overall system uptime; occasional static RAM errors can be tolerated. 

The n1aster lOP runs a small support operating system, MDX (Multiflow Diagnostic Execu­
tive), and is responsible for power-on test and system bootstrap. It accesses a dedicated disk 
partition with an independent file system containing bootstrap programs, diagnostics, and 
error logs. 

MDX provides a single-process UNIX environment running on the lOP, including shell and 
syste1n calls. This allows for rapid development and deploy1nent of diagnostics and CPU 
1nonitoring tools. MDX shares device drivers with TRACE/UNIX, and ·can operate con­
currently with TRACE/UNIX. 

The 1naster lOP further supports the TRACE's comprehensive diagnostic facility. The lOP 
includes a special-purpose diagnostic channel to probe every part of the TRACE system. 
Through the diagnostic channel, diagnostic programs have direct access to every signal on the 
CMOS VLSI arrays as well as access to cache, registers, and logic throughout the system. 
This provides major benefits in fault isolation. The diagnostic channel also configures every 
board; no switches or jumpers are present on CPU or me1nory boards. This allows full 
retnote reconfiguration and test, and improves reliability. 

The TRACE Environmental Processor (EP) monitors operating conditions and enforces 
safety liinits. The EP communicates with the operator console, front panel, n1aster lOP, and 
ren1ote diagnosis tnodem. It monitors system DC voltages, temperature, air flow, and AC 
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power. The EP controls AC power on/off, and power supply DC voltage settings . 

Via the EP and the diagnostic channel, diagnostic software can exercise the syste1n at 
high/low voltage margin conditions and high/low clock rates. Syste1ns are tested in manufac­
turing and at customer sites at these margin conditions to ensure reliable operation, with a 
substantial "safety zone" beyond normal operating conditions. 

The EP allows all this to be done remotely, via telephone lines and a built-in 1node1n. Under 
customer keyswitch and password control, Multiflow service engineers can remotely check out 
any syste1n, control system power, measure and margin voltages, run diagnostics, and study 
the results. · 
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CHAPTER 5 
TRACE/UNIX OPERATING SYSTEM 

Multiflow's TRACE syste1ns run the TRACE/UNIX operating system, a version of the 
Berkeley 4.3 BSD UNIX operating syste1n that has been extended and enhanced for scientific 
applications. 

TRACE/UNIX harnesses the power of TRACE computer systems and delivers it to the user. 
TRACE/UNIX provides a kernel which manages the 1nachine, a powerful and flexible co1n-
1nand language, an easy-to-use hierarchical file system, and a large suite of utility programs 
for text processing, progrmn develop1nent, and communications. 

TRACE/UNIX includes functional and performance enhance1nents for the technical con1put­
ing environment. Optional packages provide transparent distributed file capabilities (NFS), 
com1nunications with DEC systems (DECnet compatibility), inter-vendor remote procedure 
call (Network Computing System), and c01n1nunications with IBM systems. 

Multiflow's TRACE/UNIX provides unprecedented operating system performance. All pro­
grams running on the TRACE, including utilities and the TRACE/UNIX kernel itself, run at 
high speed via VLIW overlapped execution. This approach differs sharply from other high­
performance systen1s which run the operating syste1n on an external, slower processor. In the 
TRACE/UNIX enviromnent, the operating syste1n does not become a bottleneck that lin1its 
performance. 

5.1 ONE ENVIRONMENT 

UNIX has become the industry standard for technical computing enviromnents. Compatible 
UNIX systems span the range from personal computers to high-end supercomputers. A 
robust set' of networking, file sharing, and remote graphics tools allows Multiflow TRACE 
systems to fully participate in this continuum. Multiflow systems can act as compute servers 
for large networks of UNIX-based syste1ns without user retraining. 

5.2 SUPPORT FOR LARGE-SCALE FORTRAN COMPUTATION 

The primary goal of TRACE/UNIX is high-quality support for execution and develop1nent of 
large-scale scientific and engineering FORTRAN applications. 

TRACE/UNIX supports very large progra1ns and data. All the tools involved in software 
development -- compilers, debuggers, linkers, profilers, configuration managers, and file sys­
tem tools -- have been tuned to handle programs 1nany hundreds of thousands of lines long, 
contained in hundreds or thousands of source files. TRACE/UNIX handles extremely large 
files, not bounded by the size of disk volumes. 
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TRACE/UNIX includes a simple, complete batch system to manage large-scale compute­
intensive jobs. Network batch service allows convenient use of TRACE systetns as network 
compute servers. 

5.3 COMMAND LANGUAGES 

A command interpreter, or shell, provides operating system services to the user. 
TRACE/UNIX offers two shells which provide sitnple, consistent, powerful cmnmand of the 
system. Both the AT&T-developed Bourne shell (sh) and the Berkeley-developed C shell 
(csh) are fully supported by TRACE/UNIX. 

The two shells perfonn sitnilar functions and accept similar command languages. Both offer 
the full power of Unix, including tnultiple process management, and shnple I/0 retargeting. 
They differ in their progrmnming facilities: loop constructs, string handling, and the like. 

The interactive user sees the shell as his cmnmand environment. The shell accepts input 
from the terminal, and finds system or user programs and executes them as the user specifies. 

The shell, in cooperation with the Unix operating system, can direct output frmn one pro­
gram to be the input to another. Shell cmnmancls can be combined in simple ways and be 
stored in command files, so that tnany routine programming tasks· can be accomplished 
without writing C or FORTRAN progratns. 

5.4 SYSTEM EFFICIENCY 

A number of Multiflow extensions increase TRACE/UNIX system efficiency in handling large 
scientific programs. 

TRACE/UNIX pages progratns from the executable file itself, using backing store ("swap 
space") only for the program's private data. This greatly speeds starting large programs, and 
increases the amount of virtual tnetnory supportable by a given configuration. 

TRACE/UNIX provides "copy-on-write" process creation. When a new process starts, its 
address space is shared with its parent. Pages are copied only when the new process attempts 
to modify shared pages. This elitninates large mnounts of data copying at process start-up. 

A shared library facility boosts systetn performance by maintaining only one copy of widely 
used subroutines, paging this library on a system-wide basis. This facility hnproves disk usage 
efficiency, elitninating copies of widely used routines in every program image. 

·High-accuracy · timing facilities assist in progratn measurement and tuning. The TRACE 
. hardware provides counters which measure CPU time, accurate down to the clock cycle. 
These timers are tnade available to TRACE/UNIX and directly to user code, for low­
overhead precise time measurement. 
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5.5 A SUPERCOMPUTER FILE SYSTEM 

The TRACE/UNIX file systetn provides an easy-to-use hierarchy of directories and files span­
ning multiple physical devices. A single, consistent naming strategy allows specification of 
files anywhere throughout the local and network file system. Files are byte sequences. 
TRACE/UNIX imposes no internal structure on files, such as records or blocking. User pro­
grams have complete control over file contents. 

TRACE/UNIX incorporates significant file systetn enhancetnents beyond other UNIX hnple­
mentations. 

TRACE/UNIX manages its file system using up to 32 KByte disk blocks, a data cache of up 
to 32 Megabytes, directory look-up caching, file write-behind and read-ahead, and a tuned file 
allocation algorithm. This provides for very high filesystetn performance across a broad range 
of applications, including general timesharing and progrmn development. The filesystem has 
been tuned for very large files. 

TRACE/UNIX includes a facility for explicit, asynchronous, physical I/0. This provides 
large-scale applications the ability to explicitly overlap I/0 and computation, with I/0 
proceeding directly from buffers in program address space. I/0 intensive applications can 
directly manage I/0 strategies for best perfonnance. 

The TRACE/UNIX file striping facility allows filesystems to be transparently spread across 
multiple disk units and controllers, providing configurable file system bandwidth. High­
throughput file access is available transparently to the application program. 

5.6 HIGH PERFORMANCE I/0 

TRACE/UNIX, in concert with the TRACE systetn architecture, provides high performance 
I/0 to provide balanced systen1 throughput. 

I/0 driver modules run primarily on the TRACE systetn I/0 Processors, offloading the CPU 
and minimizing overhead. lOPs access n1ain n1e1nory in bursts at 123 megabytes per second 
and interrupt the CPU only when I/0 transactions complete. 

Devices are configured in TRACE/UNIX system at boot tilne. No "sysgen" or custom ker­
nel linking is required to handle site-specific device configurations. A configuration file, 
managed by the MDX operating systetn running on the lOP, specifies the correspondence 
between physical and logical devices to the operating system. This makes device upgrades 
and system configuration flexible and simple. 
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5.7 HIGH PERFORMANCE WITH MULTIPLE PROCESSES 

TRACE systems were designed to run large nmnbers of user processes at high speed; the 
design goal was to support as many users as would be comfortable on a modern, large super­
mini, but to support order-of-magnitude larger c01nputations than current superminis could 
support. 

Context switch speed is an important factor in the effectiveness of a computer system in han­
dling many users. Context switch time is often considered to be simply the cost of saving and 
restoring registers. However, the full cost of a context switch also includes the interrupt 
time, scheduling overhead, and any penalty for cache purging and cold-start. On many 
machines, the cost of purging the virtual address translation (TLB) and instruction caches is 
far higher than the time required for register saving. The TRACE provides very large instruc­
tion and translation caches, which are process-tagged with an 8-bit "Address Space ID". No 
purging of the cache or TLBs is necessary on a context switch. 

Updating the ASID registers is cheap, and the high available memory bandwidth allows a 
complete context switch in 300 microseconds. This figure makes it possible for TRACE sys­
tems to comfortably support large numbers of users. 

5.8 SOFTWARE PRODUCTIVITY TOOLS 

TRACE/UNIX includes a range of utilities for software development, including compilers, 
debuggers, pro filers, and source code manage1nent tools. 

Software configuration and revision control is accomplished via the make utility and the Revi­
sion Control System (RCS). 

Using make, a developer declares the structure of his application once. As code is 
developed, make ensures that the latest changes are incorporated each time a program is 
built, and that all configuration requirements have been met. Make elhninates manual steps 
in software development, reducing the potential for errors. 

RCS is a source-code management tool designed to aid in managing large progrmnming pro­
jects. It allows the maintenance of all versions of a program in a recoverable form; elim­
inates problems stemming from multiple program1ners n1odifying the smne code at once; and 
provides a complete audit trail for revisions. 

Two debuggers are provided: adb and dbx. Adb is an assembly-language debugging utility. 
Dbx is a source-language debugging utility for C and FORTRAN programs, providing break­
pointing, source-level code and data exa1nination, and a wide range of powerful features to 
speed application debugging. TRACE/UNIX is unique in its support for "address break". 
Dbx, in conjunction with special address break hardware built · into the TRACE, allows the 
user to suspend execution whenever a specified memory location is accessed. 

TRACE/UNIX includes three profilers: a branch-probability profiler integrated with 
Multifiow's C and FORTRAN c01npilers for i1nproving trace-picking heuristics, the prof 
profiler which provides program-counter histogramming, and the gprof profiler which further 
provides call-graph information. Together, these tools provide the developer accurate 
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information about program behavior to aid in performance tuning. 

The shell provides sy1nbolic traceback on progra1n errors. Progran1 problems are pinpointed 
with line number and call-stack information. 

5.9 SYSTEM UTILITIES 

TRACE/UNIX includes the complete set of 4.3BSD utilities. These provide technical pro­
fessionals a toolkit for a wide range of tasks beyond numerically intensive computation. 
Major applications include: 

• Interactive screen editors. Three editors (plus an optional EDT-cmnpatible fourth) provide 
session logging, intelligent formatting, and· compatibility with a wide range of terminals and 
workstations. 

• File and filesystem management. Many tools for file comparison, sorting, searching, direc­
tory and filesystem management are included. 

• Personal utilities. Extended-precision desk calculators, calendar utilities, and electronic 
mail. 

e Text processing. Spelling checkers, dictionaries, and typesetting tools including table and 
equation processors. 

• Online documentation. Interactive tutorials for TRACE/UNIX and screen editors, cmn­
plete online documentation, and keyword search facility. 

5.10 DEC COMPATIBILITY 

The TRACE/UNIX VMS compatibility package provides the VMS-knowledgeable user a 
bridge to the power of TRACE systems without retraining. 

Multiflow's compatibility package offers compatibility at three levels: 

• User skills. We don't want to impose retraining requiren1ents for engineers and other 
technical -professionals who use large-scale computation in support of their jobs. We offer an 
EDT -compatible text editor and DCL-compatible c01n1nand interpreter, so that the environ­
Inent the user sees is a familiar and productive one without retraining. 

• FORTRAN programs. Multiflow FORTRAN includes extensions for compatibility with 
VAX FORTRAN. We will make it easy to move large FORTRAN applications from VAX 
systems without modification. 

• Network Environment. Multiflow TRACE systen1s can operate as end nodes in DECnet 
Phase IV networks, allowing a TRACE to be as transparently integrated as another VAX. 
No hardware, software, or user training changes are required to use TRACE systems as net­
work resources. 
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CHAPTER 6 
RESULTS 

The combination of VLIW architecture and Trace Scheduling compacting compilers yields a 
substantially more cost-effective computing systetn than any other approach. Multiflow's 
technologies obsolete vectorization and other coarse-grained parallel approaches to large-scale 
computing. 

Multiflow systems are cost-effective not only in CPU price/performance, but in user effort as 
well. Multiflow's technologies deliver full perfonnance without application restructuring. 
Unlike vectorization or "parallelization", Trace Scheduling cmnpacting compilers require no 
special loop structures to detect and exploit parallelistn. Every loop in every program bene­
fits from overlapped execution. Straight-line, loop-free code also receives the full perfor­
tnance benefit of VLIW overlapped execution. At Multiflow, we don't talk about what per­
centage of the loops we've "parallelized"; our nmnber is always 100°/o. Instead, we measure 
how successful our global optimizations are on any given application. 

Multiflow is delivering performance and value to users today. Early performance results 
reflect the "breakthrough" nature of Trace Scheduling and VLIW technologies. Figure 13 
presents early performance results for Multiflow's entry-level TRACE 7/200. The 'TRACE 
7/200 is, by a large margin, the lowest cost systetn listed in the table. 

TRACE DEC Convex Alliant IBM Cray 
7/200 8700 C-1 XP FX/8-8 3090-200 X-MP/12 

Industry Standard Benchmarks: 
(Units) 

Compiled Linpack 6.0 0.97 3.0 7.6 6.8 24.0 
Full Precision 
(MFLOPs) 

Whetstone 12605 3953 4200 3630 25000 35000 
(Double Precision KWHETs) 

Livermore Loops 2.3 N/A 1.2 1.6 N/A 9.8 
(Double Precision, 24-kernel MFLOPs) 

Dhrystone 14195 8500 7000 6500 31250 17857 
(DHRYs) 

Figure 13: Initial Multiflow TRACE 7/200 Performance Results 
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