

An interview with
Gaston Gonnet

Conducted by Thomas Haigh

On
16-18 March, 2005
Zurich, Switzerland

Interview conducted by the Society for Industrial and Applied Mathematics, as part of grant #
DE-FG02-01ER25547 awarded by the US Department of Energy.

Transcript and original tapes donated to the Computer History Museum by the
Society for Industrial and Applied Mathematics

© Computer History Museum

Mountain View, California

Gonnet, p. 2

ABSTRACT

Born in Uruguay, Gonnet was first exposed to computers while working for IBM in Montevideo
as a young man. This led him to a position at the university computer center, and in turn to an
undergraduate degree in computer science in 1973. In 1974, following a military coup, he left for
graduate studies in computer science at the University of Waterloo. Gonnet earned an M.Sc. and
a Ph.D. in just two and a half years, writing a thesis on the analysis of search algorithms under
the supervision of Alan George. After one year teaching in Rio de Janeiro he returned to
Waterloo, as a faculty member.

In 1980, Gonnet began work with a group including Morven Gentleman and Keith Geddes to
produce an efficient interactive computer algebra system able to work well on smaller
computers: Maple. Gonnet discusses in great detail the goals and organization of the Maple
project, its technical characteristics, the Maple language and kernel, the Maple library, sources of
funding, the contributions of the various team members, and the evolution of the system over
time. He compares the resulting system to MACSYMA, Mathematica, Reduce, Scratchpad and
other systems. Gonnet also examines the licensing and distribution of Maple and the project’s
relations to its users. Maple was initially used for teaching purposes within the university, but
soon found users in other institutions. From 1984, distribution was handled by Watcom, a
company associated with the university, and 1988, Gonnet and Geddes created a new company,
Waterloo Maple Software, Inc. to further commercialize Maple, which established itself as the
leading commercial computer algebra system. However, during the mid-1990s the company ran
into trouble and disagreements with his colleagues caused Gonnet to withdraw from managerial
involvement. Since then, he feels that Maple has lost its battle with Mathematica. Gonnet also
discusses Maple’s relation to Matlab and its creator, Cleve Moler.

From 1984 onward with Frank Tompa, Tim Bray, and other Waterloo colleagues, Gonnet
worked on the production of computer software to support the creation of the second edition of
the Oxford English Dictionary. This led to the creation of another startup company, Open Text,
producing software for the searching and indexing of textual information within large
corporations. Gonnet explains his role in the firm, including his departure and his feeling that it
made a strategic blunder by not exploiting its early lead in Internet search.

Gonnet continued to work in a number of areas of computer science, including analysis of
algorithms. In 1990, Gonnet moved from Waterloo to ETH in Switzerland. Among his projects
since then have been Darwin, a bioinformatics system for the manipulation of genetic data, and
leadership of the OpenMath project to produce a standard representation for mathematical
objects. He has been involved in several further startup companies, including Aruna, a relational
database company focused on business intelligence applications.

Gonnet, p. 3

HAIGH: Thank you very much for agreeing to take part in the interview.

GONNET: You are very welcome.

HAIGH: I wonder if you can begin by talking a little bit about your early life upbringing and
family background?

GONNET: Well I was born in Uruguay from my mother who was Austrian and my father who
was Uruguayan from French parents. I went to school and university in Uruguay and in the early
1970s decided to do graduate studies abroad.

The picture of the world, from where we were, was a little bit distorted, and it was actually very
difficult to find, from South America, which were the good universities and so on. So you ended
up making decisions on casual information, on hearsay. At the time there were two things that
were important for anybody that was going abroad. One was the ability to fund yourself while
you go abroad, and the other one was doing what you wanted to do. I wanted to do computer
science; that was pretty clear. I had already an early start with computers, mostly linked to
commercial applications of the IBM computers of the time. IBM was big on the University of
Waterloo for teaching at that time, because the University of Waterloo had developed a system
called WATFOR, which was a Fortran compiler that had very quick turn around. They were
sending people from all over the place to Waterloo to show them how efficient they were. One of
my professors had gone on one of those trips and he came back very impressed with the
University of Waterloo. So that was one sample point of information that somehow became very
influential.

The other choice I had was to go to the University of Essex in England. I had been given a grant
to do a master’s there by the British Council. But the British, being very cautious, were saying,
“Oh, you should not bring your wife. This is very tough. We are going to give you just enough
money to survive. We are going to guarantee only one year—whether you finish or not finish
you are on your own,” and so on and so forth. It was so intimidating that I ended up deciding to
go to Canada, even though Canada was not offering a grant; the only thing they were offering me
was a teaching assistantship to fund myself. But I have to say that the English scared me at the
time. Also I had a misinterpretation of what is a professor and what is a lecturer and so on. As I
was reading information about the University of Essex, I heard that they were all proud that they
have a new professorship. So a place that is so proud that it has one more professor sort of raised
eyebrows. Well, it was just lack of understanding of the system. But the bottom line is that I
ended up going to the University of Waterloo in Canada.

HAIGH: Let me pull you back a little bit from that to talk about the period before you left for
Canada. So as you were growing up and in school, had you always been particularly interested in
science and mathematics?

GONNET: Yes, I have to say that I had always been interested in mathematics. Mathematics
came easily to me. It’s funny that my mother used to say, “Oh, he is good at math. This is really
the dumb subject because he doesn’t really need to study much to be good at math.” So that was
her excuse for, “You don’t work hard enough. You are good at the topics that you have to make
no effort for,” instead of being a good student because you study a lot. I have to say that I was
raised with my mother; my parents divorced when I was four and a half, so I had basically no
contact with my father. So I was raised by my mother and a half brother of mine that was really
my brother, who was 12 years older than I was.

Gonnet, p. 4

It was a little bit of a hard life for me at the time, and I had to start working before going to
university just to support myself and to support my family. I found a job at IBM working at first
with standard equipment and then programming computers, which came relatively naturally to
me, or at least was easy to do. I’m talking about the late 1960s, when computers were still very
rare, even in business. At the time the computer was a 1401 with 8K characters of memory,
actually 8,000 characters of memory because the 1401 was partly decimal. The Universidad de la
Republica in Montevideo, was renting time from IBM at the time. I was working for IBM, but I
was helping the people at the university to make good use of their computing time. I became
very good friends with the people at the University who were doing computing and I was hired
as an assistant. When the university decided to start a branch of engineering that would do
computer science, or what was perceived to be computer science, I was there. I was sort of
employee number one for computer science.

HAIGH: So when you say you were working for IBM, were you working on their behalf at the
university or with a computer that was located at the IBM office?

GONNET: Actually both are true. At first I was just an employee of IBM. As a matter of fact I
was called a spy in the local jargon, because when people would come and rent time from IBM,
IBM wanted to make sure that they were using the equipment properly at that they would sign
the time sheets and that they will not create havoc, and also to help the users a little bit to get
good use of their time. That was my role when the university people were coming, to help and to
monitor them and to make sure they were using the machine properly. But later as the relation
with the university people developed, I eventually became an employee of the university.

HAIGH: So would you say that your primary and secondary education had given you a good
grounding in science and mathematics before you went to the university?

GONNET: Yes. As a matter of fact, yes. My whole inclination for computer science has always
been relatively mathematically oriented. Computer science in Uruguay at the time was developed
in an environment that was very mathematical. There was “Instituto de Matemáticas y
Estadística”, which fostered all the computing activities. It was the best place in Uruguay to do
mathematics. All the good mathematicians were there. So yes, I was a very young student, but I
was surrounded by very good mathematicians that were treating me as a colleague. So that, from
the beginning, taught me serious mathematics as opposed to what a normal student would do in
computer science nowadays. Computer science students will have some mathematics
requirements, but will be really secondary to their main education. In my case, mathematics was
main line for me, so much that for quite some time I was always thinking myself as a
mathematics person, not as a computer scientist.

HAIGH: Was the educational system that you would apply to university to study in a particular
program, rather than choosing a major later?

GONNET: Yes, as a matter of fact my idea was to do engineering. I had several ideas of course,
but my mother had this notion that I should be an engineer. She had pictured that I probably was
good at engineering. Funny thing, when I went back with my Ph.D. in mathematics (it was in
computer science, but computer science in Waterloo was under mathematics) the first question
my mother asked me was, “When are you going to be an engineer?” Well I’m a little beyond that
now, but no I’m not planning to become an engineer. [Laughs] I’m not going to build any
bridges or any machinery. So my plan was to do engineering. I didn’t do engineering in
Uruguay. I ended up doing computer science, which was much easier for me; it was actually a

Gonnet, p. 5

little bit shorter as a degree. After finishing the degree in computer science, I went to study
abroad.

HAIGH: So was it officially a degree in “computer science” at that point?

GONNET: Yes, it was a degree in computer science. It was a university degree in computer
science, which I had studied at the same time that I was teaching, so for some courses I would
teach the courses and some of the courses I would be the student.

HAIGH: Was this a degree that was offered within the mathematics department or was it
separate?

GONNET: Actually it was an independent school inside the University, because the University
did not know where to put computer science. And in not knowing where to put computer science,
it was physically housed at the engineering faculty, actually in the Mathematics Institute. It was
sort of a single branch stemming from the top of the University. Later it was incorporated into
engineering, as is the choice in many places. But originally it was sort of an independent degree.
So as a matter of fact, my original degree is not a degree in engineering (to the chagrin of my
mother); it was just a degree in computer science.

HAIGH: Now, did your interest in computer science develop from the work that you had been
doing at IBM or was it the other way around?

GONNET: It’s difficult to say—chicken and egg type of thing. I think that I was interested in
mathematics, and I had to earn a living, and so working with computers, or working with unit
record equipment and cards, was a way of making a living. Then all of a sudden, when it comes
to scientific computation, you see that there is more to programming than just boring payroll
programs, that there is more science to it. Then the purpose of earning a salary goes to the
backburner, and this becomes an interesting academic activity in itself.

HAIGH: So the initial work you had been doing for IBM had been on these kinds of
administrative and routine applications.

GONNET: Right! Very much routine.

HAIGH: Were those well developed in Uruguay at this point, or was it a novelty?

GONNET: Computers were a novelty. I’m talking about early 1960s, so not everybody had a
computer. The applications were also very trivial. Most of the applications were card-oriented.
People would not trust their data being stored in magnetic ways at the time. They would prefer
something as solid as a punched card. I wouldn’t say that Uruguay was particularly less
developed than other countries or more developed than other countries. I think it was following
the trend of Latin America at the time. We were not really in terrible shape. When the University
finally bought their first major computer, which was an IBM 360 model 44, at the time that
machine rolled into our building, it was the most powerful machine in South America. Now of
course, soon after, somebody bought a bigger machine, but that is to give you an idea that we
were not the bottom of the stack; we were doing sort of average compared to the rest.

HAIGH: Before you got the job with IBM, did you have a clear idea of what a computer was?

GONNET: No. Actually I learned what a computer was at IBM. For quite some time, living
inside IBM you get a very skewed view of the world. The world is cards of 80 characters and
computers that work in this way and so on. The 360 was the computer that appeared at the time
that I started computing. So it was sort of the fashionable thing to do at the time.

Gonnet, p. 6

HAIGH: Can you remember anything about your personal reaction to computing? Was it
something that you became enthusiastic about? Did you enjoy programming?

GONNET: Yes, I definitely enjoyed programming. I remember probably a couple of anecdotes
that are worth mentioning. The compilers for the 1401 were extremely primitive. We’re really
talking about very basic assemblers, and there were basically two assemblers to speak of at the
time that we were working on these machines. Autocoder was more modern but consumed a few
more resources, a little bit slower to compile and so on. Management was adamant: “No, no, no
the machine time is too expensive. You should use the more primitive assembler, SPS.” That was
just an assembler with a few features like free format and literal constants and so on. You could
say, “Add one,” and just put the one in SPS. To add one to something you had to define the
constant one as a constant in someplace, give it a name, and then say, “Add this here.” It was just
an extremely fixed and poor assembler. Something like the op code has to be in columns ten to
twelve; the first argument in columns whatever, and so on. Not even literals, no constants,
everything had to be defined and done by your own standards.

And I was trying to push for a better programming language, saying we are going to code better
programs and we are going to be more efficient. “Oh no, no, no. It’s not efficient programmers
what counts; it’s how fast the computer is going to run.” I guess that was the view that prevailed
at the time, that computers were indeed very expensive, so computers had to be maintained and
run as long as you could. And programmer’s time was not that expensive at the time, and the
programs were also much simpler.

I also remember that at some other point I was also involved in buying another computer for
another organization, and as a requirement we said it has to compile COBOL, and this outraged
IBM because what a ridiculous thing. “What is Gaston thinking? This is a ridiculous
requirement!” And that was because they were forced to bid for a higher cost computer and they
wanted to bid for a lower cost computer that could not run COBOL. But some people viewed the
idea of using a high level programming language as an outrageous waste of resources. Quite a
different view from nowadays, of course.

Even the COBOL that we were talking about was still a very primitive language compared to
anything that you would want to use nowadays. Yet, and this is an interesting coincidence, at the
time I developed a little program to do symbolic derivation, and very quickly I realized that
doing symbolic derivation was very easy. The problem was simplifying the expression that was
coming back. There was another thing that I had to work at the time, which was one of the
distinguishing features of Maple. (In Maple it is nowadays called Option Remember). It’s the
ability to remember the results of a function evaluation in one argument once you have
performed an operation. In the case of computing derivatives this is very important, because the
computation of derivatives is very repetitive if you have a large expression. You see the same set
expression again and again and again, and so you would save a lot of effort if you reuse what you
have already computed. I can say, in the late ‘60s or early ‘70s, I was already doing a little bit of
symbolic algebra and I was already using Option Remember which is a feature that appeared
years later in Maple.

HAIGH: On your resume it says that you were from 1969 to 1974 working in the University
Computing Center.

GONNET: That’s correct. The 360 machine at the University arrived in 1969. The Computing
Center and the Computer Science Department were one. This was the Scientific Computing

Gonnet, p. 7

Center. It was not the payroll or administrative computing center; it was the Scientific
Computing Center. But both the academic part and the computational part were done by the
same people and in the same building and so on, which is not a bad idea because there were
many users from physics that were doing very interesting work, people from engineering also
doing very interesting work, and so it was a challenge to understand what they wanted to do and
try to help them and basically work with them.

HAIGH: How would this scientific computing center have been organized? Did it have a large
staff attached to it?

GONNET: No, it was a relatively small organization. There was a director who had turned out to
be a very good friend of mine in the end, Dr. Luis Osin who had a Masters in Computer Science
from MIT, and when he went back from MIT to Uruguay he started organizing all the academic
part. I was part of the teaching/academic staff. There were some regular employees that were
more programmers than anything else, and there were some people that were actually operating
the machine—these were computers that required an operator.

HAIGH: So there was a specialized operation staff, it wasn’t that you could sign up for time on
the machine and actually work it yourself?

GONNET: The inner circle, yes, but not the rest of the students. This academic computer at the
time had as its only input punched cards. It had a console, but the console was deemed to be too
precious for anybody to type on. And disk space was also at a premium. It had two removable
disks of one megabyte each—one megabyte each!—in its original form. For machines at the
time, it had a very large memory, had 128K. And it was quite a fast scientific processor, so that
was a step forward for scientific computing in the country. I once made a comparison with the
laptop that I just recently stopped using, and it was very nice to see that there was a factor of
1,000 on everything. My old laptop had 128MB, the IBM had 128K, it was a factor of 1,000. The
speed, there was no question there, was a factor of 1,000 faster. The software is probably a factor
of 1,000 better than what it was before. And the original machine was $400,000 US dollars. I’m
talking about US dollars in 1968. That was a factor of 1,000 times more than what my laptop
cost me. There’s also no question that the weight of the two machines was also separated by a
factor of 1,000. So you had a factor of 1,000 on everything with respect to that machine, and by
now it would be even bigger, right? This is four or five years ago that I made these computations.

So it was a good start. It was a good environment. Primitive in the terms of what we may do
nowadays, but enough to develop the academic part, and to a certain level the scientific part, the
scientific work that was done at the University. It was actually a very pleasant surprise when I
went to Waterloo to find that they had a better machine. They had a 360 model 75, which was
their biggest machine, but side-by-side to the 75 they had a 360-44, and this machine was not
half but a quarter of the computing power of Waterloo at the time.

HAIGH: Would scientific users have written their own problems? Or was there a team at the
computing center that would write the problems for them?

GONNET: No, scientific users would write their own programs. Fortran was the language used
for that computer all the time. Assembler was not suitable, and Fortran was very efficient to
compile and to execute in that machine. All applications that I can think of were written in
Fortran. So Fortran was the lingua franca for that stage of computing.

HAIGH: Can you remember what the main kinds of problems running on the machine would
have been?

Gonnet, p. 8

GONNET: As I said before, some people in physics were doing some semiconductor
experiments. I know a little bit more about what they were doing because I got involved at some
point. They were basically doing differential equations, solving relatively simple differential
equations to study how semiconductors would behave. That was one application that was very
significant. Other people in physics were doing more standard work, which probably most of the
time boils down to solving differential equations. Some people in mathematics, in particular in
statistics, were sort of discovering singular value decomposition at the time. Singular value
decomposition is something that you don’t do by hand. It’s too computing-intensive, so they
were very happy to be able to find eigenvalues/eigenvectors of large matrices automatically,
which, again, is something that you definitely don’t do by hand.

We had a lot of ad-hoc little things that were done—some small, some big. At one point we
processed the national census. This was the biggest computer in the country at the time, and so it
was deemed the most suitable computer to use for the census. That ended up being a huge job for
us because of the memory restrictions, with only two megabytes of magnetic disk to use. So we
had to stand on our heads to read all the data only once, because the only input that we had was
punched cards. Although the country had only three million people, I think it was a little bit more
than three million cards. But three million cards, no matter how fast you read them, takes a very
long time to read them all. So definitely wanted to read the data only once, and that forced us, a
little bit, to stand on our heads.

HAIGH: Did the machine have tape drives?

GONNET: No, no tape drives. That machine was then extended to have more disks, 30-
megabyte disks, but for whatever the reason, it never had magnetic tapes. I guess there were
reasons of cost in the end. Computing equipment was very expensive, and the university did not
have tremendous amounts of resources. They had invested, for the university and for the time, a
huge amount of money in this computer; it was not going to be easy to extend it.

HAIGH: What work were you personally doing in the computing center after the 360 arrived?

GONNET: Well, I was involved with the teaching. It was definitely a large involvement. I was
involved with the operating system, trying to make it a bit more efficient, a bit more pleasant,
changing some things here and there. It was a time that you could do this; the operating systems
were simple enough that with some amount of effort, you could master everything that was
happening.

HAIGH: Was it running OS/360?

GONNET: No. The Model 44 had a special operating system, which was simplified operating
system. I don’t remember how it was called, but it was a special operating system for the Model
44. This was because the Model 44 had a restricted set of instructions. Basically the memory-to-
memory instructions that are present in all 360s were not present in that machine. This was, in
the end, a marketing decision. IBM did not want to release a machine that was so powerful CPU-
wise and useable in business because they were charging a lot more money for the commercial
machines. Yet they wanted to cover the academic market in some way. So the way that they
approached it was to design a CPU that had all the memory-to-register operations; all the floating
point operations are very efficient, memory was efficient, but would not have the ability to
compare memory-to-memory and so on. And so it had a special operating system and it has
special Fortran compiler, and it didn’t have a COBOL compiler, for example.

HAIGH: So you were rewriting some of the code in the IBM-supplied operating system?

Gonnet, p. 9

GONNET: Yes. Well, I remember developing an on-the-fly linker, because the standard
operating system was compile, link, and then execute. When you run student jobs and you want
to have the highest possible throughput, every 10% that you cut or every 20% that you cut of
execution time is really important. So I remember developing this on-the-fly linker, so that it
would compile and execute right away. A not insignificant part was that at the time, everything
would be printed on pages. The linker would typically print two or three pages, so every little job
had two or three extra pages wasted. We were very sensitive to that waste, so we wanted to
eliminate that step.

HAIGH: Were you ever personally involved in working with users to help them solve particular
problems?

GONNET: I guess that that was a natural assumption. Everybody that was working there on the
more academic side would be cooperating with people that had programming problems or
numerical problems or whatever.

HAIGH: Do you think there’s anything from these years that you spent in the computing center,
with at least some exposure to the kinds of problems that people were trying to solve, that
influenced your later career in terms of working on software that people would actually be using
to do things with?

GONNET: No, I wouldn’t pinpoint anything specifically, other than the fact that you have to be
a jack-of-all-trades because we were just very few around. So other than that…no, I wouldn’t say
that there was anything specific about it. There was definitely a mathematical orientation to the
whole institute, to the whole computing center. I was personally involved with kernels and
operating systems, which were called supervisors at the time. But I wouldn’t say that there was
anything that said, “Oh yes, there was some important event that marked the rest of my life.”

HAIGH: All right. Just before we move on to pick up in Waterloo… We’ve covered the
Computing Center. Now moving back to your experience as an undergraduate, I was wondering,
were there any areas that you were exposed to during your time at university in Uruguay that
turned out to be particularly important later in your career in terms of intellectual development,
or any relationship with colleagues or faculty or other students?

GONNET: Nothing in particular, I would say. The general inclination that the whole
environment had towards mathematics helped me tremendously later. Some colleagues that I had
that kept me honest with my mathematics…or kept me honest with my science, in some sense.
“No, you don’t do that that way. That’s wrong. Do it right. You know how to do it right!” Living
in such an environment is sometimes very helpful. In general, in computer science, I have always
been treated more like a mathematician, whereas my mathematics colleagues think of me just as
a programmer, maybe, and not very mathematically inclined. So I make everybody unhappy in
the end.

HAIGH: Your résumé lists you as Assistant Professor, Second Degree, from 1966. So you were
working for the University before you were a student?

GONNET: That’s correct.

HAIGH: You were also teaching courses while you were an undergraduate. Was that unusual?

GONNET: It had to be done, somehow. I was teaching more courses related to operating
systems, and I would say that was my area of expertise at the time. And hardware, too, I
understood slightly better than the others how the hardware was working at the time, so I could

Gonnet, p. 10

teach some courses in hardware. I think I was also teaching courses in COBOL because of
business needs.

HAIGH: You mentioned on your resume that you had served as a computer advisor to a health
insurance firm.

GONNET: This was a peculiar system, almost like a cooperative, a very large institution that
was providing healthcare privately to citizens, but was organized by the doctors’ associations
somehow. There were several such institutions, but this one was the largest one. And we started
consulting as part of the University and then became consultants and developed their computing
quite substantially. And that gave me, well, it was a job. I was earning some revenue, some
money. But it also gave me quite a bit of a sense of the real world computing because people
needed to do payroll, they needed to bill customers and so on. There was a need to design
systems that will work with minimal user interaction and flexibility and serving customers
adequately and so on.

HAIGH: Do you think there was anything in that experience that’s influenced your life and
career?

GONNET: No, I wouldn’t say so.

[Tape 1 of 6, Side B]

HAIGH: So you’ve already told the story of how it came to be Waterloo that you applied to.
Now at that point, would it have been feasible to think about staying in Uruguay or elsewhere in
South America for your Ph.D.?

GONNET: No, no, certainly not for a Ph.D. We didn’t even have a Ph.D program at that time.
Even if there was one, the country needed desperately to farm people abroad to bring back
technology, know-how, ways of doing things and so on. So many people recognized that it was
very important to have at least one generation of teachers that would be educated abroad so that
they could being technology, could bring know-how, could bring whatever connections, just if
you wish. So it was very clear, in my mind at least, that I had to go.

I have to say that the political system helped me leave very decisively. In 1974, Uruguay was
unfortunate enough to go into a military dictatorship. And the military dictatorship devastated the
university and the government found no better thing to do than to chase all the professors and the
researchers away and “punish” them for being independent thinkers—whether they were in favor
or against, it didn’t matter. So the university suffered tremendously. When this was starting to
happen, it was the time that I left. I had already planned to leave so it was not that I was leaving
because of this; but if I had any hesitation about leaving or not leaving, they made my hesitation
disappear very quickly.

So in some sense, it also helped me make the decision because once you have decided to go, it’s
a big step. Nowadays it’s easier to go and study abroad. In the early 1970s it was an adventure to
go half-way across the world to a place where you don’t speak the language very well or that has
a completely different way of life. I remember something very funny. I had always lived in a big
city. Montevideo is a million and a half people, and it is very cosmopolitan. So I looked at the
map and I saw Waterloo, 50,000 people—I was really worried that I was going to go into a hole
in the ground. This was a serious concern, believe it or not. Will I have a movie theater when I
wanted to go? Will I have whatever I need from a big city? I was really worried, and I could only
put my worries away once that I learned that Toronto had about two million people and was only

Gonnet, p. 11

100 kilometers away. I said okay, if we lack anything, it’s only 100 kilometers away that we are
going to be able to find everything that we need.

It turned out that then we seldom went to Toronto for anything. Waterloo was a very nice place,
and actually there was something misleading. Kitchener and Waterloo and twin cities, and
although Waterloo was very small, maybe 40,000 people when we arrived, Kitchener was much
larger, and the two together were above 100,000. In a city of that size in North America you
normally find everything that you want. I wouldn’t say that it was the same as living in Toronto
for the cultural aspects, not even remotely, but at least it satisfied all my needs and I never had to
worry. But from the distance, you look at this place and you have a very distorted view of how it
will be.

So it was a little bit of an adventure to go there. And definitely, at the end, the political situation
pushed me to go because I was going to end up chased around, manipulated—a very unpleasant
situation. So in some sense, that signified also a final separation for me from Uruguay, because
when I had finished my Ph.D. I could not return to Uruguay. The situation had worsened with the
military dictatorship, and there was just no chance of returning. So I went to Brazil. Finally,
when it was possible to return to Uruguay, which was in 1984 when the dictatorship finally ran
completely out of steam and the country returned to democracy, it was too late. I had been away
for too long. I just could not see myself going back to the things I was doing. It would have been
too much of a loss in my career, and I would have not been used positively by the country. In
some sense I went out of phase with the country. For some time, you can reintegrate yourself. At
some point, it’s just not possible.

HAIGH: When you turned up in Waterloo ready to begin your studies, was that your first visit to
North America?

GONNET: No, I had been in the U.S. as an exchange student when I was a young teenager, so I
knew a little bit of American life. I had been in the closest thing to a hole in the ground, which is
Coldwater, Michigan, near Ann Arbor. Curiously enough, I ended up in Waterloo, which is only
about 300 miles from Coldwater. From that point of view, no, it was not a shock. I sort of knew
what was happening. I knew what a cold winter was. It was a very good time. I integrated myself
into the university straight away. I found excellent people around. I was taking courses that I
really enjoyed. I have to say that I had a great time in Waterloo. I had lots of teachers that were
exceptionally good. Not only technically, but also humanly. So it was a very pleasant time.

It was a time of very high pressure for us. From the economical point of view, we didn’t have
any resources that we could bring from Uruguay. I didn’t have a salary or a grant or anything
because of the situation, in particular because of the military dictatorship. So I was really on my
own. The university and the professors were very cooperative, and they helped me tremendously
by giving me research assistantships and so on, but it’s very difficult to make a living out of
those. I was married already. And so it was basically a race against time. We had some savings,
and every month the savings were going down, and I knew that when I was getting to a level that
was the value of two tickets to go back, I had to leave, whether I had a Ph.D. or not. Still it was a
very good time in terms of academics and in our lives. We had our first child. Actually, we had
two children while we were students in Canada. My daughter was born the day after I got my
Ph.D., but my first son was born in Canada before that. So I did a master and a Ph.D. My wife
did a degree in computer science, all of that in scarcely more than two years. I actually had to set
a record in speed of Ph.D. because I couldn’t afford more time.

Gonnet, p. 12

HAIGH: When you went to Waterloo, had you already known that you wanted definitely to stay
for a Ph.D.?

GONNET: Yes. Definitely my idea was to go for a Ph.D., but neither Waterloo or Essex would
accept me for a Ph.D.. They said, “Well you come here for a Master’s.” And I was happy about
that. It’s understandable. The same things were happening in reverse. These people were looking
at me. Uruguay? They would probably have to look at a map to find where it was. “Do these
people have a university? Do these people have streets? Do they live in trees? Do they live in
houses?” So I was one-of-a kind in some sense. And of course, once that one goes and they see
that, oh, “They sort of have two arms and two legs and a head and so on,” they appear to learn.
Then you open the door for other people to follow the same path. But in many ways, for
Waterloo, I think I was certainly the first from Uruguay, and most likely one of the first students
from South America. So it’s perfectly understandable that they would accept me only to do a
master’s, but that was never a problem. I was a reasonable student so I didn’t have any problems
in my academic life.

Actually most professors were very surprised that I wanted to leave so quickly. “Are you not
enjoying your time here?” “No, I am really enjoying it, but I will run out of money, and I will
have to go.” So I don’t regret it at all. I think that just at the time the Canadian immigration
policies had been changed and tightened up tremendously, so it was very difficult for my wife to
get work and to help me. And I was very restricted on the things that I could do. So that was
unfortunate. I didn’t have any time to relax, but that actually was good in the end. I am very
happy about my life as a student in Waterloo. It was a very pleasant time. Stressful, but pleasant.
It’s difficult to believe it, but it’s possible.

HAIGH: How would you, in general terms describe the state of development of the Waterloo
computer science program at the time you arrived?

GONNET: Waterloo, at the time, was in transition in many ways. The department was very
visible in the Canadian scene, for sure, but in North America as a whole was one of the best
departments doing scientific computations, which at time was called numerical analysis.
Actually the department was called the Department of Applied Analysis and Computer Science,
which was sort of a special name. Then it changed to be just Computer Science, but at the time it
was called Department of Applied Analysis and Computer Science.

HAIGH: Was that a separate department from the Mathematics Department?

GONNET: No, actually it was a very peculiar structure. There was a Faculty of Mathematics,
which is an oddity, and the faculty had five departments: Statistics, Pure Math, Combinatorics
and Optimization (a very well known department), Applied Math, and Computer Science. So
there were five departments, and we had our own building and so on. That actually was a very
nice set up for me, in particular, being mathematically inclined because even though we were in
the department of computer science, we were not in engineering or art or in some other place.
We were in the faculty of mathematics. And my degree is a Ph.D. in Mathematics. Computer
science, but in the Faculty of Mathematics.

HAIGH: As you studied there initially in the masters program, were there any areas of study that
you were particularly attracted to or faculty members who you feel had a lasting effect on your
development?

GONNET: Definitely. As I said, I took lots of courses. I wanted to absorb as much as possible. I
had this mentality that I was there to absorb as much as possible to bring back to my own

Gonnet, p. 13

institution, so I was enjoying every course and absorbing as much as possible, taking notes,
trying to understand everything. My supervisor for my master’s thesis was a professor by the
name Lawrence “Laurie” Rogers. He was just a superb guy, and we got along very well. I liked
him instantly. And he taught me about algorithms and analysis of algorithms. It was really him
who put me into a track of analysis of algorithms. And because I had a good mathematical
background, in the end it was easy for me to do analysis of algorithms. We got immediately into
an excellent relation there, both academically and also as a personal friend because Laurie
Rogers is just a great person. It was really a pity that he moved to California. Well, not a pity, he
had to do it; but for me it was a bit of a pity. Laurie Rogers was a very good friend of Alan
George, and Alan George was doing scientific computation and was also very mathematically
inclined, and so Alan George inherited me from Laurie Rogers when he left for California.

HAIGH: So George was your dissertation supervisor?

GONNET: That’s correct. And my Ph.D. thesis was on analysis of algorithms, mainline analysis
of algorithms as a matter of fact. Both my master’s thesis and my Ph.D. thesis were on analysis
of algorithms.

HAIGH: Were there any other faculty members or students that you had an important
relationship with?

GONNET: I had written a couple of papers by then with some other professors, but I wouldn’t
say that there was anybody there that had influenced me especially. I published lots of papers
together with Frank Tompa, and we became excellent friends, but actually the relationship with
him probably did not start until I went back to Waterloo as a professor. Although we knew each
other and I had worked with him, we didn’t have a close academic relationship before that. I was
there for only two years and a term for a master’s and a Ph.D., so it was really a bit of a rush
altogether.

HAIGH: You said your Ph.D. [Interpolation and Interpolation Hash Searching] was fairly
mainstream work. Was there material in it that you later picked up and published and developed
further, or was it just something you did because it was easily doable in the timeframe?

GONNET: It was analysis of algorithms, and this was the analysis of what is called linear
probing search. It’s a technique for searching that had surprising behavior. It’s the type of results
that you find, “Okay, this is the result, it was a log-log behavior.” There’s not much more to say.
So it’s not the type of work that you can make a career out of it. It’s, “Here is a result. Nobody
knew this before. Now, everybody knows it.” There’s not much more to say.

So from that point of view, the Ph.D. produced one good paper and I think another note or
something like that, but it didn’t start a career. Analysis of algorithms is a little bit like that. You
work in this algorithm, you prove something or you resolve it completely, and you go to the next.
It’s like processing sausage: you make one sausage, it’s done, consumed; next one, done,
consumed; next one, and so on. So I wouldn’t say that the Ph.D. topic had any lasting impact or
any other consequence.

HAIGH: As you approached graduation, how did you begin to plan for the future?

GONNET: There was actually little planning. I was worried about where I would go after
graduating because of the situation in Uruguay was not getting any better; on the contrary, it was
getting worse. All of the sudden somebody told me there is an opening in Brazil and you should
be interested. This was professor Don Cowan, who had some contacts by that time with some

Gonnet, p. 14

people in Brazil in Rio de Janeiro. All of a sudden, next thing that I know, I have an offer in my
mailbox to go and teach in Rio de Janeiro. We had been as tourists before in Brazil and we really
liked it and I thought it was a good alternative to spend some time in Brazil in what is a very nice
city from the geographical point of view. I often say that I have never applied for a job, and I
have never gone to interviews for a job. And it’s still true. So all of a sudden I had this offer, I
accepted it, and I found myself a few months later in Brazil.

Brazil was not a great experience for us for various reasons. The country there is so beautiful
because of its geography and because of its beaches and its location and everything. It’s not the
same when you have to live in there every day. There is a marked difference in social classes.
You realize that if you are going to live there you are going to lose part of your culture. You
have to play the game. You have to live in the place, you have to accept the whole package. We
also had bad luck, we lost our first son to an accident. I also got seriously ill and it was not a very
pleasant time, although it is not necessarily the fault of the country.

HAIGH: So how was the university itself?

GONNET: The university was a very reasonable place within the context of the entire country,
probably the best university in Brazil from the computer science point of view. It was called the
PUC, Pontifícia Universidade Católica. I am completely non-religious but I ended up teaching in
it. It is basically a private university where the high class kids go, and it was reasonably well
funded at the time and in a very privileged part of the city, and so to be working in that
particularly place was a little bit of a ghetto inside the reality of Brazil. But my colleagues, most
of them or all of them, had Ph.D.s done abroad, so it was a very good academic level. As I said,
my complaints about Brazil have nothing to do with the university; they have more to do with
our personal situation at the time. When you leave your home place, you either leave it because
you are going to go into an academic place that is really challenging, or you going to make lots
of money, or you are going to live in a fantastic place, or you are going to be very close to home.
And Rio de Janeiro was neither of those. Actually it was getting close to most of those, but it was
none of those exactly. So we were neither here nor there. So after we lost our son, I received an
offer from Toronto to go back as a professor, and almost immediately I prompted an offer from
Waterloo because somebody called me and I said, “I have an offer to go to Toronto. Are you
going to do anything?” [Chuckles] Soon I had two offers, one from Toronto and one from
Waterloo, and I decided very quickly to go back to North America, as a matter of fact.

HAIGH: And why did you choose Waterloo over Toronto?

GONNET: Some people would say to annoy the people in Toronto. I don’t know. You may not
be aware of this, but it has always been the view that Toronto is the University in Ontario, in
particular in computer science. They have been looking down at Waterloo all the time because
they do have their great people. So when they made me an offer and I accepted an offer from
Waterloo instead, they were not happy at all. I think they have never forgiven me for that.

But all in all, we knew Waterloo; I had very good contacts. We had friends. The environment is
important for what you do, and a positive environment may help you. But the difference between
Toronto and Waterloo, for me at least, was not going to be of any substance. If I was going to do
something, I was going to do it in Waterloo or in Toronto—the means were all there. Maybe if
we had said the University of Manitoba compared to Stanford, yes there is a substantial
difference in what you may do in some place you may not be able to do in the other. But this was
not the case between Toronto and Waterloo. I voted basically with my heart and my friends and

Gonnet, p. 15

the people that I knew that were extremely reasonable. So I didn’t see any way of hindering my
career. Neither when I went to study, nor at the time that I went back as a professor, was I ready
to go to the States and live in the States. So the States were basically ruled out.

HAIGH: And why was that?

GONNET: Well, having lived through a military dictatorship that was sponsored by the
Americans, you end up not being very friendly, or at least not wanting to pay taxes to the same
system. So yes, the military dictatorships in Latin America of the time were all born or created or
manufactured or fostered or financed by the U.S. We are not very happy about that. We are not
going to forgive that. It costed many lives. It costed many years of pain to the country. It is not
something that is easily forgettable. The Americans will have to live with it. And there is a lot
more to come, let me assure you.

HAIGH: So did you find that it was a different experience at Waterloo as a faculty member than
as a graduate student, or did it feel familiar?

GONNET: It felt like going back home in some sense. I felt right at home from the first day. So
I knew where to get things, I knew my way around, I knew the people. I hit the ground running,
you can say.

HAIGH: So can you talk in general terms about your first few years there as assistant professor.
Perhaps experiences, relations with colleagues, important papers or areas you began to work on?

GONNET: It was again a very pleasant time. I was doing analysis of algorithms, and at that time
I was working mostly with two colleagues: the one that I mentioned before, Frank Tompa, and
Ian Munro. Instead of working in the general algorithms area, applied algorithms, text searching,
and so on, whenever we were publishing a paper together, I was the one that had to do the
mathematical analysis. The other ones were putting in the brilliant ideas; I was just putting the
donkeywork underneath. And in fact I was a consumer of computer algebra. And at the time the
situation for getting computer algebra was very unpleasant. We had to either login remotely on
various phone lines that were being charged long distance to MIT where we could get a free
account and run things on MACSYMA, or we could run an algebra manipulator called
ALTRAN, which I probably still have a book over there, which was a batch-oriented type of
system, very much like Fortran. It was a bit of a disaster, but was the only thing that was around.
At the time Waterloo had a very nice time-sharing system. I’m talking about the late 1970s. It
had a time-sharing system based on Honeywell equipment. It was very responsive.

HAIGH: Would that be MULTICS?

GONNET: No, it was not MULTICS. It was running on very similar hardware to MULTICS.
MULTICS was what was being run at MIT. But this was not MULTICS. I don’t remember what
it was called, to be honest.

HAIGH: I see. Was the Honeywell operating system GCOS.

GONNET: I think that’s right. Yes, that was GCOS.

They gave us a very small environment. Well, small for nowadays of course, but even small for
the time. It was a very fast interactive type of system, and we always said what we really need is
an algebra system that is somewhat smart but runs on the machine that we interact every day. So
it was very clear in our minds that it was much better to have something simple, not too
sophisticated that we could run on our desks. We turn around, we type something, and we are

Gonnet, p. 16

running on it, as opposed to this sending a job to ALTRAN that is in the queue for half an hour
and then gets executed in the next two hours and then it comes back and it has a syntax error on
the first column and it’s all wrong. Or else logging into MIT, which is running at a dollar a
minute at the time or even higher, so by the time that you have typed a formula and got an error
message, you have spent a huge amount of money.

 So in 1980, prompted by an article that appeared saying that what we need in computer algebra
is for Waterloo to produce something equivalent to WATFOR for computer algebra. I think I can
dig the reference to that article. A group of us got together to basically think about whether we
could build a computer algebra system or not, or what could we do with computer algebra at
Waterloo. I remember exactly who were the people meeting there: Morven Gentleman was sort
of the computer scientist with a tradition in numerical analysis who had turned into more
operating system design and so on; Mike Malcolm, who again was scientific computation,
Stanford graduate in numerical analysis; I think Gene Golub and Forsythe’s student; Keith
Geddes (who is going to be named many more times), who was also a numerical analyst inclined
to computer algebra; Wesley Graham (the father of WATFOR and WATFIV); and myself. The
goals of the participants were very different. Keith Geddes wanted to buy a VAX machine so
that we could run VAXIMA, which was a version of MACSYMA implemented on the VAX.
Wes Graham was obviously of the theory that we should develop our own software. I had
developed a very small system, as I said before, which was what I wanted, called WAMA,
“Waterloo Algebraic Manipulator”, which was just a modest set of functions that was completely
interactive and would run on this time sharing system on the Honeywell. For me it was already
more useful than the bigger systems, because it was doing something simple and I could do it
interactively. The power of interactivity was very obvious, at least for computer algebra. Mike
Malcolm, who was interested in systems—was also working on operating systems and systems
design at the time—he was more inclined, together with Morven Gentleman, in looking at
whether or not we could do something from the systems point of view.

 The result of that was that, I may say that I got my way there, or Wes Graham, got his way,
except that Wes Graham and Mike Malcolm didn’t get very much interested in this product after.
It was not what they wanted to do, so they didn’t meet any further. Morven Gentleman, Keith
Geddes, and myself were definitely the main people involved in this, and Morven Gentleman
was very encouraging for quite some time. Then he became also a little uninterested when we
became too much computer algebra oriented.

HAIGH: What did he have in mind as an alternative to being computer algebra oriented?

GONNET: I think that Morven Gentleman was not a big consumer of computer algebra. He was
interested in the system design. He gave us very good input. It was critical at many points and he
told us very important things. But I think that it was not his baby or it was not his main interest.
He was actually not doing scientific computation any longer, so yes he was interested, he was
helpful and so on, but he was not going to be a main player. Although he was for a very long
time very much active and participating in giving us ideas and even testing the system and so on.
I think that if we go to the early mail we should see Gentlemen copied in most of the e-mail.

I had a very practical approach. I had started this WAMA, Waterloo Algebraic Manipulator, and
I was not the type of person to say fine, let’s do a committee and let’s apply for a grant and two
years from now we are still discussing. In a few weeks I had something running. And I guess that
was key to the whole project, that very quickly we were testing and running and improving the
system. I have to say that at that point Alan George also played an important role. He had

Gonnet, p. 17

become dean of the math faculty, and he perceived that we had something there that was
worthwhile. And so before we could even get our act together and our papers together and
everything, he managed to get us some sort of a starter grant that allowed us to buy some
equipment and hire some people, students, to start working on Maple.

HAIGH: Do you know when that grant would have been received?

GONNET: Possibly it was in 1981. It was very early. The date of the first compilation of Maple
is December 8th of 1980. So Maple didn’t exist before that time.

HAIGH: Can you remember where the name came from?

GONNET: Yes, yes I remember quite well where the name came from. We were discussing the
name, and the mathematic programming language sort of was there. Keith came up with some
acronyms that sounded like "Maple,” but were not exactly Maple and were really acronyms for
“mathematical program language” with some other additives. And at the end I said it should be
Maple because it is a good Canadian name and it should reflect that, and whether it has a
acronym or not, it doesn’t matter. So it was a joint decision. I would credit Keith more than
anybody else with coming with some approximation of Maple and then me saying, okay let’s call
it plain Maple and that’s it. Actually the name has been a good name all along. I think we have
never regretted the name.

HAIGH: So it never officially stood for anything?

GONNET: I guess that is true, although we say at some point that it stands for something.

HAIGH: Even on this early paper it just says “it is not an acronym but rather simply a name with
a Canadian identity.” [Bruce Char, Keith O. Geddes, W. Morven Gentleman, Gaston H. Gonnet,
“The Design of Maple: A Compact, Portable, and Powerful Computer Algebra System,” in
Lecture Notes in Computer Science 162: Computer Algebra, edited by J.A. van Hulzen,
Springer-Verlag, 1983, 101-115, page 102].

GONNET: That is very accurate.

HAIGH: Okay, so we should talk in a minute about exactly what the initial version was and how
it developed as you got the grant money. I wonder if you can say just a little bit more before we
do that about how it was intended to be different from the systems that already existed. I know
IBM had the SCRATCHPAD system.

GONNET: No the SCRATCHPAD is later as a matter of fact. We are talking about 1980…

HAIGH: I know it was only commercialized as AXIOM much later, but I found a reference that
suggested that the SCRATCHPAD work had been underway since 1971 with IBM in some form.

GONNET: Oh well okay, yes. I cannot challenge that, but I would not say that it was a player at
the time at all. At the time there were only three players in the computer algebra community. It
was MACSYMA, which was the most sophisticated system, in the sense that it had the most and
best algorithms and the most mathematics in it. Then it was Reduce, which was used extensively
by physicists, because it was designed by a physicist. It was very competent in certain
computation. Then there was ALTRAN, which was sort of this Fortran preprocessor type of
batch language. Then there had been some others that were not really options if you wanted to do
computer algebra.

HAIGH: And where were Reduce and ALTRAN coming form?

Gonnet, p. 18

GONNET: Reduce was the product of Tony Hearn and was maintained by him for a long time,
with many other colleagues, but I think that he was the main force behind it. ALTRAN was
really a product of Bell Labs, or AT&T or whatever it was called at the time. As a matter of fact
Morven Gentleman had some experience with ALTRAN so there was a connection there. And of
course, Keith Geddes had some connection with MACSYMA. I don’t remember exactly how it
was. Now remember that I was not a computer algebra person. I was an algorithms guy. I was
coming into computer algebra as a consumer. I didn’t want to design computer algebra
algorithms, I didn’t want to do anything in computer algebra, I just wanted to use it. Now
MACSYMA was the one that would come closest to an interactive system that was usable, if you
have a hugely expensive MULTICS machine behind you. Reduce was sort of interactive. Both
MACSYMA and Reduce were based on LISP, and that made them very clumsy, very large, very
slow to operate and so on. So some of the things that we had in mind from the beginning were:
we are not going to use LISP because LISP means a huge baggage of things that you are going to
regret sooner or later. LISP would mean that we don’t have a machine where we can run it. LISP
will mean speeds that we are not going to reach. LISP means a very ugly language to code in.
Even though some people love it, it is really very ugly as a modern programming language.

[Tape 2 of 6, Side A]

GONNET: I was saying that Morven Gentleman had a lot to say about programming languages.
This is a time when C didn’t exist yet. An ancestor of C existed, which was called B. Now B
really was coming from BCPL, which was a language that was developed in the UK at some
point, and was a very peculiar language. A derivative of BCPL was developed at Bell Labs and
was called B, and was developed on this Honeywell computer. Actually, the main language for
developing software on the Honeywell machines was B. Out of B came C. It was a funny thing
about Kernigan being asked whether the next language was going to be D or P, and he says, “No,
I’m never going to restrict myself to four languages,” so he was going, you know, B, C, P, L.
The truth is he never went beyond C. In any case, the language that was chosen at the time was B
because it was definitely a model language at the time. It was a language that would compile
very efficiently, and it was a language that people believed was going to be portable to many
other computers in future. At least, Morven Gentleman was of that idea, and I think that proved
to be roughly correct. B was, in the end, very close to C, and C became widely portable. But you
have to remember that these were the times before Unix. Unix was something that Bell Labs had
not disclosed yet, or was still definitely not available outside of Bell Labs.

HAIGH: And, in fact, portability is mentioned as one of the goals in one of your 1983 paper.

GONNET: Right. Portability was one of the goals. But I would say that having an efficient
language, having a small system, having an interactive system were the dominant goals at the
time. Of course we wanted it to be portable, but I think that small, efficient, and interactive were
the keywords, because we had experienced the pain of systems that were maybe more
sophisticated but were neither of those, and that was clearly not the way to go.

HAIGH: Maple was a computer algebra system and a programming language, and as you’ve
mentioned, your main previous area of research wasn’t any of those things. What do you think
that you brought from your existing knowledge and experience that particularly shaped the
project?

GONNET: In retrospect, 25 years later, what did I bring to the project? I think I brought energy,
because I was not a computer algebra person. I was going to be a consumer of computer algebra,

Gonnet, p. 19

so in my ideal situation, I should have gone to these people and said, “Give me a computer
algebra system. I’m going to use it.” Well, they didn’t have a system to give me, so I developed
one. I had always been a reasonable programmer. Maybe some of my students disagree, but I
think that I could produce code. I enjoyed actually producing code, and I was more, “Okay, let’s
get it done,” you know? “Let’s stop discussing about it and let’s get it done now. Once we have a
version we can discuss it again.” I think that that was something that I brought into the group.

We mentioned this before; I would say it again for the record. I think that successful projects are
identified by having consumers. Consumers, in that academic sense, could be anybody who is
interested in your results. Whether it’s a theorem, whether it’s a theory, whether it’s a program,
whether it’s a corollary—if people are going to use or are going to consume what you are
producing, then your project is very likely to be successful. And I think that I was the first
consumer of Maple, and I think that Maple very quickly had lots of consumers. Maple did not
develop to what it developed because there was a group of computer Algebra people interested in
doing such a thing in Waterloo. Maple developed because we wanted to solve problems every
day. Now of course, the scope of the problems changed with time, and I became a computer
algebra person. I published papers in computer algebra in the end. So the means became the goal
for me at some point.

But what I think I brought to the project, I would say it was the programming power of being
able to say, “Okay, fine, we are going to do it, and here’s the first version.” If you are going to
plan forever, forget it. “Here’s version number one, and let’s see what works and what doesn’t
work.” And actually, that worked extremely well, because I would have never developed
anything in a vacuum, or I would have gone awfully wrong without Keith, for example. But they
knew more computer algebra and would immediately say, “No, no, this is not the right way of
doing it. You have to do it in this other way,” and so on.

For the language itself, I am 100% responsible. I was in love with ALGOL 68 at the time. I was
fascinated by what I perceived as elegant constructs of an IF closing with a FI and a DO closing
with an OD and so on. This syntax eliminated the BEGINs and ENDs that I always thought were
ugly in other languages. The BEGIN-END is too generic, the IF-FI, DO-OD tell you
immediately what they are. We had big discussions with Niklaus Wirth in on this topic...

HAIGH: Had ALGOL 68 been in use at Waterloo?

GONNET: No, actually ALGOL 68 was the language that I used extensively to describe my
algorithms, which actually never used it in the final book. I moved to Pascal in the end because
of lack of good implementations of ALGOL 68. I don’t know, I think that the world has proven
me wrong in being such a fan of ALGOL 68, because ALGOL 68 didn’t go anywhere in the end.
It was too complicated, poorly implemented, poorly understood, design by committee—you can
make all sorts of critiques. As a matter of fact, I would say that by now ALGOL 68’s only
significant impact as a language is probably Maple. I may be wrong, but I think that no other
language in current use has a syntax that is so close to the original ALGOL 68 syntax.

So I’m responsible for the syntax. I’m responsible for the kernel. I wrote the kernel. This idea of
having a kernel in a language which is the interactive language, and the language that will
become the library, I think it was my idea, but I don’t view it as a huge step. It was clear to us
that we were going to have to write libraries from day one, that everything was not going to be
written in the kernel, and that the kernel was sort of for the selected few that would want to code
in B, or in C later. The general developers of Maple coded in a language that was a mathematical

Gonnet, p. 20

language and not an implementation language. We were also of the opinion that the user
interactive language and the mathematical development language should be the same.

HAIGH: So, reading again from the early paper, it says, “The kernel includes the interpreter for
the Maple language, basic arithmetic (including polynomial arithmetic), facilities for tables and
arrays, print routines (including two-dimensional display) basic simplification, and basic
functions (such as coeff, degree, map, and divide.” [Bruce Char, Keith O. Geddes, W. Morven
Gentleman, Gaston H. Gonnet, “The Design of Maple: A Compact, Portable, and Powerful
Computer Algebra System,” in Lecture Notes in Computer Science 162: Computer Algebra,
edited by J.A. van Hulzen, Springer-Verlag, 1983, 101-115, page 101].

GONNET: Yes, that’s pretty accurate.

HAIGH: Had that been pretty much the contents of the kernel in the very first version?

GONNET: Yes, probably.

HAIGH: So was the idea that a copy of the kernel would stay resident in memory through the
whole of the user’s interaction with the Maple session?

GONNET: Correct.

HAIGH: And if several people were using Maple on the same machine, could they share a
kernel, or did they need a copy each?

GONNET: No, they needed a copy each. We did not have multiple threading at the time, not
even sharing of binaries at the time on that Honeywell system. So technologically it was not
possible at the time. So the question of multiple threading is a much more modern question, and
the kernel was designed without multiple threading in mind in that it uses lots of common
memory areas and so on. But even nowadays, it’s difficult to make Maple multiple threading.

HAIGH: You’ve said that interactiveness and accessibility to users on an affordable machine
was the driving motivation. In practice, was the main way you achieved that by making the
kernels small and responsive?

GONNET: Right. I think that at the early stages, there was a significant amount of effort put into
making the system small and as efficient as possible. It was a daily concern that we wanted the
system to be as small as possible, as efficient as possible. Because we always had problems that
we could not solve with the current machines—we always had problems that, “Oh, the machine
is too small or it’s too slow.” So our consumers were always demanding. And this is a time that
minicomputers are about to appear, actually were appearing at the time. I think that with the first
grant, we used some of that money to buy a computer. That was almost a miracle, right? Suns
had not appeared yet, or had appeared but were still not distributed. We had our first Sun a lot
later, actually.

HAIGH: I don’t think Suns would quite have arrived then. I think the Apollo was the first really
successful workstation.

GONNET: The Apollo was one. One that we bought was a machine that was made in Ontario; it
was called a Spectrix. I think that the company disappeared, but we had one Spectrix. It was
basically a Unix machine. That must be 1982 or 1983; not in 1980. 1980, we were just
Honeywell based, and probably for the next year or so we were exclusively Honeywell based. It
was only later that we ported to C, and for quite some time, as a matter of fact, we were able to
use the same source to compile in B and to compile in C. It was a peculiarity of the system.

Gonnet, p. 21

The inference from ALGOL 68 was for the Maple language itself, and I think that everybody in
the group was quite conscious about designing a language that would be nice to use for computer
algebra, because we were the main ones to use it. And I think that that was a very wise decision
in retrospect, or a very fortunate decision, to have the language that the users are going to use to
be the same language that the programmers that designed the language are going to use. That
was not the case for Macsyma, nor for Reduce, nor for ALTRAN, of course. So now the people
that are developing the system use the same language as the people that are going to use the
system. So whenever you don’t like something, you fix it—you don’t suffer through it. And
consequently, the users’ language has all the advantages that the designers wanted to have, and
vice-versa. If there is something painful in the language, the designers immediately see it,
immediately become uncomfortable, and want to fix it.

HAIGH: So by that, do you mean that the Maple libraries would be written in Maple?

GONNET: Right. So Maple has always kept this architecture of having a relatively small kernel
and a relatively large library. And as a matter of fact, the transition between kernel and library is
very transparent. You have to really know about the system to figure out whether a function is in
the kernel or is in the library, and we have migrated both ways. We have taken things that were
in the kernel out into the library because we want to give them more generality, or they are not
important for efficiency. Likewise we have migrated things that were in the library into the
kernel, mostly because of efficiency: this function is really crucial, it needs to run very fast. In
the library, there is a high penalty for executing this interpretive code. In the end there is a high
penalty that’s moving to the kernel. But this transition in Maple and in Maple descendents is
quite transparent, and you can go one way or the other with the user not really knowing that his
favorite function stopped being a library function and is now a kernel function.

HAIGH: Were there any other programming languages or systems around at this point that
influenced you in this design decision?

GONNET: Waterloo had quite a bit of a tradition of designing languages and designing systems,
and I would credit a lot of this to Morven Gentleman and to Mike Malcolm. I don’t seem to
remember any language that we copied from, but I would believe that this was sort of the
folklore knowledge of this group of people all working in language design. They would say, “Of
course you want to do it this way, of course this is obvious that you want to do it this way,” and
there is quite a lot of wisdom, in the end, in a group of people that are all working and are all
very good at language design. I think that the project profited from being surrounded by people
that knew about language design and would immediately say, “Oh no, this is crazy, you are
doing the wrong thing.”

I have to say that another important aspect I want to mention was the fact that the cycle between
design and implementation was extremely short. We would test something, somebody would
say, “No, no, this is bad. Change it,” and we would change it right away, because we were
working on the kernel every day, it was open to everybody. It’s true that I was doing most of the
work, but it was open to everybody. Our grad students were working on it. You want something,
go and change it. It’s good, fine, we adopt it; it’s bad, we toss it out. We used to have meetings
on Friday mornings, and we would discuss a new feature, and Friday afternoon it was
implemented. And maybe Friday night it was already discarded because it was a bad idea,
because we hadn’t seen something. Or perhaps the contrary: it was a good idea and it was further
improved the next day, or next Friday. So this very quick cycle was quite important for making
the language very flexible and very usable at the end. Because if you don’t like something, you

Gonnet, p. 22

change it. And if you have to go into a design phase that you design for a month and then you
implement for a year, you just won’t have this flexibility. Maybe you are going to design things
better, maybe you are going to avoid some pitfalls, but you are never going to define something
that is pleasant to use.

HAIGH: And did that process you’ve described apply to the kernel itself as well as to the Maple
code?

GONNET: No, the kernel has always suffered from being very much for our own consumption.
For all sorts of reasons, we never released the kernel to the public. The kernel is still private.

HAIGH: And in those very early days when it was just used within Waterloo, would that have
applied then as well? The users wouldn’t have seen the code become…

GONNET: Most users have not seen the code for the kernel, that’s correct. Our own people were
obviously working in the kernel, our own group, but not even everybody. We would had our own
academic group divided in such a way that say one third was working in the kernel, two thirds
were working in the libraries. For example I think that Keith never touched the kernel. On the
other hand, a student of mine, Mike Monagan worked so much in the kernel he definitely spent a
similar number of hours to me. So some people worked a lot in the kernel, but I wouldn’t say
that it was more than one third of the group that was working in the kernel. And the kernel had
always had this notion that it was not for everybody. It had some difficult things in it. For
example, garbage collection was a very difficult and a tricky part of the code. It was done very
efficiently. It has a very peculiar algorithm based on generations of data structures. If you make a
mistake, the system dies in a very unfriendly way and nobody wants to fix a garbage collection
bug! So the fact that we were not distributing the kernel, the fact that the kernel had to be
modified so often to port to other systems, and so on, made the kernel for our internal
consumption more than anything else.

HAIGH: Now while we are talking about the kernel, I was wondering if there was anything in
terms of its data structures, its use of hashing, and so on that you would consider innovative.
Also any aspects of the design you could perhaps link into your knowledge of algorithms, where
you might have made a choice that would be distinctive or personal.

GONNET: There are several choices that you have to make when you write the kernel. We’ve
made some choices, and those affect the system in a way that the system will never be able to
modify these choices. I think we made the right choices, but this is again, like saying my religion
is better than your religion. We made the decision very early of having unique representation of
all expressions and sub expressions in the system. This means that if you have the expression
x+1 in one place, any other x+1 is going to be pointing to the same data structure, so that x+1 or
1+x is represented only once in the system. This obviously has very desirable properties when
you want to compare expressions, because if you want to compare two expressions they have to
be the same point.

You also have very desirable properties when you have an expression that grows in a very
repetitive way. You have some expressions of the same thing, which is typical of computer
algebra when you compute derivatives. For example the division of polynomials will create the
same sub-expressions again and again and again. Unique representation requires an overhead;
every time that you create a data structure, you have to make sure that the structure doesn’t exist
already in your system, and this was done with hashing. This was quite novel at the time, I would
say. People were not doing that. We were actually quite harshly criticized by a lot of people that

Gonnet, p. 23

said, “You are crazy and you don’t know what you are doing. Your system will never work.”
This makes some other things very easy. For example, the “option remember” that we discussed
before. The fact that when you compute a result from an expression, you may remember this
result to avoid computing it again, which in many cases is very desirable property. It is very easy
to do because now your input expression has to match exactly because there is only one copy of
each expression in the system. So it has to match exactly what is in the table.

I wouldn’t say that this unique representation was a novel concept. People knew about unique
representation, but it was like, well, it has all its pros and all its cons. Somehow we viewed it in a
different way and went for it, although most people would not go for it. And I think that I am
quite happy about that decision because it meant that most of the problems were solved with
much smaller data structures because you don’t have any useless duplicates. Everything that is in
the system is there only once. So if you have a huge expression, it is because everything is
needed; there is nothing redundant. No sub-expression is repeated. It’s something that you
cannot do by brute force; it has to be done with careful data structures. So we had to devise a
hashing scheme that was suitable for finding identical expressions.

By the way, the identical expressions means identical expression in appearance, not
mathematically. So for example if you have a polynomial in a factor form or in expanded form, it
is the same polynomial; it will be different for Maple. So x+1 and 1+x are the same for Maple,
but x(x+1) or x2+x are different for Maple. Factor form and expanded form are different. It could
be done in the other way, but in that case it is clearly undesirable because now you don’t want
your factor form to become expanded or vice versa automatically. Whereas you typically don’t
care too much if you write 1+x and the system turns it into x+1 because there was already an x+1
in the system, although some people criticize that in Maple: If you type a+p and the system tells
you p+a, why?

HAIGH: So would this choice have been influenced by the design goal of making it possible to
use interactively on a smaller machine?

GONNET: On a smaller machine. The interactivity has nothing to do with it, but being efficient
and running on a smaller machine is definitely something that tilted the balance in favor of
unique representation. I guess that it was that we decided on unique representation that we
enjoyed more benefits than we had originally thought. I don’t think that I regret that decision. I
never thought it was a bad decision. I always thought that we had gotten more benefit than
anything else.

Maple was also viewed as very rich in data structures internally, and also at the user level. So
you can have a number, you can have a rational, you can have a floating point number, you can
have a name, you can have a string, you can have an index name, you can have a polynomial, a
sum, a product, a function. There are about 30 data structures that are commonly used in
mathematics that are all represented in Maple. And those are represented in the kernel. At the
kernel level they all have their own structure. So that was also a difference compared to LISP,
for example, that had one data structure. So I think we have profited, by and large, of this ability
of representing many different data structures inside the kernel in giving the user a relatively rich
choice of types that can be used.

I think that there were other decisions that had to do with the language that are also very
important that affected the way Maple developed that are more language type of things. For
example, Maple is very object-oriented in a slightly different way than what the object-oriented

Gonnet, p. 24

community calls object-oriented. Remember that object-orientation was not a term that was
probably even coined in 1980.1 But we had this notion that a Maple variable can hold any object
that you want. The object that you put into in any variable always knows what it is, and it can be
tested. So you can put an integer into x, and now x will be an integer, but you can say “is x an
integer?” “Yes it is an integer,” or, “no it is not an integer.” Or into the same variable x you can
put a floating point number or you can put a polynomial or you can put an array or you can put a
list or a set—anything that you want. So the variables become like boxes that can have any
object that you want in them. And you can pass this object around. This object can be stored,
passed in as parameters or whatever. And whoever receives this object can decide, “Do I have
this type of object? I’m going to do this.” “Do I have this other type of object? I can do that.”
This is a very primitive form of object-orientation, but for 1980s this was sort of an advanced
form of object orientation.

HAIGH: So that the type is defined dynamically by what you assign the variable to, and it can
change if you reassign it?

GONNET: Right. And there is a type function, which is an active type function—it is not a static
thing that you say it’s the type of this and then compile this code. It is a function that is executed
in run time and it typically will determine, is this object of this type, yes or no?

Another thing that was normal at the time was that we identify types as being structures
themselves, so the types at first were only the arguments of the type function. Is this object of
this type? But then very quickly the type became objects inside the system. Nowadays you can
do with types whatever you want. You can pass them on, you can define them in a function,
definitions so that only this gets accepted and so on and so forth. So types became objects inside
the system as opposed to just mechanisms of the programming language that you declare, such as
Boolean whatever, integer whatever. In C there can be Boolean objects, but there is no
“Boolean” as a type. Boolean is a definition in the language. In Maple, Boolean is an object that
I can pass around, and other functions may say is this type of whatever the type should be, and
you can do this type of matching.

HAIGH: And was it possible for users to write their own types or were they limited to the ones
that were…?

GONNET: Yes, actually the big thing was that the type system defined the atomic type, let’s say,
but all those types can be built up. So you can build sophisticated types from the components and
users can build new types. Probably there we are talking about several years after the original
system. The original system was obviously quite primitive. It was put together in a few weeks.
Maple was very dynamic at the beginning. We never had this notion of versions until version 2.0
that we decided, okay, we are going to have versions now, but we could not really have version
1.0 so we decided it should be good to have version 2.0.

HAIGH: So you’ve said that the design of the package was very much influenced by your idea of
what users would want, and that this was modified as they were vocal in giving you feedback. So
what was the original user body that would have started working with this first version after you
spent three weeks creating it?

1 The term “object orientation” appears to have been coined by Alan Kay in conjunction with his creation of the
Smalltalk language at Xerox PARC during the 1970s.

Gonnet, p. 25

GONNET: After three weeks it was probably mostly the people inside our department that were
using it. We were in the faculty of mathematics, so pretty soon Maple found it’s way into several
courses. We had a computer algebra course, but that was an advanced course for people that
wanted to know what computer algebra was. But Maple started finding its way into undergrad
math, into some other courses, at some point into economics courses and so on, where people
were consumers of mathematics. For some time there was a contest to see how Maple will do in
a final exam of algebra or of calculus. And it was quite interesting because Maple was getting
better marks every year in those exams, but also the exams were changing because teachers
recognized at some point that there was no point in asking questions that a computer algebra
system could solve. Maple was helping in the teaching, but it was also showing the teachers that
there was a powerful tool here, and the classical type of questions that were asked might not
make sense any longer. You don’t want to ask, “what is the integral of this function.” That’s a
typical thing that a computer or algebra system will answer for you much better than you could
do it by hand. You need to understand how to integrate and you need to understand the
fundamentals, but do you need to be a robot that integrates anything? The answer is probably no.
It’s the same way that you need to understand how to add two numbers, but it’s pointless to give
an exercise in a final exam, “Add these two numbers,” that are very long and have lots of carries.
No. That’s why we have calculators these days that do the job very well.

I am probably collapsing many years of history now, but that was something that happened
almost from the beginning: that Maple got it’s way into the teaching of mathematics, not only the
teaching of computer science. It got us input: what we needed to do, how we needed to change
the system, this is not reasonable, why do this, and this is wrong, or this is wrong in certain
aspects of mathematics. But it also affected everybody by showing what it was possible to do
automatically, showed what things were foolish to ask the students. And I think that now
everybody recognizes that, but for quite some time there was sort of a self-adaptation of both
sides: the teachers on one side and the development of computer algebra.

Maple, in some sense, was the first computer algebra system of which we could say with a
straight face that was useable by a large number of students. It was just not possible to give
MACSYMA to 100 students, to try your exercises using MACSYMA or using Reduce. It was
just not possible, and with Maple it was possible. At first it was a little bit painful, but with
computers getting faster and cheaper it became possible.

HAIGH: When you talked about getting feedback from the early users, would that be feedback
directly from the students or from the instructors?

GONNET: Students, instructors, and colleagues who were using Maple for doing numerical
analysis or doing physics or doing something or other. We had a department of applied
mathematics in the math faculty, they were also big users of Maple.

HAIGH: Would faculty members at this point have been using it as a tool in their own research?

GONNET: Yes. I wouldn’t say extensively, but yes, many people were getting into using
computer algebra.

I want to mention something here which is very peculiar about mathematics, and I think that
computer algebra and Maple in particular and Mathematica to some extent have contributed.
There is a huge body of mathematical knowledge. That is indisputable. Advances in mathematics
occur, but the weak link of mathematics is in trying to make this knowledge available to
everybody.

Gonnet, p. 26

If you want to solve a differential equation or something like that, you can go into the literature
and study and eventually you may or may not find something that solves your problem. But you
have to do a very long and extensive search, and it usually is quite difficult for anybody who is a
consumer of mathematics. We had a situation where it is very hard for the consumer of
mathematics and the mathematical knowledge to meet each other. Sometimes actually the
answer is so complicated or the answer doesn’t exist, and so it’s just not possible to connect the
two.

You’re not going to solve all the differential equations of certain problems. If you are studying
differential equations, you are going to study some pattern of differential equations. You don’t
solve every problem. So now a user has this particular differential equation, the best that the user
can do or the consumer can do is read all these papers and extract the methods. You see
computer algebra somehow made this bridge possible. Computer algebra is a tool that allows a
user to access the big body of mathematical knowledge, and I think that in some sense, all
computer algebra systems owe their success and their acceptance to this thing that they do. That
is, they provide the bridge between mathematicians doing mathematics and users needing the
mathematics. Nowadays, if you want to solve a problem you go to Maple or to Mathematica, you
describe your problem and most likely somebody has embodied the mathematics into an
algorithm that solves your problem. Before this, your only choice was going to go to the library
and do an extensive search, and eventually have to decode these mathematical papers and
translate them into your own language.

HAIGH: Actually that does bring to mind a question about the different experience a user would
have using a symbolic package like Maple and a numerical one like Matlab. If this user that you
are talking about who has a problem that they need to solve, would you say that they would learn
something different from attempting to solve it symbolically than from attempting to solve it
numerically?

GONNET: I have always been surprised at how little users understand the difference between
purely symbolic and numerical, and actually how easily they confuse each other: how many
Maple users use Maple only for its numerical properties and how many people use Matlab very
cleverly to extract symbolic answers. (well, Matlab now has parts of Maple in it). But even by
approximating or by plotting or by using some of the primitive facilities that they have doing
some symbolic computation, a lot of users just see the systems as doing mathematics for them,
and for them whether it’s symbolic or numerical is a blurred line. They may not even care!

HAIGH: As I understand it, if you tried to use a purely symbolic package and it couldn’t solve
your problem, it would give you some kind of error; and if you use a numerical one it would give
you an answer but it might not be meaningful. Would that describe the situation faced a naïve
user who didn’t know anything about the mathematics and was faced with the two?

GONNET: I think if you have a naïve user that doesn’t know any of the mathematics, they’re
probably cooked in both systems. We have to recognize these systems require some knowledge
of what you are doing, no matter how much we claim that they do mathematics for you. If you
have problems understanding what is the difference between an integral and a derivative, Maple
is not going to help you, Mathematica is not going to help you either, Matlab is not going to help
you either. You have to have some basic understanding of mathematics to use these systems.

We used to say that Maple and computer algebra was like a very diligent slave. The analogy is
quite good, actually. It’s a very careful, very stupid, but very diligent slave. You say add these

Gonnet, p. 27

two polynomials and it will add them without making a mistake. Integrate this, and it will
integrate applying the rules very carefully without making mistakes. But the driver is the person
that is requesting the things. It’s true that the systems get better and better and better. The more
packages that we have and the more that the systems get into special areas of mathematics or
science, the more you can pose the problems in the terms closer to the original area. Then the
system is able to translate them into mathematics and give you an answer that makes sense. But I
would insist, again, that these systems, in the end, have to be used by someone who understands
the mathematics. For someone who doesn’t understand the mathematics, is just going to be a
GIGO system—garbage in, garbage out.

[Tape 2 of 6, Side B]

HAIGH: Now I just have a few more questions about this very early version of Maple before we
move on to talk about later developments. I believe you described the contributions of Morven
Gentleman and Keith Geddes. What was Bruce Char’s contribution?

GONNET: Bruce Char was not there yet. Bruce Char was hired some time after the project was
started, and he immediately became a main contributor to the group. It was very nice to have
Bruce Char because Bruce had some very serious experience with MACSYMA. “No, no, no,
you’re doing it wrong. MACSYMA does it a lot better.” Which was very annoying sometimes,
but it was very good at keeping us honest in what we were doing. He contributed very much to
the design, in the algorithms, and he had lots of students that were working very hard in the
project. He was a young faculty member. He came right out of his Ph.D. to join Waterloo, and
almost instantly became a strong contributor. But he was not there for the initial design

HAIGH: After he arrived, did he become the main contributor on the kernel or did you continue
to handle that yourself?

GONNET: No, actually, the kernel was really my domain most of the time and when Mike
Monagan became very active in Maple, he was probably working as much as I was working on
the kernel. And other people also worked on the kernel. But in terms of faculty members, it was
only me. It terms of grad students, it was mostly Mike Monagan. Stefan Voerkoetter was another
master’s student of mine that worked on the kernel quite a bit.

HAIGH: Now, you’d said that quite quickly after this initial release, you were able to get a small
grant to fund continued development. So what did that grant pay for?

GONNET: If I remember correctly, that grant paid for some equipment and for two people, two
students or two staff that we hired, basically to help develop the system. And it was at this time
that we sort of officially declared that we had this Symbolic Computation Group, the SCG,
which was sort of the umbrella under which everything else was happening.

HAIGH: So that group didn’t exist prior to the Maple project?

GONNET: No.

HAIGH: As time went by, did it gain any other significant activities?

GONNET: No, it has always been mostly around Maple. A model that I have used and Keith
Geddes has used quite extensively, and that I like and defend very much, is the notion that a
Ph.D. student should develop some science, some new knowledge, and when it’s in computer
algebra, this knowledge has to be encapsulated in some facility in the system. So you work out a

Gonnet, p. 28

better method for factoring polynomials, by golly you have to have an implementation that does
it. I don’t want to know about nice theorems that are not implementable.

It’s my peculiar view. But this has been quite generalized, and I think it also gives quite a bit of
satisfaction to the student, because they see that what they do gets embodied and comes to life.
Anybody now that wants to solve this particular type of differential equation are going to be able
solve this differential equation because the work that I did. And so it’s like making your
mathematics alive. Which goes back to what I said before, that computer algebra has brought this
necessary bridge between consumers and producers of mathematics. I want to give my students a
practical orientation, that if you are doing good science, the good science is also to be matched
by some real code that will eventually serve make what you have discovered alive for other
people.

HAIGH: With the two students you were able to hire, was that when it got converted from B into
C?

GONNET: No, the conversion to C was done by another student, Howard Johnson, who later
became a faculty member and worked with us. Actually, Howard Johnson made several
contributions to Maple. Because Howard was doing this conversion, he decided to work on a
macro processor that was powerful enough to convert to one or the other language. So we had
some source code that was slightly above the B or C, and it was preprocessed by a preprocessor
(very similar to what we have nowadays with a standard C preprocessor) that had some extra
features. This allowed him to maintain code that was simultaneously executable in B and in C.
With time, only the C version was maintained, and eventually all that was discarded and only the
C version became the only one.

There’s some interesting naming in there. The name of preprocessor language was MARGAY.
We used to say the kernel is coded in MARGAY. MARGAY is this language that with macro
processing will go to B or will go to C, depending on the macros. (margay is a type of wildcat
that is not very well known. We once made a little excursion to see a margay. I think it was in
Arizona in the Desert Museum or some place like that).

You also have to understand that in the early 1980s there was no standard for C, and the C
compilers had very different levels of how many features they accepted from the language. In
particular, many early compilers did not accept structures. B didn’t have structures; early
compilers of C did not have structures. Consequently, the kernel of Maple did not have any
structures. So from that point of view, the C code is a little bit deficient, technically speaking.
It’s all coded without structures. It’s all coded in a hard way, in some sense. If we were coding it
nowadays, we would definitely use richer structures. But this was something that was forced on
us by the languages that were available at the time. C was not even available when we started the
project.

HAIGH: It says in the paper that it was ported to C in 1981 when Waterloo acquired a VAX, the
original version having been for the Honeywell. [Bruce Char, Keith O. Geddes, W. Morven
Gentleman, Gaston H. Gonnet, “The Design of Maple: A Compact, Portable, and Powerful
Computer Algebra System,” in Lecture Notes in Computer Science 162: Computer Algebra,
edited by J.A. van Hulzen, Springer-Verlag, 1983, 101-115].

GONNET: Okay, ’81, that sounds very early. I would have said that it was ’82, ’83, but if it says
in the paper ’81, that would be great.

HAIGH: That would be prior to receiving this initial grant.

Gonnet, p. 29

GONNET: Yes.

HAIGH: So when you got the grant, it was already in C.

GONNET: No, sorry, sorry, it would be concurrent with the grant.

HAIGH: What other things changed between this very early version produced in three weeks and
versions that would be in use within Waterloo, say, two years after that?

GONNET: There were thousands of changes, probably. But it was sort of an every day type of
evolution. It was not something that, oh, we completed version one now; we’re going to version
two. It was sort of a natural evolution. I think I can probably pinpoint a couple of events. At
some point, we redid the entire internal arithmetic. We had made a bad choice by thinking that
people would never work with more than 500 digits; I think it was some number like that.
Compared to all the systems that we had, it was unthinkable that anybody would want more than
500 digits. And it was clearly wrong, some of those decisions that you make, and we needed
variable precision arithmetic. Because of the technicality, it was an intricate change. I think that
most people would not even remember that we didn’t have variable precision arithmetic in the
first place.

We didn’t have garbage collection for quite some time, and Maple was quite economic in
memory and very CPU-intensive. Even though it appears to be crazy to say we didn’t have a
garbage collection, this was not a serious flaw at the end. We were running a significant
computation without garbage collection. Maple was very capable of dumping all its memory into
a file and then restarting, so that was sort of the “garbage collection” approach. If you were
really computing something very large, you would sort of dump everything in a file and restart. It
was only in 1984 that we had bona fide garbage collection in a production way. So you see it’s
three years that the system went without garbage collection. We also had very primitive ways of
printing at first, which was basically all line-oriented. It was a big thing when we started printing
in two dimensions. Again, it was very primitive at first, but then was quickly recognized that
two-dimensional printing, even in ASCII characters, was very important. We’re not talking about
big map displays; we’re talking just about plain characters displayed in a fancy way on the
screen to mimic an integral or a summation or whatever.

HAIGH: Actually, that brings up another question. Given that everything is occurring in ASCII,
was there a standardized way of representing complex mathematical notation in ASCII, or did
you have to come up with your own notation?

GONNET: No, we had our notation, and that was a natural extension of the language. The
language allows you to write expressions, and so the way that you write expressions becomes a
way of describing mathematics.

But maybe at some point we should talk about OpenMath, which was an effort that I started. I
started in earnest when I came here to Zurich, but we were talking about ideas that were leading
to OpenMath for a very long time. And yet, they never crystallized very well. The notion that we
have to have a language that allows us to transport mathematics from one place to another is a
very important notion, and it wasn’t realized for years, and only recently with OpenMath
becoming more significant, it has a chance of becoming a reality. But it has always been the case
that you have either Maple or you have Mathematica or you have whatever else, and it’s very
difficult to transport your mathematics from one to place to another, or your lab expressions or
whatever.

Gonnet, p. 30

HAIGH: Okay, I’ll make sure that we cover that in a later session, then. So from your point of
view, the three main areas of expansion of the kernel from this initial 1980 release through about
1984, would have been: the addition of garbage collection, the improvement of the arithmetic in
terms of variable precision and an increase in the maximum possible number of digits, and the
ability to print in two dimensions.

GONNET: Yes. All those are still eclipsed by the growth of the library and the growth of the
general system, except that those things are incremental, right? So those are points that we can
say that was a significant step. But all the steps are still very small compared to how the
language grew.

HAIGH: Let’s talk about the growth of the library, then. Now I think you’d implied earlier that a
lot of the growth, in terms of functions would be coming from the uses themselves.

GONNET: Yes, but not exclusively. A lot of the growth was coming from us.

HAIGH: And by “us” you mean members of the Symbolic Computation Group?

GONNET: Members of the Symbolic Computation Group or their employees, or their students.
So a significant growth came from Ph.D. students that were working in the group, that were
contributing their code.

HAIGH: So as the system developed, how many Ph.D. students might have been involved with
the group?

GONNET: About 20. Now, I am probably making an injustice there because in total, there must
have been more than 20. But at some point, the company, Waterloo Maple software, took control
of the entire development, and the production of Maple code became less dependent on the
research groups. If I had a student doing computer algebra, it’s not necessarily a requirement that
he write something for Maple. And it’s not guaranteed either that the company’s would include
this in the package.

HAIGH: So in this period through 1984 that you had mentioned earlier, prior to commercial
distribution, what would your sense be of the rough balance between contributions from
members of the group and those from people outside it in terms of size of code or number of
functions?

GONNET: I would say three lines produced internally by professors, students, or staff for one
line from the outside—three to one. It’s more than two to one. We were very active during that
time. It was Bruce Char, Keith Geddes, our students, later George Labahn joined. Howard
Johnson was working part-time. Benton Leong was another faculty who was working part-time
in computer algebra. It was a lot of people that were working in the project. And it was also very
a high-profile project at the University of Waterloo, so students were very interested in working
with us. It was very attractive for the students to work in Maple. A lot of students had this idea of
semi-magic. You’d type an integral, which is a difficult thing, and out comes the answer. This is
magic! Somehow, a lot of mathematics, in particular, integration, has been taught to a lot of
people like a bag of tricks. A mathematics professor will know how to integrate all these
complicated functions. In modern times, it may no longer be true. There is still that aura that the
selected few can integrate functions. And to have a system that does it automatically is a little bit
of magic, right?

HAIGH: So would many of the contributors have been students who were taking mathematics
courses and had been impressed by the system and were interested in working more on it?

Gonnet, p. 31

GONNET: Yes. I think still most of our students were from computer science, although we had
some students from applied math and some general students from mathematics. But most of our
students would be from computer science.

HAIGH: At what point was the package first distributed outside Waterloo?

GONNET: I think it was distributed very early outside Waterloo—very, very early. The first
commercial distribution was in 1984 where we arranged with a company named Watcom to do
the distribution.

HAIGH: Prior to that, had there been non-commercial distribution?

GONNET: We were charging some money because needed to pay for the tapes and to pay for
somebody producing the tapes and somebody sending the packages by the post and so on. So we
were charging, say, $200 or something like that to do the service. So we were charging but could
not be considered commercial distribution. I have to say, we were instantly successful with that.
Cheques were arriving. This was inside the university, and it was very difficult for us to justify
receiving money and it was difficult for justify to put some staff to do things that were clearly
not academic. Making tapes and sending envelopes was clearly not academic, but you couldn’t
give it to a secretary either because it requires some knowledge of the system—you have to
compile, you have to get it ready for particular installation or whatever, get all the pieces
together, make sure that it installs and so on. So this is a dilemma that you always have in a
university when you develop software. There is a stage, if the software is successful, that you
have to start distributing it. No structure in the university normally will allow you to pay for the
down-to-earth costs involved in distributing. And nobody likes that you’re receiving cheques
from somebody else because the university administration is worried that they are getting into
some commitment that they will not be able to honor. They are also worried that you, all of a
sudden, have money that they cannot account for and so on and so forth. So universities are very
ill prepared for this type of thing. It always works for a short period of time, if it works at all, and
then it has to find some other avenue.

HAIGH: Prior to the point in 1984 where Watcom began to distribute it, do you have a sense of
how many other sites might have been using the software?

GONNET: It’s difficult to say because we had distributed hundreds of copies, but how many of
them were being used is difficult to say. You always like to inflate the numbers a little bit and
say we had so many users. I would say that we had in the hundreds of users. I wouldn’t say that
they were in the thousands. I am sure that some people received the software, tried to install it,
didn’t work for whatever the reason, never used it again. I am also sure that a lot of people were
making very good use because we were getting the feedback.

HAIGH: So a lot of this feedback and contribution of library functions already would have been
coming from the users outside Waterloo.

GONNET: Right. Another measure of people using the system is from the books and material
that you produce, and so we had some technical reports that were describing the language, and
we would print 100 copies and we would run out; print another100 copies and run out. So
obviously either some people were wallpapering in their basements with the technical reports or
they were using them.

HAIGH: It’s your sense that these external users would have been primarily using it for teaching
purposes rather than research?

Gonnet, p. 32

GONNET: Both. I think that some people were doing their research. Some people were probably
curious how much you can do. I guess a lot of people were frustrated also because they would
throw it a difficult problem, the system will not do it, and they say, “This is a toy” Understand it
or not understand it, the computer algebra is a very difficult problem to solve in all its generality.
And also understanding that there were no standards, right? It was difficult to say, “The system
has to do this.” If you have a spreadsheet, you expect it to compute, period, right? It’s
deterministic. It computes predictably. You expect an answer and you can determine it. If it has a
bug, it doesn’t do what it’s supposed to do. In computer algebra it is not the same. If you give
this differential equation, the system says, “I cannot solve it.” Now you don’t know if it doesn’t
have a solution or the system is not smart enough to find it, or that by massaging it sufficiently
you will be able to convince the system to find a solution. So this is what I mean by the lack of a
standard. You cannot say, “The system is perfect.” There’s no other system that you can say,
“System X solves all these problems you are not solving.” There was no System X. And in
general, we were better than MACSYMA very soon, I should say. In some sense, MACSYMA
for us was never the competition.

HAIGH: So by “better” you mean that, although the goals were originally compactness and
efficiency and usability had been driving it, that Maple had quickly come to solve a wider range
of problems than MACSYMA?

GONNET: Yes. Almost instantly, we were able to solve bigger problems than MACSYMA was
able to solve because of our compactness. MACSYMA had quite good libraries because it had
many years of people working, but it was also a nest of bugs because different people had
worked at different times and coded something and left. MACSYMA was extremely difficult to
maintain, and so getting the wrong result in MACSYMA was not extremely surprising.
MACSYMA had also this extremely unpleasant behavior that, in the middle of a very long
computation, it would spit out a huge expression and ask the user: “Is this expression greater
than zero or less than zero?” No idea whatsoever. You know, you get half a page printed, and it
asks you a question. Well, how do I know? And of course, the system was deciding that it
needed to know whether this was a zero or not, or a positive or negative, and it was asking a
question. Those types of things were design mistakes that MACSYMA could really never shake
off. It may have been a mistake on our part, but we never considered MACSYMA to compete
with us. We assumed automatically that we were better. At first, maybe incorrectly, maybe we
were not better. But in the end, we were definitely better than MACSYMA.

HAIGH: This is jumping ahead slightly, but my impression was that MACSYMA, as it was sold
in the early and mid-‘80s was tied by Symbolics to its proprietary range of hardware.

GONNET: Correct, because MACSYMA was LISP based, right?

HAIGH: Yes.

GONNET: And Symbolics was selling these machines that were LISP machines. A Symbolics
machine was basically a LISP machine. And actually one of their strong selling points was that
they would sell MACSYMA when there was no competition, of course. But they were also
selling a very nice environment for developing LISP programs, but their goal was to sell the
LISP machines.

Symbolics was located near Kendall Square in the heart of MIT, so they had very close ties to
the Artificial Intelligence lab. It’s no secret. And so for quite some time, they either had the
original people from MIT that had developed MACSYMA, or had easy access to all of them.

Gonnet, p. 33

The company at some point got into trouble. It reached a point that they had so much code that
they could just not maintain it. This is always a danger for any software, to become critical in the
sense of you have so much legacy code that you don’t have enough people to maintain it. And I
think that that’s what happened to them more quickly than what they expected.

Now, they were a real company. We were not a real company; we were an academic project. So
they had to advertise and they had to sell for high prices and so on. We were not advertising. We
were just distributing the software for peanuts compared to what they were charging. So we
never considered that we were competing with MACSYMA. That’s the truth. Whether they were
thinking that we were competing with them, I really don’t know. Maybe they were not even
thinking that we were competing with them. But in the end, MACSYMA disappeared. Maple
didn’t do very well with Mathematica either, in the end of the story, but that was our own
mistake.

HAIGH: Did the separation you talked about between the kernel and the libraries help Maple
deal with this problem of maintaining a large volume of code?

GONNET: Yes, absolutely. It also made the code transparent, so we had lots of people that were
users of Maple that would say, “This function is very nice, but you have a bug here. Fix it,” and
they would even send us the fix. That was because it was in the libraries, because these were
people that needed the math done, and if it was not doing it, they would go in and fix/improve it.
They had all the tools to solve it—they knew the language and they had the code, so they could
go and fix it. If it was in the kernel, they could not fix it. But if it was outside; and most of the
code was outside, they could go and fix it.

HAIGH: So I’m seeing a parallel between that and the ethos of today’s open source software
movement.

GONNET: Yes. Actually, that’s quite correct. I was not the only one, but I was definitely
adamant that the library should be accessible by everybody from the beginning. At some point,
we were not distributing the library, but I had made sure that you could print any function from
Maple. Well, you would get it without the comments, but at least you’d get the function. So the
library was never a secret. The library was there. It was copyrighted, yes; it was not free. But
anybody that wanted to know how to do things or how to fix things could be able to do it. And as
a matter of fact, it did work very well in the same way that open software works nowadays. That
has two aspects, which people usually don’t recognize right away. One is that you know what
you can contribute; you see the software, you fix it or you add software to it. But the second
aspect is that it has a component of teaching. By looking at how things are done, you learn
something. You learn the style, you learn how to do it. And in the case of Maple, that second
component was very important because people didn’t know how to do it. How do you find an
integral? Well, there are methods. There are algorithms. How do you factor a polynomial? And
so people could go and see how things were actually done and mimic it, in some sense. “They
are doing this in this way and I want to do that, but it’s similar. I can now extract from that code
and produce my own code.” And that’s very helpful. So having the library available I think was
quite a positive thing for Maple.

Maybe we should have had the kernel also, and that would have probably kept us more honest
about the quality of the code of the kernel. But the kernel was more delicate, and because it was
delicate, we always thought that if we were releasing it, people would just break it left and right
and would not invest the amount of time to learn all the details of the kernel. I’m still thinking

Gonnet, p. 34

that that was the right decision. The kernel was very small all the time. It was doing the simplest
things, or the things that needed lots of speed. Nobody’s challenged by the fact that the kernel
does addition, subtraction, division of integers and floating point numbers and expansion of
polynomials and so on. You are interested in knowing how an integral is done or how to solve an
equation.

HAIGH: I think you implied a moment ago that in the early days, even when you were
duplicating the tapes yourselves and sending them out, that there was a copyright attached to the
code.

GONNET: Yes, there has always been a copyright attached to the code. The copyright has
always been there. The library was distributed, but it was copyrighted. There is no contradiction
on distributing for free, but still keeping the copyright.

HAIGH: Certainly. Was that a university policy or was that a decision that was made by the
group itself?

GONNET: It was a decision made by the group.

HAIGH: Was that because you thought the code might have some commercial value or was it to
stop other people from making money out of it?

GONNET: A mixture of everything. You also want some recognition, too. Some of the functions
were really hard work by members of the group, so you wanted to say, “This has been written by
such and such,” and want the recognition.

HAIGH: Can you remember if this self-distributed version was accompanied by any kind of
license agreement?

GONNET: Oh yes, there was definitely a license agreement where, among other things, the
university wanted to put some language that they would not be liable. Pretty quickly people
recognized that you could do a lot of damage by giving the wrong mathematics to someone who
is doing some engineering. So they wanted us to protect ourselves. So there was some standard
language that no matter what Maple does, we are not responsible.

HAIGH: Would the license have stopped somebody making a copy of it and giving it to another
site?

GONNET: The price was so reasonable at the time. Now you may think that $200 is too
expensive because you can buy software for ten bucks. But at the time, I think people viewed it
as very reasonable. Granted, we were selling mostly to academics in universities, so people were
viewing the price as a very reasonable price. The number of illegal copies that you have, at a
certain level, has to do with the price, of how people perceive the price. For example, we
invented one thing, which was the square root law for licenses. One license is, say, $200, right?
Four licenses, we are going by the square root law. So square root of four is two, so for four
licenses, you pay twice the price. For 100 licenses, you’d pay the price of ten, which is the
square root of 100. So it increases, but it increases much more slowly than linearly. The effect
that we had with this was quite remarkable. Most people would say, “Oh, what a reasonable
policy. Sure we are going to have nine licenses; we pay three licenses.” As opposed to what
would have happened and said, “Oh, nine times? We’re going to want one license.”

Anything illegal that you do with the software, I think at a certain level, is tightly related to how
fair the price is perceived. And if the price is perceived to be very unfair, then people will try to

Gonnet, p. 35

cheat, no matter what. On the other hand, if the price is perceived to be extremely fair, “These
are good guys, you know? Let’s pay them what they say and be in the good books.” When we
were distributing from the university (and this was happening before PCs) I think that that was
definitely was the spirit.

HAIGH: Prior to the distribution agreement with Watcom, had you made any efforts to make
Maple portable to platforms beyond the VAX?

GONNET: Well, we were running in most of the machines that we had in Waterloo. So we had
an IBM version that was run under CMS or something like that, whatever the big IBM were at
the time.

HAIGH: So was there already a C compiler available for the large IBM machines?

GONNET: Actually Watcom was developing a C compiler for the IBM at the same time, and we
piggybacked on their development. So we had a version that was running on IBM machines. I
remember other people ported Maple to very strange machines like large CDCs, scientific
computers that were very powerful but very odd. For many, many years, VAXes were the main
computing power in our university and most universities. We had VAXes running Unix, as a
matter of fact; it was sort of the standard scenario for us. They were being slowly replaced by
Suns, or competition of Suns, also running Unix. As I said, we had a host of small machines. The
Apollos, I remember. I remember the Spectrix; I don’t remember the others. We can probably
dig up some of the names. I could say that compared to other systems, we were widely portable.
We would not be widely portable to today’s standards, but compared to what was happening at
the time, we were very portable.

HAIGH: When I’ve talked to people who were working on numerical software libraries in
Fortran, then it’s clear that in that case there were two parts to the portability: optimizing for the
machine’s arithmetic, and dealing with deficiencies in its compiler. In this case, were the
portability issues purely coming from the compiler, or were there any differences between
machines in terms of their arithmetic or architecture that required changes in the code?

GONNET: Several answers to that: Our architecture was a blessing for porting because if we
could compile the kernel and we could test it, all of Maple would run. We could not have a
situation where, “Oh, you add this new library and your compiler is going to be a new version
and it’s not going to work,” or whatever. We had also developed quite a bit of an infrastructure
where we had a lot of our own numerical functions. Not for sine and cosine, although we did
have versions of those, but for more strange functions—gamma function, error function,
functions that are off the beaten path. But sometimes you would find that in porting to some
machine, there was a terrible implementation of those functions. You just could not live with it
and have to implement our own.

For quite some time, we were not relying on any floating point hardware for anything other than
floating point computation of the system. So we were quite insulated from problems from the
libraries. B and C are, in the end, are very simple compilers for which optimization is rather
straightforward. So the code was usually very efficient. Yet, sometimes we tuned for a particular
implementation, but most of the time it meant that once we had the kernel running, all of Maple
was running. So I guess that simplified porting.

HAIGH: So it was relatively straightforward.

Gonnet, p. 36

GONNET: I should mention that from the beginning, we had a software practice of having a
very extensive test suite. The test suite was a very active test suite. Every time that we found a
bug that bug, when it was fixed, would become part of the test suite. It was the regression test
suite, also. So we would have the testing that programmers or coders decided, plus all the bugs
that had been detected that had been corrected also. Turned out that the bugs are excellent
witnesses of future problems, and so our test suite was really valuable and also really valuable at
maintaining consistency with previous versions, consistency with the users, and finding porting
problems.

[Tape 3 of 6, Side A]

Session 2 begins, March 17, 2005. Conducted in Professor Gonnet’s office at ETH in Zurich,
Switzerland.

HAIGH: In yesterday’s session we reviewed both your career in general and the development of
Maple through about 1984. I wonder if you could say something about how your involvement
with the mathematical software community might have developed over the course of the early
1980s. You had said that when you first began to work on Maple that you had been writing the
package that as a consumer you would have liked to have had, but presumably as you became
more involved with mathematical software you came into contact with the community of people
working in the area.

GONNET: Right. I also said, and this is very true, my main area in the very early ‘80s was still
algorithms, I had some contacts with the scientific computing community, very good contacts.
My supervisor in particular, Alan George, was a very central figure in that community. Actually
there is a coincidence that my first two papers that I ever published were in numerical analysis,
but that was almost an oddity in some sense. I was not really a mainline scientific computation
person at the time. I was doing analysis of algorithms, and yes, I was knowledgeable about
scientific computation, but it was not my main activity. For quite some time I think I did not
make any efforts to become part of the mathematical community. Eventually papers started
appearing on algorithms for symbolic computation with my name on them, and I was recognized
as a person in symbolic computation and hence in the mathematical community. It was more of a
consequence of working for so many years in developing Maple and so on that eventually you
find algorithms or build something or discover something that you end up publishing in that
community. You also start going to the conferences because your students go to the conference
because all the colleagues are going to the conference so you end up going to the conferences
and sort of become part of the community. So it wasn’t so much an active effort to become part
of that community as slowly being incorporated in that community. For example, I didn’t go the
conference that the main Maple paper was presented. I didn’t go to computer algebra
conferences for quite some time.

HAIGH: Chronologically speaking, at about what point might you have begun to go to those
conferences?

GONNET: I guess 1984-85, or maybe even later.

HAIGH: At this point, was the computer algebra community largely separate from the numerical
analysis and numerical computation community?

GONNET: Yes and no. In Waterloo there was a strong connection. As I mentioned before, the
main people involved in starting the project, Keith Geddes, Morven Gentleman, and Mike
Malcolm were mainline scientific computation community. Many other people in the community

Gonnet, p. 37

had their origins in the scientific computation. However, there were people that were coming
also from artificial intelligence and hence were not scientific computation as we defined them
now. I don't know, maybe Waterloo was a bit of an exception in having so much influence from
the scientific computation community in computer algebra. I don’t think it was the unique
exception, but it’s difficult for me to judge. I don’t remember the origins of all the people that I
have seen. I would say that there were two main origins for the people in the computer algebra
community, either artificial intelligence or scientific computation. Actually maybe we could also
say physics—a lot of people doing physics were turning into computer algebraists.

HAIGH: You mentioned to me outside the interview that you were well acquainted with people
like Cleve Moler. Was that as a result of work on Maple?

GONNET: Actually I don’t know where we met for the first time. Cleve used to come to
Waterloo too, so I think that we met in Waterloo. Most likely we met in Waterloo. Cleve was, I
think, a very good friend of Mike Malcolm, so probably first time that we met was in Waterloo.

I think that we respected each other. As I said before, I have a tremendous amount of respect for
Cleve Moler because we were both down-to-earth writing systems and we were very proud of
what we were building. So neither of us had any hesitation. If there was a bug to be fixed, we
were the ones that would go and fix it. We were not managers and said, “Oh, there is a bug. Go
and fix it.” We would just go and do it ourselves. I think that from that point of view we had lots
of opportunities to discuss things that were interesting for us and common experiences and so on.

Later, Mathworks and Waterloo Maple had a commercial relationship. Actually that was
architected by both of us sitting at some point and saying we had to do something together. Then
it took some formal shape and so on and the contract was written and so on. But the essence of
the arrangement was something that Cleve and I decided and agreed upon. We had always a very
good and friendly relation. I think we never published a paper together though.

HAIGH: Just before we return to Maple. In the broader context of your academic career in
general, I was wondering during the 1980s were there any associations or interest groups within
which you were particularly active?

GONNET: Well, in the computer algebra community I was definitely active. I don’t remember in
which year, I was chairman of the computer algebra conference. The computer algebra
community has one main conference that used to alternate between Europe and North America,
and more recently was alternating between Europe, North America, and the rest of the world.
This is the main focus for all the people that are doing research in computer algebra. I was
participating in that community in the later ‘80s, say second half of the ‘80s to the extent that I
was chairman of that conference. I think it was ’89 that I was chairman. I think that maybe ’9X I
was chairman again.

HAIGH: What would that conference have been called?

GONNET: It had several names. Oh, it’s embarrassing. It was EUROSAM at one point, and then
it was called ISSAC for many years. I think it’s still called ISSAC.

HAIGH: Were you involved with the ACM’s Special Interest Group on Symbolic and Algebraic
Manipulation (SIGSAM)?

GONNET: SIGSAM. Not very much. I think that we may have published a couple notes in there,
but nothing more significant than that.

Gonnet, p. 38

HAIGH: Do you know if that was an active group in general?

GONNET: No, not really. The bulletin had quite often interesting material, but SIGSAM, by
being non-refereed was not a place to present your best material. In particular for the people that
need to have solid merits for the furthering of their career. So the papers published in SIGSAM
were more reports, conferences, “I have done this and it’s interesting,” but not the standard paper
that you would publish in a refereed journal.

HAIGH: During this period, were there any groups outside the area of computer algebra that you
were active within?

GONNET: Definitely. In 1984 Waterloo made an arrangement with Oxford University Press to
make a consortium to computerize the second edition of the Oxford-English Dictionary. Starting
in 1984 with a different set of colleagues, in particular Frank Tompa from computer science, we
started what was called the Center for the New OED, which was a multidisciplinary center that
involved people from the English department, Computer science, and some people from History.
The main activity of the center was to help Oxford University Press in various aspects of the
computerization of the OED. This project was tremendously successful and tremendously
rewarding to all the people that participated in the project.

The goal of the project was to produce a computerized version and second edition and print it,
and that was mostly the responsibility of Oxford University Press. Waterloo was involved in
various aspects. We had the idea of parsing the text as a programming language. We produced
text-searching software that was very fast for searching any word in the entire dictionary. We did
several other tasks related to the organization of the projects and how to coordinate the various
flows of information and so on. We exchanged people with Oxford University Press. We stayed
in Oxford several times. People from Oxford came and taught courses in Waterloo. We
organized a yearly conference that ran for about ten years which gathered a lot of people from
various disciplines that were interested in dictionaries, whether it was dictionary making or
lexicographers or linguists or computational linguists or computer scientists. There is no question
that that project took a significant part of my attention for the rest of the ‘80s and in the early
‘90s too, although I would say that the main activity was between 1984 and 1989 probably. That
took a lot of hours away from computer algebra for me. I didn’t stop or anything working in
Maple; I continued working in Maple throughout the time. But definitely that became my second
focus of attention at the time.

HAIGH: Was your group producing software that would then be used by the editorial team in
Oxford?

GONNET: That’s correct. As I said, the main contributions I would say was the parsing, which
is transforming the input text that was typed in into text that had structure in the structure of the
dictionary, all the proper tagging. That was done by and large automatically. That was one
contribution. The second part was fast text searching that was used for all sorts of things. In
particular was used to clean up and to improve the dictionary, but then it also became an
independent tool for searching any text database. It was actually the main piece of software that
started the company Open Text

HAIGH: We’ll talk about the company later. Had the impetus behind the creation of the center
come from any kind of personal interest on your part?

GONNET: The Center for the New OED? Yes and no. The people from the Faculty of Arts were
very excited about the project. This was a project that was negotiated by basically the authorities

Gonnet, p. 39

of our university without very much of our involvement initially. I remember very clearly
discussing with Frank Tompa. It seemed that a disaster scenario was brewing because all the
people from the English Department and from History were extremely excited about this project.
They all wanted to go forward. They thought it was just great that we would be in a partnership
with Oxford University Press. I was seeing real computational problems that were not easy to
solve. The Oxford University Press had real problems: how to input the data, how to parse it,
how to produce a new dictionary, and so on. I saw nobody that would do the computational part.
I was seeing sort of a collision course. And if there was a failure, the failure was going to be
because Waterloo’s computer science people did not do the job. I was seeing that we were going
to get all the blame at the end. Computer science was going to get the blame. At the time, Frank
Tompa and myself together with Paul Larson were the main people doing databases. I saw also
some harm. Of the computer science people that failed, who are the ones that failed? Well, it was
a database project, and the database people did not do it. I was actually worried about that.

At one point, I discussed with Frank this problem. I said, “Well, we have to do something to at
least clarify our position.” I said, “Well, we either do it or don’t do it, but let us take the initiative
and force the situation.” We came up with a proposal, and we said if we get this and this and this
and this, such as space for the Center for the New OED and funding for the Center for the New
OED, then we will do it. If we don’t get this, then we are not involved and we should not do it.
So that at least it’s clear. Yes, Waterloo would have failed, but computer science had said, “We
will do it if we get this.” They didn’t get it, so computer science cannot be blamed. To our
surprise, the university gave us all that we wanted.

HAIGH: So the university as a whole had won this contract?

GONNET: Yes. It was a partnership I think was the right term. It was a partnership between
Oxford University Press. Oxford University Press tendered this project between 10 and 20
companies and institutions. To the surprise of everybody, the Canadians, the people in the
colonies (all other tenders were from the UK), won the partnership. I think that it was a very
successful project for everybody. I think that the Oxford University Press people were very
happy also.

HAIGH: Did the project ultimately receive any financial support from Canadian sources?

GONNET: Yes, the University of Waterloo supported it, conditional to getting a major grant
from the Canadian government. That grant was obtained. It was a very significant grant that
allowed us to hire semi-permanent staff to run the project. The project had a staffing level of half
a dozen people for several years. The Canadian government funded this project at a very
significant level. I think that NSERC, which was the Canadian organization that funded the
project, is still happy about the project. It was really one of the success stories of Canadian
computer science.

HAIGH: You had mentioned yourself as someone working in the database area.

GONNET: Right.

HAIGH: Was this stemming from your interest in search and hashing (as discussed in the context
of Maple)?

GONNET: Correct. My interest in analysis of algorithms in the end was centered around
searching algorithms. At some point in time I moved a little bit towards text searching algorithms
because of a Ph.D. student of mine (Ricardo Baeza-Yates) was working in the area of text

Gonnet, p. 40

searching. He did very good work, and then later published several papers together in the area of
text searching. That moved my focus of attention to databases. In particular, not just to general
databases, more precisely to text searching. In some sense there were two lines in my research:
one line that comes from almost the beginning analysis of algorithms and in particular searching
algorithms from my Ph.D. thesis onwards; and starting in 1980, the computer algebra line that
developed Maple and had several pieces of research in computer algebra.

HAIGH: From your publications in the early ‘80s, are there any that you think there were
particularly significant in this area?

GONNET: In the area of text searching?

HAIGH: Or while we’re here, any of the publications from the early and mid-‘80s.

GONNET: I don't know. I am particularly happy about one paper in here. I’m not sure that the
community would agree with me, but “The Analysis of Linear Probing Sort by the Use of a New
Mathematical Transform,” which is coauthored by Ian Munro, is one paper that I always liked
very much. In the end, this follow-up work on this paper ended up in another Ph.D. thesis of a
student of Ian Munro. [“The Analysis of Linear Probing Sort by the Use of a New Mathematical
Transform,” Journal of Algorithms 5, 1980, 451-470 with J.I. Munro].

I guess that I should be quite proud of my thesis work, which is the interpolation sequential
search algorithm.

There should be another one, “An algorithmic and complex analysis of interpolation search,
which I coauthored with my supervisor named Laurence Rogers. [“An Algorithmic and
Complexity Analysis of Interpolation Search,” Acta Informatica, 31:1, January, 1980, 39-46.
With L.D. Rogers and J.A. George].

HAIGH: What makes you particularly proud of those papers?

GONNET: I should be proud of my Ph.D. work, right? [Chuckles] It was a nice result. A little bit
surprising. Actually a result that several people found almost simultaneously. In particular,
Andrew and Francis Yao found the same result on interpolation search as I did. I don't know who
found it first. We found it independently. To me it was a great concern because if you are a Ph.D.
student sort of sitting on a new result and this new result is discovered by somebody else, you
may risk losing your thesis. The analysis using this new mathematical transform, I always
thought the mathematical transform was a very powerful tool for the analysis of these
algorithms. The reasons for that are very technical and very close to the analysis of algorithms
community. As I said, the fact that it produced another Ph.D. thesis is probably an indication of
its value. I think it’s interesting to see that as we go along here, we are in all of the early ‘80s, it’s
analysis of algorithms, searching analysis of algorithms, hashing, analysis, analysis, trees, which
is searching trees. This is really mathematical, but not computer algebra. I keep on going in time.
I think that the first publication on my cv that is in symbolic computation is in 1986. It’s an
article that appeared on symbolic mathematical computation. I guess that the Eurocal paper of
1983 is not in my CV for some reason.

HAIGH: It may be in a separate section.

GONNET: It may have not been refereed. I would call that one a soft paper. It’s not a research
paper, the paper that appeared in CACM. The real first paper that contained research results in
computer algebra for myself is this “GCDHEU: Heuristic Polynomial GCD Algorithm Based on

Gonnet, p. 41

Integer GCD Computation” that appeared in final form in 1987.2 [“GCDHEU: Heuristic
Polynomial GCD Algorithm Based on Integer GCD Computation,” Journal of Symbolic
Computation 7, 1989, 31-48].

You can see what I also mentioned earlier. By 1987 I had spent thousands of hours developing
Maple. My CV shows a tremendous bias towards analysis of algorithms throughout that time.
Actually, that corresponds also to the reality. All my promotions, all my grants, my tenure, and
everything came out of the published work in analysis of algorithms, not from my work on
symbolic computation. That’s a question for which I don’t have an answer on how to improve it,
but there is a clear message here to everybody: if you are an academic researcher in a university,
you should not develop software because software is going to consume a huge amount of time
and is not going to give you any merits. Maybe it’s a sad statement, but it’s the reality. Somehow
I could afford to develop Maple because I had this other stream of publications. If I had just
developed Maple, I would not have been promoted and fired after several years of being assistant
professor, or not renewed, or not tenured.

HAIGH: Do you think that situation would have got better or worse in the 25 years since then?
Would it be easier or harder today for someone to develop a major piece of software and hope to
get tenure?

GONNET: No, I think it’s as hard as ever. Maybe some people would be ready to recognize it.
But people would be ready to recognize that a piece of software is significant after it has proven
itself, which is probably ten years after it has been produced, whereas a paper has much more
immediate compensation. A paper gets accepted, gets presented in a conference or gets published
in a journal. The fact that it gets published is already an indication. It gets citations. People start
knowing about it. It’s immediate compensation, in a very short cycle compared to software.

HAIGH: It was in 1984 that your book Handbook of Algorithms and Data Structures appeared.
[Addison-Wesley International, London, 1984].

GONNET: Right.

HAIGH: Can you talk about the motivation behind that book?

GONNET: That book summarized several small results and several experiences that I had with
algorithms. I wanted to have a handbook where if I needed to use an algorithm, I could reliably
go and get some code and it would run, it would be completely tested, and it would be efficient.
Also a place where I would collect all the information that is known about these algorithms,
where/when they are applicable, etc. That was the main goal of the Handbook of Algorithms and
Data Structures. I think that that goal was achieved. The book made quite a bit of an impact at
the time. It was a tremendous amount of work collecting all the material for the book, running all
the programs, the simulations, the guarantees that all the algorithms were correct was really a
major enterprise. I spent so much time that my comment about the book is that even though it’s
sold in reasonable quantities, if I had worked at McDonalds I would have made more money
because of the huge number of hours that I put in the book. I am quite proud of that book, and
the book had a second edition with one of my students, Ricardo Baeza-Yates. He became a
coauthor of a second edition of the book because he had made a substantial contribution to it. But

2 Gonnet’s cv lacks final publication details for this paper. The publication in Journal of Symbolic computation took
place in 1989, not 1987. However, citations exist to earlier versions of the paper including a reference in DBLP to
Bruce W. Char, Keith O. Geddes, Gaston H. Gonnet: GCDHEU: Heuristic Polynomial GCD Algorithm Based on
Integer GCD Computation. EUROSAM 1984: 285-296.

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Char:Bruce_W=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Gonnet:Gaston_H=.html
http://www.informatik.uni-trier.de/~ley/db/conf/eurosam/eurosam1984.html#CharGG84

Gonnet, p. 42

even for the second edition I was just not able to put the amount of time that I had put for the
first edition. It’s an enterprise that I just cannot afford the time again to do it. I could do it at the
cost of thousands of hours that I stole from my family somehow and holidays that I did not take
and weekends that I did not use for anything other than the book.

HAIGH: Was it adopted as a textbook?

GONNET: No, it’s not really a textbook. It’s a handbook. It’s for people that want to know how
some particular algorithm should be implemented or want to find out what is known about
certain algorithms. They can go and find all the information there. It’s not a textbook.

HAIGH: How would you distinguish it from other survey books on algorithms, like Knuth’s
famous series?

GONNET: I don’t think I can compare them. Don Knuth’s books settle most of the open
questions on algorithms and provide an incredibly precise framework for studying all the
algorithms. They are filled with new results and a very careful collection of information. Knuth
has produced textbooks or books on the subject. My idea was to have a handbook really—a place
where you want to know how to code binary search trees, for example. You find the code, the
code will work, and in a very summarized way you have all the complexity measures. You have
a list of citations that refer to the main papers, and that’s it. There are not a lot of words in my
book in some sense, in the handbook. It’s a reference. There’s the difference between a book on
a subject and a reference work on the subject.

HAIGH: It would be less comprehensive, more summarized, more aimed at someone with a
practical immediate need to implement a particular algorithm?

GONNET: Right.

HAIGH: Unless there are any other aspects of your academic career during the 1980s that you
would like to comment on, I suggest we turn our attention back to Maple.

GONNET: Sure.

HAIGH: One question coming out of what you said earlier would be the question of the
influence of work in artificial intelligence on the system. I know that MACSYMA was more
directly associated with the AI community. By the point that you were working on Maple, would
you say that there was still an active interaction with AI, or were you just taking some techniques
that might have been pioneered in that community and implementing them?

GONNET: I think that that was a point of departure, really, and a point of difference between
Maple and the rest of the systems. None of us were from the artificial intelligence community.
As a matter of fact, some of us did not think very highly of the artificial intelligence community.
All of us working in the group were of the opinion that computer algebra had matured enough
that it had developed its own algorithms and its own theory and its own theorems. It didn’t profit
any longer from the general methods of artificial intelligence, from the general search
techniques, and so on. That was really a break—a break that I don’t claim that we did alone; a
break that many other people did at the same time.

In some sense, computer algebra had graduated out of artificial intelligence. The general
techniques of artificial intelligence that were useful to solve the problems in computer algebra
were too weak compared to the theorems that we could now develop, the algorithms that we
could now develop and so on. It was not any longer a matter of searching blindly in a space,

Gonnet, p. 43

trying to hit the answer. It was sort of directed search, algorithms that tell you how to find a
result, whether a result exists or does not exist, and so on. From that point of view, and from
looking at the people that were working in the project, I cannot think of anybody who worked in
the group who had a strong background in artificial intelligence and of whom we could say, “Oh
yes, this person contributed substantially to bring artificial intelligence to Maple.” Almost the
opposite. All of us were algorithmically oriented and not coming from artificial intelligence. To
some extent that was definitely a break away from the line that MACSYMA had started.

HAIGH: Can you talk about the initial transition in terms of distribution and support? Maple
stopped being something that people in the group would have been manually copying onto tape
and mailing out to people and gained a new relationship with Watcom where it was distributed
outside the group itself?

GONNET: Sure. We recognized very early that at some point the tasks of distribution could not
be done by the research group for various reasons. The tasks were administrative. Users wanted
to have a phone where they could call and get their questions answered. Users wanted a manual.
Users wanted all types of documentation, a nice box maybe, and so on. We could not provide
any of that.

The natural solution for this was to find somebody who would be interested in doing all these
jobs for a percentage of the revenue. Watcom was the right vehicle at the time. It was a company
formed exactly for that purpose, to distribute Waterloo’s Fortran compilers and other software
that had been generated by the same group. The chairman (and probably held some other
positions) was Wes Graham. Wes, of course, was a colleague of ours and knew about the project
and had been involved in the very initial meetings of the group. He was always in touch, and was
always ready to distribute Maple. He also saw the acceptance that Maple was having in the
community, so he was interested in having Watcom distribute the software.

For the group it was a major effort to get a version that was acceptable to Watcom for
distribution. It was a self-imposed major effort, but also a requirement from Watcom. Watcom
wanted a product that will have certain characteristics, and we wanted to compete in certain
areas, and say, “Well, if we are going to have a commercial product, we have to do this, we have
to do this, we have to do that.” That ended up being an extremely painful process which made
me make a decision that I applied since then all the time, which is whenever you are going to
release a version, you release a version based on time not based on features. You say, “Okay,
next month or the first of May we release a version with whatever we have in there.” If
something didn’t make it, that’s too bad; it will make it in the next version. As opposed to saying
that for the next version, “we want to do this and this and this and this.” Some things are going to
be done quickly, some things are going to be done at some normal speed, and some things are
going to take forever to finish. You delay your new version by the worst case. The thing that
takes the longest is the one that delays your version. In some cases this takes forever because as
you go along, people want to put more things in the version and the goals keep on changing and
it’s a nightmare. So I learned a very important lesson there: you release by time not by features,
and thereafter we released by time not by features. Even the company nowadays, Maplesoft, is
basically releasing by time not by features. Those lessons are sometimes very difficult to learn.

I have to say that my role in the group at this time was a little bit of, I wouldn’t say the police,
but every group has to have a person who, when something needs to be done and solved and
fixed, is the one person who will eventually do it. If you don’t have such a person, if the buck
doesn’t stop anyplace, then you don’t have a software project. No matter how difficult the

Gonnet, p. 44

problem is, or how tricky the solution is, someone has to at some point say, “Fine. I’m going to
solve it.” And has the ability of solving and has the time of solving it, and will also make all the
decisions. “Okay, today we froze the version. This is it. No more changes. I am cutting it. I am
making the tapes. I am branching the new version.” In the case of Maple, that was me. Of course
that made me extremely unpopular quite often because I would make decision like, “Okay, no
more changes after today. This is it. We have a new version.” Or, “This has to be rolled back.”
Or whatever.

On the other hand, that also means that when there is a serious bug, and I can remember some in
garbage collection that were extremely unpleasant because they show up much later and in a
very damaging way, somebody has to go and fix them. Sometimes it’s a lot of fun to code
something that does something very interesting. I can assure you it’s not a lot of fun to fix some
obscure bug in garbage collection. Nobody wants to fix that. I don’t want to fix that. Nobody
wants to fix that. For the goodness of the project, you have to balance the good and the bad. The
bad is you’ll have to spend a huge number of hours fixing something that is boring, tedious,
difficult to find. On the good side the project goes on, and if the project doesn’t have some level
of quality, it will not go on.

[Tape 3 of 6, Side B]

HAIGH: I imagine that kind of discipline would be relatively hard to achieve in an academic
group rather than in a traditional corporate setting.

GONNET: Correct. In a corporate setting you say, “The buck stops here. You are paid a salary.
This is your job. You have to do it. If you don’t fix this many bugs, or if you don’t do it, I’ll fire
you.” In an academic environment you cannot do it. It has to be one of the main responsible
persons of the project that takes the role of doing it. Otherwise it just doesn’t happen. I guess that
that’s the difference between projects that really produce software or projects that produce
prototypes that are nice programs that sometimes work, sometimes don’t. That’s really the main
difference.

HAIGH: I think earlier you had alluded to things like documentation and packaging.

GONNET: Yes.

HAIGH: Were the changes needed for the distributed version more fundamental than that, in
terms of the program itself?

GONNET: Yes, there were some demands about graphical output and portability and
documentation. We worked very hard producing tutorials and manuals for the language. This
was a different time. Documentation was normally printed in a book. At the same time, we had
to make arrangements to print a book. I don’t remember exactly how the first book was printed,
but I think it was Watcom that printed the first versions of the book. Of course we had to provide
all the material; they would just do the printing. Getting a manual done is a huge amount of
effort. It’s like getting a book done, right? Keith Geddes had the main responsibility, and Bruce
Char to some extent too, the main responsibility on the documentation. Then every box goes
with the software on a tape or whatever media and a book—that becomes the package. The
design of the package was Watcom’s responsibility, and we don’t have anything to do on that
end.

Gonnet, p. 45

I was more responsible on the side of the software. The kernel was 100% my responsibility, and
the Maple libraries were by and large everybody’s. I was playing quite a bit the role of
policeman in the Maple library and the kernel.

HAIGH: When Watcom distributed the software, was this thought of as an arrangement that
would just cover the costs of distribution and support, or was it intended to bring revenues back
in order to support further work?

GONNET: It was a very generous arrangement for the University. It was an arrangement that
was based on a formula which gave 15% to the authors, and the remaining 85% was divided
between the university (the Symbolic Computation Group) and Watcom as the group that was
doing the distribution. It was very generous to the university and very generous to the authors.
This was actually something that was the common denominator in Watcom and in previous
experiences of this group of people to have this distribution of revenue. Watcom quickly realized
that they were not making too much money distributing Maple. They wanted to make a bigger
investment in marketing and packaging and so on, but with only 42% of the revenues they could
not do it. We wouldn’t move on the 42%. We were giving Watcom a finalized product, right?
We were not saying, “Okay. You develop the software. We just collect the royalties.” We were
giving them the final software. We had programmers, we had students that we were paying to
support the product and to write libraries and to improve the code, so we had good reasons for
saying, “Our 42% is completely used.” By the way, the authors not collecting any royalties at the
time. The author royalties were used to support the group. So we had good reasons to keep the
arrangement that we had. Eventually this arrangement was sort of a dead-end street for Watcom
and at some point we decided to part ways.

HAIGH: How much had the software been selling for under this arrangement?

GONNET: I don’t remember, but I think it was probably around $500-$1,000 depending on the
type of computer. The price was very sensitive to how fast the computer was and how many
users could be using Maple. As I mentioned before, we had the square root law for the price, so
one license was one unit; n licenses were the square root of n times the base price, so nine
licenses will pay three times the basic price.

HAIGH: That arrangement had originated with Watcom?

GONNET: No, that was my idea. The square root law was my idea, if I remember correctly.

HAIGH: Did the user base continue to consist primarily of teaching with some use by academic
researchers?

GONNET: Yes. At the time it was, I wouldn’t say 100%, but as close as you can get to 100% of
academic use, either people that were teaching or researchers in academia that were using Maple
for their research. We had some notable exceptions. Bell Labs through an arrangement with a
colleague of mine, Andrew Odlyzko had a copy of the source of Maple, which was quite
privileged. This was very useful for us because Bell Labs at the time was still very dominant
developing Unix and C compilers. They would test their compilers by compiling Maple at the
time. It was very convenient for us to have a version in Bell Labs with the source and everything.
They were using it for whatever they wanted, but we were also getting our value in the sense that
we knew that compilers produced by Bell Labs would compile Maple.

HAIGH: Did any significant non-academic niches develop for Maple during the 1980s?

Gonnet, p. 46

GONNET: I don’t remember anyone in particular. As I said, most were academic. The history in
general of Maple has been a history of having a very wide acceptance in the academic
environment. All the companies that distributed Maple have a history of trying to break into the
commercial market, being unsuccessful in the commercial market, spending huge amounts of
money and effort in trying to break into the commercial market, and never getting enough sales
to justify the expense. And in certain cases even disregarding the academic market, which in the
end was the one that was paying all the bills and making the company profitable.

HAIGH: Why do you think it was largely unsuccessful in trying to break into the commercial
market?

GONNET: Well, it was not unsuccessful. The relation between revenue and effort or revenue
and expenses was much more favorable to the academic market than to the commercial market.
It would take huge campaigns and lots of effort and marketing and so on and meeting lots of
demands to sell to the commercial market, and with half of the effort or a fourth of the effort we
would sell much more to the academic market.

HAIGH: So you think that was more a result of the amount of money that would have to have
been spent to achieve success in the commercial market than of anything inherent in the product
itself?

GONNET: I think there were some things that could be attributed to the product, no question.
While it was in the University Maple was respected for its mathematics and in its efficiency, not
for form of the output. This was something that was definitely a miscalculation of all of us who
were/are always worried about having correct results and having results fast and efficiently and
with little memory. We never thought of a fancy, colorful, graph as being important. Our internal
joke was: “what would you prefer, a correct result or an incorrect result with fancy colors?” Our
big surprise was that people preferred an incorrect result with fancy colors, when we saw the
success of Mathematica, which really was an unreliable system, but it had much more advanced
input/output than Maple did. I guess that the fact was that we were more concerned with the
quality of the algorithms, the quality of the mathematics, the efficiency of the system and so on
make us disregard the aspects of how easy it is to input, how easy it is to display results and so
on, which may be more relevant for a commercial environments where somebody has to show
the results or somebody will have more than one product and will have the option. Whenever
they have the option, they will take the option that is the most pleasing to work. If anything, in
the battle with Mathematica, our biggest mistake was that one, was to concentrate on efficiency
and correctness in algorithms and coverage, as opposed to how easy it is to input information
into the system and how pretty and convenient is the output.

HAIGH: I’ll return to that question of commercial competitiveness a little later. I just had one
more question on Watcom. I think yesterday you had said that the Maple project had originally
been envisaged in part as an attempt to produce a WATFOR of computational algebra. One
obvious aspect of that would be that it would be fast and efficient. Do you think that there’s any
kind of philosophical or technical relationship between the projects that runs deeper than that?

GONNET: No. In some sense it’s a complete coincidence that WATFOR and Maple were
developed at the same university. Yes, there is a paper that was saying it would be nice if
Waterloo would develop the equivalent of WATFOR for computer algebra. Yes, we developed
it, and yes, it was marketed at some point by Watcom, which is the same company that was
marketing WATFOR and WATFIV, but the intersections of the groups was empty. The

Gonnet, p. 47

philosophies of the groups were quite disjoint too, so we had no exchange of people. We were
originally based on Honeywell GECOS, and then very quickly UNIX. These Watfor/fiv groups
were mostly IBM oriented. Although we were in the same department and in the same university
(and we even had Wes Graham who was very active in Watcom and helped us at some point, or
met with us, in the forming of Maple) in the end there was really no influence from one group to
the other. Well, you could say Waterloo has a tradition of good software development, but it
cannot go beyond a general statement like that.

HAIGH: Would you like to talk now then about the creation of Waterloo Maple Inc?

GONNET: It’s actually WMSI, Waterloo Maple Software Inc., although it may have had
different names at different times. Now it’s called Maplesoft for sure. The Waterloo Maple
Software name has been abandoned.

The distribution was done by Watcom starting in 1984 and 1985, and as I mentioned earlier, at
some point Watcom wasn’t happy with the royalty arrangements. They wanted to do more; they
couldn’t do more. By not having a bigger cut, they were not motivated to sell more or to invest
more. At some point they said, “We don’t want to do this any longer unless we take control.”
Basically we said, “We’re not going to give you control.” At some point you have to sort of take
a risk and invest some real money, start paying some salaries, start a corporation, and hope that
you are not going to lose your shirt. That’s basically what we did. Keith Geddes and myself, we
both invested some small amount of money—very large for us, but small amount of money in
terms of real money—and other members of the group also invested, and we all became
shareholders of this new company. We were rolling. We rented some office space in North
Waterloo. Very soon we had four employees, if I remember correctly. Then we went in through
quite rapid growth, I would say, because the software was selling already. What we needed to do
was to collect money basically. It was a very privileged situation.

HAIGH: Was this 1988?

GONNET: I don’t remember exactly when it was, but it’s probably around 1988, yes. Around
that time frame.

HAIGH: Had the arrangement with Watcom been bringing in enough money to support the
group of people who were developing Maple?

GONNET: The arrangement was very generous. It was bringing substantial revenue to the group
to maintain quite a bit of development going on. The university was also very generous because
in theory all this revenue, this 42.5% should have gone to the University, but the University was
channeling it all to the Symbolic Computation Group. So we were using all of it to pay salaries. I
don’t remember the exact numbers, but we probably had around ten staff members paid, between
grad students and fulltime staff that were working in the group.

HAIGH: Did the creation of the company mean the complete transfer of Maple work away from
the University?

GONNET: No, not at all. At first the company was viewed as a replacement for Watcom with
the idea that it will eventually take more and more responsibilities out of some parts of the
development that were clearly not suitable to be done in the University. The first thing that came
to mind was that the SCG should not be worried about porting to all these different hardware
platforms. The SCG was not well equipped to write fancy user interfaces. The SCG should
concentrate on writing good algorithms and developing good algorithms. It was probably not my

Gonnet, p. 48

idea that the SCG would pull out completely, but eventually history showed that the company
took leadership and took over all the activities, the research, and the other software development.

HAIGH: Do you know what year that would have been in which the transition was complete and
the University was no longer significantly involved?

GONNET: It has been gradual. I think it went on through the 1990s with the University slowly
losing responsibilities. In 1989 I left Waterloo, and Mike Monagan also left Waterloo, so that
was a significant shift. The Symbolic Computation Group was less active just simply because it
had less people working in it. At the same time, the company kept on growing, I started a group
here in Zurich that was quite active, but it’s not the same to be in Zurich as to be in Waterloo.
Around 1994 the company got into difficulties in management and started cutting the ties with
the University and with their research groups and renegotiating the contracts for distribution.
Then the company took complete leadership in the direction of the product.

HAIGH: Prior to that, how much money had been coming back to the University group from
sales of Maple? Was it a similar amount that you had been getting from Watcom?

GONNET: I really don’t remember the exact numbers. It was a generous amount. It was
generous enough as to maintain all the activities that we wanted to maintain in the Symbolic
Computation Group.

HAIGH: You mentioned a small early grant you received for the Maple work. Did other outside
funding follow?

GONNET: We had other smaller grants, and we had our own operating grants from our NSERC
funding agency. I don't remember any significant funding grant outside of those initial funds.

HAIGH: Most of the funding would have come from revenues than even from an early stage?

GONNET: Right.

HAIGH: Can you talk about developments in Maple itself during this period?

GONNET: I can’t pinpoint anything specifically. The system was being developed version after
version. I guess a significant point was when I left Waterloo, and at the same time the company
hired Ron Neumann as the CEO. Ron was a very dynamic person. Saw the future very clearly,
and saw the niche that Maple was in, very clearly, and was a very dedicated worker. The
company really took off with him. There was actually a very positive interaction between Ron
Neumann and myself. I was traveling to Waterloo not that often but often enough, once every
two or three months, and we used to communicate very, very effectively. My role at the time was
basically to bring lots of ideas, and Ron’s job was to filter those ideas, pick up the ones that were
good enough, and implement them.

This was working very, very well for the company and for Maple. So much that Maple grew at a
fantastic rate. If we take something like five or seven years of Ron Neumann’s leadership (I was
the president, he was the CEO), the company grew at a composed 100% per year for five or
seven years. You can grow for 100% per year for a limited amount of time, but to grow it for
perhaps seven years all (five years for sure), this is very significant. This is not just a fluke. This
is not just playing with the numbers from one year to the next. This growth had some substance.
This growth was based on real activities, really good ideas that were being produced and
implemented. Just to mention a few, at some point we decided on a university wide policy. We
were going to give university-wide licenses. That was considered crazy by some people, but it

Gonnet, p. 49

was a great success. Lot’s of universities got site licenses. Maybe we would be able to sell more
individually, but universities loved this. Every year a big check was coming from those
universities. That was excellent. It also pushed Maple very prominently. Very early in the game
another idea was to port to the PCs. At the time the PCs were not very prominent and were not
really the main line of academic institutions. It was viewed as a bad idea. We decided we will
port to the PCs. It was a great success. Again, another incremental where we grew the market
share tremendously.

HAIGH: Can you remember what year the PC version would have appeared?

GONNET: No, I don't remember exactly, but it must have been very, very early 1990s. I
remember one of my students working on a prototype for the PC, and it must have been 1991
that the PC version came out.3 At some other incremental step was making a deal with a
company in Massachusetts called Mathsoft. Mathsoft was producing a piece of numerical
software. Very user-friendly, which I forget what it was called at the time.

HAIGH: Mathcad perhaps?

GONNET: Mathcad. Great. You’re absolutely right. Which had little to do with CAD, but it was
called Mathcad.

HAIGH: I remember it looked like a word processor.

GONNET: Right. It looked like a word processor except that the numbers could be tied by
formulas and the numbers were alive and you could do computations with those numbers. Very
handy for any engineer that wants to present a description of some process or something. The
deal was that we would incorporate Maple in Mathcad so that you could now do symbolic
computations in Mathcad and not only just numerical computation. For them it was a great deal
because at the time their space was getting a little bit crowded with a lot of people that were
getting into that same space, and they took a tremendous advantage from everybody else by
having computer algebra. A real advantage. They dominated the market for some time. For us it
was a tremendous amount of revenue. It just was a quantum leap.

And so Ron Neumann was very dedicated, was a person that would work 20 hours per day or
something like that. Very dynamic. We were making an excellent team in working together.
Things were happening. You don’t get 100% growth per year just on doing the same thing
everyday that you did before, doing it just a little bit better. You have to have quantum leaps of
new ideas that bring you business, or new forms of doing business. At that time, Mathematica
was already out, probably, so we had realized that there was a big threat. All of a sudden we
were not the only kids on the block. Because we were very complacent in the late 1980s, we
were the only choice for most people, so why bother? Why do better input/output? You have to
use us. If you want to do computer algebra you have to use Maple. Why bother?

HAIGH: So at that point the input and output were all plain ASCII?

GONNET: Yes, it was ASCII. For Maple it was ASCII all the time. By and large, for most
people input is still ASCII. For the output, you don’t want it to be ASCII. I would say that if you
are an unsophisticated user, you may want to use the input with standard math. But if you really
want to use the input many times you will hate the slowness of using the mouse in a graphical

3 Reports on the internet suggest that Maple 4.3 ran on 80386 PC compatible computers as early as 1988, in the
initial Waterloo Maple Software release. This has not been further verified.
http://www.math.utsa.edu/mirrors/maple/mplhist.htm

Gonnet, p. 50

input. You really want to type in things, in ASCII. That’s my view at least at this point. Maybe
smart tablets will change this, but I am not completely sure.

At some other point Maple entered into an agreement and acquired a company owned by Alan
Bonadio that had two products. One was called Theorist, which was a Macintosh product. I
wouldn’t call it a competitor of Maple. It was a computer algebra system in the end, but with a
definite orientation towards teaching and towards proving simple things. Alan is a great guy, and
had a great product. In the end it did not work well. Somehow I think it was Maple’s failure to
integrate the product properly into the line. In the end that gave us some growth, but it produced
a lot of unhappiness on both sides.

HAIGH: So that remained as a separate product?

GONNET: That remained as a separate product. Alan Bonadio had two products. The other one
was basically a product to display mathematics in a fancy way. Expressionist. Expressionist was
just a way of incorporating math into your general document. Sort of fancy math. If you need to
display a tensor or an integral in a complicated space, if you need all sorts of symbols up and
down, and funny fonts and so on, that would be the right product.

These products were very much Macintosh oriented. The Macintosh market was not the biggest
market for Maple originally because the market for Maple was definitely the UNIX market. Then
it slowly became the PC market. As a matter of fact, quite often Maple did not have good
versions on the Macintosh. The versions in the Macintosh looked a little bit clunky for the
Macintosh.

To some extent I may be a little bit too dim on the relationship with Theorist. It was a very good
idea. Originally it created a lot of sales and revenue and market share for Maple. It was just that
it was not managed properly. In the end it was not a happy relationship for everybody involved.

HAIGH: How did your own personal involvement with Maple change over this period?

GONNET: There was a dramatic change in 1994. Before 1994 my involvement with Maple was
as I described it. I left Waterloo without much animosity, but I had a significant group in Zurich.
Most of the people in my group were doing computer algebra at the time. We had a particular
arrangement with the Maple company that was funding a little bit of our research in Zurich. Not
in a very significant way, but it was funding our research. My relationship with the company was
mostly through Ron Neumann. As I said, it was a very positive type of cooperation there.

HAIGH: As you described it earlier, during the Watcom period you had been serving as the main
project manager in Maple, and you had also said that you had been personally responsible for
work on the kernel. Did that change immediately with the move to ETH?

GONNET: No, no, no. By necessity, I kept on being responsible for the kernel for many years,
even once I had moved here to Switzerland.

HAIGH: Were you working on that with the group here that you just mentioned?

GONNET: Yes. When I came to Switzerland, I was offered to bring several people. I brought
with me Mike Monagan that was doing computer algebra, and Tim Snider, who was doing OED
related stuff. I also made an offer to Tim Bray, who was also doing dictionary at the time, and
unfortunately, he decided not to come, which was a pity. I had a very good working relation with
Tim Bray. Tim Bray then when on to design XML and stuff like that. Tim Bray was our project
manager for the OED project. Actually, XML is the result of us (in the OED project) being so

Gonnet, p. 51

unhappy with SGML. The OED project was probably one of the biggest early users of SGML.
We were extremely unhappy at how clumsy SGML’s definitions were. We always said, “We
need a better SGML. We need a simpler SGML.” Tim Bray went and did it. That’s called XML.

So very quickly I had five or six grad students and post-docs working in my group. Most of them
(except for Tim Snider) doing computer algebra work, really Maple. I kept on working in Maple
very closely for, I would say, the first five years in Switzerland between 1989 and ’94.

Session 3 begins, the afternoon of March 17, 2005.

HAIGH: I think before we broke you implied that there was some change in your relationship
with the company in 1994.

GONNET: Right. It is a sad part of the history of Maple in some sense. It was a series of events
that had to do with my role in Maple. I mentioned my role of policeman, and I said that this was
causing friction very often, and it’s true. Every time I was making a decision (even though
people most of the time would recognize that decisions had to be taken and were not bad
decisions) it was seen as an authoritative mode that I was playing, that I was being a dictator.
That continued and got worse when I was at a distance because I was making decisions from a
distance about the product and about the direction that things should go. “Why insist on making
decisions from a distance? Why is he making these decisions at all?” That created always a little
bit of friction. There were a series of events that produced a complete break between Zurich and
Waterloo. This started with the company. As I said, the company was growing every year by
100% for many years.

HAIGH: Do you know what size this had reached by 1994 in terms of employees?

GONNET: Yes, about 70 employees, so it was getting to be a reasonable size.

However, there was a little bit of a problem with Ron Neumann. Ron Neumann had been
excellent to run the company all the time, but had a bit of a problem in delegating. He had not
created the intermediate levels of management that he could trust and rely to keep on growing
the company. In other words, he was managing basically everything directly. When it was ten
people, it was perfect. When it was 20 people, no sweat. When it was 30 people, it was getting to
be a problem. He was starting to work 15 hours a day. When it was 70 people he was just not
able to run everything. He was killing himself because he was working a tremendous number of
hours. Things were not done, projects were falling by the side, and the company was showing
some problems of bad management. At the time I couldn’t see that, but in retrospect it was
exactly that problem. He was a perfect manager as long as he was managing people directly.
When it got to be 70 people, you cannot possibly manage 70 people directly. You have to create
intermediate structure. He did not create the intermediate structures or the structures were created
but were not effective and/or autonomous.

So the straw that broke the camel’s back was when we went from having our most profitable
month ever, to running out of money in such a way that we almost had to close the operations. It
was just odd. A couple things didn’t happen, and a loan that was supposed to happen didn’t
come. Then the bank pulled the plug because we were in the red instead of being in the black.
All of a sudden it was a disaster area. I said, “It cannot be that we have survived for so many
years, that November was our most profitable month ever, and in January we’re thinking that we
cannot make the payroll. It’s just not thinkable. It’s not correct.” Ron Neumann reacted very
poorly to this, and I probably also reacted very poorly, and we decided on a change of
management. At that time there was a person that was running the European operation in

Gonnet, p. 52

Heidelberg called Dieter Hensler. Hensler appeared to be a very competent manager. He actually
motivated most of this change. He obviously wanted to position himself as the new leader of the
company. I sort of believed that that change was a positive change.

So I started this change of management. I had all the power to terminate Ron’s position, and I
did. But this created an incredible havoc within the rest of the shareholders who accused me of
being heavy-handed and so on. Of course the rest of the shareholders were not worried about
paying the payroll or whether the company was going to survive or not. They were too remote to
realize what was the situation in the company every day. Not close enough to the reality to know
what was happening.

[Tape 4 of 6, Side A]

GONNET: Dieter Hensler became the next president of the company, but there was irreparable
damage done to the relationship between myself and the rest of the board. A long, stupid, and
damaging battle ensued. From there on it was all negative, I have to say. I lost all respect that I
had for my colleagues. At some point they forced me out of the board, even though I was the
largest shareholder. At some point I was so disgusted that, with time, I decided to cut all the ties
with the company. So in the end it was a sad story. All the time that I spent for the company, all
the effort that I spent….

Well, in some sense I was spared. I got my shares, I got my value, I got my author rights, and so
on. These people maybe they thought that I was doing the wrong thing. Maybe I was doing the
wrong thing, but at least I was doing something. At least I had brought the company to the state
that it was. Maybe they thought that they could do better. Maybe they saw their chance of being
a hero in some circumstance. I don't know what motivated them, but they were very stupid, very
selfish, very damaging in the end. I actually have nothing good to say about them in the later part
of the company. I have no use for their time, no use for their actions whatsoever.

HAIGH: At that point would the board still have been made up of the other founders?

GONNET: The first step was to form a board that was larger and included some external people.
The board was made up of Keith Geddes, myself, one nominee of Keith, one nominee of myself,
and I think Dieter Hensler was the other one. My nominee was Wes Graham, who had been
somewhat involved and we had a reasonable relation. Unfortunately I have nothing good to say
about him. It turned out that his sole purpose on the Maple board was to find things that he could
blame on me (even though he was my nominee). I don't know what it was, if it was professional
jealously or what, but again that’s a person that I have nothing good to say about. Although in
the earlier stages he was a respectable colleague; in the later stages I changed my mind
drastically. Sadly enough he lost any respectability left with me and with the people that knew
this affair, a sad way of ending his career.

I don't know the real story of how it developed. The situation was that Dieter Hensler made some
alliance in particular with Wes Graham, because Dieter Hensler could not manage the company
either. When I realized that things were not going well I was trying to get the company back on
its feet and working again. Dieter Hensler who was the person that I placed as CEO at the time of
the previous crisis really stabbed me in the back in the worst possible way, and sort of became a
friend of all the others and basically used the momentum against me to his advantage. That was
the time that I said, “Okay. I am parting.” At some point in that process I managed to get funding
to acquire the company from Springer-Verlag.

HAIGH: Springer-Verlag supplied the money, or they owned the company?

Gonnet, p. 53

GONNET: No. Springer-Verlag, through a contact of mine, was ready to invest enough money
to buy all the shares to control Waterloo Maple.

HAIGH: At that point were the shares all still in the hands of the founders, or had additional
investors been found?

GONNET: Mostly in the hands of the founders. There were several people that wanted to sell
their shares. In a private corporation if you find a buyer for your shares, nobody is going to block
it. Waterloo Maple has the dubious privilege of having blocked the sale of shares of its
shareholders to prevent me from getting control of the company. It’s a rare and unique merit that
they have, having passed board resolutions preventing shareholders from selling their shares to
me. They got to that level of pettiness. After such events I said, “Get lost. You don’t deserve my
attention any longer.” That’s basically what has happened.

They have stumbled ever since, and they have lost the battle with Mathematica. There haven’t
been any new ideas in the company since 1994. Before 1994, every year we could say, “Oh, this
year we had doubled the market share by doing this. This year we had doubled the market share
by doing that.” Since then it has been nothing. They are at the same level of staff virtually,
around 100. Same amount of revenue, and the market share shrinks every year. Mathematica
beats them in all aspects unfortunately, but that’s the sad story. But it’s sad for me because I still
like Maple and I still like the product. But it’s a consequence of a board of incompetent people
running the company. It’s not that the product was not good enough or that something else
happened. In this case it’s the consequence of the actions. If you have incompetent people
making incompetent decisions, that’s what you’re going to have. That’s the history in a sense.
The whole breakup was not instant. It started in 1994. It lasted for a couple of years. It was only
about three or four years ago that I eventually sold everything that I had. I sold my shares, I sold
my rights, and so on.

HAIGH: That would have been around 2001?

GONNET: I think that it finished in around 2001. I was the largest shareholder. Still, I couldn’t
do anything in the company. And the largest shareholder by a significant amount. I owned about
30% of the shares of the company, and still couldn’t do anything because people were convinced
that they should vote in block for whatever. It was plain stupidity, but human stupidity is
rampant in this world.

In summary, I have a lot of good things to say about my colleagues in the constructive phase
when we were building the product. It was great fun, and we had great cooperation. We did
something good. We constructed something out of nothing. We had an excellent team spirit to
build a product. Of course we were discussing all the time or exchanging ideas. We were not
happy continuously, but we were building something in a positive way. After 1994, this became
just a petty group of people that were just grabbing for some power and not seeing the big
picture. That’s where they are going. They’re going nowhere.

HAIGH: I have a few questions about development of the software itself during the late ‘80s and
early ‘90s. One of them would be that you had mentioned earlier that something like a third or a
quarter of the library code was completed by users in the early years. Did that pattern of user
contributions continue when the software was commercially distributed?

GONNET: Unfortunately not. The company probably, correctly so, started cleaning up the code,
and research groups continued to maintain some of the code. There are many, many parts of

Gonnet, p. 54

Maple that are still maintained by some researchers. I was maintaining some of my code until as
recent as three or four years ago.

But it’s a very tricky situation when you have very good code that has been contributed by
someone who then disappears or is completely uninterested in maintaining this code. The code
may be excellent code, but it’s written in 1989 let’s say. It’s excellent for 1989. Now Maple
starts evolving. The theory starts evolving/improving too. There may be better algorithms. There
may be better constructions in the language that allows you to do whatever you were doing more
efficiently, or you have possibilities of covering other domains that you were not covering
before. So the code ages. Unless somebody is actively maintaining it, the code ages (sometimes
called “bit rot”). No matter how good the code is, it will age. In the case of computer algebra and
in the case of Maple, things tend to age pretty quickly. They require maintenance. Without
somebody actively maintaining the code what happens is that, no matter how good the code is
initially, at some point it becomes a liability. At some point it becomes a piece of code that is too
slow, doesn’t do the job properly, is coded using archaic constructs, inefficient constructs, and so
on. At some point it is either removed, or the company or somebody else actively takes over that
code. It’s very difficult for any researcher to actively take over someone else’s code. It’s not the
type of thing that researchers will normally do. If you have a new idea, you start from scratch.
You are not going to go and patch something in someone else’s code. It’s really the job of the
company to maintain that code. The company has maintained some of the code; in some cases
they have rewritten it. I would say that right now most likely the company is maintaining and
writing 95% of the code that comes out of Maple, which in some sense is what it should be.
Researchers may produce a very good piece of code, but we cannot ensure that they are going to
maintain it forever.

HAIGH: I understand that it was with Maple V that a graphical user interface and graphical
output capabilities were first added.

GONNET: Right. I don't remember exactly which version it was, but it was around Maple V,
yes. Maple 5 had several subversions. Now in more recent times they have gone for a new
number every year.

HAIGH: Was the addition of those capabilities in response to Mathematica?

GONNET: Yes, there’s no question. As I mentioned before we were very complacent, and that
was our biggest mistake commercially: to be complacent that we have good mathematics and
good efficiency and a good code base and that we can write algorithms that can be maintained
and so on. I don't know what exactly the situation is right now in the internals of Mathematica,
but for a long time most of the Mathematica libraries were written in C. Consequently they had a
code base that was extremely difficult to maintain. People were telling me that because of lack of
modularity, everybody who wanted to do something in Mathematica had to basically start from
scratch. If you wanted to do integration, if you had to do something with polynomials, well you
had to do it yourself because you could never trust the rest of the system because it was
changing, because it was not reliable. You didn’t want to inherit someone else’s bugs.

Fortunately, that was not the case in Maple. If that was happening, it was happening to a much
lesser extent. We had a better code base. We had a better language. We had a more efficient
system. We were just too complacent with our position. We were thinking users will appreciate
our efficiency and our correctness. They are not going to go to Mathematica, and we were

Gonnet, p. 55

wrong. It was a shock to discover that we were wrong on that one, that users would prefer better
input and output, even at the sacrifice of correctness. That was a rude awakening for us.

HAIGH: When graphical capabilities were added, do you think that they were on a level that
could compete with Mathematica, or did they continue to lag?

GONNET: No, I think that they continued to lag. I think that the company didn’t made a serious
effort at first, and only at certain times they had the right people so that they could gain on
Mathematica in relative terms with respect to their input/output and facilities for displaying
results, and even facilities for acquiring data. I think it was also a goal that was not so close to
the heart to the technical people at the company. It was maybe closer to the heart of
management, but I’m not even sure about that. It’s not a complete surprise that they always
lagged behind. Maple was always lagging a little bit behind or significantly behind in
input/output capabilities. If you wanted to write a live document where the math would be
computed, I would say that almost always Mathematica was ahead. Almost always Mathematica
would give you more facilities to add it, more facilities to do it.

Now, we go back to what I said before. The significant growth happens when you have very
significant ideas that give you quantum leaps in the market. Maple had dozens of opportunities
of having these quantum leaps. It’s probably too easy and unfair to say now that “they should
have done this and this and this and they would be ahead.” But it is not completely unfair
because that was done at some point. At some point we were getting ahead. At some point we
were recovering market share from Mathematica or regaining the market share that we had
before. That didn’t continue. That didn’t happen in ’95 and onwards. I think that that’s what
pushed Maple farther and farther behind. It was the fact that, for example, the Web was never
embraced. We had very reasonable ideas about OpenMath. It was never embraced. They just
gave lip service to it. There were all sorts of things that were opportunities that were not pursued.
Maybe not all of them were right. It’s very easy to now say “we should have done this and this”
now that we are in the future. I can see a project and a company between 1980 and 1994 that was
doing new things, solving new problems, and in terms of marketing having new ideas, selling in
different ways, and selling to different people. All of a sudden it goes into basically a survival
mode where management writes nice colorful reports to a sleepy Board but does nothing new.
This is a big danger in a technical company.

HAIGH: Was the Axiom package marketed by NAG something that you were aware of in the
early 90s?

GONNET: Yes, we were aware. Not only we were aware. We had very close ties with the
Scratchpad group that produced Axiom that then was distributed by NAG. Stephen Watt was a
Ph.D. student of Keith Geddes. He was an early Maple contributor, a very substantial Maple
contributor. He was the one that designed the Maple leaf with the ASCII characters that still the
TTY versions will print. He went and took a prominent role in IBM. He was working in
Scratchpad at the time, Axiom later. Dick Jenks was the manager of the Scratchpad Group. A
very good friend of mine. We had an excellent relation all the time. We were sharing ideas. We
were quite open about what we were doing. We knew quite well what they were doing.

It had always been my opinion, and it continues to be my opinion and I think that I have been
proven right, that Axiom was way too complicated for almost every normal use. Scratchpad and
Axiom had a remarkable object-orientation model which allowed you to define the mathematics
in a very precise way and do the mathematics in a very precise and efficient way. But by the time

Gonnet, p. 56

that you had defined it, say that you had a field over this and it was commutative and there was
this and there was that, then most users would not know what they were doing and would not be
able to identify in which domain they were working. The system itself became so complicated
that even the experts had problems trying to get it to do what they wanted, whereas Maple had
preserved this initial flavor that you sit down, you type something to it, and you can start doing
useful work immediately. I think that Maple managed to lose that in the later years because I
think that usability of Maple has gone down in recent times. But for the average user of computer
algebra, the usability of Axiom was terrible. I think that that’s the reason why Axiom was never
a success and was barely distributed. I don’t even know whether NAG still promotes it or has
dropped it.

HAIGH: They stopped distributing it in 2001. I think they have given the rights to an open
source group attempting to revive it.

GONNET: Yes, that’s a possibility. Talking about open source, about three or four years ago, I
mentioned this to Maple management. We had a sort of high-level discussion, and I was asked,
“What would you do with Maple?” We were losing the battle with Mathematica. What should
we do? I said, “Open source is your answer. Open source the programs, (the kernel, and the
library) and sell the manuals, sell the consulting, sell the know-how for people that want to sell
anything that is built on top on Maple. But get the open source energy…”

There is quite a bit of energy with open source. There is positive energy when people think it’s
neat that we know exactly what we have, even though they are not going to touch, they are not
going to look at it. But you feel much safer if you run Linux that you know exactly what you are
running, or you could look exactly at what you are running, as opposed when you run Windows
that they may be stashing information behind your back and you don’t know that it’s happening.
There’s that effect. Then there is the effect of people that see a problem, are very worried about
solving their problem, want to fix it, and actually go and fix it. Now you have a positive
contribution. Sometimes it’s a negative contribution because they fix something and they break
something else.

But overall, there are two aspects of open software that make it more popular. Maple desperately
needs to be more popular if it’s going to win the battle with Mathematica. I don't think it’s going
to win the battle with Mathematica, sadly enough.

HAIGH: So you raised this possibility of an open source model for Maple.

GONNET: I raised the possibility. But I didn’t have any influence in the company any longer,
and I’m sure that some of the people may have raised it. Obviously they didn’t take it. Maybe
now it’s even too late to go that route.

HAIGH: I’m aware that the current version of Maple has also developed something called
toolboxes to target particular areas. Do you know anything about those?

GONNET: No. Well, I know the concept. The concept has been around for a long time. It has
been around in the software industry in general. I guess that the first people that made this quite
obvious were the people selling games. They would sell the main computer at a very low price,
and then the cartridges were the games at a relatively high price. It’s the way of packaging. You
entice the user with a very low price for the hardware, and then you make your money out of the
packages.

Gonnet, p. 57

We experience that in a hard way with Mathcad. The Maple version was attached to the main
version of Mathcad. Our royalties were a percentage of the price of Mathcad. Mathcad went
exactly that route, and they drop and drop and drop the price of the main product, and they
started charging more and more and more for the application packages. Consequently, causing us
great harm. A percentage that was set for our product that was selling for $500, at some point it
was being sold at $49, so our royalties were 1/10 of what we were expecting to see. Basically we
were getting pennies or maybe dimes for a version of Maple that was going out with Mathcad. In
the end, after two or three years, it ended being a bad deal.

That game of packages has been played many times. There is a marketing part of it, also you
access a vertical market with a package. In a package you can allow yourself to speak the
language, use the constructs, use the functions, and so of that a particular sector of your
population needs. Verticals are known in many pieces of software. Matlab had these packages
for a very long time. Mathematica had packages. It’s time that Maple would have its packages.
You need to capture the audience that requires some specific math, and a package is an excellent
way of capturing that audience. You also need people that have the expertise of the area and
know the jargon and know the math and know the know-how of the area. The company in the
early stages did not have that, and did not pursue the verticals in a very significant way. I guess
that direction was pursued in some way. We had some packages, but the packages in modern
terms would be called “amateurish”.

HAIGH: You had already talked a little bit about the relationship with MathWorks and Matlab to
integrate symbolic capabilities into their numerical product. Was that something that was used by
a significant number of people in practice?

GONNET: I really don’t know. At some point we arranged for a relatively symmetric situation
by which Matlab will have Maple incorporated, and we could sell Matlab in some form or other.
MathWorks was very diligent in integrating Maple in a very reasonable way and providing the
symbolic computation facilities through a package that was in the same sort of language that
Matlab has.

We were quite happy with that at first, but it sort of backfired. It was at a time that I was getting
less involved with the company. But I have seen European distributors drop Maple because they
say, “We distributed Matlab and Maple. Well, we don’t distribute Maple any longer because
Matlab includes Maple, so why are we going to distribute Maple?” In an indirect way, the fact
that Matlab was much larger and was including Maple, although that was supposed to be a happy
relation, in the end I think ended up harming Maple.

I don’t even know if we ever came out with a product that included Matlab for general users. I
think that the fast numerics has always been a high priority item in Maple, and it was achieved a
couple versions ago with inclusion of the NAG libraries in some form. The
MathWorks/Mathlab/Maple relations started on a very good foot. The companies were friendly
to each other, were cooperating. Many distributors were encouraged to distribute Maple and
Matlab simultaneously. But I think that in the end it may have backfired a little bit for Maple, as
I said, by distributors thinking, “We are making our real money with Matlab. If a user wants
Maple, we are going to convince them that they have Maple in Matlab and we don’t need to
carry two products.”

HAIGH: I’ll ask you later in more detail about each of the other companies you’ve been involved
with. But I was wondering, as this experience with Maple was the first of them, was there

Gonnet, p. 58

something that you discovered about yourself or what you found satisfying through this
experience that led you to be involved with other startups later on?

GONNET: I have started many companies. I have started eleven or twelve companies all
together. A couple were collapsed and merged, and one was closed in an orderly fashion. None
of my companies ever went bankrupt, so that’s something important to say. I don’t consider
myself entrepreneurial or anything like that. The number twelve may appear a bit inflated. It’s a
high number, but it has to do with the fact that, for example, Open Text itself had two
incarnations. Maple was a company, but for reasons of personal structure we had private
corporations that owned the shares of Maple. We had a corporation structure that involved some
companies that were holding companies, more than active companies. So it’s not twelve
companies that I have started that are active companies. Probably six or seven of them are active.

I have all sorts of mixed experiences with companies. I have good experience and bad
experiences. I think that the positives exceed the negatives. You’re always able to build
something that lasts. It’s sad to see that sometimes greed and incompetence takes over. Overall I
am proud that Maple is still out there. I wish that they would be stronger. I’m actually sad that
they have missed opportunities so much. It’s not because I have cut the ties, I don’t care, or I
wish them bad. As a matter of fact, I continue to have quite a good relation with many members
of the technical team. We keep our technical relationship, and some of my trips to Canada I go to
the company and give talks. Last Thursday, so a week ago, I was there giving a technical talk. So
yes, I have cut off my commercial ties with the company. I’m not a shareholder. I have sold all
my rights. I don’t participate in any management or any advising or anything. I just go there and
discuss technical topics with the people. I am happy at doing that. I think that they are also happy
doing that. A student of mine, Laurent Bernardin, is now the vice president of R&D of Maple.
We have obviously a quite a good relationship.

HAIGH: In general terms, how would you contrast the kinds of personal satisfaction or reward or
feeling of accomplishment that you might get from involvement with the companies with the
kind of satisfaction or reward that you would get from your academic and teaching work?

GONNET: I think that’s a good question. It’s different, and it’s the same at the same time. It’s
rewarding. Every time that you build something it’s rewarding. I think that that’s the real reward.
You build something that works that’s useful for some people, and that’s what is rewarding.
When you do some research, you find a theorem, you prove a theorem, or you find some relation
that is interesting, and you discover something, you are also building something. When it gets
published, that is the confirmation that this is something worthwhile that you have found, that
you have built up. I guess in that sense they are the same. The fact that Maple has 120 people is a
reason to be proud of. The fact that they are still running the kernel by and large as I wrote it is a
reason to be proud of. The fact that there are thousands or tens of thousands of lines of code that
are my code that are still being executed is a reason to be proud because it’s something that you
have built and still exists. From that point of view, they are similar satisfactions. I think that the
dominating aspect is that what gives you satisfaction is building something that solves problems
for others. Basically building something that has consumers.

HAIGH: Unless you have any other comments to add on Maple, I would suggest that we return
to your academic career and discuss your transition to ETH in Switzerland. I believe that you
first came here in 1989 as a visiting professor.

Gonnet, p. 59

GONNET: That’s correct. There was a bit of a funny anecdote. With the OED project and with
the Maple project we were sort of a favorite target to give demos. The OED, I have to agree, was
the best demo giver that we had because it had so much information, and we could search it so
efficiently that you would always find something to make someone happy about it. There are
hundreds of anecdotes about the OED being successful at demos. So one day I get a request.
“Could you give a demo to whoever is coming from Switzerland?” I said, “Sure. Will do,” like
fifty other times. The day that the people were coming, I discovered that one of the persons that
was coming was Klaus Wirth, who you met yesterday. I said, “Oh. Good grief.” This is a very
important computer scientist that is coming. You told me that this was Hans Buehlman (the
president of the ETH at the time) and company, and you didn’t tell me the most important part.
Of course this was somebody who transcribed the names but didn’t know who these people were.
I had met Klaus Wirth before, but in much more casual situations.

So we ended up giving them a demo and so on. They were quite interested in what we were
doing, and didn’t make too much about it. They were busy, they had a tight schedule. We talked
for a while, I demoed Maple, demoed the OED. They left. The next thing that I hear is I have an
offer to come to Switzerland. They were on a job hunt trip and a candidate hunt. Somebody calls
me, and I said, “Look. There is no chance that I can go to Switzerland. I am very happy in
Waterloo.” Next thing that I hear is Klaus calls me and says, “I think you should reconsider it.
It’s a nice place to work. I am very happy here, and I think you will also be very happy here. You
like to develop software. We have quite a bit of experience here, so why don’t you come for a
conference?” It was a conference that was celebrating the 25 years of computer science. I came
to this conference, and I have to say that all that I saw I liked.

HAIGH: Was that your first visit?

GONNET: Yes, this was just a courtesy visit. I came here for this 25 year celebration, gave a
talk, met with people, and so on. Then I got an invitation, well, a standing offer. I said, “I really
cannot accept that offer.” But the president said, “Why don’t you come for a year? You will like
it, and you will stay.” I said, “Okay. Fine.” It was about time to take my sabbatical. It was sort of
an early sabbatical, and I took it as a sabbatical year. We came all to Switzerland. I have to say
that he was right. I liked it. We stayed.

HAIGH: What was it that convinced you?

GONNET: I have said this many times, and it’s summarized in a very simple phrase: In Canada,
professors are liabilities; in Switzerland, professors are assets. That phrase summarizes it all.
From the government to the institution to your colleagues to your friends, the students,
everybody—it’s just that. In North America professors are not in high esteem. Professors are
viewed as parasites who live in ivory towers that somehow other people have to pay for. In
Switzerland, professors are viewed as assets. Professors are the ones who are teaching their
children to become professionals, Switzerland depends on good professionals, so they deserve
respect, care, and to some extent admiration (remember that ETH has collected 21 Nobel prizes
in its history). That makes a huge difference, not because somebody treats me differently, but
because the whole system works in a different way. The whole country has more respect for
academic values, has more respect, funds better, helps people, and so on, whereas in Canada
everything was a fight. I guess that in the States it’s also very much the same depending on
where you are. In Canada in my last years it was really difficult to get anything done. You had to
fight a stupid government that thought that if they would cut universities they would get no
penalty from the voters, which was true. They would just cut the universities, and when the

Gonnet, p. 60

university was just about to recover from the previous cut they would cut again and force this
and force that and make things more difficult. It was a constant battle. I don’t need that. Nobody
needs that.

HAIGH: How would you describe the general position at ETH in the computer science and
mathematics level?

GONNET: ETH is a very prestigious place within Europe and within the German-speaking
community. We are privileged in some sense by having 150 years of quite prominent history. We
have Nobel prizes all over the place. A couple years ago Kurt Wüthrich had a Nobel prize in
chemistry.

[Tape 4 of 6, Side B]

GONNET: Earlier on, Richard Ernst had another Nobel prize. Klaus Wirth has a Turing Award.
In the German-speaking community (or in Europe) ETH ranks at the top of the computer science
departments, so it’s very attractive to come to a place that is definitely ranking higher than where
I was coming from. It has obvious advantages when you go to recruit students, when you go to
recruit professors. People are more likely to come to a place that is one of the top places in
Europe. The economy only helps. The standard of living of Switzerland is high. That means
salaries are good. That means we have resources that we would not have in other places. From
that point of view, the institution has a lot to offer to its professors.

There’s also a philosophy that is very different from North America with respect to universities.
It has to do with tradition, it has to has to do with the way that it’s organized, but it’s summarized
by the fact that we have only one boss. Our boss is the president of the university—nobody else
is my boss. My boss is the president of the university. That’s the only person that can call me and
give me a hard time. That’s the only person that can fire me. That’s the only person that can
change my salary or do something to me. There are department chairmen and so on, but there are
no deans, nobody that can affect my life. So the structure’s very simple. The president actually is
responsible for all the nominations. Nobody nominates anybody here. It’s only the president that
hires people. It’s a small institution. We are 280 professors. The equation is very simple: We
(ETH) are going to protect you from all the bureaucratic garbage, but you have to perform. If
you don’t perform, well, it’s your own problem. We want you to perform. We are going to clean
the slate for you. You don’t have to worry about anything. But you have to be a good scientist. I
love it. I have to say, that type of equation, I love.

HAIGH: You’ve already mentioned that you brought with you some work on the OED and on
Maple and some collaborators. Was there anything about ETH and the department here that led
to any shifts in your personal research agenda?

GONNET: Yeah, there was definitely something that ETH helped me change. As I arrived here,
I became a very good friend of a colleague in chemistry, Steve Benner. He was doing organic
chemistry. In particular he was doing biochemistry, and he immediately saw that I had something
to contribute to what is now called bioinformatics before it was even called bioinformatics. As
early as 1989, 1990 we were working on problems that we can call bioinformatics. We made an
excellent team, and we produced a very significant amount of work. Unfortunately, Steve went
back to the States, went to the University of Florida. We kept on cooperating, but it was not the
same as when he was next door. So yes we still cooperate, but very little. The big time for our
work, and a very pleasant time I should say, was when he was here. I guess that we were both
very respectful of each other, of the knowledge that each other had. I am very respectful of his

Gonnet, p. 61

chemistry knowledge, and we were making a very good team in the sense that he was bringing
all the biology and all the chemistry and a great intuition, and I had a background of algorithms
and mathematics that could sort of formalize things in some sense. For me, it was really a very
good experience, and a very pleasant one.

I have mentioned the importance of having users for what you develop, whether it’s a theory,
whether it’s a theorem, whether it’s an algorithm. This was perfect in the case of bioinformatics,
because in bioinformatics you don’t do things for the theory. Well, some people do things for the
theory, but in bioinformatics you write algorithms, or you devise methods or whatever, to solve
real problems that the biologists want solved, or that are going to answer real questions in the
science. So this is extremely exciting and extremely interesting for me to be able to crack a
difficult problem and to see that this solution is going to be helping somebody, or is going to
clarify some relationship, or is going to help understanding of how life goes. Bioinformatics is
excellent from the point of view of my most desirable mode of operation, which is you want to
do something that somebody wants, that somebody’s going to use, that somebody’s going to
consume, whether it’s scientific or technical or mathematical. I am quite happy to work in
bioinformatics. The major strength right now of my group is in bioinformatics.

HAIGH: Is that the Computational Biochemistry Research Group?

GONNET: That’s correct. Steve and I formed the CBRG.

HAIGH: I saw on its website that its main project appeared to be the Darwin project. Is that
correct?

GONNET: Right. Actually, Darwin is extremely relevant to the Maple story, because it goes as
follows. In bioinformatics you manipulate objects. These are sequence, genomic information.
And you have lots of algorithms that are suitable to work with this information, but you still need
a language that puts everything together. Very early, in 1990, it was clear to me that if we were
going to make significant progress in what is now called bioinformatics, we had to develop a
language that would handle these objects as opposed to just write programs in a standard
language like C, where every program that we write we have to start from scratch. That was the
origin of Darwin. Darwin was really a Maple kernel which was stripped of all the mathematics,
and were replaced by bioinformatics functions. So instead of having polynomials, we have
sequences. Instead of integrating functions or solving equations we align sequences or construct
phylogenetic trees, etc.

The languages, if I show you some code in Darwin and code in Maple, you cannot recognize the
difference. The languages are practically identical. The kernels were identical except for where
they had to differ up to 1994. I synchronized the kernels for the last time in 1994 because there
was a lot being learned and a lot being improved in Darwin and a lot being done in Maple
simultaneously. It was a waste to have these kernels independent of each other to rediscover bugs
or miss improvements. As a matter of fact, when I was last week talking in Waterloo to the
Maple people, I was telling them about some improvements that we did in garbage collection
that I am sure are problems that they have, and they confirmed, these are problems they have.

We managed to interbreed, in some sense, the two products to the benefit of the two sides. The
products are very different, of course. If on one side they are very similar, on the other end also
they are very different. Darwin solves problems with sequences, problems with genomic
information; it doesn’t do mathematics. Well, it does statistics and it does linear algebra because
that is something that is needed massively in bioinformatics, but it doesn’t do any integrals, it

Gonnet, p. 62

doesn’t do any solving any equations or anything like that. The domains of application are very
different.

The paths of development after 1994 were also very different. Maple was controlled by the
company, they had some agendas, they moved the language in one direction. I had other goals in
mind. I wanted to make the language more object-oriented. I moved the language in a different
direction. Right now the languages are much more different than what they were in 1994, or in
1990 when they were really a single piece of code. Also, around 1994-95, we formalized an
agreement with Waterloo Maple in which we would both use the code base that we had. I am not
going to do any computer algebra with Darwin. Waterloo Maple is not going to do any
bioinformatics with Maple. Anything else in the middle we can all do without interfering with
each other. At least we have sort of a formal understanding of what is owned by whom and what
we can do and what we cannot do.

HAIGH: Was the Darwin code distributed without charge?

GONNET: The Darwin code is distributed without charge, and it has the same structure as Maple
as having a kernel and a library. The library is distributed in source form. The kernel is not
distributed. Right now I cannot distribute it without changing the agreement that I have with
Maple. As a matter of fact, similarly if Maple wants to make its kernel open source, they’ll have
to ask for my permission, which I would give them. But we both have a symmetric guarantee and
obligation to keep the kernel private because there is so much material that is common in the
kernel that if I disclosed the kernel, Maple would definitely have part of its kernel disclosed.

HAIGH: Is Darwin still under development?

GONNET: All of these languages are still under development. I would say that Darwin is more
under development than Maple. Maple is more a production system.

There is a substantial difference between the Maple paradigm and the Darwin paradigm. Maple
became much more popular much more quickly than Darwin. Why is it? What am I doing wrong
that Darwin is not as popular? After 14 years of Maple, Maple was probably used by a million
users. After 14 years of Darwin, Darwin is used by a few hundred users at best. Why the
difference? There are many reasons for explaining this difference. These throw some light on the
Maple project and the Darwin project, so maybe they are worthwhile mentioning. One important
difference was that Maple was providing something that nobody else was providing. Let me
explain this in the following way. If you have a function and you don’t know its integral, there is
an integral, and there is only one integral. It’s very easy to verify that is either there or not. There
is no waffling, right? You either compute the integral or you don’t have the integral. If you are
not clever enough to find the integral by yourself, or by looking at the table, you are at the mercy
of Maple. Maple is only one that can tell you yes, there is an integral; or maybe no, there is no
integral for this function, so don’t waste your time, there is no possible integral for this function.

In Darwin and in bioinformatics things are much more approximate. You build a phylogenetic
tree. Well, the tree is good, the tree is not so good, but that depends on the data. Lots of people
can build trees. Some trees are better than others. Yes, I think we can compute the most accurate
trees around, but everybody builds trees. It’s not like the integral, where it’s yes or no, and if it’s
no you’re out of luck. In bioinformatics things are always, “Oh yes. Maybe yes. I have
something that is good enough. Yes it will cut it. No it will not cut it.” It’s a much smoother type
of transition between right and wrong.

Gonnet, p. 63

That’s one very important aspect because some people want very precise computations in
bioinformatics, but also a lot of people just don’t care. Oh, well, I would like a phylogenetic tree,
but any good approximation’s better than nothing. Whereas, that, in mathematics doesn’t happen.
If you want an integral, you don’t want an integral that may be wrong. This is out of the
question: “I’ll give you an integral. Oh, yes, it may be wrong. Yeah, but it’s not going to be
wrong by much. It’s just going to have a couple numbers different.” “No, you are kidding. This
is not acceptable! An integral has to be the right integral!” Well, it could be a numerical
approximation, but not a formula that sort of looks like the right thing. This is just not
acceptable. In bioinformatics, “Oh, you have an alignment. It’s not the perfect alignment. Well,
yes, it still does the job.” I don't know, nature has played dice with me, so there are some random
mutations, so it could be that alignment or it could be something similar, so I don’t care too
much. Absolute precision is not existent in bioinformatics.

So that’s one important difference between the two domains. In one domain you either use
MACSYMA, or Maple, or Mathematica, or whatever you have, or you are out of luck with a lot
of paper and pencil and a lot of tables, which most people will not be able to do or will not have
the time to do it. In the other area you have lots of tools, that may not be perfect, but will still do
a job for you.

The second important difference is that the users of Maple are either mathematicians or
engineers or computer scientists, and basically all those people know how to write a program and
actually have no hesitation of writing a program to do their computations. But biologists are not
programmers. They have a lot more difficulties in writing a program. They will actually hate to
write a program. They will prefer to point and click, but they will not want to write statements.
This is a huge difference that it took me a little while to recognize. A typical Maple user has no
hesitation in saying, “Oh, I want to compute this. Then I want to integrate that. Then I want to do
this and this and this.” Automatically he’s writing a little program that’s going to do these
computations in Maple. A biologist will not be mentally prepared to write a program. They’ll
say, “No, no, I want something that does my job. Does Darwin do my job?” No. “Well, you have
here all the building blocks. You have to build it yourself.” “No. I cannot do this.” That’s a
second fundamental difference that I think has affected the acceptability of Darwin in the
community.

HAIGH: Are there other packages providing the same basic areas of functionality that have
proven to be more widely adopted?

GONNET: There are lots of packages doing lots of different things in bioinformatics. I would
say that the common denominator is not a package like Darwin. The typical package is: “I have
written a program that does trees in these circumstances. It accepts input in a wide variety of
forms. I am distributing it for free. It’s up to you to make good use of it.” That’s one mode. Or
else, “I have a web server where I have put all my algorithms. If you click and feed in the
information, I will do the job for you.” There are many, many web servers (some of them are
quite good) that give services to people. As a matter of fact, biology and bioinformatics has used
the web much more extensively than computer algebra and mathematics. By the time that
mathematicians were awakened to the fact that there was an Internet and they could find useful
information, biologists were systematically exchanging data, databases, searching services,
computing services, and so on, through the Internet. On one side the biologists will not be able to
write a program. On the other side they are far ahead sharing resources through the Internet.
Sharing not only data resources, but also computational resources through the Internet.

Gonnet, p. 64

HAIGH: How large would the potential user community be for Darwin?

GONNET: It’s quite large. It’s difficult to say. By the same argument that I made earlier, it’s an
area that is going to be extremely competitive in the sense that a lot of people have written
programs that do things, and maybe they are better at doing some particular operation. Is Darwin
going to be better in all its capabilities? Probably not. We have quite a few facilities to integrate
other people’s software into Darwin. I think that the success of Darwin is going to hinge on the
“glue” that we have, that is the ability to work with other programs/data/services. We can treat
all these objects in a single language, and some of the algorithms that we have implemented in
the kernel are basic algorithms developed in the group, and they are good algorithms. But it’s a
challenge. I don’t have any commercial plans for Darwin at this point. I am more interested in
developing the system and having other people use the system.

HAIGH: How large is the Computational Biochemistry Research Group at this point?

GONNET: We have eight people here working on payroll: one post-doc, six Ph.D. students, and
one staff member. We have a new assistant professor that has joined a month ago. He will bring
three more positions, for a total of eleven. We cooperate with a colleague in biochemistry, Prof
Yves Barral, and he has his reasonably large group, but not all of his group is involved in the
projects that we are working on. Yves is really an associate colleague; he is not part of the
CBRG. Then in computer science there are three other colleagues, two in computational science,
one in theory, who are interested in bioinformatics problems. We have seminars together and so
on.

HAIGH: Did you find that the smallness of ETH made this kind of interdisciplinary research
easier?

GONNET: Yes. I think that the smallness, the independence that we have and the very
reasonable administration that we have makes things very possible. Having pressure to produce
results is very desirable at some point, but when the pressure becomes silly and forces you to do
worthless things just to satisfy some administration or some granting agency, then it’s
counterproductive. I think that from that perspective, ETH has the right combination because we
have the pressure to produce, but not the pressure to produce tomorrow ten papers because we
need to show them to the granting agency or else we are not going to have money to buy paper
tomorrow.

HAIGH: So for your work have you had to seek outside grants?

GONNET: I had, but I didn’t need to. I had done a little bit of the rat race, but I really didn’t
need to. My own regular budget will cover for most of the positions that I have and will cover for
the equipment that I need and so on.

HAIGH: You’ve already talked about the use you’ve made of the Maple kernel on the Darwin
project. I was wondering if you had discovered any other conceptual relationships between your
work on algorithms and text processing and this bioinformatics program.

GONNET: No, I don’t think so. Now that I have worked several years in bioinformatics, the
work in bioinformatics can be summarized as: you have to be good at algorithms, and you have
to be very good at probability and statistics. You are not working with completely deterministic
objects. You are not working with mathematical formulas that go only one, you are not working
with problems which have a unique and precise answer. You are working with nature that has
gone into a process of evolution in a relatively random way. This randomness percolates

Gonnet, p. 65

everything that you do because this randomness is not only in nature, but in all the data that you
acquire. You acquire data, and the data is not exact. It’s subject to error because of the nature of
the data or the nature of the acquisition of the data. What I tell all my students and my grad
students when they come is to make sure that their background in algorithms and their
background in probability and statistics are really strong. If they have a good background in
algorithms and statistics, quite a bit of scientific computation helps. It helps if someone knows
how to integrate a system of differential equations or finding a minimum in an efficient way.
Those kinds of basic scientific computation abilities are also very helpful. But if you are good at
those two and possibly that third one, you are going to be good a bioinformatician. There is no
two ways about it. But you have to understand algorithms and statistics, and that’s maybe the
crucial point.

HAIGH: You’ve described the work of the Computational Biochemistry Research Group and in
particular the Darwin project. Have there been any other aspects of your academic career at ETH
that you would like to discuss?

GONNET: No, not in particular about ETH. But talking about Maple and talking about Darwin it
comes to my mind that at a certain point there was another descendant of Maple, which because
the OED project stopped its activities, and because the company Open Text was not interested in
it, never saw the light of day. We had the same approach for text searching and intelligent text
processing we took to Maple and for Darwin, and in that case, we designed a language called
Goedel. This was a bit of a pun because it had the OED in it and Goedel is a famous
mathematician, very important to computer scientists. The language Goedel was, as Darwin is, a
descendant of Maple. It had the same language structure, and had different primitives to handle
text. Some important projects for Oxford University Press were coded in Goedel and were
executed in Goedel. Unfortunately, this language died, from nobody continuing to work on it.
The normal place for the work would have been the company Open Text, and Open Text did not
have the energy or the interest to follow this approach. So when we talk about Darwin as a
descendant of Maple, we should at least mention Goedel, which existed for a short period of
time.

Goedel was used for a significant project for Oxford University Press. There is one dictionary
which is a derivative of the Oxford English Dictionary which is called The Shorter OED, which
as opposed to the other dictionaries is not done from scratch. Most of the Oxford dictionaries are
done basically from scratch. The Shorter is in reality a shorter version of the OED. They
painfully wrote down all the rules that were used to derive an entry from the big OED into one
entry of The Shorter OED. This was quite a complicated procedure that was implemented in
Goedel. This created the frameworks for the entries in The Shorter. Oxford University Press was
very happy to have this done automatically. It was probably the only big, successful application
of Goedel.

HAIGH: You had also signaled out your paper on the Lambert W function as one that you would
like to talk about. [Robert M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E.
Knuth, “On the Lambert W Function,” Advances in Computational Mathematics 5, 1996, 329-
359].

GONNET: The Lambert W function is somehow very close to Maple and very close to my
research and a nice event all together. Let me explain, first of all, that the W function is the
solution of a transcendental equation which happens to be very handy to solve a wide class of
problems involving asymptotic expansion, differential equations, and a few other mathematical

Gonnet, p. 66

problems. The W function had been studied by many mathematicians through history, Lambert
being one of them, Euler being another one, more recently an Englishman by the name Sir
Edward Maitland Wright. So none of us discovered the W function. The W function existed for
centuries.

My contribution was to create a framework to include it in Maple from the very early stages. I
included it out of necessity because it was appearing in many of my problems in analysis of
algorithms. It was actually very handy to have this function as opposed to having approximations
of this function, which is what most other people were doing. At that point I realized something
which is sort of obvious: that many of these transcendental functions are just really names with a
certain number of properties attached to them. What is the difference between the logarithm
function and the W function? Well, formally none except that the logarithm function is very well
known—even high school children will know about the logarithm function, and the W function
is a bit more obscure. Both have mathematical properties, both have inverses, both have series
expansions, both solve differential equations, and so on. They are indistinguishable from a
mathematical point of view. Once you give them a name, they come into existence. You can
compute numerical values, you can compute special values, and so on. Everything that works for
the logarithm works for the W; everything that works for the W function works for the
logarithm. It is in some sense that very simple realization that you just need to name a function
that allowed you to put in the mechanisms so that is now possible to treat many objects that were
not possible to treat before as if they were as common as the logarithm function. From the point
of view of computer algebra, the W function is important in itself, but I think it was more
important in making us realize how to deal with unknown functions: that once you know certain
properties and you give them a name they are as common as your normal functions: sine, cosine,
tangent, logarithm, exponential, and so on. They become just one more of the group.

So the naming “W function” comes from a paper in communications at the ACM, and the name
of the W function was a source of some debate. In the end, this paper that I took as a sample used
an italic W (or maybe an omega, but I think it was an italic W) for describing this function, for
which everybody who described it was using a different name. Once you incorporate a function
in a system and people start using it, it starts taking a life of itself. So the W function started
taking a life of its own. At some point Maple decided to call it “LambertW” because Maple did
not like one-letter names because one-letter names are reserved for users that want to use them as
variables, but for all the people involved closer to it, it’s the W function.

At some point while meeting with Don Knuth we had a discussion about this. Knuth uses another
version of the W function which is formally extremely similar to the W, but he calls it T. For him
it’s a tree generating function. We had a friendly discussion of whether I was going to convince
him to use W or whether he was going to convince me to use T. In the end we decided that there
was a small difference and that we will both establish the relation between the two functions and
actually publish a paper together, and that’s what we did.

It turns out that the W function appears in many, many places, in engineering, in science and
engineering, and physics. This little piece of work became quite popular, and the W function is
one of my most cited papers currently. In some sense I am very happy to have brought the W
function to life in Maple. Of course I didn’t invent it, I only implemented it and discovered some
of its minor properties, but definitely implemented it in Maple. Also this sort of opening of the
door so that any function that is suitable, that will explain some mathematical property, can be
given a name as soon as you know enough about it. Knowing enough about it summarizes to

Gonnet, p. 67

know its mathematical properties, to know its integral, its derivatives, its series, and how to
compute it numerically. Nothing more. Once you know those things, you can give it a name, and
it’s a function that will exist by itself.

HAIGH: I also remember that listed on your resume are a number of books on Maple. Did you
put a significant amount of time into working on those?

GONNET: I put some time. I would say in all fairness, Keith in particular, but all the other
coauthors put in a larger amount of work. I had contributed or I had devoted more effort to the
system itself than to the books. Yes, I have been an author and I have written some minor parts
of the books, but the main effort in writing the books was by my coauthors, not myself.

HAIGH: Is there anything else you’d like to say about your work at ETH, or perhaps your
graduate students here or colleagues?

GONNET: No. I think that most of the things that I wanted to say have been covered already.

HAIGH: Let’s move onto address the OpenMath Project then. Perhaps you could begin by
talking about the initial impetus for the project and what time period it evolved over.

GONNET: The OpenMath Project probably can be traced to the mid ‘80s when we realized that
we needed a language to communicate mathematics between different systems. Whether the
systems were computer algebra systems or numerical systems or storage and display systems or
simply storage systems, we needed a way of communicating a formula, a matrix of data, or
something from a system A to a system B. That was recognized as a problem. There was no
standard for doing that. There was no standard for displaying this information. There was no
standard for plotting this information if it was a function, and so on. We wanted to establish a
standard which was a little bit more general than just Maple, because Maple would just be
viewed as a proprietary format, and Maple was not covering all the possible aspects of data
storage and transmission. We perceived that there was a huge need from the community to have
this Esperanto for mathematics, this common language in which you can transmit your formulas.
How can you get a formula transmitted from Maple to Matlab, and then from Matlab to a paper
into which you want to incorporate it? That was not available. Individual tools to output Maple
into LaTex suitable for a paper were available, but a general language for describing
mathematical objects was not available. This idea was already present in the Symbolic
Computation Group I would say in the mid 1980s, but nothing much happened at that time.

HAIGH: Had you been influenced by your personal exposure to SGML with the OED project?

GONNET: Yes. Absolutely yes. There is no question that treating data as a structured media was
definitely influencing me, and that was basically what the OED project had taught us to do.

[Tape 5 of 6, side A]

GONNET: This was not a project that anybody would actively pursue in Waterloo. Even though
we were all in agreement that this was a good cause, nobody was able to do anything with it. It
was only when I was in Switzerland that at some point in time I invited several colleagues, and at
that point we coined the term “OpenMath” for this language that would allow us the interchange
of mathematical objects between systems. This was quite a successful project at first, and people
were very enthusiastic. We started getting the right ideas in place about how to represent and
how to solve the difficult problems. The difficult problem is the semantic problem, how to
represent different mathematical objects and being able to transmit mathematical objects from
one system to another. Accepting the fact that different systems may have different capabilities,

Gonnet, p. 68

while Maple can compute an integral, Maple probably will have problems displaying some
function, and Matlab will have problems integrating symbolically an expression whereas it’s not
going to have any problems in computing the eigenvalue decomposition of a matrix and so on
and so forth. This work went on, and very quickly we created an OpenMath society and created
some formal structure. We were meeting every year. The first two meetings were here in Zurich.
It was mostly an effort that had more members from Europe than from North America.

HAIGH: Were the participants primarily producers of mathematical software or users?

GONNET: It was mostly computer algebra related people more than anything else. Cleve Moler,
for example, at some point was very interested, but he was sort of waiting on the sides to see
what we produced.

HAIGH: Did you see yourself participating as a representative of Maple, or just as an interested
citizen with expertise in the area?

GONNET: I saw myself as coordinator of that group. At the time, I was basically providing most
of the energy for this to happen. At some point we had some funding and we were able to hire
some people part-time in different institutions in a distributed way. But it has to be said that
unfortunately nobody took the flag of OpenMath forward with all their energy. Nobody made of
OpenMath their top priority at the time. With time, I got a little bit frustrated with the following
situation. We would meet one year. We would discuss. We would make progress. We would
define some properties of the language that we had. Then nothing would happen for 11 months
and a half, and then we would meet again, and we would start again from zero. All of the
discussions, all of what we have done, all of the conclusions that we have reached, were all
forgotten and we were all starting again from scratch. Then repeat. We would make progress, we
would define things, come to conclusions, and so on. Leave the meeting, 11 months and a half
will pass, nothing would happen, and then again we would meet and we would start from zero
again. At some point I got tired of that, and I gave up on the OpenMath project. My view is a
little bit pessimistic. It’s not that we didn’t achieve anything, but in my view we were not making
progress at the speed that we should have made progress.

At the time that I left, there was also sort of a competing project, which was the representation of
mathematical objects in HTML, which was called MathML. This had a different goal than
OpenMath. OpenMath wanted to be able to represent expressions and what they mean, as
opposed to MathML, which wanted to represent expressions and how they are going to be
displayed on a screen. Which for some people may appear to be the same thing, but in reality
they are different. We were interested in being able to do computations with the objects and to do
the right decisions. We didn’t care how this object was represented on the screen. Whereas Math
ML people were concerned about how to represent objects on the screen, they were not
concerned at all about what they meant. So for them, they were completely happy of having
some display in two dimensions that made mathematically no sense whatsoever, if that was what
the user wanted to display. We would say “No, I want to understand whether that’s an integral,
whether that’s a differential equation, whether that’s a matrix. I want to understand what it is and
I want to be able to tell some other system what this object is.”

So the two standards coexisted for a while, and actually one would be included in the other. If
you wanted to understand what the meaning of the object is, MathML allows the inclusion of
OpenMath in it. OpenMath allows the inclusion of MathML if you want to describe how you
will represent this object. As I said, at some point I gave up on OpenMath.

Gonnet, p. 69

HAIGH: What year would that have been?

GONNET: That would be about five years ago or so. I gave up on OpenMath for the reason that
I mentioned earlier, that every time we would appear to make progress, and then because there
was no person carrying the flag, everybody would go back to their own projects and everything
would be forgotten. I was frustrated with the lack of progress, or the lack of progress at the speed
that I thought should happen. And at some point in time a European grant was applied for, and
somehow they left Switzerland outside and I used that opportunity to say, “Okay. Fine. You’re
on your way. You’re on your own,” and left it. I thought that nothing was going to happen. To
my surprise, OpenMath is alive and well these days. I don't know if it’s thriving, but it’s
definitely alive and well. Maybe when I gave up on them… I gave up on them not because it was
a bad idea, or it was the wrong thing, but because I couldn’t see how to move it forward, and I
was also sufficiently busy as to be unable to say, “I’m going to carry the flag of OpenMath.” I
had enough projects for myself to be busy with. Although I was mostly the convener and the
starter of all the OpenMath projects here in Europe, I just couldn’t carry this project forward.

HAIGH: Are you aware of whether there was anyone in particular who stepped forward and took
up the burden?

GONNET: Yes. I think that I have to make special mention of Arjeh Cohen and Mika Seppala.
They were very active in promoting OpenMath, and they basically carried the work forward.
James Davenport in the UK at Bath also played a very important role. There were lots of other
names, but those three names come to mind as people that continued moving the project forward.
And as far I know, right now they are very active. Last year I was seriously planning to attend
their meeting because I think that last year they were celebrating ten years of OpenMath. I was
very sad that at the last minute there was a conflict and I couldn’t attend the meeting, because I
really wanted to see now how this child that I had abandoned continued its life and prospered in
the end.

HAIGH: Are you aware of whether support for OpenMath has now appeared in the main
commercial products?

GONNET: No. I know that Maple supported OpenMath, but in a very quiet way. At the time it
was also one of my disappointments that I could not even convince Maple that this was a worthy
cause. Many people would pay lip service to it, say, “Oh, yes it’s great,” and then proceed to do
nothing. In some cases even showing signs of thinking “Well, you know, we don’t want our
machine to be used for the algebra and then use some other engine for displaying the math.”
Some people were worried that accepting and interchanging a common language would detract
from Maple. That was a serious mistake in some sense. I think that systems would have been
much better if they were very good at something and people were using them, as opposed to try
to do everything for everybody and being mediocre in most things. In the end, the computer
algebra systems are completely monolithic. Every computer algebra system wants to do
everything, and they don’t talk to anybody else. This is what Maple is doing and what
Mathematica is doing and what everybody else wants to do. They want to solve all the problems
for you. They want you to buy only one package. They will not communicate with a numerical
system or with a general display tool. No. They want to do everything themselves. At the end
there is a waste of resources, a tremendous waste of resources.

Gonnet, p. 70

HAIGH: The main topic remaining to us would appear to be your involvement with the other
firms that you founded. Chronologically I would imagine it would make most sense to talk about
the Open Text Corporation next.

GONNET: Open Text was a really very peculiar experience. It has similarities with Maple, in
that this was a university project. In this case it was the Center for the New OED project. It was
centered around some software that we had produced, searching software and some other tools
that were also interesting. It had a somewhat similar start to the Maple company. We
incorporated a company where most of the shareholders were professors or members of the
research group who put up some very minimal amount of money to start the company.

With Open Text, very quickly there were some differences. The type of customer of Open Text
had a completely different profile from the customer of Maple. The customer of Maple was a
researcher that was happy to throw $500 or $1,000 to a software company, and would usually be
sort of a scientific or an academic user of the software. Text searching software was difficult to
sell. It would sell to businesses, and it would sell for huge amounts of money, compared to the
$500 or $1,000 that we would get for Maple. It was a completely different type of sale. It was a
completely different type of company profile that you had to have. I realized that the company
was not going anywhere because my colleagues were a little bit too conservative. I remember
having a discussion. “Should we port to the PC? I think we should port to the PC, I said”, and my
colleagues said, “No. That’s going to cost money.” Well, “I will invest the money, I said”. “No,
no. We don’t want more investment (that will unbalance power). We want to go slowly.” Well,
the slower you go, the more opportunities you lose.

HAIGH: What platform was this operating on?

GONNET: It was a typical UNIX platform. The short of that lack of initiative was at some point
I got tired of my colleagues being so conservative, and I decided to start a new company. I found
a person who was a real business manager, who really impressed me by the way that conducted
himself and that he presented himself and so on. I was already living in Switzerland at the time.
This person flew to Switzerland to show me how responsive he could be. I remembered Tim
Bray calling, “I have interviewed this candidate, and he’s good, his name is John Branch, guess
what…” Sure enough, when I read the message he was ringing me on the phone. He was here in
Zurich to see me. I think Tim said something like, “You’re going to have a surprise,” or
something like that. We started a new company called some opaque name like International
Retrieval Systems Corporation.

HAIGH: Was Open Text the name of the first company?

GONNET: The name of the first company was Open Text Systems. When I started this new
company, all my colleagues saw the light, and they said, “Well, it doesn’t make sense to have
two companies.” Or actually they were probably feeling that the old Open Text would go
bankrupt very soon because I was going to put all my new efforts into this new company and I
was going to call the shots. We arranged for a merger of the two companies on the conditions
that I would be in control in the new company, and the share structure would reflect that by the
time I had invested more money into the company. So I was the only or largest shareholder of
IRSC. At that point we founded a third, new, company called Open Text Corporation, which was
the result of the merging of the two old ones, the Open Text Systems and the short-lived
company that I started. Open Text Corporation is the current Open Text Corporation that is
traded in NASDAQ right now.

Gonnet, p. 71

The company had a reasonably good start and started focusing on text searching software. We
had to convince people that text was a valuable asset. Sounds ridiculous now, but people were
thinking, “Oh, we throw out our mail messages. Why do you want to keep mail messages
around? They use megabytes of storage!” We had to teach people the resource that they could
have in their data. For that the Oxford English Dictionary became very handy because we would
search almost for anything in the OED and you would find useful information. It was a fun
project, and it grew quite well. We had a huge number of opportunities, that unfortunately not all
of them came to fruit. When I say a huge number of opportunities, these were real opportunities
in nowadays scenarios. We were doing text searching in 1990 way before all these other
companies—way before Google of course, but way before even AltaVista were in the market.
We were the first company to index the web, full page indexing, full text indexing of the web.
We were chosen to be a companion of Yahoo! at the time to do the searching of the content of
the pages and be the “index” of the web, and Yahoo! was viewed as the table of contents of the
web. The two companies were partners at the time.

Unfortunately, venture capitalists that controlled the company at that time had a different view of
searching the web. They made perhaps the stupidest statement that you can make. They (Richard
Black) said, “We don’t see any viable commercial way of exploiting the searching of the web.”
Well, we didn’t see it either, but we saw that there was something there. We saw that the same
thing that was happening when we searched the dictionary and found any information that was
useful, we could search the Internet and find information that was useful. We couldn’t put it in a
piece of paper to convince a venture capitalist or to convince an investor, but we were all
convinced that this was a great idea. Unfortunately, with venture capitalists thinking that way,
they took resources out of the web searching engine that we had. Eventually the web searcher
was so overloaded that it was painful to use. Eventually Yahoo! dropped Open Text, and
AltaVista came with the same system that we were designing at the very beginning. The layout
of AltaVista was almost a carbon copy of ours. AltaVista became a company that was worth
billions, and then also fell in disgrace and Google now is worth a hundred billions in the same
space.

HAIGH: Did that search engine ever have its own brand or identity, or was it just…?

GONNET: Yeah, it was called Open Text. It was the Open Text product. People were calling it
Open Text. Internally we call it PAT. Our internal term for the searcher was PAT.

The other thing that the project also discovered, and we missed completely was the browser.
When we were browsing the OED, the Oxford English Dictionary, we developed a browser,
which was working with a searcher. We had a clever way of tagging things so that they would
show with the right fonts and the right spacing and the right colors and the right sizes on the
screen.

HAIGH: So the browser was a desktop client application?

GONNET: Right. The browser was called Lector. That was the name that we had for it.

HAIGH: Would that software have appeared in the CD-ROM versions of the OED, or did they
develop something different?

GONNET: No. In the end, Oxford University Press took a different route for producing a version
that was searchable and distributable to people. We were distributing a version of the OED for
academic users with our software, but it was not on a CD. It was on big tapes because it was the
complete version; it would not fit on a CD. It was also very high priced. We sold several copies,

Gonnet, p. 72

but it was not a commercial success. In view of that, Oxford University Press contracted some
other company to produce a CD with the OED in it in a searchable form, but a little bit more
primitive than ours. That was not a commercial success either. The second edition of the OED,
the paper version, was a huge commercial success. People loved to buy this book, and paid
fortunes for it. So Oxford University Press got an unexpected success from the second edition,
but no success from either of the electronic versions. I still have the original OED. I can show
you Lector in action. We should do that because I think that you will enjoy seeing it.

Because the point that I wanted to make is the following: We all recognized that there was a
huge advantage in having a browser. You search for a document. You find a document. You
want to go up and down and highlight or see something. You love to see it in different colors and
different fonts and so on. In that particular case, we wanted to show documents/entries as close
to the original dictionary as possible.

But we didn’t make the mental leap that the browser was the most useful tool that we were
developing. Millions or billions of dollars were then spent in designing browsers when we had
years of advantage over everybody else. Actually, to some extent, better ideas than everybody
else on browsers. That’s another point that we missed. In that case we missed because we
developed a browser, we realized that it was great to have a browser, and we didn’t make the
leap that “oh, this may be good for everybody”. We should have had a browser that reads
HTML. Well, HTML barely existed in that timeframe.

HAIGH: What platform did it run on?

GONNET: At this stage it was mostly UNIX workstations, so it would be typically Sun
workstations. I think that two or three small Sun workstations were all the hardware that was
assigned to index all the content of the pages of all of the web.

I was chairman of Open Text until about 1994 or something like that. Open Text, in contrast to
Maple, was dominated by venture capitalists.

HAIGH: Had they been present at the very early days of Open Text?

GONNET: No, actually they came halfway when we needed some intermediate funding.

HAIGH: Had you been the main initial source of funds for the company?

GONNET: Yes, but still in much lesser quantities. I was not independently rich or anything like
that. I was at a point that I could start the company. I did start this IRSC, and then I did start
Open Text Corporation, but I did not have the power of funding the company for several years.
Pocket money in terms of venture capitalists is what I provided. Then the Ontario government
and Helix International became shareholders. There is a lesson that I think that I knew that I
ignored. Venture capitalists are very nice people when there is not much at stake. When there is
real money at stake, they are ruthless. When they saw that Open Text (this was way before the
bubble, but when Internet companies were starting to appear to be very important) was starting to
grow they became completely ruthless with everything. The VCs did too many dirty tricks to the
original shareholders of Open Text to describe here. They found an ally with the Ontario
Government (who then became well paid employee of Helix), used scare tactics to change the
Board to their favor, 2/3’s of the company shares to themselves at firesale prices, violated the
legal rights of the shareholders, etc. They decided to control the company in their own ways. We
also had problems with the management at the time. In any case, I didn’t want to be involved. I

Gonnet, p. 73

was removed from the board, and we ended up not in good terms with them (had to take the
company to court for violation of shareholders rights).

HAIGH: That was in 1994?

GONNET: 1994-95 yes. The experience with VCs was really bad for me. As I said, VCs are
going to smile and do nothing nasty to you as long as there’s nothing really at stake. When there
is real money at stake they are going to be as nasty as they need to be to take the biggest bite.
This is a general rule.

HAIGH: Had the person who came to see you in Switzerland finished up running the merged
company?

GONNET: Yes. This was John Branch. He ran Open Text for the first few years. Actually his
demise was part of the end of my involvement with Open Text. But Open Text at the time, up to
demise of John Branch was a very much fun company to work with. The product was exciting.
The things that we were doing were extremely exciting. Open Text has a market capital of one
billion these days. If we had been given a bit more of encouragement instead of being criticized
on indexing the web…. well, it could have disappeared some people would claim, but it could
have also had a market capital of $50 billion. There is no reason why Open Text, which was a
partner of Yahoo!, would have not had the same trajectory as Yahoo! if it had been properly
managed. That’s what is also criticizable. VCs at the time said, “There is no model for making
money out of the Internet,” so they concentrated on enterprise business, and they moved all of
the technology to intranets. So in your enterprise, you want to have management of documents.
They relabeled themselves “a document company” at some point, which is something that I was
definitely not interested in. As a matter of fact, at some point they even dropped text searching
completely.

HAIGH: You discussed this early search engine that was created internally. Through this period
of 1991 to ’95 when you were involved with the company, did it have any other products or
services that had reached market?

GONNET: No. The only product that was reaching the market was the search engine and
associated programs, that were, for example, the browser that was also distributed as part of the
searcher and so on. It was a single product company. Like Maple in some sense, it was a single
product company. There was software associated with making the indices software associated
with preprocessing the data and so on, but there was no other main product.

HAIGH: Had your own idea been exclusively for searching the Internet, or did you expect to sell
it to businesses as well?

GONNET: No. Our model was to sell to businesses. Searching the Internet was an idea of Tim
Bray. He thought at some point, and I remember him proposing this to a board meeting, saying,
“We are going to index all the pages on the Internet.” It sounded a little bit crazy, but we
immediately approved it and thought it was a great idea. He was allowed to start it, and it was
done for some time. It was very successful, but then it was killed. It was killed by starving it,
because if you don’t put the right hardware, if you don’t put the people to support it, it dies. I
think Open Text at some point was receiving 300,000 requests per day, which at the time was a
monstrous number. People were waiting for ten minutes to get an answer. Forget it; with those
responses it’s not a service. So that was a great loss, a great loss of opportunity.

HAIGH: How large was the company at that point in terms of employees?

Gonnet, p. 74

GONNET: Twenty to thirty employees. Closer to twenty probably than to thirty.

HAIGH: Had it maintained any ongoing links with Waterloo?

GONNET: Open Text? It’s in Waterloo. It’s located in Waterloo.

HAIGH: No. I mean with the University.

GONNET: No. Actually, Open Text had fewer contacts with UoW than Maple did. Maple
maintained contacts with the university for a lot longer, supporting research groups and so on. I
guess that the position of John Branch with respect to the University was the University got a fair
deal with the software. I don't remember the details of the deal. “The university got all its glory.
Now it’s time for us to make a business. We don’t owe anything to the University”. That was
John Branch’s position. Also, the Center for the New OED, being an academic project, had a
beginning and an end. Once it had reached the end, there was not much more to do. Whereas the
Symbolic Computation Group kept on doing research in computer algebra and kept improving
the programs, the Center for the New OED basically closed or disappeared or became inactive,
so there was nothing really to support at the University. The company was not going to support
it.

[Beginning of Session 4, held on the morning of Friday March 18, 2005]

HAIGH: Before we continue with your involvement with the various companies that you’ve
founded and helped to run over the years, I understand that you have some additional points you
would add to material that we had covered previously.

GONNET: They are unrelated points, but I think that are worthwhile mentioning or emphasizing
if they were not given the proper stress before. I mentioned the test suite that was testing Maple
for consistency and for portability. The test suite is not something new that we have discovered
or anything like that, but there were a couple attributes of this test suite that made it very
significant for us. It’s not a well-known sort of concept. These points are the following:

The test suite normally contains what a programmer thinks is going to test his/her software.
Usually this is not enough. The programmer has a pattern of what he knows that his or her code
will execute and normally produces tests that always pass. What we were doing is every time
that we were finding a problem, a bug, a defect, when fixed, this bug or defect was incorporated
in the test suite. This caused the test suite to grow significantly. It turned out that the bugs
typically reflect a path of thinking that was not the programmer’s path of thinking, and it turns
out that in practice the old bugs are excellent witnesses for any problems that develop in the
future. That was a small but I think not very widely known practice. Regression testing is
normally done that way.

The second aspect that was important of test suite is that a test suite can automatically decide
whether the results are the same as before or are different. What we are doing is we record the
correct results and automatically compare the new output with the old output to determine
whether it’s passing or not passing. Sometimes it cannot be done completely automatically; it has
to be coerced a little bit into a form that compares as equal. What is very important is that there
is no human needed to inspect the results and make a decision. That a decision made by a human
takes time, and typically the human starts letting some minor differences go by. It’s very difficult
to judge in the end whether the test is passing or not, or whether this test has slowly wandered
away from the desired results.

Gonnet, p. 75

A third aspect of the test suite, which made a significant difference in various aspects, was to
start testing absolutely everything that we could test in ASCII. For example, we were graphing
output. The output of a graph is very difficult to test. It’s mostly something that a human will
look at. It was a mistake not to test it. We started printing ASCII versions of the plots, which are
extremely coarse, but now can be compared and can be determined whether we are doing a better
job or a worse job than before, or they can be printed in PostScript and the PostScript can be
compared to previous results. We know whether there is a difference.

Finally, the final step of the test suite is probably a double step. At some point we designed a
person to be in charge of all the problems who was named the “entomologist” because he/she
was taking care of all the bugs. The entomologist was responsible for running the test suite every
night. Even though it was very extensive and it required many, many hours of computation, it
was run every night. That made a significant change in the quality and in the easiness of
maintaining the software because it meant that if you had made a change that was damaging the
system in some unpredictable part, the next day you would have a message you had done
something that broke the system. As opposed to you make some change, six months later
somebody says, “Something is broken” and nobody remembers what is the cause. It’s very
difficult now to go back, assign or find who is the culprit and find the fix. If I fix something
today and tomorrow first thing in the morning I have a message that said, “You broke
something,” most likely I have a very good chance of fixing it very easily.

So these very little things made the software more reliable, and our job at guaranteeing that even
within the university and later in the company we had a quality product to a certain extent, made
it much easier. The test suite in Maple was very extensive. It consisted of small sessions recorded
in ASCII, and we had thousands of such sessions.

HAIGH: At what point did you adopt this practice? Were these in the very early days?

GONNET: The very early days. Since the first days we’ve had a test suite. The test suite at some
point became a very large burden on me because once that the test suite doesn’t pass cleanly, you
get into a vicious circle that people will run the test suite and they try to fix their problems. Well,
not all the problems are theirs. But you get into a vicious circle where the test suite doesn’t pass
with more and more failures. Nobody’s responsible for some of the failures; nobody wants to fix
someone else’s problems. So you get into the situation that I was describing before: six months
later you want to release a new version and you have hundreds of tests not passing and its
difficult to find the culprits, it’s difficult to fix the software. It’s a situation where when you are
on top and the test suite is passing and you run the test suite very frequently, you are in top
shape. When you don’t, it tends to deteriorate, and sometimes it’s very difficult to get back to
above water.

[Tape 5 of 6, side B]

HAIGH: On the topic of the test suite, were there any other earlier projects that had been
particularly influential on your early thinking about this, or were these techniques that you came
up with much independently?

GONNET: No. I came up with these techniques largely independently. Test suites had been
invented for a long time. Regression testing is a standard word in most software shops. I think
the combination of all these little ideas that I describe was certainly unique at the time or not
widely known at the time. The novelty was having a large test suite where you incorporate your
defects back into the test suite, and where you make efforts to make an automatic decision

Gonnet, p. 76

whether the test is right or wrong, so that a program can decide and run overnight and quietly
verify all the system. And that you test as much as you can of the system, even the user
interfaces, by coarsely translating it to text. It is something that I have applied in all of the
companies that I have been involved, and I would say to great success. We have a test suite in
Darwin. Open Text had a test suite. Aruna and Web Peals also have test suites for their software.
Nothing here is completely novel or a great idea. It’s just four or five little things that do make a
difference.

So I was going to jump to a slightly unrelated topic. This has to do not necessarily with Maple
alone, but with the whole area of computer algebra. This has been mentioned many times. It’s
the relation between computer algebra, in particular in the design of systems of computer algebra
and the object-oriented community. I think that design of systems in computer algebra never got
the credit that it deserves in the object-oriented community. A lot of concepts of object oriented
programming have been commonplace in computer algebra systems. A lot of object-orientation
concepts have been available for decades. To all of a sudden have the object-oriented community
“discover” these concepts again and make a big fanfare about how novel they are and so on,
makes us say “Hey you guys, this was available in MACSYMA—it was available 30 years ago.
What are you talking about?” The object-oriented community is very self-centered and doesn’t
want to hear that something has been discovered before. I have sat many times and listened to
someone presenting some topic on the design of modern programming languages, and I say,
“Has this guy ever heard about symbolic computation? Never heard that we were doing this 15
years ago?” It’s a little bit annoying, and I wish that these people that discovered new concepts
would spend a bit of time going back and finding what other people have done.

It’s clear that sometimes the terminology’s different; it’s clear that the concepts sometimes are
slightly different. For example, not so long ago, they were saying that object orientation is not
the whole thing. We have aspect-oriented programming and so on. Well, this is a discussion that
we had in the early days of Maple when we were discussing whether operations should be
dispatched by the data type or should be dispatched by the operation? We clearly identified some
groups of objects where it was much better to dispatch by the object and some group of functions
that was much better to dispatch by the function. For example, if you’re working with matrices
it’s more natural to dispatch by the object. You have operations and matrices that have certain
patterns. But if you are differentiating, it’s much more natural to dispatch by the operation
because the derivative of classes of functions share lots of similarities, so it’s much more natural
to dispatch by operation in that case.

Well, I’m talking about something that we were discussing in the early ‘80s. Now the object-
oriented community gave it a label and so on, and it’s being touted as a new paradigm. I don't
know. It’s just a bit of a gripe that I have about design of systems of computer algebra not getting
the recognition that they deserve in terms of the object-oriented community. I should say that the
models that Scratchpad and later Axiom had about abstraction are, in my view, superior to all the
models that have appeared of object-orientation. Granted, Axiom, as I said before, was a very
difficult language for the users in mathematics and probably outside mathematics because of
being so formal and so pure and so exact in its concept, which some of them are not trivial. End
of gripe.

A third completely unrelated point that I wanted to make has to do with published and
unpublished results. This is a mixture of several things. The Maple project, the New OED project
and later the Open Text project and my later project in Aruna with relational databases are filled

Gonnet, p. 77

with unpublished results. I think that this is a fact of life for this type of project. The unpublished
results arise from several things. First of all, you are worried about doing something in the
system and have to resolve a problem that is satellite to your main goal. You search in the
literature. You don’t find something satisfactory. You have to build something or you have to
build a new algorithm or you have to improve something or whatever. But your goal is not to
publish something in that particular area. Your goal is to get the system to work or to get the
system to do something else. Most likely you don’t have the energy to later go and do the
literature search and write a paper and so on. The goal was a slightly different goal. One example
that comes to mind is the garbage collection in Maple. The garbage collection in Maple is quite
unique. It’s most likely interesting, and it most likely would be a very interesting paper to be
published. Nobody ever had the energy. I never had the energy to publish this.

The second aspect is that quite often when companies that are distributing the software, the
companies don’t want to release information that will make it easier for other people to
understand, or copy, or take the advantages. In some cases a few of the algorithms are crucial to
understand why this software has an advantage over other pieces of software. You don’t want to
tip your cards and show how your internals are working and create unwanted competition. This
was clearly the case in Open Text. It was clearly the case in Aruna. In the case of Aruna, we
wrote three patents on the software, and two of the patents were clearly obscured. The company
wanted the protection, but didn’t want to tip the cards very much. All the descriptions that the
technical people wrote were obscured at some point to make it really difficult for someone who
was going to use those ideas illegally just by reading the patent to engineer back the software.

So for those two reasons and maybe others, that is the people that are working have a goal that is
slightly different from publishing those particular results. And because the companies become a
little bit jealous or a little bit protective about their information, these projects, in my view, are
filled with small, medium and large unpublished results. The case that to some extent got me I
wouldn’t say in trouble, but got some friction in the community was one of the structures that
was developed for fast searching in Open Text, which internally is called S-Vectors, which then
were rediscovered by several people, but it was rediscovered ten years later. Well, it was a little
bit annoying to see that that was happening. What can we do? We didn’t publish it at the time or
it was very hidden at the time. We don’t get the recognition. We did get a company going, but
it’s a fact. It’s a fact of the environment where I have been working that we live with a lot of
unpublished results.

HAIGH: Did these all occur at the stages after these software technologies had been passed on
for commercial development, or did you find that this was affecting the way you were working
even inside the university?

GONNET: No, even inside the university. Let’s take the garbage collection example. The
garbage collection is sort of a novel algorithm that Maple has. It was written out of need,
completely out of need. We had written a garbage collection based on reference counts, and at
the time (I’m talking 1984) we didn’t have programming support for doing this automatically. It
had to be done by hand, and it was impossible to get it tight. There were tens of thousands of
lines of code, and there were oversights of marking storage all over the place. It was just an
impossible task with the tools that we had at the time. We were about to release to Watcom, and
garbage collection still had lots of bugs and it was not working, and there was no light at the end
of the tunnel. At one point I said, “No. We cannot distribute with this garbage collection. We
have to have a completely different garbage collection system.” So I asked everybody to hold on

Gonnet, p. 78

for a week or something like that. I’m going to write a new garbage collector. It took me longer
than a week, but we got a garbage collector that was working, and it was a novel idea. Yes we
had to fix a few little problems, but there was never an interest in doing research in garbage
collection. Garbage collection had never been my area of research. I never wrote a paper on
such. Actually, an employee of the company wrote a paper on that garbage collection so that the
people in the company could understand how garbage collection was working. That algorithm is
still, as far as I understand, unpublished unless somebody else in the meantime rediscovered it.
It’s not necessarily the companies; it’s just that all of a sudden you need something that you
don’t have, and these things happen typically out of necessity and typically out of pressure
situations.

Finally, the other thing that I said before, I think I want to stress, if we had made a little
contribution here I think it’s probably the most important one. This is thinking about the
scientific computation community at large. It’s the fact of recording the mathematical knowledge
in a form that is accessible to everybody. All the knowledge about integrating functions, for
example, is encapsulated. Let’s take Maple as an example. In the functions in Maple you can
type “integral” of any function and you basically get all these theorems working for you. I think
that this is a real contribution for people that are going to be using mathematics. Instead of
having to go to the library and do an extensive search on how to integrate this particular set of
functions, and probably a very difficult search in the literature or consulting your colleagues or
calling your friends that may know about this and so on, you have that algorithmically available
to you. I think that that’s the big contribution of computer algebra—making the knowledge of
lots of mathematicians that worked for a long time but have put all their results in journals that
are very difficult to extract and to find, putting it at the fingertips of everybody. I think that that’s
one of the most important contributions.

HAIGH: To what extent would Maple automatically select the most appropriate method, and to
what extent would the user themselves still have to know which to ask for?

GONNET: In the case of integration, Maple gives an answer that is, at this point, far superior to
what most mathematicians would do, because Maple has algorithms, in particular the Risch
algorithm, which will determine whether a function does not have an integral in a given setup.
For example, if your function does not have an integral based on trigonometric functions,
exponentials, and logarithms, this algorithm will tell you so. That’s a very difficult answer for
somebody doing it with paper and pencil. If you find an answer, it’s okay; but if you don’t find
an answer, to say “there is no answer in any expression involving these special functions” is a
very difficult thing to do. I don’t think that most people know that there is such an algorithm.
Maybe nowadays it’s more common knowledge, but the algorithm is not so old. It’s an algorithm
of the last twenty five years or so.

HAIGH: That would give rise to another question, which would be the extent to which the needs
of computerized projects like Maple have influenced research priorities within mathematics
among people who might not be directly involved in making software. Are the needs of these
systems having any influence on other people who might be coming up with these new
algorithms or changing their perception of what might be an important area to work on?

GONNET: It’s true that the mathematical thinking is slightly different than the algorithmic
thinking. They are not completely different, but they are slightly different. For example, a
mathematician would normally not be inclined to find a methodology to prove that a certain
function doesn’t have an integral. He or she might want to prove that a certain expression doesn’t

Gonnet, p. 79

have an integral, but will not be inclined to find a methodology to in general find that it doesn’t
have one. By the way, Risch is a mathematician, so in this case maybe a computer algebra
person, but definitely not a system designer. He’s a mathematician more than anything else.

Most of the algorithms for computer algebra and the algorithms that are used have come from a
relatively small set of mathematicians/computer algebra people. I don't think that mathematicians
at large are contributing to computer algebra. I think we have changed mathematics in many
ways. Maybe not mathematical research, but we have changed mathematics in several ways. Just
to give you an example, very early in the history of Maple, I’m talking about mid ‘80s, we
started trying to solve the problems of the American Mathematical Monthly. I subscribe to the
Monthly. You can see it over there. It comes with a section of mathematical problems which
challenges mathematicians across the world. These are typically difficult problems that quite
often have cute solutions. Some people work very hard, and then the best solution is published.
Some problems don’t even have a solution and go unsolved for very long times.

It’s a very special but an active part of some mathematician’s work—solving problems. Some
problems are completely unreachable for Maple. To prove that some space is a Banach Space
was my classical example. Maple doesn’t even understand about those concepts to be able to
prove anything. In the area of summation, asymptotic expansions, limits, and so on, Maple is
quite powerful. It turns out that possibly about one out of ten problems were solved by Maple. So
at some point I started interacting with the editors of the problem section, and they became aware
that there were problems that were very difficult for humans but could be solved automatically.
For a short period of time, they were sending me the problems before publication. Can Maple
solve this problem? Because, if Maple can solve a given problem, clearly it’s not an interesting
problem for the community. I think that after that they got into the notion that there were some
classes of problems which had appeared earlier in the Monthly that were challenging but were no
longer challenging because those could be done automatically. Clearly something that can be
done automatically is not challenging for a mathematician. It’s not challenging for most people,
right?

HAIGH: Do you think that more could have been accomplished if more mathematicians had
been interested in working on this area, or do you think that there’s been sufficient effort devoted
to it within the mathematical community?

GONNET: Mathematics is a very large area. The mathematics that Maple does is a very small
part of all of mathematics, a very, very small part. It is a large part of scientific computation, but
it’s a very small part of mathematics. As I said before, the problem of even getting these
mathematical problems into a context that could be described in (symbolic) computational terms
is very difficult or impossible.

So your question is difficult to answer, and I would say we have had very good cooperation from
mathematicians, but that only a very small number of mathematicians have worked for computer
algebra. That’s okay because only a very, very small part of mathematics can be done by Maple
or by computer algebra systems. It happens to be a very large portion of what scientific
computation is all about, but it’s a very small portion of mathematics as a whole.

One final random comment about the interaction between classical scientific computation and
symbolic algebra. In my courses in scientific computation, I always make a speech, about the
reliability of scientific computation. The reliability of scientific computation is a big topic. Why?
Because typically you write a program, you compute for hours, you get an answer which is

Gonnet, p. 80

typically a number or a set of numbers, but a small result. What guarantee do you have that this
is correct? Well, the guarantee that you have that this is correct is that you have been a good
programmer and that your data is correct and that you didn’t make any mistakes. That’s not a big
guarantee. If you write a database program, you can store data, you can search it, and you can see
whether you find it or not. If you write a payroll program, you can see whether the people come
and complain they got the right salary or they didn’t. In scientific computation if you simulate
some property of some semiconductor, once you get the result, what guarantees do you have that
this result is correct? In particular when it involves hundreds of hours of computing or something
like that. It’s very difficult to prove that these results are correct. Traditional software
engineering practices to prove that your programs are correct basically fail. I think that symbolic
computation has a lot to offer in this area, which has really not been exploited. Scientific
computation will typically work the problem in a particular path and find an answer that is very
difficult to compute. Of course computer algebra cannot do the same because, by nature,
symbolic computation is a slower process. But what people don’t realize is that quite often you
can verify some of the properties of your answer back from the original problem.

Let me put an example of minimizing a function in many variables, which is a very common
problem in lots of engineering problems. Suppose you have a complicated function. You want to
optimize something. You want to find a minimum, maximum, whatever. Suppose you have
hundreds of variables. You are going to run a complicated minimization process which is going
to take a significant amount of computing. So you have an initial definition of a function. You
have a lot of intermediate computation. You finally get a point where that is your minimum. In
computer algebra you could not reproduce the same thing because you are not going to the same
amount of computation, it will just take too long. But, if that point is a minimum, there are some
properties that it has to satisfy. The partial derivative should be very close to zero. The Hessian
should be positive definite, etc. You can now pose a problem in symbolic computation where
typically you are closer to the original definition of the problem, where usually you can verify
the original functions and test them and convince yourself that you have the right scenario and
verify some of the properties of the minimum. If you made a mistake in the computation and you
have the wrong function at some point, they will not verify. I think the bottom line of this of this
point is that I think that computer algebra has a lot to offer to the reliability of scientific
computation, which normally is a serious problem. I think that that aspect has not been explored
to full satisfaction or to full profit of the people that are doing scientific computation.

HAIGH: Perhaps now you would like to talk a little bit about your involvement over the past 10
or 15 years with other companies.

GONNET: I would like to start with Joint Technology Corporation, which later merged with
Aruna PLC in the UK. This is a company that is developing fast relational database engines, and
all the research for the product was started out of a grant at the University of Waterloo. The topic
of the grant was to incorporate or to merge relational database technology and text searching
technology. This is a joint grant held by Frank Tompa, Paul Larson, and myself that started in the
early ‘90s. Out of this project, one of the researchers hired by this grant was Mariano Consens, a
graduate student from the University of Toronto. He was working with me in some aspects that I
would describe as implementing relational databases using text searching algorithms. The
research that we were doing proved to have very interesting results that we thought were very
valuable. We decided to build a company around this research and around these results.

Gonnet, p. 81

The company had a bit of a slow start. We hired a person to start coding a prototype, and for
quite sometime that didn’t go very fast, but at some point in the mid- to late-‘90s we started a
company in Canada that was called Joint Technology Corporation, JTC, and a product was
produced. It’s a very competitive area. Our product is very good, but we are competing against
Oracle, against Sybase, against SQL Server. These are mature products backed by big
companies. We were also hit to some extent by the bubble of the 2000s in that at some point
people were very willing to spend huge amounts of capital in software, but that dried up very
drastically. This is a product at the high end. This is a product that sells for hundreds of
thousands of dollars and you don’t expect to make many sales. You expect to have very few, and
very precious customers.

HAIGH: I saw the names Freedom Intelligence and Aruna on your resume. Are those different
names for the same thing?

GONNET: No. Freedom Intelligence was a marketing name for Joint Technology Corporation.
The name Joint Technology was deemed not appropriate. And I don’t deal with marketing; I let
marketing do their thing. Aruna was a separate company a PLC in the UK. In 2002, Aruna PLC,
and Joint Technology or Freedom Intelligence merged into a single company. The future is still
uncertain for this company, so I cannot say more at this point.

HAIGH: What’s the name of the product?

GONNET: The name of the product is FastPath, and it continues to be what we designed
originally, a relational database which is geared for relatively static data (that is not updated
continuously) and that you want to query in an ad hoc manner, and of course you want to query
efficiently. Data that you add to every night or ever week or every hour, but not data that is
transactional and you update every second. This covers the area of data warehouses, business
intelligence, areas where people have a huge amounts of data, operational data or historical data,
and they want to extract value, information, or make decisions based on this data.

HAIGH: So this isn’t a tool that would plug into a standard database engine like Oracle? It
would be a separate repository of data for reporting purposes?

GONNET: Right.

HAIGH: I would just have two follow-up questions on that then. The first one would be just in
terms of your own personal role within the company, and roughly how much of your energy it’s
taken up over the past decade.

GONNET: This actually touches a bit of Maple, even though it’s relational databases. I managed
to weave my projects together every so often. My role in Joint Technology and Aruna has been
certainly a non-management role. I have been interested in the technology from the beginning,
and I have been part of the driving force behind the technology, but I have never been managing
the company. I have played the role of chairman of the board, but I am not an active officer of
the company, and I was never an active officer of the company.

On the technology side I worked originally, as I said, with a grant in studying the way of
implementing relational databases based text-searching technology. But then later I became very
interested in the query processing that is the way of transforming an SQL query into a plan
(given the primitives that you have you can execute) to get an answer. This is what is normally
called query processing, and query optimization is to select the plan that will execute the fastest,
knowing the speeds of each of the primitives. I had some ideas about this how a query processor

Gonnet, p. 82

should be implemented, and I found it very difficult to transmit it to the team of programmers
that we had at the time. I decided that I was going to write a prototype in Maple.

HAIGH: By “we”, at this point do you mean the research group within Waterloo?

GONNET: No. This was the company in Waterloo. The Joint Technology Corporation in
Waterloo. I started writing a prototype in Maple that would do SQL query processing. I got quite
excited about it. It was really a lot of fun. And the prototype instead of being something that
would show how to do things became a very live prototype, so much that it lasted for the whole
history of the project. Even nowadays, the team that implements the relational database has two
versions of the software: the Maple prototype, and the production version. Of course the Maple
prototype is used every time that they need to make a change or develop new algorithms or
whatever, they are written first in Maple, they are tested. It’s a nicer environment. And then they
are written in C++. It also provides a tremendous amount of reliability because the two systems
are written independently, have independent code bases, and we can verify that the results of one
coincide with the results of the other. So it has provided a huge amount of reliability to the final
software. This is in some sense another case of what I was mentioning before. In this case in a
commercial application that Maple ends up being another way of testing things, not to do the
extensive queries, but to verify that the software that is running for very long periods of time is
correct. It’s a way of witnessing the software. It becomes a software engineering tool.

HAIGH: Am I right in thinking that this represents an evolution in the purpose of your
involvement in this area, from originally producing a relational database that would be optimized
for text retrieval into producing an extremely efficient query optimization system?

GONNET: Correct. This is an evolution of my original interest in algorithms that went into text
searching algorithms that evolve into text searching, making relational databases, or searching
relational databases. At some point the searching of relational databases needed query
processing. By the way, there is a patent in the query processor that I think it’s the most valuable
patent that the company has. The essential part of query processing, the way that we do it, is that
we have this notion of symbolic computation behind it. We are able to transform the queries. For
us, it’s completely natural to transform the queries according to mathematical formulas because
our background is in computer algebra. It’s an area that has worked very nicely.

Web Pearls, I don't think it’s worth describing a lot about Web Pearls. We had a very nice idea
with Web Pearls to produce learning material and testing material that would have a
mathematical engine like Maple behind, and hence have the uniqueness that you can ask a
question that the user may reply in different formats and you can process it mathematically, or
you can generate problems randomly and they all make sense mathematically. Not just
mathematical problems; even physical problems. We developed the software, but somehow at
one point we were ahead of our time. Another problem we found is that high school teachers and
college teachers are not ready to spend any money whatsoever for anything, or just cannot. The
product has failed to fund itself, so I have been funding this company now for years and years
and years. Last year I said, “This is it. I cannot fund it any longer. You either survive on your
own or you don’t.” Now actually they are managing to survive, but I don’t know for how long
they are going to survive. I have invested millions of dollars in this company. In both companies
I actually have invested a significant amount of money. In JTC/Aruna and Web Pearls.

[Tape 6 of 6, side A]

Gonnet, p. 83

HAIGH: Just to step back slightly from all the specific things that we’ve talked about, I wonder
if I could ask you over the course of your professional career, what do you think would be your
biggest regret, either in terms of something that you did or just in terms of the way the world
reacted to something that you wish had gone differently?

GONNET: Well, I don't know if I can say regret. I don't think I have any big regrets. There were
two instances which were unpleasant, and I wish I hadn’t gotten into those. One is the breakup
situation of the Maple company and how it evolved. I wish that I had selected my colleagues
with more care. The second one was that I shouldn’t have had any relations whatsoever with
venture capitalists, because as I said before, there is nothing to be gained. They are all nice
people, all very polite, all smiles. When there is some real money to be gained, they are ruthless.
Those were unpleasant situations. In one case I ended having to go to the courts to get a
settlement of what I thought was right, and the courts favored my side. But that’s never a nice
process; it’s always a very damaging, time-consuming, and time that you end up hating having to
do it. On the other hand, if I had to do it again, would I do it again? Probably I would do it again
because I would say, “Well, I need to be more careful.” Maybe I still didn’t learn the lesson.

Many times people have asked me, “Why did you let Maple get out of your hands? Why did this
happen to you? Why did you let Maple get out of your hands?” The answer is probably that I
never acted as if I owned Maple. I always wanted it to be a collective project. Maybe this is a sad
conclusion that maybe you shouldn’t do that. Wolfram is obviously more successful by having
an iron fist and controlling everything. Actually, Wolfram started in a much more democratic
situation with several colleagues with which he shared part of his company and turned it into a
situation where he owns basically everything and calls all the shots. Maybe I should have done
the same, and maybe Maple would then be competing with Mathematica now or it would be
ahead of Mathematica. I have always had the idea that there was more value in having a group of
colleagues that we would all be working towards a common goal, and I overlooked the fact that
maybe some of those colleagues at some point will turn around and stab me in the back. That’s
about the Maple project.

In the case of Open Text, I don’t have many regrets. Open Text was a good project, a very
satisfactory project from the technical side, a fun project. The new OED and the initial times in
Open Text were good technical times and fun times also. Economically it was not bad. At some
point I owned 37% of Open Text, of course, that ended up being diluted when we got further
investment and so on, but I had a very significant investment in Open Text personally. I regret
having had to battle venture capitalists, but I guess that I am not the only one in the world that
has had those problems.

HAIGH: The more positive reverse of that. As you look back over your career, what would you
say are the one or two achievements that you’re proudest of?

GONNET: That’s a good one. I think I’m very proud of Maple as a whole. I’m very proud of all
the small and big architectural decisions that went into that, and proud even of the mistakes that I
have made.

I think that the prototype of the query processor for SQL was also very, very rewarding. I think
also PAT, the fast text searching for the OED project and later for Open Text was also very
rewarding. The case of PAT, it’s a very peculiar piece of software. I had a graduate student in
Waterloo by the name of Nivio Ziviani. He was from Brazil. Nivio had worked on similar ideas
and was my PhD student while I was working on text searching. He always thought that writing

Gonnet, p. 84

a program that will do text searching would be a very good thing and was always pushing me to
write such software, and I never had the time. One day I was going to a conference in Chile in
South America, and I had to change planes in New York. There was a big storm, and I got
stranded as I arrived very late from Toronto, lost my plane to go to Santiago, was stranded in
New York for 24 hours, didn’t have absolutely anything to do, and actually had to be close to the
airport. I was trying to catch some other flight. It was like you have an empty slate, no luggage,
nothing, just your briefcase, nowhere to go, 24 hours ahead of you, so I decided to start writing
the text searching program. I actually wrote a lot of it that day. That was the way that the text
searching software started. It had a very peculiar start in a hotel near JFK Airport.

HAIGH: Unless you have anything else that you would like to say or any comments on what
your priorities will be for the years to come, then that will be the conclusion.

GONNET: I think I should say a few things about some of my colleagues in this area. As I
mentioned before, several people have been role models for me in this discipline. Cleve Moler, I
consider a friend and a role model. I have a tremendous respect. I think Gene Golub is an
example of a great scientist, and he’s also a role model for me. I think that Don Knuth is also a
role model for me. We mentioned yesterday William (Velvel) Kahan, and I think very highly of
him too. I also think of my colleagues here in Switzerland, in particular Walter Gander has been
extremely helpful and supportive. I also think that the times that I worked with Frank Tompa in
Waterloo were super, and we did great work together. I also think the times that we were with
Keith Geddes before 1994 were really good times, very positive times, and we achieved great
things. Really you never work alone—whenever there is something good happening it’s because
you’re surrounded with good people too. That’s a fact of life.

HAIGH: Thank you very much for taking part in the interview and your time over the last three
days.

GONNET: You’re very welcome. Thank you.

