JGM 23—-JUN=71 11:=233 7340
The Modular Programming System: Processes and Ports

this is the first issue of basic notions and implementation notes
of he MPS project

JGM 23-JUN-~T1 11:33 7340
The Modular Programming System: Processes and Ports

2 JUN 72 9:20PM 0

4 JGM 23-JUN-71 11:33 7340
) The Modular Programming System: Processes and Ports

Processes and Ports: 2
Basic Notions 2a

An atomic process Is an executable instance of a program and

an environment (private data, state information, a stack and
Mconnectlions" to other processes). Separate processes can
communicate control or information or both among themselves.

The primary means of inter—process communication are called
"entry—ports", (non—entry or normal) ports —— hereafter,

"port" means non—entry port. Both control and communication

can be transferred over ports. 2al

Creating a Process 2b

An atomic process can be created by loading a "module",; which
module contains machine code and an initial environment for
the process. A name is also given to the process to
distinguish it from other instances of the same modul e.
Internally, a process consists of three distinct segments [see
the document (deutschydocseg,iwn) for a description of the
software segmentation machinery for the Modular Programming
System (MPS)]. There is a code segment, which Is shared by

) all the incarnations of that module; a data segment, one for
each instance of the module (i.e.y one per process) which
contains the static storage for the process; and a stack
segment which acts as the local variable and procedure call
stack for the process. The phrase "data segment of a process"
and "process" are used Iinterchangeably since there is an
isomorphism between them. 2b1l

ALl the programs running in such a system are (at least
conceptually) processes. When one process causes another to

be created, it is designated as the "owner" of that new

process, 2b2

If something happens to a process which it is not prepared to
handle, control will be given to that process's owner so that

it can attempt to take care of the problem. Any process is

free to create another: hence, there is a "tree" of owners at

any moment in the system. The root of that tree is a process

having no owner which we will call SYSTEM. 2bJ

In order to allow a group of processes to cooperate in
performing some function they must 2b4

(a) be created 2b4da

. (b) be connected so that control and information may be
passed among them, and 2b4b

2 JUN 72 9:20PM 1

JGM 23—-JUN-T71 11333 7340
] The Modular Programming System: Processes and Ports

(c) be "started", one at a time to begin the task which that
"configuration" of processes is to perform. 2bdc

The CREATE Statement: 2c

A process can cause a module to be instantiated as a process
by the CREATE statement: 2cl

[procvar ".] "CREATE" modulename ["AS" processname]; 2cla

This causes incarnations of the named module's code, data and

stack segments to be created. The code segment is shared with

any other instances of thls module. The process?'s data and

stack segments are created and initialized. If no process

name is providedy; the system will generate one (probably some
mystical but unigue number) as the name of the data segment.

The stack segment name will, at least initially, always have

an internally generated, unigque name, 2c2

The process requesting a CREATE has a predeclared, standard
port called its OWNER port, connected to the created process's
START port (also standard in every process) as a result of the
CREATE — see the discussion on starting a process [STARTUP]

) below for more detail on this. Alsoy, if the "procvar." phrase
is presenty, a reference to the created process (i.e.y to its
data segment) will be stored In procvar. 2c3

Each process possessesy; in addition to its CWNEE and START

portsy; a normal port called its FAULT port which is used to
communicate problems encountered in the process to a process

called its "owner" which is responsible for it. That is, the

FAULT port's connection defines who is the owner of a process.

The initial owner is its creator, and the FAULT port in a

newly created process is connected to the OWNER port of its

creator as a side effect of the CREATE statement. 2c4

JOINing Processes 2d

For purposes of explication we will denote a port "a" which

belongs to some process p as pla. Port names are considered

local to the process in which they are declared. Thus p and

qy both processesy may possess ports a and b respectively by

which they are to cooperatel i.e.y pia is to be jolned with

q:b. But it is intended that p and q view their respective

ports as virtual facilities whose connection to some real

facility will be declded by a third process (normally the

owner of one of the processes). 2d1

The means for connecting p:a to gib is the JOIN statement: 2d2

2 JUN 72 9:20PM 2

)

JGM 23—-JUN-T71 11233 7340

The Modular Programming System: Processes and Ports

JOIN pza TO g:ib

This particular statement only specifies that
of the wherabouts of gib Is stored in pia and
opposite. If g:b is to "know" about pia then
necessary to also say

JOIN gq:b TO pia

For conveniencey; "JOIN pia AND g:b" is used
that pia Is to be connected to gib and vice

A port and iIts connection information is called a

the subject process to the object process in which the object

port resides,

Running Processes

Processes run in a completely synchronous manner with exactly
one process running at any given moment., Normally a process
temporarily suspends execution by sending information and
control over a port to the process whose port is attached to
the other end. For convenlence in describing this and similar
slituations we will call the process which is running and in
the act of passing control the "subject" process (and its

ports subject ports) and the process connected to

end of the subject process's port (to whom control will be
passed) the "object" process (his ports are called object
ports). Vhen a process sends control and (possibly)
information across a port it is said to make a "port call"™ on

that virtual facility.

(STARTUP) Starting a Process

A process which has never run is in the "stopped" state. A
stopped process may only become "active" by receiving control
over one of its entry ports, Each process possesses a
standard entry-port called START, and may possess other

entry—-ports if declared at compile time.

The information associated with an entry—-port is

an address within the process where execution is to begin
whenever control arrives over the entry port,; called its

"entry—point",

a message buffer where any message to the entry port is to

be placed,

2d2a
Information
not the
it is
2d2al
to denote
versa. 2d2ala
"path" from
243
2e
the other
2el
21
2f£1
22
2f2a
2f2b

the address of the object to which the entry—port is

2 JUN 72 9:20PNM J

JGM 23—-JUN-T71 11:33 7340
} The Modulasr Programming System2 Processes and Ports

connected (it may be unconnected or connected to either an
entry—-port or a normal port in some process) 2£f2c

An entry—port is declared by a statement in the program of the
form 213

portname: ENTRY PORT ["(messageid ')]; 2£3a

and the special entry—port START need only be declared if the
program wants to accept a message on the START port. If START

is not explicitly declared, it is as if the following

statement were inserted before the first executable program
statement: 2£4

ENTRY PORT START; 2f4a

Basically,; when control reaches a stopped process over an
entry—porty the process's status is changed to "active" and
its program counter (PC) is set to the entry—-point value of
the entry—port, The process will revert to the stopped state
when a "STOP message" statement is executed or the process
attempts to use an entry—port of its own. Indeed, "STOP" is
equivalent to using the entry-port over which control arrived
) most recently. 215

Whenever a process attempts to use an unconnected port (entry
or non—entry); control is sent to that process?s "owner", 216

The owner of a process iIs defined by the connection of that
process's FAULT port. Whenever a process generates a fault

which it is not prepared to handle, a port call on its FAULT

port is simulated by the system. A message which indicates

the cause of the fault is sent over the port to the owner

process, AllL the normal control mechanisms for port calls

are true for the simulated call on the FAULT port.

Naturally, any attempt to disconnect a process?'s FAULT port

will cause an error to be generated in the running process. 2f6a

Assume process ¢ is the owner of process p. Then © can cause

p to become active by a statement of the form 2£7
"RUN" process [': portname] ['(message ')]; 2f7a
EsBe RUN p3 2f7al

If portname is omitted, the process's START entry—port is
assumed, However, the portname may specify either an
entry—port or a normal port in the object process. Only the
) entry—port case will be discussed at this point. 2f7Tb

2 JUN 72 9:20PM 4

JGM 23-JUN-T1 11:33 7340
'} The Modular Programming System: Processes and Ports

note that If the RUN statement is executed after one

create and before any other CREATE's are doney, then it is
equivalent to the owner process issuing the following port

call: 2f7bl

PORT OWNER [*(message')]; 2£7bla

Assume that ¢ executes the statement
RUN pze
where e is an entry—-port of p, and p 1Is stopped. Then, c Is
suspended and p Is made active with execution commencing at
e's entry polnt, 2£8

If RUN ple is executed but p is not in the stopped state, the
following occurs: 219

before p is made active, its RECENT'EP word is copied into
SAVED'"RECENT (see PORTCONTROL) and the connection
information in the entry port is copled into SAVED'CNCTN. 2f9a

p's base registers are loadedy, and p begins execution at the
point specified by the entry—-point value associated with the
) entry port, The previous saved value of PC is undisturbed. 2£f9b

Saving RECENT'"EP and the connection information for the entry

port over which control arrived is done to allow recursive use

of a process. Copies of these specific cells are made by the

system because they are the only ones which are overwritten in

the process of entry port entry. All other information in the
process's data segment can be pushed down by the process

itself once it regalns control using the statement: 2£10

"PUSH" "ENVIRONMENT"; 2f10a

This statement makes a copy of the process's current
environment (i.e.; its data segment) onto its stack: this
includes the stored PC—-value and base registers. The data
segment is then linked to this copy via a fixed cell (OLD'ENV)
in the data segment and the stack base value in the process is
updated to point past the end of the data segment copy in the
stack segment,. If the PUSH ENVIRONMENT statement is done
before any port calls, the PC-value saved with the copied
environment is the one which would have been used had control
arrived over a normal port. The new environment is then a
copy of the previous (in facty, it is the previous environment
—— the chunk on the stack is the copy) and all of the
process's nelghbour processes are always connected to Iits
current environment. 2£11

Later p may execute a "POP ENVIRONMENT" statement — which

2 JUN 72 9:20PM 5

JGM 23-JUN-71 11:33 7340

'\) The Modular Programming System: Processes and Ports

essentially reverses a PUSH ENVIRONMENT — and then leave via
an entry—port, Making a port call on an entry port does the
following:

RECENT ' EPSCONNECTION . SAVED'CONNECTION;
RECENT "EP . SAVED'RECENT;

the actions of a normal port call (see the sequence NN1-NN5
below)

This assures that the process reverts to the state which
existed prior to control arrival over an entry—-port.

Using Normal Ports

Messages Iin Ports

Po

2 JUN

Each port in a process possesses a message buffer which may
contain either the null message (nullmsg) or some valid
message. The buffer's contents can be moved to a variable,
or simply destroyed by the following statement:

[variable *.] "EMPTY" portname ;

If the optional phrase is not present,; the message buffer
for the iort is set to contain the null message. If the
message buffer for a port is empty (i.e.y contains the null
message) and the process attempts to empty that port, an
error results, This error can be handled by appending an
"error phrase" to the EMPTY statement { see error'phrases).

rt Calls:

Normally, a message is only put into a port when control is
passed from the sender to the receiver over that pathe. A
process can send control and (optionally) a message over a
port using a statement of the form:

[lhs '.] "PORT" portname ['(message"')];

Executing such a statement will cause the following sequence
of actions:

(NN1) the "state" of the subject process is saved in its
static environment or data segment; the portion of the
state which is saved includes the value of the PC, and the
stack pointer and local variable or frame pointer if the
process has theme

72 9:20PM 6

2£12
2f12a

2f12b

2fl2c

2£13
2ag

2gl

2gla

2glal

2glb

2g2

2z2a

2g2al

2g2b

2g2bl

JGM 23-JUN-71 11:33 7340
) The Modular Programming System: Processes and Ports

(NN2) The object port is made to point to the subject
port; this is called railroad switching and is explained
below. 2g2b2

(NN3) The given messagey, if presenty, is placed in the

object process?s message buffer; if no message ls present,

the null message 1s placed in the object port's message

buffer, 2g2b3

(NN4) The address of the object process's data segment Iis
loaded into a base register from the object port. 2g2b4

{NN5) The object process's stack and frame pointers,; the
base address of its code segment, and any other regquired
base registers are loaded from its data segment, and the
PC value is used to start the process in execution: 2g2b5

(a) The PC may be valid and point somewhere in the code
segment for the ob ject process: in this case the process
simply resumes execution. 2g2b5a

{b)The PC may be the address of a system routine which
initiates the signalling of "“"control faults": a process
) which is in state "stopped" has this address as its PC
value, For a complete description of the result of
signalling a coantrol fault see the section SICGNALS. 2g2b5b

(NN6) When control comes back to the subject process (by

the execution of this same sequence of actions on the

ob ject process side), the message buffer contents may be

stored in the "Lhs" variable, if present. If it is

present but the port's message buffer contains the null

messagey a "nomessage" signal will be generated. See the
description of the EMPTY statement below for more detail

of this, 2g22b6

Control normally returns to a process over the same path by

which it left, It mayy, however, return over a different

path; the process may determine over which path control

returned by executing the system function RECENT'"PORT()

which returns the address of the port concerned as its

result. 2g2c

The object port is set to point at the subject port in setp

NN2 so that control can later return over that path from the

ob ject process, This switching is necessary because many

ports may connect to a single port and control can only

return from that single port to exactly one of the ports

connected to it, The one from which It gained control most
recently is the obvious choice, 2g2d

2 JUN 72 9:20PM 7

JGM 23-JUN-T71 11:33 7340
) The Modular Programming System: Processes and Ports

It is not necessary to take the message from a port when

control arrives over the port. The contents of a port's

message buffer can be removed and thae null message put into

the buffer by a statement such as 2ge

[lhs '.] "EMPTY" portname; 2gel
If the lhs is not present, the null message is simply

written into portname’s message buffer (specified as
portname$Message in MPL(A)). If the lhs is present, this

statement is equivalent to 2g2f
I¥ portnameSMessage # NullMsg % % 2g2f1
THEN 2g2tla
BEGIN 2gl2fial

lhs « portname$SMessage; 2g2flala
portname$Message « NullMsg; 2g2flalb

END 2g2fla2

ELSE SIGNAL NoMessage; % see section SIGNAL % 2gltlb

A "CATCH—-phrase" may be attached to the EMPTY statement to
field any possible generated NoMessage signal (see SIGNALS). 2g2g

) If a port; by is considered bidirectional, it can be used by
writing 222h
in - PORT blout); 2g2hl

Assuming that a message returns along with control over b

after the port cally, the assignment operator will simply

move the received message into the variable in. This is
equivalent to 2g21i

PORT bl(out); in <« EMNMPTY b3 2g2il

As mentioned previously, a CATCH-phrase may be appended to a
port call statement to handle the case when the null message
is unexpectedly received. 2g2j

Control may also enter a process over a normal port from an
unconnected parent process by means of the RUN statement.
Except for the fact that the connection information in a
port, b, is unchanged by RUN pib, the effect is exactly as
if control had returned to p across the port b from the
ob ject process to which b 1s connected, This provides a
means of jolting processes to lLife after port or control
faults as well as allowing the creator process to intercede
in a created configuration of processes. If a message is

) supplied with the RUN statement; e.g.y

RUN p:a (message);

2 JUN 72 9:20PM 8

JGM 23—JUN-71 11:33 7340
The Modular Programming System: Processes and Ports

the message is put into a's message buffer as if it were
being received over the port,

Ify in a configuration some of the ports on various
processes are not needed for a specific applicationy they
may be specified to be "ignored"., An ignored port is one
which has been JOINed to itself. Thus,; when a port call is
made on one, the subject process is also the object process
and resumes without control ever leaving. Any messages sent
over an ignored port, therefore, will appear in its own
message buffer (this last Ils of no special importance: it is
simply what will happen).

(SIGNALS) Simple Signal Phrases and Actions

A signal can be generated by a SIGNAL statement Iin a
procedures

"SIGNAL" [code] ["(paramlist?)];

ory by the occurrence of events such as machine traps (e .g.
arithmetic overflow).

Once a signal has been generatedy; no matter by what means,
some action musi be taken by some program before normal
control can resume, The main problems with signals concern
who is eligible to "catch" a signal and what he may do when
given control,

A signal is first propagated back through the procedure call
hierarchy in the running process in which the signal was
generated. The first procedure encountered in this
backwards search which indicates its willingness to catch
the signal is given control.

A procedure declares itself a candidate signal—-catcher by
providing a CATCH-phrase (or sequence of CATCH—-phrases)
which will inspect a generated signal when requested during
the backwards scan through the procedure call hierarchy and
either accept the signal or reject it, Re jecting it will
cause the backwards scan to continue; accepting it allows
the CATCH—-phrase to take some simple actiony, after which the
normal flow of control will resume in the procedure
containing the CATCH-phrase,

The syntax of a CATCH-phrase 1is

catchphrase = "CATCH" [lhs] '(S$(caserel ': erroraction
ol LD 5

2 JUN 72 9:20PM 9

2g2k

2g2l

2h

2hl

2hla

2h2

2h3

2hda

2h3b

2hdbl

2h3bla

: JGM 23-JUN-T71 11:33 7340
) The Modular Programming System: Processes and Poris

error actions will be described shortly; caserel means

what it normally does in NMPL(A)y, except that the value

being compared in each binary relation (caserel) is the

signal value. If the optional lhs is presenty, the value

of the signal is assigned to 1it. 2hJdb2

A CATCH-phrase is "provided" as a potential signal catcher
either by the execution of an ENABLE statement or by
appending the phrase to a statement [and to individual

operators in some later version] 2nhdc
The ENABLE statement has the syntax: 2hdd
[Llabel "z] "ENABLE" (Labelid / catchphrase); 2h3d1

[can an ENABLE statement have a catch phrase attached to
it?] 2hddla

The CATCH-phrase enabled is either the one appended to the
ENABLE clause or the CATCH—phrase in another ENABLE
statement identified by the labelid, When an ENABLE
statement is executed during normal execution, the address
of the CATCH-phrase is pushed onto a (linked) "CATCH-stack"
) associated with that incarnation of the procedure., If the
CATCH—-phrase is already enabled (and therefore already has
an entry in the catch-stack)y, it is first removed from its
previous position before being pushed onto the top of the
stack. The catch—-phrase is then a possible signal catcher
until control returns from that incarnation of its
procedurey, or until a CANCEL statement causes it to be
removed from the catch—stack (the description of CANCEL
follows). 2hJde

A catch—phrase attached to some { non—CATCH) statement is a
potential signal catcher only during the execution of the
statement: it is automatically ENABLEd at the start of that
statement and CANCELed on its successful completion, 2hdf

Simple Catcher Determination and Actions 21
A catch—-phrase can Llist a set of specific codes,y, "classes" of
codes or "all codes" on which it is prepared to act. The
actions which it may take on a given error or class of errors
is one of the following: 2i1

(a) an arbitrary statement. 2ila

(b) VALUE expression: this action takes the value of the
J expression as the value of the called procedure and

2 JUN 72 9:20PM 10

JGM 23-JUN-T71 11233 7340
) The Modular Programming System: Processes and Ports

execution of the receiver will continue in the same manner
as it would on a normal return from the called procedure, 2ilb

In both cases (a) and (b)), before the error action is
executedy the call stack is cut back to the same point it
would have been at on- a normal return to the receiver, 2ilbl

(c) "INVOKE" procedure call: in this casey, the call stack
remains as it was when the error was generated, and the
procedure in the error action is called "almost as if" it

had been called by the error generator, 2ilc
Signals Between Processes 2§
Signal Messages across Porits 21

No SIGNAL facilities are provided for processes talking to
one another across ports (with the exception of the
OWNER/FAULT paths). However; since errors can occur in
attempting to use a port (connection, or control fault) a
catch—phrase can be appended to a port call to field such
conditions within the running process. Once generated, such

a signal looks like any other and could be fielded by any
) pocedures in the call hierarchy of the running process. 2jla
The FAULT—-OWNER Chain as a Signal Path 2j2

When any signal is not fielded by a process itself, it is
propogated up the FAULT/OWNER chain in an attempt to find

someone to accept it. In each process, the signal passes

through the same stages that any signal would. When it is

finally fielded, that process's OWNER port is JOINed to the

FAULT port of the process at which the signal originated. 2j2a

This control scheme is closely analogous to the scheme
within a process, 2j2b

2 JUN 72 9:20PM i

JGM 23-JUN-71 11:33 7340
] The Modular Programming System: Processes and Ports
(PORTCONTROL) Port Control: Code and Semantics

Layout of The Data Segment of a Process
DSEG:SEG'"NUMBERS: XWD dsegn,csegn
LINK'CODE: XWD Linkbasejy,codebase
LOCPTR: XWD 0y RETLOC
RETLOC: MOVE Cy LINK'CODE

or MOVE Cynonxmem
MOVS LNK,C
JRSTF a=-2(S)
PC: X¥D Oypctvalue
RECENT'PORT: XWD 0,0 sptr to most recent
entry—port over which control arrived
) SAVED'RECENT = X¥D 0,0 srecent’port saved here
¥ the name of this process:
MYNAME: ASCII ' process name'
ASCII "process name'
FAMILY: WD son'list,brother'link
son'list=0 means that this process has no son processes. Ix

brother'link=0, this is the last process on its parent?'s son
List. Both these pointers refer to the beginning of data

segments,
i the process's start port (an entry port)

START: XWD STARTytrap'"port

trap'port is a "port" in the system which is used to field

port faults. Any unconnec ted port is, in reality,

connnected to the trap'port.
XWD 0,0 imessage word for the
START port
)
XWD 0, DSEG

2 JUN 72 9:20PM 12

Jal

Ja2

Jad

Jad

Jada

Jas

Jab

Ja’7

JaB

Jad

Jall

Jall

Jal2

Jald

Jalda

Jal4d

Jals

JalSa

Jale

Jal?7

JGM 23—-JUN-T71 11:33 7340
)] The Modular Programming System: Processes and Ports

JRST 0, EPENTER 3als

EPENTER is a system routine which handles control arrival

over an entry port. JalBa
XWD Dyentry®'point 3al9

] the process's fault port Ja20
(FAULTPORT) Jaz2l
FAULT: XWD FAULTj,object'port dJa22

Ob ject'port represents a pointer to the port to which this

port is connected. Jalla
XWD 0,0 sport?s message buffer Jald
XWD 0, DSEG Ja24
JRST aPC(D) Ja2s
) This word distinguishes a normal port from an entry port.

The address which it contains is used in the port call
mechanism, Cf. (PORTCALL). Ja25a
* storage for the registers Jale
REG'BASE:FRAME: XWD Dy frame'ptr 3al?
STK*PTR: XWD max'stack;stack?ptr Jall

Any other base registers which the process needs to have
loaded are placed following STK'PTR Ja28a

The process to which this process's fault port is connected is
defined as the owner of this process, and is assuwmed

responsible for him. Ja29

Code for: [var "«] "PORT" port ['"(message’")]; where "port" is a

normal port db
In-line code: 3bl
HRLZI Ms 400000 3 the null message Jdbla
or MOVE Bymessage(D) ;if the optional
(message) phrase is present Jdblal
: MOVE " Byport(D) Jdblb

2 JUN 72 9:20PM 13

)

port layout: (see also examples in dseg layout above, esp.
FAULTPORT) 3b3

JGM 23-JUN-71 11233 7340

The Modular Programming System: Processes and Ports

JSP Pyportcall 3blc
global code: Idb2

portcall: MOV EM SySTK'"PTR(D) ;save stack polinter

word Jbla
MOVEM Fe FRAME(D) ssave current frame

pointer Jdb2p

send'no?stk: MOVEM P,PC(D) isave pc db2c
MOVSM By(B) ; railroad switching Jb2d
MOVE Dydseg?'ptre(B) j;get pointer to

ob ject port's dseg Jdb2e
MOVE CdRETLOC{D) ;load codebase and

linkbase and check for not—in—memory trap Jdb21t
JRST STARTUP(B) sresume the object

process dblg

port: XWD port,object’port Jdb3da

If the port is not connected, object'port is replaced by a

a pointer to a "fake" system port called pf'port which

will cause control to enter a port—fault error routine

using the normal port call machinery to get there. Jdbdal

The port may also be specified as an ignored port: any
uses of it act as null operations. This is handled by
Joining the port to itself: then any use of the port

simply causes the process which is shutting down to be

immediately resumed. Jdbda
ms g WORD smessage word Jbdb
dseg'ptr: XWD 0y DSEG Jdbdc

note that this word must be set up for each port in the

dseg whenever a copy of the process is created. Jdb3cl
startup: JRST @PC{ D) 3if process has no base
registers at all 3b3d

2 JUN 72 9:20PM 14

JGM 23—-JUN-T71 11:33 7340
) The Nodular Programming System: Processes and Ports

Alternates, depending on the process and the port,; are the

following: Ibddl
Normal port,; process with base registers: Jdblddla
ZWD load"base+i 3b3dlal

where load'base is a global routine, If the process
only has stack and frame base registers,; load?baset2

is used, for instance. Jdbddlala
entry port, process with or without base registers: Jdbiddlb
JRST epenterti 3bddlbl

this is used when the port is an entry port, It
also performs the function of load®baseti.
epentert(is used when the process has no base

registers to be loaded. Jdbddibla
entry'point:z XWD Oyentry'point?value s only
present for an entry port. dbJe
) The support code for port call involves a system routine called

load'base above, If the process needs to have registers i
through 17 restored before it resumes execution, each normal
port will have dc

JRST load'"base+i Jdel

in its startup word. If the process has no base registers other
than its stack pointer and frame pointers, it will use
load'baset16; Jd

In generaly, if the process requires i base registers, they must
be registers 17jeespl7—itl. These registers are laid out in the
process's DSEG in the order FySyldpeseyl7-itl, and only as many
words as are necessary need be reserved in the DSEG. Also,
since this reglon is variable, it is the last part of the DSEG
which must be present for every process; everything in front of

it is fixed in size. Je

The routine load'base has the following form 2 Jf
load'baseti: MOVE i yREG"BASE+17-1(D) ; load register i If1

ese Jf2

) coe 3£3

2 JUN 72 9:20PM 15

JGM 23-JUN-T71 11:33 7340
") The Modular Programming System: Processes and Ports

MOVE S¢STK*"PTR(D) s load'baset*l6 3f4
MOVE Fy FRAME(D) 7 the last bhase register J£5
JRST 4, @PC(D) 3 resume the process 316

(EPENTER) Global code for entering a process via one of its

entry ports, Jg
The form of EP'LOAD is the following: Jgi
EP'LOAD: MOVE 0y,REG" BASE+17 Jdgla

saese Jglb

ceses Jglc

MOVE SySTK'"PTR(D) sload register 16 Jgld

MOVE FeFRAME(D) sload register 17 Jgle

MOVE 0,8 isave aside RecentEp Jgl £

) EXCH 0,RECENT'EP(D) Jalg
MOVEM 04,SAVED'RECENT(D) Jdglh

MOVE 0,0(8) ;save entry—-port connection Jgli

MOVEM 03SAVED'CNCTN(D) Jglj

JRST PENTRY'PCINT(B); start the process Jglk

A process may pass a reference to a port (hereafter called a

"pef port" a la ALGOL 68) to a procedure (internal or external)

which will perform port calls for it. Since the port indicates

by its dseg'ptr to which process it belongs, information must

be saved in the dseg when the port is used so that control can

get back to the procedure correctly. Since the process's pc is

saved on the stack by a procedure call, the procedure can save

its pc in the normal PC slot of the calling process's dseg when

it makes a port call for the process. Jh

The process may also use ref port variables when doing port
calls itself, If the ref port yields a port which belongs to
the process attempting to use it, there is no problem: only one
thread of control existsy; and the process's pc can be saved in
the normal way. If, however, the ref port yields a port which
) does not belong to the process attempting to use it, an error
occurs, Ji

2 JUN 72 9:20PM 16

JGM 23—-JUN-T71 11333 7340
) The Modular Programming System: Processes and Ports

A port is inextricably tied to some dseg (and therefore to a
specific instance of a particular process) and using it from a

di fferent process is inconsistent with that notion since it

would be necessary to somehow store knowledge of two separate
processes with the port as well as two message buffers, and

two different connection words —— in short two distinct ports

under the same roof. Jil

The effect of such usage could be obtained by allowing port
variables: a process which wanted a copy of some port to which

it had access (by means of a ref port variable) could then

"copy" the other port into the variable port, Only the

connection information would actually be copied into the port
variable; its message buffer, startup cell, and most

importantly, its dseg?ptr would be constant just as for a
non-variable port in the same process, Ji2

The following code handles port calls from within an external
procedure., It saves the linkage and code bases (packed into one
word just Llike LINKY'CODE in the DSEG) on the stack and retrieves

them from the stack when it regains control after a port call. d.j

) There are two possible forms of the code: 3j1

The first uses only in—-line code. Jjla
ExtPortCall:MOVE By LOCPTR(LNK) ssave descriptor

for LINK'YCODE Jjlal

PUSH S,B Jjla2

MOVE Mymessagel(D) snormal port call code Jdjlad

MOVE Byport(D) Jdjla4d

JSp Py XPortCall djlasS

XPortCall is used instead of PortCall or EPCall because
the procedure may not assume that it knows which type it

is using, and XPortCall will have to check. dJjlaSa
POP S,C ; get linkbasej,codebase word Jdjlab

MOVS LNK,C s and put linkbase into
LNK 3jla?

The alternative has both in-line code and some global code,
and is probably the better choice of the two, Jj2

in—-line code Jj2a

2 JUN 72 9:20PM 17

)

JGN 23-JUN-T1 11:33 7340

The Modular Programming System: Processes and Ports

MOVE Byport(D)

PUSHJ SsEXT* PORT'"CALL sroutine to handle such
port usage

global code:

EXT'PORT'CALL: MOVE Py LOCPTR(LNK)
PUSH S,P s save his PC value
JSP Py SENDX
POP S5,C 3 restore linkbase and codebase
MOVS LNK,C
POPJ S, s and let the

external procedure proceed

The same global routines are used by any port call which uses a
ref port since its type cannot be assumed by the Iin—-line code
and since the error of using a port in a process which does not
own it must be handled, However, the surrounding in—line code
which saves and restores the LNK and C registers is only needed
when the sender is an external procedure,

A message consists of one word of information, One special
value, 400000000000, is designated as the "null message". Thus,
a statement such as

PORT port{(VariableMessage);
may send the null message If VariableMessage has it as its
value, If a process attempts to read the message Iin a port B,
it will be told that the port is empty i1ff it contains the null
message. Indeed, whenever a message is read from H, its buffer
is marked as containing the null message so that further

attempts to read the contents of the buffer will meet with
failure.

The code for
[variable ',] "ENPTY" port [signalphrase];
is the following:
HRLZI M, 400000 7 M « 400000000000

CAMNE MyportSmsg(D) : null msg in port?

2 JUN 72 9:20PN 18

Jj2al

Ji2a2

Jj2b
Jd.j2bnl
3,202
33203
3.j2b4

Jdi2b5

Jj2bb6

Ik

3t

atl

Jol

Jo2

e JGM 23—-JUN-71 11:33 7340
) The Modular Programming System: Processes and Ports

JRST movemessagel(C) 7 no — contains a valid msg

{signalphrase code)»

movemessage: EXCH

[MOVENM
',] phrase used

2 JUN 72 9:20PM

MyportSmsg(D)

Msvariable(D)] -

19

sjmark empty and get msg

present if [variable

Jod

Jo4d

JoS

Job

RWW 23-JUN-71 13:19 7343
A Felt Need for a Seminar Series

)

Seminars 1

An ilmportant part of a persons augmentation system is what he

knows, There is a great deal golng on In various corners of

this project which it would probably be useful for a wider

group to understand Iin the Interest of personal development,

project integration and greater flexibility of task

allocation. la

I do not know who should be responsible for getting a seminar
series started but it seems loglically to belong to one of the
three coordinators. Lb

From my experience in having such a seminar series running at

Shell the cost in preparation is more than repaid in the

increase in knowledge and understanding of the group and it

usually helps the person glving the seminar in organizing his
thoughts and in obtaining useful feedback from the rest of the

group. 1c

The List of subjects needing discussion is long. [would

recommend we start with a series on Tenex before Ken leaves. 1d
Possible Topics le
) Tenex Ken Don A. Don W. John lel
NLS Bill Charles Mimi le2
Modular programming system Bill led
Property list stuff Bill led
Output Processor Bruce VWalter leS
Journal BIill Harvey leb
DEX Harvey Doug le7
Collector-sorter Bill le8
Aspects of the hardware Roger ED others le9
Network Protocols John Dick lel0
Treemeta Don lell

L 10 Bill lel2

RWW 23—-JUN-T71 13:19 7343
A Felt Need for a Seminar Series

Baseline system Jim Bruce leld
Catalog system Dick Jim leld
ETC lelsS

RWW 23-JUN=T71 13:19 7343
A Felt Need for a Seminar Series

(J7343) 23-JUN=-T71 13:19; { Expedite) Title: Author(s): Richard W.
Vatson/RWW; Distribution? Charles H. Irby, William H. Paxton, Bruce L.
Parsley, William S. Duvally, Mimi S. Church, John T. Melvin, Kenneth E.
Victor, Walter L. Bass, Ed K. Van De Riet, Douglas C. Engelbart, James
Ce. Norton, Harvey G. Lehtmany J. D. Hopper, Don C. Wallace, Kenneth E.
Victor/CHI WHP BLP WSD MSC JTM KEV WLE EKY DCE JCN HGL JDH DCW KEV;
Sub—Collections: ARC; Clerk: RWW;

WSD 24-JUN-71 21:58 7344
More on NLS Error Messages

Further Note on NLS Errors.

In re—organising somm of the lower level file routines, I
noticed tht some error messages were deleted, specifically
those in openpc.

Seemigly; they were deleted in favor of ones produced by Lower
Level routines.

I personally feel that error messages emitted at low levels
should be overidden at higher levels, if the routines at
higher levels have a better awareness of te meaning of the
error In the user context,.

Such is the case here, where '"No Such Version' means much less
to the user than the message "PC does not exist',

I would like to restore the error messages to openpc, and
subsequently adopt the philosophy of emitting error messages
which are meaningful in the users context wherever poissible.

la

1b

le

1d

le

WSD 24—JUN-T1 21:58 7344
More on NLS Error Messages

(J7344) 24-JUN-T71 21:58; Title: Author(s): William S. Duvall/WSD;
Distribution: Mimi S. Church, Charles H. Irby, Bruce L, Parsley, Walter
L. Bass, William H, Paxton/MSC CHI BLP WLB WHP; Sub—Collections: ARC;
Clerk: WSD;

WSD 28—-JUN-=-T71 15:01 7345
Functional Description Of Groups in the Ildentification System

This is derived largely from (6215,)

WSD 28—-JUN=-71 15:01 7345
Funct ional Description Of Groups in the Identification System

Group Identification 1
General Description la

The identification for a group is identical in form to that
for a person,. lal

Syntax: L SLD lala

At the Llevel of the user typing Iin a identification

Listy; there is normally no distinction. lalb
There isy, however, one exception, lalc
A group may be referenced in one of three manners, lalcl
Expanded References, lalcla

When a group identification is being used as a
substitute for the identifications of the

individuals belonging to that group, the

reference is said to be expanded. lalclal

This is indicated syntactally by preceding the
identification by the chracter "t, e.g. !'DSSIG
is an expanded reference to the DSSIG group. lalcla2

Un—expanded references lalclb

There may be instances where the desire is to
reference the group itself as an entity, rather ’
than the members of the group. lalclbl

This is an un—expanded reference, and is
indicated by preceding the identification with
the character "6, e.g. EDSSIG. lalclb2

The character "6 is chosen due to a
relatively weak similarity of this function
to the REF variables in L10, lalclibla

Normal (Default) References lalclce

When the identification of a group is used

aloney e.z. DSSIG; it will be expanded or not
depending on the information contained in the
identification record for the group. lalclcl

WSD 28—-JUN-71 15:01 7345
Functional Description Of Groups Iin the Identification System

Group references should normally be made in
this manner, lalclic2

Modification to the I[dentification Record Format b
Syntax: '(<identification)> ') ["Expand"] "Group ("
{identification list> ') SNP <Proper name> <affilitaion>

{Mailing address> EOL EOL
{Comments> ibl

The optional "Expand" parameter specifles whether normal
references to the group are treated as expanded or
un—expanded references. 1lb2

The default setting will be to expand. Ib2a

The identification list following the word "Group!

describes the membership of the group. Lb3
Note that the identification list may include: Lbla
(1) Identifications of people lLblal

(2) Identifications of other groups (as normal,
expanded or un—expanded references) 1b3a2

An expanded reference to another group is expanded
if and only if the reference to he current group
was expanded, IbJala

(3) Comments 1b3ad

The proper name is the full name of the group,; e.g.
Dialogue Support System Interest Group. 1b4

The address fleld contains a mailing address for
un—expanded references to the group. Lb5

This would presumably be a secretary, coordinator, etc. LbSa

The identification of some user may be used in lieu of
an actual address. 1b5b

Example 1b6
(DSSIG) Expand Group (wsd msc dce chi hgl jcn blp whp

rww) Dialogue Support System Interest Group ARC
WSD

WSD 28-JUN-71 15:01 7345
Functional Description Of Groups in the Identification System

User: JOURNAL;
Sub—-Collections: ARC;
Delivery: Hard Copy; 1bba

Changes to Identification Lists lc

The only change which the inclusion of group

identificatlions in identification lists brings is the

inclusion of the expanded and un—expanded reference

operators, '? and '8, lcl

As expounded elsewhere,; these characters signify that

references to a group are to be expanded or

un—expanded(regardless of the expand parameter Iin the group
identification record). 1c2

The presence of these characters preceding a pesonal
identification is an error condition, and ignored. lcd

The identification of the individual in this case is
included in the identificaton list, lcda

Examples: EDSSIG ENICIG tDSSIG tNICIG ic4

WSD 28—-JUN=T71 15:01 7345
Functional Description Of Groups in the Identification System

(J7345) 28-JUN—-T71 15:013 (Expedite) Title: Author(s): William S.
Duvall/WSD; Distribution: Marilyn F. Auerbachy Mimi S. Churchy Charles
He Irby, Harvey G. Lehtman, Richard W. Watson/MFA MSC CHI HGL RWW;
Keywords: Identification Groups; Sub—Collections: ARC; Clerk: WSD;

WSD 28—-JUN-71 15:07 7346
Syntax and Semantics of TNLS ldentification Sub—-mode

See (7345,) for information relating to Group Identification

WSD 28—-JUN—-71 15:07 7346
Syntax and Semantics of TNLS Identification Sub—mode

ITdentification NLS Submode

This section describes the syntax and semantics of the
commands in the TNLS identification submode.

The syntax and semantics of commands in the DNLS submode
will presumably be similar.

General Description

The Identification Submode may be entered either directly
from the TNLS command level, or——for the purpose of
entering a new user——from entering an ldentification Llist
within some nls command.

Some of the information in an identification record should
not be changed by ordinary users,

Consequently, two levels of protection are allowed.
(1) Enabled NLS user.
An enable/disable mechanism will be provided in
NLS whereby a user may galn access to certain
commands by an enable command,
In order to enable ones status, the appropriate
fields must be set in his identification
record,
(2) Password access commands.
Certain commands, such as delete user, are
sufficiently dangerous that a user must be enabled

and provide a password in order to execute them.

Three basic capabilities will be allowed by the
identification submode,

(1) Enter New Identification.
(2) Modify existing identification
(3) Delete Identification.
When entering the identification submode from TNLS; elther

of the three command sets may be invoked by typing
"E[nter], "M[odify] or "D[elete].

la

lLal

1b

lbl

1b2

1b2a

1b2al

Ilb2ala

Lb2alal

Lb2a2

ibZala

1b3

1b3a

1b3b

1b3c

1b4

WSD 28=JUN=T71 15:07 7346

Syntax and Semantics of TNLS Identification Sub—-mode

If the submode is entered from the lidentification list

level,

however, the user is automatically placed into the

enter mode followed by the modify mode,

After
value

the modify mode is exited, the system returns a
equal to the identification of the new user, and

control returns to the identification list parser.

Commands

Identification Sub—mode Entry

(a) From TNLS

E[xecute] ID[entification Sub-mode | CA,

This command will cause te user to be plaed in the
I[.D Sub-mode.

TNLS will respond with the hearald character ">,

The user may then proceed with any legal 1.D.
Submode commands.

After each command 1s successfully completed. and
after all CD'"s and errors,; he will return to this
Level until he executes a Quit command.

(b) From an Identification List

Enter

A CR typed in an identifition Llist causes entry to
the Identification Submode.

TNLS responds to the CR as though it were the 'E for
the Enter command.

WVhen the Enter Command has been completed, the entry
is typed to the user, and the Modify command is
entered.

When the Modify has been completed, the string value
of the new user is returned to the identification
List parser.

Any errors or command deletes from this level cause a
null string to be returned to the identification list

parser.

Command.

1b5S

1bb

ic

icl

lcla

lclal

lclala

ilclalb

lclalc

lclald

ilclib

Lclibl

lelb2

lelbd

Lclb4

leclbS

Lc2

WSD 28-JUN—-T71 15:07

Syntax and Semantics of TNLS Identification Sub—mode

7346

Syntax: E[nter Identification for] (I[ndividual] / CA

[Individual] / Gl roup]) [

Name:] LITERAL CA [

Address:] (LITERAL /IDENT) CA [
Affiliation:] LITERAL CA [

(if Group) Membership:] IDENTLIST CA [

Identification:] (LITERAL CA/ CA) lc2a
Semantics: ic2b
E[nter Identificationn for] (I[ndividual] / CA
[Individual] /G[roup]) le2bl
This specifies whether the new identiication is to
be for an individual or groupe. lc2bla
[CR Name:] LITERAL CA 1c2b2
This is either the full name of the individual, or
the Proper nnme name of the group. lc2b2a
In the case of individuals, the identification
file is searched for entries with the same last
name, If any are found, the corresponding entries
are typed to the user, and he he is asked to
respond yes or no as to whether that person is the
intended entry. lcZ2b2b
In the event of an affirmative response; the
command is terminated. lc2h2bl
For Groups, a slightly more complicated search is
doney where the proper names of groups in the
identification file are compared to the proper
name offered, and sultable interaction takes place
if they are similar, lcZ2b2c
[CR Address:] (LITERAL/IDENT) CA 1c2b3
This is the mailing address for the entry. lc2b3a
In the case of indals, it must be a normal,
textual mailng address. le2b3db
For Groupsy it may either be a normal mailing
addressy, or an IDENT of some recognised user or
group. lec2b3c

If it is the ident of a group, it may be

WSD 28B—-JUN-71 15:07 7346

Syntax and Semantics of TNLS Identification Sub—mode

preceded by an expanded or un—expanded
reference command, or it may be a normal
reference.

References to other groups as mailing addresses
are handled in the obvious manner.

If an illegal IDENT is suppliedy, the user is asked

to re—enter the field,
[CR Affiliation:] LITERAL CA

This is the Professional affiliation of the new
user; e.g. ARC or UCLA,

If the LITERAL is empty,; then an affiliation of
"INDEPENDENT" is used.,

For Groupsy the affiliation should indicate the
Professional entity with which that groups
activities are basedy; e.g. ARC, NIC, etc.

[CR Membership:] IDENTLIST CA
This field is significant only for Groups.

It is the list of users/groups who make up the
initial membership of the group.

It will be parsed as a normal Identification Llist,
which means that new entries may be made within
the Llist.

[CR Identification:] (LITERAL CA /CA)

This selects the identification which will be used
for te new user being entered,

If a CA is typedy, th system will select the
identification according to the following
algorithm:

(1) Make a string of '"Initials' by selecting
the first character from each word in the name
{where words are separated by spaces).

{2) Make a check to see if it is unique,.

lc2Z2bicl

lc2bic2

le2bdd

Lc2b4

lc2b4da

ic2b4b

le2bdc

Lc2bS

lc2bS5a

1c2b5b

le2b5c

lc2bo

lc2bba

1lc2bbb

lc2bbbl

1c2bbb2

WSD 28-JUN-71 15:07 7346
Syntax and Semantics of TNLS Identification Sub—mode

If it is not unique, append a digit to the
end (initially 0). lc2b6b2a

Continue incrementing the value of the digit
until a unique string is found. lc2bé6b2b

(3) Return this as the value of the new
identification. Llc2bb6bI

If a Literal is typed, it is assumed that the
Literal contains the string to be used for the new

users lIdentification. le2bbe

The string is checked for legality (The syntax
must be L SLD), and then for uniqueness, le2béel

IF either check fails, the user is asked to

re—enter the field. 1lc2bbec2

Modify Command icd
Syntax: M[odify record for] IDENT CA 1cda
Semantics: 1c3b

This command is used to enter the Modify sub—-submode. Llecdbl

Assuming the IDENT is legal, the user enters a

command level where any Command Deletes or serious

errors return him to the Identification submode, and

the following commands are legal:. 1c3b2

CONVENTION= ledb2a

The term TYPEOLD is used in the descriptions of
these commands to mean the following: lcdblal

The old contents of the field are typed to
the users. lc3blala

If the next thing a user types is a CAy, the
command is treated as a NO-OP, an the
command is terminated.. lcdbZalb

If there is no explanation of a commands use

under the syntax, the semantics of the command

are substantially the same as those used under

the ENTER command., Llc3b2a2

WSD 28-JUN-71 15:07 7346

Syntax and Semantics of TNLS Identification Sub—mode

A[ffiliation:] TYPEOLD LITERAL CA 1c3b2b

D[elivery:] TYPEOLD $('On—Line / "Hard Copy /
LITERAL CA / CA) lcdblce

This allows the specification of the default
delivery technigques to be used for JOurnal
documents directed to this user. lcdb2cl

On—=Line and Hard Copy are the two standard ones
currently used; and LITERAL may be used to

describe a new oney, or one to be meaningful at

some future date. lc3b2c2

The user may specify more than one type of
delivery with thlis command, as it is not
terminated until a redundant CA is typed. lcdb2cd

Once the delivery field has been set up, the
user will get delivery of documents only in the
manner specified by this field,. lcdb2c4

This means that if he were getting delivery
previously in various manners by default

(i.e. the field was not there),

specification of this field could subtly

stop it. lc3b2c4a

E[xpand Normal References ?] ANSWER 1e3b2d

This simply sets/resets the flag causing normal
references to a group to be expanded. ledb2dl

An error is executed if the IDENT being
modified is not that of a group. lecidb2d2

G[roup Membership] TYPEOLD $([

+] ((Aldd]/ D[elete]) IDENTLIST) / I[nitialise])

CA) lcdble
This command puts the user into a baby submode
where he may add and delete persons from the
membershipy or initialise (reset) it. lcdb2el
A reduntant CA is used to exit. 1c3dble2

iI[dentification:] TYPEOLD LITERAL CA 1lec3b2f

M[ailing Address:] TYPEOLD (LITERAL / IDENT) CA 1lc3b2g

WSD 28-JUN—-71 15:07 7346

Syntax and Semantics of TNLS Identification Sub-mode

N[ame:] TYPEOLD LITERAL CA

ST[atus] CA
This command causes the value of the wvarious
fields in the identification record for the
ident currently being modified to be typed.

The fields typed may (eventually) be culled
according to the users 'enabled'" status.

SUl b=Collections:] TYPEOLD S(A[RC] 7 N[1C] /
LITERAL CA)

This allows the specification of the

subcollections to which Journal items submitted

by this user should by default belong.

Any number of subcollections may be specified,
and a redundant CA is used to terminate the
command .

U]l ser (For TENEX):] USERNAME CA

This allows the association of the user/group
with a TENEX user name,

The immediate effect of this will be that any
on—line delivery of Journal Documents will b

done under the specified TENEX directory.

The Legality of the username will be checked.

Delete Command

Syntax: D[elete Identification:] IDENT CA [
Passwords: | PASSWORD [

{type out of I record)

OK??] ANSWER

Semantiecs:

This allows identification records to be deleted,

In order to use this commandy a user must be enabled,

and he must know the password.

The identification record of the prospective deletee

lcdblhn

lecdb2i

ledblil

lecdb2i2

lec3b2j

ledbljl

1c3b2j2

le3b2k

1cdb2kl

lc3bk2

1cdb2k3

ic4d

1c4a
1lc4db

lc4dbl

lc4b2

WSD 28-JUN-=T71 15:07 7346
Syntax and Semantics of TNLS Identification Sub—mode

is typed before a final affirmation to help avoid
mistakes. Lc4bd

WSD 28-JUN-T71 15:07 7346
Syntax and Semantics of TNLS Identification Sub—mode

(J7346) 28-JUN—-71 15:07; (Expedite) Title: Author(s): William S.
Duvall/WSD; Distribution: Marilyn F. Auerbach, Mimi S. Church, Charles
He Irby, Harvey G. Lehtman, Richard W. Watson/MFA NSC CHI HGL RWW;
Keywords: Identification Sub—mode Syntax Semantics; Sub—Collections:

ARC; Clerk: WSD;

EKV 28=JUN=71 15:42 7347
Schedule

Schedule Is now in the Journal (#7261) and posted near the
blackboard in the Console Room.

EKV

EKV 28-JUN-71 15:42 7347
Schedule

(J7347) 28=-JUN=T1 15:42; (Expedite) Title: Author(s): Ed K. Van De
Riet /EKV; Distribution: Marilyn F. Auerbach,; Walter L. Bass, Roger D.
Batesy Miml S. Churchy William S. Duvall, Beauregard A. Hardeman, Martin
E. Hardy, Fred P. Hockery, J. D. Hopper, Charles H. Irby, Mil Jernigan,
Harvey G. Lehtmany, John T. Melvin, Jeanne B, North,; James C, Norton,
Cindy Page, Bruce L. Parsley, William H., Paxton, Jeffrey C. Peters,
Barbara E. Rowy, Ed K. Van De Riet, Ed K. Van De Riet, Dirk He. van
Nouhuys, Kenneth E. Victor, Don C. Wallace,; Richard W. Watson, Don I.
Andrews/MFA WLB RDB MSC WSD BAH MEH FPH JDH CHI MEJ HGL JTM JBN JCN CXP
BLP WHP JCP BER EKV EKV DVN KEV DCW RWW DIA; Sub-Collections: ARC;
Clerk: BER;

Origin: <ROWD>BLANK.NLS31, 28=JUN-71 14:42 BER ;

WSD 28=JUN=T71 16:14 7349
Possibilities for improvement of Journal Delivery

Please let me know if you see anything in here (or can think of
anything not in here) which you would like to see in a
not—too—extensive upgrading of Journal Delivery.

WSD 28—-JUN—-T71 1l6:14 7349
Possibilities for improvement of Journal Delivery

Possible enhancements for Journal On—Line Delivery i

Use more sophistication in determining which documents should
be delivered on—line versus hard copys and to whom. la

The sender should be able to specify that a document
absulutely should be delivered as Hard—copy/On—line. Llal

JCN feels strongly about this oney, but I am still not
gquite convinced that it is necessary—-——almost; but not
quite. lala

I guess that a sender should be able to say "This

document is not worth getting hard copy of" or

conversely "This is an important document, and everyone

should recieve hard copy of it", lalb

OKeseol guss mebbee I am convinced, lalec

Perhaps we should have the ability to treat messages and
Documents separately; e.g. messages on—-line only, and
documents bothe. la2

The recipient of a document should be able to easily
request the supression or printing of hard copy for some
document he has recieved. 1ad

Upon seeing a document in his control file, he should be
able to say "Print That" or "Don't print that, I've seen
itn, lada

The delivery method to be used for documents/messages
should be settable by source as well as destinatione. ia4d

The user should be able to say: "I want all documents
from XXX to be delivered to me in Hard Copy only" lada

Allow alternate destinations for documents, ib
The user should, for example, be able to say: "ALlL
documents addressed to me in the sub—-collection NIC I want

delivered on—Lline to me with a hard copy to XXX". ibil

Alternatively, he should be able to direct documents from
certain sources to different persons; e.g. secretaries. 1b2

This could concievably be used to provide an automatic
culling facility, e.g. suppose that documents could be

WSD 28-JUN=71 16:14 7349
Possibilities for improvement of Journal Delivery

directed to particular sets depending on thelir source,
sub—collection membership, keywords, etc.

It would then be simple for a user to keep updated sets
of documents, without spending a great deal of manual
effort sorting them.

Allow on—line delivery of Author Copies.

This came from a suggestion from RWW,

I think that mebbe they should be put in a separate branch
at the authors option.

1b3

1bJla

ic

lcl

lc2

WSD 28-JUN=-T71 16:14 7349
Possibilities for improvement of Journal Delivery

(J7349) 28-JUN-T71 16:14; { Expedite) Title: Author{(s): William S.
Duvall/WsSD; Distribution: Charles H. Irby, Harvey G. Lehtman, Jeanne B.
North, James C. Nortony, Bruce L. Parsley, Richard W. Watson, Dirk H. van
Nouhuys/CHI HGL JHN JCN BLP (This should go into the Needs/Possibilities
file) RWW DVN; Keywords: Journal Delivery Needs Possibilities;
Sub—-Collections: ARC; Clerk: WSD;

JTM 28-JUN=T71 16:20 7350
Notes from File Space Meeting

SMALL MEETING CONCERNING FILE SPACE 1
Technical type things la
Melvin Norton Van de Riet Wallace Watson lal
Attendees 1b

The Basic problem seems to be that the system simply does
not have enough storage capacity to satisfy the current and
immediate future ARC/NIC requirements ibl

We assume that this type of situation will probably always

be S50 le.e. our file appetites are continuously growing,

thus whatever approach is taken will have to be practical

and flexible 1b2

The solutions seem to be administrative, their
implemenataion technical 1bJ

Ed would be the person responsible for the administrative
things 1b4

Administrative type things 1b4a

there need to be better types of summaries and
reports of disc usage etc. 1b4al

limits could be set on how much space any one user or
group of users could have i1bda

Discussed 1b4b

the system does not lend itself to minimizing number
of files user may generate and leave around Lb4dbl

the output processor could, for example, take away
the option of naming the output file and use one
filename, extensiony and version for its output ib4bla

greater use of temporary files could be made (as
in the 940)7? Ib4blb

we must get some sort of backup system into operation 1b4b2

it should be as fully automated as possible but an
interim system should be devised if necessary

involving the use of an operator or some sort of

manual mechanism ib4b2a

JTM 28-JUN=71 16:20 7350
Notes from File Space Meeting

implementation of some sort of administratively
defined limits

Lb4bJ
GTJFN could give a fail return if user is over his
limit 1b4b3a
the EXEC could require that the user do something
about his files prior to letting him login or
Logout 1b4bJdb

JTM 28=-JUN-71 16:20 7350
Notes from File Space Meeting

(J7350) 28=-JUN-T71 16:20; Title: Author(s): John T. Melvin/JTM;
Sub—Collections: ARC; Clerk: WSD;

WSD 28-JUN=T71 16:27 7351
Comments on File Space meeting notes (7350,)

\
With regard to memo on file space meeting (7350,) 1

If the Output Processor were to take away the option of naming

output files, it would make things very hard for Journal Hard

Copy Delivery, i.e. a Lot of chnges would need be made, and

things could not be done as effeciently as they are now. la

I Like the idea of using more temporary files. b

I think that the exec should check on file space usage at some
inocuous point. lec

Bombing out of a getjfn can cause nasty problems for
suffering programs which are already trying as hard as they
can to cope with the file system,. icl

Mebee the EXEC could check file space usage at reset
time??? lc2

WSD 28-JUN=T71 16:27 7351
Comments on File Space meeting notes (7350,)

(J7351) 28-JUN-T71 16:27; Title: Author(s): Villiam S. Duvall/WSD;
DPDistribution: John T, Melvin, James C, Norton, Ed K. Van De Riet,
Richard W. Watsony, Don C, Wallace/JTM JCN EKV RWW DCW; Keywords: File
Space; Sub-Collections: ARC; Clerk: WSD;

JCN 29-JUN-71 9:24 7356

JCN 29-JUN-71 9:24 7356
Note to Duane Stone

Thanks for the message last week. We hope your return trip went
well, I note you worked online on June 24th., Did you use the
Execuport, and if so, did you use lowercase mode when in TNLS? If
you do not plan to use the Model 37 to connect, I'llL take the
permanent 15cps switch off,...0K?

JCN 29-JUN-T71 9:24 7356
Note to Duane Stone

(J7356) 29-JUN-T71 9:24; Title: Author(s): James C. Norton/JCNj;
PDistribution: Duane L. Stoney, Richard W, Watson/DLS (Note the entry in
yvyour initial file..try sending one to me?) BWW; Keywords: 3
Sub~Collections: ARC; Clerk: JCN;

WSD 29-JUN-T71 13239 7358
NLS Tdentification Submode (Version [1)

This supercedes the previous version (7251,), the major change
being the addition of the capabilities sub—command in modifye.

WSD 29=-JUN-T71 13:39 7358
NLS Identification Submode (Version 11I)

ITdentification NLS Submode

This section describes the syntax and semantics of the
commands in the TNLS identification submode,

The syntax and semantics of commands in the DNLS submode
will presumably be similar,

General Description
The Identification Submode may be entered elither directly
from the TNLS command level, or——for the purpose of
entering a new user——from entering an identification Llist

within some nls command,.

Some of the information in an identification record should
not be changed by ordinary users,

Consequently, two levels of protection are allowed.
(1) Enabled NLS user.
An enable/disable mechanism will be provided in
NLS whereby a user may gain access to certain
commands by an enable command.,
In order to enable ones status, the appropriate
fields must be set in his identification
record.
(2) Password access commands,.
Certain commands, such as delete user, are
sufficiently dangerous that a user must be enabled

and provide a password in order to execute them.,

Three basic capabilities will be allowed by the
identification submode,

(1) Enter New ldentification.
(2) Modify existing identification
(3) Delete Identification.
When entering the identification submode from TNLS, either

of the three command sets may be invoked by typing
‘B[nter]y 'Mlodify] or '"Dlelete].

La

lal

1b

ibl

i1b2

Ib2a

1b2Z2al

lb2ala

Ilb2alal

1b2a2

ib2ala

1bJd

lbda

1b3b

1bdc

1b4

WSD 29-JUN=T71 13:39 7358
NLS Identification Submode (Version I1)

If the submode 1Is entered from the identification list
level, however, the user is automatically placed into the
enter mode followed by the modify mode. 1b5

After the modify mode is exited, the system returns a
value equal to the identification of the new user, and

control returns to the identification list parser. i1b6
Commands ic
Identification Sub—mode Entry lcl
(a) From TNLS lcla

E[xecute] ID[entification Sub-mode] CA. lclal

This command will cause te user to be plaed in the
I.D Sub-mode., lclala

TNLS will respond with the hearald character ">, lclalb

The user may then proceed with any legal I.D.
Submode commands. lelale

After each command is successfully completed. and
after all CD's and errors, he will return to this
level until he executes a Quit command, lclald

{(b) From an Identification List leclb

A CR typed in an identifition list causes entry to
the Identification Submode, lcibl

TNLS responds to the CR as though it were the 'E for
the Enter command. leclb2

When the Enter Command has been completed, the entry
is typed to the usery, and the Modify command is
entered. lclbd

When the Modify has been completedy; the string value
of the new user is returned to the identification
List parser, lclb4

Any errors or command deletes from this level cause a
null string to be returned to the identlification list
parser, lclbS

Vhen the user is rturned to the identification list

WSD 29—-JUN-T71 13:39 17358
NLS Identification Submode (Version II)

parser, a message reflecting the status is typed to
the user. lclbé

Enter Command, 1c2

Syntax: E[nter Identification for] (I[ndividual] / CA
[Individual] / Gl roup]) [

Name:]| LITERAL CA [

Address:] (LITERAL /IDENT) CA [

Affiliation:] LITERAL CA [

(if Group) Membership:] IDENTLIST CA [

Identification:] (LITERAL CA/ CA) lc2a

Semantics: 1lc2b

E[nter Identificationn for] (I[ndividual] / CA
[Individual] /G[roup]) le2bl

This specifies whether the new identiication is to
be for an individual or group. lc2bla

[CR Name:] LITERAL CA le2b2

This is either the full name of the individual, or
the Proper nnme name of the group. lc2b2a

In the case of individualsy; the identification

file is searched for entries with the same last

name. If any are found, the corresponding entries

are typed to the usery, and he he is asked to

respond yes or no as to whether that person is the
intended entry. lc2b2b

In the event of an affirmative response,; the
command is terminated, 1c2blbl

For Groupsy; a slightly more complicated search is
doney where the proper names of groups in the
identification file are compared to the proper
name offered, and suitable interaction takes place

if they are similar. le2blc
[CR Address:] (LITERAL/IDENT) CA lc2b3
This is the mailing address for the entry. le2bda

In the case of indalsy it must be a normal,
textual mailng address. lc2b3b

WSD 29-JUN=71 13:39 7358
NLS Identification Submode (Version II)

For Groups, it may either be a normal mailing
addressy or an I[DENT of some recognised user or
Eroup. lcZbdc

If it is the ident of a group, it may be

preceded by an expanded or un—expanded

reference command, or it may be a normal

reference. lc2biel

References to other groups as malling addresses
are handled in the obvious manner. le2bdc2

If an illegal IDENT is supplied, the user is asked
to re—enter the field. le2bdd

[CR Affiliation:] LITERAL CA le2b4

This is the Professional affiliation of the new
usery e.Zes ARC or UCLA. lc2bda

If the LITERAL is emptyy, then an affiliation of
"INDEPENDENT" is usede. le2b4b

For Groups, the affiliation should indicate the
Professional entity with which that groups

activities are basedy, e.ge. ARCy NIC, etc. lc2b4dc
[CR Membership:] IDENTLIST CA Lc2b5
This field is significant only for Groups. Lc2bSa

It Is the list of users/groups who make up the
initial membership of the group. lc2bSb

It will be parsed as a normal Identification list,

which means that new entries may be made within

the list, lc2b5c
[CR ldentification:] (LITERAL CA /CA) Lc2b6

This selects the identification which will be used
for te new user being entered. lc2bba

If a CA is typed, th system will select the
identification according to the following
algorithm: lc2bbb

(1) Make a string of "Initials' by selecting

WSD 29-JUN=71 13:39 7358

NLS Identificatlon Submode { Version II)

the first character from each word in the name
{where words are separated by spaces). lecZbébl

(2) Make a check to see if it is unique. Llc2b6b2

If it is not unigque, append a digit to the
end (initially 0). 1c2b6b2a

Continue incrementing the value of the digit
until a unique string Is found. lc2bbb2b

(3) Return this as the value of the new
identification. Lc2b6bl

If a Literal is typed, it is assumed that the
Literal contains the string to be used for the new

users

Identification. lc2béc

The string is checked for legality (The syntax

must be L $LD)y and then for uniqueness. lcZbébel

IF either check fails, the user is asked to
re—enter the field, lc2bbc2
Modify Command 1cd
Syntax: M[odify record for] IDENT CA lcda
Semantics? 1c3b

This command is used to enter the Modify sub—-submode, lcibl

Assuming

the IDENT is legaly the user enters a

command level where any Command Deletes or serious
errors return him to the Identification submode, and
the following commands are legal:. lcib2

CONVENTION: lcdb2a

The term TYPEOLD is used in the descriptions of
these commands to mean the following: 1cdb2al

The old contents of the field are typed to
the user. lcdb2ala

1f the next thing a user types is a CAy; the
command is treated as a NC-0P, an the
command is terminated.. lcdblalb

WSD 29-JUN~71 13:39 7358
NLS ldentification Submode (Version I1I)

If there is no explanation of a commands use

under the syntaxy, the semantics of the command

are substantially the same as those used under

the ENTER command. lcdb2a2

Al ffiliation:] TYPEOLD LITERAL CA 1c3b2b

Clapabilities:] TYPEOLD $(N[LS] / E[nable] /
LITERAL CA / CA) lcdb2c

This command allows specification of the
capbilities the user has when using the system.

1cdblecl
The two currently defined capabilities are: lcdblec2
NLS. This user may use the NLS system ledb2c2a

ENABLE. This reflects y Enable his status to
use priveledged commands lc3b2c2b

D[elivery:] TYPEOLD $('On—Line / 'Hard Copy /
LITERAL CA / CA) lcdb2d

This allows the specification of the default
delivery technigques to be used for JOurnal
documents directed to this user. Lcidb2dl

On—=Line and Hard Copy are the two standard ones
currently used, and LITERAL may be used to

describe a new oney; or one to be meaningful at

some future date. Lcdb2d2

The user may specify more than one type of
delivery with this command, as it is not
terminated until a redundant CA is typed. le3db2dd

Once the delivery field has been set up, the
user will get delivery of documents only in the
manner specified by this field. Lcidb2d4

This means that if he were getting delivery
previously in various manners by default

{i.e., the field was not there),

specification of this field could subtly

stop it. lcdb2d4a

E[xpand Normal References ?] ANSWER lcdble

) WSD 29-JUN=T71 13:39 7358
NLS Identification Submode (Version 11)

This simply sets/resets the flag causing normal
references to a group to be expanded. lcdblel

An error is executed if the IDENT being
modified is not that of a group. 1lc3b2le2

G[roup Membership] TYPEOLD $(([
+] ((Aldd]/ Dlelete]) IDENTLIST) / I[nitialise])
CA) lc3b2t

This command puts the user into a baby submode
where he may add and delete persons from the

membershipy, or initialise (reset) it. lc3db2fl
A reduntant CA is used to exit. Lc3b2£2
I[dentification:] TYPEOLD LITERAL CA 1cIbn2g

M[ailing Address:] TYPEOLD (LITERAL / IDENT) CA le3b2h
N[ame:] TYPEOLD LITERAL CA 1edb2i
ST[atus] CA lc3b2j
This command causes the value of the various
fields in the identification record for the

ident currently being modified to be typed. le3db2jl

The fields typed may (eventually) be culled
according to the users "enabled' status. Lc3b2,j2

SU[b-Collections:] TYPEOLD $(A[Rc] 7 N[1C] /
LITERAL CA) ledb2k

This allows the specification of the

subcollections to which Journal items submitted

by thils user should by default belonge. lecdb2kl

Any number of subcollections may be specified,

and a redundant CA is used to terminate the

command . lcdb2k2
U[ser (For TENEX):] USERNAME CA 1c3b21

This allows the association of the user/group
with a TENEX user name. lcdb2ll

The immediate effect of this will be that any

WSD 29-JUN-T71 13:39 7358
NLS lIdentification Submode (Version 11)

on—line delivery of Journal Documents will b
done under the specified TENEX directory.

The legality of the username will be checked.
Delete Command
Syntax: D[elete Identification:] IDENT CA [
Password:] PASSWORD [
(type out of I record)
OK??] ANSWER
Semantics?

This allows identification records to be deleted,

In order to use this command, a user must be enabled,
and he must know the password.

The identification record of the prospective deletee
is typed before a final affirmation to help avoid
mistakes.

le3b2l2

1c3b213

1c4

lcda

1c4b

lcdbl

lcdb2

lcd4bd

WSD 29-JUN-71 13:39 7358
NLS Identification Submode (Version I1)

(JT7358) 29-JUN=-71 13:39; { Expedite) Title: Author(s): William S.
Duvall/WSD; Distribution: Mimi S. Church, Harvey G. Lehtman, Charles H.
Irbyy, Marilyn F. Auerbach, James C. Norton, Richard W, Watson/MSC HGL
CHI MFA JCN RWW; Keywords: Identificaion Submode NLS; Sub—Collections:
ARC; Clerk: WSD;

The Modular Programming System: Processes and Ports

{J7359) 29-JUN—-T71 15:10; (Expedite) Title: Author(s):
Mitchell/JGM; Distribution: James G. Mitchell, William H.

W. Lampsony Alan C. Kayy, L. Peter Deutsch/JGM WHP BWL ACK

-

3 Sub—Collections: NIC; Clerk: JGM;
Origin: <{MITCHELL>PROCESSES.NLS;12, 29—-JUN-71 14:50 JGM 3

JGM 29-JUN-71 15:10 7359

James G.
Paxtony Butler
LPD; Keywords:

, JGM 29-JUN-T71 15:10 7359
\ The Modular Programming System: Processes and Ports

own it must be handled., However, the surrounding in—line code
which saves and restores the LNK and C registers is only needed
when the sender is an external procedure, Jk

A message consists of one word of information. One special
value, 400000000000, is designated as the "null message'. Thus,
a statement such as JiL

PORT port(VariableMessage); 311

may send the null message if VariableMessage has it as lts
value, If a process attempts to read the message in a port B,
it will be told that the port is empty iff it contains the null
message. Indeed; whenever a message is read from By its buffer
is marked as containing the null message so that further
attempits to read the contents of the buffer will meet with

failure. Jm

The code for dn
[variable '«] "EMPTY" port [signalphrase]; 3nl

) is the following: Jo
HRLZI My 400000 5 M o« 400000000000 Jol

CAMNE MyportSmsg(D) 3 null msg in port? Jo2

JRST movemessage(C) s no — contains a valid msg 303

{signalphrase code) Jo4

movemessage: EXCH MyportSmsg(D) imark empty and get msg JoS

{ MOVEM Myvariable(D)] — present if [variable
‘.,] phrase used Job

2 JUN 72 9:30PM 19

JGM 29—JUN-71 153210 7359
) The Modular Programming System: Processes and Ports

The first uses only in—-line code. Jjla
ExtPortCall:MOVE By LOCPTR(LNK) ;save descriptor

for BASES Jdjlal

PUSH S,8 djlaz

MOVE Mymessage(D) sjnormal port call code Jdjlad

MOVE Byport(D) Jdjla4d

JSP PyXPortCall 3djlas

XPortCall is used instead of PortCall or EPCall because
the procedure may not assume that it knows which type it

is usingy, and XPortCall will have to check. JjlaSa
POP SsC 3 get linkhasa,codebna; word 3jla6

MOVS LNK,C 3 and put linkbase into
LNK Jjla7

The alternative has both in-line code and some global code,

) and is probably the better choice of the two,. 3j2
in=-line code dj2a
MOVE Byport(D) - 3 j2al

PUSHJ S,EXT'"PORT'CALL sroutine to handle such
port usage JjZ2a2
global code: Jj2b
EXT'PORT '"CALL: MOVE Py LOCPTR(LNK) J.j2bl
PUSH S,P ;7 save his PC value J.j2b2
JSP Py SENDX 3.i2bd
POP S,C 3 restore lLinkbase and codebase Jj2b4
MOVS LNKyC J,j2b5S

POPJ Sy 35 and let the

external procedure proceed di2bé6

The same global routines are used by any port call which uses a
ref port since its type cannot be assumed by the in—-line code
and since the error of using a port in a process which does not

2 JUN 72 9:30PM 18

. JGM 29-JUN-71 15:10 7359
) The Modular Programming System: Processes and Ports

MOVEM D, SAVEDYRECENT(D) Jdglh
MOVE 0,0(B) ;save entry—-port connection Jdgli
MOVEM 0y,SAVED"CNCTNI{ D) Jdglj
JRST PENTRY'"POINT(B); start the process dzlk

A process may pass a reference to a port (hereafter called a

"ref port" a la ALGOL 68) to a procedure (internal or external)

which will perform port calls for it. Since the port indicates

by its dseg'ptr to which process it belongsy information must

be saved in the dseg when the port is used so that control can

get back to the procedure correctly. Since the process's pc is

saved on the stack by a procedure call, the procedure can save

its pc in the normal PC slot of the calling process's dseg when

it makes a port call for the process. Jh

The process may also use ref port variables when doing port
calls itself. If the ref port ylelds a port which belongs to
the process attempting to use ity there is no problem: only one
thread of control existsy and the process's pc can be saved in
the normal waye. Lfy however,; the ref port yields a port which
) does not belong to the process attempting to use it, an error
OCCUrs., Ji

A port is inextricably tied to some dseg (and therefore to a
specific instance of a particular process) and using it from a
different process is inconsistent with that notion since it

would be necessary to somehow store knowledge of two separate
processes with the port as well as two message buffers, and

two different connection words —— in short two distinct ports

under the same roof. 3il

The effect of such usage could be obtained by allowing port
variables: a process which wanted a copy of some port to which

it had access (by means of a ref port variable) could then

"copy" the other port into the variable ports. Only the

connection information would actually be copied into the port
variable; its message buffer, startup cell, and most

importantly, its dseg'ptr would be constant just as for a
non—variable port in the same process. Ji2

The following code handles port calls from within an external
procedure, It saves the linkage and code bases (packed into one
word just like BASES in the DSEG) on the stack and retrieves

them from the stack when it regains control after a port call. 34

There are two possible forms of the code: 3jl

2 JUN 72 9:30PM 17

JGM 29—-JUN-T71 15:10 7359

) The Modular Programming System: Processes and Ports

load'base above,

If the process needs to have registers i

through 17 restored before it resumes executiony each normal

port will have

JRST load'"base+i

in its startup word.
than 1ts stack pointer and frame pointersy; it will use

load?

In ge

words
since
which
it is

baset16;

If the process has no base registers other

neral, If the process requires i base registers, they must

be registers 174.0.917=i%*l. These registers are Laid out in the
process’'s DSEG in the order FySy133.ee3l7=i*l, and only as many
as are necessary need be reserved in the DSEG. Also,

this reglion is variable, it is the last part of the DSEG

must be

present

fixed in size.

The routine load'base

load"baset+i:

MOVE

MOVE

MOVE

JRST

(EPENTER) Global code

entry

The form of

ports,

EP"LOAD:

EP'LOAD

MOVE

MOVE

MOVE

MOVE

EXCH

2 JUN 72 9:30PM

for every process; everything in front of

has the following form :

iyREG"BASE+1T7-1(D) ;5 load register i

SySTK'PTR(D) jload'basetlt

FyFRAME(D) ;7 the last base register
¢ Q@PC(D) 35 resume the process

for entering a process via one of its

is the following:

0y REGY BASE+17

SsSTK'"PTR(D) 3load register 16
FyFRAME(D) ;load register 17
0Oy 8 :save aside RecentEp

Oy RECENT"EP(D)

16

dcl

Jd

Jde

af
afl
J£2
3£3
Jf4
315

Jfb6

da
gl
Jgla
Jglb
Jdglce
Jgld
Jgle
Jelf

Jdglg

JGM 29-JUN-T71 15:10 7359
The Modular Programming System: Processes and Ports

port layout: (see also examples in dseg layout above, esp.
FAULTPORT) 3b3

port: XWD portyobject’port 3b3a

If the port is not connected; object?’port is replaced by a

a pointer to a "fake" system port called pf'port which

will cause control to enter a port-fault error routine

using the normal port call machinery to get there. db3al

The port may also be specified as an ignored port: any
uses of it act as null operations., This is handled by
Joining the port to itself: then any use of the port

simply causes the process which is shutting down to be

immediately resumed, Jdbda2
msgs WORD smessage word Ibldb
dseg’ptr: ADDR DSEG dbdc

note that this word must be set up for each port in the

dseg whenever a copy of the process is created, Jbicl
startup: JRST @aPC(D) 31f process has no base
registers at all Jdbdd

Alternates, depending on the process and the port, are the

following: db3dl
Normal port, process with base registers: JdbJddla
ZWD load"base+i dbddlal

where load'base is a global routine. If the process
only has stack and frame base registers,; load?’baset2

is used, for instance, dbiddlala
entry port, process with or without base registers: dbddlb
JRST epenterti - 3b3ddibl

this is used when the port is an entry port. it
also performs the function of load'baseti.
epentert) is used when the process has no base

registers to be loaded. dbddlbla
entry'point: ADDR entry'point'value 3 only present for
an entry port. dbJde

The support code for port call involves a system routine called

2 JUN 72 9:30PM 15

JGM 28-JUN-T71 15:10 7359
The Modular Programming System: Processes and Forts

defined as the owner of this process; and is assumed
responsible for him. Jad4

Code for: [wvar '".] "PORT" port ["(message')]; where "port" is a

normal port Jb
In-line code: 3bl
HRLZI My 400000 i the null message Jdbla
or MOVE Mymessage(D) jif the optional
(message) phrase is present Jdblal
MOVE Byport(D) Jblb
JSp Pyportcall dble
or, JSP Py,EPCall 3 if port is an entry port Jblcl
global code: Idb2
EPCall: MOVE 1, SAVED RECENT jput saved?recent back db2a
EXCH 1,RECENT'"EP jinto RECENT'EP and put 3b2b
MOVE 0y SAVED'CNCTN ; SAVED'CNCTN back into Jb2c
MOVEM Oyport(l) j;port which was pointed at
by RECENT'EP Ib2d
portcall: MOV EM SySTK'PTR(D) ;save stack pointer
word Jb2e
MOVEM Fe FRAME(D) ssave current frame
pointer Jdb2f
send"'no'stk: MOVEM P,PC(D) isave pc db2g
HMOVSM By(B) 3 railroad switching db2h
MOVE Dydseg'ptr(8) jget pointer to
ob ject port's dseg db2i
MOVE Cy@RETLOC(D) jload codebase and
check for not—in—memory trap SJb2j
JRST STARTUP(B) jresume the object
process 3b2k

2 JUN 72 9:30PM 14

JGN 29-JUN-T71 15:10 7359
} The Modular Programming System: Processes and Ports

XWD 400000,0 imessage word for
the START port Jal’7
ADDE DSEG Jalsd
JRST 0y EPENTER Jald

EPENTER is a system routine which handles control arrival

over an entry port. Jal9a
ADDR entry' point Ja20
OWNER: XWD Oypf'port ; process's owner port Ja2l
XWD 400000,0 jsnull msg in msg buffer Ja22
ADDR DSEG Ja2d
JRST APCI(D) ;5 or LOAD'"BASE+]l if base regs 3a24
= the process?s fault port Ja2s
} (FAULTPORT) Ja2é6
FAULT: XWD FAULT,owner Ja27

owner represents a pointer to the owner port in the process

which owns this process, Jal7a
XWD 400000,0 sport's message

buffer Ja2B

ADDR DSEG Ja29

JRST aPc(D) 3ald0

This word distinguishes a normal port from an entry port.
The address which it contains is used in the port call

mechanism. Cf. (PORTCALL). ;830&
* storage for the réglsters Jall
REG!' BASE:FRANE: XWD Dyframe'ptr Jad2
STK'PTR: XWD max'stackystackptr Jadd

Any other base registers which the process needs to have
loaded are placed followinz STK?!PTR Jadda

The process to which this process's fault port is connected is

2 JUN 72 9:30PM 13

JGM 29—-JUN-71 15:10 7359
) The Modular Programming System: Processes and Ports

(PORTCONTROL) Port Control: Code and Semantics 3

Layout of The Data Segment of a Process Ja

DSEG:SEG'NUMBERS: XWD dsegny,csegn Jal

BASES: XWD dsegbasejcodebase . da2

LOCPTR: ADDR RETLOC Jad

RETLOC: MOVE Cy; BASES Jad

or MOVE Cynonxmem Jada

(?27?) MOVS LNK,C JasS

JRSTF a=2(8) Jab

PC3 ADDR pc'value 3a7
RECENT'EP: ADDR 0 imost recent entry-port over

which control arrived Ja8

) SAVED "RECENT : ADDR 0 srecent'port saved here Jad

SAVED*CNCTN: ADDR 0 sconnection for RECENT'EP port Jal0

* the name of this process: 3all

MYNAME 3 ASCII " process name' Jal2

ASCII " process name" 3Jalld

FAMILY: XWD son'list,brother?link 3al4

The son'list pointer points to the most recently acquired
son process of this process; that son and all his brother
processes are Linked in a linear list by the brother’list
field in each of their dsegs. Son'list=0 means that this
process has no sSon processes, If brother'link=0, this is
the last process on its parent's son list. Both these

pointers refer to the beginning of data segments, Jal4da
* the process's start port (an entry port) Jals
START: XWD START,pf'port Jald

pf'port is a "port" in the system which is used to field
) port faults, Any unconnec ted port is, in reality,
connnected to the pf'port. 3alba

2 JUN 72 9:30PM 12

JGM 29-JUN-71 15:10 7359
] The Modular Programming System: Processes and Ports

statement: it is automatically ENABLEd at the start of that
statement and CANCELed on its successful completion.

Simple Catcher Determination and Actions

A catch-phrase can list a set of specific codes, "classes" of
codes or "all codes" on which it is prepared to act. The
actions which it may take on a given error or class of errors
is one of the following:

(a) an arbitrary statement.

(b) VALUE expression: this action takes the value of the
expression as the value of the called procedure and
executlon of the receiver will continue in the same manner
as It would on a normal return from the called procedure,

In both cases (a) and (b)), before the error action is
executed, the call stack is cut back to the same point it
would have been at on a normal return to the receiver,

(c) "INVOKE" procedure call: in this casey, the call stack
remains as it was when the error was generated, and the

) procedure in the error actlion is called "almost as if" it
had been called by the error generator.

Signals Between Processes
Signal Messages across Ports

No SIGNAL facilities are provided for processes talking to
one another across ports (with the exception of the
OWNER/FAULT paths). However, since errors can occur in
attempting to use a port (connection, or control fault) a
catch—-phrase can be appended to a port call to field such
conditions within the running process, Once generated,; such
a signal Looks like any other and could be fielded by any
pocedures in the call hierarchy of the running process,

The FAULT—OWNER Chain as a Signal Path

When any signal is not fielded by a process Itself, it is
propogated up the FAULT/OWNER chain in an attempt to find
someone to accept it, In each process, the signal passes
through the same stages that any signal would. When it is
finally fielded, that process's OWNER port Is JOINed to the
FAULT port of the process at which the signal originated.

This control scheme is closely analogous to the scheme
within a process,.

2 JUN 72 9:30PM i1

2h3f

2i

2il

2ila

2ilb

2ilbl

2ilc
2

241

2jla

252

2j2a

2j2b

JGM 29-JUN-71 15:10 7359

)} The Modular Programming System: Processes and Ports

2 JUN

A procedure declares itself a candidate signal—-catcher by
providing a CATCH-phrase (or sequence of CATCH-phrases)
which will inspect a generated signal when requested during
the backwards scan through the procedure call hierarchy and
either accept the signal or reject it. Be jecting it will
cause the backwards scan to continue; accepting it allows
the CATCH-phrase to take some simple action, after which the
normal flow of control will resume in the procedure

containing the CATCH-phrase, 2nhdb

The syntax of a CATCH—-phrase is 2hdbl
catchphrase = "CATCH" [lhs] *($(caserel ': erroraction

"33 %33 2hdbla

error actions will be described shortly; caserel means

what it normally does in MPL(A), except that the value

being compared in each binary relation (caserel) is the

signal value, If the optional lhs is present, the value

of the signal is assigned to it. 2h3b2

A CATCH-phrase is "provided" as a potential signal catcher
either by the execution of an ENABLE statement or by
appending the phrase to a statement [and to individual

operators in some later version] 2hdc
The ENABLE statement has the syntax: 2hdd
[tabel *:] "ENABLE" (lLabelid / catchphrase); 2h3d1

[can an ENABLE statement have a catch phrase attached to
it?] 2h3dla

The CATCH-phrase enabled is either the one appended to the
ENABLE clause or the CATCH—-phrase in another ENABLE
statement identified by the labelid. When an ENABLE
statement is executed during normal execution, the address
of the CATCH—phrase is pushed onto a (linked) "CATCH-stack"
associated with that incarnation of the procedure. If the
CATCH-phrase is already enabled (and therefore already has
an entry in the catch-stack)y, it is first removed from its
previous position before being pushed onto the top of the
stack. The catch-phrase is then a possible signal catcher
until control returns from that incarnation of its
procedurey or until a CANCEL statement causes it to be
removed from the catch—-stack (the description of CANCEL
follows). 2hJde

A catch-phrase attached to some (non—-CATCH) statement is a
potential signal catcher only during the execution of the

72 9:30PM L0

JGM 29—-JUN-71 15:10 7359
) The Modular Programming System: Processes and Ports

As mentioned previously, a CATCH-phrase may be appended to a
port call statement to handle the case when the null message
is unexpectedly received. 2g2]j

Control may also enter a process over a normal port from an
unconnected parent process by means of the RUN statement,
Except for the fact that the connection information in a
porty, by, is unchanged by RUN p:b, the effect is exactly as
if control had returned to p across the port b from the
ob ject process to which b is connected, This provides a
means of jolting processes to life after port or control
faults as well as allowing the creator process to intercede
in a created configuration of processes, If a message is
supplied with the RUN statement; e.Z.y

RUN p:a (message);
the message is put into a's message buffer as if it were
heing received over the port, 2g2k

Ify in a configuration some of the ports on various
processes are not needed for a specific application, they
may be specified to be "ignored", An ignored port is one
which has been JOINed to itself, Thus, when a port call is
made on one, the subject process is also the object process
) and resumes without control ever leaving. Any messages sent
over an ignored port, therefore, will appear in its own
message buffer (this last is of no special importance: it is
simply what will happen). 2g21

(SIGNALS) Simple Signal Phrases and Actions 2h

A signal can be generated by a SIGNAL statement in a
procedures: 2nl

"SIGNAL" [code] ["(paramlist®)]; 2hla

ory by the occurrence of events such as machine traps (e .g.,
arithmetic overflow). 2h2

Once a signal has been generated,; no matter by what means,

some action must be taken by some program before normal

control can resume., The main problems with signals concern

who is eligible to "catch" a signal and what he may do when

given control. 2h3

A signal is first propagated back through the procedure call
hierarchy in the running process in which the signal was
generated, The first procedure encountered in this
backwards search which indicates its willingness to catch

) the signal is given control. 2hda

2 JUN 72 9:30PM

O

)

JGM 29-JUN-T71 15:10 7359

The Modular Programming System: Processes and Ports

Control normally returns to a process over the same path by

which it lLeft. It may, however, return over a different

path; the process may determine over which path control

returned by executing the system function RECENT"'PORT()

which returns the address of the port concerned as its

result, 2g2c

The ob ject port is set to point at the subject port In setp

NN2 so that control can later return over that path from the

ob ject process. This switching is necessary because many

ports may connect to a single port and control can only

return from that single port to exactly one of the ports

connected to it, The one from which it gained control most
recently is the obvious choice. 2g2d

It is not necessary to take the message from a port when

control arrives over the port, The contents of a port's

message buffer can be removed and thde null message put into

the buffer by a statement such as 2g2e

[lns *.] "EMPTY" portname; 2g2el
If the Lhs is not present,; the null message is simply

written into portname’'s message buffer (specified as
portname$Message in MPL(A)). If the Lhs is present,; this

statement is equivalent to 2g2t
IF portnamefMessage # NullMsg % % 2g2f%1
THEN 2g2fla
BEGIN 2g2flal

lhsS < portname$Message; 2g2flala
portnamefMessage . NullMsg; 2g2flalb

END 2g2fla2

ELSE SIGNAL NoMessage; % see section SIGNAL % 2g2f1lb

A "CATCH-phrase" may be attached to the EMPTY statement to
field any possible generated NoMessage signal (see SIGNALS)., 2g22g

If a porty by is considered bidirectional, it can be used by
writing 2g2h

in « PORT b(out); 2glhl
Assuming that a message returns along with control over b
after the port call, the assignment operator will simply

move the received message into the variable in. This is
equivalent to 2g21

PORT b(out); in <« ENPTY b3 2g2i1

2 JUN 72 9:30PM 8

) The Mo

2 JUN

JGM 29-JUN-71 15210 7359
dular Programming System: Processes and Ports

passed from the sender to the receiver over that path, A
process can send control and (optionally) a message over a
pert using a statement of the form:i

[lns '.] "PORT" portname ['(message')];

Executing such a statement will cause the following sequence
of actions:

(NN1) the "state" of the subject process is saved in its
static environment or data segment; the portion of the
state which is saved includes the value of the PC, and the
stack pointer and local variable or frame pointer if the
process has them,

(NN2) The object port is made to point to the subject
port; this is called railroad switching and is explained
below -

(NN3) The given messagey, if present, is placed in the
object process's message buffer; if no message is present,
the null message is placed in the object port's message
buffer.

{NN4) The address of the object process's data segment is
loaded into a base register from the object port,

(NN5) The object process's stack and frame pointers, the
base address of its code segmenty and any other required
base registers are loaded from its data segment,; and the
PC value is used to start the process in execution:

(a) The PC may be valid and point somewhere in the code
segment for the ob ject process: in this case the process
simply resumes execution.

(b)The PC may be the address of a system routine which
initiates the signalling of "control faults": a process
which is in state "stopped" has this address as its PC
value, For a comple te description of the result of
signalling a control fault see the section SIGNALS.

(NN6) When control comes back to the subject process (by
the execution of this same sequence of actions on the
object process side)y; the message buffer contents may be
stored in the "Lhs" variable, if present. If it is
present but the port?'s message buffer contains the null
messagey a "nomessage" signal will be generated. See the
description of the EMPTY statement below for more detail
of this.

72 9:130PM 7

2g2a

2g2al

2g2b

2g2bl

2g2b2

2g2b3

2g2b4

242b5

2g2bSa

2g2b5b

2g2bbd

JGM 29-JUN-71 15:10 7359
) The Modular Programming System: Processes and Ports

the actions of a normal port call (see the sequence NNljese
below)

This assures that the process reverts to the state which
existed prior to control arrival over an entry—-port.

If the portname is omitted in a RUN statement, two cases
present themselves:

(a) if the process has status "stopped", the statement is
egquivalent to

RUN processi:START;
this case was discussed abovej;

(b) if the process has status "active" (and therefore has a
valid PC value), the process is simply resumed in the same
fashion as control arrival over some normal port,

Case (b) allows a process which was suspended as a result of a

control or port fault to be resumed by simply saying: "RUN
process", If the process was awaiting control arrival on some
port r (in which case the process is said to be "pending r")
and it is resumed by this form of the ERUN statement,

(a) no message will be placed in port r, and

{(b) the connection information in r is unchanged by the RUN
statement.

Using Normal Ports
Messages In Ports
Each port in a process possesses a message buffer which may
contaln either the null message (nullmsg) or some valid
message. The buffer's contents can be moved to a variable,
or silmply destroyed by the following statement:
[variable ',] "EMPTY" portname ;

IT the optional phrase is not presenty, the message buffer
for the iort is set to contain the null message. If the
message buffer for a port is empty (i.e.y contains the null
message) and the process attempts to empty that port, an

error results. This error can be handled by appending an
"arror phrase" to the EMPTY statement (see error'phrases).

Port Calls:

Normally, a message is only put into a port when control is

2 JUN 72 9:30PM 6

2f12c

2€£13

2f14

2fl4a

2f14b

2£15

2f15a

2f15b
2g

2g1

2gla

2glal

2glb

2g2

JGM 29-JUN-71 15:10 7359
) The Modular Programming System: Processes and FPorts

Assume that c executes the statement
RUN pze
where e is an entry—port of p;, and p is stopped. Then, c is
suspended and p is made active with execution commencing at
e's entry point, 218

If RUN pie is executed but p is not in the stopped state, the
following ecccurs: 2f9

before p is made active, its RECENT"EP word is copied into
SAVED'"RECENT (see PORTCONTROL) and the connection
information in the entry port is copied into SAVED'CNCTN. 2f9a

p's base reglsters are loaded, and p begins execution at the
point specified by the entry—point value associated with the
entry port. The previous saved value of PC Is undisturbed, 2E9b

Saving RECENT'EP and the connection information for the entry
port over which control arrived is done to allow recursive use
of a process. Copies of these specific cells are made by the

system because they are the only ones which are overwritten in
the process of entry port entrye. ALl other information in the

process’'s data segment can be pushed down by the process
) itself once it regains control using the statement: 2f10
YPUSH" Y“ENVIRONMENT"; 2f10a

This statement makes a copy of the process's current
environment (i.e.y its data segment) onto its stack: this
includes the stored PC-value and base registers., The data
segment is then linked to this copy via a fixed cell (OLD'ENV)
in the data segment and the stack base value in the process is
updated to point past the end of the data segment copy in the
stack segment, If the PUSH ENVIRONMENT statement is done
before any port calls,; the PC-value saved with the copied
environment is the one which would have been used had control
arrived over a normal port., The new environment is then a
copy of the previous (in facty it is the previous environment
—— the chunk on the stack is the copy) and all of the
process's neighbour processes are always connected to its
current environment, 2f11

Later p may execute a "POP ENVIRONMENT" statement — which
essentially reverses a PUSH ENVIRONMENT — and then leave via
an entry—port. Making a port call on an entry port does the

following: 2f12
RECENT " EPSCONNECTION o SAVED!'CONNECTION; 2fl2a
RECENT'"EP . SAVED'RECENT; 2£12b

2 JUN 72 9:30PM ' 5

)

JGM 28-=-JUN-71 15:10 7359
The Modular Programming System: Processes and Ports

An entry—-port is declared by a statement in the program of the
form

portname: ENTRY PORT ['(messageid ")];

and the special entry—-port START need only be declared if the
program wants to accept a message on the START port. I1f START
is not explicitly declared, it is as if the following
statement were inserted before the first executable program
statement:

START: ENTRY PORT;

Basically,; when control reaches a stopped process over an
entry—port, the process's status is changed to "active" and
its program counter (PC) is set to the entry—-point value of
the entry—port. The process will revert to the stopped state
when a "STOP message" statement is executed or the process
attempts to use an entry—port of its own. Indeed, "STOP" is
equivalent to using the entry-port over which control arrived
most recently.

Whenever a process attempts to use an unconnected port (entry
or non—entry), control is sent to that process's "owner",

The owner of a process is defined by the connection of that
process's FAULT port. Whenever a process generates a fault
which it is not prepared to handley, a port call on its FAULT
port is simulated by the system, A message which Indicates
the cause of the fault is sent over the port to the owner
process. All the normal control mechanisms for port calls
are true for the simulated call on the FAULT port.
Naturally, any attempt to disconnect a process's FAULT port
will cause an error to be generated in the running process,

Assume process ¢ is the owner of process p. Then ¢ can cause
p to become active by a statement of the form

"RUN" process [': portname ['(message ')]];
The portname may specify either an entry—port or a normal
port in the object process. Only the entry—-port case will
be discussed at this point.
if the RUN statement is executed after one create and
before any other CREATE's are doney, then it is equivalent

to the owner process issuing the following port call:

PORT OWNER ["(message')];

2 JUN 72 9:30PM -4

2£3

2f3a

214

2f4a

2£5

2f6

2f6a

2£7

2f7a

2f7b

2f7bl

2f7bla

JGN 28-JUN-71 15:10 7359

)} The Modular Programming System: Processies and Ports

This particular statement only specifies that
of the wherabouts of q:b is stored in p3a and
opposite, If g:b is to "know" about psza then
necessary to also say

JOIN g:b TO pia

For convenience, "JOIN pia AND q:b" is used
that pia is to be connected to gib and vice

A port and its connection information is called a

information

the subject process to the object process In which the object

port resides.,

Running Processes

Processes run in a completely synchronous manner with exactly
one process running at any given moment., Normally a process
temporarily suspends execution by sending information and
control over a port to the process whose port is attached to
the other end, For convenience in describing this and similar
situations we will call the process which is running and in
the act of passing control the "subject" process (and its

) ports subject ports) and the process connected to

end of the subject process's port (to whom control will be
passed) the "object" process (his ports are called object
ports). When a process sends control and (possibly)
information across a port it is said to make a "port call" on

that virtual facility.

(STARTUP) Starting a Process

A process which has never run is in the "stopped" state. A
stopped process may only become "active" by receiving control
over one of its entry porits, Each process possesses a
standard entry—-port called START, and may possess other

entry—ports if declared at compile time.

The information associated with an entry—port is

an address within the process where execution is to begin
whenever control arrives over the entry port, called its

"entry—point",

a message buffer where any message to the entry port is teo

be placed,

the address of the object to which the entry—-port is
connected (it may be unconnected or connected to either an

J entry—port or a normal port in some process)

2 JUN 72 9:30PNM 3

not the
it is
2d2al
to denote
versa. 2d2ala
"oath" from
2d3
2e
the other
2el
21
21
2¢2
2f2a
2f2b
2f2c

JGM 29-JUN-T71 15:10 7359
) The Modular Programming System® Processes and Ports

(c) be "started", one at a time to begin the task which that
"configuration" of processes is to perform. 2b4dc

The CREATE Statement: 2c

A process can cause a module to be instantiated as a process
by the CREATE statement: 2cl

[procvar '.] "CREATE" processname ["FROM" modulename]; 2cla

This causes incarnations of a module’s code, data and stack

segments to be created, The code segment is shared with any

other instances of the module. The process?'s data and stack
segments are created and initialized. If no module name is
provided, the processname 1Is assumed also to be the

modulename, The stack segment name will, at least initially,

always have an internally generated, unique name. 2c2

Each process possesses a predeclared, standard port named
OWNER. When a process creates another, its OWNER port is
connected to a predeclared, standard port called FAULT (for
reasons which will be given subsequently) in the newly created
process. Alsoy, if the "procvar." phrase is present, a
) reference to the created process (i.e.y to Its data segment)
will be stored in procvar, 2cd

Each process possessesy in addition to its OWNER and START

ports, a normal port called its FAULT port which is used to
communicate problems encountered in the process to a process

called its "owner" which is responsible for it. That is, the

FAULT port?'s connection defines who is the owner of a process,

The initial owner is its creator, and the FAULT port in a

newly created process is connected to the CWNER port of its

creator as a side effect of the CREATE statement, 2c4

JOINing Processes 2d

For purposes of explication we will denote a port "a'" which
belongs to some process p as pias Port names are considered
Local to the process in which they are declared. Thus p and
gy both processes, may possess ports a and b respectively by
which they are to cooperate: i.e.y pia is to be joined with
qib. But it is intended that p and g view their respective
ports as virtual facilities whose connection to some real
facility will be decided by a third process (normally the

owner of one of the processes). 2d1l
The means for connecting pza to gq3b is the JCIN statement: 2d2
JOIN pia TO gq:ib 2d2a

2 JUN 72 9:30PM 2

JGM 29-JUN-71 15:10 7359
] The Modular Programming System: Processes and Ports

Processes and Ports:
Basic Notions

An atomic process is an executable instance of a program and
an environment (private data, state Information, a stack and
"econnections" to other processes), Separate processes can
communicate control or information or both among themselves.
The primary means of Inter—-process communication are called
"entry-ports", (non—-entry or normal) ports =— hereafter,
"port" means non—entry port. Both control and data can be
transferred over ports.

Creating a Process

An atomic process can be created by loading a "module", which
module contains machine code and an initial environment for
the process. A name is also given to the process to
distinguish it from other instances of the same module.
Internally, a process consists of three distinct segments [see
the document (deutschydocsegysiwn) for a description of the
software segmentation machinery for the Modular Programming

) System (MPS)]. There is a code segmenty; which is shared by

all the Iincarnations of that module; a data segmenty, one for
each instance of the module (i.e., one per process) which
contains the static storage for the process; and a stack
segment which acts as the local variable and procedure call
stack for the process., The phrase "data segment of a process"
and "process" are used interchangeably since there is an
isomorphism between them.

AlLL the programs running in such a system are (at least
conceptually) processes. When one process causes another to
be created, it is designated as the "owner" of that new
process.

If something happens to a process which it is not prepared to
handle, control will be given to that process's owner so that
it can attempt to take care of the problem. Any process is
free to create another: hencey; conceptually there is a "tree"
of owners at any moment in the system. The root of that tree
is a process having no owner which we will call SYSTEM.

In order to allow a group of processes to cooperate in
performing some function they must

(a) be created

) (b) be connected so that control and information may be

passed among them, and

2 JUN 72 9:30PM 1

2a

2al

2b

2bl

2b2

2bJ

2b4

2bda

2b4b

The Modular Programming System:

2 JUN 72 9:30PM

JGM 29—-JUN-T71 15:10
Processes and Ports

7359

JGM 29-JUN-71 15:10 7359
The Modular Programming System: Processes and Ports

first version of basic notions and implementation notes for the
MPS project

nd o

_ N iR MEJ 29-JUN-71 15341 7360
Invitation for Lecture

MEJ 29-JUN=T71 15:41 7360
Invitation for Lecture

TO: D. C. Engelbart
FROM: Mil Jernigan

SUBJECT: Invitation from Professor William Wulf to Give Lecture
at Carnegie—Mellon University

This morning (June 28, 1971) Professor William Wulf, Computer
Science Department, Carnegie—Mellon University, Pittsburgh,
called you to invite you to give a Lecture on Monday, October 11,
1971, at Carnegie. This would be as the "high point" of the
series on Continuing Education at Carnegie, according to
Professor Wulf. The audience would be Carnegie people; mostly,
who are involved with Large Scale Systems work.

Professor Wulf would like for you to bring the ASIS 1969 movie
and show it the hour before your lecture., The movie would be
used as the foundation from which you could go into the more
sophisticated aspects of the philosophy behind such systems.

He asked me to tell you of this invitation if you called in. He
has to turn over to the printer some kind of text for a brochure
by the end of the first week of July and would very much like an
answer from you by then, If it is possible.

MEJ 289—JUN-71 15:41 7360
Invitation for Lecture

(J7360) 29-JUN-T71 15:41; (Expedite) Title: Author(s): Mil
Jernligan/MEJ; Distribution: Douglas C. Engelbart/DCE; Keywords: j
Sub—-Collections: ARC; Clerk: MEJ;

J0-JUN=-71 14:07 7361
Proposal for Handling Pre—assigned RFC Numbers

This Is quick and rough———If it is inadequate lLet me know

30=-JUN=T71 14:07 7361
Proposal for Handling Pre—assigned RFC Numbers

\

Proposal for Accomodating Pre—assigned RFC Numbers.
General Description

The RFC Number file will cantain, for each EFC Number, the
following information:

Corresponding Master Catalog Number
Author(s)

Title

Medium (on=-line or Hard Copy)

If hard copy; whether document is to bve distributed by
NIC or originator.

If Distribution is to be done by NIC or document is
On—=Line;, a tentative Distribution list.

This information will be collected from the user when he
reguests a pre—assigned number,

) When a user gets a pre—assigned RFC Number, a Master
catalog number is assigned at the same time,

TNLS Commands

The RFC Number Command is executed from the cataalog Number
Submode by typing an "R.

Syntax:

R[FC Number (Pre—aassigned)

Author(s):] IDENTLIST CA [

Title:] LITERAL CA [

On—-Line Document?] ANSWER [

(if no) Distribute VIA NIC?] ANSWER [

(If on—line or dist, by NIC) Distribution:] IDENTLIST
CA [

Accumulated Information typed to user] CA [

RFC # NUMBER]

Semantics:

[CR Author(s):] IDENTLIST CA

la

lal

lala

lalb

lalec

lald

lale

lalf

la2

Lad

1b

1bl

1b2

ib2a

1b3

1bda

JO=JUN=T1 14:07 7306l
Proposal for Handling Pre—assigned RFC Numbers

A List of authors of th document, as per Author
command in JOurnal.

[CR Title:] LITERAL CA
Title as per JOurnaal
On-Line [CR On-Line Document] ANSWER
Yes means document will b submitted Iin form of
on-line JOurnal document, no means Hard Copy Journal
Document,
[CR Distribute VIA NIC] ANSWER
Yes Means Nic will distribute, no means aathor will
[CR Distribution:]

As Per Journal

At this pointy, the entry gathered so far is typed to the
user.

If everything is as he wishes; he may type a CA and
proceed,

Otherwise, a CD will abort the entire command, and
any other character will put him in a command submode
whereby he may re—enter any of the fields by typing
the first letter of the fieldy; e.ge. "A for Author(s).
Additionally, he will haae an Interrogate command
availaale, which will take him through the list
again, and a Status command which will tell him him
the status of the fields.

The Go command maay be used to proceed,

A CD will return him to TNLS command parser.

[CR RFC # NUMBER]

The RFC Number assigned is typed, and he is returned
to the Caaalog Number Submode.

Change to Journal Submode.

In order to allow aa user to use a pre—assigned RFC Number

lbdal
1b3b
1b3bl

1bJdc

1bicl
1bdd
1b3dl
ibJde

1bJdel

1b3r

Ib3f1

1b31£2

1b3£3
1b3f4
1b3£5

1bdg

lbdgl

ic

J0—-JUN-T1 14:07 7361
Proposal for Handling Pre—assigned RFC Numbers

as a Journal Docummnt Number,

the Number part of the
Execute

Journal Command has been modified: 1lecl
E[xecute] J[ournal
Submit] EEE R

[Number:] ((NUMBER / "R[FC Number] NUMBER) [(Assigned
to):] IDENT CA) / CA) lcla

If an RFC Number is entered, it is tested for validity,
and if ok the corresponding catalog number is used for
this entry. iclb

30—-JUN=-71 14:07 7361
Proposal for Handling Pre—assigned RFC Numbers

(J7361) J0-JUN-T1 14:07; (Expedite) Title: Author(s): William S,

Duvall/WSD; Distribution: Charles H. Irby, Marilyn F. Auerbachy Harvey
Ge Lehtman, John T. Melvin, James C, Norton, Richard W. Watson/CHI MFA
HGL JTM JCN RWW; Keywords: RFC NUMBER Pre—Assign; Sub—Collections: NIC;

Clerk: ;

RWW 1-JUL-71 10:58 7362
Requirements for a New Col lector—sorter

Requirements for an Improved Collector—-Sorter 1

INTRODUCT ION 2

The goal of NLS evolution, as I understand it, is to provide
an NLS workshop which will allow people to perform their

intellectual tasks. This regquires that NLS contain: 2a
(1) A number of general tools., 2al
(2) Mechanisms and conventions for people to combine these
tools into higher order processes. 2a2
(3) A baslic system organization which allows people to
easily interface new general tools, 2ad

(4) Mechanisms for performing operations on large data
bases efficiently and fast, 2a4

To meet the above goals requires a balanced development not

only of inner implementation improvements, but continual

development of the NLS subsystems and deferred execution

mechanisms. 2b

One of the potentially most powerful and useful subsystems is
the Collector-Sorter. We have at present a slow, primitive,
but useful, initial system. If we are really to provide a
general information processing workshop and meet requirements
in such cases as cataloging and documentation support, a
better Collector-Sarter is a high priority item, The
Collector—Sorter is particularly powerful when used in
conjunction with the L-10 Content Analyzer. There are some
improvements required in this area which suggest themselves as

an aside. 2¢c
Improvements in the Content Analyzer subsystem: 2d
(1) Better L—10 NLS routine documentation. 2d1
{(2) Interactive debugging aids for us ordinary folk. 2d2

(3) The ability to compile L—-10 modules to be used with
the Content Analyzer and store them as binary branches in
NLS files. 2d3

(4) The ability to load several such modules into Content
Analyzer buffers and turn them on with an expanded i
viewspec. 2d4

RWW 1-JUL-71 10:58 7362
Requirements for a New Collector-sorter

Collector—-Sorter Requirements 2e

The requirements listed below we see as stages of
development that would proceed as the need iIs demonstrated
relative to other priorities of this project. The goal
would be an initial design which would see that a framework
was provided which would allow all these requirements to be
added incrementally . The items marked with an asterisk
are required with high priority at this time. The kind of
abilities desired in the Collector—Sorter are clearly
needed in the Set System, although the Set System assumes
more underlying NLS mechanisme Maybe the design should be
combined, although at least a Merge capability is required
very sSo0on. 2el

#¥(1) Much faster sort, 2ela

¥(2) A fast Merge capability, defined as the ability to

merge a set of flles such that some statements or

branches may be replaced by others., An example is

updating the catalog master files with new items and

updated items which replace older items. 2elb

There are some user controls required on the merge
process when one item is to replace another. 2elbl

(a) Criteria for replacement of statements or

branches should be flexible and settable by the

user, for example, replacement based on data in

the in signature field. 2elbla

{(b) When an item replaces another, the one
replaced may be discarded or both written onto a
file for later proofing. 2elblb

(c) Some information can be given to the merge
process to start merge after a given statement
number or identifier or name. 2elble

¥ (J) One wants a more general way to specify the

primary and secondary sort keys. Now the sort keys are
delimited by @ signs at the head of the statement. What

one wants to be able to do is use L-10 syntax to specify

how to find the sort keys in statements. 2elc

(4) WE want to be able to have invisible delimiters or
sort key strings which can be placed in text and made
visible with a viewspec, if desired, 2eld

RWW 1-JUL-=71 10:58 7362
Requirements for a New Collector-sorter

(5) We want to be able to collect and sort branches by
bringing across the entire branch and maintaining the
structure, or bring it across fil tered with the

structure maintained even 1If predecessor statements do

not pass the filter, or bring the branch across and have

all statements raised to the same level. we would like

to have the criteria which are used by the filter to be
locatable at any level, not just in the top Llevel

statement of the branch. Sort keys for branches should

also be allowed in lower level statements Iin the branch. 2ele

(6) We want to be able to sort In ascending or
descending order, fixed or variable length kKeys. 2elft

(7) The present Collector-Sorter is not automatically
initialized on each use. It should probably be
initialized each time. 2elg

(8) We should be able to specify the input set of files
with a file of links. { 2elh

(9) After setting up the Collector—-Sorter, either

command by command as nowy or with an interrogate

command, there should be a status command like that in

the Journal to review what has been set up. 2eli

{10) There should be more feedback during running as
some of the uses for the Collector—-Sorter could take

hours. 2elj

(11) The Collector-Sorter should work with the property
list mechanisms being placed in NLS. 2elk

{(12) There should be an option to cause intermediate
work files to be deleted if desired. Zell

(13) There should be a sort capability in NLS. 2elm

RWW 1-JUL-71 10:58 7362
Regquirements for a New Col lector—-sorter

(J7362) 1-JUL-71 10:58; (Expedite) Title: Author(s): Richard W,
Watson/RWW3 Distribution: Charles H, Irby, William S. Duvall, James C.
Nortony; Walter L., Bass; J. D. Hopper/CHI WSD JCN WLB JDH;
Sub—Collections: ARC; Clerk: RWW;

RWW 1-JUL-71 11:32 7363
DElivery for the Network

Journal Delivery For the Network

There are four types of delivery that seem like they are useful:
(1) U. S. Mail,
(2) Online into the receiver's initial file as a link.

(3) Online Iinto the station agent's (or some other user name)
initial file,

(4) Offline to a remote distribution file or direct to a
remote printer.

My feeling at the moment is that all four capabilities should be
avallable and the actual method or combination of methods of
delivery is indicated in a person's ID file entry.

Delivery to the station agent's (or some other user's name)
initial file should probably create a branch of messages for each
receiver being handled in that file, There would only be a
branch If there was a message. For the station agent to print
out the messages some new command or L—10 program is required to
print the series of files pointed to by the links, rather than
having the station agent load each file and then print it with
Output Device Teletype.,

Walter's mechanisms for deferred execution should work for this
problem. The station agent would be responsible for deleting
matterial from her initial file,

Off line delivery to a remote distribution file or to a remote
line printer has the following requlrements. We should not have
to know what we are sending a file to. What 1Is needed is a
standard network process called MAILBOX that any site can send a
file to and have it gobbled up for deferred printing or direct
printing. The characteristics of this process are:l

(1) It is always listening on some socket,

(2) It accepts information in the Network Standard File and
Data Transfer Protocols,

(3) It converts from a network standard line printer protocol
format to whatever is needed by its local printer.

2b

2c

2d

6a

6b

6¢c

RWW 1-JUL-71 11:32 7363
DElivery for the Network

(J7363) 1-JUL-71 11:432; ({ Expedite) Title: Author(s)2 Richard W,
Watson/RWW; Distribution: John T. Melvin, William S, Duvall, Charles H.
Irby/JTM WSD CHI; Sub-Collections: ARC; Clerk: RWW;

RWW 1-JUL=-71 14:58 7364
NIC Open for Online Business(We Hope)

This message is to demonstrate we are up on the network open for
NIC business, We connected to BBN and are using their telnet to
connect back to ourselves, A historic moment,

RWW 1-=JUL=T71 14:58 7364
NIC Open for Online Business(We Hope)

(JT7364) 1-JUL-T71 14:58; (Expedite) Title: Author(s): Richard W.
Vatson/RWW; Distribution: Steve D, Crocker, Jon B. Postel, Robert E.
Long, Eric F. Harslem, John W. McConnell, Mark C. Krilanovich, Duane L.
Stoney, Charles H. Irby, William S. Duvall/SDC JBP REL EFH JWM MNMCK DLS
CHI WSD; Sub—Collections: ARC NIC ; Clerk: RWW;3

WHP 1-JUL=71 18355 7365

WHP 1-JUL-=71 18:55 7365
nls note

)

BillL,

I1've finally deleted the declarations for "swchil”™ and "swch2",
the variables that were used with special characters in
statements, The only remaining references to them are in your
procedure mvsdbd, Would you take care of them please.

la

WHP 1-JUL=71 18:55 7365

nls note

(J7365) 1-JUL-71 18:55; (Expedite) Title: Author{s): William H.
Paxton/WHP; Distribution: William S. Duvall/WsSD; Keywords: ;
Sub—Collections: ARC; Clerks: WHP;

WSD 2-JUL-71 14:58 7366
Journal System errors

This is a rough list of possible JOURNAL error messages and the
approx imate meaning and user action

WSD 2-JUL-=71 14:58 7366
Journal System errors

Journal System errors

System Errors——Call Someone knowledgeble
Number file bad
Bad File
BAD ENTRY IN JCAT FILE
Jctl Error
Bad JCAT file
Distribution Error
Bad Journal Header
Illegal Branch Name Or already used Number
Bad Number File
Bad file
Bad Tfile
SYSTEM ERROR
Global Journal File System Error——Call NIC Center
Illegal type value to lockjo
Illegal Flag Number to Unlkjo
Illegal Number
Illegal typee...syserr
Bad Number File
Number File Exhausted
Illegal Number.,.syserr

and/or give up until it getss fixed

User Errors

Illegal RFC or Catalog Number

la

lal

la2

1ad

la4

1aS

lab

La7

1a8

la9

1al0

Lall

lal2

lald

lal4d

lals

lal6

Lal?

1al8

l1al9

1a20

1b

lc

1cl

WSD 2-JUL-71 14:58 7366
Journal System errors

No Such Number lcla

Wrong owner ilclb

Name Field in New Identification Entry 1c2
Illegal format name lc2a

Other Errors —— try again 1d
File Locked Too Long 1d1l
Directory Connect Failed 1d2
Connect return failed—-—left in Journal 143
Connect return failed—-—returned to Login Directory 1d4

Journal System errors

(J7366) 2-JUL-T71 14:58;
Duvall/WsSD3; Distribution:
Charles H. Irby, James C,
Clerk: WSD;

WSD 2—-JUL=71 14:58 7366

(Expedite) Title: Author(s)z William S.
Marilyn F. Auerbach, Richard W. Watson,

Norton/MFA EWW CHI JCN;

Sub—-Collections:

ARC;

WSD S=JUL=71 10:53 7368
Re-Groups

Ken, .1l guess [must have mis—understood what was to happen with
respect to the group stuff. I am no longer in NLS' group (or
whichever way it is supposed to be), which is innconvenient.,
Could things be fixed so I can write NLS' files again???

Thanks...Bill

WSD 5=JUL-71 10:53 7368
Re—=Groups

(JT368) 5=JUL-71 10:53; (Expedite) Title: Author(s): William S,
Duvall/wsD; Distribution: Kenneth E. Victor, James C, Norton/KEV JCN;
Sub—Collections: ARC; Clerk: WSD;

WSD S5S—-JUL-=71 19:22 7369
L10 Note

Bill...I had to go back to version 38 of the L10 compller
agalne.s New version wouldn't work for Goto L10 Commande.
Billssse

WSD S5-JUL-71 19:22 7369
L10 Note

(J7365) 5-JUL=-T71 19:22; { Expedite) Title: Author(s): VWilliam S.
Duvall/WsSD; Distribution: William H. Paxton, Charles H. Irby, Mimi S.
Church/WHP CHI MSC; Sub—-Collections: ARC; Clerk: WSD;

WSD S5=JUL=71 19:29 7370
A note on Revised Slinker Startup Procedure

)

Ken...

I changed slinker so it is one with NLS.

NLS now checks one of the flags, and if it is set; logs itself
in as the appropriate user (assuming it is not already logged
iny in which case an error is executed), an sets things up and
then slinks.

Another flag controls the automatic startup of NLS UTILTY.
Therefore: In conjunction with the coming up of the new
system, could you change the monitor so that it starts a job

called <{SUBSYSTEM>NLS.SAV,

I would like to start it twice, once for SLINKER and once for
UTILTY.

Also, could you make NLS a usery, so UTILTY may log in as
it?7??.

ThanksS.«Bill

PeS. We have to co—ordinate so that we don't have an old NLS
with the new monitor, otherwise

la

1b

lc

1a

le

1£

lg
Lh

1i

WSD 5-JUL-71 1929 7370
A note on Revised Slinker Startup Procedure

(J7370) S=JUL-71 18:29; (Expedite) Title: Author(s): William S.
Duvall/WSD; Distribution: Kenneth E. Victor, Charles H. Irby, Harvey G.
Lehtmany, William H. Paxtony, Mimi S. Church/KEV CHI HGL WHP MSC;
Keywords: Automatic Job Startup Slinker; Sub—-Collections: ARC; Clerk:
wWSDh3

WSD S—-JUL-71 19:47 7371
NLS Utilty Background Processor Description/Users Guide

NLS Utilty Background Processor
Utilty is a routine which runs as a detatched job, may be
started automatically by the monitor at system startup time,
and is capable of compiling and printing files,
Scheduling
It controls its own scheduling on a macro scale so that:
(a) Before 20:00

It activates itself every hour on the hour.

Between the hour and 10 minnutes past the hour, it
will do compilations.

Following 10 minutes past the hour, it will only do
listings.

(b) After 20:00

Activates on the houry, but will continue with any job
until its task list is exhausted,

Task List

UTILTY assumes the presence of a file <NLS>TASKS.NLS,; which
contains a branch with the name "TODO'.

Sub-statements of this branch are taken as tasks,
Vhenever a task has been completed, it will have a string
appended to it reflecting the status of the task execution
("Completed means everything went ok, errors are
elucidated), and the statement will be moved under a branch
in the tasks file labelled "DONE"'.

Commands
Compile
Syntax: "Compile " FILENAME [TIME]

Semantics:

The indicated file is compiled.

la

ib

1bl

Ibla

Iblal

ibla2

1blad

lblb

iblbl

ic

icl

icla

1c2

1d

1d1

idla

ldilb

ldlibl

¥SDh S5—-JUL-T71 19:47 7371

NLS Utilty Background Processor Description/Users Guide

Print

If there is no user name in the file name, the
user is assummd to be NLS.

UTILTY will compile a locked filey but not one
which is in use.

iIf there is a time (format HH:IMM); the file will not
be compiled until that time, and will get highest
priority after that time.

Otherwise, the file will be compiled on a time
avalilable basis until after 20200, when all files
are treated alike,

Errors in compilateion will be reported in the DONE
branch of the task file, and the actual errors
themselves may be seen in the file
SNLSDODUTILTY-0OUTPUT .TXT .

Use TECO (or possibly insert sequential) to look
at this file.

A new version of this file is created each time
UTILTY runs,; i.e. every hour.

Thus, you may determine which version to Llook in
by comparing the current time to the time which
yvyour job ran (indicated in the tasks file entry),
and going back the proper number of versions,

8 wversions of UTILTY-OUTPUT will be kept.

The Source file is loaded and scanned for the FILE
statement.

If there is an indication of compiler and relfile
namm in the file statement (format: ['%] $NP
COMPILERNAME ["%] < CH [NP] > CH RELFILENAME) Then
the indicated compiler and rel-file are used.

Otherwisey, the compiler is assumed to be L10, and
the rel—-file is assumed to have the same name as
te L10 Program (indicated by te FILE statement),
and is under the user REL-NLS.

Syntax: "Print " FILENAME [TIME]

ldlbla

idlblb

1dlb2

1dib2a

ldlbd

idlbJda

1dib3b

ldibJdc

ldlbid

Idlb4

1d1bS

ldibSa

1d2

ld2a

WS8D S=JUL-71 19:47

NLS Utilty Background Processor Description/Users Guide

Semantics:

The indicated file is printed via
processor and LPT:,

Errorsy the meaning of TIME, etc.
Complle,

Example of TASKS.NLS
<NLS>TASKS .NLS373, 5-JUL-T71 17:11 XXX ;

(todo) Things to be done ("Compile "
FILENNAME)

Compile utilty
Print auxcod
(DONE) Tasks Which Are Done

Compile utilty
Completed at 5=JUL-T71 17:11

Compile data
Completed at 5—=JUL-71 17:09

the output

are the same as for

FLLENAME /

"print

7371

"

1d2b

1d2bl

1d2b2

le

lel

lela

lelal

lela2

lelb

lelbl

lelb2

WSD S5S—=JUL-71 19:47 7371
NLS Utilty Background Processor Description/Users Guide

(J7371) S5=JUL=-71 19:47; (Expedite) Title: Author(s): William S,
Duvall/WSD; Distribution: Walter L. Hass, Mimi S. Churchy, J. D. Hopper,
Charles H. lrby, Harvey G. Lehtman, Bruce L. Parsley, William H.
Paxton/WLB MSC JDH CHI HGL BLP WHP; Keywords: NLS Utilty Background;
Sub-Collections: ARC; Clerk: WSD;

WSD 5-JUL-71 19:58 7372
Communication Flag Usage

Usage of Program Communication Flags
Flag #0 (password JLOCK): Used to control Journal access.

When set, prevents anyone new from entering the Journal,
but allows persons already using it to continue.

Flag #1 (Password JBFIL): Indicates a Bad File in the Journal
System Files.

This flag may be set either by the Journal, or by slinker.

It indicates that an error was found in one of the Journal
files, and immediately stops any further use of the
Journal.

Persons currently using the Journal are bombed out to te
TNLS command parser with the message: Global Journal
File System Error—Call NIC Center.

The flag will always be reset by running recovf, and it
will be additionally reset by any successful running of
slinker,

Note that slinker May also set this flag if it finds a
bad file.

Recovf should be used for recovering.

Flag #2 (Password SLNEKR): Controls the automatic startup of
Recov?f (slinker, OLJDEL).

If ony NLS will not function as NLS; but will reset it and
start up recovf (including logging in as background)
instead,

If found on and NLS is logged in, NLS executes an error
after resetting it.

Flag #3J (Password NLSUT): Controls the automatic startup of
NLS utilty. .

If ony NLS will not function as NLS,; but will reset it and
start up Utilty (including logging in as background)
instead.

If found on and NLS is logged iny NLS executes an error
after resetting it.

la

lLal

1b

1bl

1b2

1b2a

1bJ

1bda

1b3b

lc

icl

Lc2

1d

1d1l

1d2

WSD S—JUL-71 19:58 7372
Communication Flag Usage

(J7372) S5=JUL-71 19:538; { Expedite) Title: Author(s): William S,
Duvall/WSD; Distribution: Walter L. Bassy, J. D. Hopper,; Mimi S. Church,
Charles H, Irby, Harvey G. Lehtmany, John T. Melvin, Bruce L. Parsley,
William H. Paxton, Kenneth E. Victor, Don I. Andrews/WLB JDH MSC CHI HGL
JTM BLP WHP KEV DIA; Sub—Collections: ARC; Clerk: WSD;

WSD 5=-JUL-71 20:35 7373
Addendum to (7371,)

I forgot to mention in NLS Utilty Document, that it does an
expunge of NLS'" directory after each time it runs,

WSD 5=JUL=71 20:35 7373
Addendum to (7371,)

(J7373) 5-JUL-T71 20:35; (Expedite) Title: Author(s): William S.
Puvall/wsD; Distribution: Walter L. Bass, Mimi S. Church, J. D. Hopper,
Charles H. Irby, Harvey G. Lehtman, Bruce L. Parsley, William H.
Paxton/WLB MSC JDH CHI HGL BLP WHP; Sub-Collections: ARC; Clerk: WSD;

	7340

	7343
	7346
	7347
	7351
	7358
	7359
	7360
	7362

	7366
	7371

